
Chapter 8
Granular Computing Based on m-Polar
Fuzzy Hypergraphs

An m-polar fuzzy model, as an extension of fuzzy and bipolar fuzzy models, plays a
vital role in modeling of real-world problems that involve multi-attribute, multipolar
information, and uncertainty. The m-polar fuzzy models give increasing precision
and flexibility to the system as compared to the fuzzy and bipolar fuzzy models. An
m-polar fuzzy set assigns the membership degree to an object belonging to [0, 1]m
describing the m distinct attributes of that element. Granular computing deals with
representing and processing information in the form of information granules. These
information granules are collections of elements combined together due to their sim-
ilarity and functional/physical adjacency. In this chapter, we illustrate the formation
of granular structures using m-polar fuzzy hypergraphs and level hypergraphs. Fur-
ther, we define m-polar fuzzy hierarchical quotient space structures. The mappings
between them-polar fuzzy hypergraphs depict the relationships among granules that
occurred in different levels. The consequences reveal that the representation of parti-
tion of universal set ismore efficient throughm-polar fuzzy hypergraphs as compared
to crisp hypergraphs. We also present some examples and a real-world problem to
signify the validity of our proposed model. This chapter is due to [11, 12, 18].

8.1 Introduction

Granular computing is defined as an identification of techniques, methodologies,
tools, and theories that yields the advantages of clusters, groups or classes, i.e., the
granules. The terminology was first introduced by Lin [15]. The fundamental con-
cepts of granular computing are utilized in various disciplines, including machine
learning, rough set theory, cluster analysis, and artificial intelligence. Different mod-
els have been proposed to study the various issues occurring in granular computing,
including classification of the universe, illustration of granules, and the identification
of relations among granules. For example, the procedure of problem-solving through

© Springer Nature Singapore Pte Ltd. 2020
M. Akram and A. Luqman, Fuzzy Hypergraphs and Related Extensions,
Studies in Fuzziness and Soft Computing 390,
https://doi.org/10.1007/978-981-15-2403-5_8

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2403-5_8&domain=pdf
https://doi.org/10.1007/978-981-15-2403-5_8


340 8 Granular Computing Based on m-Polar Fuzzy Hypergraphs

granular computing can be considered as subdivisions of the problem at multilevels
and these levels are linked together to construct a hierarchical space structure. Thus,
this is a way of dealing with the formation of granules and the switching between
different granularities. Here, the word “hierarchy” implies the methodology of hier-
archical analysis in solving a problem and human activities [32]. To understand this
methodology, let us consider an example of national administration inwhich the com-
plete nation is subdivided into various provinces. Further, we divide every province
into various divisions and so on. The human activities and problem-solving involve
the simplification of original complicated problem by ignoring some details rather
than thinking about all points of the problem. This rationalize model is then further
refined till the issue is completely solved. Thus, we resolve and interpret the complex
problems from weaker grain to stronger one or from highest rank to lowest or from
universal to particular, etc. This technique is called the hierarchical problem-solving.
This is further acknowledged that hierarchical strategy is the only technique which is
used by humans to deal with complicated problems and it enhances the competence
and efficiency. This strategy is also known as the multi-granular computing.

Hypergraphs, as an extension of classical graphs, experience various properties
which appear very effective and useful as the basis of different techniques in many
fields, including problem-solving, declustering, and databases [10]. The real-world
problems which are represented and solved using hypergraphs have been achieved
very good impacts. The formation of hypergraphs is same as that of granule structures
and the relations between the vertices and hyperedges of hypergraphs can depict the
relationships of granules and objects. A hyperedge can contain n vertices represent-
ing n-ary relations and hence can provide more effective analysis and description of
granules. Many researchers have used hypergraph methods to study the clustering
of complex documentation by means of granular computing and investigated the
database techniques [16, 22]. Chen et al. [11] proposed a model of granular comput-
ing based on crisp hypergraph. They related a crisp hypergraph to a set of granules
and represented the hierarchical structures using series of hypergraphs. They proved
a hypergraph model as a visual description of granular computing.

