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Abstract

Plants and insects live in a microbial world, and the co-existence have shaped
their ecology and evolution. These microbial allies play an essential role in the
health, well-being, and vigor of their hosts and are often considered as “hidden
players” in plant–insect interaction. The present chapter attempts to cover the
contribution of microbes as drivers of plant–insect interaction where the micro-
bial companions directly or indirectly influence the plant–insect interaction. The
chapter also emphasizes the diversity of microbial communities linked with both
plants and insects and their contribution toward plant–insect interaction from an
ecological standpoint. It further deals with the recent updates on the use of
microorganisms in pest management and the implications of microbes as a
toolbox in future IPM strategies.
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1 Introduction

The co-existence of plants and insects evolved over 400 million years and shaped the
ecosystem. Both plants and insects are engaged in an arms race where plant defenses
against insect herbivory, while insects evolve strategies to overwhelm them. Phy-
tophagous insects (generalists and/or specialists) attack diverse plant species for
herbivory. In response, plants produce an array of defensive compounds known as
plant secondary metabolites to cope with their enemies. Glucosinolates, alkaloids,
terpenoids, and phenolics are classic secondary metabolites serving as defensive
compounds (Papadopoulou and van Dam 2017), which are either constitutively
expressed in plants or induced in response to herbivory (Wu and Baldwin 2010).
To counteract these plant defenses, insects secrete elicitors with their salivary
secretions that decoy the defense responses (Fürstenberg-Hägg et al. 2013) or
detoxify them (Ceja-Navarro et al. 2015).

In the last two decades, biologists have been keen on exploring the role of
microbes in shaping the ecology of plants and animals. Studies have revealed that
microbial communities associated with plants and insects play an essential role in
health, well-being, and vigor of their hosts and are often considered as “hidden
players” in plant–insect interaction (Douglas 2018; Sugio et al. 2014); (Biere and
Bennett 2013). Various microbial communities (e.g., mycorrhizal fungi,
rhizobacteria, root endophytic fungi) promote plant growth and protect them against
a wide range of diseases by inducing resistance in systemic tissues (Induced Sys-
temic Resistance – ISR) (Pineda et al. 2010; Van Wees et al. 2008). Furthermore,
microbes have profound effects on insect feeding efficiency by helping to digest
food or detoxifying entomotoxic compounds, modulating host growth, develop-
ment, behavior, etc. Microbial allies of insects affect the plant defense mechanisms
by either suppressing or counteracting the plant defense response (Sugio et al. 2014;
Zhu et al. 2014). Microbes may engage in altering plant metabolisms and/or defense
systems that significantly impact the plant–insect interaction either benefiting the
plants or insects. Recent advances in high-throughput omics technology have
opened up fascinating research area with the possibilities to conduct global analysis
on the composition and functional capabilities of microbial symbionts that may
contribute to the health and fitness of their host. The fast-moving scientific
developments offer excellent potential for in-depth investigation of the fundamental
processes and manipulation of the microbiota for effective microbial therapies.

The present chapter attempts to cover the role of microbes as drivers of plant–
insect interaction where microbial associates directly or indirectly influence the
plant–insect interaction. This chapter centers on the diversity of microbial
communities and their contribution to plant–insect interaction from an ecological
perspective. It further deals with the recent updates on the use of microorganisms in
pest management and the implications of microbes as a toolbox in future IPM
strategies.

338 A. Chakraborty and A. Roy



2 Microbial Contribution in Shaping the Tri-Trophic
Interactions in an Ecosystem

A diverse spectrum of microbes are often allied to plants and insects, and the nature
of their association may vary from pathogenic to mutualistic interaction depending
on underlying ecological factors. Symbiotic microorganisms live in the close inter-
face with the host either permanently or for a considerable part of host’s life cycle
and play a key role in their diversification and evolutionary stability (Salem et al.
2015). Most of the intracellular symbionts show maternal inheritance where the
symbionts are vertically transmitted from mother to the offspring. The horizontally
transmitted symbionts are however transmitted directly from the environment or
other conspecific or heterospecific host individuals (Kikuchi et al. 2007). The
pathogenic interactions may also shift to the beneficial relationship over the course
of time such as Wolbachia infection in Drosophila simulans, leading to an increase
in the fecundity over uninfected females (Weeks et al. 2007).

Apart from the two-way interactions between microbes and their hosts (plants or
insects), microbes are also engaged in a multi-trophic interaction where microbes
interact with plants and insects simultaneously (Biere and Bennett 2013; Biere and
Tack 2013). For example, the aphid–barley interaction depends on the interacting
aphid species and bacteria present in rhizosphere (Tétard-Jones et al. 2007, 2012).
The development of next-generation sequencing (NGS) technologies has enabled
assessing the microbial diversity in different ecosystems. Meta-genomic and meta-
transcriptomic sequencing combined with bioinformatic tools have assisted in
exploring the taxonomic and functional diversity of hitherto hidden microbial
association in a given environment (Douglas 2018).

2.1 Microbial Diversity Allied with Plants

Plants harbor diverse microbial communities in different compartments such as the
rhizosphere (near the roots), phyllosphere (plant surface like leaves), and endosphere
(within the plant and root tissues) (Andreote and e Silva 2017). Microbial
communities associated with plants, both belowground and aboveground, benefit
their host by aiding in the better uptake of nutrients from the soil for plant growth,
increased tolerance to environmental stress (saline stress, drought, and occurrence of
heavy metals) (Pineda et al. 2010), and protection against the pathogen (Bulgarelli
et al. 2013). Some microbes are also capable of synthesizing plant growth–promot-
ing hormones (Contreras-Cornejo et al. 2009; Van Loon 2007).

