Novarun Deb
Nabendu Chaki

Business Standard
Compliance and
Requirements
Validation Using
Goal Models

@ Springer

Services and Business Process Reengineering

Series Editors

Nabendu Chaki, Department of Computer Science and Engineering, University of
Calcutta, Kolkata, India
Agostino Cortesi, DAIS, Ca’ Foscari University, Venice, Italy

The book series aims at bringing together valuable and novel scientific contribu-
tions that address the critical issues of software services and business processes
reengineering, providing innovative ideas, methodologies, technologies and
platforms that have an impact in this diverse and fast-changing research community
in academia and industry.

The areas to be covered are

® Service Design

® Deployment of Services on Cloud and Edge Computing Platform
® Web Services

® IoT Services

® Requirements Engineering for Software Services

® Privacy in Software Services

® Business Process Management

® Business Process Redesign

® Software Design and Process Autonomy

® Security as a Service

® IoT Services and Privacy

® Business Analytics and Autonomic Software Management
® Service Reengineering

® Business Applications and Service Planning

® Policy Based Software Development

® Software Analysis and Verification

® Enterprise Architecture

The series serves as a qualified repository for collecting and promoting
state-of-the art research trends in the broad area of software services and business
processes reengineering in the context of enterprise scenarios. The series will
include monographs, edited volumes and selected proceedings.

More information about this series at http://www.springer.com/series/16135

http://www.springer.com/series/16135

Novarun Deb - Nabendu Chaki

Business Standard
Compliance

and Requirements Validation
Using Goal Models

@ Springer

Novarun Deb Nabendu Chaki

Department of Environmental Science, Department of Computer Science
Informatics and Statistics and Engineering

Ca’ Foscari University University of Calcutta

Venice, Italy Kolkata, India

ISSN 2524-5503 ISSN 2524-5511 (electronic)

Services and Business Process Reengineering

ISBN 978-981-15-2500-1 ISBN 978-981-15-2501-8 (eBook)

https://doi.org/10.1007/978-981-15-2501-8

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-2501-8

You have to fight to reach your dream. You
have to sacrifice and work hard for it.
Sometimes you have to accept you can’t win
all the time. There are more important things
in life than winning or losing.

—Lionel Andrés Messi

To my grandmother Kalpana Dutta,

my father Parimal Deb and my mother Sapna
Deb, who could not complete her own Ph.D.
due to filial responsibilities.

—Novarun Deb

To Prof. Swapan Bhattacharya, my mentor.
—Nabendu Chaki

Preface

My research career under the guidance and supervision of my co-author,
Prof. Nabendu Chaki, began in the latter half of 2009. He was the supervisor for my
master’s (MS) thesis. At that time, I was eager to explore the domain of intrusion
detection mechanisms for wireless ad-hoc network security. Even during my
M.Tech., we continued to work on intrusion detection algorithms for wireless
ad-hoc networks. This research thrust resulted in conference and journal publica-
tions as well as some book chapters. All this boosted my research interests and it
grew beyond my masters’ theses.

However, after completing my M.Tech. in 2012, when I started working on my
Ph.D., I decided to take a holistic approach on security of systems. What I con-
cluded from my study of the state-of-the-art and industry practices at that time was
that Security is a multi-dimensional objective. Intrusion detection was just one
of these dimensions. Security can be thought of as a chain having multiple links,
and the security solution for a system or enterprise is only as strong as the weakest
link in that chain. So the current industry standards were Security Compliance
rather than Security as a whole. Enterprises have certain standards for each security
dimension. A 100% compliance to each of these security standards is more
important than a 100% secure solution.

In my efforts to incorporate Security within the requirements of a system-to-be,
I started exploring the domain of goal-oriented requirements engineering.
Prof. Aditya Ghose at the University of Wollongong, Australia, has been the joint
supervisor of my Ph.D. thesis. He suggested that non-functional requirements like
Security can be represented within goal models with softgoals and Softgoal
Interdependency Graphs (SIGs). However, since softgoals open up a whole new
can of worms which needs to be handled with caution and a different level of
expertise, we consciously decided to focus on functional requirements of a system
(only) for my Ph.D. This book is mainly focused on the enterprise modelling and
requirements analysis techniques for functional requirements that have been pro-
posed during my six years of doctoral research.

ix

X Preface

The book also goes beyond the works documented in my Ph.D. thesis and gives
an insight to the reader on how the proposed algorithms, architectures, and
frameworks, can be developed into tools and extended for future research. Chapter
6 documents some of these works that have been done during my post-doctoral
research period. These works address the future research directions that were
mentioned in my Ph.D. thesis. Of particular importance is the GRL2APK frame-
work on which we are currently working. We are trying to develop an optimized
version of this framework that tries to resolve Non-Functional Requirement
(NFR) conflicts and generate an optimal solution based on developer choices and
priorities. This requires exploring how different NFRs—Ilike Security, Privacy,
Efficiency, etc.—interact and conflict with each other. We would like to thank
Souvik Das (a Ph.D. scholar working under Prof. Chaki at the Department of
Computer Science and Engineering, University of Calcutta) for helping us in
building the GRL2APK tool.

Thus, in conclusion, I would like to mention that I began my research career with
Security (as a defence mechanism) and currently I am again working with Security
(as a non-functional requirement). This is, I guess, what they say.... The Circle of
Life!!!

Venice, Italy Novarun Deb
November 2019

Contents

1 Introduction 1
1.1 The i* Modelling Notation 2
1.1.1 Case Study: Healthcare 3
1.2 Research Directions, 4
1.2.1 Goal Model Hierarchies (RQ-1) 6
1.2.2 Goal Model Checking (RQ-2) 7
1.2.3 Semantic Analysis of Goal Models (RQ-3) 7
1.3 Analysisof Results. 8
1.4 Organization of the Book 9
References 9
2 State-of-the-Art. 11
2.1 Formal Requirements Engineering Techniques 12
2.2 Requirement Refinement Hierarchies 13
2.3 Model Checking with i* 15
2.4 Semantic Annotations of Goal Models. 17
References 19
3 i* and Enterprise Hierarchies. 23
3.1 Hierarchic Correlations 28
3.2 Relative Completeness Checking 33
3.2.1 Consequence of Relative Completeness. 35
3.3 Possible Heuristics 35
3.3.1 Formalizing the Heuristics 38

3.3.2 Applying Heuristics for Relative Completeness
Checking. 40
333 Results 42
34 Conclusion. 43
References 44

xi

Xii

4

Contents

Model Checking with i* 45
4.1 Developing Finite State Models from an i* Model 47
4.1.1 The Naive Algorithm 48
4.1.2 The Semantic Implosion Algorithm (SIA) 54
4.1.3 Soundness and Completeness 61

4.2 Complexity Analysis.o 62
4.2.1 Actor Internal Analytics 63
4.2.2 Inter-Actor Analytics 65
423 SIA Analyticso 69

4.3 The i*ToNuSMV Tool 71
43.1 i"ToNuSMV Input........ 71
4.3.2 The Preprocessing Module 73
4.3.3 The Model Transformation Module 73
434 The Mapper Module 73
435 1"ToNuSMV Output. 74
4.3.6 The i*ToNuSMV Algorithm. 76
4.3.7 Platforms Used 76
4.3.8 Application Scenario 76

4.4 1"ToNuSMV Version Manager 77
45 Contactand URL 77
4.6 ConCluSION 78
References 79
Goal Model Maintenance 81
5.1 Semantic Reconciliation 83
5.1.1 ORGMod Extraction 88
5.1.2 Semantic Reconciliation Operators 94
5.1.3 Tllustrative Examples 99

5.2 Resolving Conflicts Using Model Refactoring 104
5.2.1 Entailment Issues...................... 104
522 Consistency Issues. 109

5.3 An Implementation Roadmap 113
5.3.1 The Generalized Framework. 113
5.3.2 Taxonomy of Goal Model Proximity Measures 117
5.3.3 Evaluating Goal Model Proximity................... 117

5.4 Using AFSR on the i* Framework. 119
5.4.1 Dependency Reconciliation Operator 119
5.4.2 Implementation Roadmap fori* 121

5.5 Experimental Evaluation 124
5.5.1 [Indicators and Drivers 124
5.5.2 Experimental Preliminaries. 124

553 Processand Results 125

Contents xiii
5.6 Conclusion. 128
References 130

6 Conclusion and Future Work 131
6.1 Summary of the Work 131
6.2 Future Research Directions 132

6.2.1 Extracting Business Compliant Finite State Models 133

6.22 The CARGo Tool 140
6.2.3 Building Mobile Applications from Goal Model

Specifications 143

References 152

Abbreviations

AFSR
Al
AoURN
AT
BIDE
BPIC
BPMN
BRC
CCA
CNF
CRA
CTL
DDL
DSO
E-FSM
ERA
FSM
FSMS
FSMS-A
FSMS-N
FSMS-S
FU
GBRAM
GORE
ITU
ITU-T
KAOS
LTL
MDSE
MEL

Annotation of Functional Semantics and their Reconciliation
Artificial Intelligence

Aspect-oriented User Requirements Notation
Activity Theory

BI-Directional Extension

Business Process Intelligence Challenge

Business Process Modelling Notation
Bi-directional Relative Completeness

Cloud Component Approach

Created Not Fulfilled

Consistency Resolution Algorithm

Computational Tree Logic

Dependency Links

Decomposition Sequence Objects

Extended Finite State Models

Entailment Resolution Algorithm

Finite State Model/Machine

Finite State Model Space

Finite State Model Space for the actor set A

Finite State Model Space for the Naive Algorithm
Finite State Model Space for the Semantic Implosion Algorithm
Fulfilled

Goal-Based Requirements Analysis Method
Goal-Oriented Requirements Engineering
International Telecommunication Union

ITU Telecommunication Standardization Sector
Knowledge Acquisition in autOmated Specification
Linear Temporal Logic

Model Driven Service Engineering

Means End Links

XV

XVi

NA

NC
NFR
NL
NuSMV
OCF
OCL
OO-SPL
OPL
ORGMod
OWL
PCL
PCTk
PoC
RAM
RE

RI

RML
RSML
SADT
SCR

SD

SIA
SPMF
SR

SRA
TDL
t-GRL
UML
URC

Naive Algorithm

Not Created

Non-Functional Requirements

No Links

New Symbolic Model Verifier
Optional Condition Formulae

Only Child Links

Object-Oriented Software Product Line
Only Parent Links

OR-Refined Goal Models

Ontology Web Language

Parent and Child Links

Process Compliance Toolkit
Proof-of-Concept

Reusable Aspect Models

Requirements Engineering

Relative Incompleteness

Requirements Modelling Language
Requirements State Machine Language

Structured Analysis and Design Technique

Software Cost Reduction

Strategic Dependency

Semantic Implosion Algorithm
Sequential Pattern Mining Framework
Strategic Rationale

Semantic Reconciliation Algorithm
Task Decomposition Links

Textual Goal Requirements Language
Unified Modelling Language
Unidirectional Relative Completeness

Abbreviations

Notations

Generic

>

Actor
Goal
Task
Resource

2H9

Chapter 3

n

L;

ME({GI) G2, eee Gk}’ G)

TD({G,, G, ..., G}, G)
MEL),

TDL,

DD(A, B)

i i+1
Gj - Gy

i i+l (it
G; = Gy Gy s -

, Gt
I;
R[i" (k)]

Number of levels in the requirement refinement
hierarchy
Ontology used in level-i of the hierarchy

Goal G connected to goals Gy, G», ..., Gy using
Means-End links
Goal G connected to goals Gy, Gy, ..., Gy using

Task Decomposition links

Means End Links in actor A at level-i

Task Decomposition Links in actor A at level-i
Dependency between a depender A and dependee
B

1-1 correlation between goal G; at level-i and goal
Gy at level-(i + 1)

1-Many correlation between goal G; at level-i and
goals Gy, G, - - -, Gr, at level-(i + 1)

i* model at level-k

Set of requirements captured by the i* model at
level-k

Xvii

Xviii

;|
OC#i
oc#i™!
HR#i
HR#™!
|HR#i |

(Ty Tiyr)
T;

({ Tu, ..

MR syppore

Chapter 4

BJ Tin>7 T1>

Notations

Number of model elements in the i* model at
levels &k

1-1 correlation

Inverse 1-1 correlation

1-Many correlation

Inverse 1-Many correlation

Number of model elements in [, that have a
1-Many correlation with some model element in I},
Contiguous events in the level-x event log

J-th event in the level-(x+ 1) event log that is
related to event 7; in the level-x event log

A joined log representing a sequential pattern of
interest

Threshold provided to the BIDE+ pattern miner

Goal in the Not Created state

Goal in the Created Not Fulfilled state

Goal in the Fulfilled state

State Sequence Graph

Goal in either of three states NC, CNF, or FU
Vertex label in Ggg

Source vertex of Ggg

Sink vertex of Ggg

Number of paths from source vertex to sink vertex
in GSS

Goal G; in state NC

Goal G; in state CNF

Goal G; in state FU

Goal G; making a transition from G,y to Gyc)
Goal G; making a transition from Gy(¢) to Gy,
Number of finite state sequences for the i-th task
decomposition within an actor

Size of the finite state model space for actor A;

Notations

Chapter 5

(G Gj), [G;, Gi])
(G, ((G)), (G}, [D])
Gix)

Gia)

1E(G)

CE(G)

rec(G;, Gj)

ANDrec(G, Gj, Gy)
ORrec(G, G;, Gy)
DEPrec(G;)

D

Ald))

o

<G
Ve

Xix

Path label for OR-decompositions

Path label for AND-decompositions

Goal G; undergoes OR-decomposition

Goal G; undergoes AND-decomposition

Immediate semantic annotations provided for goal G
Cumulative semantic annotations derived for goal G
Semantic reconciliation operator between parent G; and
child G;

Semantic reconciliation operator for
AND-decompositions

Semantic reconciliation operator for
OR-decompositions

Semantic reconciliation operator for dependences
Deficiency List for a goal with entailment conflict
Availability function providing the paths for the
deficient semantic d;

Set of change constraints for the goal model
maintenance problem

Goal model proximity operator

Goal model distance measurement operator

List of Figures

Fig. 1.1~ SD model of a medical insurance enterprise. 3
Fig. 1.2 SR model of the claims manager actor within the medical
INSUANCe eNterPriSe. . . . v oot vt ettt e e e e 4

Fig. 3.1 Requirement specifications modelled by the university

at abstract higher levels of the requirement refinement

hierarchy. 25
Fig. 3.2 Requirement specifications modelled by individual

departments at the lower levels of the requirement

refinement hierarchy 26
Fig. 3.3 Hierarchic correlation in an Actor Invariant refinement

hierarchy. 29
Fig. 3.4 Hierarchic OCL goal correlation in an Actor Invariant

refinement hierarchy L. 30
Fig. 3.5 Hierarchic OPL goal correlation in an Actor Invariant

refinement hierarchy 31
Fig. 3.6 Hierarchic PCL task correlation in an Actor Invariant

refinement hierarchyo Lo oo il 31
Fig. 3.7 Possible Hierarchic correlation in an Actor Variant

refinement hierarchy L. 32

Fig. 3.8 1-Many correlation between lower granular goal Science

Courses and higher granular goals Pure Science Courses

and Engineering Science Courses 37
Fig. 3.9 The i* model obtained for the lower levels of the

requirement refinement hierarchy after incorporating

the 1-Many correlation 38
Fig. 4.1 Block diagram of standard model verifiers 46
Fig. 42 Problem with i* model verification. 46

Fig. 43 a Actor A with a single goal G; b The only semantically
correct finite state sequence; c—g Other possible finite state
sequences that can be derived by permuting the state space
but which are semantically incorrect. 49

XXi

xxii

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15
4.16
5.1
5.2

List of Figures

a Actors A; and A, with goals G and G, respectively;

b The State Sequence Graph over the set of 32 = 9 possible

SEALES . . o 49
Graph depicting the rate of growth of the state space and finite

state model space with respect to the number of model

elements in the i* model for the Naive Algorithm 53
a Actor A; with goal G;; b The corresponding finite
state model L 55

a Actor A; with goals G, G, and G5 connected through

a task decomposition; b The corresponding set of all possible

finite state models captured in a state sequence graph. 56
a Actor A; with goals Gy, G, G; and G4 connected through

a means-end decomposition; b The corresponding finite

state model 58
The state sequence graph corresponding to a nested

decomposition. A higher level means-end decomposition

contains another means-end decomposition along the leftmost

link and a task decomposition along the rightmost link 59
a Goal Gj of actor A; dependant on Goal G4 of actor Aj;

b Temporary transition from Gj(¢) to Gj(r) introduced;

¢ Resolution of the dependency by replacing the temporary

transition with two permanent transitions 60
Behaviour analysis with respect to the finite state model

space of individual actors for the Naive Algorithm (FSMS-N)

and the Semantic Implosion Algorithm (FSMS-S) as the

number of model elements in the i* model varies. 64
Behaviour analysis with respect to the finite state model

space of the entire enterprise for the Naive Algorithm

(FSMS-N) and the Semantic Implosion Algorithm (FSMS-S)

as the density of actors in the i* model varies 67
Behaviour analysis with respect to the finite state model

space of the entire enterprise for the Naive Algorithm

(FSMS-N) and the Semantic Implosion Algorithm (FSMS-S)

as the distribution of model elements within actors in the i*

model Varies 69
Behaviour analysis of the Semantic Implosion Algorithm

(w.r.t. the finite state model space) as the distribution of model
elements within actors and the actor density in the i* model

areboth varied 70
The i*ToNuSMV tool 72
An i* model of a single actor Doctor 72
Goal model of an existing healthcare enterprise 84

An OR-refined Goal Model highlighted within the goal
model 87

List of Figures Xxiii

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

53

54

55

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Goal models illustrating the two different types of

decompositions or splits that artefacts can undergo. 88
Decomposition sequence segmentation of the path list

for the goal model in Fig. 5.2. 90
Decomposition Sequence Objects (DSO) derived from

the decomposition sequences in Fig. 5.4................... 90
The four possible ORGMods that have been derived

for goal Gy, highlighted within the goal model of actor A;. 94
Two ORGMods highlighted for goal G; which undergoes

a OR-decomposition within the goal model of actor A;........ 99

An illustrative example showing how semantic reconciliation

can be used to detect problems in entailment although

consistency isensured. 100
An example showing a consistency conflict between

the immediate annotations of parent goal G and the

cumulative annotations of child goal G 101
An example showing how entailment and consistency

are both satisfied. 103
A sample goal model showing failure of entailment

at goal G that undergoes OR-decomposition. 106
Temporary high-level goals GT| and GT, are used

to merge goals G| and G, with the temporary goal CTj. 107
A sample goal model showing failure of entailment

at goal G that undergoes AND-decomposition 107
Temporary goal CT; is merged with goals G; and G,

to obtain the cumulative semantic annotation of G........... 108

Hierarchic inconsistency at goal G arising out of the
immediate satisfaction condition ¢ of G and the cumulative

satisfaction condition ~g of goal Gy 109
Eliminating inconsistencies in the semantic reconciliation
process governed by Eq. 5.2 in Theorem 5.1 110

Sibling inconsistency at goal G arising out of the immediate
satisfaction condition r of goal G| and the immediate

satisfaction condition —rof goal G, 110
Solution 1: eliminates the effect annotation r

of goal G;. Solution 2: eliminates the effect annotation

—rofgoal Gy ..o 111
Modified goal model incorporating the two business

environment changes Change-1 and Change-2........... 114
An ORGMod that extends beyond the boundary of actor A;

as the resource R;; depends on task T, of actor A;........... 120

Variation of execution time for random generation
of annotated goal models 126

XXiv

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

5.22

5.23

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11

6.12

6.13
6.14

List of Figures

Number of calls to the semantic reconciliation operators

(ERA and CRA) for randomly generated goal models

withngr =10, ..o o 127
Number of calls to the effect reconciliation operators

(ERA and CRA) for varying values of the drivers level

and Mgy ... 129
The workflow of the i*ToNuSMV3.0 deployment

framework. 135
A simple goal model for accessing a locker 135
FSM generated by i*ToNuSMV 2.02. 136
FSM generated by i*ToNuSMV 3.0. 137
Number of state transitions in the final FSM 138
Execution time for deriving the final FSMs 138
tree_node SITUCLUTE oo 140
Abstracted view of an example SAi* Net.................. 141
The proposed framework for app orchestration from goal

models using selective composition of NFRs 144
The implementation framework with the process steps

numbered in black circles L. 146

Conflict identified between operationalization PPM
(for Data-space performance) and DES_Encryption

(for security).t 150
Workflow generated for LZ (for Data-space performance)

and AES_Encryption (for security) 150
Screenshotof theapp 151
Screenshot of patient database 152

List of Tables

Table 1.1
Table 4.1

Table 4.2
Table 4.3
Table 4.4

Table 4.5

Table 4.6
Table 4.7
Table 5.1
Table 5.2
Table 6.1

List of existential compliance rules
Rate of growth of space w.r.t. the number of model

elements.
Actor internal analytics
Inter-actor analytics obtained by varying actor density.
Inter-actor analytics obtained by varying the distribution

of goals
Inter-actor analytics obtained by varying both actor

density and distribution of goals for the Semantic

Implosion Algorithm. i,
State variable listing of entities
Finite state model recorded in STT.opm
List of primitive goal modification operators
List of compound goal modification operators.
Feature comparison between verions 2.02 and 3.0...........

XXV

Chapter 1 ®)
Introduction Check for

Any software or product goes through a development life cycle. Once the
product is launched it undergoes rigorous maintenance as long as it is alive and
does not become obsolete. Developers are constrained to minimize the cost and risks
associated with bugs (or errors) that may be detected during the development or main-
tenance lifecycles [1, 2]. These errors can range from simple logistics to complex
non-compliance issues.

The cost of rectifying errors in the later phases of the development lifecycle has a
direct impact in hiking the cost. The requirement analysis phase is the most critical
phase in the development and maintenance of a system and accounts for almost 95%
of the errors that are detected in the later phases [3, 4]. The current practice is that the
developer and client sign agreements after finalizing the requirements. Any failures
that occur later are resolved by delegation.

The main motivation behind this book is to help designers and developers identify
and rectify errors in the requirements phase itself, before the requirements are for-
mally documented and specified. Goal Modelling techniques can be used to identify
and detect errors, conflicts, or issues that may arise in the later phases of the lifecycle.
Early detection helps in reducing the cost by a great extent. In this book, we explore
different scenarios where goal modelling techniques are yet to be deployed. We also
propose techniques to leverage greater benefits from goal models by extending their
analytical capabilities. The correctness and the efficiency of the different methodolo-
gies are established through theoretical and mathematical analysis, simulation and
developing proof-of-concepts (PoCs).

The rest of this chapter is organized as follows. We begin with a brief introduction
of the i* modelling framework in Sect. 1.1 that was proposed in [1]. We present a case
study of the healthcare enterprise and how i* modelling constructs can be derived for
individual requirements [5]. This is followed by Sect. 1.2 that presents the research
directions that will be explored in this book. Section 1.3 presents an overview of the
findings in this research. The chapter concludes with an organization of this book in
Sect. 1.4.

© Springer Nature Singapore Pte Ltd. 2020 1
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_1&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_1

2 1 Introduction

1.1 The i* Modelling Notation

The i* framework has two main components—the Strategic Dependency (SD) model
and the Strategic Rationale (SR) model. The SD model is used to model actors and
their inter-dependencies. Both actors and their inter-dependencies are said to be
intentional in the i* framework. Every actor has its own set of abilities, goals and
assumptions. Dependency between actors increases the vulnerability of the depender
on the dependee. Actors represent the stakeholders of the enterprise as well as agents
of the system being designed. Actors are also strategic in the sense that they optimize
their risks and opportunities in order to achieve their ultimate objectives.

Actors can be classified into three types—agents, roles, and positions. Agents
represent real-life humans or systems with unique capabilities. A role is an “abstract
actor embodying expectations and responsibilities” [6]. An agent of the system can
play multiple roles in different social contexts. Inter-actor dependencies are also said
to be intentional if they result from an agent’s strategy to achieve some objective. i*
supports four different types of dependencies—goal, task, resource, and softgoal.

The SD model is used to represent actors and how they depend on each other. The
dependencies capture the intentions of individual processes within the organization.
Every dependency represents an agreement between the depender and the dependee.
The type of dependency defined the nature of this agreement. Goal dependencies
represent the delegation of responsibility to the dependee for fulfilling some goal
of the depender. Softgoal dependencies are similar to goal dependencies except that
their fulfillment cannot be guaranteed. Task dependencies represent some activity
that the dependee must do for the depender. Resource dependencies are used to
capture the provisioning of a resource to the depender by the dependee. All other
finer granularities of the enterprise actors are abstracted. This model is used in the
late requirements phase and helps in performing vulnerability analysis of individual
actors. Figure 1.1 shows one such SD model that has been illustrated in [1].

The SR model provides a lower level more detailed rationale behind the objectives
of individual actors and how they intend to achieve them. It uses the concepts of goals,
tasks, resources, and softgoals to analyse the internal processes of each actor as well as
all the alternatives. Goals, tasks and resources can be related to subgoals, subtasks, or
softgoals using means-end links or task decomposition links. These links can be used
to generate AND/OR refinement hierarchies. Goals, tasks and softgoals can be related
to higher level softgoals using contribution links that are labelled with positive or
negative contributions. Softgoals are used to capture the non-functional requirements
of the system. The SR model is also strategic in the sense that model elements are
included only if they effect the achievement of the objectives of individual actors.
Figure 1.2 shows the SR model of the Claims Manager actor [1] within the Medical
Insurance enterprise.

1.1 The i* Modelling Notation

Treated
(Sickness)

Covered
(Sickness)

Premiu
Paymer

atment

Fee(Trg
(Sickng

Fig. 1.1 SD model of a medical insurance enterprise [1]

1.1.1 Case Study: Healthcare

Process Patient
Claim Info
(Claim)

LEGEND

Depender Dependee
%D% Resource Dependency

%_D—& Task Dependency
43—@—& Goal Dependency

43—@4} Soft—Goal Dependency

O Open (uncommitted) X Critical

A remote healthcare system often depends heavily on cutting edge technologies like
cellular network or cloud to outreach patients in remote places. The primary motiva-
tion for designing a remote healthcare system is to provide healthcare to patients as
and when required. This may often require the patients to rely on handheld devices
like cell phones or smart-phones to access these healthcare services in a remote
manner. In [5], we try to look into the requirement specifications of such a remote
healthcare enterprise and try to model them with i* modelling constructs. This helps
in deriving an abstract goal model of existing legacy enterprises. Table 1.1 lists some
examples of how requirements specified using predicate calculus can be converted

into 1* model constructs.

ApprovalOf
= Treatmént 1
e

Medically
Assessed

etMedA\sessor
MakeMediral
Assessment

gnt

Review
Patient
edHistg

MedAssesse
(Claim)

1 Introduction

LEGEND
Strategic Rationale Model

O Goal
) Task
l:l Resource
Q Soft-Goal

——+ Task-Decompo—
sition link
——= Means—cnds link

~3Z Contribution to
soft goal

Actor
__)Actor Boundary

Assess
Treatment

Fig. 1.2 SR model of the claims manager actor within the medical insurance enterprise [1]

1.2 Research Directions

In this book, we typically identify three different research directions and try to make
some significant contributions for addressing each of these research problems. The
research directions can be captured with the help three specific research questions
as follows:

RQ-1:

RQ-2:

Has the community been able to model diverse real life enterprise

scenarios?

la: How do the granularity of the goal models change in an enterprise

hierarchy?

1b: Can we correlate the different levels of a goal model hierarchy?

1c: Is the degree of correlation measurable?

1d: Do hierarchies really manifest themselves in process/event logs?

Can we extend the analytical capabilities of goal models beyond Ability,

Workability, Viability, etc.?

2a: Can model checking be applied to goal models?

2b: Isitreally efficient and scalable?

1.2 Research Directions

Table 1.1 List of existential compliance rules

Existential operators

Function

VX,achieves (X, G)
Ex: Vdoctors D, achieves (D,
Provide Healthcare)

Goal existence: X is an actor in
the i* model and G is a goal
within the actor boundary of X

VX,does (X, T)
Ex: Vpatients P, does (P,
ContactDoctor)

Task existence: X is an actor in
the i* model and T is a task
within the actor boundary of X

VX,acquires (X,R)
Ex: Vdoctors D, acquires (D,
Patient EMR)

Resource existence: X is an
actor in the i* model and R is a
resource within the actor
boundary of X

VX, tries(X,S)
Ex: Vpatients P, tries (P,
Accurate Symptoms)

Softgoal existence: X is an actor
in the i* model and S is a
softgoal within the actor
boundary of X

-
.

e Accurate

1 Symptoms

\

Jjobs (e1,e3, - ,ex),
actor X, taskT,s.t.
/\{.‘:1 executes (X, e;) —
executes (X, T)

Ex: 3 goal ObtainSymp—
—toms, resource Patient EMR,
tasks ConsultSpecialist,
ProvideTreatment soft-goal
Fast, doctor D, s.t. achieves
(D,ObtainSympt—
—oms)Aacquires (D,Patient
EM R)Adoes (D,Consult
Specialist)Atries (D,Fast)
—>does (D,ProvideTreat—
—ment)

Task decomposition existence:
Executing jobs e,eo,: - -, is
the equivalent of actor X doing
the higher level task 7" and
er,e, - -, e are connected to T
using task decomposition links

Jjobs
actor X,s.t.
v{.‘:lexecutes (X, mj)—
executes (X, E)

Ex: 3 goals ProvideHealth—
—care,Send Ambulance, task
ProvideTreatment, doctor D,
s.t. does (D, ProvideTreat—
—ment)Vvachieves (D, Send
Ambulance)—>achieves (D,
ProvideHealthcare)

(mp,mp, -+, mk,E),

Means end existence: Executing
either of the jobs my,my,- - - ,my
provides actor X with alternate
means to obtain the end
objective E; my,my,- - - ,my are
connected to E using means end
links

6 1 Introduction

RQ-3: Are goal models really meaningful, i.e., useful?

3a: Are goal models really meaningful?

3b: Can we propose goal nomenclature to capture goal semantics?
3c: Can we perform semantic analysis of goal models?

3d: Is the solution really scalable?

We elaborate on these research directions in this section.

1.2.1 Goal Model Hierarchies (RQ-1)

We identify unexplored scenarios and use-cases existing within real world enterprises
where goal modelling techniques have not been deployed previously-typically enter-
prise hierarchies. The higher levels of the hierarchy within an enterprise are more
concerned with managerial and administrative decision-making processes. As result,
they have an abstract view of the system that is to be developed for a client/consumer.
The lower levels of the hierarchy comprises of engineers, developers, and architects
who have a better understanding of the system-to-be and their constituent compo-
nents. The views derived from the lower levels of the enterprise hierarchy are, thus,
more fine-tuned with respect to the client’s requirements.

If different levels of the enterprise hierarchy are required to capture their percep-
tion of the system-to-be using goal models, then we observe that the higher level
goal models are coarse-grained consisting of highly abstract goals whereas the lower
level goal models are more fine-grained containing highly refined goals. Thus, cor-
responding to the enterprise hierarchy, we have a requirement refinement hierarchy
consisting of multi-level goal models, where each level uses its own set of ontolo-
gies for describing the goals of the system being developed. We need to ensure that
the goal models at different levels of the requirement refinement hierarchy are in
harmony and do not give rise to conflicting set of requirements.

We explore the state-of-the-art in ontology integration and observe that such a
mechanism or framework is not yet in place. We try to propose a framework in
this direction so that we can ensure ontology integration in requirement refinement
hierarchies. However, at some point, it may appear to the community that the whole
notion of enterprise hierarchies is too far-fetched and seemingly hypothetical in the
real world. To resolve this confusion, we try to determine whether such hierarchies
manifest themselves in the real world. We try to mine goal refinement patterns from
both synthetic and real-world event logs using sequential pattern mining and observe
that our hypothesis about enterprise hierarchies is indeed manifested in the real world.
This goes a long way in establishing the significance of our research.

1.2 Research Directions 7

1.2.2 Goal Model Checking (RQ-2)

Goal modelling is a powerful mechanism as it helps analysts to analyze the system
prior to requirements specification. Every system has some set of properties or rules
that they must always comply with after deployment. Compliance rules have a generic
structure that specify some constraints on the ordering of event execution within the
system. The following examples present some skeletal structures that compliance
rules generally have.

— Whenever event X occurs, it must be followed by event Y, either immediately or
some time in the future, OR

— If event X occurs, then it must be case that event Y has never occurred in the past,
OR

— Events X and Y should not occur simultaneously, etc.

Thus, compliance rules try to impose an ordering of events or states within the system;
but goal models are inherently sequence-agnostic. Goal models do not capture any
temporal information with respect to the ordering of goal fulfillment. In the absence
of such a temporal ordering we cannot perform compliance checks on a goal model.

In general, temporal properties can be easily verified on design or process models
with the help of model checkers. Model checking can be used to verify finite state
concurrent systems only but has the added advantage of full automation. Assuming
that unbounded systems can be restricted to finite state under specific instances, we
propose to apply model checking techniques on goal models itself. This requires us to
perform model transformation and derive finite state models (FSMs) corresponding
to a goal model. FSMs capture ordering of state transitions that a system can go
through. We propose heuristics for such a model transformation that outperforms
the existing approaches [7] for transforming goal models into FSMs. We have also
developed a tool that enables model checking of i* models, using the NuSMV model
verifier, as a proof-of-concept for our research contribution.

1.2.3 Semantic Analysis of Goal Models (RQ-3)

We also observe that goal nomenclature is very restricted as it depends on the inter-
pretation of the modeller alone. Hence, we go beyond the simple nomenclature of the
goals and explore the underlying semantics in order to identify any type of seman-
tic conflicts—such as entailment or consistency issues. Analysing the semantics of
goals within goal models is extremely important when we perform a goal model
maintenance exercise. Given a goal model configuration we need to verify the exis-
tence of conflicts and then make changes to the configuration such that the newly
derived goal model is free from such conflicts. However, it becomes quite infeasi-
ble to manually explore the space of all goal model configurations and identify the
configuration that deviates minimally from the original configuration. This results

8 1 Introduction

in requirement analysts coming up with sub-optimal solutions to the goal model
maintenance problem.

We propose a new framework called the AFSR framework that proposes a new
goal model nomenclature that helps analysts to capture the semantics associated with
a goal. The framework defines a semantic reconciliation machinery to identify and
detect points of conflict. The framework is quite robust as it provides re-factored con-
figurations to the analysts that resolve the conflicts. This helps analysts to explore the
complete space of goal model configurations. We map the goal model maintenance
problem to the state space search problem and establish the admissibility and con-
sistency of the heuristic path cost function. This allows us to apply A* search on the
complete space of goal model configurations and derive a conflict-free configuration
that deviates minimally from the original goal model configuration.

1.3 Analysis of Results

Most of the research done in this book have been in completely unexplored dimen-
sions. As a result, there is a lack of existing data sets (or benchmarks) with which
we can compare the performance of our proposed solutions. However, we have tried
to use real life case studies and develop tools as proof of our concepts.

Solution to RQ-1: In our work on goal model hierarchies, we consider a University
Admission System as a case study for the proposed hierarchy correlation frame-
work. We use goal models to illustrate how the proposed ontology correlation can
be achieved in goal-oriented requirements engineering. We also build heuristics on
the same case study based on the framework proposed.

Solution to RQ-2: In our efforts to assess the analytical advantage of applying model
checking on goal models, we have developed the 1*ToNuSMV tool. This tool acts as
a PoC for the proposed Semantic Implosion Algorithm where we can feed i* models
and temporal specifications (in CTL) as input and check whether the specifications
are being satisfied by the model. The NuSMV model verifier runs in the back end to
verify the specification and generates a counterexample if it fails to satisfy.

Solution to RQ-3: The goal model maintenance framework has been supplemented
with an implementation roadmap. We have spelled out the mechanism to map the
reconciliation problem to a state space search problem. We apply the heuristic-based
A* search algorithm to the state space and observe how A* search outperforms
Uninformed search in deriving an optimal goal model configuration that is free from
all conflicts.

1.4 Organization of the Book 9

1.4 Organization of the Book

The rest of this book is organized as follows. Chapter 2 provides a review on why
we choose to work with the i* framework and documents the current state-of-the-
art with respect to the research directions that we have identified. In chapter 3, we
have addressed the research problem of how enterprise hierarchies get reflected in
requirement refinement hierarchies. We provide techniques for modelling require-
ment refinement hierarchies. We show how such hierarchies exist within an enterprise
by mining synthetic as well as real-life data sets. In chapter 4, we propose to apply
model checking techniques to i* models. We propose two algorithms and show how
the Semantic Implosion Algorithm drastically outperforms the Naive Algorithm. We
also discuss the 1*ToNuSMV tool that we have developed for this purpose. Chapter 5
proposes the AFSR framework that performs goal model maintenance using seman-
tic annotation of goals. We also discuss how this problem can be mapped to a state
space search problem and then A* search can be applied to derive an optimal solution.
Chapter 6 concludes the book with a brief discussion on future research directions.

References

1. Yu E, Modelling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Toronto, Canada

2. Hinge K, Ghose A, Koliadis G (2009) Process SEER: a tool for semantic effect annotation of
business process models. In: Proceedings of the 13th IEEE international conference on Enterprise
Distributed Object Computing (EDOC), pp 54-63. https://doi.org/10.1109/EDOC.2009.24

3. vanLamsweerde A, Darimont R, Letier E (1998) Managing conflicts in goal-driven requirements
engineering. Trans Softw Eng Special Issue Inconsistency Manage Softw Dev 24(11):908-926.
https://doi.org/10.1109/32.730542

4. Horkoff J et al (2016) Goal-oriented requirements engineering: a systematic literature map. In:
Proceedings of the IEEE 24th international requirements engineering conference (RE), Beijing,
China, pp 106-115. https://doi.org/10.1109/RE.2016.41

5. Deb N, Chaki N (2014) Verification of i* models for existential compliance rules in remote
healthcare systems. Appl Innov Mob Comput 60-66. https://doi.org/10.1109/AIMOC.2014.
6785520

6. Schonbock J et al (2009) Catch me if you can—debugging support for model transformations.
Models Workshops Lecture Notes Comput Sci 6002(2010):5-20. https://doi.org/10.1007/978-
3-642-12261-3_2

7. Fuxman AD (2001) Formal analysis of early requirements specifications. MS thesis, Department
of Computer Science, University of Toronto, Canada

https://doi.org/10.1109/EDOC.2009.24
https://doi.org/10.1109/32.730542
https://doi.org/10.1109/RE.2016.41
https://doi.org/10.1109/AIMOC.2014.6785520
https://doi.org/10.1109/AIMOC.2014.6785520
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/978-3-642-12261-3_2

Chapter 2 ®)
State-of-the-Art Geda

Several languages and frameworks have been proposed in the domain of goal oriented
requirements engineering that try to capture and model the requirement specifications
of the system being developed. Some well documented articles have been published
that compare and contrast these approaches and stress on the analytical capabilities
of each approach [1-4]. For the purpose of this book, we provide a brief summary
of the current state-of-the-art in the requirements engineering domain in Sect.2.1.

The rest of this chapter is organized based on the structure of our book. Section2.2
presents areview of some of the existing works on ontology integration and highlights
how semantic integration of different levels of a requirement refinement hierarchy
has not yet been addressed by the research community. This section also presents
a study of different data mining techniques that have been applied in the domain
of requirements engineering. Based on these reviews we present our work on i*
refinement hierarchies and mining goal decomposition patterns in Chapter 3. Chapter
4 of this book presents an efficient solution for model checking goal models like i*.
An extensive background study related to model transformation techniques has been
documented in Sect.2.3. Based on this study, we propose a model transformation
scheme that allows analysts to perform model checking on i* models. We also present
a survey of goal model annotation nomenclatures that have been proposed as part
of the current state-of-the-art in Sect.2.4. This survey forms the basis for the AFSR
framework proposed in Chapter 5 which proposes a new goal model nomenclature
for capturing the semantics of goal models. Each of these sections conclude with a
gap analysis that helps in identifying the research question that we address in the
subsequent chapters of this book.

© Springer Nature Singapore Pte Ltd. 2020 11
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_2&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_2

12 2 State-of-the-Art

2.1 Formal Requirements Engineering Techniques

One of the earliest requirements modelling language, Structured Analysis and Design
Technique (SADT) [5], was proposed by Ross and Schoman in 1977. The language
was founded on the principle of data/operation duality where data were defined by
their source and destination operations while operations were defined on the basis
of their input and output data. The main drawbacks of this early modelling language
was the lack of precision and the absence of well-defined semantics. The syntax was
also semi-formal and often interleaved with natural language assertions.

The first requirements modelling language that incorporated formal semantics
was RML [6]. It introduced the semantic concept of entities, operations and con-
straints. Operations and constraints were expressed in formal assertion languages
that supported temporal ordering of events. RML also introduced the concepts of
generalization, aggregation, and classification. These formal semantics were mapped
to first order predicate calculus.