Zadeh’s [25] fuzzy set has been acquired greater attention by researchers in a
wide range of scientific areas, including management sciences, robotics, decision
theory, and many other disciplines. Zhang [29] generalized the idea of fuzzy sets to
the concept of bipolar fuzzy sets whose membership degrees range over the interval
[−1, 1]. Anm-polar fuzzy set, as an extension of fuzzy set and bipolar fuzzy set, was
proposed by Chen et al. [12] and it proved that 2-polar fuzzy sets and bipolar fuzzy
sets are equivalent concepts in mathematics. Anm-polar fuzzy set corresponds to the
existence of “multipolar information” because there are many real-world problems
which take data or information from n agents (n ≥ 2). For example, in the case of
telecommunication safety, the exact membership degree lies in the interval [0, 1]n
(n ≈ 7 × 109) as the distinct members are monitored at different times. Similarly,
there are many problems which are based on n logic implication operators (n ≥ 2),
including rough measures, ordering results of magazines and fuzziness measures,
etc. To handle uncertainty in the representation of different objects or in the relation-
ships between them, fuzzy graphs were defined by Rosenfeld [20]. m-polar fuzzy
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graphs and their interesting properties were discussed by Akram et al. [1] to deal
with the networkmodels possessingmulti-attribute andmultipolar data. As an exten-
sion of fuzzy graphs, Kaufmann [13] defined fuzzy hypergraphs. Although, many
researchers have been explored the construction of granular structures using hyper-
graphs in various fields. However, there are many graph theoretic problems which
may contain uncertainty and vagueness. To overcome the problems of uncertainty
in models of granular computing, Wang and Gong [21] studied the construction of
granular structures by means of fuzzy hypergraphs. They concluded that the repre-
sentation of granules and partition is much efficient through the fuzzy hypergraphs.
Novel applications and transversals of m-polar fuzzy hypergraphs were defined by
AkramandSarwar [5, 6]. Further,AkramandShahzadi [7] studied various operations
on m-polar fuzzy hypergraphs. Akram and Luqman [3, 4] introduced intuitionistic
single-valued and bipolar neutrosophic hypergraphs. The basic purpose of this work
is to develop an interpretation of granular structures using m-polar fuzzy hyper-
graphs. In the proposed model, the vertex of m-polar fuzzy hypergraph denotes an
object and an m-polar fuzzy hyperedge represents a granule. The “refinement” and
“coarsening” operators are defined to switch the different granularities from coarser
to finer and vice versa, respectively.

For further terminologies and studies on m-polar fuzzy hypergraphs, readers are
referred to [2, 8, 9, 14, 17, 19, 23, 26–28].

8.2 Fundamental Features of m-Polar Fuzzy Hypergraphs

Definition 8.1 Anm-polar fuzzy set M on a universal set X is defined as a mapping
M :X → [0, 1]m . The membership degree of each element z ∈ X is represented by
M(z)=(P1 ◦ M(z), P2 ◦ M(z), P3 ◦ M(z),. . ., Pm ◦ M(z)), where P j ◦ M(z) :
[0, 1]m → [0, 1] is defined as j-th projection mapping.

Note that, the m-th power of [0, 1] (i.e., [0, 1]m) is regarded as a partially ordered
set with the point-wise order ≤, where m is considered as an ordinal number (m =
n|n < m when m > 0), ≤ is defined as z1 ≤ z2 if and only if P j (z1) ≤ P j (z2),
for every 1 ≤ j ≤ m. 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1) are the smallest and
largest values in [0, 1]m , respectively.
Definition 8.2 Let M be an m-polar fuzzy set on X . An m-polar fuzzy relation
N = (P1 ◦ N , P2 ◦ N , P3 ◦ N ,. . ., Pm ◦ N ) on M is a mapping N : M → M
such that N (z1z2) ≤ inf{M(z1), M(z2)}, for all z1, z2 ∈ X , i.e., for each 1 ≤ j ≤
m, P j ◦ N (z1z2) ≤ inf{P j ◦ M(z1),P j ◦ M(z2)}, where P j ◦ M(z) and P j ◦
N (z1z2) denote the j-th membership degree of an element z ∈ X and the pair z1z2,
respectively.