2.1.1 Microbes Enhancing Plant Growth and Nutrient Uptake
Plant-associated microbes such as the nitrogen-fixing bacteria (Rhizobium,
Bradyrhizobium, Mesorhizobium, Ensifer (Sinorhizobium), and Azorhizobium) are
widely studied for its interaction with the host and biogeochemical function
(Batterman et al. 2013). The symbiotic association with plants helps in the better
nutrient uptake and enables fixing atmospheric nitrogen required for plant growth.
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These endosymbionts form nitrogen-fixing nodules in the roots of the leguminous
plants on expressing the rhizobial nodule–forming (nod) and nitrogen-fixing (nif)
genes which are generally located on “symbiosis islands” (Ling et al. 2016). By
definition, “symbiosis islands” are the mobile, integrative, conjugative elements that
carry genes that enable them to expunge from the chromosome to form closed
circular molecule that eventually conjugate and recombine into recipient
chromosomes through horizontal gene transfer (HGT) from bacteria present in soil
to host leguminous plants (Haskett et al. 2016; Ling et al. 2016). These mobile
elements bear various novel traits such as antibiotic resistance, virulence, biofilm
formation, degradation of aromatic compounds, and symbiosis (Ling et al. 2016;
Okubo et al. 2016). For example, the transfer of the “symbiosis island” of 500 kb
from Mesorhizobium loti to Lotus corniculatus and its integration into a
phenylalanine-tRNA gene of the host plant chromosome resulted in root nodule
formation and nitrogen-fixation in lotus plant (Ramsay and Ronson 2015). A similar
example of such symbiotic interaction was documented in S. rostrate-Azorhizobium
caulinodans system where the “symbiosis island” of A. caulinodans on integration
to glycine-tRNA gene of S. rostrata-induced host nodulation (Ling et al. 2016).

Another interesting symbiotic association, observed between microbes present in
plants and soil, is the arbuscular mychorrhizal symbiosis (Hammer et al. 2014;
Richardson et al. 2009) where arbuscular mychorrhizal fungi (AMF, obligate
biotrophs) belonging to the phylum Glomeromycota colonize on the cortical cells
of the plant root. The AMF profit from the host carbon compounds to obtain
metabolic energy (Gianinazzi et a. 2010), and in exchange caters better uptake of
water and mineral nutrients (such as nitrogen and phosphorous) (Baum et al. 2015;
Gutjahr and Parniske 2013) leading to increased host plant biomass, higher tolerance
to abiotic stress (salinity, drought, heavy metals) (Singh et al. 2011) and protection
against plant diseases (Bernardo et al. 2017). Enhanced plant growth determines
increased food supply and improved nutrient quality for the herbivores and in turn
influences the plant–insect interaction. Conversely, beneficial microbes accelerate
the plant regrowth after herbivory by facilitating the nutrient and water uptake
(Herman et al. 2008; Kempel et al. 2009; Kula et al. 2005).

2.1.2 Microbes-Induced Resistance in Plants
Plant defenses against pathogen attack can be either constitutively expressed in
plants (passive resistance) or induced after the infection or herbivore attack (induced
resistance). Microbes such as plant growth–promoting rhizobacteria (PGPR) and
fungi (PGPF) (Segarra et al. 2009; Van Wees et al. 2008) as well as mycorrhizal and
endophytic fungi (Stein et al. 2008) often initiate induced systemic resistance (ISR)
to mitigate biotic and abiotic stresses in plants (Pozo and Azcón-Aguilar 2007;
Shikano et al. 2017; Trillas and Segarra 2009). Induced systemic resistance involves
activation of jasmonic acid and ethylene signaling pathways (Van der Ent et al.
2009) either by priming of plant defense genes in response to pathogen or insect
attack (Conrath et al. 2001) or on interaction between non-pathogenic microbes with
the plant roots. For instance, the establishment of arbuscular mychorrhizal symbiosis
activates and boosts plant basal defense mechanisms on pathogen attack through
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Mycorrhiza-induced Resistance (MIR) (Pozo and Azcón-Aguilar 2007; Song et al.
2015). Based on transcriptomic and proteomic profiling, Fiorilli et al. (2018)
demonstrated that the wheat–AMF association was not only benefiting the wheat
plant in mineral nutrition but also protecting them against the pathogen
(Xanthomonas translucens). Mycorrhizal colonization on plant root induces sys-
temic defense responses via microbe-associated molecular patterns (MAMPs) rec-
ognition (Zamioudis and Pieterse 2012). It is interesting to note that the host plant
initially perceives this mycorrhizal interaction as a putative pathogen by plant
MAMP-recognition receptors and activates MAMP-triggered immunity (MIT)
response as the first line of defense to prevent further invasion (Jones and Dangl
2006; Millet et al. 2010). This MIT response induced by mycorrhizal invasion results
in transcriptional and hormonal changes that leads to the accumulation of hydrolytic
enzymes (chitinase, glucanase), reactive oxygen species in roots, and activation of
phenylpropanoid metabolism (García-Garrido and Ocampo 2002; Pozo and Azcón-
Aguilar 2007) in the host plant, leading to the establishment of the symbiosis
(Schouteden et al. 2015).

Interestingly, plant pathogens also invade plant tissues through stomata and thus
stomatal closure is a part of innate immunity (Melotto et al. 2006). Pseudomonas
syringae overwhelms this innate defense by the release of phytotoxin Coronatine
(COR) (Zheng et al. 2012) that activates the Jasmonic acid signaling pathway,
enabling the reopening of the stomatal pores. Plant-associated microbes have been
reported to influence plant metabolic processes to block pathogen invasion (Kumar
et al. 2012). A recent study documented that the plant growth–promoting fungi
Penicillium simplicissium induces systemic resistance to protect Arabidopsis
thaliana against the pathogen Pseudomonas syringae by altering the plant metabolic
processes (Desclos-Theveniau et al. 2012; Du et al. 2014). The MYB44 gene
product of endophytic fungi acts as stomata-specific enhancer of the plant Abscisic
acid (ABA) signaling pathway that promotes stomatal closure thereby by blocking
the entry of pathogen through stomata (Hieno et al. 2016; Montillet et al. 2013).