Albert IT [7] is a requirements language that was proposed with richer ontologies
and modelled the requirements of agent-oriented systems. Entities were replaced by
agents and modelled using graphical notations. Constraints on agent behavior were
still modelled using textual notations that supported temporal logistics. Verification
of constraints using formal analysis techniques, like animation, were possible. The
drawback of this language was that it did not support enough abstraction for being
used in the early phases of requirements engineering.

The state-of-the-art in requirements modelling focuses more on goal-oriented
ontologies that capture the “why” requirements of an enterprise. The NFR frame-
work [8, 9] specializes in the modelling and analysis of non-functional requirements
or softgoals. The NFR framework deals with capturing non-functional requirements
(NFRs) for the domain of interest, decomposing NFRs, identifying possible NFR
operationalizations, NFR ambiguities, trade-offs, priorities, and NFR interdepen-
dencies [1].

Lamsweerde proposed the Knowledge Acquisition in autOmated Specification
(KAOS) [4] framework that supports semi-formal modelling of goals, qualitative
analysis of alternatives, and formal analysis for correct reasoning. The KAOS frame-
work combines semantic nets [6], for modelling of concepts, and linear-time tem-
poral logic for state-based specification of operations. Operations are declared by
signatures over objects and have pre-, post-, and trigger conditions [1]. Goals can be
decomposed using AND/OR refinement abstraction hierarchies. The KAOS frame-
work does not provide any support for non-functional requirements or softgoals.
However, the qualitative analysis techniques of the NFR framework can be inte-
grated into KAOS. It has a solid formal framework that uses well-established formal
techniques for goal refinement and operationalization [10, 11].

The Goal-Based Requirements Analysis Method (GBRAM) [12, 13] emphasizes
on the identification and elicitation of goals from various documents as provided
by the stakeholders of an enterprise. GBRAM distinguishes between achievement
and maintenance goals. GBRAM tries to establish an ordering of goals in order to

2.1 Formal Requirements Engineering Techniques 13

establish inter-actor dependencies. This process is much more complex in comparison
to the i* framework which can capture such dependencies quite efficiently. GBRAM
does not provide a graphical interface; rather, it uses a textual notations in goal
schemas for representing goals, goal refinements, goal precedence, agents, etc.

i* [2, 14] is an agent-oriented modelling framework that can be used for require-
ments engineering, business process re-engineering, organizational impact analysis,
and software process modelling [1]. This i* framework can model activities prior to
the freezing of requirement specifications. This allows the use of i* for both the early
and late phases of requirements engineering. In the early phases, the i* model can
capture the stakeholders of the enterprise, their objectives and how they depend on
each other for achieving their objectives. The late phases of requirements engineer-
ing can use the i* modelling framework to incorporate changes and new processes
that are aligned with the functional and non-functional requirements of the user.

2.2 Requirement Refinement Hierarchies

Different stakeholders within an enterprise may use partial or even completely non-
intersecting vocabulary sets. This would lead to developing multiple i* models having
independent ontologies. Collectively, these i* models define a requirements refine-
ment hierarchy where different tiers of the hierarchy capture different levels of detail.
In order to integrate such a distributed ontology, we require an appropriate mapping
or correlate definitions between different ontologies at multiple levels. This section
explores the ontology integration mechanisms that exist in the current state-of-the-
art. We also try to document the research initiatives that have been taken in the last
decade for applying data mining techniques in requirements engineering.

Ontology Integration Mechanisms

Graph matching of any structure is a well researched problem and several good
works (like [15]) have been published in this domain. However, the real challenge
being addressed here is conceptual matching of ontologies. Wang et al. [16] propose
a tree similarity algorithm for ontology integration of multiple information sources
available in the Semantic Web. Dynamic programming is used to effectively match
concept trees while satisfying the maximum mapping theorem and keeping tree
isomorphisms intact. PRIOR+ is an adaptive ontology mapping approach proposed
in [17]. It consists of an information retrieval system that extracts similarities between
ontologies, an adaptive similarity filter that aggregates these similarities, and, finally,
a neural network based ontology constraint satisfier.

In [18], the authors bridge the gap between Description Logic based ontolo-
gies and Object Oriented systems by mapping OWL ontologies to Java interfaces
and classes. STROMA [19] is a semantic ontology mapping scheme that goes
beyond equality correlations and maps part-whole as well as IS_A relationships.
Khattak et al. have highlighted how ontologies evolve over time [20]. A map-
ping reconciliation mechanism for evolving ontologies is proposed that reduces the

14 2 State-of-the-Art

reconciliation time by tracking the change histories of such ontologies. [21] proposes
relation mappings between ontologies by finding the least upper bound and great-
est lower bounds of complex relations and then deriving the best upper and lower
approximations of the relation. Kumar and Harding [22] use Description Logic based
bridging rules for mapping complex concepts and roles between manufacturing and
marketing enterprises. The Semantic Bridge Ontology [23] detects structural and
semantic conflicts between Learning Resource Systems and resolves them by defin-
ing ontology mapping rules.

Data Mining in RE

Zawawy et al. have proposed a root-cause analysis framework [24] that mines natively
generated log data to establish the relationship between a requirement and the pre- and
post-conditions associated with that requirement. In [25], the authors have proposed
techniques for mining dependencies from message logs and task-dependency corre-
lations from process logs. There have been very interesting industrial and commercial
applications of mining requirements from event logs. Formal verification of control
systems have been performed by mining temporal requirements from simulation
traces [26]. Qi et al. have provided big data commerce solutions by mining customer
requirements from online reviews and suggest product improvement strategies [27].
REQAnalytics [28], proposed by Garcia and Paiva, mines the usage statistics of a
website and provides a roadmap for the evolution of the website’s requirements speci-
fication. [29] is another data mining technique that tries to address the inconsistencies
that affect the contextual requirements of a system at runtime.

Sequential pattern mining has been frequently used for extracting statistically rel-
evant patterns or sequences of values in data sets. StrProM [30], for instance, uses the
Heuristics Miner algorithm to generate prefix-trees from the data stream and contin-
uously prunes these trees to extract sequences of events. Sohrabi and Ghods use bit-
wise compression techniques to represent the data sequence as a 3-dimensional array
and extract frequently occurring patterns from this compressed array [31]. Hassani et
al. have proposed the PIVOTMiner [32] which considers activities as interval-based
events rather than the conventional single-point events. Some researchers have also
tried to improve the legacy sequential mining algorithm PrefixSpan (like [33-35]).
Sequential pattern mining has also been used in interesting applications that range
from detecting user behavior from online surveys [36] to mining electronic medical
records and inferring the efficacy of medicines [37]. A detailed survey of sequential
pattern mining algorithms is available in [38].

Previously workflow logs used to be mined for extracting the control flow within
an organization and, hence, extensively used for developing process models. How-
ever, the mining process had no focus on extracting the hierarchical structure within
an organization. Ni et al. have introduced the concept of executor similarity met-
rics and grid clustering for mining the organization structure of an enterprise from
workflow logs [39]. Schonig and his group have proposed a framework to extract the
organisational structure of business processes by mining human resource allocation
information from event logs [40]. Also in prior work, non-functional requirements
have been extracted from text [41].

2.2 Requirement Refinement Hierarchies 15

Research Gap

A vast literature exists for ontology mappings within the domain of Semantic Web.
However, there has been limited research on mapping model constructs between
conceptual models derived from an enterprise hierarchy that use different ontologies.
This research gap is identified and some ideas in the direction of bridging ontologies
within hierarchic i* models developed by any enterprise is presented in Chapter 3.

2.3 Model Checking with i*

The importance of converting an i* model to a finite state model lies in the effort to
perform model checking on i* models using industry standard model checkers like
NuSMYV and SPIN. Model checking helps requirement analysts to verify whether goal
models comply with system regulations. Standard model checkers accept extended
finite state models as input and verify temporal properties specified using Linear
Temporal Logic (LTL) or Computational Tree Logic (CTL). i* models can be con-
verted to other sequential models like activity diagrams or BPMNs for some specific
business requirement, if the need arises. Transforming finite state models to other
sequential models should be easier than transforming a sequence agnostic model,
like i*, to activity diagrams or BPMNs. Model transformation represents the daunting
challenge of converting higher-level abstraction models to platform-specific imple-
mentation models that may be used for automated code generation.

Model Transformation

Sendall and Kozaczynski had already identified model transformation as one of the
major driving forces behind model-driven software development [42]. Most strategies
work with lower levels of abstraction and encounter several limitations. In [43],
the authors propose a Domain Specific Language over Coloured Petri-Nets—called
Transformation Nets—that provides a high level of model transformation abstraction.
An integrated view of places, transitions, and tokens, provide a clear insight into the
previously hidden operational semantics.

Model transformation plays a vital role in bridging the gap between non-
successive phases of the software development life cycle. [44] presents one such
attempt to bridge the gap between system designers and system analysts. A model
generated by the designer is transformed to a model suitable for conducting analysis.
The outcome of the analysis is mapped back into the design domain. The authors
work with UML2Alloy—a tool that takes a UML Class diagram augmented with
OCL constraints and converts it into the Alloy formal representation. Design incon-
sistency analysis is done on the Alloy representation. Alloy creates counter examples
for any such inconsistency and converts it back into a UML Object diagram. This
paper tries to do model transformation for bridging the gap between the requirements
phase and the design phase of the development life cycle.

16 2 State-of-the-Art

Creating a wide array of formal models for enhancing the system engineering
process, proves to have time and cost overheads. Kerzhner and Paredis use model
transformations to achieve this objective, overcoming the overheads, in [45]. Formal
models are used to specify the structures of varying design alternatives and design
requirements, along with experiments that conform the two. These models are repre-
sented using the Object Management Group’s Systems Modelling Language (OMG
SysMLTM). Model transformation is then used to transform design structures into
analysis models by combining the knowledge of reusable model libraries. Analy-
sis models are transformed into executable simulations which help in identifying
possible system alternatives. Model transformation plays a vital role in this work.

Mussbacher et al., have performed a detailed comparison of six different mod-
elling approaches in [46]. The modelling approaches that were assessed include
Aspect-oriented User Requirements Notation (AoURN) [47], Activity Theory (AT)
[48], The Cloud Component Approach (CCA), Model Driven Service Engineering
(MDSE) [49], Object-oriented Software Product Line Modelling (OO-SPL) [50], and
Reusable Aspect Models (RAM) [51, 52]. The comparison criteria were grouped
into two broad categories—Modelling Dimensions and Key Concepts. Modelling
dimensions include properties like Phase, Notation, and Units of Encapsulation. Key
concepts, on the other hand, provide an insight into parameters like Paradigm, Mod-
ularity, Composability, Traceability and Trade-off Analysis. Of these six approaches,
AoURN [47, 53] and OO-SPL [50] are of interest to this work, as both these
approaches are applicable in the Early and Late Requirements phases of software
development. The i* modelling notation belongs to this approach. In fact, AoURN
is based on the ITU-T Z.151 [54] standard that uses Goal-oriented Requirements
Language (GRL), that is based on i* modelling. AoURN is machine analysable and
can perform scenario regression tests, goal-model evaluation, and trade-off analysis.
Unlike the other modelling approaches, AoURN provides structural, behavioural,
and intentional views, along with generic support for qualities and non-functional
properties. It is purely graphical in nature.

Most model checking techniques are best suited for the design and subse-
quent phases of the development life cycle. Architectural [55] and detailed design
[56] model checking have been proposed. Automated verification of requirement
models requires a completely different set of ontologies and, hence, existing tech-
niques cannot be extended to requirement models. However, work has been done
on the application of model checking to requirement models. Heitmeyer et.al. have
proposed a tool support for the SCR tabular notation for requirements specification
[57, 58] that supports formal techniques for consistency and completeness checking,
model checking, theorem proving and animation. The RSML language [59] has bet-
ter structuring mechanisms than the SCR notation and also provides a tool support for
completeness and consistency checking. Both these approaches are restricted to the
domain of embedded systems and process control. Neither of these tools support the
goal ontologies that have been proposed for early requirements engineering. Wang
has explored the application of ConGolog [60] formalisms to the i* framework for
analysing early requirement specification. The work tries to map i* SR diagram con-
cepts to ConGolog primitives and control structures. ConGolog is based on situation

2.3 Model Checking with i* 17

calculus [61] and provides a formal machinery for proving assertions on requirement
specifications.

Telos [62] captures the i* meta-framework which describes all the semantics and
constraints of the i* framework. Telos is equipped with the ability to perform different
types of analysis and also check the consistency between i* models. Tropos [63]
is an agent-oriented system development framework that utilizes the i* modelling
framework to model agent requirements and system configurations. Formal Tropos
[3, 64] associates the Tropos methodology to a formal specification language. Formal
Tropos allows the specification of constraints, invariants, pre- and post- conditions,
thereby capturing the semantics of the i* graphical models. These models can be
validated using model checking.

Research Gap

Performing a model transformation requires a clear understanding of the abstract
syntax and semantics of both the source and target. Most model-driven engineering
practises offer a black box view of the transformation logic making it difficult to
observe the operational semantics of a transformation. In order to perform model
checking on any sequence-agnostic goal model (like i*), we must first transform
the model into some form of finite state model that provides a possible sequenc-
ing of activities within the enterprise. This research direction has been explored in
Chapter 4.

2.4 Semantic Annotations of Goal Models

The domain of goal model maintenance requires analysts to explore the space of
goal model configurations that can be derived from a given erroneous goal model.
However, the research question becomes even more complex if we try to go beyond
the structural features and consider the semantics of goal models. The nomenclature
of goal models do not capture the semantics of the goals. There has been very limited
work in the existing literature that annotates goal models with more information. This
section highlights some of the research that has been done in the domain of annotating
requirement models with different types of attributes.

Annotation of Goal Models

Liaskos and Mylopoulos [65] have identified the sequence agnostic nature of standard
goal modelling notations like i* [2, 14] and annotated them with temporal logistics
for deriving Al-based goal satisfaction planning. The authors introduce the notion
of precedence links and effect links that annotate the i* model with preconditions
and postconditions of fulfilling a goal. This kind of ordering allows formalization
of goal models using temporal logics (like LTL, CTL, etc.). Although this method
establishes some sort of a sequence between the tasks of a goal model, the notion
of precedence does not remain intuitive for softgoals. Softgoal satisfaction can be
facilitated with hurt and help contributions from tasks, hard goals, etc.

18 2 State-of-the-Art

In [66], Liaskos et al. have highlighted the importance of augmenting goal models
(like i*) with the optional requirements or preferences of the users. This paper uses
the precedence and effect links proposed in [65]. Additionally, this work introduces
the notion of weighted contribution links for evaluating the degree of satisfaction
or denial for softgoals. Accumulation and propagation of these weighted contribu-
tions follow the rules prescribed in [67]. Optional user requirements are defined
as Optional Condition Formulae (OCFs) using first order satisfaction and domain
predicates. Preferences are captured as linear combinations of OCFs and these pref-
erence formulae may be weighted or non-weighted in nature. Alternate goal plans
are evaluated based on the degree of satisfaction of the preferences.

Koliadis and Ghose have been working with semantic effect annotations of busi-
ness process models [68—70]. In [68], the authors propose the GoalBPM methodology
that maps business process models (using BPMN) to high-level stakeholder goals
described using the KAOS framework [4]. This is done by defining two types of
links—traceability and satisfaction. The former links goals to activities while the
latter links goals to entire business processes. Satisfaction links require effect anno-
tation of the business process model, followed by identification of a set of critical
trajectories and, finally, identifying the subset of traceability links that represent the
satisfaction links. In [69, 70], the authors have worked with semantic effect annota-
tion and accumulation over business process models (Process SEER) and how it can
be extended to check for business process compliance using the PCTk toolkit.

Kaiya et al. [71] have proposed the popular Attributed Goal-Oriented Require-
ments Analysis (AGORA) method that derives a goal graph from goal models and
annotates the nodes and edges of the graph with attribute values and quality matrices.
Attribute values consist of contribution values and preference matrices. Contribution
values are used to annotate the edges of the goal graph and represent the contri-
bution of the sub-goal towards the fulfillment of the higher-level goal. Preference
matrices are the vertex annotations and represent the preference of respective goals
to the concerned stakeholders. Both these attribute annotations can be used by ana-
lysts to choose among multiple alternate strategies, to perform conflict management
and change management. Quality metrics are used to analyze the quality of the
requirement specifications that are derived from the goal graphs. The metrics for
measuring such quality may be correctness, unambiguity, completeness, inconsis-
tency, etc. Yamamoto and Saeki [72] have extended the idea of using annotated goal
graphs for requirements analysis to software component selection.

Research Gap

Researchers have attempted to annotate goal models with temporal information for
simulation and model checking purposes. They have also tried to identify effects of
goal fulfillment for evaluating user preferences. Semantic annotation of goal models
may seem intuitive and analogous to effect annotation of business process models
but it is not so. Goal models and process models have completely different objectives
and characteristics. The most crucial differential characteristic being the sequence-
agnostic nature of goal models. In this perspective, it becomes necessary to spell out
a mechanism for semantic annotation of goal model artefacts, and how these goal

2.4 Semantic Annotations of Goal Models 19

semantics can be reconciled over the entire enterprise for performing goal model
maintenance. Chapter 5 proposes a framework for doing this and also provides a
roadmap to implement it.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Lapouchnian A (2005) Goal-oriented requirements engineering: an overview of the current

research, Depth Report. University of Toronto, Toronto, Canada

Yu E, Modelling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Toronto, Canada

Fuxman AD (2001) Formal analysis of early requirements specifications. MS thesis, Depart-
ment of Computer Science, University of Toronto, Canada

van Lamsweerde A, Darimont R, Letier E (1998) Managing conflicts in goal-driven require-
ments engineering. Trans Softw Eng Special Issue Inconsistency Manage Softw Dev
24(11):908-926. https://doi.org/10.1109/32.730542

. Ross D (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans

Softw Eng 3(1):16-34. https://doi.org/10.1109/TSE.1977.229900

Greespan S, Borgida A, Mylopoulos J (1986) A requirements modeling language and its logic.
Knowl Based Manage Syst 471-502. https://doi.org/10.1016/0306-4379(86)90020-7

Bois PD (1995) The albert ii language: on the design and use of a formal specification language
for requirements analysis. PhD thesis, Notre Dame de la Paix, Namur, Belgium

Chung L et al, Non-functional requirements in software engineering. Kluwer Academic Pub-
lishers. https://doi.org/10.1007/978-1-4615-5269-7. ISBN 978-1-4615-5269-7

Mylopoulos J, Chung L, Nixon B, Representing and using non-functional requirements: a
process-oriented approach. IEEE Trans Softw Eng 18(6). https://doi.org/10.1109/32.142871
Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition. Sci
Comput Program 20(1-2):3-50. https://doi.org/10.1016/0167-6423(93)90021-G

van Lamsweerde A, Letier E (2002) From object orientation to goal orientation: a paradigm
shift for requirements engineering. In: Proceedings of the 9th international workshop on radical
innovations of software and systems engineering in the future (Lecture Notes in Computer
Science 2941), pp 325-340. https://doi.org/10.1007/978-3-540-24626-8_23

Anton A (1996) Goal-based requirements analysis. In: Proceedings of the 2nd IEEE interna-
tional conference on requirements engineering (ICRE), pp 136-144. https://doi.org/10.1109/
ICRE.1996.491438

Anton A (1997) Goal identification and refinement in the specification of software-based infor-
mation systems. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA

Yu E (1997) Towards modeling and reasoning support for early-phase requirements engineer-
ing.In: Proceedings of the 3rd international symposium on requirements engineering (RE), pp
226-235. https://doi.org/10.1109/ISRE.1997.566873

Abbas S, Seba H (2012) A module-based approach for structural matching of process models.
In: Proceedings of the 5th IEEE international conference on service-oriented computing and
applications (SOCA), pp 1-8. https://doi.org/10.1109/SOCA.2012.6449441

Wang J, Liu H, Wang H (2014) A mapping-based tree similarity algorithm and its application
to ontology alignment. Knowl Based Syst 56:97-107. https://doi.org/10.1016/j.knosys.2013.
11.002

Mao M, Peng Y, Spring M (2010) An adaptive ontology mapping approach with neural network
based constraint satisfaction. Web Semant Sci Serv Agents World Wide Web 8(1):14-25.
https://doi.org/10.1016/j.websem.2009.11.002

Kalyanpur A, Pastor DJ, Battle S, Padget JA (2004) Automatic mapping of OWL ontologies
into java. In: Proceedings of the sixteenth international conference on software engineering
and knowledge engineering (SEKE), pp 98-103

https://doi.org/10.1109/32.730542
https://doi.org/10.1109/TSE.1977.229900
https://doi.org/10.1016/0306-4379(86)90020-7
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1109/32.142871
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1007/978-3-540-24626-8_23
https://doi.org/10.1109/ICRE.1996.491438
https://doi.org/10.1109/ICRE.1996.491438
https://doi.org/10.1109/ISRE.1997.566873
https://doi.org/10.1109/SOCA.2012.6449441
https://doi.org/10.1016/j.knosys.2013.11.002
https://doi.org/10.1016/j.knosys.2013.11.002
https://doi.org/10.1016/j.websem.2009.11.002

20

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

2 State-of-the-Art

Arnold P, Rahm E (2014) Enriching ontology mappings with semantic relations. Data Knowl
Eng 93:1-18. https://doi.org/10.1016/j.datak.2014.07.001

Khattak A, Pervez Z, Khan W, Khan A, Latif K, Lee S (2015) Mapping evolution of dynamic
web ontologies. Inf Sci 303(C):101-119. https://doi.org/10.1016/j.ins.2014.12.040

Wang P, Xu B, Lu J, Kang D, Zhou J (2006) Mapping ontology relations: an approach based
on best approximations. In: Proceedings of the 8th Asia-Pacific Web conference on Frontiers
of WWW Research and Development, APWeb’06 (Lecture Notes in Computer Science 3841),
pp 930-936. https://doi.org/10.1007/11610113_97

Kumar SK, Harding JA (2013) Ontology mapping using description logic and bridging axioms.
Comput Ind 64(1):19-28. https://doi.org/10.1016/j.compind.2012.09.004

Arch-int N, Arch-int S (2013) Semantic ontology mapping for interoperability of learning
resource systems using a rule-based reasoning approach. Expert Syst Appl 40(18):7428-7443.
https://doi.org/10.1016/j.eswa.2013.07.027

Zawawy H, Mankovskii S, Kontogiannis K, Mylopoulos J (2015) Mining software logs for
goal-driven root cause analysis. Art Sci Anal Softw Data Chap 18:519-554

Ghose A, Santiputri M, Saraswati A, Dam HK (2014) Data-driven requirements modeling: some
initial results with i*. In: Tenth Asia-Pacific conference on conceptual modelling (APCCM),
vol 154, pp 55-64. http://dl.acm.org/citation.cfm?id=2667691.2667698

Jin X, Donze A, Deshmukh JV, Seshia SA (2015) Mining requirements from closed-loop
control models. IEEE Trans Comput Aided Des Integr Circ Syst 34(11):1704—-1717. https://
doi.org/10.1109/TCAD.2015.2421907

Qi J, Zhang Z, Jeon S, Zhou Y (2016) Mining customer requirements from online reviews:
A product improvement perspective. Inf Manage Elsevier 53(8):951-963. https://doi.org/10.
1016/j.im.2016.06.002

Garcia JE, Paiva AC (2016) Maintaining requirements using web usage data. Proc Comput Sci
100(Supplement C):626—633. https://doi.org/10.1016/j.procs.2016.09.204

Knauss A, Damian D, Franch X, Rook A, Miiller HA, Thomo A (2016) ACon: a learning-based
approach to deal with uncertainty in contextual requirements at run time. Inf Softw Technol
Elsevier 70(Supplment C):85-99. https://doi.org/10.1016/j.infsof.2015.10.001

Hassani M, Siccha S, Richter F, Seidl T (2015) Efficient process discovery from event streams
using sequential pattern mining. In: IEEE symposium series on computational intelligence, pp
1366-1373. https://doi.org/10.1109/SSCL.2015.195

Sohrabi MK, Ghods V (2016) CUSE: a novel cube-based approach for sequential pattern
mining. In: 4th international symposium on computational and business intelligence (ISCBI)
pp 186-190. https://doi.org/10.1109/ISCBI1.2016.7743281

Hassani M, Lu Y, Wischnewsky J, Seidl T (2016) A geometric approach for mining sequential
patterns in interval-based data streams. In: IEEE international conference on fuzzy systems
(FUZZ-IEEE), pp 2128-2135. https://doi.org/10.1109/FUZZ-1EEE.2016.7737954

Chaudhari M, Mehta C (2016) Extension of prefix span approach with grc constraints for
sequential pattern mining. In: International conference on electrical, electronics, and optimiza-
tion techniques (ICEEOT), pp 2496-2498. https://doi.org/10.1109/ICEEOT.2016.7755142
Fei X, Zheng S, Li-jing Y, Chao F (2016) A improved sequential pattern mining algorithm based
on prefixspan. World Autom Congr (WAC) 1-4. https://doi.org/10.1109/WAC.2016.7583059
Patel R, Chaudhari T (2016) A review on sequential pattern mining using pattern growth
approach. In: International conference on wireless communications, signal processing and
networking (WiSPNET), pp 1424-1427. https://doi.org/10.1109/WiSPNET.2016.7566371
Zhu X, Wu S, Zou G (2015) User behavior detection for online survey via sequential pattern
mining. In: Fifth international conference on instrumentation and measurement, computer,
communication and control (IMCCC), pp 493-497. https://doi.org/10.1109/IMCCC.2015.110
Uragaki K, Hosaka T, Arahori Y, Kushima M, Yamazaki T, Araki K, Yokota H (2016) Sequential
pattern mining on electronic medical records with handling time intervals and the efficacy of
medicines. In: IEEE symposium on computers and communication (ISCC), pp 20-25. https://
doi.org/10.1109/ISCC.2016.7543708

https://doi.org/10.1016/j.datak.2014.07.001
https://doi.org/10.1016/j.ins.2014.12.040
https://doi.org/10.1007/11610113_97
https://doi.org/10.1016/j.compind.2012.09.004
https://doi.org/10.1016/j.eswa.2013.07.027
http://dl.acm.org/citation.cfm?id=2667691.2667698
https://doi.org/10.1109/TCAD.2015.2421907
https://doi.org/10.1109/TCAD.2015.2421907
https://doi.org/10.1016/j.im.2016.06.002
https://doi.org/10.1016/j.im.2016.06.002
https://doi.org/10.1016/j.procs.2016.09.204
https://doi.org/10.1016/j.infsof.2015.10.001
https://doi.org/10.1109/SSCI.2015.195
https://doi.org/10.1109/ISCBI.2016.7743281
https://doi.org/10.1109/FUZZ-IEEE.2016.7737954
https://doi.org/10.1109/ICEEOT.2016.7755142
https://doi.org/10.1109/WAC.2016.7583059
https://doi.org/10.1109/WiSPNET.2016.7566371
https://doi.org/10.1109/IMCCC.2015.110
https://doi.org/10.1109/ISCC.2016.7543708
https://doi.org/10.1109/ISCC.2016.7543708

References 21

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Abbasghorbani S, Tavoli R (2015) Survey on sequential pattern mining algorithms. In: 2nd
international conference on knowledge-based engineering and innovation (KBEI), pp 1153—
1164. https://doi.org/10.1109/KBEIL.2015.7436211

NiZ, Wang S, Li H (2011) Mining organizational structure from workflow logs. In: Proceeding
of the international conference on e-education, entertainment and e-management, pp 222-225.
https://doi.org/10.1109/ICeEEM.2011.6137791

Schoniga S, Cabanillas C, Jablonski S, Mendling J (2016) A framework for efficiently mining
the organisational perspective of business processes. Decis Support Syst Elsevier 89(Supple-
ment C):87-97. https://doi.org/10.1016/j.dss.2016.06.012

Cleland-Huang J, Settimi R, Zou X, Solc P (2006) The detection and classification of non-
functional requirements with application to early aspects In: 14th IEEE international conference
requirements engineering, pp 39-48. https://doi.org/10.1109/RE.2006.65

Sendall S, Kozaczynski W (2003) Model transformation: The heart and soul of model-driven
software development. IEEE Softw 20(5):42—45. https://doi.org/10.1109/MS.2003.1231150
Schonbock J et al (2009) Catch me if you can—debugging support for model transformations,
MODELS, Workshops (Lecture notes in computer science 6002(2010)), pp 5-20. https://doi.
org/10.1007/978-3-642-12261-3_2

Shah SMA, Anastasakis K, Bordbar B (2009) From uml to alloy and back again, MODELS,
workshops (Lecture notes in computer science 6002(2010)), pp 158-171. https://doi.org/10.
1007/978-3-642-12261-3_16

Kerzhner AA, Paredis CJJ (2010) Model-based system verification: a formal framework for
relating analyses, requirements, and tests, MODELS, workshops (Lecture notes in computer
science 6627(2011)), PP 279-292. https://doi.org/10.1007/978-3-642-21210-9_27
Mussbacher G et al (2011) Comparing six modelling approaches, MODELS, workshops (Lec-
ture notes in computer science 7167(2012)), PP 217-243. https://doi.org/10.1007/978-3-642-
29645-1_22

Mussbacher G (2010) Aspect-oriented user requirements notation. PhD thesis, School of Infor-
mation Technology and Engineering, University of Ottawa, Canada

Georg G (2011) Activity theory and its applications in software engineering and technology.
Technical Report CS-11-101, Colorado State University

Kathayat SB, Le HN, Brek R (2011) A model-driven framework for component-based develop-
ment. In: 15th International SDL Forum Toulouse Integrating System and Software Modeling
2011, France, pp 154-167. https://doi.org/10.1007/978-3-642-25264-8_13

Capozucca A, Cheng B, Guelfi N, Istoan P (2011) bcms-oom-spl, repository for model driven
development. http://www.cs.colostate.edu/content/bcms-oom-spl

Klein J, Kienzle J (2007) Reusable aspect models, 11th workshop on aspect-oriented modelling.
Nashville, TN, USA

Kienzle J et al (2010) Aspect-oriented design with reusable aspect models, transactions on
aspect-oriented software development VII (Lecture notes in computer science 6210), pp 272—
320. https://doi.org/10.1007/978-3-642-16086-8_8

Mussbacher G, Amyot D, Aratjo J, Moreira A (2010) Requirements modelling with the aspect-
oriented user requirements notation (AoURN): a case study. In; Transactions on aspect-oriented
software development VII: a common case study for aspect-oriented modeling, pp 23-68.
https://doi.org/10.1007/978-3-642-16086-8_2

User Requirements Notation (URN)—Language Definition (2008) ITU-T: Recommendation
Z.151. Geneva, Switzerland. http://www.itu.int/rec/T-REC-Z.151/en

Allen R, Garlan D (1994) Formalizing architectural connection. In: Proceedings of the 16th
international conference on software engineering, pp 71-80. http://dl.acm.org/citation.cfm?
id=257734.257745

Cimatti A et al (1998) Formal verification of a railway interlocking system using model check-
ing. J Formal Aspects Comput 10:361-380. https://doi.org/10.1007/s001650050022
Heitmeyer C, Jeffords R, Labaw B (1996) Automated consistency checking of require-
ments specifications. ACM Trans Softw Eng Methodol 5(3):231-261. https://doi.org/10.1145/
234426.234431

https://doi.org/10.1109/KBEI.2015.7436211
https://doi.org/10.1109/ICeEEM.2011.6137791
https://doi.org/10.1016/j.dss.2016.06.012
https://doi.org/10.1109/RE.2006.65
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/978-3-642-12261-3_16
https://doi.org/10.1007/978-3-642-12261-3_16
https://doi.org/10.1007/978-3-642-21210-9_27
https://doi.org/10.1007/978-3-642-29645-1_22
https://doi.org/10.1007/978-3-642-29645-1_22
https://doi.org/10.1007/978-3-642-25264-8_13
http://www.cs.colostate.edu/content/bcms-oom-spl
https://doi.org/10.1007/978-3-642-16086-8_8
https://doi.org/10.1007/978-3-642-16086-8_2
http://www.itu.int/rec/T-REC-Z.151/en
http://dl.acm.org/citation.cfm?id=257734.257745
http://dl.acm.org/citation.cfm?id=257734.257745
https://doi.org/10.1007/s001650050022
https://doi.org/10.1145/234426.234431
https://doi.org/10.1145/234426.234431

22

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

2 State-of-the-Art

Heninger K (1980) Specifying software requirements for complex system: new techniques and
their application. IEEE Trans Softw Eng 6(1):2—13. https://doi.org/10.1109/TSE.1980.230208
Levenson N, Heimdahl M, Hildreth H (1994) Requirements specification for process control
systems. IEEE Trans Softw Eng 20(9):684-706. https://doi.org/10.1109/32.317428

Giacomo GD, Lesperance Y, Levesque H (2000) Congolog, a concurrent programming lan-
guage based on the situation calculus. J Artif Intell 121(1-2):109-169. https://doi.org/10.1016/
S0004-3702(00)00031-X

McCarthy J, Hayes P (1969) Some philosophical problems from the standpoint of artificial
intelligence. Mach Intell 4:463-504. https://doi.org/10.1016/B978-0-934613-03-3.50033-7
Mylopoulos J et al (1990) Telos: representing knowledge about information systems. ACM
Trans Inf Syst 8(4):325-362. https://doi.org/10.1145/102675.102676

Castro J, Kolp M, Mylopoulos J (2002) Towards requirements-driven information sys-
tems engineering: the tropos project. Inf Syst 27(6):365-389. https://doi.org/10.1016/S0306-
4379(02)00012-1

Fuxman A, Pistore M, Mylopoulos J, Traverso P (2001) Model checking early requirements
specifications in tropos. In: Proceedings of the 5th international symposium on requirements
engineering (RE), pp 174-181. https://doi.org/10.1109/ISRE.2001.948557

Liaskos S, Mylopoulos J (2010) On temporally annotating goal models. In: Proceedings of the
4th international i* workshop—iStar10, pp 62-66

Liaskos S, Mcllraith SA, Mylopoulos J (2009) Towards augmenting requirements models with
preferences. In: IEEE/ACM international conference on automated software engineering, pp
565-569. https://doi.org/10.1109/ASE.2009.91

Sebastiani R, Giorgini P, Mylopoulos J (2004) Simple and minimum-cost statisfiability for goal
models. In: Proceedings of the 16th international conference on advanced information systems
engineering (CAiSE’04), pp 20-35. https://doi.org/10.1007/978-3-540-25975-6_4

Koliadis G, Ghose A (2006) Relating business process models to goal-oriented requirements
models in KAOS. In: Advances in knowledge acquisition and management, pacific rim knowl-
edge acquisition workshop (PKAW), pp 25-39. https://doi.org/10.1007/11961239_3

Hinge K, Ghose A, Koliadis G (2009) Process SEER: a tool for semantic effect annotation
of business process models. In: Proceedings of the 13th IEEE international conference on
enterprise distributed object computing (EDOC), pp 54-63. https://doi.org/10.1109/EDOC.
2009.24

Ghose A, Koliadis G (2008) PCTk: a toolkit for managing business process compliance. In:
Proceedings of the 2nd international workshop on Juris-Informatics (JURISIN’08)

Kaiya H, Horai H, Saeki M (2002) AGORA: attributed goal-oriented requirements analysis
method. In: Proceedings of the IEEE joint international conference on requirements engineer-
ing, pp 13-22. https://doi.org/10.1109/ICRE.2002.1048501

Yamamoto K, Saeki M (2007) Using attributed goal graphs for software component selection:
an application of goal-oriented analysis to decision making. In: 26th international conference
on conceptual modeling ER 07 tutorials, posters, panels and industrial contributions, vol 83,
pp 215-220. http://dl.acm.org/citation.cfm?id=1386957.1386992

https://doi.org/10.1109/TSE.1980.230208
https://doi.org/10.1109/32.317428
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1145/102675.102676
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1109/ISRE.2001.948557
https://doi.org/10.1109/ASE.2009.91
https://doi.org/10.1007/978-3-540-25975-6_4
https://doi.org/10.1007/11961239_3
https://doi.org/10.1109/EDOC.2009.24
https://doi.org/10.1109/EDOC.2009.24
https://doi.org/10.1109/ICRE.2002.1048501
http://dl.acm.org/citation.cfm?id=1386957.1386992

Chapter 3 ®)
i* and Enterprise Hierarchies oo

Distributed ontology integration deals with formal machinery that helps in
establishing relations between concepts that belong to entirely different ontologies.
Extensive use of multiple ontologies within the same enterprise often leads to incon-
sistencies, redundancies and anomalies. Thus, it becomes extremely important to
accommodate these ontologies within the existing hierarchy. Defining correlations
between model concepts belonging to different ontologies become mandatory for
enabling such ontology integrations. This chapter presents research in this direction.

Suppose there exists an n-level hierarchy within the stakeholders of an enterprise
and each level of the hierarchy has their own ontology for modelling the requirements
of a deliverable. At each level, we obtain a model that utilizes the ontology of that
particular level. This gives rise to a requirement refinement hierarchy consisting of n
different models representing n different knowledge bases, one for each level of the
hierarchy. Let the languages obtained from these n levels of the hierarchy be denoted
by Ly, L,, ..., L,, respectively.

In such an environment setting, hierarchic ontology integration can be achieved
with the help of a bridge language that is governed by the goal refinement condi-
tions of the KAOS framework [1]—entailment and consistency. Entailment ensures
that, for every bridging rule, higher level concepts are realizable by the lower level
concepts and Consistency ensures that the lower level model concepts do not create
a state that contradicts some high-level concept. Minimality is consciously ignored
as two adjacent levels of the hierarchy are derived from completely different vocab-
ularies. The lower levels of the hierarchy may intentionally model finer details that
are not captured in the higher levels.

In order to address this problem, we try to propose a bridging mechanism or lan-
guage that correlates concepts belonging to adjacent tiers of the n-level hierarchy.
Such a set of bridging rules provide hierarchic ontology integration for the n-tier
knowledge-based hierarchy. However, instead of having a formal language knowl-
edge base for each tier of the refinement hierarchy, we can have knowledge bases
written in conceptual modelling languages. This gives rise to a n-level conceptual

© Springer Nature Singapore Pte Ltd. 2020 23
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_3&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_3

24 3 i* and Enterprise Hierarchies

model hierarchy developed using multiple ontologies. In this chapter, we consider
one particular case of conceptual modelling, known as i* models, that is used for
modelling requirement specifications. For greater understanding of i* models, read-
ers can refer to [2]. In this work, we try to explore the nature and types of bridging
rules or correlation constraints that may be defined for ensuring hierarchic ontology
mapping of an n-tier i* hierarchy while maintaining consistency and entailment.

In many requirements engineering exercises, different stakeholder groups within
an enterprise have different vocabularies which are utilized for modelling purposes.
The main motivation behind this work lies in accommodating these distinct vocab-
ularies of the different stakeholders with the help of bridging rules or correlation
constraints, so that adjacent tiers of the n-tier ontological hierarchy are relatively
complete. The notion of relative completeness has been further elaborated in Sect. 3.2.
In order to illustrate the motivation behind our work, let us consider the case study
of the University Admission System.

Case Study: University Admission System

Let us consider a university that offers Postgraduate degree courses. The courses may
be offered from the school of Sciences, or Arts. The requirement specifications for
the admission system vary across different administrative levels of the University.
At the topmost levels of the hierarchy, the Vice Chancellor (VC) and the Pro-Vice-
Chancellors (Pro-VCs) view the entire university as a single entity that is managed
by different schools of faculty belonging to different departments. The higher levels
of administration are agnostic to the department-level details of how students will
be admitted into the various courses offered by each individual department. Such an
abstract view of the University Admission System is presented in Fig.3.1.

The perception of the University Admission System completely changes when
we model the requirement specifications from the point of view of each individual
department. Each department may offer more than one postgraduate course and the
admission criteria for each of these courses may be different. For instance, the Com-
puter Science and Engineering department may offer M.Sc., Postgraduate B.Tech.,
and M.Tech. courses. M.Sc. can be pursued at the postgraduate level by only those
students who have a graduation in Computer Science (Hons.). The Postgraduate
B.Tech. course can be applied by Higher Secondary students who have cleared some
entrance tests. Even graduates in Computer Science (Hons.) can be admitted to the
P.G. B.Tech course through lateral entry. The M.Tech. course can accommodate
M.Sc. in Computer Science, Masters in Computer Applications, as well as B.Tech.
graduates from other engineering colleges. This detailed requirement specification
of the University Admission System has been modelled with the i* model shown in
Fig.3.2.

Figures 3.1 and 3.2 have different ontologies and capture two different i* models
in the requirement refinement hierarchy. This is an overly simplified scenario where
many of the constructs appearing in these two i* models have the same ontology.