Definition 8.3 An m-polar fuzzy graph on X is defined as an ordered pair of
functions G = (C, D), where C : X → [0, 1]m is an m-polar vertex set and D :
X × X → [0, 1]m is an m-polar edge set of G such that D(wz) ≤ inf{C(w),C(z)},
i.e.,P j ◦ D(wz) ≤ inf{P j ◦ C(w),P j ◦ C(z)}, for all w, z ∈ X and 1 ≤ j ≤ m.
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Definition 8.4 An m-polar fuzzy hypergraph on a non-empty set X is a pair H =
(A, B), where A = {M1, M2, . . . , Mr } is a finite family of m-polar fuzzy sets on X
and B is an m-polar fuzzy relation on m-polar fuzzy sets Mk such that

• B(Ek) = B({z1, z2, . . . , zl}) ≤ inf{Mk(z1),Mk(z2), . . ., Mk(zl)},
•

r⋃

k=1
supp(Mk) = X , for all Mk ∈ A and for all z1, z2, . . . , zl ∈ X .

Definition 8.5 Let H = (A, B) be an m-polar fuzzy hypergraph and τ ∈ [0, 1]m .
Then the τ -cut level set of an m-polar fuzzy set M is defined as Mτ = {z|P j ◦
M(z) ≥ t j , 1 ≤ j ≤ m}, τ = (t1, t2, . . . , tm).

Hτ = (Aτ , Bτ ) is called a τ -cut level hypergraph of H , where Aτ =
r⋃

i=1
Miτ .

8.2.1 Uncertainty Measures of m-Polar Fuzzy Hierarchical
Quotient Space Structure

The question of distinct membership degrees of same object from different scholars
is arisen because of various ways of thinking about the interpretation of different
functions dealing with the same problem. To resolve this issue, fuzzy set was struc-
turally defined by Zhang and Zhang [31] which was based on quotient space theory
and fuzzy equivalence relation [30]. This definition provides some new initiatives
regarding to membership degree, called a hierarchical quotient space structure of a
fuzzy equivalence relation. By following the same concept, we develop a hierarchical
quotient space structure of an m-polar fuzzy equivalence relation.

Definition 8.6 An m-polar fuzzy equivalence relation on a non-empty finite set X
is called an m-polar fuzzy similarity relation if it satisfies,

1. N (z, z) = (P1 ◦ N (z, z), P2 ◦ N (z, z),. . ., Pm ◦ N (z, z)) = (1, 1, . . . , 1), for
all z ∈ X ,

2. N (u,w) = (P1 ◦ N (u,w), P2 ◦ N (u,w),. . ., Pm ◦ N (u,w)) = (P1 ◦ N (w,

u),P2 ◦ N (w, u),. . ., Pm ◦ N (w, u)) = N (w, u), for all u,w ∈ X.

Definition 8.7 An m-polar fuzzy equivalence relation on a non-empty finite set X
is called an m-polar fuzzy equivalence relation if it satisfies the conditions,

1. N (z, z) = (P1 ◦ N (z, z), P2 ◦ N (z, z),. . ., Pm ◦ N (z, z)) = (1, 1, . . . , 1), for
all z ∈ X ,

2. N (u,w) = (P1 ◦ N (u,w), P2 ◦ N (u,w),. . ., Pm ◦ N (u,w)) = (P1 ◦ N (w,

u),P2 ◦ N (w, u),. . ., Pm ◦ N (w, u)) = N (w, u), for all u,w ∈ X,

3. for all u, v,w ∈ X , N (u,w) = sup
v∈X

{min(N (u, v), N (v,w))}, i.e., P j ◦
N (u,w) = sup

v∈X
{min(P j ◦ N (u, v),P j ◦ N (v,w))}, 1 ≤ j ≤ m.
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Definition 8.8 An m-polar fuzzy quotient space is denoted by a triplet (X, C̃, N ),
where X is a finite domain, C̃ represents the attributes of X and N represents the
m-polar fuzzy relationship between the objects of universe X , which is called the
structure of the domain.

Definition 8.9 Let zi and z j be two objects in the universe X . The similarity between
zi , z j ∈ X having the attribute c̃k is defined as,

N (zi , z j ) = |c̃ik ∩ c̃ jk |
|c̃ik ∪ c̃ jk | ,

where c̃ik represents that object zi possesses the attribute c̃k and c̃ jk represents that
object z j possesses the attribute c̃k .

Proposition 8.1 Let N be an m-polar fuzzy relation on a finite domain X and Nτ =
{(x,w)|P j ◦ N (x,w) ≥ t j , 1 ≤ j ≤ m}, τ = (t1, t2, . . . , t j ) ∈ [0, 1]. Then, Nτ is
an equivalence relation on X and is said to be cut-equivalence relation of N .