2.1.3 Microbial Toxin Production Against Insects
Microbes colonizing on plants can produce toxic compounds that can be harmful for
insects during herbivory (Bizzarri and Bishop 2008; Monnerat et al. 2009). The
crystal-like proteins (delta- endotoxins) produced by gram-positive bacteria Bacillus
thuringiensis (Bt) on sporulation is known to have insecticidal activity (Palma et al.
2014). These endotoxins constitute Cry (crystal) and Cyt (cytosolic) group of
proteins that interact synergistically to have a potential insecticidal effect (Butko
2003). The inactive Cry protoxins are ingested and proteolytically cleaved to yield
shorter active toxins of 55-60 kDa in the insect midgut (Bravo et al. 2007). There are
several models proposed for the mechanism behind the toxicity of Cry protein (Jurat-
Fuentes and Crickmore 2017). It is generally believed that the active toxic molecules
bind to specific receptors such as cadherin-like proteins, glycosylphophatidylinositol
(GPI)-anchored Alkaline phosphatase (ALP), and GPI -anchored aminopeptidase
(APN) at the surface of midgut, forming pores on the membrane, increasing its
permeability, and disrupting the transmembrane ionic gradient, resulting in cell lysis
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and insect death (Pigott and Ellar 2007). Alternatively, the interaction of the Cry
toxin with cadherin receptor triggers a signaling cascade involving protein G,
adenylate cyclase and protein kinase A, as well as induces the activation of
mitogen-activated kinases such as MAPK p38-triggering cell apoptosis (Zhang
et al. 2006). More recently, Portugal et al. (Portugal et al. 2017) demonstrated that
the binding of Cry toxin to specific receptors activates the phosphorylation of MAPK
p38, disrupting the calcium ion influx through pore formation, which leads to cell
death. Among different groups of Cry toxins (de Maagd et al. 2003), Cry1A toxin
binds to cadherin protein receptors of most lepidopteran species (such as Manduca
sexta, Bombyx mori, Heliothis virescens, Helicoverpa armigera, Pectinophora
gossypiella, and Ostrinia nubilalis) (Pigott and Ellar 2007). The use of Cry toxins
into transgenic crops for targeted and effective pest control has significantly reduced
the use of chemical insecticides (Bravo et al. 2011). Another well-characterized
rhizospheric bacteria, Pseudomonas protegens, secretes an antimicrobial compound
that on ingestion promotes apoptosis in insects (Haas and Keel 2003; Loper and
Gross 2007). In addition to the endotoxins, insecticidal proteins are also secreted
during bacterial vegetative growth phase known as Vip (vegetative insecticidal
proteins) (de Maagd et al. 2003; Estruch et al. 1996) that can be categorized into
four groups Vip1, Vip2, Vip3, and Vip4 depending on their amino acid sequences
(Chakroun et al. 2016; Zack et al. 2017). Vip1 and Vip2 are binary insecticidal
proteins that are toxic to Coleopteran and Hemipteran species (Bi et al. 2015;
Chakroun et al. 2016) whereas Vip3 targets against Lepidopteran insects (Song
et al. 2016). However, Vip4 protein is not yet reported to have insecticidal activity
(Chakroun et al. 2016).

2.2 Microbial Diversity Allied with Insects

Insect-associated microbes colonize mostly in the external cuticle and the gut.
However, they can breach the exoskeleton and the gut to gain access to the hemocoel
and within the specialized insect cells. Microbial communities present in insect
influence several aspects of insect ecology, behavior, and physiology such as
responses to the utilization of plant nutrients, immunity, reproduction, detoxification
of defensive plant compounds, and protection against natural enemies (Oliver et al.
2010).

2.2.1 Microbes Providing Essential Nutrients
Insects along with other animals are unable to synthesize the essential amino acids
and co-factors obligatory for many metabolic enzymes to function. In addition to
these essential amino acids, insects cannot synthesize sterols that contribute to
membrane architecture (Behmer and Nes 2003). Most insects derive these essential
nutrients from their diet while feeding on plant sap. These insects constitute large
populations of specific microorganisms localized in specialized cells, called
bacteriocytes, within their body. The microbial symbionts present in most of the
plant sap–feeding insects (hemipterans) are transmitted vertically from mother to
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their offspring via ovaries to the cytoplasm of each egg at oviposition that provides
essential amino acids and/or vitamin cofactors that are limiting in host diet. Further-
more, the gut symbionts that are deposited externally over the eggs are acquired by
the feeding offsprings (Buchner 1965). For instance, the bacterial endosymbiont,
Buchnera aphidicola, in aphids is a model for such association where the bacterial
symbiont is localized in metabolically active Bucherna cells and uses the insect body
as its habitat and in return provides essential nutrients to its host (Wang et al. 2018).
Upon the elimination of the symbiotic bacteria by the antibiotic treatment, the
capability to synthesize essential amino acids is lost in aphids (Douglas et al. 2001).

Similarly, the symbiotic association of gall midges with fungi is essential for
invading the plant stem to access the vascular tissue for nutrients and development of
gall (Rohfritsch 2008). The close association of termites with microbes is also one of
the best-studied symbiotic relationships in insects. The ability of the termites to
harness and feed on nitrogen-deficient wood-based diet is due to the presence of
unique consortium of microbes living in the termite gut. The microbial cellulolytic
enzymes play a critical role in the digestion by enhancing its digestive efficiency
(Peterson and Scharf 2016). The presence of mutualistic gut symbiont Erwinia
dacicola in the olive fruit fly Bactrocera oleae benefits the host by providing
essential amino acids and protease enzymes to digest the food (Capuzzo et al.
2005). Furthermore, in ants, cockroaches, and termites microbial allies recycle the
nitrogenous wastes to essential amino acids (Douglas 2015). The resident microbes
often produce glucosyl hydrolase that degrades plant cellulose and hemicellulose to
short-chain fatty acids to provide a readily available nutrient source to insect host
(Berenbaum 1980; Calderón-Cortés et al. 2012).