3 i* and Enterprise Hierarchies 25

- -

Arts
Courses

Managed
by Faculty

\ / Legend:
\ /
' @ con
\ 7 oals
N School of School of 4 M End
R 4 —> Means-En
AN Arts Sciences ’ .
N\ . 7’ —|- Task Decomposition
~ < .
So P O Actor
~ -
S~ -7 7\ Actor Boundary
_____ ~ -~

Fig. 3.1 Requirement specifications modelled by the university at abstract higher levels of the
requirement refinement hierarchy

This may not be the case always. However, these two i* models have different actor
sets, goals, subgoals, task decompositions and means-end decompositions.

The formal annotation of i* models defined by Guizzardi et. al. represents a
means end link [3] using the proposition ME(g,G), where g represents a means to
deliberately achieve the goal G. We extend this formal annotation and say that if a goal
G has k possible means Gy, Gy, ..., Gy, then it can be represented using the same
binary predicate ME as ME({G, G, ..., G¢}, G). Similarly, task decompositions
can also be defined by extending another binary predicate, say 7D. Let MEL}, ..
and TDL:, . represent the set of means end links and task decomposition links for
the University actor at level-i, respectively. The i* model shown in Fig.3.1 can be
formally described using this extended formal annotation as follows:

1. The University offers Post-graduation degrees in Arts and Sciences.

TD ({Offer Arts Courses, Offer Science Courses}, Post-graduation Degrees
Offered) € TDLY,;,

2. Students can apply to Arts courses or Science courses for Post-graduation.

ME ({Apply for Arts Courses, Apply for Science Courses}, Students
Application) € MEL

Univ
3. All courses offered by the University are managed by the respective faculty.

TD ({Manage Arts Courses, Manage Science Courses}, Managed by Faculty)
€ TDL

Univ

26

3 i* and Enterprise Hierarchies
e Legend:
- - = . =3 ~ -~
- Post Graduation S C) Goals
degrees offered N =—> Means-End
/, \\ =} Task Decomposition
!/ Arts

\ o Actor
Pure Science i i

Courses

Courses

\ \ Actor Boundary
" _D_ Dependencies
1

/
Managed issi

by Faculty

Entrance

Score Score

Schoolof \'y
Sciences \ ! (Graduation)

Fig. 3.2 Requirement specifications modelled by individual departments at the lower levels of the
requirement refinement hierarchy

4. Faculty may belong to School of Sciences. These schools organize the Arts and
Science courses that are offered by the University.

ME ({Belongs to School of Arts, Belongs to School of Sciences}, Faculty)
€MELy,;,
TD ({Organize Arts Courses}, School of Arts) € TDL}, ..
TD ({Organize Science Courses}, School of Sciences) € TDL,, ..
Let MEL’;;IZAV and TDL’;;IW represent the set of means end links and task decom-
position links for the University actor at level-(i + 1), respectively. The ontologies

describing the i* model in Fig.3.2 can also be documented by extending the formal
annotation of i* models [3], as before.

3 i* and Enterprise Hierarchies 27

1. The University offers Post-graduation degrees in Arts, Pure Sciences and Engi-
neering Sciences.

TD ({Offer Arts Courses, Offer Pure Science Courses, Offer Eng;’neering
Science Courses}, Post-graduation Degrees Offered) € TDL:'!

Univ
2. All courses offered by the University are managed by the respective faculty.

TD ({Manage Arts Courses, Manage Pure Science Courses, Manage
Engineering Science Courses}, Managed by Faculty) € TDL’Jlliv

3. The admission criteria for different courses are different.

ME ({Criteria for Arts Courses, Criteria for Pure Science Courses, Criteria for
Engineering Science Courses}, Admission criteria) € MEL}}!

4. Faculty may belong to either school. Respective faculties organize the correspond-
ing courses offered by the University.

ME ({Belongs to School of Arts, Belongs to School of Sciences}, Faculty)
eMELI})

TD ({Organize Arts Courses}, School of Arts) € TDL‘;;]W

TD ({Organize Pure Science Courses, Organize Engineering Science Courses},

School of Sciences) € TDL!' !

Univ
5. Student can be Graduates or HS passed students
ME ({Qualified Graduation, Qualified H.S.}, Students) € MEL:'!

Univ

6. Evaluation strategy is calculated from both Graduation scores and Entrance exam
scores

TD ({Evaluate Graduation Score, Evaluate Entrance Score}, Evaluation
Strategy) € TDLY}

7. Graduates can provide with Graduation scores. Entrance exam may be given by
both Graduates and HS passed students

TD ({Graduates)} Provide, Graduation Score) € TDL:'!

Univ .
TD ({Graduates Provide, H.S. Passed Provide}, Entrance Score) € DL}
8. University depends on Faculty schools for management and organization of
various courses and students depend on the University for Admission. The
DD(depender, dependee) predicate is used for representing dependencies.

i+1
DD (Faculty Management, Managed by Faculty) € DDL’UJ:”-V

.. . . . 41
DD (Admission criteria, Evaluation strategy) € DDLY),;,

In such a situation, it becomes necessary to ensure that the ontologies used in the
models of Figs.3.1 and 3.2 are relatively complete. Let the set of requirements
captured by the higher level (more abstract) i* model be denoted by R[i* (k)] and the

%

—

28 3 i* and Enterprise Hierarchies

set of requirements captured by the lower level (more refined) i* model be denoted
by R[i*(])]. The generalized notion of relative completeness can be represented as

R[i* (W] € R* (D] (3.1)

The relative completeness relation of Eq.3.1 can be ensured if we can define
bridging rules of the form p <> g. These bridging rules represent statements that
relate assertions made using the vocabulary of a higher level model (p) to assertions
made using the vocabulary of the model at the level below (g). If the proposition
q refers to a single element then these bridging rules are called /-1 correlations or
renaming rules. If the proposition g refers to more than one element then such a rule
defines a 1-Many correlation. In the above case study, the following rules ensure that
relative completeness of the hierarchic ontology is maintained.

(a) Science courses are partitioned into Pure Sciences and Engineering Sciences.

goal(Science Courses) <> decomposes-to(Pure Science Courses, Engineering
Science Courses)

(b) Student Applications come from two types of students—Graduates and HS
passed. Their selection criteria are also different. Students apply on the basis
of the admission criteria that they satisfy.

goal(Students Application) <> goal(Admission criteria)

The rest of the chapter is organized as follows. Section 3.1 elaborates on the con-
cept of hierarchic correlations of model elements and how they can be used to bridge
the different i* models of the requirement refinement hierarchy. This is followed by
the notion of relative completeness checking and their consequences in Sect.3.2.
The paper presents a possible heuristic mechanism for achieving bidirectional rela-
tive completeness in Sect.3.3. Section 3.3.2 specifies how these heuristics may be
used for relative completeness checking. The results from this discussion have been
summarized as theorems in Sect.3.3.3. The chapter concludes with Sect.3.4.

3.1 Hierarchic Correlations

The higher levels of any requirement refinement hierarchy capture an abstract func-
tioning of the enterprise. The i* models at the higher levels usually comprise of
abstract Goals, Tasks and Resources, that require fine-tuning for requirement analy-
ses. These requirements can be further refined and the lower levels of the requirement
refinement hierarchy provide an elaborate understanding of the functioning of the
enterprise. The i* perspective at these lower levels is far more detailed and consists
of model elements having higher levels of granularity.

3.1 Hierarchic Correlations 29

/ Legend:

P i ’ D Goals
C> Tasks
D Resources

—>» Means-End
—+} Task Decomposition

- -
|
RN N Actor Bound
Ctor Bounaar
doallG, So e v
\\ — => Correlation Links
! \

-~ -
-~ J—
= —— _— -

Level-i+1

Fig. 3.3 Hierarchic correlation in an Actor Invariant refinement hierarchy

Hierarchic correlations try to bridge this gap in perspective. We assume that there
are n levels in the requirement refinement hierarchy and the i* models at levels i and
(i + 1) can be defined as a hierarchic correlation of some model elements in level-
i to a set of more refined model elements in level-(i + 1). All the illustrations in
this section model hierarchic correlations between adjacent levels of a goal model
hierarchy. Although there may exist correlations between non-adjacent levels as
well, we do not consider them in these examples. The formalisms proposed in these
case studies can be extended to non-adjacent levels as well. Figure 3.3 illustrates
hierarchic correlation of a task T at level-i with tasks 7, and T, at level-(i + 1).
The subtree of task 7 (defined by all model elements that stem from 7)) in level-i
is redistributed between tasks T;; and T, in level-(i + 1).

Model elements can be classified into four types based on their type of decompo-
sition within a specific level. These are as follows:

1. Only Child Links (OCL). Model elements which are not the children of some
other model element undergoing Task or Means-End Decomposition. However,
the model element itself undergoes such a decomposition and is connected to
other model elements using child links. In Fig. 3.4, goal G, at level-i is an OCL
model element which has no parent and is connected to its children 77 and G,
using Means-End links.

2. Only Parent Links (OPL). Model elements which stem from some model element
undergoing Task or Means-End Decomposition. However, the model element
itself does not undergo any further decompositions. It is either independently

30

3 i* and Enterprise Hierarchies

- -

-
- ~~

, Legend:
d
. D Goals
D Tasks
D Resources

=3 Means-End
—|- Task Decomposition

¢~ N Actor Boundary
-~

N = => Correlation Links

\\ —@ Unresolved Links

Level-i+1

Fig. 3.4 Hierarchic OCL goal correlation in an Actor Invariant refinement hierarchy

achievable by the actor or dependent on some other actor for its fulfillment. It is
connected to its parent only using parent links. In Fig. 3.5, goal G, at level-i is an
OPL model element which is connected to its parent G; using a Means End Link
and does not have any Child links.

Parent and Child Links (PCL). Model elements which are connected to their parent
elements using parent links and also undergo Task or Means-End Decomposition
to generate child elements, connected with child links. OPL and OCL model
elements are special cases of PCL process elements that do not have parent links
or child links. In Fig.3.6, task T} at level-i is a PCL model element which is
connected to its parent G| using a Means End Link and connects to its children
G3, T, and R; using Task Decomposition links.

No Links (NL). Stand-alone model elements that do not have associated parent
links or child links.

The different types of goal correlation links suggested above are functionally

complete and there cannot exist any other type of goal correlation. Hierarchic corre-
lation rules need to be defined separately for each of these classes of model elements.
Depending on the type of model element and the type of parent and child links (Task
Decomposition links or Means End links), we can have different ways in which
hierarchic correlations can be defined. So a PCL model element, having a Task
Decomposition parent link and a Means-End child link, has a completely different
hierarchic correlation as compared to another PCL model element that has Means
End links as both its parent link and child links.

3.1 Hierarchic Correlations

e ———
- -
- -

-
- ~

- ‘\
- ~
”- ~
- - ~
N
/, N

Goal G,
[}

! Legend:

/

,/ D Goals
C> Tasks
D Resources

= Means-End

—|- Task Decomposition
¢~ N Actor Boundary

-~

~ .
N — => Correlation Links

S \ ——4@ Unresolved Links

. ~ -
Level-i+1 ==

-
-
N —— —_———

Fig. 3.5 Hierarchic OPL goal correlation in an Actor Invariant refinement hierarchy

J—
-
- ~

/’ \\\
.° Goal G, S
(N
\

- -
-

1

Legend:
\ /
A ~ N . 4 D Goals
~ 1 -
~ - Tasks
.~ | - O
Level-i Se~a I - D Resources

J:lr =3 Means-End
T _|. Task Decomposition

¢~ N Actor Boundary
-~

-
-

1

— => Correlation Links
\\—0 Unresolved Links

i ~
Level-i+1 -

S —-aa —_——

Fig. 3.6 Hierarchic PCL task correlation in an Actor Invariant refinement hierarchy

32 3 i* and Enterprise Hierarchies

Hierarchic correlation of model elements need not be restricted within an actor.
Actor Invariant correlations are characterized by the fact that the set of actors within
the i* model remains the same and hierarchic correlations are established between
high and low granularity model constructs within the same actor. These correlations
try to establish whether lower level goals, tasks and resources collectively realize
some higher level model construct while ensuring consistency. Figures 3.3, 3.4, 3.5
and 3.6 show hierarchic correlations in Actor Invariant settings.

An alternative to this is the idea of Actor Variant correlations. Such a refinement
permits the existence of different sets of actors at different levels of the requirement
refinement hierarchy. A goal, task, resource or dependency at a higher level may have
ahierarchic correlation with lower level model constructs that are not restricted within
the same actor. A correlation may establish the entailment of a high-level model con-
struct from multiple low level model constructs that are distributed among multiple
actors. Depending on how the hierarchically correlated model elements resolve their
parent and child links, we may have new dependencies set up between this combined
set of actors. Figures 3.1 and 3.2 show Actor Variant hierarchic correlations for the
University Admission System case study.

Figure 3.7 illustrates another Actor Variant hierarchic task correlation. Task T
of actor A at level-i can be realized from tasks 7, and T}, belonging to actors A,

- -~ Legend:
- =~ - D Goals
) \ O Tasks
,I \ D Resources
\ ! —>» Means-End
\\ m ,/I —|- Task Decomposition

- -

e ~ -, - —> Correlation Links
~ N _-
S~ ___- * —\’\ o Actor
. \ N -\
Level-i \ \\ (_ " Actor Boundary
\ N .
\ ~ —D— Dependencies
~
\ N ——

"— —————— N\\
\\
\
4 \
1
1
/

-

Fig. 3.7 Possible Hierarchic correlation in an Actor Variant refinement hierarchy

3.1 Hierarchic Correlations 33

and A,, respectively, at level-(i + 1). The lower level requires dependencies to be set
up between actors A, A; and A,. Such a hierarchic correlation is valid, i.e., tasks 77,
and T, can exist independently, if and only if they are consistent with task 7.

3.2 Relative Completeness Checking

Different levels of the requirement refinement hierarchy generate different i* per-
spectives of the features being delivered by the enterprise. The i* models generated
from different levels of the hierarchy have completely different ontologies that are
derived from the vocabulary of the enterprise architects. Relative Completeness of the
requirement specifications are defined by the mapping of model elements between
successive levels of the refinement hierarchy. Mapping between model constructs
can be of two types:

(i) I-1 Correlation: Also called a renaming rule. A model element at some higher
abstract level of a refinement hierarchy has a one-to-one mapping with some
model element at the lower concretized level. The two different levels of the
refinement hierarchy may have completely different ontologies and, hence,
a one-to-one mapping across these levels represents a renaming of model
constructs.

(i1) I-Many Correlation: A low granular, abstract model element at the higher
levels of the refinement hierarchy has a one-to-many mapping with a subset
of highly granular, concretized model elements participating in the lower level
of the refinement hierarchy. 1-Many correlations have already been elaborated
previously in Sect.3.1.

(iii)) Many-Many Correlation: A set of model elements at a higher level of the
refinement hierarchy can be mapped to a subset of model elements at the lower
level of the goal model hierarchy. In most cases, Many-Many correlations can
be realized as a set of 1-1 and 1-Many correlations.

Based on these types of mapping that can exist between model elements at different
levels of the refinement hierarchy, Relative Completeness can be of three types.

1. Bidirectional Relative Completeness (BRC). Adjacent levels of a requirement
refinement hierarchy are said to satisfy Bidirectional Relative Completeness if
and only if

e Every model element at the higher level is either involved in a 1-1 correlation
or a 1-Many correlation. This is represented by the following relation:

R[* (W] S R* (D]

e AND, every model element at the lower level must be either involved in an
inverse 1-1 correlation or an inverse 1-Many correlation. This is represented
by the following relation:

34

3 i* and Enterprise Hierarchies

R[i*(1)] < R[i*(h)]

These two relations can be combined to represent BRC using the following rela-
tion:

R[i*(h)] = R[i*(])] (3.2)

This is the ideal case where we can map all the model constructs appearing in
some level of the requirement refinement hierarchy to all the model constructs
appearing in the next adjacent level. We say that the relative completeness of the
requirement refinement hierarchy holds in both directions.

Unidirectional Relative Completeness (URC). A two-level requirement refine-
ment hierarchy is said to satisfy Unidirectional Relative Completeness if and
only if

e EITHER, all the model elements at the higher level can be mapped to a subset
of lower level model elements using 1-1 or 1-Many correlations but not vice-
versa. URC is said to exist from high to low and is represented by the following
relation:

R[i*(h)] C R[I*(D)] (3.3)

e OR, all the model elements at the lower level can be mapped to a subset of
higher level model elements using inverse 1-1 or inverse 1-Many correlations
but the reverse does not hold. URC is said to exist from low to high and is
represented by the following relation:

R[i*()] C R[i*(h)] 3.4

The relative completeness of the requirements holds in only one direction of the
requirement refinement hierarchy. Equations 3.3 and 3.4 define URC between
adjacent levels of the hierarchy.

Relative Incompleteness (RI). A requirement refinement hierarchy that is neither

BRC nor URC is said to be an RI requirement specification. A two-level require-

ment refinement hierarchy is said to satisfy Relative Incompleteness if and only

if

e Only a subset of the model elements appearing in the higher level of the refine-
ment hierarchy can be mapped to a subset of model elements appearing in the
lower level of the hierarchy. This is represented by the following relation:

R[*(h)] € R[i*(D]

e AND, only a subset of the model elements appearing in the lower level of the
refinement hierarchy can be mapped to a subset of model elements appearing in
the higher level of the hierarchy. This is represented by the following relation:

3.2 Relative Completeness Checking 35

R[*()] € R[i*(h)]

These two relations can be combined to represent R/ within a requirement refine-
ment hierarchy as

R[i*(1)] 2 R[i*(h)] 3.5)

3.2.1 Consequence of Relative Completeness

Relative Completeness Checking plays a pivotal role in establishing the equiva-
lence and traceability of model elements residing within the i* models obtained
from different levels of the requirement refinement hierarchy. Bidirectional Relative
Completeness ensures that adjacent levels of the refinement hierarchy are in synchro-
nization with each other. If BRC is ensured between all pairs of adjacent levels of the
refinement hierarchy, then we can safely conclude that the entire requirement refine-
ment hierarchy is in sync, i.e., the chances of errors of omission in the requirement
specifications is mostly eliminated.

Unidirectional Relative Completeness ensures a one-way synchronization of
requirement models in the requirement refinement hierarchy. If relation 3.3 is satis-
fied, then there exists some model elements in the lower level i* model which cannot
be traced back to the previous level. Relation 3.4 represents the exact opposite con-
dition. In either case, we can conclude that there is partial synchronization within
the refinement hierarchy and the unmapped model elements need to be justified and
scrutinized regarding their existence. URC is a likely scenario as lower levels of
the hierarchy capture fine-grained requirements that are not perceived by the higher
levels.

The ambiguity of checking relative completeness lies in the fact that Relatively
Incomplete multilevel i* model specifications cannot be outright discarded as incor-
rect. It is possible that two i* models, representing the requirement specifications
refined at two different levels of the refinement hierarchy, be Relatively Incomplete
with respect to one another. The consequence of Relative Incompleteness lies in
the fact that adjacent levels of the refinement hierarchy are not in sync with each
other. This demands careful introspection by the enterprise architects to ensure the
correctness of the requirement refinement hierarchy. Rigorous team meetings and
discussions need to be conducted for revisiting the requirements and ensuring rela-
tive completeness manually.

3.3 Possible Heuristics

Relative Completeness Checking is not as trivial as it seems. We need to define
heuristics for the hierarchic correlation of goals, tasks, resources and dependencies
in both Actor Invariant and Actor Variant environment settings. These rules must

36 3 i* and Enterprise Hierarchies

be individually spelled out for NL, OPL, OCL and PCL types of model elements
as defined in Sect.3.1. The correlation varies with the type of parent and child
links. A hierarchic OPL goal correlation behaves in an entirely different manner
as compared to a hierarchic PCL goal correlation. Again, a hierarchic OCL goal
correlation with Means-End links as child links is quite different from a hierarchic
OCL goal correlation with Task Decomposition links as child links. Once heuristics
have been defined for all possible types of hierarchic correlations, we can proceed
towards Relative Completeness Checking.

Let us look back into our case study that models the requirements of a University
Admission System. Figure 3.1 captures an abstract i* model that occupies a position
somewhere near the top of the requirement refinement hierarchy. Science Courses is
a high-level goal that can be broken down to lower level goals Pure Science Courses
and Engineering Science Courses. Such a 1-Many correlation is captured in Fig. 3.8.
However, the trickier part is to accommodate such a 1-Many correlation within the
lower level i* model by suitable adjustment of the decomposition links. We need
to resolve how the higher granular goals can be connected to the existing model
elements using Task Decomposition and Means End links.

Before proposing a possible heuristic for defining such a 1-Many correlation, we
need to understand the semantic consequences of such a 1-Many correlation. We can
make the following observations:

I. Previously the University was offering Arts Courses and Science Courses.
The refined requirement suggests that the University now offers Arts Courses,
Pure Science Courses, and Engineering Science Courses. Thus, both Pure Sci-
ence Courses and Engineering Science Courses get connected to Postgraduate
Degrees Offered using Task Decomposition links.

II. Previously Science Courses was Managed by Faculty. It follows logically that
both Pure Science Courses and Engineering Science Courses will also be Man-
aged by Faculty. Hence, again, both these higher granular goals get connected
to Managed by Faculty using Task Decomposition links.

III. Previously Student Applications could be made to Arts Courses or Science
Courses. After this 1-Many correlation, the lower level of the refinement hierar-
chy should capture Student Applications being made to Arts Courses, Pure Sci-
ence Courses, or Engineering Science Courses. So both Pure Science Courses,
and Engineering Science Courses get connected to Student Applications using
Means End links.

These three semantic observations help us to obtain the i* model at the lower
level of the refinement hierarchy and consisting of model elements having greater
granularity. The corresponding i* model, thus, obtained is shown in Fig.3.9. This
i* model captures the requirements at some level of the requirement refinement
hierarchy that lies between the granular levels captured by Figs.3.1 and 3.2.

3.3 Possible Heuristics

37

Post Graduation
degrees offered

Arts
Courses

>

Managed
by Faculty

School of
Arts

Stude‘nts
Application

School of
Sciences

4
'\,
\\\ ”1;
. -
Level - i S~ - \
______ X \
1 1
1 1
1 1
1 1
I 4. \
- I~~~ \
- Post Graduation S~

degrees of'fer;'ed

Pure . .
, Arts Sci Engineering
/ Courses clence Science
! Courses

Courses

Managed
by Faculty

- — = ==

School of
Arts

Students
Application

School of
Sciences

- -
i ~
Level - i+1 ~

——@ Unresolved Links

Legend:

D Goals

—>» Means-End
| Task Decomposition

O Actor

{") Actor Boundary

= => Correlation Links

Fig. 3.8 1-Many correlation between lower granular goal Science Courses and higher granular

goals Pure Science Courses and Engineering Science Courses

38 3 i* and Enterprise Hierarchies

- -

Pure
Arts .
Science
Courses
Courses

by Faculty

. N \
Engineering\
Science |
Courses
Legend:

\
\
\
1
1
1
]
Goals
Students / C) " End
Application /) > Means-tn N
/// _|_ Task Decomposition
‘ O

Actor

School of
Arts

School of
Sciences

Fig. 3.9 The i* model obtained for the lower levels of the requirement refinement hierarchy after
incorporating the 1-Many correlation

3.3.1 Formalizing the Heuristics

Considering the formal annotation of i* models suggested in [3], let MEL},; and
TDL;, . represent the set of Means End links and Task Decomposition links within

the University actor at level-i, respectively, such that

e Every Means End link is represented by propositions of the form ME({P;, P, ...,
P,_1}, P,) such that {Py, ..., P,_;} form the means to achieve the end P,,.

e Every Task Decomposition link is represented by propositions of the form
TD({P,, P,, ..., P,_1}, P,) such that P, is decomposed to {Py, ..., Py,_1}.

According to Fig. 3.1, the University actor has the following Means End links and
Task Decomposition links at level-i:

@) MELZMU = {ME({Belongs to School of Arts, Belongs to School of Sciences},
Faculty), ME({ Apply for Arts Courses, Apply for Science Courses}, Students
Application)}.

(ii) TDL"Um,v = {TD({Offer Arts Courses, Offer Science Courses}, Post-graduation
Degrees Offered), TD({ Manage Arts Courses, Manage Science Courses}, Man-
aged by Faculty), TD({Organize Arts Courses}, School of Arts), TD({Organize

Science Courses}, School of Sciences)}.

Now we have to incorporate the 1-Many correlation shown in Fig. 3.8 within our
formal model. The 1-Many correlation show in Fig. 3.8 can be formally represented
using the relation:

3.3 Possible Heuristics 39

goal(Science Courses) <> decomposes-to(Pure Science Courses, Engineering
Science Courses)

Assuming that except these newly introduced ontologies all existing ontologies
remain unchanged, we can obtain the formal representation of the i* model shown
in Fig.3.9 as follows:

1. The Goal Set (GS) at level-(i + 1) is obtained from the higher level Goal Set as
follows:

i+l _ i : : ; ;
GS{/,iv = GSy,.i,— {Science Coqrses} (J {Pure Science Courses, Engineering
Science Courses }

2. The Means End links at level-(i + 1) can be formalized as follows:

MEL’J}[U = MEL"Um,v— {ME({Apply for Arts Courses, Apply for Science
Courses}, Students Application)} |) {ME({Apply for Arts Courses, Apply for
Pure Science Courses, Apply for Engineering Science Courses}, Students
Application)}

3. The Task Decomposition links at level-(i 4 1) can be formally defined as follows:

TDL’;:}I.U = TDL’bm-v— {TD({Offer Arts Courses, Offer Science Coursesj},
Post-graduation Degrees Offered), TD({Manage Arts Courses, Manage Science
Courses}, Managed by Faculty), TD({ Organize Science Courses}, School of
Sciences)} | {TD({Offer Arts Courses, Offer Pure Science Courses, Offer
Engineering Science Courses}, Post-graduation Degrees Offered), TD({ Manage
Arts Courses, Manage Pure Science Courses, Manage Engineering Science
Courses}, Managed by Faculty), TD({Organize Pure Science Courses, Organize
Engineering Science Courses}, School of Sciences)}

In general, let MEL] and TDL; represent the set of Means End links and Task
Decomposition links for the actor A atlevel-i, respectively. Let us suppose that there
exists an OPL goal Py that participates in a Means-End as well as Task decomposition.
Then there exist propositions of the form

ME({P\, Py, ..., Py, ... Pu_1}, Pn) € MEL]
AND
TD({P4, Pp. Py ..., Py}, Ps) € TDL!

The OPL Goal model element P, participates as a child in both Task decomposi-
tions and Means-End decompositions. If P, at level-i has a 1-Many correlation with
model elements Py, ..., Py, atlevel-(i 4+ 1), then both the Means-End decomposition
and Task decomposition sets can be refined and expanded to incorporate the model
elements Py, ..., Py,. However, the 1-Many correlation must satisfy the Entailment
and Consistency conditions [1] of the KAOS framework. In such a situation, we can
define the heuristics for 1-Many correlation of OPL model elements as follows:

40 3 i* and Enterprise Hierarchies

Heuristic (HR#1): When an OPL model element, having both Means End links and
Task Decomposition links as its parent link, establishes a 1-Many correlation with a
set of model elements at a lower level of the requirement refinement hierarchy, then
the formal representation of the i* model gets refined as

() G*' =G} — (P} U{Px,» - -, Pin)
(ii) MEL]"' = MELI-ME({P, Py, ..., Pi_1, P, Pis1. ..., Py}, Pu) U
ME({P\, Py, ..., Pi_1.Pi,r.... Pi . Pis1s .. Pu_1}). Pp)
(iii) TDL"' = TDL-TD({P4, Pp. ..., Py Pt. Pp. ..., Pg}Ps) U TD({P, P,
PPy,P.PL, ..., PR}, Ps)

Similarly, we can define /-Many correlation heuristics for different types of model
elements under varying combinations of parent—child link types.

3.3.2 Applying Heuristics for Relative Completeness
Checking

Let the /-Many correlation heuristics be denoted by HR#1, HR#2, ..., HR#N. For
each such heuristic, HR#i~! denotes the inverse 1-Many correlation heuristic. Along
with this set, we also have a set of I-1 correlation heuristics denoted by OC#1,
OC#2, ..., OC#M, where each OC#j represents a renaming rule. As with 1-Many
correlation heuristics, OC#j~! denotes the inverse 1-1 correlation heuristic of OC#j.
Let I} denote the i* model at level-k and I}, denote that at level-(k + 1). Relative
Completeness Checking can then be defined as follows:

Bidirectional Relative Completeness (BRC). I;; and I;, are said to be BRC-
compliant iff

1. I, canbe derived from I} by first applying all 1-1 correlation heuristics to model
elements in [}, in any random sequence, to obtain I}’ and then applying all 1-Many
correlation heuristics to I}’ in any random sequence. This can be represented as
follows:

N .
Yizi L ="I,and
N HR#i
Vi = Iy

AND

2. I} can be similarly derived from [}, by first applying the inverse 1-Many corre-
lation heuristics to I}, |, in any random sequence, to obtain ;" and then applying
the inverse 1-1 correlation heuristics to [} in any random sequence. This can be
represented as follows:

3.3 Possible Heuristics 41

The keyword AND is of utmost importance for bidirectional completeness. Condi-
tions (1) and (2) may be combined and we can say that both the i* models /;; and I} |
are mutually derivable from each other. This is represented as follows:

HREAOCH]
V?]=1V§4=11Z & k+1
HR#-INOCHj~!

Unidirectional Relative Completeness (URC). [} and [}, are said to be URC-
compliant iff

1. I, can be derived from [} by applying 1-1 correlation heuristics and then 1-
Many correlation heuristics to a subset of the model elements in /; in any random
sequence. However, I; cannot be derived back from I} ; by applying the inverse 1-
1 and inverse 1-Many correlations, successively. The following relations represent
URC-compliance from I}, to [}:

H R#i

N M
Vi) Vici Ik Oaj Li4y» and
HR#i™!
NARRTI R
i=1 Vj=1"k+ 0CH -1

OR

2. Iy can be derived from I}, by applying inverse 1-Many correlation heuristics and
then inverse 1-1 correlation heuristics to a subset of model elements in [in
any random sequence. However, i, cannot be derived from I; by applying the
corresponding 1-1 and 1-Many correlations, successively. The following relations
represent URC-compliance from I} to I, ;:

HR#i™!
ViLi VL T = I and
oc#j!
N M H R#i
Vis Vo I 0@}. L

URC-compliance and BRC-compliance looks very similar. The difference lies in
the keyword OR. Unidirectional relative completeness does not allow the mutual
derivation of adjacent level i* models.

Relative Incompleteness (RI). /; and I}, are said to be RI/-compliant iff

1. I and I}, are not BRC-compliant.
2. I} and Iy | are not URC-compliant in either direction.

RI-compliance does not imply that there does not exist any 1-1 or 1-Many corre-
lations between I} and I}, ;. What Relative Incompleteness actually signifies is that
only a subset of model elements in I} has correlations with only a subset of model ele-
mentsin [;. Both I} and I} | contain model elements that cannot be mapped through
some 1-1 or 1-Many correlations. Thus, neither I nor I}, can derive the other with
the successive random application of all 1-1 and 1-Many correlation heuristics. The
following relations capture the notion of R/-compliance:

42 3 i* and Enterprise Hierarchies

HR#i

N yM
Visi Viei Ik 0Cs; Iiyy> and
HR#i™!
LA S S
i= j=1 "k+ 0CHj-!

The above conditions may be combined and we can say that neither of the i*
models [;; and I}, are derivable from the other. This is represented as follows:

HR#iNOCHj
ViLVILL & L
HRHi~ NOCH] !

3.3.3 Results

Let || and |} | represent the number of model elements in the i* model at levels k
and k + 1, respectively. Let there be M 1-1 correlations and N 1-Many correlations
that can be established between the i* models at these two adjacent levels. Each 1-1
correlation is a one-to-one mapping. 1-Many correlations, on the hand, are one-to-
many mappings. Let |HR#i| denote the number of model elements in I}, that have
a 1-Many correlation with some model element in /;. Under these assumptions, we
can have the following theorems.

Theorem 3.1 [} and I} | are BRC-compliant if and only if:

(i) \I}|=(M + N), and
(i) I, = (M + Y\ |HR#il).

Proof BRC-compliance implies that all model elements in /; must participate in
either 1-1 correlations or 1-Many correlations. The total number of these correlations
is given by (M + N). This proves condition (i). Similarly, every model element in
I, | must be a part of some inverse correlation. Since every 1-1 correlation maps
single model elements and every 1-Many correlation maps |HR#i| model elements,
the total number of elements participating in inverse correlations is given by (M +
ZiN:l |HR#i|). This proves condition (ii). |

Theorem 3.2 [} and I | are URC-compliant if and only if:

(i) ;| > (M +N)and I, = (M + Y| |HR#il)
OR

(i) Il = (M + N)and It || > (M + I |HR#il).
Proof URC-compliance from [; to I; demands that all model elements in [
participate in inverse correlations but the same is not true for model elements in ;.
This implies that there exists excess model elements in /; which do not participate
in either type of correlation. This is established by condition (i).

URC-compliance from [} to I} ; demands that all model elements in [}/ participate
in either 1-1 correlations or 1-Many correlations but the same is not true for model

3.3 Possible Heuristics 43

elements in /i, ;. This implies that there exists excess model elements in I} ; which
cannot be correlated back to model elements in /. Condition (ii) captures these
criteria. |

Theorem 3.3 [} and I, are RI-compliant if and only if

(i) |I[| > (M + N), and
(i) I, > (M + YN |HR#i).

Proof RI-compliance implies that both I} and I ; have model elements that do not
participate in either 1-1 correlations or 1-Many correlations. Thus, both the i* models
have excess model elements that cannot be bridged and results in the inequalities of
conditions (i) and (ii). |

Once we can establish correlations between adjacent levels of a goal model hierar-
chy, we can apply the theorems as a formal basis for evaluating the degree of relative
completeness that is being achieved. Based on the degree of relative completeness,
enterprise architects can make decisions to increase the degree of correlation existing
within the goal model hierarchy.

3.4 Conclusion

The research in this chapter contributes to the domain of requirements engineering
by defining bridging constraints that enable hierarchic ontology integration of mul-
tilevel i* models. The novelty of this proposition lies in the fact that these bridging
mechanisms help in stitching the i* models of the entire requirement refinement hier-
archy. This chapter builds on this idea and provides some insights on how relative
completeness can be ensured between adjacent tiers of multilevel i* refinement hier-
archies. Rules have been defined for checking the degree of relative completeness
as well. Bidirectional Relative Completeness (BRC) is suggested as the most ideal
relative completeness criteria. The framework also proposes a heuristic for defining
1-Many correlations. We also state how such heuristics may be used to check rela-
tive completeness within refinement hierarchies and how the consequences may be
utilized.

The ability to mine goal models also has important implications for requirements
engineering, as well as a wide variety of other settings that benefit from goal mod-
elling. The machinery that we present can, therefore, provide useful directions for
future research and development. This machinery can also be used to mine know-how
which can support enterprise innovation strategies in significant ways. The empirical
evaluation presented in this chapter is preliminary in nature, but provides evidence
that suggests that there is merit in pursuing this general approach.

44 3 i* and Enterprise Hierarchies

References

1. van Lamsweerde A, Darimont R, Letier E (1998) Managing conflicts in goal-driven requirements
engineering. Trans Softw Eng Spec Issue Inconsistency Manag Softw Dev 24(11):908-926.
https://doi.org/10.1109/32.730542

2. Yu E. Modelling strategic relationships for process reengineering, Ph.D. thesis University of
Toronto, Toronto, Canada

3. Guizzardi R, Franch X, Guizzardi G, Wieringa R (2013) Using a foundational ontology to
investigate the semantics behind the concepts of the i* language. In: Proceedings of the 6th
international i* workshop (iStar 2013), pp 13-18

https://doi.org/10.1109/32.730542

Chapter 4 ®
Model Checking with i* oo

Hierarchic correlation between adjacent levels of a goal model hierarchy only ensures
the synchronization between different levels of the enterprise hierarchy. It does not
ensure the compliance of goal models to business compliance rules. Model checkers
or verifiers can do this type of analysis. Model checking is a method for formally
verifying finite state concurrent systems represented by extended finite state models.
Industry standard model checking tools—Ilike SPIN [1], NuSMV [2]—accept these
extended finite state models (E-FSM) as input. The input models are defined by a set
of state transitions that characterize the possible execution traces that the system can
generate. The model checking tools are also fed with specifications about the system,
expressed using temporal logic. Efficient symbolic algorithms are used to traverse
the model defined by the system and check if the specification holds or not. Thus,
either a positive acknowledgement is generated, if the specification is satisfied, or a
counterexample is produced, if the specification is violated. Figure 4.1 illustrates the
general working mechanism of model checkers.

Requirement models capture the requirement specifications of the system and
have the same impact as design models have on the coding phase [3]. Requirement
models are generated in the requirements analysis phase of software development.
This is the first phase of developing a software or system, irrespective of the particular
development life cycle model being followed—Waterfall, Spiral, Prototype or Agile.
Requirement models can help enterprise architects and developers by allowing them
to perform different kinds of analysis on the system being developed. Model checking
against a given set of temporal properties (see Fig.4.1) is also an important type of
analysis that may be performed on goal-oriented requirement models.

Even after a system has been deployed, its environment keeps changing. This
results in the user requirements to change as well. The system has to adapt to the
ever-changing user needs during runtime. Before incorporating the newly evolved
requirements into the existing framework, developers and architects need to ensure
that the changing requirements do not result in conflicting/inconsistent states within
the system. Thus, some kind of model checking needs to be done on the changed
requirements to ensure that the system will remain consistent after the changes take

© Springer Nature Singapore Pte Ltd. 2020 45
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_4&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_4

46 4 Model Checking with i*

Model Building

Specification

{ Model Checker)

b 4

o~

Fig. 4.1 Block diagram of standard model verifiers

Specification

Model Building

Model Checker

Fig. 4.2 Problem with i* model verification

effect. This may be done with industrial model checkers, if they are fed with the
updated requirement models and the evolved requirement specifications as shown in
Fig.4.1.

i* is a goal-oriented requirements modelling notation that models requirements
with the help of actors and their goals, tasks and resources. Inter-actor dependencies
are also captured by the i* framework. An inherent attribute of the i* notation (and
goal models in general) is that it is sequence agnostic and does not capture any sort
of partial ordering between the goals and tasks. In the absence of sequencing infor-
mation, standard industrial model checkers cannot verify i* models against temporal
property specifications as shown in Fig.4.2. Model checkers accept extended finite
state models (E-FSM) as input for verifying temporal properties. Process models,
sequence diagrams or activity diagrams, capture some ordering of states within the
system and, hence, E-FSM(s) can be easily derived from these models. The process
of extracting E-FSM(s) from i* models is far more complex as i* models do not
capture state transitions within the system. This is the underlying research question
being addressed in this chapter and is the main motivation behind this research.

4 Model Checking with i* 47

Formal Tropos introduces the concept of actor instances and how dependencies,
assertions, possibilities and invariants can exist in either of three states—~Not Cre-
ated, Created Not Fulfilled and Fulfilled [4, 5]. Formal Tropos associates the Tropos
methodology to a formal specification language that allows the specification of con-
straints, invariants, pre- and post-conditions, thereby capturing the semantics of the
1* graphical models. We extend this notion to i* model constructs in general and state
that every goal, task or resource also exists in either of these three states. Every model
construct makes two state transitions to reach the Fulfilled state from the Not Created
state. The Naive Algorithm uses a brute-force method to generate all possible finite
state models that can be obtained by permuting the state transitions of individual
model constructs. This results in an explosion within the finite state model space.

It is interesting to observe that, although an i* model is sequence agnostic, yet
there exists some features or model constructs within the i* model that provide a tem-
poral insight into the underlying requirements of the enterprise. For instance, every
dependency has a cause-effect property in the sense that it is only when a dependee
satisfies a requirement of the depender does the dependency become fulfilled. The
Semantic Implosion Algorithm identifies these untapped temporal characteristics and
tries to contain the rate of growth of the finite state model space corresponding to
an i* model. Simulation results reveal that the Semantic Implosion Algorithm indeed
outperforms the Naive algorithm and provides a drastic improvement over the brute-
force method.

The rest of the chapter is structured as follows. The next section (Sect. 4.1) details
out the Naive Algorithm and the Semantic Implosion Algorithm. The drawbacks of the
Naive Algorithm are identified and the Semantic Implosion Algorithm is proposed as
a solution to these drawbacks. Section 4.2 describes a detailed simulation where both
the algorithms are applied to the same classes of i* models and their performances
are observed, compared and contrasted. Section4.3 presents the i*ToNuSMV tool
that we have developed for implementing the Semantic Implosion Algorithm and
performing model checks on i* models. concludes the paper. This is followed by the
version history and web links of the tool in Sects. 4.4 and 4.5, respectively. Finally,
we conclude the chapter in Sect.4.6.