Proposition8.1 represents that Nτ is a crisp relation, which is equivalence on X and
its knowledge space is given as ξNτ

(X) = X/Nτ .

The value domain of an equivalence relation N on X is defined as
D = {N (w, y)|w, y ∈ X} such that, P j ◦ X (w) ∧ P j ◦ X (y) ∧ P j ◦ N (x, y) >

0, 1 ≤ j ≤ m.

Definition 8.10 Let N be an m-polar fuzzy equivalence relation on a finite set X
and D be the value domain of N . The set given by ξX (N ) = {X/Nτ |τ ∈ D} is called
m-polar fuzzy hierarchical quotient space structure of N .

Example 8.1 Let X = {w1, w2, w3, w4, w5, w6} be a finite set of elements and N1 be
a 4-polar fuzzy equivalence relation on X , the relation matrix M̃N1 corresponding to
N1 is given as follows:

M̃N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1) (0.4, 0.4, 0.5, 0.5) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4)
(0.4, 0.4, 0.5, 0.5) (1, 1, 1, 1) (0.8, 0.8, 0.9, 0.9) (0.8, 0.8, 0.6, 0.6) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.9, 0.9) (1, 1, 1, 1) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (1, 1, 1, 1) (0.7, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (0.7, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its corresponding m-polar fuzzy hierarchical quotient space structure is given as

X/N1τ1 = X/N1(t1,t2,t3,t4) = {{w1,w2,w3,w4,w5,w6}},
X/N1τ2 = X/N1(t ′1,t ′2,t ′3,t ′4) = {{w1}, {w2,w3,w4,w5,w6}},
X/N1τ3 = X/N1(t ′′1 ,t ′′2 ,t ′′3 ,t ′′4 ) = {{w1}, {w2,w3,w4,w5}, {w6}},

X/N1τ4 = X/N1(t ′′′1 ,t ′′′2 ,t ′′′3 ,t ′′′4 ) = {{w1}, {w2,w3}, {w4,w5}, {w6}},
X/N1τ5 = X/N1(t ′′′′1 ,t ′′′′2 ,t ′′′′3 ,t ′′′′4 ) = {{w1}, {w2,w3}, {w4}, {w5}, {w6}},

X/N1τ6 = X/N1(t ′′′′′1 ,t ′′′′′2 ,t ′′′′′3 ,t ′′′′′4 ) = {{w1}, {w2}, {w3}, {w4}, {w5}, {w6}},
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where

0 < τ1 = (t1, t2, t3, t4) ≤ 0.4,

0.4 < τ2 = (t ′1, t
′
2, t

′
3, t

′
4) ≤ 0.5,

0.5 < τ3 = (t ′′1 , t ′′2 , t ′′3 , t ′′4 ) ≤ 0.6,

0.6 < τ4 = (t ′′′1 , t ′′′2 , t ′′′3 , t ′′′4 ) ≤ 0.7,

0.7 < τ5 = (t ′′′′1 , t ′′′′2 , t ′′′′3 , t ′′′′4 ) ≤ 0.8,

0.8 < τ6 = (t ′′′′′1 , t ′′′′′2 , t ′′′′′3 , t ′′′′′4 ) ≤ 1.

Hence, a 4-polar fuzzy hierarchical quotient space structure is given as ξX (N1) =
{X/Nτ1 , X/Nτ2 , X/Nτ3 , X/Nτ4 , X/Nτ5 , X/Nτ6} and is shown in Fig. 8.1.

It is worth to note that the same hierarchical quotient space structure can be formed
by different 4-polar fuzzy equivalence relations. For instance, the relationmatrix M̃N2

of 4-polar fuzzy equivalence relation generates the same hierarchical quotient space
structure as given by M̃N1 . The relation matrix M̃N2 is given as

M̃N2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4)
(0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (1, 1, 1, 1) (0.8, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.8, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

w1 w2 w3 w4 w5 w6

w1w2 w3 w4 w5 w6

w1w6 w2 w3 w4 w5

w6 w1w2 w3 w4 w5

w6 w1w2 w3 w4 w5

Fig. 8.1 A 4-polar fuzzy hierarchical quotient space structure
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Layer 1

Layer k−1

Layer k

Layer i

τ1 = (t11, t21, · · · , tm1) = 0

τk−1 = (t1k−1, t2k−1, · · · , tmk−1)

τk = (t1k, t2k, · · · , tmk)

τi = (t1i, t2i, · · · , tmi)

Fig. 8.2 Pyramid model of m-polar fuzzy hierarchical quotient space structure

Furthermore, assuming the number of blocks in every distinct layer of this hierar-
chical quotient space structure, a pyramid model can also be constructed as shown
in Fig. 8.2.