2.2.2 Microbes Influencing Insect Immunity
Microbes often contribute to insect innate immunity wherein gut microbes regulate
the expression of immune genes (Johnson 2015a). The bacterial symbionts such as
Wolbachia pipientis, Spiroplasma species, and Hamiltonella defensa either verti-
cally or horizontally transmitted to the host have shown to influence host immunity
(Engel and Moran 2013). For example, the facultative symbiont H. defensa protects
aphids against the parasitoid through bacteriophage-encoded gene expression
(Oliver et al. 2010). Similarly, Spiroplasma present in Drosophila neotestacea
imparts resistance against the parasitic nematode (Jaenike et al. 2010). Furthermore,
in mosquitoes, the gut microbiota activates the innate epithelial immunity against
Plasmodium infection whereas the elimination of the microbiota renders the
mosquitoes susceptible to infection (Dong et al. 2009). Over the years, Wolbachia
infection is considered parasitic to insects as they contribute to cytoplasmic incom-
patibility, leading to reproductive disruption. Nevertheless, studies suggested that
Wolbachia infection inDrosophila also deliberates antiviral protection leading to the
higher survival of the flies (Johnson 2015b). The presence of Wolbachia in Dro-
sophila induce antiviral resistance against a wide range of RNA viruses
(Dicistroviridae, Nodaviridae, Flaviviridae, Togaviridae, and Reoviridae) but not
DNA viruses (Teixeira et al. 2008). The reduction of the viral load and the anti-viral
protection is reported to be due to the competition between the symbiotic bacteria
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and the viruses for the cellular resources (Caragata et al. 2013). Alternatively, the
symbiotic association of Wolbachia affects the reactive oxygen species (ROS)
levels, a key player in the insect immune system. The increase in ROS levels
stimulates the Toll pathway, imparting anti-viral protection (Pan et al. 2012).
Other studies reported the proliferation of Wolbachia inside the insect body
suppresses the viral infection by inducing host immune responses by stimulating
the miRNA expression (Hussain et al. 2011), thereby leading to cell death in insect
(Brackney 2017; Terradas and McGraw 2017). However, the exact mechanism
behind the antiviral protection by Wolbachia is still poorly understood (Yixin
et al. 2017) (Fig. 1).

2.2.3 Microbes Influencing Detoxification of Plant-Defensive
Compounds

Microbes are considered as the drivers promoting plant specialization in herbivorous
insects (Janson et al. 2008). The acquisition of symbiotic microbes enabled the
different sap-feeding insects to colonize on several plants. Plant-defensive secondary
metabolites (terpenoids, phenolics, alkaloids, glucosinolates, and alliinins) are an
essential determinant in plant–insect interaction. The ability of the insects to detoxify
these toxic plant allelochemicals is often attributed to microorganisms associated
with insects (Boone et al. 2013; Douglas 2013; García-Fraile 2018; Howe et al.
2018). Some herbivores often neutralize toxic phenolic compounds by increasing
their gastrointestinal mucus production, by recruiting the gut microorganisms for
degradation, and/or by secreting phenol-binding proteins in the saliva (Dearing et al.
2005). Insect symbionts can inhibit or counteract the host plant defenses through the
direct or indirect production of enzymes targeting plant-defensive compounds
(Broderick et al. 2004; Dowd and Shen 2011). The symbiotic fungus, Leucocoprinus
gongylophorus, is present in the nest of the leaf-cutting ant, Acromyrmex echinatior,
and aids to overwhelm plant-defensive phenolic compounds. Precisely, leaf-cutting
ants preferentially feed on the fungal hyphae called gongylidia that expresses the
laccase coding genes. On ingestion, the laccase molecules pass through the gut of
these ants, released on defecation onto the ingested plant materials, and degrade
plant defense compounds, for example, flavonoids and tannins (De Fine Licht et al.
2013).

Similarly, Ceja-Navarro et al. (2015) demonstrated the role of gut microbiome of
the coffee berry borer (Hypothenemus hampei) in the detoxification of toxic plant
alkaloid (Caffeine). H. hampei is a devastating insect pest of coffee that resulted in
80% crop loss on infestation. Caffeine, produced by the coffee plants, acts as a
defense mechanism in response to herbivory. Interestingly, the coffee borer
H. hampei possesses a core gut microbiota that is responsible for detoxification of
caffeine in the insect gut and supports in the survival of the insect in a hostile
environment. The gut bacteria such as Pseudomonas possess caffeine demethylase
genes that aid in caffeine detoxification. Upon treatment with antibiotic
that confiscates the insect gut microflora, eliminates the caffeine degradation ability
of the beetle. However, the re-inoculation of Pseudomonas strain re-establishes the
caffeine detoxification ability, thus certifying the pivotal role of microbial associates
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in caffeine degradation. Similarly, gut microbiota of the velvet bean caterpillar
Anticarsia gemmatalis is involved in the production of serine and cysteine proteases
and contributes to the insect’s tolerance to dietary protease inhibitors in soy plant
(Pilon et al. 2013). Another interesting study showed that in the mountain pine
beetle, Dendroctonus ponderosae, females initiate mass colonization through the
production of aggregation pheromone trans-verbenol (Vité and Pitman 1968) by
confiscating the host plant defense mechanisms. The trans-verbenol is a product of

Fig. 1 The tri-trophic interactions between plant-microbe-insect. (1) Plant endophytic microbes
producing toxin against insect herbivore. (2) Microbial volatiles mixed with host plant volatiles
attract parasitoids. (3) Insect gut microbiome enables detoxifying defensive plant compounds.
(4) Indirect interaction between the plant endophytes and insect gut microbiome wherein the insect
ultimately confiscates the plant defenses. (5) Soil microbes produce different metabolites that are
detrimental to belowground herbivores. (6) Plant growth–promoting rhizobia as well as mycorrhizal
fungi interact with plant roots, influencing the JA/ ET signaling pathways inducing resistance
against aboveground herbivores
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oxidative degradation of plant secondary defense compound monoterpene a-pinene
(Renwick et al. 1976).

Recent studies have reported symbiont-mediated terpene degradation and
verbenone production in beetles (Fig. 2) (Berasategui et al. 2017; Cao et al. 2018).
Shotgun DNA sequencing on the gut microbiome of the mountain pine beetle
revealed the presence of terpene-degrading bacteria belonging to genera Pseudomo-
nas, Rahnella, Serratia, and Burkholderia (Adams et al. 2013).