4.1 Developing Finite State Models from an i* Model

The main research motivation is to analyse an i* model and derive a finite state
model (FSM) that captures all the finite execution sequences that satisfy the given i*
model. Without identifying a partial ordering of the operations within the enterprise,
it becomes very difficult to check and verify temporal properties and compliance
rules on the system. The underlying challenge of this work lies in the fact that i*
models are sequence agnostic. Being complementary to the notion of FSMs, which
define an ordering of states through which the system can go through, the conversion
process cannot yield a unique execution trace corresponding to a given i* model. The
idea here is to generate all the possible execution traces that satisfy the requirement

48 4 Model Checking with i*

specifications captured in the given i* model. The algorithms presented in this article
produce a finite state model space, as output, which defines this set of plausible finite
state sequences. Once the finite state model space is obtained, we can apply model
checking and generate a subset of this model space which satisfies all the compliance
rules necessary for the operation of the enterprise. This final set of pruned finite state
sequences can then be reverted back to the enterprise owner in order to verify the
requirements.

In the following algorithms we are considering the more detailed strategic ratio-
nale (SR) diagram of an i* model. The SR-diagram is much more comprehensive than
its strategic dependency (SD) counterpart and encompasses all the dependency infor-
mation that are captured in the SD-diagram. In fact, an SD-diagram only represents
the inter-actor dependencies but does not depict which particular model construct of
the depender is dependent on which particular model construct of the dependee. The
SR model is much more elaborate in this sense.

4.1.1 The Naive Algorithm

The most intuitive solution that has been given by the GORE community uses the
notion that every i* model element can exist in either of three possible states—~Not
Created (NC), Created Not Fulfilled (CNF), and Fulfilled (F). All the goals, tasks
and resources that appear in the SR model are initially in the Not Created (NC)
state and every model construct must make two transitions to reach the Fulfilled (F)
state while transitioning through the intermediate Created Not Fulfilled (CNF) state.
Unlike Formal Tropos [5], we do not consider multiple instances of goals, tasks or
resources. We assume single instances and derive a finite state model corresponding
to the given i* model. We obtain sequences of states by considering all possible
permutations of the model elements and the states in which they exist.

Let us demonstrate the above concept with an example. Consider the simplest
possible SR-diagram with one actor consisting of only one goal G. This is shown in
Fig.4.3a. The goal G can be in either of three states—Not Created denoted by G v,
Created Not Fulfilled denoted by G) and Fulfilled denoted by G (). These three
states give rise to 3! finite state sequences as shown in Fig.4.3b—g. However, out
all these six finite state models, only Fig.4.3b is semantically correct. All the other
finite state models are semantically inconsistent as a model element can go through
its possible states in exactly one possible sequence—G) — G(c) — G). We call
this sequence the default sequence, and must be satisfied by all model elements.
Now, let us increase the complexity by incorporating one more model element in
the SR-diagram, i.e., let there exist two model elements in the SR-diagram. These
two model elements can belong to the same actor or to two different actors. In either
case, the complexity analysis remains the same.

Let A} and A, be two different actors, each with a single goal node G| and
G, respectively. Since each goal can be in either of three states, the total num-
ber of possible combined states is 32 (=9). However, since both G, and G, must

4.1 Developing Finite State Models from an i* Model 49

Fig. 43 aActorAwitha [_____
single goal G; b The only . - =~

semantically correct finite "

state sequence; c-gOther | T===-=--7

possible finite state @

sequences that can be Goy— G — G Goy—> G —* G
derived by permuting the (b) ©

state space but which are
semantically incorrect Go— Gay— G Go— G — Gy
(@ ()

Gmn— Goy— G | G®»— Go— Gm

® ()
Fig. 44 aActorsAyand4, [
with goals G and G, ."— “=~, . ----- <
respectively; b The State \ ! /\/
Sequence Graph over theset [T =---- - Se—eeo - -
of 32 = 9 possible states @
<G1nGzny?
<G1vGa(cy GroGaev
<G1n Gzry <G1(0)G2(cy? <G1R) G2y
<G10)Gz2(r)> <G1m G2y
<G1p)G2(r)>
(b)

individually satisfy the default sequence, it becomes interesting to enumerate the
valid state transition sequences that do not violate the default sequence of individ-
ual model elements. We draw a State Sequence Graph that captures all possible
valid state transition sequences from the source node—denoted by (G) Gaw))—
to the destination node—denoted by (G (r)G2ar)). Figure4.4b illustrates the State
Sequence Graph for these two goals.

The State Sequence Graph has all the nine possible combined state representations
as vertices. These vertices are connected in the form of a lattice as all state transitions
do not satisfy the default sequence. Each path in the State Sequence Graph, from the
source node (G 1 v)Gaw)) to the destination node (G 17y G2(r)), defines a semantically
valid sequence of state transitions. In other words, each such path represents a finite
state sequence corresponding to the given i* model. Thus, with two model elements,
we obtain six different finite state sequences that satisfy the default sequences of the
individual model elements.

50 4 Model Checking with i*
4.1.1.1 State Sequence Graph

A State Sequence Graph, Gss, can be defined as a 2-tuple (V, E) where V represents
the set of vertices and E represents a set of directed edges such that

1. Each vertex v; € V is an n-tuple (G, Gs, ..., G, that represents the state of each
of the n model elements that appear in the SR model.

2. Each directed edge e;; € E is directed from vertex v; to vertex v; such that v; —
v; satisfies the default sequence for any one of the n model elements represented
in every vertex. This implies that v; — v; represents either of the following:

(a) Some goal G; goes from the NC state to the CNF state, denoted by (Gy.. .Giw)
(_;n) —> ((_;1 ...G,‘(C)...Gn), or

(b) Some goal G; goes from the CNF state to the F state, denoted by (G,...G i€y
Gn) g (Gl . .Gl‘(p). . .Gn).

et

The number of vertices in the vertex set V is 3”7, i.e., IVI=3".

4. Each path from the source vertex (G (y)...Gu)) to the sink vertex (G (r)...Gu(r))
represents a valid ordering of state transitions that satisfies the default sequence
of the individual model elements, i.e., every unique path (Gw)...Gw)) = ...
— (G)...Gu(r)) represents a finite state model.

The next level of complexity involves three different model elements. The analysis
remains the same irrespective of how these three model elements are distributed
between actors. Let G, G, and G5 be the three goals modelled in the SR-diagram.
As mentioned above, since each goal can be in either of three states, this particular
situation will result in a state space with 3°(=27) combined states. The State Sequence
Graph can be obtained as shown before. A detailed reachability analysis yields 90
different paths that exist between the source vertex (G) Gav)G3nv)) and the sink
vertex (G1r)G2r)G3ry)- Each of these paths represents a sequence of valid state
transitions such that none of the three goals G, Gy, and G5 violate the default
sequence. Thus, with three model elements in the SR-diagram we get 90 possible
finite state sequences that correspond to the given i* model.

4.1.1.2 Counting Multidimensional Lattice Paths

In general, itis interesting to observe how the number of paths within a State Sequence
Graph increases in accordance to the number of model elements (k) within an i*
model. It is intuitive from the above case studies that the growth of thestate space
size can be represented as an exponential function f (k) = 3¥. This is because each
model element can exist in either of three states. On the other hand, the function
representing the growth of the finite state model space is far more complex. Before
going into the details of evaluating an upper bound for the finite state model space,
we need to keep in mind that every model element is initially in the Not Created state
and it needs two transitions to reach the Fulfilled state. Thus, the distance covered
by each model element is always 2.

4.1 Developing Finite State Models from an i* Model 51

Consider the case where k = 2. Since each model element needs to cover a dis-
tance of 2, we can consider PPy and Py Pyr) as the Least Upper Bound and
the Greatest Lower Bound of a2 x 2 lattice. In general, the number of paths within
a nj xny lattice is given by

|
Ly = mtm\ (n + ny)! @.1)
1n,!
n npny.

So for a 2 x 2 lattice structure, we have

242 2+ 2)! 4! 24
LP:<—;):(+)_ = — =6.

2021 T 21217 4

This is exactly what we obtain from our example of Fig.4.4.

When k = 3, we can represent the set of all possible state sequences from
P] (N)P2(N)P3(N) to P](F)PZ(F)P3<F) as a 3-dimensional cubic lattice with each dimen-
sion having distance 2. In general, the number of paths in a 3-dimensional cubic
lattice with dimensions (n;, np, n3) is given by

4.2)

n 'I’LQ'I’L3'

[, (mtmtns _ (n +ny+n3)!
P ny, ny, n3 B

So for a 3-dimensional cubic lattice with dimensions (2, 2, 2), we have-

= = — =90.
2,2,2 212121 212121 8

L <2+2+2> 2+2+2)! 6! 720
p= — -
Again, this is exactly what we obtain from our previous case study.

To generalize an upper bound on the growth function of the finite state model
space, we need to realize that for k different model elements in the i* model we need
a k-dimensional hypercube lattice. The number of paths in such a k-dimensional
hypercube lattice with dimensions (ny, ny, ..., n;) is given by

Lo— <n1+n2+"'+nk> CmAmt) (L)
r nlnmp!. . my! 1_[5;1(”:‘!)

4.3)

ny,nay,...,n

Irrespective of the number of model elements in the i* model, since each model
element travels a distance of 2 to become fulfilled, we have the condition V_,,
n; = 2. The total number of paths is, thus, given by

LY @xy D @)

= 4.4)
N CRTCHI | T N

P

52 4 Model Checking with i*
4.1.1.3 The Naive Algorithm

Input: SR-diagram of the i* model of an enterprise

Output: The set of plausible finite state sequences that can be derived from the given
1* model

Data Structure: A List that stores all the model elements appearing in the SR model

Step-1: Select actor A; and populate List with all the model elements that appear
within the actor boundary of A;.

Step-2: Repeat Step-1 for all actors and proceed to create the State Sequence Graph.

Step-3: Initialize the vertex set V with the vertex (Pi)...Puv)) representing all
model elements in the Not Created state.

Step-4: Select a vertex v; from the vertex set V.

Step-5: Create a new vertex v; at a distance of 1 from v; such that

(a) Some model element P, makes a transition from Not Created
to Created Not Fulfilled state, ie., (Pi...Pry)...Py) —
(P] ...Pk(c)...Pn), OR

(b) Some model element P, makes a transition from Created Not
Fulfilledto Fulfilled state, i.e., (Pi...Pyc)...Py) — (Pi...
Pyry...Py).

Step-6: Ifv] ¢ V,then V=V Uv.
Step-T: Repeat Steps 4-6 till the vertex set V is not filled, i.e., while |V| < 3".

Step-8: Select any two vertices v;,v; from the vertex set V that are separated by a
distance of 1.
Step-9: Set up a directed edge from v; to v; if and only if v; — v; satisfies the

default sequence for any one of the n model elements.

Step-10: Repeat Steps 8-9 till we obtain the n-dimensional hypercube lattice struc-
ture (State Sequence Graph) for the SR model.

Step-11: Each path from the vertex (Piy...Pnnv)) to the vertex (Pir)...Pur))
represents a finite state sequence that corresponds to the given SR model.

Step-12: Stop.

4.1.14 Simulation Results: The Hyperexponential Explosion

Equation4.4 of Sect.4.1.1.2 can be used to generate a data set and observe how the
state space and the finite state model space grows with increasing number of model
elements in the i* model. Table4.1 represents such a data set with the number of
model elements increasing from 5 to 85 in steps of 5. Data thus obtained have been
plotted on a graph and the trends are observed. Figure 4.5 depicts the rate of growth
for both the state space and the finite state model space with respect to the number
of model elements appearing in the given i* model.

Interpretation of the graph is quite interesting. Both the growth curves plotted in
Fig.4.5 appear to be somewhat linear in nature, although they are not straight lines.

4.1 Developing Finite State Models from an i* Model

Table 4.1 Rate of growth of space w.r.t. the number of model elements

53

No. of process elements

State space

Finite state model space

5 243 113400
10 59049 2.37588E+-15
15 14348907 8.09487E4-27
20 3486784401 7.78117E+41
25 8.47289E+11 9.06411E+56
30 2.05891E+14 7.74952E+4-72
35 5.00315E+16 3.48622E4-89
40 1.21577E+19 6.5092E+4-106
45 2.95431E+21 4.2227E+124
50 7.17898E+4-23 8.289E+142
55 1.74449E+-26 4.4083E+161
60 4.23912E+28 5.8022E+180
65 1.03011E4-31 1.7528E+200
70 2.50316E4-33 1.1403E+220
75 6.08267E+-35 1.5123E+240
80 1.47809E4-38 3.8999E+260
85 3.59175E+40 1.876E+281
e=pumState Space @l FSMS-N
1E+273
1E+252
1E+231
1E+210
1E+189
1E+168
1E+147
1E+126
1E+105
1E+84
1E+63
1E+42
1E+21
1
0 20 40 60 80 100

Number of model elements in i* model

Fig. 4.5 Graph depicting the rate of growth of the state space and finite state model space with

respect to the number of model elements in the i* model for the Naive Algorithm

54 4 Model Checking with i*

A careful analysis of the graph reveals that the vertical axis is a logarithmic scale
where the values represent exponentially increasing integers. These values range
from 1 to 1.876E + 281. Thus, although the curves appear to be somewhat linear,
they represent exponential growth functions on the logarithmic scale. In fact, the
state space growth function, as represented by the blue curve, actually represents the
growth function f (k) = 3. The growth function of the finite state model space, as
represented by Eq. 4.4, is shown by the red curve.

The most significant inference that can be drawn from the graph is that the gradient
of the blue curve is much less compared to that of the red curve. The gradient of a linear
curve on a logarithmic scale signifies the rate of growth of the exponential function.
This implies that although both the state space and the finite state model space grow
exponentially, the rate of growth of the finite state model space is significantly large
compared to that of the state space. In fact, the values in Table4.1 reveal that, in
every step, the state space grows by an approximate factor in the range (102, 103),
whereas the finite state model space grows by an approximate factor in the range
(10", 10%°). This is really huge in terms of the rate of growth.

This extremely rapid growth in size of the finite state model space, caused by the
Naive Algorithm, results in a hyperexponential explosion. The growth curve of the
finite state model space is so steep that it reaches infinitely large values for quite small
number of model elements in the i* model. This implies that the finite state model
space becomes quite unmanageable in real time when we are looking at the i* model
of an entire enterprise. Thus, it becomes necessary to tackle this explosion in the
finite state model space. One of the means to control this undesirable explosion is to
extract partial sequence information that remains embedded within an i* model and
perform some pruning activities while the finite state models are being generated.
The Semantic Implosion Algorithm is proposed in the next section with this same
intent. The proposed solution provides a significant improvement in terms of the rate
of growth of the finite state model space.

4.1.2 The Semantic Implosion Algorithm (SIA)

The motive here is to prevent the hyperexponential explosion of the finite state model
space that is caused by the Naive Algorithm. Although the Naive Algorithm generates
all possible finite execution traces that can be derived from an i* model, some sort
of pruning can be done on this model space. The simplest means of doing this is
to feed the derived FSM into some standard model checker like NuSMV and check
the model against user-defined temporal compliance rules, specified using CTL or
LTL. However, since this needs to be done on the entire finite state model space, the
time complexity of the entire process becomes unmanageable even when machine-
automated.

Itis desirable to prevent the hyperexponential explosion from occurring in the first
place. We propose the Semantic Implosion Algorithm, or SIA, that tries to achieve this
and proves to be successful to a good extent. SIA is based on the underlying hypothesis

4.1 Developing Finite State Models from an i* Model 55

that although an i* model is sequence agnostic, there exists some embedded temporal
information that can be extracted and exploited to reduce the plausible space of finite
state models. Temporal compliance rules may be further defined to reduce the size
of the finite state model space.

Every model element P; residing within the SR-diagram of an actor is uniquely
identified using a system variable V;. Every system variable V; can have either of
three values—O0, 1, or 2—representing the Not Created (P;u)), Created Not
Fulfilled (Pjc)) and Fulfilled (P;y)) states, respectively. Every time a new
model element P; is encountered, a corresponding system variable V; is created and
initialized to O representing the Not Created state. This is reflected in the finite state
model of the enterprise with a transition from the current state to a new state where
the corresponding system variable V; becomes a member of the state variable list.

The algorithm proceeds to explore the children of a chosen model element P;.
Before doing so, the corresponding system variable V; is changed from 0 to 1 and
pushed onto a stack. This is reflected in the finite state model with a state transition
from the current state to a new state that reflects the fact that P; has been created
but not fulfilled. A model element is said to be Fulfilled when either it has no
children (we have reached the actor boundary) or all its child model elements have
been individually fulfilled. When this happens, the system variable V;, corresponding
to the model element P;, is popped from the stack and updated with the value 2. A
corresponding state transition is incorporated in the finite state model that reflects
the fact that model element P; has been fulfilled. Figure 4.6 illustrates the finite state
model corresponding to a single model element and how the corresponding system
variable is incorporated and updated along each transition.

However, it is interesting to note how the child model elements of a particular
parent are processed. The processing differs for task decompositions and means-end
decompositions. A task decomposition is an AND-decomposition and demands that
all the child model elements be fulfilled in order to declare that the parent has also been
fulfilled. A means-end decomposition, on the other hand, is an OR-decomposition
and provides alternate strategies to fulfil the parent model element. Let us elaborate
on the consequences of these two decompositions.

A task decomposition requires that all the child model elements be fulfilled before
changing the state of the parent model element to the fulfilled state. However, since
an i* model is sequence agnostic, the child model elements may be fulfilled in any
random order. System variables associated with the child model elements should not
defy the default sequence defined in Sect.4.1.1. Let a model element P; be decom-

Fig. 4.6 a Actor A| with

goal G1; b The @ ““““ R I TR/ UN <G1vy?
corresponding finite state N\
N\
7’

G153 <G(cy?

()

56 4 Model Checking with i*

posed by a task decomposition to a set of model elements (P;, P, ..., P,). The
system variables associated with these model elements are Vi, V,, ..., V,,, respec-
tively. We define a state transition from the current state with V; = 1 to anew state with
the state variables V; = 1, V', V, = 0. There exists several execution sequences of
the decomposed model elements that finally results in a state with the state variables,
Vi =1,V"_,, V. = 2. The set of all possible execution sequences can be defined using
alattice structure, similar to the one shown in Fig. 4.4. Since all child model elements
are fulfilled, we define another state transition in the finite state model that reflects
the fact that the parent model element is also fulfilled, i.e., the new state has state
variables V;=2. The finite state model corresponding to such a task decomposition is
shown in Fig.4.7.

The interpretation of the figure is quite interesting. The lattice structure represents
the set of all possible execution sequences that result in the successful fulfilment of the
task decomposition. As seen in Sect.4.1.1, the number of paths in a lattice structure
for two model elements is 6. All of these 6 paths represent valid execution sequences
or state transitions. Each path gives rise to a different finite execution sequence. This

Fig. 4.7 a Actor A; with
goals G1, G2 and G3
connected through a task
decomposition; b The
corresponding set of all
possible finite state models
captured in a state sequence
graph

Vi€ 0 Vi0>1
O l—>(G1(N)>1—><G1(C))

le. V; €0
G10)G20nG3(ny>
V031 2" "l o1

73 ~a

<G10) G2 G3(c)> <G1(0)G20)G3ny>
Vels2 o Tl TN
w12z V031 -7 V0>1 \V:gl_)z

V'3 .

<G1(0)G2(n)G3(F)> <G1(0)G2(c)G3(cy> <G1(0)G2(F)G3(Ny>

NG B

ELE S N AP E Y w2z
<G1(0)G2(0)G3(F)> <G1(0)G2r)G3(c)>
13l - a2
<G10)G2m)G3(F)>
lV,: 1>2
<Gy

(b)

4.1 Developing Finite State Models from an i* Model 57

implies that the task decomposition shown in Fig.4.7 gives rise to 6 possible finite
state sequences. The Naive Algorithm, on the other hand, would generate a lattice
structure with three model elements and the number of possible finite state sequences
would become 90. This is a significant reduction in the finite state model space. In
fact, the significant observation here is that a lattice structure will be generated only
where task decompositions take place. In other words, only task decompositions will
increase the size of the finite state model space.

A means-end decomposition is easier to handle. OR-decompositions, in gen-
eral, do not increase the size of the finite state model space. Rather, if a particular
model element P; decomposes via a means-end decomposition into k model ele-
ments (P, P, ..., Py), then we introduce k different transitions from the current
state (V; = 1) to k unique new states, each representing one of the k alternate means
Vi=1,V,=0, V’p‘zl). An OR-decomposition is characterized by the fact that ful-
filling any one of the alternate means implies fulfilling the parent model element.
Thus, each of these k new states will make two transitions (labelled by V,,:0— 1 and
V,:1—2) to reach their respective fulfilment states. Each alternate means will have a
separate fulfilment state labelled by V; =1,V, =2, Vf,:l- All the k fulfilment states
will converge to a final state that represents the fulfilment of the parent model element
P; and is labelled by V; = 2. The structure obtained is similar to the longitudinal
lines on the globe of the earth. Figure 4.8 illustrates this further.

4.1.2.1 Some Interesting Features

1. Decompositions can be nested. This implies that decompositions can occur within
other decompositions. One particular decomposition link may be further blown
up with a second decomposition. For instance, means-end decompositions may
be followed by a rask decomposition along one means-end link and a means-
end decomposition along some other means-end link. Figure4.9 illustrates this
scenario. This nesting of decompositions does not require any modifications on
the algorithm. The corresponding finite state model is built accordingly where the
state subsequences of the lower level decomposition is mereologically connected
to the finite state model of the higher level decomposition.

2. Itis interesting to note what happens if we reach a model element G3, located at
the actor boundary of actor A;, that is dependent on some model element G4 that
is located at the actor boundary of actor A, (refer Fig.4.10a).

In this situation, we first proceed to complete the finite state models of the individ-
ual actors. We assume that the dependency between model elements G3 and G4
will be satisfied and pop out the system variable V3 from the stack to set its value
to 2. At the same time, we introduce a temporary transition in the corresponding
finite state model that changes the state of G; from Created Not Fulfilled (CNF')
to Fulfilled (F). This is shown in Fig.4.10b. Such an assumption is necessary to
proceed with the construction of the finite state model of individual actors.

We need to maintain a list of all such dependencies. A Global List is main-
tained that stores 2-tuples of the form (dependervariable, dependeevariable).

58 4 Model Checking with i*

Fig. 4.8 a Actor A| with
goals G, G2, G3 and G4
connected through a
means-end decomposition; b
The corresponding finite
state model

V€0
O LS5 <Giy
lV,: 0->1
<Gy

V€0 €0
V;€ 0

GGy <GroGamy <G1(0)Gavy?

le:Oél lm;o—)l 1’01091

GGy <G1oGsey <G1(0)Gaccy
V12 Vi 12 ln:lez
G1oGer> <Gi)Gsr> <G1(0)Ga(ry
VM‘ lV‘%
<G1(r

(b)

Once the finite state models of the individual actors have been built, the elements
of the Global List are accessed. The above dependency has an entry of the form
(Vi3, Vaq) and is interpreted as model element G3 within actor A; depending on
actor A, for model element G4. The temporary transition in the finite state model
of actor A| representing the change V3: 1 — 2 is replaced by two new transitions
that connect the finite state models of actors A; (FSM;) and A, (FSM,). The first
transition is established from the state in FSM, having label V3 = 1 to the state
in FSM, having label V, = 2. The second transition is placed from the state in
FSM, having label V, = 2 to the state in FSM, having label V3 = 2. (Vi3, Vo4)
is removed from the Global List. Figure 4.10c illustrates this process.

3. Dependency resolution causes state transitions to be set up between states belong-
ing to the finite state models of the depender and the dependee. If the depender
and dependee have M and N possible finite state sequences in their models,
respectively, then we get M x N combination of sequences for interlinking the
finite state models of the depender and dependee. The dependency resolution is
reflected in all the M x N combinations.

4.1 Developing Finite State Models from an i* Model 59

Fig. 4.9 The state sequence
graph corresponding to a <o
nested decomposition. A l
higher level means-end Y
decomposition contains '

another means-end / l\
decomposition along the < - < <
leftmost link and a task }
decomposition along the

rightmost link

Let n be the total number of model elements occurring in the SR-diagram of the
enterprise. The terminating condition of the Semantic Implosion Algorithm is given
by the constraint, Vi_, V; = 2, the stack is empty and the Global Dependency List is
empty. The algorlthm initiates with the root model elements at the actor boundaries.
State transitions are defined in the corresponding finite state model as and when
model elements are discovered, explored and fulfilled. Let us look into the Semantic
Implosion Algorithm now.

4.1.2.2 The Semantic Implosion Algorithm

Input: SR-diagram of the i* model of an enterprise.

Output: The finite state model that can be derived from the given i* model containing
the set of plausible finite state sequences.

Data Structure: A Local Stack for each actor that stores model elements of the actor
and a Global List to keep track of dependencies between actors.

Step-1: For every model element P; that is not at the end of a task decomposition
or means-end link, assign a system variable V; = 0. Perform a Depth-First
Scan of the SR-diagram of each actor starting at these boundary model
elements.

60

4 Model Checking with i*

- - o

SR-diagram of
A; (SRy)

SR-diagram of

Az (SRy)

()
Finite State Finite State
Model of SR, : Model of SR,
\ /
<Ga(cy <Gaccy
W12 1%,:192
<Gv > <Gary
3(F) ®) 4(F)
Finite State | 4 Finite State .
i Model of SR, i Model of SR,
R S— N ./.;./.
\ /
<Gz <Gaccy

N 12
V:l1>2

<G3(F)>

(©)

<Gary

Fig. 4.10 a Goal G3 of actor A| dependant on Goal G4 of actor A; b Temporary transition from
G3(c) to G3(r) introduced; ¢ Resolution of the dependency by replacing the temporary transition

with two permanent transitions

Step-2: For any model element P; with V; = 0, set V; = 1 and push it onto the Local
Stack. Reflect this transition in the finite state model by plotting a transition
fromtheNot CreatedstatetotheCreated Not Fulfilledstate.

Label this transition V;:0— 1.

Step-3: Discover all model clements (Py, Pa, ...

, P,) that stem from the element

P; and are connected to P; with task decomposition or means-end links. For
each such element Py, initialize a system variable V}, such that VZ:l Vi =0.

(a) If P;is at an actor boundary with no elements stemming from it and
with no dependencies to other actors, pop V; from the Stack and set
V; = 2. Set up a corresponding transition in the finite state model
from the Created Not Fulfilled state to the Fulfilled

state. Label this transition Vj:1—2.

(b) If P; is dependent on some other actor for fulfilment, then pop V;
and insert it into the Global List with value V; = 2. Insert a tem-

4.1 Developing Finite State Models from an i* Model 61

Step-4:
Step-5:
Step-6:

Step-T:
Step-8:

Step-9:

Step-10:

Step-11:

Step-12:

porary transition between states Created Not Fulfilledand
Fulfilled for element P;. No need to label this transition as it is
a temporary transition.

(c) If P; undergoes a task decomposition then we obtain several differ-

ent finite state sequences for the task decomposition by permuting
the order of execution of the child model elements. Each such per-
mutation can be considered to be a valid execution trace and can be
attached to the overall finite state model to obtain the unique finite
state model for that actor.

(d) If P; undergoes a means-end decomposition then we obtain multi-

ple transitions from the current node in the same finite state model.
Each transition represents an alternate strategy and is triggered by
the corresponding guard condition. All the alternate state transitions
emanating from the parent model element must converge at a state
that represents that the parent model element has been fulfilled.

Repeat Steps 2-3 for all siblings of P; in all the finite state models gen-
erated for actor A;.

Repeat Steps -4 until the Local Stack is empty. This leaves us with the
set of plausible finite state models of an actor A;.

Repeat Steps 1-5 to extract all the possible finite state models of all the
actors in the i* model.

Remove elements of the form (Vi, Vj;) from the Global List.

Remove the temporary transitions corresponding to V;; from the finite
state model of actor A;.

Insert transitions from the P,-Created Not Fulfilled stateinthe
finite state model of actor A; to the P;-Fulfilled state in the finite
state model of actor A;. Label these transitions Vj:1—1.

Insert another set of transitions from the P;-Ful £i11ed state to the Py-
Fulfil- ed state between the finite state models of actors A; and A;.
Label these transitions Vj:1—2.

Repeat Steps 7—10 until the Global List is empty and all the dependencies
have been resolved.

Stop.

4.1.3 Soundness and Completeness

Both the Naive Algorithm and the Semantic Implosion Algorithm are complete
because given a goal model both the algorithms are capable of generating a finite
state model which include all the possible state transitions for valid execution traces.
However, it is not wise to say that the Naive Algorithm is sound because the gener-
ated finite state model also contains invalid state transitions. The Semantic Implosion
Algorithm, on the hand, is sound because it contains all the valid transitions within
the finite state model.

62 4 Model Checking with i*

4.2 Complexity Analysis

Let us perform some analytics on comparing and contrasting the heuristics of the
Naive Algorithm and the Semantic Implosion Algorithm. The two metrics that are
used for this analysis are the State Space (SS) and the Finite State Model Space
(FSMS). However, since both algorithms share the concept of every model element
going through 3 states, the SS metric will be the same for both algorithms and is
defined by the function f{k) = 3%, where k represents the number of model elements in
the given SR-model. The FSMS metric is far more crucial in contrasting the heuristics
that underline the two algorithms.

Figure 4.5 of Sect.4.1.1.4 clearly illustrates the hyperexponential explosion caused
by the Naive Algorithm in the finite state model space. This is mainly due to the fact
that the Naive Algorithm considers all possible orderings of the model elements
while ensuring the default sequence of each individual model element. A careful
understanding of the Semantic Implosion Algorithm reveals that, while the finite state
models of individual actors are being built, the finite state model space increases only
when the following conditions hold:

1. Whenever a nested Task Decomposition is encountered. Suppose a goal/task is
decomposed to k different model elements. Since an i* model is sequence agnos-
tic, these k model elements can be executed in any order. The set of all possible
execution traces is given by a k-dimensional hypercube lattice with each dimen-
sion having distance 2. As discussed in Sect.4.1.1.2, the finite state model space
increases by a factor of % as given by Eq.4.4. This implies that if the finite
state model space already has p execution traces, a Task Decomposition into g
model elements causes the size of the finite state model space to become p. (22?! .

In general, if the SR-diagram of an actor within the i* model has Dy task decom-

positions, and the number of possible alternate execution sequences generated by

each of these task decompositions be given by #Seq1, #Seqa, ..., #Seqp,, then the
finite state model space size is given by the following relation:

Dr
S = n#Seqi 4.5)
i=1

2. Whenever adependency is being resolved. Dependency resolution results in merg-
ing the finite state model space of the depender and the dependee. If the finite
state model spaces of actors A; and A; contain M and N finite state sequences,
respectively, and there exists at least one dependency between these actors, then
irrespective of the number of dependencies between A; and A;, the size of the finite
state model space changes from M + N to M x N. Again, if actor A; requires
dependency resolution with actor Ay, and actor Ay has L finite state models, then
the combined finite state model space has size L x M x N.

3. Let there be n actors participating in an i* model. Let the size of the finite state
model spaces of the individual actors be given by S;, S, ..., S,, respectively.

4.2 Complexity Analysis 63

Assuming that all the actors are interconnected with dependencies, the finite state
model space (FSMS) for the entire enterprise is given by the following equation:

FSMS = HS,- (4.6)

i=1

Both Dependency Resolution and nested Task Decomposition conditions are rep-
resented using the cartesian product relation. So, performance analysis of the two
heuristics boils down to two basic steps. The first step involves observing the growth
of the finite state model space for each individual actor. The second step is to observe
the growth of the finite state model space for the entire enterprise.

4.2.1 Actor Internal Analytics

Itis very difficult to predict the distribution of model elements within the SR-diagrams
of individual actors. Since this is the first step of behaviour analysis, we are con-
cerned with the growth of the finite state model space for individual actors within an
i* model. In order to generate a consistent data set, we assume a uniform distribution
of model elements. We increase the number of model elements occurring within
the SR-diagram of an actor in the i* model, in steps of 5. Without loss of unifor-
mity, we assume that for every 5 model element within an actor, there exists a task
decomposition of 4 elements. This assumption is necessary as we want to estimate an
upper bound on the growth function and the number of finite state sequences grows
significantly with Task Decompositions as opposed to Means-End Decompositions.

We know that the Naive Algorithm causes the finite state model space to grow
according to Eq.4.4,1.e., FSMS-N = (221?])! , where k is the number of model elements
in the i* model. The Semantic Implosion Algorithm grows only on the basis of
task decompositions. The number of possible execution sequences generated by
a 4-element task decomposition is obtained by substituting k = 4 in Eq.4.4, i.e.,
(2;44)! = f—é = 2520. Since every 4-element task decomposition increases the finite
state model space size by a factor of 2520, applying the cartesian product relation,
we obtain the growth function of the Semantic Implosion Algorithm to be given
by FSMS-S = 2520%, where k, is the number of 4-element task decompositions
occurring within the SR-diagram of an actor. Table 4.2 reflects such a data set.

The performance ratio parameter in Table4.2 represents the reduction in finite
state model space, obtained by the Semantic Implosion Algorithm, with respect to
the Naive Algorithm. The smaller the ratio the greater is the reduction in finite state
model space achieved by the Semantic Implosion Algorithm. As the values in this
column reflect, the reduction rate is not constant and increases from @ (10~?) to
©®(10~"7). This is also evident from the graph plotted for this data.

The graph plotted on the basis of this data is shown in Fig.4.11. It is interesting to
analyse the graph. The vertical axis is again a logarithmic scale of integers. The almost

64 4 Model Checking with i*

Table 4.2 Actor internal analytics

No. of process No. of task Naive algorithm | SI algorithm Performance ratio
elements (k) decompositions
(k2)
— kD! _ ky | (FSMS-S
FSMS-N = 512 | FSMS-S = 2520% | (F387)
5 1 113400 2520 0.0222
10 2 2.37588E+15 6350400 2.67286E—9
15 3 8.09487E+27 1.6E+10 1.97656E—18
20 4 7.78117E+441 4.03E+13 5.17917E—29
25 5 9.06411E+56 1.02E+17 1.12532E—40
30 6 7.74952E+472 2.56E+20 3.30343E—53
35 7 3.48622E+89 6.45E+23 1.85041E—66
40 8 6.5092E+4106 1.63E4-27 2.50415E—80
45 9 4.2227E+124 4.1E+30 9.70943E—95
50 10 8.289E+142 1.03E+34 1.24261E—109
55 11 4.4083E+161 2.6E+37 5.89796E—125
60 12 5.8022E+180 6.56E+40 1.1306E—140
65 13 1.7528E+200 1.65E+44 9.41351E—157
70 14 1.1403E+220 4.16E+47 3.64816E—173
75 15 1.5123E4-240 1.05E+51 6.94306E—190
80 16 3.8999E+260 2.64E+54 6.7694E—207
85 17 1.876E+-281 6.67E+57 3.55544E—224
espuwState Space eslllssFSMS-N FSMS-S
1E+273
1E+252
1E+231
1E+210
1E+189
1E+168
1E+147
1E+126
1E+105
1E+84
1E+63
lerot M
1E421 o

1

0 20 40 60 80 100
Number of model elements in i* model
Fig. 4.11 Behaviour analysis with respect to the finite state model space of individual actors for

the Naive Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the number of
model elements in the i* model varies

4.2 Complexity Analysis 65

linear curves plotted on this scale represent exponential functions. The gradient of
these approximately linear curves represent the rate of growth of the corresponding
exponential function. The following observations can be concluded from the graph:

1. The blue curve depicts the growth of the state space and is consistent for both
scenarios, given by 3. As both algorithms have the same underlying basis that
every model element goes through three states, the state space growth remains
the same for both the algorithms.

2. The green curve represent the behaviour of the Semantic Implosion Algorithm.
The two lines with triangle and diamond annotations are very close to each other
and have almost similar gradients. This implies that the rate of growth of the finite
state model space, as observed from the Semantic Implosion Algorithm, is almost
similar to the rate of growth of the state space.

3. The red curve depicts the finite state model space growth of the Naive Algorithm.
The slope of this line is much greater than those of the green and blue lines. This
represents the hyperexponential explosion that is a characteristic of the Naive
Algorithm.

4. A closer look at the FSMS values in Table4.2 reveals the fact that the FSMS
metric increases by a factor in the range of (10'°, 10%°), for the Naive Algorithm,
whereas, for the Semantic Implosion Algorithm, the FSMS metric increases by a
factor of 10°.

From the above data set—Table 4.2 and Fig.4.11—it is evident that the Semantic
Implosion Algorithm provides a huge improvement with respect to the rate of growth
of the finite state model space for individual actors in comparison to the Naive Algo-
rithm. This is the significant contribution of the heuristic proposed in the Semantic
Implosion Algorithm.

4.2.2 Inter-Actor Analytics

These analytics provide an insight into how Actor Internal Analytics scales up and
impacts the growth rate of the finite state model space with respect to the entire
i* model representing an enterprise. There are two events that impact Inter-Actor
Analytics as follows:

1. Density of Actors participating in the i* model, and
2. Distribution of Model Elements within the SR-diagram of the actors.

Let us individually analyse how these two parameters effect the growth rate of the
finite state model space.

66 4 Model Checking with i*
4.2.2.1 Variation of Actor Density

In order to simulate a data set, we assume a uniform density of five model elements
within individual actors and evaluate the rate of growth of the finite state model
space. Similar to the data in Table4.1, we assume that every actor has a 4-element
task decomposition. The Naive Algorithm does not take the semantics of the model
elements into consideration and, thus, the finite state model space size can be eval-
uated by replacing k = 5 in Eq.4.4. The finite state model space size of every actor

is obtained as
. 2 x5! 10!
Vi, S; = ——— = — = 113400.

25 32

Replacing this value of S; in Eq.4.6, we get the finite state model space for the
entire enterprise (FSMS-N) as

FSMS-N = (113400)" 4.7

The Semantic Implosion Algorithm, on the other hand, causes the finite state model
space of individual actors to grow only when task decompositions are encountered.
Since we assume a 4-element task decomposition to exist in each actor, the finite
state model space(S;) of all the actors remains constant and is given by replacing
k = 4 in Eq.4.4. Thus,

2x4)! 8
vi,s, = X8 oe

24 16

Since uniform distribution of model elements has been assumed, replacing this
value of S; in Eq.4.6 gives the finite state model space for the entire enterprise
(FSMS-S) as generated by the Semantic Implosion Algorithm. Thus,

FSMS-S = (2520)" (4.8)

In order to generate a simulated data set, we restrict the number of model elements
in each actor to 5 and increase the density of actors (n) within the i* model of the
enterprise from 5 to 55 in steps of 5. The data set is obtained by replacing these
values of n in Eqs. 4.7 and 4.8. Table 4.3 represents such a data set. The performance
ratio column represents the relative decrease in the finite state model space that is
obtained by the Semantic Implosion Algorithm. Figure 4.12 shows the corresponding
graph structure that is obtained by plotting this data.

Interpretation of the graph is quite intuitive. The blue curve represents the growth
function of the Naive Algorithm. In this data set, it represents the exponential func-
tion (113400)". The red curve plots the growth function of the Semantic Implosion
Algorithm and represents the exponential (2520)". With the vertical axis representing
a logarithmic scale of integers, the two functions are mapped as nearly linear curves
with different gradients. The gradient of the blue curve is greater than the gradient

4.2 Complexity Analysis

Table 4.3 Inter-actor analytics obtained by varying actor density

67

No. of actors (1) Naive algorithm SI algorithm Performance ratio
FSMS-N = (113400)" | FSMS-S = (2520)" (EMES)
5 1.87528E+-25 1.01626E+17 5.41924E—9
10 3.51666E+50 1.03277E+34 2.93679E—17
15 6.59471E+75 1.04956E+51 1.59152E—25
20 1.23669E+101 1.06662E+-68 8.62479E—34
25 2.31914E+126 1.08396E+85 4.67397E—42
30 4.34902E+151 1.10158E+4102 2.53294E—50
35 8.15562E+176 1.11949E+119 1.37266E—58
40 1.52940E+-202 1.13768E+136 7.43872E—67
45 2.86805E+-227 1.15618E+153 4.03124E-75
50 5.37840E+-252 1.17497E+170 2.18461E—83
55 1.00860E+278 1.19407E+4187 1.18388E—91
e FSMS-N @l FSMS-S
1E+260
1E+240
1E+220
1E+200
1E+180
1E+160
1E+140
1E+120
1E+100
1E+80
1E+60
1E+40
1E+20
1
0 10 20 30 40 50 60

Number of Actors in the entire i* model

Fig. 4.12 Behaviour analysis with respect to the finite state model space of the entire enterprise
for the Naive Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the density
of actors in the i* model varies

of the red curve. This implies that the Naive Algorithm increases the size of the finite
state model space more rapidly as compared to the Semantic Implosion Algorithm.
This is evident from the growth functions Eqs. 4.7 and 4.8 itself. However, this is an
overly simplified data set with uniform distribution and semantics.

68 4 Model Checking with i*
4.2.2.2 Variation of the Distribution of Model Elements

In this particular simulation, we fix the number of actors involved in the enterprise
model to five. Keeping the number of actors fixed, the distribution of model elements
peractor is increased from 5 to 25 in steps of 5. Assuming uniform distribution across
all the actors in the i* model, every actor generates it’s finite state model space with
the same size. The space size changes with varying model element distribution. Let
the size of the finite state model spaces of the individual actors be given by S,
Ss, ..., Ss, respectively, for some model element distribution k.