8.2.2 Information Entropy of m-Polar Fuzzy Hierarchical
Quotient Space Structure

Definition 8.11 Let N be anm-polar fuzzy equivalence relation on X . Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure,where τi = (t1i , t2i , . . . , tmi ), i = 1, 2,. . ., j and X (τ j ) < X (τ j−1) < · · · <

X (τ1). Then, the partition sequence of ξX (N ) is given as P(ξX (N )) = {P1, P2, P3,
. . ., Pj }, where Pi = |X (τi )|, i = 1, 2, . . . , j and |.| denotes the number of elements
in a set.

Definition 8.12 Let N be anm-polar fuzzy equivalence relation on X . Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure, where τi = (t1i , t2i , . . . , tmi ), i = 1, 2, . . ., j and X (τ j ) < X (τ j−1) <

· · · < X (τ1), P(ξX (N )) = {P1, P2, . . ., Pj } be the partition sequence of ξX (N ).
Assume that X (τi ) = {Xi1, Xi2, . . ., Xi Pi }. The information entropy EX (τi ) is defined

as EX (τi ) = −
P i∑

r=1

|Xir |
|X | ln(

|Xir |
|X | ).

Theorem 8.1 Let N be an m-polar fuzzy equivalence relation on X. Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure, where τi = (t1i ,t2i , . . ., tmi ), i = 1, 2, . . ., j , then the entropy sequence
E(ξX (N )) = {EX (τ1), EX (τ2), . . ., EX (τ j )} increases monotonically and strictly.

Proof The terminology of hierarchical quotient space structure implies that X (τ j ) <

X (τ j−1) < · · · < X (τ1), i.e., X (τ j−1) is a quotient subspace of X (τ j ). Suppose that
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X (τi ) = {Xi1, Xi2, . . . , Xi Pi } and X (τi−1) = {X(i−1)1, X(i−1)2, . . .,X(i−1)P(i−1)}, then
every subblock of X (τi−1) is an amalgam of subblocks of X (τi ). Without loss of
generality, it is assumed that only one subblock Xi−1, j in X (τi−1) is formed by the
combination of two subblocks Xir , Xis in X (τi ) and all other remaining blocks are
equal in both sequences. Thus,

EX (τ j−1) = −
Pi−1∑

r=1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | )

= −
Pj−1∑

r=1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | ) −

Pi−1∑

r= j+1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | ) − |Xi−1, j |

|X | ln(
|Xi−1, j |

|X | )

= −
Pj−1∑

r=1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) −

Pi∑

r= j+1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) − |Xi,r | + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | ).

Since,
|Xi,r | + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | ) = |Xi,r |
|X | ln(

|Xi,r | + |Xi,s |
|X | ) + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | )

>
|Xi,r |
|X | ln(

|Xi,r |
|X | ) + |Xi,s |

|X | ln(
|Xi,s |
|X | ).

Therefore, we have

EX (τ j−1) < −
Pj−1∑

r=1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) −

Pi∑

r= j+1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) − |Xi,r |

|X | ln(
|Xi,r |
|X | ) − |Xi,s |

|X | ln(
|Xi,s |
|X | ),

= EX (τ j ), (2 ≤ j ≤ n).

Hence, EX (τ1) < EX (τ2) < EX (τ2) < · · · < EX (τ j ).

Definition 8.13 Let X = {s1, s2, s3, . . ., sn} be a non-empty set of universe and let
Pd(X) = {X1, X2, X3, . . ., Xd} be a partition space of X , where |Pd(X)| = d then
Pd(X) is called d-order partition space on X .

Definition 8.14 Let X be a finite non-empty universe and let Pd(X) = {X1, X2,

X3, . . . , Xd} be a d-order partition space on X . Let |X1| = l1, |X2| = l2, . . ., |Xd | =
ld and the sequence {l1, l2, . . . , ld} is arranged in increasing order then we got a
new sequence χ(d) = {l ′1, l ′2, . . . , l ′d} which is also increasing and called a subblock
sequence of Pd(X).