2.2.4 Impact on Insect Pheromone Production and Reproduction
Pheromones are chemical compounds that serve as cues/signals for communication
between individuals of the same species. These chemical compounds are involved in
courtship, mating, defense, trail marking, aggregation, kin recognition, etc. (Howard
and Blomquist 2005; Regnier and Law 1968). Though pheromones are generally
encoded by insect gene, studies have shown that host-associated microbes also play
a significant role in modulating their host chemical profiles, mating preference, and
social behavior (Engl and Kaltenpoth 2018). Such modulation of the chemical
signals occur either directly by influencing the biosynthetic pathway of pheromone
production (Marshall et al. 2016) or by manipulating the host metabolic pool and
allocating resources into pheromone production (Engl et al. 2018). The microbial
symbiont in saw-toothed grain beetle Oryzaephilus surinamensis modulates the
cuticle synthesis, resulting in the thinner cuticle and thereby rendering the beetles
more susceptible to desiccation (Engl et al. 2018). Several insects exhibit reduced
attractiveness and fecundity on the disruption of resident microbes with antibiotic
treatment. This suggests a microbial role in mate choice and sexual communication
(Ben-Yosef et al. 2008). For instance, the disruption of gut microbiota by the
administration of antibiotics in Tephritid fruit fly, Ceratitis capitata, showed

Fig. 2 Figure illustrating the contribution of the bark beetle gut microbiome in plant toxin
detoxification
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increased oviposition rates of females under nutritional stress as well as prolonged
mating latency in males on a standard diet (Ben-Yosef et al. 2008). The reduced
attractiveness of the female oriental fruit flies, Bactrocera dorsalis, to the males on
antibiotic treatment could be reversed by the re-establishment of the gut microbiota
into the female flies through feeding (Engl and Kaltenpoth 2018). Another
fascinating example showed that Drosophila flies reared on different diets exhibit
a strong mating preference where flies fed on the same diet preferred to mate with
each other but not with files reared on a different diet (Sharon et al. 2010). Such
preference in mate choice could be mediated by diet itself or by diet-associated gut
microbial shifts. Sharon et al. (2010) showed evidence of resident gut bacteria
influencing the mating preference in D. melanogaster, which could be abolished
by antibiotic treatment. Interestingly, the lost preference for mate choice could be
re-established by infecting the axenic D. melanogaster flies with the microbiota of
the healthy flies on a diet. However, this study was controversial as several
researchers tried to replicate the experiment that had conflicting results where the
assortative mating pattern was only observed in inbreed fly lines before the transfer
to different diets (Najarro et al. 2015). Others showed no stability of the results
within the replicates (Arbuthnott et al. 2016). Thus, extensive research is needed to
elucidate the factors influencing the mating preference and success in
D. melanogaster.

Microbes-associated with insects often manipulate host reproduction by
feminizing genetic males, inducing parthenogenesis or male killing, and by inducing
cytoplasmic incompatibility (i.e., reproductive sterility when infected males mate
with uninfected or infected females with a different symbiont strain) (Hughes et al.
2012; Miller and Schneider 2012; Werren et al. 2008). Wolbachia, Arsenophonus,
Cardinium, Rickettsia, and Spiroplasma are among the universal reproductive
manipulators that influence host reproduction (Engelstädter and Hurst 2009).
Spiroplasma in pea aphid induces male killing to prevent competition with the
infected females and avoidance of inbreeding depression (Simon et al. 2011).
Increased female bias in infected female whiteflies was observed due to the invasion
of Rickettsia (Himler et al. 2011) that swayed the population dynamics of whiteflies.
The virus LbFv decreases the competitive ability of the parasitoid Leptopilina
boulardi to infect Leptopilina heterotoma by manipulating the reproductive behav-
ior of the parasitoid (Patot et al. 2012). Reproductive manipulators may serve as
novel targets to be exploited in the development of alternative control strategies.
These reproductive manipulators indirectly impact the plant–insect interactions by
regulating the population dynamics and in so doing minimize the genetic diversity
and/or recombination rates in infected species (Engelstädter and Hurst 2009) which
in turn influence their co-evolutionary dynamics and functioning of ecological
networks (Ferrari and Vavre 2011).

2.3 Crosstalk in Signaling Pathways – Decoy of Plant Defenses

Plants are armed with a plethora of defense mechanisms to combat against insect and
pathogen attack. These defensive mechanisms are either constitutively present or
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activated upon insect or pathogen invasion (Pieterse and Dicke 2007). On perceiving
the pathogen or insect attack, plants initially retort through its primary immune
response and also activate effective systemic broad-spectrum resistance known as
induced resistance against attackers (Walters et al. 2007). The phytohormones –

salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) – are documented as key
players in the regulation of plant defense signaling pathways (Koornneef and
Pieterse 2008). In response to pathogen or insect attack, plants emit alarm signals
with the production of SA, JA, and ET that contributes to plant defense response.
SA-mediated defense responses are generally induced by microbial pathogens
whereas insect invasion is usually dissuaded by JA/ET-mediated defenses (Kessler
and Baldwin 2002; Thomma et al. 2001). However, in nature plants often encounter
raid by different aggressors (pathogens and or herbivores) either simultaneously or
by consequent invasion (Stout et al. 2006). Therefore, the crosstalk between the
defense signaling pathways delivers a powerful defensive mechanism. These signal-
ing pathways can be either mutually antagonistic or synergistic that allows the plant
to combat against its invaders (Bostock 2005). Intriguingly, insect herbivores and
pathogens have evolved to decoy the plant defenses for their own benefit by
overwhelming the defense mechanisms modulating the plant’s signaling network
(Pieterse and Dicke 2007). Herbivores often exploit its symbionts to overwhelm the
anti-herbivore defenses by dodging the plant perception (Giron and Glevarec 2014;
Sugio et al. 2014). For instance, the bacteria present in oral secretion of the Colorado
potato beetle, Leptinotarsa decemlineata, activate the plant defense response
through the stimulation of the SA signaling pathway as a response to microbial
pathogen attack which in turn downregulates the JA anti-herbivore response, ensur-
ing improved larval growth (Chung et al. 2013). A similar example, herbivorous
silverleaf whitefly nymphs (Bemisia tabaci), activates SA signaling pathway as a
decoy strategy to overcome JA-mediated defense to enhance larval performance
(Zarate et al. 2007). Microbial pathogens often have the ability to produce
phytohormones or their functional mimics and thereby manipulate plant signaling
network (Robert-Seilaniantz et al. 2007). For instance, P. syringae bacteria produce
a potent mimic of JA-Ile called coronatine that activates JA-Ile responses and
suppresses SA-dependent defenses, resulting in enhanced pathogen growth (Nomura
et al. 2005). The induction of SA signaling pathways results in the activation of
pathogenesis-related protein encoding genes having antimicrobial activity (van Loon
et al. 2006). Some of the prominent molecular players in the crosstalk between
SA/JA signaling pathways are the regulatory protein NONEXPRESSOR OF PR
GENES1 (NPR1), WRKY transcription factors, glutaredoxin GRX480, and
Mitogen-activated protein (MAP) kinases. These regulatory components are essen-
tial for the activation of the SA signaling pathway which in turn suppresses the
JA-induced response, resulting in overcoming plant defense against herbivore attack
(Koornneef and Pieterse 2008).
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2.4 Soil Microbial Diversity Influencing the Plant–Insect
Interaction