The Naive Algorithm combines Eqs.4.4 and 4.6 to give a function representing
the growth of the finite state model space as follows:

(2k)!
26

5
FSMS-N = (> ,Vki, ki € {5, 10, 15, 20, 25}. (4.9)

The Semantic Implosion Algorithm expands the finite state model space for Task
Decompositions only. Our underlying assumption that there exists a 4-element Task
Decomposition for every group of 5 elements dictates the growth function of the
finite state model space as follows:

(2k)!

5
) sky = ki +5,Vk, ky € {5,10, 15, 20, 25}. (4.10)

The data generated from Eqgs. (4.9) and 4.10 is shown in Table 4.4. The number of
actors has been fixed to be 5. The performance ratio values represent the improvement
in finite state model space that is achieved by the Semantic Implosion Algorithm.
The smaller the value, the greater is the gain in performance achieved by the SIA
heuristics. The rapid rate of increase in performance reflects the benefits of using the
improved heuristics of the Semantic Implosion Algorithm. Figure4.13 represents the
graph corresponding to this data.

Table 4.4 Inter-actor analytics obtained by varying the distribution of goals

No. of process Performance ratio

elements (k)

Naive algorithm SI algorithm

FSMS-S = ((Zkz)!)57 (FSMS-S)

2)!
FSMS-N = ((2711))5 % FSMS-N
ky=k +5

5 1.87528E+-25 1.01626E+-17 5.41924E-9
10 7.57046E+-76 1.03277E4-34 1.36421E—43
15 3.47576E+139 1.04956E4-51 3.01966E—89
20 2.85249E+-209 1.06663E+-68 3.73929E—142
25 6.11823E4-284 1.08399E+-85 1.77174E—200

4.2 Complexity Analysis 69

@=pumFSMS-N elil==FSMS-S

1E+273
1E+252
1E+231
1E+210
1E+189
1E+168
1E+147
1E+126
1E+105
1E+84
1E+63
1E+42
1E+21
1

0 5 10 15 20 25 30

Per Actor Model Element Distribution in i* model

Fig. 4.13 Behaviour analysis with respect to the finite state model space of the entire enterprise for
the Naive Algorithm (FSMS-N) and the Semantic Implosion Algorithm (FSMS-S) as the distribution
of model elements within actors in the i* model varies

The interpretation of the graph is quite similar to the previous graphs. The vertical
axis represents a logarithmic scale of integers. Both the exponential functions, given
by Eqgs.4.9 and 4.10, appear as straight lines. However, the gradients of the two lines
are widely different. This implies that the rate of growth of FSMS-N (represented by
the blue curve) is much greater than that of FSMS-S (represented by the red curve).

4.2.3 SIA Analytics

The analytics provided in Tables4.2, 4.3, and 4.4, and the corresponding graphs
shown in Figs.4.11, 4.12, and 4.13, all point in the same direction. The obvious
conclusion from these data sets is that the Semantic Implosion Algorithm provides a
huge improvement over the more simple Naive Algorithm. This improvement is in
the context of the finite state model space and clearly establishes the superiority of
the SI-heuristics in comparison to the Naive-heuristics.

The above conclusion triggers an urge to take an insight into the behaviour of
the Semantic Implosion Algorithm when both the parameters—Actor Density and
Model Element Distribution—are varied simultaneously. Table4.5 presents such a
data set. The data is generated by varying the distribution of model elements in
individual actors from 5 to 25 peractor, in steps of 5. The finite state model space
size is obtained using the following equation:

2k)'*
FSMS-A = o =k =5 4.11)

70 4 Model Checking with i*

Table 4.5 Inter-actor analytics obtained by varying both actor density and distribution of goals for
the Semantic Implosion Algorithm

No. of process SI algorithm
elements (k1)
FSMS-5 FSMS-10 FSMS-15
5 1.01626E+17 1.03277E+34 1.04956E+81
10 1.03277E+34 1.06662E+68 1.10158E+102
15 1.04956E+51 1.10157E+102 1.15617E+153
20 1.06663E+68 1.13769E+136 1.21349E+-204
25 1.08399E+85 1.17503E+170 1.38069E+255
@gun FSMS-5 @fi==FSMS-10 FSMS-15
1E+247
1E+228
1E+209
1E+190
1E+171
1E+152
1E+133
1E+114
1E+95
1E+76
1E+57
1E+38
1E+19
1
0 5 10 15 20 25 30

Number of Model Elements in i* model

Fig. 4.14 Behaviour analysis of the Semantic Implosion Algorithm (w.r.t. the finite state model
space) as the distribution of model elements within actors and the actor density in the i* model are
both varied

Here, A represents the number of actors in the i* model of the enterprise. k; is
obtained from k; based on the assumption that we have a 4-element task decompo-
sition for every group of 5 model elements. Maintaining the uniformity of model
element distribution across all the actors, we obtain the data set for 5, 10 and 15
actors, represented by FSMS-5, FSMS-10 and FSMS-15, respectively. The graph
obtained from the data set in Table4.5 is shown in Fig.4.14.

The graph is fairly simple to analyse and interpret. The vertical axis is again a
logarithmic scale. Each of the individual curves (green, red, and blue) appears to be
linear but represent exponential growth functions. The fact that the finite state model
space size will increase with greater number of actors has already been observed in
Fig.4.12. Hence, as the number of actors increase, the curves are positioned higher.
It can also be concluded from Fig.4.13 that for a fixed actor density, the finite state
model space size increases with increasing density of model elements. Hence, the
positive gradient in each of the three approximately linear curves.

4.2 Complexity Analysis 71

The more important observation here is that the nearly linear curves are not parallel
to each other. The gradient of the lines increase with increasing actor density, i.e., the
green curve is steeper than the red curve which, in turn, is steeper than the blue plot.
The gradient of these approximately linear curves represent the rate of growth of
the exponential functions that capture the growth of the respective finite state model
spaces. This means that as the actor density increases, the finite state model space
increases even more rapidly.

4.3 The i*ToNuSMYV Tool

Unlike dataflow and workflow models, goal models do not capture sequences of
activities within the system or enterprise being designed. This makes it difficult for
analysts to check the correctness of these models in the requirements phase itself.
Since goal models have their own motivation, quite distinct from those of process
models or workflow models, researchers have come up with completely different
analysis techniques that provide new insights into the system or enterprise being
developed.

Horkoff and Yu [6] have documented an exhaustive survey of the existing goal
model analysis techniques and how requirement analysts can select from these alter-
natives based on different criteria and attributes. Applying model checking techniques
to goal models (like i*) has been considered by researchers from the community. The
main research problem here is that model checkers accept extended finite state mod-
els as input. Finite state models capture some sort of sequential information that
represents the possible state transitions that a system can go through. Since goal
models are sequence agnostic they cannot be adapted and fed into model checkers
directly. We aim to provide a significant contribution in this direction by proposing
the i*ToNuSM V tool.

The i*ToNuSMYV tool addresses this issue and performs model transformation of
the given i* model. Figure4.15 illustrates the architecture of the proposed solution.
The FSM Building module generates a finite state model corresponding to the given
i* model and the NUSMV Mapper module maps the generated finite state model to
the NuSMYV input language. The output of the i*ToNuSM V tool can be fed directly
into the NuSMV model verifier and can be checked against temporal properties,
behavioural characteristics or compliance rules written using LTL, or CTL.

4.3.1 i*ToNuSMYV Input

The i*ToNuSM V prototype does not provide a graphical interface for drawing i*
models. Rather, it takes a textual representation of the i*-SR-diagram as input. We use
the tGRL notation as our input language. This may help in the integration of tool with
the jJUCMNav framework. For the i* model shown in Fig.4.16, the corresponding
tGRL representation is as follows:

72 4 Model Checking with i*

i*ToNUSMV Tool

Provide Treatment on
symptoms only (T,)

Patient
EMR (R,)

- -
== -

Fig. 4.16 Ani* model of a single actor Doctor

grl test_model
{ actor Doctor{
goal ProvideHealthcare{decompositionType=or;}
task Symptoms_Treat{decompositionType=and;}
task Symptoms_EMR_Treat{decompositionType=and;}
goal ObtainSymptoms{}
resource PatientEMR{}
task ConsultSpecialist{}
Symptoms_Treat decomposedBy ObtainSymptoms;
Symptoms_EMR_Treat decomposedBy ObtainSymptoms, PatientEMR,
ConsultSpecialist;
ProvideHealthcare decomposedBy Symptoms_Treat,Symptoms_EMR_Treat;

4.3 The i*ToNuSMV Tool 73

4.3.2 The Preprocessing Module

We perform a simplified lexical analysis of this textual input by tokenizing the text
(using filtokn.exe) and then identifying keywords, operators and user-defined model
artefacts (using recognit.exe). We proceed to identify the tree structure of the model
artefacts (using modlroot.exe) and begin our model transformation process from the
root of this tree structure.

4.3.3 The Model Transformation Module

After obtaining the desired tree structure, we proceed to generate the finite state model
corresponding to the given SR-diagram. We use the Semantic Implosion Algorithm
(STA) [7] for converting the given i* model to a finite state model. The algorithm,
as proposed by the authors, proposes a methodology for exploiting the semantics
of SR-diagrams and creating a finite state model with minimum number of state
transitions.

SIA uses the notion of each model artefact going through three states—Nor_
Created (NC), Created_Not_Fulfilled (CNF), and Fulfilled (F)—as proposed by
Fuxman in [5]. SIA controls an explosion of the state transition space by mapping k-
element means-end decompositions to k-conditional branch structures and k-element
task decompositions to k-dimensional hypercube lattices. A detailed illustration of
the algorithm and the significant improvement achieved w.r.t. the state transitional
space complexity, has been documented in the original article [7]. This model trans-
formation is achieved in the i*ToNuSM V tool by executing the extract.exe binary.

4.3.4 The Mapper Module

The mapper module takes the extended finite state model produced by the Semantic
Implosion Algorithm and maps it to the input language of the NuSMV model verifier.
We assign identifiers with all goals, tasks and resources that appear in the given SR-
diagram. Each such identifier can have three possible values—NC, CNF, FU—
corresponding to the three states mentioned in the previous section. All identifiers
are initialized to the NC value which marks the initial state of our finite state model.
The final state of the state model is denoted by any state where the root node has the
value FU. The state transitions of the finite state model are captured using next ()
value assignments in the NuSMV input language. The mapper.exe binary does this
mapping and generates an NuSMV input model as the final output.

74 4 Model Checking with i*

4.3.5 i*ToNuSMYV OQutput

The particular example shown in Fig.4.16 generates a finite state model STT.opm
and the corresponding NuSMYV input model NUSMV_input.smv. Var.opm is a text
file that contains the list of state variables that have been assigned to all the goals,
tasks and resources. For the above example, Var.opm gets populated as shown below.

Also, according to the Semantic Implosion Algorithm, every state variable is ini-
tialized to zero, which represents the Not Created state of the entity. As the finite
state model is built, every state variable makes two transitions. A 0— 1 transition
implies that the entity represented by that state variable goes from the Not Created
state to the Created Not Fulfilled state. A 1— 2 transition, on the other hand, implies
that the represented entity goes from the Created Not Fulfilled state to the Fulfilled
state. A sample finite state model for the healthcare example is shown in Table4.7.
The state variables used in the finite state model are in accordance with Table4.6.

The same set of state variables are used to build the NuSMV input models. The
NuSMV model corresponding to the finite state model shown in Table4.7 is as
follows:

MODULE main

VAR

Vv101 : NC, CNF, FU;
Vv102 : NC, CNF, FU;

All state variables are declared with enumerations NC (Not Created), CNF (Cre-
ated Not Fulfilled), and FU (Fulfilled). Once all variables are declared, all the state
variables are initialized to NC.

ASSIGN
init(v101l) := NC;
init (V102) := NC;

After the declaration and initialization of state variables, we proceed to define
the transition of state variables as captured in the finite state model of Table4.7. For
instance, rows 1, 6 and 15 of the finite state model represent transitions for state
variable V1 01. We read these three lines of the finite state model and create the next
state value for the NuSMV model as follows:

’I"al.)le 4.6 Sthe variable Variable name Entity

listing of entities -
V101 ProvideHealthcare
V102 Symptoms_Treat
V103 Symptoms_EMR_Treat
V105 ObtainSymptoms
V108 PatientEMR
V109 ConsultSpecialist

4.3 The i*ToNuSMV Tool 75

Table 4.7 Finite state model recorded in STT.opm

Present state Event Next state
V10l =0 V101:0—1 V101 =1,V102 =0,V103 =0
V101 =1,V102 =0,V103 =0 V102:0—~1 V101 =1,V102 =1,V103 =
0,V105=0
V10l =1,V102 =1,V103 =0,V105 =0 | V105:0—1 V10l =1,V102 =1,V103 =
0,V105 =1
V10l =1,V102 ==1,V103 ==0, V105:1—-2 V101 =1,V102 =1,V103 =
V105 =1 0,V105 =2
V101 =1,V102 =1,V103 =0,V105 =2 | V102:1—>2 V101 =1,V102 =2,V103 =0
V101 =1,V102 =2,V103 =0 V101:1-2 V101 =2
V10l =1,V102=0,V103 =0 V103:0—1 V101 =1,V102 =0,V103 =
1,V105 =0,V108 = 0,V109 =0
V101 =1,V102 =0,V103 = 1,V105 = V105:0—~1 V101 =1,V102 =0,V103 =
0,V108 =0,V109 =0 1LV105 =1,V108 =0,V109 =0
V101 =1,V102 =0,V103 = 1,V105 = V105:1—-2 V101 =1,V102 =0,V103 =
1,V108 =0,V109 =0 1,V105 =2,V108 = 0,V109 =0
V101 =1,V102 =0,V103 = 1,V105 = V108:0—1 V101 =1,V102 =0,V103 =
2,V108 =0,V109 =0 1,LVI05 =2,V108 = 1,V109 =0
V101 =1,v102 =0,V103 = 1,V105 = V108:1—>2 V101 =1,V102 =0,V103 =
2,V108 = 1,V109 =0 1,LVIO5 =2,V108 =2,V109 =0
V101 =1,V102 =0,V103 = 1,V105 = V109:0—1 V101 =1,V102 =0,V103 = =
2,V108 =2,V109 =0 1,V105=2,V108 =2,V109 = 1
V101 =1,V102 =0,V103 = 1,V105 = V109:1—-2 V101 =1,V102 =0,V103 =
2,V108 =2,V109 = 1 1,V105 =2,V108 =2,V109 =2
V101 =1,V102 =0,V103 = 1,V105 = V103:1—-2 V101 =1,V102 =0,V103 =2
2,V108 =2,V109 =2
V101 =1,V102 =0,V103 =2 V101:1->2 V101 =2

next (V101) :=

case

V101=CNF & V102=NC & V103=FU : FU;
V101=CNF & V102=FU & V103=NC : FT;
V101=NC : CNF;

TRUE: V101;

esac;

This is done for all the state variables appearing in Table4.6. The complete
NuSMYV model corresponding to the finite state model of Table4.7 is obtained in
NUSMYV _input.smv.

76 4 Model Checking with i*

4.3.6 The i*ToNuSMYV Algorithm

An algorithm for the entire process may be specified as follows:
Input: Textual representation of an i* model SR-diagram.
Output: An extended finite state model and the corresponding NuSMYV input model.

Algorithm:

Step-1: Tokenize the input text file using filtokn.exe and separate all tokens.

Step-2: Identify all the tokens and distinguish the keywords, user-defined variables
and operators, separately, using recognit.exe.

Step-3: Identify the root model element from which the Semantic Implosion Algo-
rithm will begin execution by using modlroot.exe. Associate state vari-
ables/identifiers with each goal, task and resource appearing in the i* model.

Step-4: Run the Semantic Implosion Algorithm by executing the extract.exe binary.
This code generates the extended finite state model that can be derived from
the i* model.

Step-5: Finally this finite state model is mapped to an NuSMV input model with
the mapper.exe executable.

Step-6: cleanup.exe is used to clear the working directory before loading and con-
verting the next i* model.

4.3.7 Platforms Used

The front end of the tool has been developed in the Microsoft Visual Basic envi-
ronment. The 64-bit binaries have been generated using the Eclipse and Pelles C
platforms.

4.3.8 Application Scenario

Let us consider the remote healthcare example illustrated in Fig.4.16. A remote
healthcare enterprise may want to comply to a temporal constraint that a Doctor
will provide long term treatment only after it receives a Symptoms Message from the
patient through the ObrainSymptoms goal. This implies that in the task decomposi-
tion of Symptoms_EMR_Treat, ObtainSymptoms must be Fulfilled before resource
PatientEMR is acquired and task ConsultSpecialist is performed. This can be cap-
tured as a system property specified in CTL. The state variables listed in Table4.6
can be used to define this property as follows:

AG((V103 =CNF AV105 =FU A—=(V108 = FU v V109 = FU))
— F(V105 =FU AV108 = FU A V109 = FU))

4.3 The i*ToNuSMV Tool 77

This property can be fed into the NuSMV model checker and verified against
the NUSMV_input.smv input model generated by the i*7ToNuSM V prototype. The
NuSMYV input model passes the model verification test if and only if all execution
paths in the corresponding finite state model satisfy the condition that V 105 is ful-
filled before V108 and V' 109 are fulfilled. Otherwise, the CTL property is violated
and NuSMYV generates counterexamples.

4.4 i*ToNuSMYV Version Manager

The tool has evolved through several versions as described below:

e i"ToNuSMYV Version 1.01: Beta prototype that supported only 3-level goal mod-
els. Multi-actor scenarios were also not supported.

e i*ToNuSMYV Version 1.02: This version accepts an i* model in non-standardized
textual format and only converts it to the corresponding finite state machine and
NuSMYV input model. Model checking is not supported.

e i"ToNuSMY Version 1.03: The NuSMV model verifier is integrated into the tool.
Users can now verify CTL specifications on the NuSMV model being generated.

e i*ToNuSMYV Version 1.04: Bug fix. Previous version was path dependent. User
was compelled to instal the tool in path C:Au\istarTONuSMYV. Path dependency
removed.

e i*ToNuSMYV Version 2.01: MAJOR UPGRADE. The input language of the tool
has been changed from the previous non-standardized textual input to tGRL [8].
Supports multi-actor scenarios nut not inter-actor dependencies.

e i*ToNuSMYV Version 2.02:: MAJOR UPGRADE. Inter-actor dependencies have
been implemented.One finite state machine for the entire goal model is generated
rather than peractor finite state machines as in the previous versions.

4.5 Contact and URL

The *ToNuSMV tool can be freely downloaded from the following
URL—http://cucse.org/faculty/tools/. The URL also contains a user manual of the
i*ToNuSM V prototype in pdf format and can be downloaded from the link pro-
vided at the end of the page. For any further queries, please mail the authors at
novarun.db@ gmail.com.

http://cucse.org/faculty/tools/

78 4 Model Checking with i*

4.6 Conclusion

Model checking tools, typically check a model against certain temporal properties.
The need to bridge the gap between i* models and any other model with partial
ordering is evident. Although model transformations have existed in the industry
for quite some time, no work has been done to derive finite state models from i*
models. This paper first illustrates and presents a Naive Algorithm for extracting
sequences from i* model constructs. Simulation results demonstrate how this causes
a hyperexponential explosion in the finite state model space. The Semantic Implosion
Algorithm provides an improvement to counter this explosion.

Detailed simulations have been done by applying both the algorithms to similar
types of i* models and the results show that the Semantic Implosion Algorithm
provides a significant improvement over the Naive Algorithm. Typically, the finite
state model space grows in the order of 10?° for the Naive Algorithm, whereas, for
the Semantic Implosion Algorithm, the growth rate is restricted to the order of 103,
Although this may not be the best approach to extract a minimal set of plausible
finite execution sequences, it definitely provides a significant improvement over the
Naive Algorithm.

The set of possible finite execution traces, that correspond to a given i* model,
can be further pruned by feeding them into a model checking tool like NuSMYV and
checking them against certain enterprise-specific temporal properties or compliance
rules. All models that generate counter-examples may be discarded. This is one of
the biggest advantages of having a model that captures ordering of states. Also, once
the set of valid finite state models have been obtained, we can map them to BPMN
models, Petri Nets, or even UML models. This helps enterprise architects by allowing
the automated generation of code snippets, thereby, reducing the efforts required to
build the enterprise. Thus, once the requirements have been finalized and modelled
by the architects, the development of the enterprise becomes fully automated. This
ensures greater consistency and correctness and reduces the risks of failure.

The i*ToNuSMYV tool is a research prototype that takes a tGRL representation of
an SR-model as input. The tool can also be extended to any goal modelling framework
due to the generic nature of the model transforming Semantic Implosion Algorithm.
A detailed working of the i* ToNuSMV tool with a multi-actor scenario having inter-
actor dependencies is illustrated in the User Manual and Tutorial Video on the tool
page.! Appropriate screenshots of the tool interface have also been provided.

Thttp://cucse.org/faculty/tools/.

http://cucse.org/faculty/tools/

References 79

References

1. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279-295. https://
doi.org/10.1109/32.588521

2. Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NUSMV: a new symbolic model verifier.
In: Proceedings of the 11th international conference on computer aided verification (CAV), pp
495-499. http://dl.acm.org/citation.cfm?id=647768.733923

3. Lapouchnian A (2005) Goal-oriented requirements engineering: an overview of the current
research, Depth Report. University of Toronto. Canada, Toronto

4. Fuxman A, Pistore M, Mylopoulos J, Traverso P (2001) Model checking early requirements
specifications in tropos. In: Proceedings of the 5th international symposium on requirements
engineering (RE), pp 174—-181. https://doi.org/10.1109/ISRE.2001.948557

5. Fuxman AD (2001) Formal analysis of early requirements specifications, MS thesis. Department
of Computer Science. University of Toronto, Canada

6. HorkoffJ, Yu E (2011) Analyzing goal models—different approaches and how to choose among
them. In: Proceedings of the 2011 ACM symposium on applied computing (SAC), pp 75-682.
https://doi.org/10.1145/1982185.1982334

7. Deb N, Chaki N, Ghose A (2016) Extracting finite state models from i* models. J Syst Softw,
SI: COMPSAC, Elsevier 121:265-280. https://doi.org/10.1016/j.jss.2016.03.038

8. Abdelzad V, Amyot D, Alwidian SA, Lethbridge T (978) A textual syntax with tool support for
the goal-oriented requirement language. In: iStar, vol 978, pp 61-66. http://ceur-ws.org/Vol-
1402/paper6.pdf

https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
http://dl.acm.org/citation.cfm?id=647768.733923
https://doi.org/10.1109/ISRE.2001.948557
https://doi.org/10.1145/1982185.1982334
https://doi.org/10.1016/j.jss.2016.03.038
http://ceur-ws.org/Vol-1402/paper6.pdf
http://ceur-ws.org/Vol-1402/paper6.pdf

Chapter 5 ®)
Goal Model Maintenance Chack or

Goal models, and in particular, those specified in the form of AND-OR graphs, are
often specified without regard for the context in which these goal models are used.
In this chapter, we offer techniques for making goal models context-sensitive. We
do this in two ways. First, we provide a means for representing and analysing the
collateral effects of achieving a goal. A collateral effect is a collection of state changes
(in the world in which we wish to pursue the achievement of the goals specified in
the goal model) which are not desired but are nonetheless necessary to achieve the
goal(s) of interest. If the goal is to achieve a condition p and the only two options
available to an organization to achieve (these are thus OR-refined subgoals) is via
the subgoal p AND g or the subgoal p AND r, then g and r are collateral effects
(or collateral post-conditions). Second, we define a machinery to ensure that the
collateral effects associated with goals in a goal model do not violate critical safety
and liveness conditions for the domain. The machinery supports both the checking
of such violations, and, in the event that violations are detected, the resolution of
these violations (via a novel reconciliation operator).

The development and maintenance of goal models is a critical element that deter-
mines the success of an enterprise. There exists a vast literature on strategic man-
agement that argues this point. Goal model maintenance mechanisms must be in
place as stakeholder motivations and domain assumptions keep evolving over time.
Previously compliant goals can become infeasible or non-compliant with the system
regulations over time. Goal models need to be updated for a variety of reasons:

1. Changes in the business context—changes in market conditions, the appearance
of new competitors, etc.

2. Changes at the operational level—availability of machinery/manufacturing capa-
bility, availability of suppliers, availability of various links in a supply chain,
etc.

3. Changes in an organization’s strategic direction—typically decided at the board
level of an organization.

© Springer Nature Singapore Pte Ltd. 2020 81
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_5&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_5

82 5 Goal Model Maintenance

At a representational level, changes to a goal model might be necessitated by:

— The appearance of new constraints, such one that requires that certain goals
should be neither explicitly nor implicitly be accepted as a driver for organiza-
tional behaviour (this can happen due to changes in compliance requirements,
for instance). Changes of this kind have been investigated by Hoesch-Klohe and
Ghose [1]

— The appearance of domain constraint violations within the goal model.

This chapter takes a closer look at the latter kind of changes. Inconsistencies may
appear because of a variety of reasons. There exist multiple perspectives of employ-
ees at different levels in an organization. Senior management might interpret a goal
in a certain way, while middle managers might adopt a different interpretation of
more refined goals that they are tasked to achieve, while operational staff might
have even more divergent interpretations of the further refined subgoals that they
operationalize. Changes manifest more explicitly at different levels in an organiza-
tion. As the discussion above suggests, some changes manifest at the board level
(changes in strategic direction), others at middle management level (tactical changes
in market conditions, for instance) while others at the operational level. All of these
entail that different levels of a goal model might be interpreted differently, leading
to inconsistencies.

The resolution of these inconsistencies sits at the heart of the problem of strategic
alignment in enterprise management. Manual alignment of goal models can prove
to be costly and error-prone. Analysts may fail to identify inconsistencies or derive
suboptimal solutions since they are limited by their power to visualize the entire
space of goal modification alternatives that govern the strategic alignment process.
Optimality can have multiple interpretations. In our setting, the interpretations of a
goal are represented by its semantic annotation. We position our contribution within
a new and general framework for assessing goal model proximity. The intent is that
when a goal model needs to change, the degree of those changes must be minimized
to the extent possible. This general setting is similar to that of Hoesch-Klohe and
Ghose.

We offer a range of intuitions for assessing goal model proximity—Ilike struc-
tural proximity, semantic proximity, hierarchy-sensitive proximity, etc. Based on
this notion of proximity, we try to assist requirement analysts by providing a frame-
work that allows her to explore the entire space of goal model configurations that
satisfy a given change request and identify the configuration that is closest to the
original goal model. The framework presented here does not prescribe any specific
formal language as there exist multiple languages (with varying degrees of express-
ibility) that can be used to formalize goals. Our goal model maintenance framework
tries to address the problems of non-entailment and inconsistency. Although there
exist proposals for strategic alignment of goal models, researchers have not explored
the benefits of leveraging the structure and semantics of goal models simultaneously.
Going beyond the AND/OR graph structure of goal models and considering the goal
model semantics simultaneously, helps analysts to better understand the intentions

5 Goal Model Maintenance 83

being captured by the enterprise. The AFSR framework [J.2] proposed in this chapter
improves on the existing work by:

e providing an innovative goal model semantic annotation formalization that has
advantages during strategic alignment, but is non-prescriptive to represent existing
goal models.

e providing a semantic reconciliation mechanism that allows efficient identification
of entailment and consistency conflicts within goal model configurations.

e assisting analysts by providing conflict-free configurations that incorporate bare
minimal changes.

e providing a framework that maps the goal model maintenance exercise to a state-
space search problem having a heuristic path cost function that is admissible and
consistent.

e illustrating how an admissible and consistent heuristic guarantees an optimal solu-
tion (that deviates minimally) by using A* search.

The AFSR framework consists of three different algorithms—the Semantic
Reconcilia-tion Algorithm (SRA), the Entailment Resolution Algorithm (ERA), and
the Consistency Resolution Algorithm (CRA). SRA reconciles the context-free imme-
diate satisfaction conditions of goals into context-sensitive cumulative satisfaction
conditions. The cumulative satisfaction conditions associated with any goal repre-
sents the semantics of satisfying the system requirements captured by the goal model
subtree rooted at that goal. Once the cumulative satisfaction conditions of a goal are
derived, SRA compares them with it’s immediate satisfaction conditions and flags
domain constraint violations, if they are detected. ERA and CRA are then used by the
AFSR framework to resolve these violations. Both these algorithms provide require-
ment analysts with possible “conflict—free” alternatives, obtained by refactoring the
original goal model.

The rest of the chapter is organized as follows. Section5.1 elaborates on how
SRA works and raises flags on detecting domain constraint violations. Section 5.2
elaborates on the ERA and CRA algorithms and how they provide conflict-free alter-
natives to requirement analysts. The chapter also provides a roadmap to implement
the AFSR framework in Sect.5.3. We present a case study of how the framework
can be extended to i* models in Sect.5.4. Section 5.5 illustrates how we can realize
this roadmap by building a prototype and performing some simulations. Simulation
results are also discussed in this section. Section 5.6 concludes the chapter.

5.1 Semantic Reconciliation

The main objective of this chapter is to ensure consistency in the specification of goals
and, thus, consistency in the shared understanding of organizational intent amongst
stakeholders. We define an annotated goal model as one in which every goal has
been annotated with their intended satisfaction conditions. These annotations can
be represented as 2-pairs of the form (immediate-func, cumulative-func). The term

84 5 Goal Model Maintenance

‘func’ in the above pair refers to functional semantic annotations as we intend to
propose the framework with respect to functional requirements only and ignore the
non-functional requirements for the time being. Thus, “immediate-func” refers to
the satisfaction conditions for the functional requirements captured by that goal.
Requirement analysts are required to provide the immediate-func annotations for
each goal. Cumulative-func annotations of a goal represent the set of satisfaction
conditions that are derived by accumulating the immediate-func semantics of the
goal tree that is rooted at that goal.

Use Case: Healthcare

We take a real-life use case of a healthcare enterprise. We first demonstrate how a
goal model can be annotated in real-world business settings. We also demonstrate
how we can apply the proposed AFSR framework for identification of violations and
their resolution in an evolving environment with changing business demands. Let
us consider the healthcare example shown in Fig.5.1 with goal, task and resource
labels.

The goal model in Fig.5.1 can be annotated as follows:

e IE(G1) = {Received_Patient, Provided_Relief }

e IE(G;y) = {Emergency_Treatment_Provided }

e IE(G3) = {Normal_Treatment_Provided }

e TE(Gy) = {{Received_Text}, {Received_V oice}}

e IE(Ry) = {PreExisting_Disease_Searched, Allergies_Checked }

e IE(Ty) = {{{Sample_Taken}, { Performed_Procedure}}, Test_Result_
Known}

Fig. 5.1 Goal model of an existing healthcare enterprise

5.1 Semantic Reconciliation 85

Annotation of individual goals, tasks and resources within the goal model with
immediate satisfaction conditions is the only phase of the AFSR framework that
requires human intervention. These annotations are context-free and the requirement
analyst lists them for each goal model artefact in a stand-alone perspective. Thus,
the immediate satisfaction conditions need to be associated with a knowledge base
of semantic rules that correlate these immediate satisfaction condition. Thus, for the
above set of immediate satisfaction conditions, we have the following correlation
rules:

KB1: Emergency_Treatment_Provided — Received_Text Vv Received_V oice.

KB2: Normal_Treatment_Provided — (Received_Text Vv Received_V oice) A
PreExisting_Disease_Searched A Test_Result_Known.

KB3: Received_Patient — Received_Text vV Received_V oice

KB4: Provided_Relief — Emergency_Treatment_Provided v Normal_
Treatment — _Provided .

Using the proposed AFSR framework, we want to compute the cumulative satis-
faction conditions for each goal model artefact as follows:

CE (Gy) = {{Received_Text}, {Received_V oice}}
CE (Ry1) = {PreExisting_Disease_Searched, Allergies_Checked }
CE(Tq1) = {{{Sample_Taken}, { Performed_Procedure}}, Test_Result_Known}
CE(Gy) = {Emergency_Treatment_Provided, {{Received_Text}, {Received_
Voice}}}
Applying KB1, the CE set for G, reduces to:
CE (Gy) = {{Received_Text}, {Received_V oice}}
e CE(G3) = {Normal_Treatment_Provided, {{Received_Text}, {Received_
Voice}}, PreExisting_Disease_Searched, Allergies_Checked, { { Sample_Taken},
{ Performed _Proced — ure}}, Test_Result_Known}
Applying KB2, the CE set for G; reduces to:
CE(G3) = {{{Received_Text}, {Received_Voice}}, PreExisting_Disease_
Searched, Allergies_Checked, {{Sample_Taken}, {Performed_Procedure}},
Test_Result_Known}
e CE (G1) ={{Received_Patient, Provided_Relief , {{ Received_Text}, { Received
_Voice}}}, {Received_Patient, Provided_Relief ,{{ Received _Text}, { Received _
Voice}}, PreExisting_Disease_Searched , Allergies_Checked, {{ Sample_Taken},
{ Performed _Procedure}}, Test_Result_Known}}
Applying rules KB3 and KB4, the CE set of G reduces to:
CE(Gy) = {{{Received_Text}, {Received_Voice}}, {{{Received_Text},
{Received_V oice}}, PreExisting_Disease_Searched , Allergies_Checked,
{{Sample_Taken}, { Performed_Pr — ocedure}}, Test_Result_Known}}

86 5 Goal Model Maintenance

The notion of accumulating lower level semantics stems from the idea that sub-
goals lower in a goal tree provide more detailed accounts of ways in which higher
level goals might be satisfied. Thus, there is value in propagating these semantics up
the goal tree to obtain annotations (attached to each goal) that provide more detailed
(and complete) formal accounts of alternative ways in which a goal is actually being
satisfied. A formal annotation of the goals empowers requirement analysts to use
automated reasoners for consistency and compliance checking, thereby releasing the
analysts from laborious and complex manual analysis and evaluations. The semantic
reconciliation machinery can be viewed as a black box that takes context-independent
immediate satisfaction conditions as input and produces context-sensitive cumula-
tive satisfaction conditions as output. The implications of the cumulative satisfaction
conditions, for a given goal model, depend on the precision with which analysts
specify the immediate satisfaction conditions [2, 3].

Given a goal model configuration, we identify mainly two different types of
domain constraint violations that may exist within the model—entailment and con-
sistency. The solution presented in this paper tries to answer the question—"“Given
a goal model maintenance exercise, how can we remove all conflicts existing within
a goal model and generate a conflict-free configuration (version) that deviates mini-
mally from the original goal model?”. Given a goal model configuration, there exists
a vast space of modified configurations that address this issue and generates conflict-
free versions. It becomes quite infeasible for the analysts to enumerate the complete
search space which, in turn, may result in analysts coming up with suboptimal solu-
tions to the goal model maintenance problem.

Goal models have AND-decompositions as well as OR-decompositions. AND-
decompositions capture the lower level subgoals that must be fulfilled in order to
satisfy ahigher level goal. OR-decompositions, on the other hand, capture alternatives
for fulfilling a given goal. Each OR-decomposition link shows one possible means
for fulfilling the parent goal. This gives rise to the notion of goal subgraphs that define
unique solutions for fulfilling high-level goals. We call these subgraphs “OR-refined
goal models”. Let us first define what we mean by OR-refined goal models.

Definition OR-refined Goal Models (ORGMods). An OR-refined goal model for a
given high-level goal G is one with no OR-alternatives. It is obtained by committing
to a specific OR-alternative wherever OR-alternatives exist in the goal model.

ORGMods can be derived by performing a modified depth-first-search (DFS) of
the goal model subtree rooted at G such that

i. Whenever we encounter an AND-decomposition, we include all the children in
the decomposition, and

ii. Whenever we encounter an OR-decomposition, we commit to only one of the
possible alternatives.

For instance, let us consider the high-level goal G; in Fig.5.2. A possible
ORGMod for achieving this goal is marked by a dashed polygon. The ORGMod
so identified can be written using a top-down approach as (G, G3, {Gg, (G7,
G190, G12)}). This notation is quite easy to follow. We start with the root goal G| and

5.1 Semantic Reconciliation 87

f Goal G 2

¥

[
|
|
1
ﬂioalGI/1 Goa|61
)
1
L}

l
'
' ® | O
l\ \
\]
v Looale/ 1 SGoal 61y
A)
|

Legends:
EGoal O—AND Decomposition Link ——> OR Decomposition Link

Fig. 5.2 An OR-refined Goal Model highlighted within the goal model

keep traversing the goal model until we reach leaf-level goals. Sequences of goals
within angle brackets ()’ represent successive levels in the goal model whereas
‘{}” are used to capture siblings within AND-decompositions. So (G7, Gg, G12)
represents three successive levels of the ORGMod including goal G; whereas
G3, {Gg, G7} represents an AND-decomposition of goal G3 into goal G¢ and goal
G7. Both angle brackets and braces can be nested within one another.

The semantic reconciliation machinery processes the immediate satisfaction con-
ditions of individual goals and builds their corresponding cumulative satisfaction
conditions. We deploy this machinery between adjacent levels of an ORGMod. The
cumulative satisfaction condition of goal G, is combined with the immediate satis-
faction condition of goal G to obtain the cumulative satisfaction condition of goal
G1o- The cumulative satisfaction condition of goal G is then combined with the
immediate satisfaction condition of goal G; to obtain the cumulative satisfaction
condition of goal G7 and so on until we reach the root goal G.

88 5 Goal Model Maintenance

5.1.1 ORGMod Extraction

As mentioned previously, it is cumbersome to derive the cumulative satisfaction
condition for an entire goal model. Instead, the semantic reconciliation process can
be restricted to one or more ORGModss. This is practically more useful as requirement
analysts may wish to see the cumulative satisfaction conditions of some desired goals.
ORGMod s represent goal sub-models that are derived from the original goal model
and play a decisive role in the cumulative semantic reconciliation process. ORGMod's
help in pruning alternatives that can be excluded from the process.

The pruning process also helps in assigning unique labels to ORGMods. An
ORGMod label identifies the order in which satisfaction conditions can be recon-
ciled for achosen high-level goal. Consider the OR-decomposition shown in Fig. 5.3a.
It captures two different alternates to achieve the high-level goal G,. This results in
two different labels for the two different ORGMod s that can be obtained

Label 1:((G», G3), [G2, G4])
Label 2: ({(G,, G4), [G2, G3])

Each label identifies an ORGMod for satisfying goal G, and an exclusion set
(as defined in [2]). Exclusion sets are used to list those alternate paths that were not
selected at an OR-decomposition for the given ORGMod label. So for the Label 1,
goal G, is fulfilled by performing goal G3 and, hence, [G2, G4] is in the exclusion set.
(G, G3) specifies that semantic reconciliation must occur from G3 to G,. Similarly,
we obtain Label 2 if we choose goal G4 over goal G3.

Consider the AND-decomposition shownin Fig. 5.3b. AND-decompositions denote
independent objectives that can be executed in any order or even in parallel. Sibling
goals are represented using {} in the ORGMod sequence. Figure 5.3b has the fol-
lowing label:

Label 3: ((G3, {(Gs), (Ge)}), [¥])

/GoaIGg; Goal G4 M M

(a) OR-decomposition (b) AND-decomposition

Fig. 5.3 Goal models illustrating the two different types of decompositions or splits that artefacts
can undergo

5.1 Semantic Reconciliation 89

{{(Gs), (G¢)} represents independent goals contained within a set. This set is con-
sidered as a separate element in the outer sequence of goals. Also, the exclude set is
null as AND-decompositions do not provide choices to requirement analysts.

We intend to automate the process of extracting all possible ORG Mod s that have a
particular goal as root. This goal may be randomly chosen by the requirement analysts
for cumulative semantic reconciliation. There are three subprocesses involved with
the ORGMod label extraction process—path traversal, extracting decomposition
sequences, and deriving ORGMod labels. The following sections elaborate on these
subprocesses.

5.1.1.1 Path Traversal

Any goal model can be viewed as a goal graph that already has an embedded tree
structure. All the goals can be considered as generic nodes in a tree with all the
decomposition links serving as edges. We ignore softgoals and contribution links for
the time being. We perform a depth-first search on the goal graph. The path traversal
process returns a list of paths, each of which is a sequence of goals from the root to the
leaves and with no parallel edges. Applying the path traversal procedure on the goal
model shown in Fig. 5.2 with goal G| as the chosen locus of semantic reconciliation,
we get the following list of paths:

Path List:

Path 1: (Gl(x), GZ(X), Gy, Gg)

Path 2:(Gix), Gax), G5y, Go)
Path 3:(Gix), Gax), Gswu), Gs)
Path 4:(Gyx), G3u), Ge)

Path 5:(Gix), G3u), Grx), Gio, G12)
Path 6: <G1(X), G3(A), G7(X), G11,Gi3)

The symbols (X) and (A) are used to mark goals that undergo OR-decompositions
and AND-decompositions, respectively. OR-decompositions are analogous to exclu-
sive gateways whereas AND-decompositions are analogous to parallel gateways.
These paths are collected and segmented into groups based on decomposition
sequences.