Note that, two different d-order partition spaces on X may possess the similar sub-
block sequence χ(d).

Definition 8.15 Let X be a finite non-empty universe and let Pd(X) = {X1, X2,

X3, . . . , Xd} be a partition space of X . Suppose that χ1(d) = {l ′1, l ′2, . . . , l ′d} be a
subblock sequence of Pd(X), then the ω-displacement of χ1(d) is defined as an
increasing sequence χ2(d) = {l ′1, l ′2, . . . , l ′r + 1, . . . , l ′s − 1, . . . , l ′d}, where r < s,
l ′r + 1 < l ′s − 1.
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An ω-displacement is obtained by subtracting 1 from some bigger term and adding
1 to some smaller element such that the sequence keeps its increasing property.

Theorem 8.2 A single time ω-displacement χ2(d) which is derived from χ1(d) sat-
isfies E(χ1(d)) < E(χ2(d)).

Proof Let χ1(d) = {l ′1, l ′2, . . ., l ′d} and χ2(d) = {l ′1, l ′2, . . ., l ′r + 1, . . ., l ′s − 1, . . ., l ′d},
l ′1 + l ′2 + · · · + l ′d = k then we have

E(χ2(t)) = −
d∑

j=1

l ′l
k
ln
l ′l
k

+ l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k
.

Let g(z) = − z
k ln

z
k − l−z

k ln l−z
k , where l = l ′r + l ′s and g′(z) = 1

k ln
l−z
z . Suppose that

g′(z) = 0, then we obtain a solution, i.e., z = l
2 . Furthermore, g′′(z) = −l

k(l−z)z < 0,

0 ≤ z ≤ l
2 and g(z) is increasing monotonically. Let z1 = l ′r and z2 = l ′r + 1, l ′r +

1 < l ′s − 1, i.e., z1 < z2 ≤ l
2 = l ′r+l ′s

2 . Since, g(z) is monotone, then g(z2) − g(z1) >

0. Thus,
l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k
> 0.

Hence,

E(χ2(d)) = −
d∑

j=1

l ′l
k
ln
l ′l
k

+ l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k

> −(
l ′r + 1

k
ln
l ′r + 1

k
+ l ′s − 1

k
ln
l ′s − 1

k
)

> −
t∑

j=1

l ′l
k
ln
l ′l
k

= E(χ1(d)).

This completes the proof.

8.3 An m-Polar Fuzzy Hypergraph Model of Granular
Computing

Definition 8.16 An object space is defined as a system (X, N ), where X is a uni-
verse of objects or elements and N = {n1, n2, n3, . . . , nk}, k = |X | is a family of
relations between the elements of X . For r ≤ k, nr ∈ N , nr ⊆ X × X × · · · × X , if
(z1, z2, . . . , zr ) ⊆ nr , then there exists an r -array relation nr on (z1, z2, . . . , zn).
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A granule affiliates to a particular level. Thewhole view of granules at every level can
be taken as a complete description of a particular problem at that level of granularity
[11]. Anm-polar fuzzy hypergraph formed by the set of relations N and membership
degrees X (w) = P j ◦ X (w), 1 ≤ j ≤ m of objects in the space is considered as a
specific level of granular computing model. All m-polar fuzzy hyperedges in that
m-polar fuzzy hypergraph can be regarded as the complete granule in that particular
level.

Definition 8.17 A partition of a set X established on the basis of relations between
objects is defined as a collection of non-empty subsets which are pair-wise disjoint
and whose union is whole of X . These subsets which form the partition of X are
called blocks. Every partition of a finite set X contains the finite number of blocks.
Corresponding to the m-polar fuzzy hypergraph, the constraints of partition ψ =
{Ei |1 ≤ i ≤ n}.
(i) each Ei is non-empty,
(ii) for i �= j , Ei ∩ E j = ∅,
(iii) ∪{supp(Ei )|1 ≤ i ≤ n} = X .

Definition 8.18 A covering of a set X is defined as a collection of non-empty subsets
whose union is whole of X . The conditions for the covering c = {Ei |1 ≤ i ≤ n} of
X are stated as

(i) each Ei is non-empty,
(ii) ∪{supp(Ei )|1 ≤ i ≤ n} = X .