Apart from the plant- and insect-associated microbes, the soil microbial community
also plays a crucial role not only in enhancing plant growth and increased tolerance
to abiotic stress but also in influencing aboveground insect herbivores through
biochemical changes in plant-mediated mechanisms (Pineda et al. 2017). For exam-
ple, the foliar-feeding Aphis jacobaea population depends on the soil microbial
communities of its host plant ragwort (Senecio jacobaea). A different consortium
of free-living soil-borne microbes influences the concentration of amino acids in the
plant phloem sap, thereby affecting the aphid population (Kos et al. 2015). Addi-
tionally, inoculation of the distinct microbiome in soil manipulates the leaf
metabolome of Arabidopsis, making it resistant against caterpillar Trichoplusia ni
(Badri et al. 2013).

Intriguingly, belowground microbes have been shown to influence plant–insect
interaction by modulating herbivore-induced plant volatile (HIPV) emission (Pineda
et al. 2015). Plants in response to herbivore attack emit varieties of volatile organic
compounds (HIPVs) in order to attract the potential predator. For example, the
volatiles emitted by Nerium oleander plants in response to Aphis nerii attack signal
the predator Chrysoperla carnea which could be altered by the presence or absence
of soil microbial communities (Benítez et al. 2017). It was interesting to note
C. carnea females preferred the HIPV blend emitted from plants grown on soil
inoculated with microbes to those emitted from plants grown on control sterile soil
(Benítez et al. 2017).

Furthermore, certain beneficial soil microbes can synthesize the phytohormones
that enhance the plant growth and can mitigate abiotic stress (salinity, drought,
heavy metals) (Egamberdieva et al. 2011; Egamberdieva et al. 2017; Liu et al.
2013). For example, root-colonizing soil bacterium B. licheniformis can synthesize
indole-acetic-acid (IAA), which promotes wheat plant under saline stress (Singh and
Jha 2016). Recent studies have demonstrated a linkage between the leaf microbiome
and soil microbial communities (Pineda et al. 2017), wherein belowground micro-
bial entities impact the aboveground insect herbivory as well as the composition of
symbiotic “phytobiome” (i.e., plant microbiome). For instance, entomopathogenic
fungi (Beauveria bassiana and Metarhizium anisopliae) that are typically present in
soil colonize in different parts of broad bean (Vicia faba) plant and enhance plant
growth as well as exhibit resistance against insects by translocating nitrogen to the
plant from the insect cadavers via their fungal mycelia (Behie et al. 2012; Jaber and
Enkerli 2016). Another example of such interaction is observed by a fungus
Trichoderma, thought to be restricted to the soil, have now been known to colonize
on the leaves and can suppress insect pests such as thrips (Muvea et al. 2014).

In the quest for crop protection, there is extensive use of insecticides that pose a
threat of insecticide resistance (Whalon et al. 2008). One of the common organo-
phosphorus insecticides used worldwide is fenitrothion that targets acetylcholine
esterases and exhibits insect-specific toxicities (Stenersen 2004). Extensive applica-
tion of such insecticides have led to an increased population of fenitrothion-
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degrading microbes in the soil that convert the toxic fenitrothion to non-toxic
3-methyl-4-nitrophenol and utilize it for their growth (Itoh et al. 2018). Riptortus
pedestris (bean bug), a severe pest of leguminous crops, harbors Burkholderia in its
midgut in sac-like tissues called “crypts” during its larval second instar stage that
enables the bean bug to circumvent the toxic compounds, conferring insecticide
resistance (Kikuchi et al. 2005). Notably, such symbiotic association ensures not
only host survival but also an increase in body size, growth, and higher fecundity of
the host (Kikuchi et al. 2005) .