5.1.1.2 Extracting Decomposition Sequences

The path list derived in the previous section can be segmented into collections of
goals as shown in Fig.5.4. Each of these segments captures the decomposition of a
goal into subgoals and are referred to as decomposition sequences. These sequences
can be captured using a generic format that represents objects of the decomposition
class. Figure 5.5 shows the decomposition sequence objects (DSO(s)). Each decom-
position sequence begins with a goal that undergoes an AND-decomposition or an

90 5 Goal Model Maintenance

Path1: (|G1(x)| G2(x)| Ga. Gg|)

Path2: (|G1(x)| G2(x)|| G5(a),| Go|)

Path3: (|G1(x)| G2(x)|| G5(A)| Gsl)

Path 4:

—~

G1(x),| G3(A)/ Gel)_

Path5: (|Gy1(x)| G3(a)l| G7(x),| G10, G12|)

Path 6:

—~

G1(x)| G3(A)]| G7(x),] G11, G13])

Fig. 5.4 Decomposition sequence segmentation of the path list for the goal model in Fig.5.2

Gyx) Gax) Ga) Gg, Gg Gs(a) Gy
G3(a) Gs(a) Gg
(a) DSO of G1 (b) DSO of G4 (c) DSO of To
Gsa) Ge Grix) | | Gio, G12
G7ix) Gi1, G13
(d) DSO of G5 (e) DSO of T

Fig. 5.5 Decomposition Sequence Objects (DSO) derived from the decomposition sequences in
Fig.5.4

OR decomposition and its lower level goals. Decomposition sequences either end at
leaf-level goals or at the beginning of the next decomposition sequence.

Gix) marks the beginning of the first decomposition sequence that ends in
either Gyxy or G3). Both these decomposition goals mark the beginning of the
next decomposition sequence. Gox) can either end in the leaf-level goal Gg or in
the decomposition goal Gs). Similarly, G3, either end in the goal G or the
AND-decomposition node G7(x). This process is repeated to obtain a decomposition
sequence for G5y and G7(x), respectively.

Each box in Fig.5.4 represents a decomposition sequence segment. Each seg-
ment represents a subsequence starting at some goal that either undergoes an OR-
decomposition or an AND-decomposition. We can use these decomposition segments
to derive Decomposition Sequence Objects (DSOs) as shownin Fig. 5.5. Each decom-

5.1 Semantic Reconciliation 91

position sequence begins with a different goal and can be mapped to a unique DSO
for that goal. For example, Fig. 5.5a shows the DSO for goal G . For each DSO, the
label on the left represents the root goal and the list of labels on the right represents the
decomposition subsequences beginning at that goal and ending at either a leaf-level
goal or at another decomposition goal. The leftmost decomposition sequence for
goal G (leftmost segment in Fig. 5.4) has two subsequences—one ending in Gx)
and the other ending in G3(4). The DSO for G, x) represents two subsequences—one
ending in Gg and the other in G5).

Since goal models have an inherent tree structure, the parent—child relationship
existing between the goals is preserved in the decomposition sequence objects as
well. While developing ORGModss, this relationship plays a vital role. For exam-
ple, sequences of the goal G¢x) (in Fig.5.5e) must be resolved before creating the
sequences of G4 (Fig.5.5d). In general, decomposition sequences of the child
goals must be incorporated within the parents. DSOs create a unique model that is
independent of the original path list. This enables the creation of completely indepen-
dent ORGMods. Each DSO must have a method that accumulates the decomposition
subsequences of the child goals and assembles them with the parent subsequence.

5.1.1.3 Deriving ORGMod Labels

In order to derive all possible ORGMod s that stem from a particular goal (as desired
by requirement analysts), we need to provide the first decomposition sequence only.
Every decomposition sequence passes its own sequence to its child decomposition
sequence. The child decomposition sequence uses recursion to build all the possible
subsequences and merges them with the parent sequence. The merging process is
repeated backwards till we reach the first decomposition sequence. The final merge
operation produces the set of all possible ORGMod labels that can be derived for the
given goal from the goal model.

For the goal model of Fig.5.2, we begin with the decomposition sequence object
of goal G. G| passes its subsequence to its child decomposition sequences G, and
G3. G, and G5 build their own sequences separately and merge them with the parent
sequence of G . The following sequence of operations illustrates the ORG Mod label
derivation process. The symbol — is used to indicate the passing of sequences from
a parent sequence to a child sequence. The symbol <« is used to denote the passing
of all merged sequences from the child to the parent. The beginning subsequence
before the first decomposition in our example is ¥ which calls the first decomposition
sequence.

In order to generate the ORGMod labels, we look at the DSO of G x) (Fig.5.5a).
G (x) must process its child decomposition sequences before returning the final list
of ORGMod labels.

Nel
\S)

5 Goal Model Maintenance

(Gixy, (G200)))
(G1x), (G3@))

G passes its subsequence () to Go(xy and G3(y).

} — GZ(X)

) — G3(A)

G (x) processes its child subsequences before returning the final list of sequences
to G(x). Child subsequences are obtained from the DSO of G(x), shown in Fig. 5.5b.

(Ga). (Ga, Gy))|
(Gax)y, (Gs)))

G x) passes its subsequence () to Gss) which subsequently processes its child
sequences as listed in it’s DSO (Fig.5.5c¢).

} — G5(A)
(Gsw: [{Go), (G))) |

All the child subsequences of Gx) are sent back to G,(xy and combined with its
own sebsequence.

Gyx) < (Gs, Gg) ‘
Gaxy) < (Gsw), {(Go), (Gsg)})

Similarly, G34) also processes its child subsequences before returning the final
list of sequences to G x). Figure 5.5d shows the list of child subsequences that must
be processed

(G3w), {Ge), (Grx))))

We proceed in a similar manner and process the child sequences of G7(x) (shown
in Fig.5.5e). These subsequences are returned to their parent G4 as follows:

G3uy < {{Go), (Grx), (G0, G12))} ‘
G3u) < [(G), (G, (Gur, Gia))) |

Both Gyx) and G3(4) merge their child sequences with their own subsequence
and return the resulting sequences to their parent Gx).

5.1 Semantic Reconciliation 93

Gix) < (Gax)y, (G4, Gg))

(Gaxys (Gsy, {(Go), (Gs)}))
(

(

G](X) <

Gix) < (G3w), {(Ge), (Grx), (Gro, Gia))})
Gix) < (G3w), {{Gs), (G1x), (G11, Gi3))})

G x) receives the child decomposition sequences and combines them with its
own subsequence and generates the set of all ORGMod labels that can be derived
for goal G](X).

Gix), (Gaxy, (G4, Gg)))

(Ga): (Gswys ((Go). (Go)D)) |
<

{

Gix),

Gy, (Gaw: ((Ge), (G, (Gro, Gia))) |
Gix), (G3w), ((Gs), (G7(X),(G11,G13>)}>>‘

[
K
[
K

Result

When the process concludes, we obtain the list of all possible ORGMod labels from
the decomposition sequence of G(). In the previous illustrations, we have omit-
ted exclusion sets for the sake of simplicity. Exclusion sets are obtained when child
sequences are assembled by the parent sequence. The final list of ORGMod labels,
including exclusion sets, are as follows:

ORGMod1: (G, {(Ga, ((Ga, Gy), [Ga, Gs])), [G1, Ga)) |

ORGMod2: | (G, {(Ga, ((Gs, [(Go), (Gy)}), [Ga, Gal)), [G1, G3))) |
ORGMod3: ’ (G1, ((G3, {{Gé¢), (G7, ({G10, G12), [G7, G}, [G1, Gal)) ‘
ORGMod4:[(G, ((G3, {(Gé), (G7, {(G11, G13), [G7, G}, [G1, Gal)) |

Figure 5.6 highlights the four different ORGMod's that have been derived using
the process described above. Consider the first ORGMod. At G| we choose the path
G1, G, and, hence, [G, G3] becomes the exclusion set. Similarly, at G,, we choose
G4 over Gs and, hence, [G,, G5] becomes the exclusion set for this point.

The process described above is exhaustive and generates all possible ORGMod
labels that can be derived for any desired goal. Each such ORGMod label consists of a
list of goals that exist in sequences—exclusion sets (OR-decompositions) or parallel
sets (AND-decompositions). Once we obtain the ORGMod labels corresponding to
some goal, we can extract the immediate-func annotations and reconcile them to
derive the cumulative-func annotations for individual goals. The process of semantic
reconciliation has been elaborated in the next section.

94 5 Goal Model Maintenance

Goal G12 { GOB|G13/

Legend:

Routinel | _J Routine 2 Routine3 1 _: Routine 4

Fig. 5.6 The four possible ORGMods that have been derived for goal G, highlighted within the
goal model of actor A;

5.1.2 Semantic Reconciliation Operators

The semantic reconciliation operation takes the immediate satisfaction conditions
of the higher level goal and cumulative satisfaction conditions of the lower level
goals as input and determine the cumulative satisfaction conditions of the higher
level goal as output. This definition implies that, for leaf-level goals, the immediate
and cumulative satisfaction conditions are identical, provided they are not dependant
on leaf-level goals residing in other actor boundaries. Consider the following simple
example, where we have the higher level goal Make_Payment which decomposes
to the lower level goals Check_Balance and Transfer_Funds. Assuming informal

annotations of satisfaction conditions, we may have an semantic annotation scenario
as follows:

5.1 Semantic Reconciliation 95

1. Check_Balance: Insufficient
2. Transfer_Funds: Cheque_bounced
3. Make_Payment: Payment_done

Clearly, this results in an inconsistent satisfaction conditions scenario. Background
rules may be defined on the underlying knowledge base to prevent such inconsistent
satisfaction conditions from occurring in the same satisfaction scenario. We assume
that every goal model has an underlying knowledge base (KB) that provides the basis
for preventing such inconsistencies.

Assuming that immediate satisfaction conditions are represented as sets of canoni-
cal, non-redundant clauses in conjunctive normal form (CNF) [2-4], we represent the
immediate satisfaction condition of a goal A as the set IE(A) = {iey, ies, ..., ie,} and
its derived cumulative satisfaction condition as the set CE(A) = {cey, ce;, ..., cen},
fora given ORGMod. Let A; and A; be two adjacent level goals in the goal model. We
define rec(A;, A;) as the semantic reconciliation operator that derives the cumulative
satisfaction condition of A; by combining its immediate satisfaction conditions with
the cumulative satisfaction conditions of A;, i.e., CE(A;) = rec(A;, A;). While deriving
the cumulative satisfaction conditions of the goal A;, we consider two components:

e All immediate satisfaction conditions of A; that are derivable from the cumulative
satisfaction conditions of A;, given by {IE(A;) N CE(A;)}, and

o All additional cumulative satisfaction conditions of A; whose negations are not
listed in the immediate satisfaction conditions of A;, given by {CE(A;) \ —IE(A;)}.

Thus, we define the semantic reconciliation operation as follows:

CE(A) = rec(A;, Aj) = {IE(Ai) n CE(A,-)} U {CE(Aj) \ —-IE(Ai)}, (5.1)

such that —=IE(A;) = {—ie;, —iea, ..., —ie,}.

If consistency is not satisfied for all members of CE(A;), then we proceed to
include as many cumulative satisfaction conditions of A; as possible while main-
taining consistency with the knowledge base KB. The following example provides
a better understanding of the reconciliation operation.

Example: Let A and B be adjacent level goals in an goal model where B is the next
lower level below A. Let IE(A) ={a, b, ¢} and CE(B) ={—b, ¢, d, e}. The cumulative
satisfaction condition of A, denoted by CE(A) can be evaluated as follows:

96 5 Goal Model Maintenance

IE(A) = {a, b, ¢}

CE(B) = {—b,c,d, e}

CE(A) =rec(A,B)
={IE(A) N CE(B)}U
{CE(B) \ ~IE(A)}

IE(A) N CE(B) = {c},
—IE(A) = {—a, —b, —c},
CEB)\ —IE(A) = {—b,c,d, e} \ {—a, —b, —c}
={c,d, e}
S.CEA) ={c}U{c,d, e}} ={c,d, e}.

Theorem 5.1 For finding out the cumulative satisfaction condition of any two adja-
cent level goals A; and A; (given by Eq. 5.1), the intersection operation is redundant,
i.e., the semantic reconciliation operation rec(A;, A;) can be represented as

CE(A;) =rec(A;, Aj) = {CE(A) \ —~IE(A)} (5.2)

Proof We prove the above theorem by establishing that/E(A;) N CE(A;) € CE(Aj) \
—IE(A;), and, hence, redundant.

Before proceeding to the proof we would like to clarify the notations. For any two
satisfaction condition sets X and Y the universe of satisfaction conditions for their
semantic reconciliation operation is given by U = X UY U =X U =Y where —X
and —Y can be derived by taking the negation of each satisfaction condition within
the set. Also, we know that set difference between two sets X and Y can be expressed
using set intersection as X \'Y = X N Y where Y€ represents the compliment set
of Y with respect to the universe U.

" CEA)\—IEA) = CEA) N (=IE(A))C,
we have to prove: CE(4;) N1E(A;) € CE(Aj) N (—IE(A)€
=> we have to prove: IE(A;) € (—-IE(Ai))C.

For any two satisfaction condition sets X and Y along with their universe U, the
set (—X)C consists of the union of three different subsets

1. All elements of the set X.
2. All elements in Y that are not in =X, i.e., ¥ \ =X.
3. All elements in —Y that are not in =X, i.e., =Y \ —=X.

5.1 Semantic Reconciliation 97
Thus, we have the following derivation:

(=X) =X U \=X)U (=Y \ —X)
=XUN=XHU =Y N-=X
=X U{(YU=-Y)Nn-X€)} [Distributive Law]

If the set {(Y U—=Y) N —=X€} = @, then (—=X)€ = X;else X C (—X)C. Thus, we
can conclude that X € (—=X)€. Replacing the set X with IE(A;) and the set Y with
CE(A)), we can conclude that

IE(A) C (—IE(A))©
= CE(A) NIE(A;) C CE(A) N (=IE(A))€
= CEAj) NIE(A;) € CEA) \ ~IE(A).
. from Eq. 5.1, CE(A;)) = rec(A;, Aj)) = {CE(A)) \ —~IE(A)}.

Goal decompositions have multiple children in most cases, and this requires the
semantic reconciliation machinery to be more generic. We need to explicitly define
the mechanisms when there are multiple subgoals resulting from a given goal decom-
position. This becomes mandatory for goals that undergo AND-decomposition. How-
ever, for a goal undergoing OR-decomposition, the interpretation changes. As already
stated, we perform semantic reconciliation on a per ORGMod basis. This implies
that we select only one alternative whenever we encounter an OR-decomposition.
However, requirement analysts may desire to answer questions like—"“Do I have a
strategy that works properly?” In order to answer such questions, and for complete-
ness of the framework, we need to specify the machinery for semantic reconciliation
over OR-decompositions as well.

5.1.2.1 AND-Reconciliation Operator

AND-decompositions can occur within an ORGMod itself. The example shown in
Fig.5.2 illustrates an AND-decomposition of goal G3 into goals G¢ and G7. Using
our bottom-up approach, the cumulative satisfaction conditions of G¢ and G7 will
be evaluated first. Since G is a leaf-level goal, CE(G¢) = IE(Gg). The cumulative
satisfaction condition of goal G is obtained from the next level goal Gy as CE(G7)
=rec(G7, Gyo). The AND-reconciliation operation will be required when we try to
evaluate the cumulative satisfaction conditions of the goal G3 using CE(Gg) and
CE(G).

Let A; and A; be two goals that result from the AND-decomposition of the higher
level goal A;. Let CE(Aj) = {ceji, cep, ..., cejy} and CE(Ay) = {cexy, cexa, .. .,
cey, }, respectively, where ce,, represents the y-th cumulative satisfaction condition

98 5 Goal Model Maintenance

of goal x. Let the immediate satisfaction conditions of A; be denoted as IE(A;). In
that case, we define CE(A;) using the ANDrec() semantic reconciliation operation
as follows:

ANDrec(A;, Aj, Ay) = {rec(A;, Aj) U rec(A;, Ap)}. (5.3)

In general, if a goal Ay undergoes an AND-decomposition to generate the set of
goals A1, Ay, ..., Ak, then we can define CE(Ay) using the ANDrec() operation as
follows:

K
ANDrec(Ax, Ay, Ay, ..., Ag) = {U rec(Ay, Ap)}) (5.4)
P=1

Guard condition. Since goal models are sequence agnostic, the ordering of sib-
ling events that stem from an AND-decomposition is abstracted from the model
description. Thus, a correct goal model design demands that, during runtime, the
order of executing events should not impact the state of the system. For example,
with respect to Eq. 5.3, the system should reach the same state of affairs if A; is per-
formed before Ay, or vice versa. This property is known as “Commutativity of
State Updation”.Let State_U pdt() denote the state updation operator such that
State_Updt(A,) results in changing the current state of the system by incorporating
the satisfaction conditions of performing event A, and obtaining a new state. Thus,
with respect to Eq. 5.3, the commutativity property demands that

State_Updt(A;, State_Updt(Ay)) =
State_Updt(Ay, State_Updt(A;)) (5.5)

In general, if a goal Ay undergoes an AND-decomposition to generate the set of
goals A, Ay, ..., Ak, then commutativity is satisfied if applying the state updation
operator on any random ordering of these K events, results in the same final state.
Commutativity of State Updation must be satisfied for AND-decompositions. For
OR-decompositions, we need not worry about commutativity as they represent alter-
nate strategies and we perform analysis on a per ORGMod basis.

5.1.2.2 OR-Reconciliation Operator

An OR-decomposition provides alternate strategies for achieving the same goal.
Since an ORGMod chooses one particular alternative whenever it encounters an
OR-decompositi-on, we need an OR-reconciliation whenever we want to combine
the cumulative satisfaction conditions of two or more ORGMod s (or subroutines) at
the point of an OR-decomposition. Figure5.7 illustrates an example where we have
two alternate ORGMod s for satisfying the goal G ;. The two ORGMod's are denoted
as (G1, (G3, {(Ge), (G7, (G0, Gi2)}) and (G, (G2, (Gs, {(Go), (Gs)}))).

5.1 Semantic Reconciliation 99

—
// \

‘Y\
/GG
O

iGoaI Gs / : Goal G; /

\

Aoal Glg/ /Goal Gl/

O Q
Fig. 5.7 Two ORGMods highlighted for goal G which undergoes a OR-decomposition within the

goal model of actor A;

Let A; and Ay be two goals that result from the OR-decomposition of the higher
level goal A; and represent two different strategies for satisfying A;. Let CE(A))
= {ceji, cep, ..., cej,) and CE(Ay) = {cey1, cexa, . .., cey,), respectively. Let the
immediate satisfaction conditions of A; be denoted as IE(A;). In that case, we define
CE(A,) using the ORrec() semantic reconciliation operation as follows:

ORrec(A;, Aj, Ay) = {{rec(A;, A))}, {rec(A;, Ap)). (5.6)

In general, if a goal Ay undergoes an OR-decomposition to generate the set of goals
A, Ay, ..., Ak, then we can define CE(Ay) using the ORrec() operation as follows:

ORrec(An, Ay, ..., Ax) = {rec(Ay, A)Vx, Ay € {Ar, ..., Ax}). (5.7)

5.1.3 Illustrative Examples

Let us illustrate the working of the semantic reconciliation formalism with the help of
some illustrative examples. We consider three different types of functional checks on
an annotated goal model-—namely, entailment, consistency, and minimality. Of these,

100 5 Goal Model Maintenance

satisfying entailment and consistency is mandatory as they ensure the correctness of
a goal model. Minimality is an optional check that does not result in incorrect system
states. We illustrate four different examples that demonstrate different degrees of
correctness for goal models.

Case 1: Entailment not satisfied but consistency satisfied Consider the goal model
shownin Fig. 5.8. It consists of a primary goal G that undergoes an OR-decomposition
into goals G| and G,, which further undergo AND-decompositions.

Every goal has been labelled with their immediate satisfaction conditions, as
specified by the requirement analysts. We now perform a semantic reconciliation over
this goal model using Eqs. 5.4 and 5.7, defined in previous sections. The cumulative
satisfaction conditions of goal G is obtained using Eq. 5.4 as

CE(G1) = ANDrec(G1, G3, Gy, Gs)
= {rec(Gy, G3) Urec(G, G4) Urec(Gy, Gs)}

rec(Gy, G3) = {{p, s} U} = {p, s},

and [CE(G3) N —=IE(G) = 0]
rec(Gy, Ga4) = {{—q} U} = {—q},

and [CE(G4) N —=IE(Gy) = #]
rec(Gy, Gs) = {0 U {1} = {1},

and [CE(Gs) N —IE(G) = 0]

CE(GI) = {{p’ S}) {_'q} U {t}} = {pv -q, s, t}

| EG =p~a 590 ~an v} |

CE@G)={p,7q s 1} | | CE(G») ={p,—q, 1, v}

Goal G; Goal G,
IE(G))=(p,mq,8), IE(G)=(p,~q,r
Goal G3 Goal G4 Goal Gs Goal Gg Goal G,
IEG)=(p.s) 1E(GH=(q) 1E(Gs)=(t) IE(Ge)=(p.r) 1E(G)=(q,v)

Fig. 5.8 An illustrative example showing how semantic reconciliation can be used to detect prob-
lems in entailment although consistency is ensured

5.1 Semantic Reconciliation 101

This has been shown in the figure as alabel outside goal G . Since I[E(G) € CE(Gy),
this AND-decomposition satisfies both entailment and consistency. Similarly, we
proceed to evaluate the cumulative satisfaction conditions of goal G, as

CE(G,) = ANDrec(G,, Gg, G7)
= {p7 —|q7 r’ U}

This cumulative satisfaction condition has also been shown in the figure outside goal
G,. Again, since IE(G;) € CE(G»,), this AND-decomposition also satisfies both
entailment and consistency. Following the bottom-up approach, we now proceed to
evaluate the cumulative satisfaction conditions of goal G using Eq.5.7 as follows

CE(G) = ORrec(G, Gy, G»)
- {{p7 _|q7 S’ t}’ {p’ _|q7 r’ U}}

The cumulative satisfaction conditions of goal G has been labelled in the figure.
Since neither of the members in CE(G) or CE(G») have any mutually conflicting
satisfaction conditions with /E(G), hence, we conclude that the semantic reconcil-
iation is consistent. However, since both IE(G) Q CE(Gy) and IE(G) ¢ CE(G»),
we conclude that none of the strategies ensure entailment.

Case 2: Entailment satisfied but consistency is not Consider the goal model shown
in Fig.5.9. It consists of a primary goal G that undergoes an OR-decomposition into
goals G and G,, which further undergo AND-decompositions.

Every goal has been labelled with their immediate satisfaction conditions, as
specified by the requirement analysts. We now perform a semantic reconciliation over

| @ =tpa 5w -0 |

CE(G) ={p,1q, s,w} | | CEG) = {p, ~q, W}

Goal G,
IE(G2)=(p,q)
Goal G3 Goal G4 Goal Gs Goal Gg
IE(G3)=(p,s) IE(G)=(—q,w) 1E (Gs)=(p,~W) 1E(Gs)=(q)

Fig. 5.9 An example showing a consistency conflict between the immediate annotations of parent
goal G and the cumulative annotations of child goal G2

Goal G;
1E(G)=(p,q,S)

102 5 Goal Model Maintenance

this goal model using Eqs. 5.4 and 5.7, defined in previous sections. The cumulative
satisfaction conditions of goal G| is obtained using Eq.5.4 as

CE(G1) = ANDrec(Gy, G3, Gy) = {p, —q, s, w}

Since IE(G) € CE(G), this AND-decomposition satisfies both entailment and con-
sistency. Similarly, we proceed to evaluate the cumulative satisfaction condition of
goal G, as

CE(G,) = ANDrec(G,, Gs, Gg) = {p, —q, ~w}

Again, since IE(G,) € CE(G»), this AND-decomposition also satisfies both entail-
ment and consistency. Following the bottom-up approach, we now proceed to eval-
uate the cumulative satisfaction condition of goal G using Eq.5.7 as follows

CE(G) = ORrec(G, G, Gy)
= {rec(G, G1), rec(G, G)}

TEC(G, Gl) = {{P7 -q, w}) {S}} = {p’ -q, w, S},
and [CE(G|) N —IE(G) = (]

VEC(G, G2) = {{p9 _'q} U (}J} = {pv _'q}»
and [CE(G,) N —IE(G) = {—w}]

- CE(G) = {{p. ~q. w. s}, {p. ~q}}

The cumulative satisfaction conditions of goal G has been labelled in the figure.
Since IE(G) < {p, —q, w, s}, we can say that there is at least one strategy that fulfils
entailment. However, since CE(G,) N —IE(G) is not null, we conclude that consis-
tency is not ensured in the second strategy and the conflicting satisfaction conditions
are the members of the set CE(G,) N —IE(G).

Case 3: Both entailment and consistency are satisfied Consider the goal model
shown in Fig. 5.10. This figure is exactly similar to Fig.5.9 with one minor change.
The immediate satisfaction condition of goal G5 is changed from {p, —w} to {p, w}.

This is the best possible outcome that requirement analysts and the client would
like to achieve in the requirements phase. The reconciliation of satisfaction conditions
is done in the same way as shown in the previous two examples. Assuming that the
reader has understood the working principle, we skip the cumulative satisfaction
condition evaluation process. However, there are three interesting observations in
this example that needs to be highlighted.

1. Unlike the previous example shown in Fig.5.9, CE(G,) N —IE(G) = (. This
implies that the inconsistency issue existing in the previous example, does not
persist in this scenario. Also, since IE(G) € CE(G), entailment is satisfied.

5.1

Semantic Reconciliation 103

| CE@G) ={{p,q, s, w}, {p,~q w}} |

IE(@)=(p,~q,w)

CEG) = (b, 5%} |

Goal G;
1E(G)=(p,~q,5)

| CEG)=1p.~a W}

Goal G,
IE(G2)=(p,~q)

~

Goal G3 Goal G4 Goal G5 Goal Gg
1E(G5)=(p,S) TE(Gy=(—q,wW) IE(Gs)=(p,w 1E(Gs)=(—q)

Fig. 5.10 An example showing how entailment and consistency are both satisfied

This example also justifies our bottom-up approach. None of the subgoals G, or
G, have w € IE(G) or w € IE(G,). However, semantic reconciliation ensures
that the effect w gets propagated from goals G4 and G5 upwards such that all
members of the cumulative satisfaction condition set CE(G) satisfy the immediate
satisfaction conditions /E(G).

. This is the kind of situation where minimality can play some role for system

designers. Both members of the set CE(G) satisfy the entailment and consis-
tency conditions. In such a situation, designers may choose a particular strategy
that produces a minimal set of additional satisfaction conditions. In this exam-
ple, {p, —q, w} is a more minimal solution for satisfying goal G as compared to
{p, —q, w, s} as the latter produces an additional satisfaction condition of {s}.

Case 4: Neither entailment nor consistency are satisfied From the previous exam-
ples, one can easily visualize a scenario where neither entailment nor consistency is
satisfied. This scenario is not at all desirable from the client’s as well as designer’s
perspective. Requirement engineers may have to revisit the client and perform refine-
ments of the previously elicited requirement specifications. The analysts can also help
the client by highlighting erroneous and conflicting requirement specifications.

Semantic Reconciliation Algorithm (SRa)

Input: A goal model whose model elements have been annotated with immediate
satisfaction conditions

Output : Annotation of the model elements with cumulative satisfaction conditions
derived from the semantic reconciliation process

104 5 Goal Model Maintenance

Algorithm_SRA:

Step-1: Start.
Step-2: Identify a ORGMod using the ORGMod Extraction Algorithm.
Step-3: For each ORGMod repeat the following steps.

(a) Begin at the leaf-level goals and evaluate the cumulative satisfaction
condition CE(L,) of each leaf-level goal L,.

(b) Go to the previous level and check if the goals in this level undergo
an AND-decomposition or an OR-decomposition. Depending on the
type of merge operation required, evaluate the respective cumulative
satisfaction conditions using Eqgs. 5.4 or 5.7, respectively.

(c) Repeat the previous two steps till we reach the root of the extracted
ORGMod.

Step-4: Check if the immediate satisfaction condition set /E() and the cumula-
tive satisfaction condition set CE() of the root satisfies entailment and
consistency. If not, then raise a flag to the requirement analysts.

Step-5: Repeat Steps 3—4 for all possible ORGMods.

Step-6: Stop.

5.2 Resolving Conflicts Using Model Refactoring

The SRA algorithm helps in identifying entailment and consistency issues during
the bottom-up semantic reconciliation process. However, the AFSR framework does
not merely identify these issues. It also makes an attempt to resolve these issues by
refactoring the given goal model. Requirement analysts are provided with possible
solutions and necessary changes that need to be incorporated into the requirements
model in order to satisfy entailment and consistency. In the following sections, we
firstillustrate how we attempt to resolve these issues using test cases. We then propose
a formal algorithm for doing the same.

5.2.1 Entailment Issues

The SRA algorithm raises an entailment issue at any point in the semantic recon-
ciliation process when the immediate satisfaction conditions /E(M) of a goal M
are not achieved or satisfied by the subtree rooted at M. The cumulative satisfac-
tion conditions of the subtree are captured in CE(M). Depending on whether M
undergoes an AND-decomposition or an OR-decomposition, CE(M) contains only
one member or multiple members, respectively. The cumulative satisfaction condi-
tion for AND-decompositions is one single set of satisfaction conditions obtained
using Eq. 5.4 defined in Sect.5.1.2.1. On the other hand, the cumulative satisfaction

5.2 Resolving Conflicts Using Model Refactoring 105

condition set for OR-decompositions contains as many members as the number of
alternative strategies in the OR-decomposition. Each member is again a set of satis-
faction conditions reconciled over that particular ORGMod, obtained using Eq.5.7
defined in Sect.5.1.2.2.

Itis easy to raise an entailment issue for AND-decompositions as we only need to
check if IE(M) ;(_ CE(M). However, for OR-decompositions, we need to check this
condition for each individual member of the CE(M) set. In general, we can formally
define the condition for raising an entailment issue as

ICE; € CE(M), s.t. IE(M) ¢ CE,;

Once an entailment issue is flagged by the SRA algorithm, we proceed to derive two
data sets for resolving the issue—deficiency-1lists and availability-
tuples. The deficiency-1list D is used to identify all those immediate sat-
isfaction conditions in /E(M) that are not present in CE(M). This is obtained indi-
vidually for all members CE; of CE(M). The set is evaluated as follows:

D = {IE(M) \ CE:|VCE; € CE(M)} (5.8)

Once we obtain the deficiency-1ist D we proceed to explore whether these
satisfaction conditions are fulfilled or achieved by goals that lie in other solution
paths. We consider a one-to-one mapping, called the Availability Function, that maps
each member d; € D to a tuple of integers (n1, na, .. ., ni). The Availability mapping
tries to capture the information whether any particular satisfaction condition d;; € d;
can be fulfilled along other solution paths. It is defined as follows:

A: D — NF

such that A(d;) = (n1, na, ..., ny) where k = |d;| and Vdj; € d;,

nj_

. (5.9)
0, otherwise.

{r, if3CE, € CEM) s.t.dy € CE,.
Each such tuple corresponding to a deficiency-list is called an
availability tuple. The set of all availability-tuples forms the
range of the Availability Function. In the next two sections, we demonstrate the
model refactoring strategies that can be used to resolve entailment issues for OR-
decompositions and AND-decompositions.

5.2.1.1 Entailment Resolution for OR-Decompositions

Consider the goal model shown in Fig. 5.11. There are two alternate means G| and G,
for fulfilling the high-level goal G. Neither of the members in CE(G) contains all the

106 5 Goal Model Maintenance

Fig. 5.11 A sample goal CE@) = {{p, 19, s}, {p, ~q}}
model showing failure of
entailment at goal G that D={{w}, {w}} Goal G
undergoes A={(0), (0)} /IE(G)=(p,~q,W)
OR-decomposition / \
Goal G; Goal G,
1E(G)=(p,=q;8) 1E(G)=(p,mq)
CE(Gr) = {p,—q, s} CE(G2) = {p, ~q}

immediate satisfaction conditions in IE(G). We proceed to resolve this entailment
issue by first listing the deficiency-1ist for each path and then evaluating the
availability-tuple for each path.

The deficiency-1list for goal G, is given by

dl = IE(G) \ CEl = {pv -q, w} \ {p’ -q, S} = {w}

The availability-tuple for goal G; is given by A(d;) = (0) since w is
not contained in CE,. Similarly, the deficiency-1list and availability-
tuple for goal G, is obtained as d, = {w} and A(d;) = (0).

This implies that the satisfaction condition{w} is not derived from either of the
strategies. The intuition behind providing a solution to the requirement analysts is
that “we need to incorporate a goal, say G’, which brings about the state of affairs
‘w’ on the world in which the actor resides”. Thus, we introduce a temporary goal
CT, with immediate satisfaction condition /E(CT;) = {w} and merge it with goals
G| and G, to achieve the satisfaction condition ‘w’in the cumulative satisfaction
condition of G. The solution is shown in Fig. 5.12.

5.2.1.2 Entailment Resolution for AND-Decompositions

For AND-decompositions, the solution is not so complex. Consider the entailment
issue being addressed in Fig.5.13. Since goal G undergoes an AND-decomposition,
its cumulative satisfaction condition set CE(G) contains only one member which is
the set of satisfaction conditions derived from all the individual AND-decomposition
links.

We proceed to evaluate the deficiency-1ist as follows:

d =IE(G)\ CE(G) = {p,—q, t,v, w}\ {p, —q, s, —r,w} = {t, v}

The availability-tuple for goal G is given by A(d) = (0, 0). In fact, for
AND-decompositions, the deficiency-1ist will always contain only one set

5.2 Resolving Conflicts Using Model Refactoring 107

CE (G) = {{p' —q, S, W}r {p' —q, W}}

Goal G
IEG)=(p,—q,w)

CE(GTy) = {p, —q, s, w}

_______ -———,

L’ Temp Goal GT; ¢ 7 Temp Goal GT, R

4

/// IEGT)= (p,—|q,s)/ ,// IE(GT)= (P.—'Q)’

CE(Gr) ={p, 9, s} CECT) = {w} CE(G2) ={p, q}

Fig. 5.12 Temporary high-level goals GT; and G T, are used to merge goals G| and G, with the
temporary goal CT)

CE(G) = {p, =q, s, I, W}

D={{tv}} Goal G
A={(0,0)} /IE(G)=(p,—~q,t,v,W)
CE(GD) = {{p, 9, s}, {P""l}}/g)\ CE(G2) ={p, -, ~q, W}
Goal G; Goal G,
IE(G)=(p,q) IE(G2)=(p,~q,W)

Goal G3 Goal G4 Goal Gs Goal Gg
IE(G5)=(p,—q,S) 1E(G)=(p,—q) IE(G5)=(p,~r IE(Ge)=(~q,w),

CE@G)={p,nq, s} CE(G)={p,~q} CE(Gs) = {p, -} CE(Gs) ={q, W}

Fig. 5.13 A sample goal model showing failure of entailment at goal G that undergoes AND-
decomposition

member and it’s availability-tuple will always be of the form (0, 0....,0)
depending on the number of satisfaction conditions in the deficiency-1ist set.

The reason is quite intuitive. The very semantics of an AND-reconciliation
necessitate that all distinct satisfaction conditions appearing in all individual paths
be reconciled in one set. This, in turn, makes the solution very simple- “we need
to incorporate a goal, say G', which brings about these unaccounted state of
affairs (as obtained in the deficiency-1ist) on the world in which the actor
resides”. We introduce a temporary goal CT; with immediate satisfaction condition
IE(CT,) = {t, v} and merge it with goals G| and G, to incorporate these satisfaction
conditions in the cumulative satisfaction condition of G. The solution is shown in
Fig.5.14.

108 5 Goal Model Maintenance

CE@={p,q,s, -, W, t,v}
Goal G
TEG)=(p,—q,t,v,w)

CEG) = (tp 0 5}, (0, ~a}} Qro=-- CECT) =t v)

Goal G; Goal G,
IE(G)=(p,q) 1E(G)=(p, ~q,w)

S IECT)=(tv)”

Goal G3 Goal G4 Goal Gs Goal Gg
1EG)=(p,—q,s)/ /IEG)=(p,—q), 1E(G5)=(p,—r), TE(Go)=(~q,w)

CE(G3) ={p,—q, s} CEG)={p,~q} CE(Gs) = {p, —r} CE(Gs) ={q, W}

Fig. 5.14 Temporary goal CT is merged with goals G| and G to obtain the cumulative semantic
annotation of G

Entailment Resolution Algorithm (ERA)

Input : Identify a goal M as a point of entailment failure if the following condition
is satisfied
3CE; € CEM), st. IE(M) ¢ CE;

Output : A possible solution for entailment resolution using model refactoring

Algorithm_ERA:

Step-1: Start.

Step-2: Evaluate the Deficiency set D using Eq.5.8.

Step-3: Define the Availability mapping function A according to Eq.5.9.

Step-4: If the point of failure M undergoes OR-Decomposition and links nodes
M, M,, ..., M, then propagate the respective deficiency-1list and
the corresponding availability-tuple along each of the p paths.
For each pa th, do the following:

(a) At the next level, create a temporary high-level goal GT; having the
same immediate satisfaction conditions as M;,i.e., I[E(GT;) = IE(M;).

(b) Create an AND-decomposition of GT; with its leftmost child being
M;.

(¢) Add another child CT; to GT; whose immediate satisfaction conditions
are obtained by concatenating those membersinthedeficiency-1list
d; whose corresponding availability-tuple valuesn; are zero (0).

(d) For every other member dj; in the deficiency-1ist that has
a non-zero availability-tuple value n;, set up an AND-
decomposition link (if it does not exist already) between GT; and
the goal M/ residing in path n; such that d;; € IE(M/).

5.2 Resolving Conflicts Using Model Refactoring 109

Step-5: If the point of failure M undergoes AND-decomposition and produces
nodes M, M>, ..., M,, then add a temporary child goal CT; under M and
set up an AND-decomposition link between M and CT;. Annotate C7; as
CE(CT;) = IE(CT;) = D.

Step-6: Repeat Steps 2-5 for all goals, in a bottom-up manner, during the semantic
reconciliation procedure.

Step-7: Stop.

5.2.2 Consistency Issues

Consistency is defined as a condition where the cumulative satisfaction condition of
any goal M does not contain mutually conflicting satisfaction conditions. Otherwise,
the goal is said to be inconsistent. Inconsistency of goals during the semantic recon-
ciliation process can be classified into two different types—hierarchic inconsistency
and sibling inconsistency.

5.2.2.1 Hierarchic Inconsistency

Hierarchic inconsistency occurs when some immediate satisfaction condition(s) of
a parent goal is in conflict with some cumulative satisfaction condition of a child
goal. This type of inconsistency can occur for both AND-decompositions and OR-
decompositions. In case of OR-decompositions, we need to be worried with only
those alternate means that are inconsistent. The system does not fail as long as there
exists one alternative that is consistent with respect to satisfaction conditions. For
AND-decompositions, the consequences are much more critical and can result in
an inconsistent system. Figure 5.15 illustrates an AND-decomposition that results in
hierarchic inconsistency.

The SRA algorithm takes care of hierarchic inconsistency in the semantic rec-
onciliation process itself. Equation5.2 of Theorem 5.1 removes all those cumula-
tive satisfaction conditions of the child goal that are inconsistent with immediate

Fig. 5.15 Hierarchic CE@G) ={p, —q, W}

inconsistency at goal G Goal G
arising out of the immediate
satisfaction condition ¢ of G
and the cumulative

satisfaction condition —q of
goal G4

Goal G;

CEGD) ={p,—q} CE(G2) = {p, W}

110 5 Goal Model Maintenance

CE (G) = {p,q,w}

1E@=(p,qW)

- -~
_- ~~o

———m T - - o —-———= re

CE(TG) ={p} CE(G2) = {p, W} CE(TG2) ={q}

Fig. 5.16 Eliminating inconsistencies in the semantic reconciliation process governed by Eq.5.2
in Theorem 5.1

satisfaction conditions of the parent goal while evaluating the cumulative satisfac-
tion conditions of the parent goal.

Figure 5.16 shows how hierarchic inconsistency is tackled in the SRA algorithm.
We also replace the victim child with a temporary goal TG, not containing the
inconsistent satisfaction conditions. Now, the problem basically reduces to that of
Entailment Resolution and the ERA algorithm can be used to resolve it.

5.2.2.2 Sibling Inconsistency

The other type of inconsistency is sibling inconsistency which arises during semantic
reconciliation of mutually conflicting satisfaction conditions from child nodes of the
same parent node. Figure5.17 illustrates one such scenario where the cumulative
satisfaction conditions of goal G contain both r and —r, reconciled from child goals
G| and G, respectively.