The corresponding definitions in classical hypergraph theory are completely analo-
gous to the above Definitions8.17 and 8.18. In a crisp hypergraph, if the hyperedges
Ei and E j do not intersect each other, i.e., Ei , E j ∈ E and Ei ∩ E j = ∅ then these
hyperedges form a partition of granules in this level. Furthermore, if Ei , E j ∈ E
and Ei ∩ E j �= ∅, i.e., the hyperedges Ei and E j intersect each other, then these
hyperedges form a covering in this level.

Example 8.2 Let X = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}. The partition and
covering of X are given in Figs. 8.3 and 8.4, respectively.

Fig. 8.3 A partition of
granules in a level w1
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w4
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w 7
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Fig. 8.4 A covering of
granules in a level
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A set-theoretic way to study the granular computing model uses the following oper-
ators in an m-polar fuzzy hypergraph model.

Definition 8.19 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedges E1, E2 represent their external properties. The union of two granules
G1 ∪ G2 is defined as a larger m-polar fuzzy hyperedge that contains the vertices of
both E1 and E2. If wi ∈ G1 ∪ G2, then the membership degree (G1 ∪ G2)(wi ) of wi in
larger granule G1 ∪ G2 is defined as follows:

P j ◦ (G1 ∪ G2)(wi ) =

⎧
⎪⎨

⎪⎩

max{P j ◦ (E1)(wi ),P j ◦ (E2)(wi )}, if wi ∈ E1 and wi ∈ E2,

P j ◦ (E1)(wi ), if wi ∈ E1 and wi /∈ E2,

P j ◦ (E2)(wi ), if wi ∈ E2 and wi /∈ E1,

1 ≤ j ≤ m.

Definition 8.20 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedgesE1,E2 represent their external properties. The intersectionof twogranules
G1 ∩ G2 is defined as a larger m-polar fuzzy hyperedge that contains the vertices of
both E1 and E2. If wi ∈ G1 ∩ G2, then the membership degree (G1 ∩ G2)(wi ) of wi in
smaller granule G1 ∩ G2 is defined as follows,

P j ◦ (G1 ∩ G2)(wi ) =

⎧
⎪⎨

⎪⎩

min{P j ◦ (E1)(wi ),P j ◦ (E2)(wi )}, if wi ∈ E1 and wi ∈ E2,

P j ◦ (E1)(wi ), if wi ∈ E1 and wi /∈ E2,

P j ◦ (E2)(wi ), if wi ∈ E2 and wi /∈ E1,

1 ≤ j ≤ m.

Definition 8.21 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedges E1, E2 represent their external properties. The difference between two
granules G1 − G2 is defined as a smallerm-polar fuzzy hyperedge that contains those
vertices belonging to E1 but not to E2.

Note that, if a vertex wi ∈ E1 and wi /∈ E2, then P j ◦ (E1)(wi ) > 0 and P j ◦
(E2)(wi ) = 0, 1 ≤ j ≤ m.
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Definition 8.22 A granule G1 is said to be the sub-granule of G2, if each vertex wi

of E1 also belongs to E2, i.e., E1 ⊆ E2. In such case, G2 is called the super-granule
of G1.

Note that, if E (wi ) = {0, 1}, then the all above described operators are reduced to
classical hypergraphs theory of granular computing.

8.4 Formation of Hierarchical Structures

Wecan interpret a problem indistinct levels of granularities. These granular structures
at different levels produce a set ofm-polar fuzzy hypergraphs. The upper set of these
hypergraphs constructs a hierarchical structure in distinct levels. The relationships
between granules are expressed by lower level, which represents the problem as a
concrete example of granularity. The relationships between granule sets are expressed
by higher level, which represents the problem as an abstract example of granularity.
Thus, the single-level structures can be constructed and then can be subdivided into
hierarchical structures using the relational mappings between different levels.

Definition 8.23 Let H 1 = (A1, B1) and H 2 = (A2, B2) be two m-polar fuzzy
hypergraphs. In an hierarchy structure, their level cuts are H 1

τ and H 2
τ , respectively,

where τ = (t1, t2, . . . , tm). Let τ ∈ [0, 1] andP j ◦ E 1
i ≥ t j ,1 ≤ j ≤ m, where E 1

i ∈
B1, then a mapping φ : H 1

τ → H 2
τ from H 1

τ to H 2
τ maps the E 1

τi
in H 1

τ to a vertex
w2
i in H 2

τ . Furthermore, the mapping φ−1 : H 2
τ → H 1

τ maps a vertex w2
i in H 2

τ to
τ -cut of m-polar fuzzy hyperedge E 1

τ i in H 1
τi
. It can be denoted as φ(E 1

τi
) = w2

i or
φ−1(w2

i ) = E 1
τi
, for 1 ≤ i ≤ n.