2.5 Role of Microbial Volatiles in Plant–Insect Interaction

Similar to plants and animals, microbes also emit a plethora of volatile organic
compounds (VOCs) in the course of their metabolic processes (Bitas et al. 2013).
These compounds are usually lipophilic in nature that belong to the class of alcohols,
aldehydes, esters, terpenoids, thiols, and fatty acid derivatives and have low molec-
ular weight (<300 g mol�1), low boiling point, and high vapor pressure (0.01 kPa at
20 �C) (Kanchiswamy et al. 2015a, b). The volatile compounds are perceived from a
distance as chemical signals to communicate with each other and contribute signifi-
cantly in multitrophic interaction (Schulz-Bohm et al. 2017). Over the years, the role
of microbial volatile compounds (mVOCs) in plant physiology has gained attention.
mVOCs affect hormonal balance, metabolism, sugar concentration, and the acquisi-
tion of essential nutrients in plants, thereby inducing growth and regulating stress
response. For instance, volatiles released from Bacillus subtilis have been shown to
stimulate growth and salt tolerance in Arabidopsis thaliana (Ryu et al. 2003; Zhang
et al. 2008a). The underpinning mechanism behind the contribution of VOC in A
thaliana was demonstrated using proteome analysis in combination with other
biochemical experiments (Kwon et al. 2010). The VOCs released by B. subtilis
upregulates the iron-regulated transporter 1 (IRT1) gene expression, facilitating the
iron uptake from soil. Iron is an essential micronutrient in photosynthesis.
Its increased uptake enhances the photosynthesis efficiency and the chlorophyll
content thus, inducing plant growth (Fincheira and Quiroz 2018). Salt tolerance in
A. thaliana in response to mVOCs resulted in the regulation of HKT1 gene that
encodes high-affinity Na+ transporter (Zhang et al. 2008b). Similarly, Pseudomonas
chlororaphis releases 2, 3- butanediol that induces shoot growth and confers resis-
tance in the tobacco leaves against the soft-rot pathogen Erwinia carotovora (Han
et al. 2006). The VOC-mediated resistance requires JA/SA/ET signaling pathways
(Farag et al. 2013). Apart from the synergistic effect, the microbes also influence
antagonistically to plants. Some bacterial species belonging to genera Burkholderia,
Pseudomonas, Serratia, Chromobacterium release a wide array of volatiles that
exhibit phytotoxicity and inhibit plant growth (Bailly and Weisskopf 2012; Kai
et al. 2009).

Microbial volatiles are equally crucial to insects and their natural enemies. Insects
rely on olfactory cues to locate their host as food resource or as oviposition site and
exhibit defense against pathogens (Davis et al. 2013). For instance, the gut bacteria
in locust produce antimicrobial phenolic compounds to protect against other
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microbial pathogens as well as aggregation pheromone “guaiacol” that promotes
mating in locust (Dillon et al. 2000, 2002). In Rhagoletis pomonella (apple maggot
fly) the oviposition behavior is influenced by the release of volatiles emitted by
Enterobacter agglomerans present on the fruit (Lauzon et al. 1998). Insects are often
attracted to fermented fruit that is inhabited by microbes. The mVOCs emitted
enable insects to locate their food source (DeVries 1987). Yeast volatiles have also
been reported to modulate sexual behavior and mating in Drosophila melanogaster
(Gorter et al. 2016). Not only this, microbial volatiles contribute significantly to
tri-trophic interaction (Hulcr et al. 2005). The volatiles released by plants or
microbes associated with plants provide cues for the natural enemies to locate
attacked plants (Hulcr et al. 2005). Interestingly, the yeast volatiles deployed by
Ogataea pini inhibit the growth of entomopathogenic fungus (B. bassiana) on bark
beetle. Understanding mVOCs and its role in plant–insect interaction provides a
great platform to develop novel, eco-friendly, cost-effective, sustainable pest man-
agement strategies (Bitas et al. 2013).

3 Microbes as a Toolbox: Integration of Microbes in Pest
Management

The world population is predicted to upsurge from a present population of 6 billion
to 9 billion in 30 years, and the need for increased food production to meet the
demands of the ever-increasing population is a major challenge (Lacey et al. 2015).
Approximately 42% of the total crop loss is caused by pest infestation and is
anticipated to rise to 83% without any crop protection (Oerke and Dehne 2004). In
the quest of increasing crop yield, farmers have embraced a wide range of conven-
tional pesticides such as organochlorines, organophosphates, carbamates, and
pyrethroids. The use of chemical pesticides to control devastating pest has been
undoubtedly a great success but suffers from many limitations. Extensive pesticide
usage and the constant evolutionary dynamics of insects have led to the selection for
pesticide resistance in target species as well as killed a number of non-target
beneficial insect species, including pollinators and natural enemies. These chemicals
often pollute the surface water and are harmful to birds, humans, and domestic and
aquatic animals (Usta 2013). It is high time to reduce the use of chemical pesticides,
so as not to gamble with the ecosystem, and to choose an eco-friendly alternative to
pest control. As discussed earlier, microbes play a crucial role in host physiology and
traits and contribute significantly to plant–insect interaction. Harnessing the poten-
tial of the microbes as a toolbox in controlling pests is indeed a smarter alternative
approach toward sustainable IPM strategy for crop protection. The development of
biocontrol against insect pests by exploiting the microbial potential has progressed
tremendously over the last 20 years. However, the European legislation is making
continuous efforts to promote the use of biopesticides through policies to restrict the
broad-spectrum chemical pesticide practice and ban certain pesticides, but still, it
holds no more than 3% of the total global pesticide market (Lacey et al. 2015). The
use of microbial entomopathogens in agriculture is an excellent substitute for
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chemical fertilizer. Several entomopathogenic microbes are available in the global
market as microbial control agents (MCAs) (Lacey et al. 2015). These
entomopathogenic microbes easily invade the insect body while feeding where
they multiply and confiscate the host, ultimately causing insect death.

Most of the commercially available biopesticides target one specific pest, and
although it is advantageous for the safety of the environment and the non-target
species, such low range of effectivity has restricted biopesticides to a niche market
(Lacey et al. 2015). For example, entomopathogenic viral formulations are commer-
cially available to control insect pests such as codling moth, Cydia pomonella, that
are highly selective for the target pest and often sensitive to environmental
conditions such as solar radiation (Lacey et al. 2008). To achieve commercially
successful biopesticides, improvements are needed on the insecticidal activity spec-
tra, persistence to environmental variations, and delivery to target-specific sites of
pest occurrence and should be cost-effective (Glare et al. 2012).