Unlike resolution of hierarchic inconsistencies, resolving sibling inconsistencies
do not result in entailment issues. This implies that removing any one of the conflict-
ing satisfaction conditions from the child goals is sufficient to resolve this type of
inconsistency. With respect to the scenario shown in Fig. 5.17, we can highlight to the
analysts that either effect r of goal G or effect —r of goal G, needs to be dealt with.
These two solutions are shown in Fig. 5.18. The requirement analysts can then decide

Fig. 5.17 Sibling CE(® ={p,~q, W, T, 1}
goal G| and the immediate

inconsistency at goal G
[E(G):(p'_‘qvw)
satisfaction condition —r of

arising out of the immediate
goal G, Goal G; Goal G;
IE(G))=(p,~q,T) 1E (G2)=(p,w,r)

satisfaction condition r of
CE(G) ={p,—q,1} CE(G) ={p,w, 1}

5.2 Resolving Conflicts Using Model Refactoring 111

Fig.5.18 Solution 1: CE(G) ={p,1q, W, —r}
eliminates the effect Goal G

annotation r of goal G.
Solution 2:eliminates
the effect annotation —r of
goal G,

Lo7 __IEG)=(p~q),-”

CE(G) ={p, ~q} CE(G2) ={p, w, r}
(a) Solution 1.
CE(®) ={p,~q, W, 1}

Temp GoalTe; "7
Ll _EG)=pw) -7

CE(G) ={p,—q, 1} CE(G2) ={p, W}
(b) Solution 2.

which particular solution best suits the requirements of the enterprise depending on
the consequences and significance of the satisfaction conditions r and —r.

Consistency Resolution Algorithm (CR2)

Input: Identify a goal M as a point of consistency failure.
Output : A possible solution for consistency resolution using model refactoring

Algorithm_CRA:

Step-1: Start.
Step-2: Identify the type of inconsistency as hierarchic if-

dce; € CE(M), ie; € IE(M) s.t. ce; = —ie;

(a) Identify the child M; which contributes the satisfaction condition ce;
in CE(M), i.e., ce; € CE(My).

(b) Remove the satisfaction condition ce; from the cumulative satisfaction
condition set as well as its immediate satisfaction condition set, i.e.,

CE'(My) = CE(My) \ ce;
IE'(My) = IE(Mj) \ ce;

112 5 Goal Model Maintenance

(c) The goal model is now consistent but the immediate satisfaction con-
dition ie; of M does not appear in its cumulative satisfaction condition
set. This can be resolved by calling the ERA algorithm.

Step-3: Identify the type of inconsistency as sibling if-
Jce;, cej € CE(M), ce;, cej ¢ IE(M) s.t. (ce; = —ce))

(a) Identify the siblings Mj; and M, which contribute the satisfaction
conditions ce; and ce; in CE(M), respectively. That is,

ce; € CE(Myy) and cej € CE(My,).

(b) Remove the satisfaction condition ce; from the cumulative and imme-
diate satisfaction condition sets of My, i.e.,

CE'(My,) = CE(Mp) \ ce;
IE'(My) = IE(Mp) \ ce;

OR, remove the satisfaction condition ce; from the cumulative and
immediate satisfaction condition sets of Mj,, i.e.,

CE'(My,) = CE(My») \ ce;
IE'(My2) = IE(Mj2) \ ce;

(c¢) Present both the above alternatives to the requirement analysts as con-
sistent solutions.

Step-4: Repeat Steps 2-3 for all goals, in a bottom-up manner, during the semantic
reconciliation procedure.
Step-5: Stop.

Resolving an inconsistency using the proposed Consistency Resolution Algo-
rithm can refactor the goal model in a way that gives rise to new inconsistencies.
However, the algorithm can be applied repeatedly to get rid of the newly introduced
inconsistencies.

Use Case: Healthcare

Let us continue with the use case discussed in Sect.5.1. Now let us suppose a couple
of changes in the business environment setting:

Change-1: The healthcare enterprise passes a regulation that Long Term Treat-
ment cannot be provided without consulting a specialist.

Change-2: Ifitis not an emergency, then it must be ensured that patient is not
allergic to any chemicals before performing a test. This is to prevent situations

5.2 Resolving Conflicts Using Model Refactoring 113

such as an MRI scan (with contrast) becomes the reason of death for a patient
who is allergic to contrast fluids like iodine.

These changes in the business environment can be reflected in the goal model
of Fig.5.1 by updating the immediate satisfaction conditions of goal Gj3 (for
Change-1) and task 7; (for Change-2). The modified immediate satisfaction
sets of these two goal model artefacts become as follows:

e Modified KB2: Normal Treatment Provided — (Received_Text \2
Received_Voice) N PreExisting_Disease_Searched A Test_Result_Known A
Consulted _Specialist.

IE (G3) = {Normal_Treatment_Provided} = {{{Received_Text}, {Received_
Voice}}, PreExisting_Disease_Searched, Test_Result_Known, Consulted _
Specialist}.

o IE (T1y = {Allergies_Checked, {{Sample_Taken}, {Performed_Procedure}},

Test_Result_Known}

If we now use the AFSR framework to compare the cumulative satisfaction condi-
tions (already computed for the previous business setting) with the modified immedi-
ate satisfaction conditions (in the current setting), we will notice entailment conflicts
for both G; and T;. The AFSR framework handles these two conflicts with the
Entailment Resolution Algorithm separately as follows:

ERA-1: The entailment conflict for G5 is due to the newly introduced satisfaction
condition (Consulted_Specialist). Since this condition is not fulfilled by
any of the child nodes and G3 undergoes AND-decomposition, we add
another temporary goal called “Consult Specialist” as a child of G3. We
label this goal TG .

ERA-2: For the entailment conflict of 7, the AFSR framework finds that the
newly added satisfaction condition (Allergies_Checked) can be fulfilled
by it’s sibling R;. So the AFSR framework sets up a parent—child link
between 77 and R;.

The modified goal model that incorporates these changes is shown in Fig.5.19.

5.3 An Implementation Roadmap

5.3.1 The Generalized Framework

Given a finite (or infinite) state space, if a path exists between the start state and the
goal state, then A* search is guaranteed to find the optimal path if the heuristic cost at
each node is admissible and consistent. In order to prove that our goal maintenance
framework resolves conflicts in a goal model to generate a conflict-free version that
also deviates minimally from the original model, we first map the goal maintenance
problem to a state-space search problem and then show that the optimal solution

114

5 Goal Model Maintenance

P i —

AY
AY

,f
/
¢ \
Grovide Healthcare (GD \
\\ -
\ =~ ~
N
’ \
/ \

\
(Long Term Treatment (GD \
\

Fig. 5.19 Modified goal model incorporating the two business environment changes Change-1

and

Change-2

obtained using A* search is in fact the result that we are interested in. The mapping
of the goal modification problem to the state space search problem that we will define
requires the following concepts:

1.

a-satisfiability: Let o represent a set of change constraints. A change constraint
represents the change that we desire in a goal model, and therefore, the driver
of a given goal maintenance exercise. A change constraint defines what must be
true of the goal model obtained as output of a goal maintenance exercise. We
may, for instance, require that a goal model be updated to include a new goal
(at a specific point in a goal model, such as in the form of an AND-refined child
sub-goal of a specified parent goal that exists in the prior goal model), to remove
an existing goal (i.e., go from a state where the model might entail a given goal
to a state where the goal model is guaranteed not to), or to restore consistency of
the goal model (in the sense of the reconciliation operator discussed earlier). We
will view « as a set of constraints of these kinds, and will deem a goal model to
be a-satisfiable if it satisfies all the constraints listed in the set «.

Goal Modification Operators: Given a goal model G and a set of change con-
straints o, we can define goal modification operators that make changes to the
given goal model in order to make some non-satisfiable goal (or set of goals)
a-satisfiable. Let the modified goal model obtained after the application of some
goal modification operator(s) be denoted as G’. The goal modification process
can then be represented as the transition G — G’'. Table 5.1 lists the primitive
goal modification operators.

5.3 An Implementation Roadmap 115

Table 5.1 List of primitive goal modification operators

Primitive operators Function Illustration

leaf_rmv(g_1) Removing a leaf goal g_1, leat m(s, S
without any dependencies, © .

M
along with its parent link

[Gols/
nleaf_rmv(g_p) Removing a non-leaf goal [GTE] [fole] iy, =
g_nl, along with its parent ‘

and child links, if they exist

add (g) Adding a new stand alone
goal g =ad (%)

L]
AND_add(g_p,g_1) Adding a new leaf-level : a0 (6,61)
goal g._l to a parent goal S e

L=

g_p using
AND-decomposition link

OR_add(g_p,g_1) Adding a new leaf-level
goal g_1 to a parent goal
g_p using OR
decomposition link

2ddo (G,61)

join(G,G1,A)

join(g_p,g,A/0) Joining an existing goal g

with another existing goal]om
g_p using AND(2)/OR(0)
decomposition links

break(g_p,9) Separates an existing goal g LD ane,0

from another its parent goal ‘;m' —_—
g_p but does not remove

either g or g_p from the
model

3. Goal Model Reachability: Given two different versions G; and G; of a goal
model G, we say that G; is reachable from G; if there exists a sequence
of goal modification operations from G; that results in G;. This is represented as
G; — ---— Gy — -+ — Gj. In short, this can be represented as G; ~ G;.

The state space for G issaidtobe completely reachable if suchsequences
of goal modification operations exist for every pair of states in the state space.
If the state space for G is not completely reachable, we conclude that some of
the goal modification operators are overly coarse-grained. Again, if the
operators are too fine-grained, even if there exists a sequence of operator
applications that computes an optimal solution, it may be that some prefixes of
these sequences will lead to non-optimal evaluations of the cost function.

With these prerequisites we can now proceed to define the state space search
problem associated with a goal modification problem.

116 5 Goal Model Maintenance

Definition 5.1 (State-Space Search Problem) For a given goal model modification
problem, the corresponding state-space search problem can be represented as a 6-
tuple <S‘Yttv Sstrt Emoda Axucm Qheuh Eest) where

i. Sy denotes the set of states that define the state space. Each state s; € Sy
represents a version of the original goal model, derived by some sequence of
operations.

ii. Sg € Sq, denotes the initial state and represents the original goal model G.

iii. X4 denotes the set of goal modification operators (listed in Table 5.1) that can
be applied to any state to reach a new state in the state space.

vi. Aguee 1s the transition function that captures all the state transitions that can
occur within the state space Sy, due to the application of goal modification
operators in X,,,q, 1.€., Agcc: Ssr X Xmod —> St

iv. $24e4r 1s the heuristic path cost function that has two components—the actual
minimum cost for reaching state s; from the start state (£2,.), and the estimated
cost of reaching a goal state from state s; (£2,y). Thus,

peur (i) = 82act (Sstrt > 5i) + Lest (5, Sﬁn)v
where s3, is a final state.

iv. Ty is the goal test function which identifies a goal state as one where the goal
model is completely a-satisfiable.

Given a goal model G, the optimization challenge is to find the minimally different
goal model G’ that is completely a-satisfiable. In order to prove that applying A*
search to the above state space search problem gives an optimal solution, we only
need to prove that the heuristic cost function Ay, is admissible and consistent.
We define a goal model proximity relation < that is used to identify the optimal
solution.

Definition 5.2 (Goal Model Proximity) Each goal model G is associated with a
proximity relation <¢ such that for any two variations G; and G; of the original
goal model, G; < G; implies that G; is closer to G than G;. <¢ is defined by a
triple (<%, <&, <EFF) for measuring the proximity of vertices, edges and cumulative
satisfaction conditions, respectively. G; <¢ G; iff each of G; <g Gj, G; <Ié G;and
G,‘ <£éFF Gj holds.

Definition 5.3 (« — minimality) A goal model variation G’ is an ¢-minimal solution
with respect to a given goal model G and a set of change constraints « iff each of
the following hold:

— G is not completely o-satisfiable.

— G'is completely o-satisfiable.

— There exists no goal model G” such that G” <g G’ and G” is completely a-
satisfiable.

5.3 An Implementation Roadmap 117

5.3.2 Taxonomy of Goal Model Proximity Measures

We offer a range of intuitions for assessing goal model proximity:

1. Structural proximity: This is often realized via graph edit distance.

2. Semantic proximity: This can be realized by using measures of distances between
theories (such as the Dalal distance).

3. Hierarchy-sensitive proximity measures: Here, we can implement multiple dis-
tinct intuitions. We might argue that a higher level goal is a more stable, reliable
and ultimately more important indicator of an organization’s motivational stance,
and thus accord higher priority to goals higher in a goal tree. Alternatively, we
might argue that goals lower in a goal tree more accurately reflect investments
in infrastructure, and that being more willing to modify these entails that we are
willing to modify actual goal realization infrastructure without heed to cost. In
such situations, we might find it useful to accord higher priority to lower level
goals than higher level ones.

4. Compliance-based proximity: decided by the degree of conformance to a given
rule set.

5. Softgoal-based proximity: decided by the degree of contribution to a given set of
softgoals.

6. Component/Service-based proximity: decided by the number of off-the-shelf
components/services that may be assigned to the lower level goals and the number
of new components/services that have to be developed from scratch.

7. Mining-based proximity: decided by the greater number of goals that can be mined
from event logs.

5.3.3 Evaluating Goal Model Proximity

In this section, we create a specific instantiation of the generalized framework and
demonstrate how the framework can be used to address the goal modification prob-
lem. Before we instantiate the six tuples associated with the state space search for-
mulation, let us first elaborate on the goal model proximity relation <¢ that will
be used for distinguishing the optimal solution from other non-optimal solutions.
In this section, we concentrate on structural and semantic proximity measures only
for measuring the distance between two goal models; other proximity measures may
also be incorporated to evaluate this distance.

Let VG be the distance measurement operator such that, for any two variations
G and G of a given goal model, G VG G, represents the relative distance between
variations G| and G, with respect to the original goal model G. This is evaluated
as (G1 V G)—(G, V G). We say that G| <g G, iff (G2 V5 G1) > 0. Structural or
syntactic proximity requires comparison of vertices and edges for which we use the
measurement operators V(‘; and Vg, respectively. Semantic proximity uses cumu-
lative satisfaction conditions and measures it using the operator ngF. We base the

118 5 Goal Model Maintenance

proximity calculations on set cardinality, as defined in [5]. Let us look into the Entail-
ment Resolution Algorithm (ERA) and see how these distances can be measured.

Let G(= (V, E)) be the original goal model whose current modified version G| (=
(V1, E1)) has an entailment conflict. ERA is applied to resolve this conflict and reach
the state G,(= (V», E»)). The distance measurement operators are then calculated
as follows:

L Vo =IVi\VI= [\ V]|
2. V¢ =|E\\E| — |E; \ E|
3. V&' = |CE| \ CE| - |CE, \ CE|,
where CE = U;gev CE(g); CE; and CE, follow accordingly.

Case-1 ~AND-decompositions.

Let G, be the current goal model version (refer Fig.5.13) having an entailment
conflict and G, be the version that is generated after applying ERA (refer Fig.5.14).
Using set cardinality, we measure the structural and semantic proximity as

1. G, V(‘; G| = 1, the newly added subgoal.

2. G, Vf; G =1, the AND-decomposition link connecting this new subgoal.

3. G, gFF G > 1, the satisfaction conditions that have been added for resolving
entailment conflicts.

Case-11 OR-decompositions.

Let G, be the current goal model version (refer Fig.5.11) having an entailment
conflict and G, be the version that is generated by ERA (refer Fig.5.12). We again
compute the structural and semantic proximities, based on set cardinality, as follows

1. G, vg G| =2, the newly added subgoal and a higher level goal that fuses these
two subgoals

2. G, Vg G| = 2, the AND-decomposition links connecting the high-level goal to
the two subgoals

3. &, gFF G > 1, the satisfaction conditions that have been added for resolving
entailment conflicts.

We can similarly evaluate the distances for the Consistency Resolution Algorithm
as well. Once we evaluate \/ é, vg, and VIéF F wecan compute the net distance using
a normalized weighted average as follows:

\4 E
G1VG2: <w1 ~v+w2-v+w3-
G G G

3
where Vi, 0 < w; < 1 and Zwi =1

i=1

EFF

v) (5.10)

G

5.3 An Implementation Roadmap 119

It is now easy to visualize why G, VG G will be positive whenever ERA or CRA
is invoked by the AFSR framework and that G| will always remain more proximal
to the original goal model than G», i.e., G| <G G».

The distance measurement operators are defined based on the cardinality of the
vertex sets, edge sets, and the semantic annotation sets. The weights for evaluating
goal model proximity can also be adjusted to give priority to structural or semantic
definitions. However, a greater distance need not necessarily imply a more undesired
solution. A greedy approach like the one discussed here may result in obtaining
a local optimum. Simulated annealing approaches or heuristic approaches may be
deployed for finding out the global optimum.

5.4 Using AFSR on the i* Framework

The AFSR framework, proposed in the previous sections, has been developed for
performing goal model maintenance exercises. The goal modelling constructs used
for developing the AFSR framework are common to most goal modelling frameworks
like KAOS, GBRAM and i*. It is a generic framework and can be easily adapted
to fit any specific goal modelling framework. In this section, we illustrate how the
AFSR framework can be adapted for maintenance of i* models.

The i* framework is one of the most complex State-of-the-Art goal modelling
frameworks. In terms of modelling constructs, the i* framework supports inter-actor
dependencies that need to be handled separately. Apart from that, task decompo-
sitions and means-end decompositions are analogous to AND-decompositions and
OR-decompositions, respectively. The mechanism for semantic reconciliation also
remains the same. Another characteristic of the i* framework is that it supports both
hard-goals (functional requirements) and softgoals (non-functional requirements)
within the same model. However, since the AFSR framework works with functional
satisfaction conditions only, we ignore softgoal constructs for the time being. The
following sections elaborate on how the AFSR framework can be extended to incor-
porate semantic reconciliation over inter-actor dependencies and how we can deploy
the implementation roadmap for i* models in particular.

5.4.1 Dependency Reconciliation Operator

The AFSR framework described earlier has an underlying assumption that all leaf-
level goals are primitively satisfiable. This means that the leaf-level goals do not
depend on other actors for satisfying them and, hence, the ORG Mods shown in these
examples are restricted to within the actor boundary. However, this may not be the
case always.

Consider the multi-actor goal model shown in Fig.5.20. The figure illustrates an
ORGMod that spans beyond the actor boundary of A; and forays into the boundary

120 5 Goal Model Maintenance

Actor Aj) I

Rydependency ——) e

Legends:
C) Goal C>Task |:| Resource O Actor
Task Decomposition Means Dependency
Link End Link Link

Fig. 5.20 An ORGMod that extends beyond the boundary of actor A; as the resource R;; depends
on task Tj, of actor A;

of actor A;. The R;; dependency captures the requirement that actor A; needs to
acquire the resource R;; and depends on actor A; to perform task Tj, to provide
the required resource. Unlike the previous examples, CE(R;;)#IE(R;;). In general,
we can redefine the formula for evaluating the cumulative satisfaction conditions of
leaf-level goal L, as follows:

CE(L,) = DEPrec(L,)

_ JIE(Ly), ifL, is independent. 5.11)
N rec,, Ly), using Eq. (5.1), if L, depends on L. '
Assuming that for any dependency, both the depender and the dependee are leaf-
level goals, and do not undergo any further decompositions, we proceed to derive the
cumulative satisfaction condition CE(R;;) using the dependency semantic reconcil-
iation operation DEPrec() as follows:

CE(R,]) = DEPI‘EC(R,‘]) = VEC(R,'], sz)
such that CE(Tj;) N =IE(R;1) = @,i.e.,IE(R;;) and CE(T},) are mutually consistent.

If the intersection results in a non-empty set, then the corresponding dependency gives
rise to inconsistencies within the model.

5.4 Using AFSR on the i* Framework 121

In general, we may have a chain of dependencies (not a cycle or loop) for
satisfying a leaf-level goal. Assuming that there are no cycles, let (A}, M) —
(Ay, My) — - -+ — (A, M) represent a chain of transitive dependencies where
(Ai, M;) — (A;, M;) implies that a leaf-level goal M; in actor A; is dependent on
another leaf-level goal M; in actor A;. The cumulative satisfaction condition for the
first goal in the dependency chain, CE(M), can be derived from the following recur-
rence relation, using Eq.5.11:

CE(M;) = DEPrec(M;)

_JIE(My, ifisk (5.12)
| rec(M;, DEPrec(M;.)), Viil<i< (k—1). '

5.4.2 Implementation Roadmap for i*

We have already provided an implementation roadmap for the AFSR framework that
maps the goal maintenance problem to a state-space search problem with the help of
the six tuples (Sgr, Ssirrs Zmod> Asuces $2heurs Lrest). We now elaborate on how these
six tuples can be realized for the purpose of maintaining i* models:

i. The language we will use to populate the set o will consist of the following
predicates:

a. consistent(G) which states that a goal model G is consistent in the sense of
the reconciliation operator.

b. entails(G, k, y) which states that goal model G k-entails goal y .

c. not_entails(G, k, y) which states that the goal y is strongly non-derivable
from goal model G, level k onwards.

d. cond_entails(G, k, vy, §) which states that a goal model G k-entails y if and
only if it entails 8 at level k — 1.

e. cond_not_entails(G, k, y, B) which states that y is strictly non-derivable
from goal model G, level k onwards, whenever G entails 8 at level k — 1.

ii. Each state s; € S, represents a modified version of the original goal model such
that some subset of goals within the model are guaranteed to be «-satisfiable.

iii. The start state sy, represents the original goal model G.

iv. The list of primitive goal modification operators (Table 5.1) is appended with the
following primitive operators for handling dependencies:

a. add_dep (g%, g §) which adds a dependency between actors A and B
making g;' depend on g&.

b. rem_dep (g%, g %) which removes an existing dependency between goals
g{‘ (in actor A) and gf (in actor B).

122

Table 5.2 List of compound goal modification operators

5 Goal Model Maintenance

No. Compound | Functionality Sequence of primitive

operator operations

1 ER_OR Resolves entailment conflicts break (G, G1)
arising in OR-decompositions (as | break (G, G;)
shown in Figs.5.12 and 5.13) OR_add (G, GT1)

OR_add (G, GTy)
join (GT1,G1,A)
AND_add (GTy,CT 1)
jOil’l(GT2,G 2,A)
AND_add (GT,,CT 1)

2 ER_AND Resolves entailment conflicts AND_add (G,CT 1)
arising in AND-decompositions
(as shown in Figs.5.14 and 5.15)

3 CR_Hier Resolves hierarchic consistency leaf_rmv (Gy)
conflicts (as shown in Figs.5.16 AND_add (G, TG1)
and 5.17) AND_add (G, TGy)

4 CR_Sibl Resolves sibling consistency leaf_rmv (G1)
conflicts (as shown in Figs.5.18 AND_add (G, TG1)
and 5.19) or

leaf _rmv(Gq)
AND_add (G, TG1)

c. leaf_dep_rmv (g;) which removes a leaf-level goal g; that is dependant
on some other goal by removing the associated dependency as well.
X w0a comprises of the set of compound goal modification operators—
ERA_AND, ERA_OR, CRA_Hier, andCRA_Sibl—thatcanbeapplied
to any state to reach a new state in the state space. We can use the set of prim-
itive operators (including the newly added dependency primitives) to repre-
sent these compound goal modification operations as sequences of primitive
operations. Table 5.2 shows this in detail.

V. Ay s the transition function that captures all the state transitions that can occur
within the state space S;;; due to the application of compound goal modification
operators in X4, 1.€., Aguce: Sst X Zmod — S

vi. For the heuristic cost estimate function £2,,,, we define a weighting scheme
based on structural and semantic proximity, where we assign positive weights to
goal model refinements. These weights are proportional to the levels at which
they occur such that higher level refinements have greater impact on the cost
estimate. This implies that-

a. $24.(start,s) is the sum of the weights of all goal refinements that have been

included so far.

b. $2.4(s,goal) is an optimistic guess of the net sum of the weights that can be
further added to the goal model in state s to obtain an «-satisfiable solution.

We have defined specific instants of the six tuples that are used to define the state
space search problem. Since the state space search has been properly defined, we

5.4 Using AFSR on the i* Framework 123

now need to show that the heuristic cost estimate function 2., is both admissible
and consistent. This ensures that applying A* search to the state space search will
find the optimal path to the goal model having minimum deviation.

Theorem 5.2 The heuristic cost function $2ye,, is admissible and consistent, i.e., for
any intermediate state s,

1. 2,48, Sfin) < $240/(8, Sn) (admissibility), and
2. | Qest(sla Sﬁn) - Qe‘vt(SZa Sﬁn)| < Qact(sla 52) (COnSiS[enC)’)

Proof The proof takes the same approach as in Konstantin’s thesis [1]. We consider
a relaxed version of the problem where conflicts are resolved as and when they
are encountered during the bottom-up reconciliation process. We can compute the
estimated cost of reaching a final state from the current state by identifying all
conflicts. This estimated cost is the sum of the weights assigned to all goal model
refinements that must be applied to obtain an «-satisfiable goal model.

We then observe that for the non-relaxed version of the problem, requirement
analysts can choose to resolve any particular conflict within the goal model subtree.
This might not be at the lowest level and can, thus, give rise to new conflicts. Again, the
cost estimates are based on the solutions provided by ERA and CRA—which make
bare minimal changes to a given goal model configuration for resolving conflicts.
Analysts can choose to deploy their own solutions for a conflict for which the actual
cost can only increase. Thus, the estimated cost of reaching the final state can never
be larger than the actual cost and the heuristic estimate is never underestimated. This
implies that £2, (s, goal) < §2,,(s, goal) holds for all states. Hence, the heuristic
is admissible.

The proof of consistency follows from the proof of admissibility. Let s; and s, be
two intermediate states in the state space. Since admissibility holds for both these
states, we have

Qest(sl ’ sﬁn) = Qact(slv Sﬁn)
Qesr(SZ» sﬁn) = Qact(s2a sﬁn) (513)

If we take an absolute difference on both sides we have
|Qest (Sl s Sﬁn) - Qest(SZa Sﬁn)| = |Qact (Sl s Sﬁn) - Qact(SZ» Sﬁn)l (514)
But since £2,., (s, goal) is a monotonically increasing function, we can conclude
that
[$24c1 (51, g0al) — §24¢1(s2, goal)| = $24(s1, 52) (5.15)
Replacing Eq.5.15 in Eq. 5.14, we get the consistency criteria

|Qest(slv goal) - Qesz‘(SZv goal)| = Quct(sh SZ) (516)

Hence, proved.

124 5 Goal Model Maintenance

5.5 Experimental Evaluation

In this section, we perform an experimental evaluation of our approach to show that
our proposed methodology can be deployed in practical settings for maintenance and
support. We achieve this by showing that a prototype of the AFSR framework can
be scaled up to large and complex goal models occurring in real-life scenarios.

We first elaborate on the performance indicators and drivers that will serve as
parameters for measuring scalability in Sect. 5.5.1. This is followed by elaboration of
experimental preliminaries (Sect. 5.5.2) including the process for random generation
of semantically annotated goal models. We also provide a brief description of an
uninformed version of A* search. The performance metrics of this uninformed search
will serve as the baseline for measuring the performance of A* search. Finally, we
present all the experimental results with suitable graphs in Sect.5.5.3.

5.5.1 Indicators and Drivers

Indicators. The most important indicator is execution time which signifies the time
it takes to compute a valid outcome of the SRA algorithm for a given annotated
goal model. The execution time is directly influenced by the number of calls to the
ERA and (or) CRA operators to create an «-satisfiable goal model. Another important
indicator is the number of states that are created (or visited) during the A* search.
For uninformed search, this indicator will face an exponential growth.

Drivers. The most significant driver is the size of the goal model that is being fed as
input to the SRA algorithm. The size is measured by the number of levels in the goal
model (i.e., the depth). As the depth of a goal model increases, the cost of applying
the ERA and CRA operators at the higher levels also increases. We denote this driver
as level.

Another important driver is the number of goals in the goal model and the cor-
responding number of satisfaction conditions being fed into the SRA algorithm.
However, there is no strict correspondence between the two as goals are annotated
arbitrarily. This dilemma is resolved by considering the maximum number of satis-
faction conditions that can be used to annotate the goals. We denote this driver as

eff.

5.5.2 Experimental Preliminaries

In this section, we explain random generation of goal models, random generation of
satisfaction conditions for goal models, and the formulation of an uninformed search
as a modification of the A* search.

5.5 Experimental Evaluation 125
5.5.2.1 Random Generation of Goal Models

Goal models were randomly generated as we did not have access to complex real-life
goal models. This is reasonable for the purpose of evaluating scalability as it allows
us to create a large number of goal models of a chosen size and complexity. All
parameters of the random generation procedure are denoted by n,, where x identifies
the parameter.

We first generate n,, number of root goals where each root goal represents the root
of a goal decomposition tree. For each root goal, the random generation procedure
creates a refinement consisting of at least one- and at most n; number of subgoals.
The type of refinement (OR-/AND-decomposition) is also decided randomly. The
process is performed recursively for the newly created subgoals until the goal model
being generated reaches a depth of nj,y.s-

5.5.2.2 Random Generation of Satisfaction Conditions

A goal model is annotated with satisfaction conditions by random generation of the
set of immediate satisfaction conditions (IE) for each goal within the model. A set Eff
of n.g satisfaction conditions is generated. An immediate satisfaction condition (/E)
is defined as a set of satisfaction conditions—either in their original or negated form.
An immediate satisfaction condition set IE of size ny.. is generated by randomly
selecting a satisfaction condition from Eff, ney.. times, and adding it with an equal
probability as a negative- or positive variable to /E. This step is repeated for all the
goals in the generated goal model.

5.5.2.3 Modification of A* Search

In order to provide a baseline for comparing the performance of A* search, we create
a modified version of A* that does not use any domain-specific knowledge that is
encoded within the heuristic function. In the semantic reconciliation process using
A*, we only flag conflicts (entailment or consistency) and create a cost matrix that
provides an estimate of resolving these conflicts that exist at different levels of the
given goal model. Based on this cost matrix, we choose to perform the most cost-
efficient semantic reconciliation using the ERA or CRA operators. For performing
an uninformed search, we invoke the ERA or CRA operators by selecting a conflict
randomly from the cost matrix.

5.5.3 Process and Results

The experimental results are presented and discussed in this section, but first the
experimental process and set-up are described in more detail.

126 5 Goal Model Maintenance

enpum|evel=10 el]evel=15 level=20 essém]evel=25

0.5 - n=10 n=20 n=30 n
0.25
0.125
0.0625
0.03125
0.015625

Execution Time (in sec.)

Maximum Number of Effect Annotations

Fig. 5.21 Variation of execution time for random generation of annotated goal models

5.5.3.1 Experimental Process and Set-Up

We have performed the experiments in two parts.

In the first part, we have tried to evaluate the variation of execution time for
random generation of semantically annotated goal models. This was done by fix-
ing the values of n, = 1 and n; = 2. Random goal models were generated having
depth 7.5 € {10, 15, 20, 25}. For satisfaction condition of the goals, we chose
ngr € {10, 20, ..., 100} and n.p;.. was randomly chosen to be bounded by n.y, i.€.,
Neffsize < Nefr. TO Obtain an average behaviour of the random generation process, we
generated 50 sets of data for each instantiation of the drivers.

In the second part of the experiment, we perform semantic reconciliation for
randomly generated annotated goal models. As in the previous experiment, n, and
ng are set to values 1 and 2 respectively. Random goal models are generated having
depth 1.5 € {5, 6,7, 8} and ngr € {10, 20, 30}. For each driver instantiation, we
performed 50 runs of our experiment to obtain mean values. In this experiment, we
measured the number of times the ERA and CRA operators were invoked to find an
a-consistent goal model as indicator. For each generated model, we ran the A* as
well as uninformed search. In order to complete the experiments in feasible time,
we aborted each execution of uninformed search that lasted longer than 10 min. The
experiments were conducted on an Intel Core i5-3330 CPU, operating at 3.00 GHz
and having 4GB of RAM.

5.5.3.2 Experimental Results
We first present the results for random generation of semantically annotated goal

models. Figure5.21 plots the execution time (in seconds) against the maximum
number of satisfaction conditions for each goal. Data sets have been obtained for

5.5 Experimental Evaluation 127

esp=mUninformed Search @ll=A* Search
12000

10000
8000
6000

4000

No. of Function Calls

2000

5 6 7 8 9 10
Depth of Goal Model (level)

Fig. 5.22 Number of calls to the semantic reconciliation operators (ERA and CRA) for randomly
generated goal models with nyz = 10

goal models having depths 10, 15, 20 and 25. The y-axis has been converted to the
logarithmic scale log,. The four curves are almost linear in nature. Linear curves on
a logarithmic scale represent exponential functions. Thus, for all the four different
data sets, the execution time increases exponentially as the maximum number of
satisfaction conditions increases. However, the exponential growth for level = 10
(represented by the blue curve) is much less as compared to the exponential growth
for level = 25 (represented by the purple curve); although they appear to be some-
what parallel on the logarithmic plot. The execution time for level = 10 varies from
0.0249 seconds to 0.1592 seconds, whereas, for level = 25, it varies from 5.1093
seconds to 44.04 seconds. Thus, the higher the position of the linear curve on the
y-axis, the more rapid exponential growth of the execution time occurs.

Next we present the results for our semantic reconciliation framework AFSR.
Figure 5.22 shows the average number of calls to the resolution operators ERA and
CRA when the depth of the goal models varies from 5 to 10 (for both A* and Unin-
formed search). The maximum number of satisfaction conditions is kept fixed at
ner = 10. As shown in the graph, A* drastically reduces the number of function
calls as compared to uninformed search. This is quite logical. In uninformed search,
we perform semantic reconciliation randomly which may give rise to new conflicts in
the lower levels. Thus, the lower level goals get modified multiple times, repeatedly,
as the SRA process progresses to the higher levels. On the other hand, A* uses the
heuristic cost function and targets to reconcile the least cost conflict at the lowest level
of the goal model. This eliminates the repeated modification of goals in the lower
levels of the goal model. Thus, the number of calls to the reconciliation operators is
also greatly reduced.

Finally, we present our results on performance evaluation when all drivers are var-
ied simultaneously. Figure 5.23a, b show three-dimensional graphs where we mea-
sure the number of times the semantic reconciliation operators (ERA and CRA) are

128 5 Goal Model Maintenance

invoked when we vary both the depth of the goal models (level) as well as the
maximum number of satisfaction condition (7).

As observed in Fig.5.23a, variations in level and n.; have a significant impact
on the number of operator invocations (and, hence, the execution time) during Unin-
formed search. A more careful observation shows that an increase in level has a
much greater impact on the number of calls than an increase in n.z. This can be
explained as follows. First, if we increase n.y for given goal model depth, it only
requires the AFSR framework to handle greater number of satisfaction conditions
simultaneously. This may demand higher space complexity, but the number of calls
to ERA and CRA does not change significantly. On the other hand, if we increase the
number of levels in the goal model, then the number of goals increases exponentially
and so does the number of required semantic reconciliation (assuming even distribu-
tion of entailment and consistency conflicts during the random generation process).
Thus, there is an exponential growth in the number of invocations of the semantic
reconciliation operators as the number of levels in the goal model is increased.

Figure 5.23b shows that variations in level and n.¢ only slightly impact the number
of calls to the semantic reconciliation operators during A* search. The number of
calls increases only slightly with increase in the goal model depth. This is due to the
greater number of subgoals that need to be reconciled when higher level conflicts are
resolved with the help of the heuristic cost matrix. The graphs shown in Fig. 5.23 are
encouraging as they suggest relatively stable execution times for randomly generated
goal models, regardless of the number of conflicts. However, execution time is not
guaranteed to be constant for goal models of a particular size as it depends on the
number of entailment or consistency conflicts that need to be reconciled.

5.6 Conclusion

In this chapter, we propose AFSR—a semi-automated framework for reconciliation
of satisfaction conditions over annotated goal models. The satisfaction condition
annotation and reconciliation process help requirements analysts by offering seman-
tic descriptions of goal models. The proposed AFSR framework has two major
components—a semantic reconciliation module and a conflict resolution module.
The semantic reconciliation module reconciles the individual satisfaction conditions
of goals in the context of the entire goal model. It also raises entailment and con-
sistency conflicts that are detected during the semantic reconciliation process. The
conflict resolution module resolves these conflicts by using model refactoring and
presents analysts with possible conflict-free alternatives. In this chapter, we have
developed the framework using generic goal model constructs and can be extended
to any framework like KAOS, GBRAM, or i* (as already shown).

The proposed work may be extended to make it compatible across multiple goal
modelling environments. We have also provided an implementation roadmap where
we can map the goal model maintenance problem to the state space search problem
and shown how A* search can be used to find a conflict-free solution having minimal

5.6 Conclusion 129

H0-2000 m2000-4000 =4000-6000 m6000-8000 M 8000-10000

10000
8000
6000

4000

No. of Function Calls

2000

wv

6 7 8
Depth of goal model (level)

(a) Uninformed Search

W0-2000 m2000-4000 m™4000-6000 m6000-8000 M 8000-10000

10000
8000
6000

4000

No. of Function Calls

2000

5 6 7 8
Depth of goal model (level)

(b) A* Search

Fig. 5.23 Number of calls to the effect reconciliation operators (ERA and CRA) for varying values
of the drivers level and ng

deviation from the original goal model. We have also developed a prototype for
the AFSR framework and measured how its performance scales with the size and
complexity of the annotated goal models. Applying A* search over uninformed search
provides significant benefits in terms of execution time and, hence, makes the AFSR
framework scalable for real-life goal models having greater complexity.

130 5 Goal Model Maintenance
References

1. Hoesch-Klohe K, A framework to support the maintenance of formal goal models, PhD thesis
University of Wollongong, Wollongong, Australia

2. Hinge K, Ghose A, Koliadis G (2009) Process SEER: a tool for semantic effect annotation of
business process models. In: Proceedings of the 13th IEEE international conference on Enterprise
Distributed Object Computing (EDOC), pp 54-63. https://doi.org/10.1109/EDOC.2009.24

3. Ghose A, Koliadis G (2008) PCTk: a toolkit for managing business process compliance. In:
Proceedings of the 2nd international workshop on juris-informatics (JURISIN’08)

4. Raut M, Singh A (2004) Prime implicates of first order formulas. Int J Comput Sci Appl 1(1):1-
11

5. Ghose A, Koliadis G (2007) Auditing business process compliance. In: Proceedings of the 5th
international conference on service-oriented computing (ICSOC), pp 169-180. https://doi.org/
10.1007/978-3-540-74974-5_14

https://doi.org/10.1109/EDOC.2009.24
https://doi.org/10.1007/978-3-540-74974-5_14
https://doi.org/10.1007/978-3-540-74974-5_14

Chapter 6 ®)
Conclusion and Future Work Geda

The works presented as part of this book are novel and yet limited in terms of their
applicability to real-world enterprises. There is ample scope for further exploration of
the problems identified as part of this research. The algorithms and results presented
in this book can be further modified and adapted for better application to enterprises.
This chapter is divided into two sections. Section 6.1 presents a brief summary of
our research contributions in this book. Section6.2 presents some exciting future
research directions that can be explored to benefit the GORE community.

6.1 Summary of the Work

In this book, we present a collection of novel solutions that aims to improve the
state-of-the-art as far as enterprise modelling and requirements analysis is consid-
ered in goal-oriented requirements engineering. We address an enterprise modelling
scenario that had not been considered by the community previously. We highlight
the importance of goal modelling in enterprise hierarchies and particularly underline
the importance of an ontology integration framework for such goal model hierar-
chies (also referred to as requirement refinement hierarchies). We present one such
framework for integrating the ontologies between adjacent level goal models and
measuring the degree of correlation that exists between them. We also establish the
fact that goal model hierarchies are not merely a hypothetical concept and they really
manifest themselves in real world event logs. The relevance of this research stems
from the fact that we could mine adjacent and non-adjacent hierarchic structures
from real-world data.

Apart from enterprise modelling, we have also contributed to the GORE commu-
nity by enhancing the existing state-of-the-art in terms of requirements analysis. We
have identified that very limited research had been done to perform model checking
on goal models. We have proposed a new heuristic called the Semantic Implosion
Algorithm and simulated it to compare its performance with an existing heuristic that

© Springer Nature Singapore Pte Ltd. 2020 131
N. Deb and N. Chaki, Business Standard Compliance and Requirements Validation

Using Goal Models, Services and Business Process Reengineering,
https://doi.org/10.1007/978-981-15-2501-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2501-8_6&domain=pdf
https://doi.org/10.1007/978-981-15-2501-8_6

132 6 Conclusion and Future Work

was proposed by Fuxman [1]. The new heuristic has been shown to outperform the
existing heuristic by a factor of almost 10'7. Thus, our proposed solution is much
more efficient and scalable when it comes to performing model checks. We have
also implemented our proposed algorithm by developing a tool, called i*ToNuSMV.
The tool accepts goal models in the textual GRL (tGRL) notation and temporal
properties in CTL. The underlying model checker that has been integrated into our
tool is NuSMV. Analysts can now feed goal models into the i*ToNuSMV tool and
check them against temporal compliance rules. NuSMV generates counter-examples
whenever a CTL property is not satisfied by the goal model.