Interestingly, by transferring microbial symbionts from one insect species to
another species that do not harbor such microbes naturally can have a drastic effect
on the insect physiology and behavior. For instance, Wolbachia isolated from
Drosophila and introduced to mosquitoes by injecting into the A. aegypti embryos
has remarkably reduced the virus load and viral transmission by mosquitoes (Fraser
et al. 2017). Moreover, in addition to suppression of viral transmission, Wolbachia
infection also causes cytoplasmic incompatibility, leading to reproductive disruption
and population reduction (Ferguson et al. 2015; Joshi et al. 2017). This target-
specific control strategy could be an effective alternative to control disease
outbreaks. Another strategy could either be the mass release of sterile male insect
or release of Wolbachia infected incompatible females into the environment,
resulting in reproductive disruption, thereby controlling the pest population
(Nikolouli et al. 2018). However, these strategies suffer certain drawbacks. The
mass production of sterile insects is often challenging and not cost-effective. More-
over, environmental factors such as temperature change might have an effect on anti-
viral protection and cytoplasmic incompatibility imparted byWolbachia (Ross et al.
2017). Additionally, anti-viral protection depends on the bacterial load that consid-
erably affects the physiology and fitness of the insect host (Martinez et al. 2015).

Megacopta punctatissima, a soybean crop pest, utilizes its gut bacterial symbiont
Ishikawaella to thrive on soybean. However, a closely related species M. cribraria
shows high mortality on soybean. Administrating Ishikawaella from
M. punctatissima into the newly hatched nymphs of M. cribraria enabled success-
fully thriving on soybean whereas M. punctatissima lost the ability to survive on
soybean (Hosokawa et al. 2007). This suggests that the potential of microbial
symbionts could be used as an approach for the manipulation of insect host range.

The use of genetically modified (GM) crop variety is expressing microbial
endotoxins or inducing RNA interference (RNAi) to target-specific insect species
also holds excellent potential against pest control (Zhang et al. 2017). However, it is
not feasible to engineer all vulnerable crop varieties as polyphagous pests have a
broad host range. Insects do not only attack for feeding but also vectors plant
pathogens. An alternative approach to this could be genetically modifying the
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microbes to deliver RNA interference to the insect by knocking down the genes
essential for insect metabolic processes (Whitten et al. 2016). The delivery of
dsRNA for RNA interference can be easily achieved through genetically modifying
the microbes that are invariably ingested by the insects where it can proliferate in the
gut and spread through feces. For example, administration of the genetically
modified bacterial strain, expressing dsRNA against insect α-tubulin gene, to the
western flower thrips (F. occidentalis) significantly increases the insect mortality
(Whitten et al. 2016). However, RNAi technique holds high potential to control
insect pest population, though a fundamental problem exists, i.e., dissemination of
genetically modified microbes to non-target hosts through horizontal transfer. How-
ever, the development of highly specific dsDNA for RNAi to target genes of a
particular pest species can mitigate the limitation (Arora and Douglas 2017).

Microbial symbionts are an integral part of the insect life cycle that often
influence different aspects: host physiology, behavior, immunity, and reproduction.
The elimination of these obligate microbial partners could be a promising strategy to
control insect pests. The use of antimicrobial peptides such as melittin, cecropin, or
toxin proteins to target obligate symbionts would compromise the insect pest.
However, the delivery of such antimicrobial agents to a specific site to target gut
symbionts is a challenge. Nevertheless, Husseneder et al. (2016) used genetically
engineered Kluyveromyces lactics (as a microbial delivery vehicle) that expresses
melittin against the termite Coptotermes formosanus, which resulted in the elimina-
tion of termite gut symbiont thereby losing its cellulose degrading capability.

Furthermore, manipulating the genetic pool of the microorganisms for specific
expression in different habitat could provide a much safer strategy to target pest
insects. In particular, various entomopathogenic microbes (Metarhzium and
Photorhabdus) have been identified to possess promoters that express toxin gene
only in insect habitat (Fang et al. 2011; Münch et al. 2008). Several bacterial suicidal
genes are available that degrade in a non-permissive habitat (Li and Wu 2009). The
encapsulation of the microbes enables microbial release on insect feeding and in
insect gut under particular environmental conditions (such as a change in pH,
hydrostatic pressure, or high protease activity) (Arora et al. 2015).

4 Conclusion and Future Perspective

To satisfy the ever-augmenting demands of the growing population, the need for
increased food production and crop protection is a major challenge. An army of
researchers has been engaged over the years in the development of robust IPM
strategies, but most cropping systems to date are hugely dependent on chemical
pesticides (Stenberg 2017). There is a clear need for a holistic approach for sustain-
able pest management as well as to minimize the associated risks. The recent
development in technologies has opened up new dimensions in crop protection.
The advent of genomics and next-generation sequencing has made it practicable to
explore the full spectrum of microbial diversity as there are no longer “hidden
players” in plant–insect interaction. The recent advancement in omics technologies
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is anticipated to have a considerable impact on the development of biocontrol
strategies by harvesting the knowledge in the interaction between insects and their
microbial allies. The characterization of microbial diversity together with metabolic
fingerprinting plays a crucial role in an in-depth understanding of host–microbe
interaction (Douglas 2018). Exploiting microbial partners can serve as a potential
candidate for future pest management. Furthermore, recent advancements in RNAi
and CRISPR-Cas9 technology have led to breakthroughs in agriculture by
manipulating host-associated microorganisms as control strategies against pest
insects (Arora and Douglas 2017; Gao 2018). The recent genetic engineering of
gut microbiota in honeybee through state-of-the-art CRISPR-CAS9 technology has
proven to be an excellent toolkit to characterize and manipulate the gut microbiome
in insect host physiology (Leonard et al. 2018). The reproductive alteration mediated
by bacterium Wolbachia by inducing cytoplasmic incompatibility in the host insect
also serves as a potent strategy for pest control (Arora and Douglas 2017). However,
it is essential to consider the risk associated with the release of genetically modified
microbes to the environment. The application of antagonistic microbes is an alterna-
tive eco-friendly approach toward crop protection where the antagonistic microbe
competes and/or inhibits the growth of plant pathogens (Feichtmayer et al. 2017).
Not only microbes but also microbial-volatile compounds (mVOCs) are potential
candidates in biocontrol (Bailly and Weisskopf 2017). It is important to consider that
each of these strategies has its limitations that need to be considered in advance.
Insects and microbes have a relatively short generation time and are in a constant
evolutionary race to overwhelm our control endeavors. The continuous improve-
ment of existing strategies and development of new avenues are pivotal to get rid of
crop losses due to insect infestation in future.
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