Finally, we underline the importance of going beyond the structural features and
orderings, and analysing the semantics of goal model configurations. The AFSR
framework proposed therein enables the modeller to annotate goals with their asso-
ciated semantics. The framework has a semantic reconciliation machinery that can
evaluate the semantics of any goal as obtained from its subgoals. These derived and
intended semantics can then be compared to perform semantic analyses like entail-
ment and consistency checks. AFSR does not stop here; it goes beyond conflict detec-
tion by suggesting re-factored solutions that are conflict-free. This framework can
be deployed for real-world goal model maintenance and their adoption in evolving
requirement settings. However, exploring the entire space of goal model configu-
rations for identifying the optimal solution manually seems to be quite impractical
and erroneous. Human effort often leads to suboptimal solutions. We have shown
how this situation can be tackled by mapping the goal model maintenance problem
to the state space search problem. Establishing the admissibility and consistency of
our heuristic path cost function has allowed us to deploy A* search over the space of
goal model configurations, thereby, guaranteeing the optimal solution.

6.2 Future Research Directions

In this section, we try to shed some light on the future research directions emanating
from the works presented in this book. A greater insight into the impact of enter-
prise hierarchies on goal modelling techniques can be derived from the work on goal
model hierarchies. We observe from the data mining exercise on real-world data that
employees within an organization need not necessarily follow the structure of the
hierarchy. We have mined non-adjacent hierarchic correlations from the data as well.
The proposed framework for requirement refinement hierarchies works with adja-
cent level hierarchies only. This framework can be extended to non-adjacent levels
as well, thereby, developing a system to measure the correlation of the entire require-
ment refinement hierarchy. The works on requirements analysis can be extended as
discussed in the following sections.

6.2 Future Research Directions 133

6.2.1 Extracting Business Compliant Finite State Models

The i*ToNuSMV tool is evolving quite rapidly. Version 2.02 of the i*ToNuSMYV tool
supports multi-actor goal models having inter-actor dependencies. It also supports
model checking with CTL constraints. However, we have been working on a major
release that will derive constrained finite state machines from a goal model. This
implies that instead of feeding a goal model as input and then checking a temporal
constraint on the derived FSM, we will provide the constraint along with the goal
model as input and the derived FSM will already satisfy the given constraint.

6.2.1.1 Assumptions

The different types of CTL constraints have been studied in detail and this paper
works with a finite subset of such constraints in the framework. The primary goal
is to generate a compliant finite state model by pruning transitions from the finite
state model generated by i*ToNuSMYV ver2.02. The proposed guidelines have the
following four assumptions:

A-1 Since FSMs are derived for fulfilment of goals, the framework works with
only AG and EG temporal operators for the violation of goal fulfilment. Exam-
ple:AG (V109! =FU).

A-2 Two CTL predicates can be connected through Boolean connectives like AND
and OR. This framework allows the user to define only two predicates at a
time and connect them by theAND or OR operator. Example: AG (V109 ! =FU
AND V102!=FU).

A-3 Another type of CTL constraint that is addressed is implication (—). Any two
constraint can have implication between them. The implication operator has
been restricted to only single level of nesting. Example: AG (V101=CNF —
AF (V102=FU AND V103!=FU)).

A-4 The goal tree level for an actor has been assumed to be 3 to reduce the problem
complexity.

6.2.1.2 CTL Properties Handled

This section briefly explains each of the CTL constraints that were addressed in [2]
and how the corresponding finite state models are derived.

1. EG(V#! = FU) for AND-decomposition. These types of properties are safety
properties that prevent something bad from happening. Ensuring this property on
a goal with AND-decomposition requires the pruning of CNF — FU transitions
for some subset of the child nodes.

134 6 Conclusion and Future Work

2. EG(V#! = FU) for OR — decomposition. The same type of safety property on
a goal with OR-decomposition has different consequences. Ensuring such a prop-
erty requires the pruning of CNF — FU transitions for all the child nodes.

3. EG(V#! = FUAND V#! = FU). CTL properties which have multiple CTL pred-
icates connected with boolean AND connectives can be ensured by satisfying each
predicate separately. The solution space is a Cartesian product of models gener-
ated from each CTL predicate—denoted by M x N.

4. EG(V#! = FUOR V#! = FU). CTL properties having multiple CTL predicates
connected with boolean OR connectives can be ensured by satisfying either of
the predicates or both. The solution space is much larger and denoted by M +
N+ (M x N).

5. AG(V#! = FU — V#! = FU). These type of CTL properties (defined with the
implication operator —) specify an ordering over the fulfilment of goals. Thus,
all those invalid states need to be pruned from the FSM that violate this property.
State transitions to or from these invalid states are correspondingly removed.

6. EG(V#! = FU) for AND-OR-decompositions. Ensuring such safety properties
for multilevel goal models with OR-decompositions nested under an AND-
decomposition requires the pruning of CNF — FU transitions for all OR-
children. This needs to be done for any subset of the AND-children of the root
node.

7. EG(V#! = FU) for OR-AND-decomposition. If the root goal is
OR-decomposed followed by each OR-child undergoing an AND-decomposition,
then these types of CTL properties can be ensured by pruning CNF — FU tran-
sitions for any subset of AND-children for each of the OR-child of the root goal.

The above seven types of CTL properties have been addressed in the newly pro-
posed version 3.0 of the i *ToNuS MV framework. For a more detailed understanding
of how each of these CTL property classes is ensured within a goal model, readers can
refer to [2]. Figure 6.1 demonstrates the workflow of the i*ToNuSM V3.0 frame-
work.

6.2.1.3 Demonstration with Case Study

In this section, the working of the i *ToNuS M V 3.0 deployment interface is demon-
strated with the help of a simple real-life case study. Figure 6.2 shows a simple goal
model that captures the requirements for Access Locker. Itrequires two tasks to
be performed—vVerifyCodeTrue verifies whether the user access code entered
is true and GiveAccess finally gives the access of the locker to the user pro-
vided the code entered is true. An intuitive CTL property associated with this goal
model is also shown in the figure. AG (V103 !=FU — V104 !=FU) implies that
the task GiveAccess cannot be performed until the task VerifyCodeTrue is
successfully completed.

The i*ToNuSMV?2.02 tool, which implements the Semantic Implosion Algo-
rithm (SIA), generates a finite state model irrespective of the CTL property associ-

6.2 Future Research Directions 135

An i* goal model Model elements mapped to
represented using tGRL — variable names
notation J 1

CTL property specified using
variable names

1

Solution model(s)
generated

Verify a solution
STOP model against

some constraint?

Verify
another

model?
Choose solution model and

specify the CTL property and
run NuSMV model checker

I R Check output

Fig. 6.1 The workflow of the i*ToNuSM V3.0 deployment framework

Fig. 6.2 A simple goal
model for accessing a locker

AccesslLocker (V102)

VerifyCodeTrue GiveAccess
(V103) (V104)

CTL: AG(V103!=FU ->V104!=FU)

ated with the goal model. Since the goal model in Fig.6.2 has a two child AND-
decomposition, the corresponding FSM has a 2-dimensional lattice structure for
capturing all possible execution sequences to fulfil the root goal. The derived FSM
is shown in Fig. 6.3.

The research guidelines proposed in [2] have been implemented in i* ToNuSMV
3.0. Tt is an extension of the Semantic Implosion Algorithm that takes the finite state
model generated by SIA and prunes those transitions which violate the given CTL
property. The pruned finite state model for the given goal model and CTL property
(refer to Fig. 6.2) is shown in Fig. 6.4.

136 6 Conclusion and Future Work

V102:NC->CNF
V102:NC % V102:CNF, V103:NC, V104:NC

V103:NC->CNF MOQNC»CNF

V102:CNF, V103:CNF,V104:NC V102:CNF, V103:NC,V104:CNF
v103:CNF->‘FU/ V103:NC->CNF V104:CNF->FU
V104:NC->CNF
V102:CNF,
V102:CNF, V103:CNF,V104:CNF | V102:CNF, V103:NC,V104:FU
V103:FU,V104:NC

V103:CNF->F
V104:NC->CNF \/104:CNF->FU V103:NC->CNF

| V102:CNF, V103:FU,V104:CNF |

| V102:CNF, V103:CNF,V104:FU |

V104:CNF->FU ﬁ)S:CNF»FU

V102:CNF, V103:FU,V104:FU

V102:CNF->FU

A
V102:FU, V103:FU,V104:FU

Fig. 6.3 FSM generated by i*ToNuSMV 2.02

6.2.14 URL

The i*ToNuSMV 3.0 framework can be downloaded from the following link: https://
github.com/istarTONuSMV/i-ToNuSMV3.0. The User Manual and use case exam-
ples have been shown on the webpage.

6.2.1.5 Experimental Results

In this section, some experimental results have been documented that were obtained
after performing extensive simulations with the existing (version 2.02) and newly
proposed (version 3.0) versions of the i*ToNuSMV framework. Arbitrary goal
models were designed with varying complexity in terms of the number of actors,
the number of goals, the number of AND/OR-decompositions and the complexity
of the associated CTL constraints. The simulations did not bring out any anomalous
behaviour. Data were collected with respect to the number of transitions in the final
output FSM and the execution time.

The bar chart of Fig. 6.5 shows a comparative analysis between SIA (implemented
in version 2.02) and Complaint-SIA (implemented in version 3.0). i*ToNuSMV 2.02
does not generate a compliant FSM like i*ToNuSMV 3.0. Thus, the FSM generated
by version 2.02 includes all possible execution sequences between sets of states. The
complaint-FSM generated by version 3.0 will have fewer number of transitions as

https://github.com/istarToNuSMV/i-ToNuSMV3.0
https://github.com/istarToNuSMV/i-ToNuSMV3.0

6.2 Future Research Directions 137

:NC->
V102:NC V102:NC->CNF | V102:CNF, V103:NC, V104:NC
V103:NC->CNF w04:NC->CNF
V102:CNF, V103:CNF,V104:NC V102:CNF, V103:NC,V104:CNF

V103:CNF->FU V103:NC->CNF
V104:NC->CNF
V102:CNF,
V102:CNF, V103:CNF,V104:CNF

V103:FU,V104:NC

V103:CNF->F
V104:NC->CNF

V102:CNF, V103:FU,V104:CNF

V104:CNF->FU

V102:CNF, V103:FU,V104:FU

V102:CNF->FU

A 4
V102:FU, V103:FU,V104:FU

Fig. 6.4 FSM generated by i*ToNuSMV 3.0

all CTL properties used in these simulations, impose some sort of ordering between
events. This results in the final FSM having only a subset of the transitions included
by SIA. The degree (or %) of reduction in state space is dependent on several factors
rather than only one.

The line plot shown in Fig. 6.6 compares the execution time of SIA and Complaint-
SIA—both measured in milliseconds. With the same set of simulation parameters,
it is observed that i*ToNuSMYV 3.0 takes much more time than i*ToNuSMV 2.02 to
generate the finite state models. This is also quite logical as version 3.0 implements
some additional checks and tasks after SIA is executed (as in version 2.02). Basically,
version 3.0 takes the FSM generated by SIA and individually scans and prunes
transitions to satisfy the given CTL property. Also, as discussed in [2], there may be
multiple strategies for pruning different subsets of transitions in order to satisfy the
CTL property. i*ToNuSMV 3.0 executes each such strategy and generates a unique
finite state model (pruned and compliant) for each of these strategies. This is the
reason why version 3.0 takes much longer to reach completion.

138 6 Conclusion and Future Work

mSIA H Compliant SIA

No. of State
in FSM
=
o
o

Transitions

Type of CTL
operator used

G,NOT b
G,NOT |
G,NOT
G,NOT
G,NOT
G,NOT
G, AND
G,OR,NOT
G,
G
G,~>
G,~>
G,>
G,>

G,NOT,AND
G,NOT

G,NOT
G,NOT,AND
G,NOT
G,NOT
G,AND

No. of OR-
decompositions

o
=
o
-
o
-
o
o
o
o
o
=
o
o
o
-
-
o
N
=
N

No.of AND-|) |51 3 3 2 2/2(2/ 1113222 25334
decompositions

1011|1213 |14

w
IS
(%
~
~
[e)]
(<)}
oo
w
N
(%
~
[
o
©

No. of goals| 3

Fig. 6.5 Number of state transitions in the final FSM

=—SIA == Compliant SIA
100000
g'_g 10000 /
= O
s § 1000
=2
§§ 100 Af‘A‘V
xX o
= 10
1
666666666 YNALALNNEE2SE GG
Typeof CTL 13 2 212 21212 22 ¢ 0000 d223Z222
operatorsused ¥ O U G| 0§ g & d eI
<5 < = <
o O G 0]
No. of OR-
decompositions © 101/ 0/1/0/ 00001000 1/102 11
No.of AND- , ' /4 1312 /2/2/2/1/1/1/3/2/2/2/ 25 33 2
decompositions
No.ofgoals| 3|3 4 5 77 668 3 4/ 5 78 6| 9101112 13 14

Fig. 6.6 Execution time for deriving the final FSMs

6.2 Future Research Directions 139
6.2.1.6 Conclusion and Future Work

In [2] the authors only presented some use cases to demonstrate how CTL compliance
can be ensured in finite state models. They also documented an algorithm for the
process. However, a proper deployment framework implementing the guidelines was
missing. This paper builds on the guidelines proposed in [2] and presents a proper
deployment interface for i*ToNuSMYV 3.0. It provides the URL for downloading and
installing the framework and the different features supported by the interface (with
the help of a case study). It also measures and compares the performance of the newly
built version with the existing version of the i*ToNuSMV tool (also see Table 6.1).

This work presents a tool to generate finite state models from goal models that
already satisfy some given CTL constraint. Finite state models can be more readily
transformed into code. Thus, this research takes an important step towards the devel-
opment of business compliant applications directly from goal models. Most business
compliance rules have some sort of temporal ordering over events and can be repre-
sented with temporal logics efficiently. However, the proposed solution has several
assumptions which needs to be relaxed for making the framework more complete.

One of the more important limitations of the proposed solution is that only one
temporal property (in CTL) can be specified along with the goal model specification.
Future versions of the i*ToNuSMYV framework will aim to allow users to specify
multiple CTL properties over a single goal model specification. Another limitation of
the new version is the extra processing time that is required. The additional pruning
mechanism requires extensive checking of the finite state model generated by SIA.
Currently, research efforts are being channelized to develop an efficient version of
the Semantic Implosion Algorithm that will generate compliant FSMs in a more
efficient manner.

Table 6.1 Feature comparison between verions 2.02 and 3.0

Features

i*ToNuSMV 2.02

i*ToNuSMV 3.0

Input specification

i*goal model defined using
tGRL

i*goal model defined using
tGRL and a CTL property

Number of FSM generated

1

1 or more than one

Compliant FSM

FSM may or may not be
compliant to any temporal

property

FSM compliant with a given
CTL property

Solution space

Comparatively large

Reduced solution space

Number of NuSMV input 1 One for each of the FSM
generated
Verification NuSMV model checker NuSMYV model checker can

verifies property on single
finite state model

separately verify each of the
solution models

140 6 Conclusion and Future Work

6.2.2 The CARGo Tool

The AFSR framework has been presented along with an implementation roadmap
that uses A* search. This research direction has several avenues that can be further
explored to make it more applicable to enterprises. For instance, we have worked with
functional semantic annotations only. Research can be directed to incorporate non-
functional semantics associated with softgoals. Non-functional semantic analyses
can enrich the mechanism for choosing between multiple strategies of goal satisfac-
tion. Also, the most imminent research scope is to build a proper tool interface that
implements the AFSR framework.

The CARGo prototype [3] is built on the AFSR framework. It makes the use of a
data structure, as illustrated in the following section, for representing and modifying
goal models. Algorithm 1 shows the main procedure of the prototype and how this
data structure is used.

6.2.2.1 Semantically Annotated i* Networks (SAi* Nets)

SAi* Nets are a non-linear data structure representation of goal models that have
been developed for the CARGo tool prototype. It is similar to an adjacency list (a list
of linked lists) where each list captures the strategic rational model of a specific actor.
Every list is headed by an actor_node which specifies the particular actor. Each goal
model element within the actor’s goal tree is represented using tree_nodes that have
the node structure shown in Fig.6.7. A sample abstracted SAi* Net representation
is shown in Fig.6.8. All computations and modifications proposed by the AFSR
framework, for identification and removal of annotation conflicts, is implemented on
the SAi* Net. The final conflict-free SAi* Nets are translated to textual goal model
descriptions for end-user readability. Each tree_node has the following fields:

e val: An integer used to identify each goal model element uniquely.

e str: Name of the element.

e type: Integer values are used to identify decomposition type of the tree_node—0
for OR-decompositions, 1 for AND-decompositions and 2 for leaf nodes.

val] str Jtype |gtr | ¥*IE | *CE | *parent | *children | *depends_on | *next

\ 4 \ 4 VY \ 4 VY
IE_node CE_node parent_ child_queue dependency_ tree_node
queue node node queue node

Fig. 6.7 tree_node structure

6.2 Future Research Directions 141

Actor Al Actor A2

|-101| Al |—> P1 = c11 | c2

[02] a2 | —>621—>c22;|7
7

—

~—
tree_nodes

Fig. 6.8 Abstracted view of an example SAi* Net

gtr: Integers used to identify goal, task or resource.

*]E: List of immediate annotations as first-order logic predicates.

*CE: List of cumulative annotations as evaluated by SRA.

*parent: A pointer to its parent queue. For root nodes, this field is NULL.
*children: A pointer to its child list. For leaf nodes, this list is empty.
*depends_on: A pointer to the list of dependencies associated with that tree_node.
For an independent node, this list is empty.

e *next: A pointer to the next free_node in the actor’s goal model.

6.2.2.2 Platform Used

The back end code is generated in the C language. The front end design is developed
in JAVA.

6.2.2.3 URL of the CARGo Prototype

The CARGo tool can be freely downloaded from the following URL:
https://github.com/CARGoTool/CARGoV1.0.

https://github.com/CARGoTool/CARGoV1.0

142 6 Conclusion and Future Work

Algorithm 1 CARGo_tool

Input: i* model with immediate annotations in textual format.

Output: Conflict-free i* model variant in textual format.

Data Structure: SAi* network and a conflict_list.

1: procedure MAIN

2: Build SAi* network from given input i* model

3: Compute CE of each node by traversing SAi* network
in bottom-up approach

4: Traverse SAi* network either in top-down or in
bottom-up approach according to given user choice
and generate the conflict_list.

5: do

6: Extract node from the conflict_list.

7: Perform ERA or CRA as per the type of conflict

8: Apply SRA to update the SAi* network and con-
flict list.

9: while conflict_list is not empty

10: Generate i* model representation of the conflict free
SAi* network in textual format
11: end procedure

6.2.2.4 Benefits of the CARGo Tool

The annotation of goal model artefacts within a goal model is not one of the major
contributions of this tool. It is somewhat similar to the annotation mechanism sup-
ported by jUCMNav for GRL. In fact, we work with tGRL goal models. The main
benefit of the tool is in the domain of goal model maintenance in changing busi-
ness environments. The tool helps with the adaptation of goal models when business
requirements change. Changing requirements cause a change in the relative contexts
of the goal model artefacts. The CARGo tool identifies the conflicts arising out of
these changes in contexts. Conflict resolution is performed by refactoring the goal
model and creating a goal model variant that is conflict-free. Existing goal mod-
elling analysis techniques can be applied to all goal model variants as well. Thus, the
CARGo tool helps in the evolution of goal models in changing business environments.

6.2.2.5 Conclusion

The CARGo tool is sound as the output is always a conflict-free goal model. It is also
partially complete with the exception of softgoals and softgoal contexts. The number
of iterations for conflict resolution is nondeterministic as it depends on the number
and type of conflicts observed in the initial goal model.

6.2 Future Research Directions 143

6.2.3 Building Mobile Applications from Goal Model
Specifications

This section elaborates the generalized framework of the GRL2APK tool. Figure 6.9
illustrates the framework and Sect.6.2.3.1 explains the role of the individual com-
ponents. The framework is generic and does not depend on any specific technology;
it is, however, limited to only structural NFRs. The following sections elaborate on
the workflow of the GRL2APK tool and a real-life use case illustrating how the tool
can be used to generate Android applications.

6.2.3.1 Architecture of the New Framework

The overall architecture of the GRL2APK framework is depicted in Fig.6.9. In
this framework, we propose an integration of different components and services that
allows enterprise architects to build applications while having the flexibility to choose
the operationalizations of the specified NFRs. This framework has four underlying
assumptions:

1. The code modules of the functional requirements are stored in a cloud repository.

2. The desired NFRs have to be specified by the enterprise architects within the goal
model description. System developers only need to choose the “operationalization”
of the desired NFRs.

3. NFR catalogs for high-level NFRs have been developed by specialized require-
ment engineers and stored in a cloud repository for reuse.

4. The functional codes for implementing the operationalizations of structural NFRs
have also been stored in the code repository.

The proposed GRL2APK framework has the following components:

e Goal Model Specifier: The first module provides an interface to the enterprise
architects to design the goal model based on the end-user requirements. Enterprise
architects can use any goal requirements language to capture such models. We
suggest the Extended tGRL (or, XtGRL) language.

e Component Extractor: The goal model is then passed through this module to go
through the XtGRL grammar artefacts as specified by the enterprise architects.
The module scans through the input model and extracts all the high-level NFRs
and functional goal decompositions that have been specified.

e NFR Fetcher: After extraction of the specified high-level NFRs, the NFR Fetcher
module is invoked. This module fetches the NFR catalogs of all those high-level
NFRs that have been identified in the previous phase. It is based on assumption (3).
It is a 1-to-1 mapping that allows this module to fetch the required NFR catalogs.

e NFR Repository: This repository stores two types of information—the NFR cata-
logs for high-level NFRs and a NFR conflict database thatidentifies conflicts across
NFRs and their operationalizations. Such a repository can be stored on a local
server or in some cloud repository like Google Firebase or Amazon AWS. NFR

144 6 Conclusion and Future Work

NF|
Goal Model
Specifier
1 4

2 .
High-level
Goal Model Component iy NFR Catalogs
Extractor

3.b NFR Fetcher — Fetches NFR
catalogs from the repository

Goal Model 52
Decompositions 5.b

Code Workflow Engine — Synthesizes the
Signatures Workflow Architecture
6.a
6.b
8 X 7.b
. Consistency Checker — Checks
Consistent)) .
Signatures for NFR inconsistencies and m
gnatu modifies workflow
9
10.b
10.a
APK Generator — 11 End-User
Fetches Code from the APK
Code Repository

Fig. 6.9 The proposed framework for app orchestration from goal models using selective compo-
sition of NFRs

catalogs are static in nature as they only capture the decomposition of high-level
NFRs into low-level operationalizations. The NFR conflict database is dynamic
and needs to be updated based on available NFR operationalizations and also on
the particular application vertical where the framework is being deployed.

e Workflow Engine: The goal decompositions (from Step-2) and the NFR Catalogs
(from Step-3) are fed into the Workflow Engine that provides an interface where
the system developer has to choose between different operationalizations and code
signatures for both functional and non-functional requirements.

e Consistency Checker: The developer may choose operationalization strategies
that conflict with other high-level NFRs. This module alerts the developer of the

6.2 Future Research Directions 145

existence of such conflicts. The developer, however, has the choice to prioritize a
particular operationalization, thereby, ascertaining the satisfaction of the NFR. The
Workflow file is correspondingly updated and the consistent set of Code Signatures
are also identified.

e APK Generator: This is the final phase of the framework that takes the consistent
set of Code Signatures and the Workflow to generate an APK file for end-users.
By the time the framework reaches this phase, all operationalizations of specified
high-level NFRs have been decided and all conflicts (if any) have been resolved
with the help of developer prioritization.

e Code Repository: This repository stores two types of codes—Functional Require-
ment (FR) Codes and NFR Codes. FR Codes are used to implement specific func-
tionalities represented by goals and tasks. NFR codes are used to capture opera-
tionalizations of structural high-level NFRs.

The FR codes within the Code repository may be developed by software devel-
opers (who may or may not specialize in Requirements Engineering). The NFR
Repository and the NFR codes are typically created, updated and managed by require-
ment engineers who are well-trained and experts in NFR management. The Code
repository may be built incrementally—the greater the availability of FR and NFR
code components, the richer is the quality of the App generated by the GRL2APK
framework. The GRL2APK approach is aimed at driving towards the automation
of app generation based on the availability of integrable code components within a
code repository. However, validation of the app being generated with respect to the
requirements captured in the original goal model still remains a necessity.

The GRL2APK tool is built on the newly proposed framework with the help of
mainly four technologies: Acceleo (a platform for code generation), Google Firebase
(cloud storage for NFR catalogue repository), Amazon AWS S3 (cloud storage for
functional code repository) and Java Services (used at the back end for consistency
checking and app generation). We will elaborate on each of these technologies and
how they have been used for building the GRL2APK tool (Fig.6.10).

6.2.3.2 Components of the GRL2APK Tool

The GRL2APK tool provides a guideline (only) as to how the different components
of the GRL2APK framework (shown in Fig. 6.9) can be realized using state-of-the-art
technologies. System developers can choose among alternate available technologies
for realizing any of the components.

e Acceleo [4]: We provide as input a goal model written in XtGRL to the Acceleo
platform of the Eclipse tool. Acceleois an Eclipse-based product created and devel-
oped by the Eclipse Strategic Member Obeo. Acceleo uses Model to Text language
(MTL) to extract the component of a model. It supports Java services behind the
scene to process these kinds of domain-specific languages. Acceleo extracts the

146 6 Conclusion and Future Work

Acceleo Consistency
Checker

XtGRL Goal ° ° Code
Model Signatures
° Specified High- Downloaded
% level NFR NFR Catalogs
Acceleo ° Acceleo Fetch Engine ° Java Workflow

MTL parser
% Goal Decomposition
fo 2@ N\

Consistent Consistent Code
XtGRL DSL List of Goals of Inter-Actor o ot
Grammar Actors each Actor Dependencies orkflow ignatures

° °) Amazon AWS S3 Cloud
Android Studio for Acceleo Android <:>

Google’s Firebase
Cloud Storage for NFR
Catalogue Repository

Engine

Storage for Code
APK Generation Project Developer Repository
an>30i12

O Innovation/Contribution O Input / Output O Extracted Components of Goal Model
O Reused Technology Q Cloud Repositories . Data Resources Fetched / Created

Fig. 6.10 The implementation framework with the process steps numbered in black circles

necessary information from the input requirements model. It also gives the provi-
sion to write Java services to accomplish specific tasks.

Acceleo Modules: The Component Extractor and NFR Fetcher modules in
Fig.6.9 are implemented using this technology. We call it the Acceleo MTL
Parser and Acceleo Fetch Engine, respectively, in Fig. 6.10.

e Google Firebase [5, 6]: One of the vital assumptions of the proposed framework
is to access NFR catalogs from a cloud repository as per the specified high-level
NFRs. We use Google Firebase cloud service where we can store any kind of
files. A dozen of Google Firebase cloud storage APIs provide flexibility to access
specific NFR catalogs as specified in the requirements model. Another important
aspect of the Google Firebase cloud storage is that we can authenticate every user
of the application with ease.

Firebase Module: The NFR Fetcher (shown in Fig.6.9) uses Google Fire-
base APIs to download NFR catalogs from the NFR Repository. This component
is called Acceleo Fetch Engine in Fig.6.10.

6.2 Future Research Directions 147

e Amazon AWS S3 [7]: AWS S3 is one of the leading object storage cloud services
that allows accessing, storing and analysing any amount of data securely from
anywhere. We have chosen S3 as the functional code repository. Amazon claims
the durability of AWS S3 is about 99.99%. Several APIs are available to access
functional codes stored in AWS S3 using Java services in Acceleo platform and
integrate them with the other modules. Alternatively, Google Cloud, Microsoft
AZURE or other cloud services could also be used for these repositories.

AWS Module: The APK Generator (Fig.6.9) uses AWS S3 APIs to integrate the
functional code corresponding to the given goal model and chosen NFR opera-

tionalizations. We call it the Acceleo Android Project Developer in
Fig. 6.10.

e Java Services: Finally we use several Java services to generate Android source
codes from extracted components of the requirements model and NFR components
of the NFR catalogs. We also integrate necessary files and dependencies of Android
libraries and generate . APK file (Android Application Package) with Java services.

Java Modules: The Consistency Checker, Workflow Engine and APK Genera-
tor heavily use Java Services. The corresponding modules in Fig.6.10 are called
Acceleo Consistency Checker, Java Workflow Engine and
Acceleo Android Project Developer, respectively.

6.2.3.3 Workflow of the GRL2APK Tool

Input: Goal model specification capturing functional and high-level non-functional
requirements, a cloud repository for NFR catalogs and another cloud repository stor-
ing functional code.

Output: An Android .APK file implementing the operationalizations of structural
NFRs as selected by the developer.

Process Steps: (see Fig.6.10)

Stepl Goal model specification and the Xt GRL CFG is fed into the Acce1eoMTL
Parser.

Step2 MTL modules and Java services in the Acceleo MTL Parser process
the goal model and extract the necessary components—high-level NFRs
and goal decomposition trees.

Step3 According to the “demands”of the softgoals within the goal model, specific
NFR catalogs (stored in the Google Firebase cloud storage) are accessed
by the Acceleo Fetch Engine.

Step4 Google Firebase APIs are used to download those catalogs.

148 6 Conclusion and Future Work

StepS NFR Catalogs and Goal Decompositions are fed into the Java Workflow
Engine.

Step6 The framework iteratively derives a set of Code Signatures that are conflict-
free as follows:

(a) The developer selects his desired Code Signatures for FRs and NFR
operationalizations.

(b) TheNFR operationalizations are checked for conflictsinthe Acceleo
Consistency Checker.

(¢) Incaseof an NFR conflict, the developer is prompted to choose another
set of operationalizations. The corresponding Code Signatures are
collected and the process is repeated.

(d) Ifthereisnoconflict,thenthe Java Workflow Engine generates
the Consistent Workflow and Code Signatures for generating the APK.

Step7 The Consistent Workflow and Code Signatures are fed into the Acceleo
Android Project Developer.

Step8 TheAcceleo Android Project Developer uses Amazon AWS
S3 APIs to access the code repository and download the actual code com-
ponents.

Step9 TheAcceleo Android Project Developer createsthe Android
Studio project for APK generation while making necessary changes to the
root AndroidManifest.xml file.

Step10 The Android project created in Step-9 is fed into Android Studio for
compilation and building of the APK file.

6.2.3.4 Generating a Remote Healthcare Android App

We have considered remote healthcare system for our case study. It refers to the
ongoing healthcare project “A Framework for Healthcare Services using Mobile and
Sensor cloud Technologies” under the Information Technology Research Academy
ITRA.! The project coordinators agreed to share their code repositories that would
help in the generation of Android applications using our proposed framework. We
modelled a part of the system consisting of some functional goals and some NFRs
like Security and Data-space Performance. In this section, we present in
detail how the framework is executed in a real-life scenario. The necessary screen-
shots for every phase has been provided for better visualization.

The XtGRL Goal Model

In this section, we create a scenario where an actor Patient wants to submit his medical
details. The corresponding goal ProvideMedicalDetails “demands” the high-level
NFRs Security and Data-space Performance. The input XtGRL goal model is as
follows:

IProject URL: https:/itra.medialabasia.in/?p=632.

https://itra.medialabasia.in/?p=632

6.2 Future Research Directions 149

grlHealth Care({
actor Patient{

goal SeekHealth caref
decompositionType =" and’;
decomposedBy ProvideMedicalDetails,
SendReports, GetMedicine;

}

goal ProvideMedicalDetails{
demands Security;
demands Data-space Performance;

}

softGoal Security;

softGoal Data-space Performance;

1

NFR Catalogs

The more important functional requirement in the goal model, with respect to the pro-
posed framework, is the ProvideMedicalDetails goal. This goal “demands”
two different high-level NFRs—Security and Data-space Performance.
The NFR catalogs corresponding to these two high-level NFRs are as follows:

nfrl catalog{
nfr__SGoal Security(
decompositionType=or;
decomposedBy AES_Encryption, DES_Encryption;
}
op_SGoal AES_Encryption;
op_SGoal DES_Encryption;
}
nfrl catalog{
nfr_SGoal Data-space Performance{
decompositionType=or;
decomposedBy PPM, Lz, CM;
}
op_SGoal PPV,
op_SGoal LZ;
op_SGoal CV;

}

Workflow Engine Interface

Once the NFR catalogs are downloaded, the Workflow Engine allows the developer
to decide the control flow between different goals and tasks as well as the implemen-
tation code signatures for both functional and non-functional requirements.

150 6 Conclusion and Future Work

Consistency Checker

Once the Code Signatures are selected by the developer, the Consistency Checker
module checks the chosen signatures against a NFR conflict database (that is stored
in the NFR repository). In case of conflicts, the module shows a prompt as seen in
Fig.6.11. The value of 30% is derived from the conflict database. If there are no
conflicts between the chosen operationalizations (for example, in our case study,
Lempel Ziv (LZ) for Data-space Performance and AES_Encryption for Security),
then the Workflow Engine creates the workflow file as shown in Fig.6.12.

APK Generator

The APK Generator can now download the code modules based on the code signa-
tures that are mentioned in the workflow file (Fig.6.12). The workflow file captures
the order of execution of goals (or tasks), which in this case study turns out to be
provideMedicalDetails(), followed by send_reports() and get_medicine(). The work-

Choose Goal send_repor...| » ArrayList<String> LZ{ArrayList<String>)
L ArrayList<String> CM({ArrayList<String>)
Choose NFR T ArrayList<String> PPM(ArrayList<String>)

Compressi... | »

! Tick to fetch NFR op...

Fetch Confirm
Conflict Detected X

P,
LE) Conflict between DES_Encryption and PPM is 30%

Fig. 6.11 Conflict identified between operationalization PPM (for Data-space performance) and
DES_Encryption (for security)

void provideMedicalDetails(ArraylList<String>)

>> ArraylList<String> LZ(ArrayList<String>)

>> ArraylList<String> AES_Encryption(ArraylList<String>)
> Arraylist<String> send_reports()

>> void get_medicine(ArrayList<String>)
> void SeekHealthcare()
stop()

Fig. 6.12 Workflow generated for LZ (for Data-space performance) and AES_Encryption (for
security)

6.2 Future Research Directions 151

flow also captures the order in which the NFR operationalizations have to be applied.
The provideMedicalDetails() module passes the patient data (accepted as argument)
to the LZ() code module for compression. The compressed data is then passed to
AES_Encryption() module for encrypting before storage.

Figure6.13 shows a screenshot of the app that is generated with the help of
Android Studio for the above case study. Figure6.14 shows how the data are
stored in the Patient database. For illustration purposes, we included two dummy
operationalizations—No_Encryption() and No_Compression()—to show the proper
functioning of the GRL2APK framework based on developer’s choice. A careful
inspection of Fig. 6.14 shows a medical record of patient “ajit pal” which is being sub-
mitted from the app interface shown in Fig. 6.13. The selection of No_Encryption()
and No_Compression() by the developer resulted in storing this data in the database
as-is. Another patient data on the lower side of Fig.6.14 shows how the data has
been stored after applying LZ() compression followed by AES_Encryption(). Thus,
depending on the developer’s choice of NFR operationalizations, the generated app
behaves differently.

Fig. 6.13 Screenshot of the @ v LTE
app

& 22:47

ajit

pal

ashoknagar

58

9733542563

Sometimes | feel mild
chest pain. | feel
tiredness.

@ Male O Femnale

SUBMIT @

152 6 Conclusion and Future Work

RHCS ~ Database tsubdm“

=— ajity733542563
Address: “ashoknagar
Age: “58
Contact: “9733542563
Gender: "Male

Name: “ajit pal

Problem:|"Sometimes I feel mild chest pain. I feel tiredn

RequiredSpecialist: “Cardiologist
isEncrypted: @

- rakesh$093030276

O souvik96353456997

=— sujay3635742238
Address: " nyWWLEVCpYUWKI 1P39k0bw==
Age: “16F2x0L17rz@0rnGEH1 Xn==
Contact: “K81xpIlgEQw3arLVRiUQtUA=s
Gender: “NYdBhF2hGnDTOCITH

Name: “feYVa2laNG412seheelqlg==
Problem: “Bo72NLIMHG47q4612)g)qTc 12145500 Ing90 1005 rn

isEncrypted: 1

Fig. 6.14 Screenshot of patient database

References

o

Fuxman AD (2001) Formal analysis of early requirements specifications. MS thesis, Department
of Computer Science. University of Toronto, Canada

Deb N, Chaki N, Roy M, Bhaumik A., Pal S Extracting business compliant finite state mod-
els from i* models. In: Advanced computing and systems for security (ACSS), advances in
intelligent systems and computing, vol. 995. Springer, Singapore. ISBN: 978-981-13-8962-7
Deb N, Mallik M, Roychowdhury A, Chaki N Cargo: a prototype for contextual annotation
and reconciliation of goal models. In: Accepted in the 27th international IEEE requirements
engineering conference (RE)

Musset J, Juliot E, Lacrampe S, Piers W, Brun C, Goubet L, Lussaud Y, Allilaire F (2006)
Acceleo user guide, vol. 2

Moroney L (2017) Moroney, Anglin, definitive guide to firebase. Springer. https://doi.org/10.
1007/978-1-4842-2943-9

Stonehem B (2016) Google android firebase: learning the basics, vol. 1. First Rank Publishing
AWS (2016) Amazon simple storage service developer’s guide. https:/s3.cn-north-1.
amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf

https://doi.org/10.1007/978-1-4842-2943-9
https://doi.org/10.1007/978-1-4842-2943-9
https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf
https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/s3-dg.pdf

	Preface
	Contents
	Abbreviations
	Notations
	Generic
	List of Figures
	List of Tables
	1 Introduction
	1.1 The i* Modelling Notation
	1.1.1 Case Study: Healthcare

	1.2 Research Directions
	1.2.1 Goal Model Hierarchies (RQ-1)
	1.2.2 Goal Model Checking (RQ-2)
	1.2.3 Semantic Analysis of Goal Models (RQ-3)

	1.3 Analysis of Results
	1.4 Organization of the Book
	References

	2 State-of-the-Art
	2.1 Formal Requirements Engineering Techniques
	2.2 Requirement Refinement Hierarchies
	2.3 Model Checking with i*
	2.4 Semantic Annotations of Goal Models
	References

	3 i* and Enterprise Hierarchies
	3.1 Hierarchic Correlations
	3.2 Relative Completeness Checking
	3.2.1 Consequence of Relative Completeness

	3.3 Possible Heuristics
	3.3.1 Formalizing the Heuristics
	3.3.2 Applying Heuristics for Relative Completeness Checking
	3.3.3 Results

	3.4 Conclusion
	References

	4 Model Checking with i*
	4.1 Developing Finite State Models from an i* Model
	4.1.1 The Naïve Algorithm
	4.1.2 The Semantic Implosion Algorithm (SIA)
	4.1.3 Soundness and Completeness

	4.2 Complexity Analysis
	4.2.1 Actor Internal Analytics
	4.2.2 Inter-Actor Analytics
	4.2.3 SIA Analytics

	4.3 The i*ToNuSMV Tool
	4.3.1 i*ToNuSMV Input
	4.3.2 The Preprocessing Module
	4.3.3 The Model Transformation Module
	4.3.4 The Mapper Module
	4.3.5 i*ToNuSMV Output
	4.3.6 The i*ToNuSMV Algorithm
	4.3.7 Platforms Used
	4.3.8 Application Scenario

	4.4 i*ToNuSMV Version Manager
	4.5 Contact and URL
	4.6 Conclusion
	References

	5 Goal Model Maintenance
	5.1 Semantic Reconciliation
	5.1.1 ORGMod Extraction
	5.1.2 Semantic Reconciliation Operators
	5.1.3 Illustrative Examples

	5.2 Resolving Conflicts Using Model Refactoring
	5.2.1 Entailment Issues
	5.2.2 Consistency Issues

	5.3 An Implementation Roadmap
	5.3.1 The Generalized Framework
	5.3.2 Taxonomy of Goal Model Proximity Measures
	5.3.3 Evaluating Goal Model Proximity

	5.4 Using AFSR on the i* Framework
	5.4.1 Dependency Reconciliation Operator
	5.4.2 Implementation Roadmap for i*

	5.5 Experimental Evaluation
	5.5.1 Indicators and Drivers
	5.5.2 Experimental Preliminaries
	5.5.3 Process and Results

	5.6 Conclusion
	References

	6 Conclusion and Future Work
	6.1 Summary of the Work
	6.2 Future Research Directions
	6.2.1 Extracting Business Compliant Finite State Models
	6.2.2 The CARGo Tool
	6.2.3 Building Mobile Applications from Goal Model Specifications

	References