In an m-polar fuzzy hypergraph model, the mappings are used to describe the rela-
tions among different levels of granularities. At each distinct level, the problem is
interpreted w.r.t them-PF granularity of that level. Themapping associates the differ-
ent descriptions of the same problem at distinct levels of granularities. There are two
fundamental types to construct the method of hierarchical structures, the top-down
construction procedure and the bottom-up construction procedure [24].

A formal discussion is provided to interpret an m-polar fuzzy hypergraph model
ingranular computing, which is more compatible to human thinking. Zhang and
Zhang [30] highlighted that one of the most important and acceptable characteristic
of human intelligence is that the same problem can be viewed and analyzed in
different granularities. Their claim is that the problem can not only be solved using
various world of granularities but also can be switched easily and quickly. Hence,
the procedure of solving a problem can be considered as the calculations in different
hierarchies within that model.
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Amultilevel granularity of the problem is represented by anm-polar fuzzy hyper-
graph model, which allows the problem solvers to decompose it into various minor
problems and transform it in other granularities. The transformation of problem
in other granularities is performed by using two operators, i.e., zooming-in and
zooming-out operators. The transformation from weaker level to finer level of gran-
ularity is done by zoom-in operator and the zoom-out operator deals with the shifting
of problem from coarser to finer granularity.

Definition 8.24 Let H 1 = (A1, B1) and H 2 = (A2, B2) be two m-polar fuzzy
hypergraphs, which are considered as two levels of hierarchical structures and H 2

owns the coarser granularity than H 1. Suppose H 1
τ = (X1, E1

τ ) and H 2
τ = (X2, E2

τ )

are the corresponding τ -level hypergraphs of H 1 and H 2, respectively. Let e1i ∈ E1
τ ,

z1j ∈ X1, e2j ∈ E2
τ , z

2
l , z

2
m ∈ X2 and z2l , z

2
m ∈ e2j . If φ(e1i ) = z2l , then n(z1j , z

2
m) is the

relationship between z1j and z2m and is obtained by the characteristics of granules.

Definition 8.25 Let the hyperedge φ−1(zl) be a vertex in a new level and the relation
between hyperedges in this level is same as that of relationship between vertices in
previous level. This is called the zoom-in operator and transforms a weaker level
to a stronger level. The function r(z1j , z

2
m) defines the relation between vertices of

original level as well as new level.
Let the vertexφ(ei ) be a hyperedge in a new level and the relation between vertices

in this level is same as that of relationship between hyperedges in corresponding level.
This is called the zoom-out operator and transforms a finer level to a coarser level.

By using these zoom-in and zoom-out operators, a problem can be viewed at multi-
levels of granularities. These operations allow us to solve the problem more appro-
priately and granularity can be switched easily at any level of problem-solving.

In an m-polar fuzzy hypergraph model of granular computing, the membership
degrees of elements reflect the actual situation more efficiently and a wide variety
of complicated problems in uncertain and vague environments can be presented
by means of m-polar fuzzy hypergraphs. The previous analysis conclude that this
model of granular computing generalizes the classical hypergraph model and fuzzy
hypergraph model.

Definition 8.26 Let H 1 and H 2 be two crisp hypergraphs. Suppose that H 1 owns the
finer m-polar fuzzy granularity than H 2. A mapping from H 1 to H 2 ψ : H 1 → H 2

maps a hyperedge of H 1 to the vertex of H 2 and the mappingψ−1 : H 2 → H 1 maps
a vertex of H 2 to the hyperedge of H 1.

The procedure of bottom-up construction for level hypergraph model is illustrated
in Algorithm 8.4.1.
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Algorithm 8.4.1
The procedure of bottom-up construction for level hypergraph
1. Determine an m−polar fuzzy equivalence relation matrix according to the actual circumstances.
2. For fixed τ ∈ [0, 1], obtain the corresponding hierarchical quotient space structure.
3. Obtain the hyperedges through the hierarchical quotient space structure.
4. Granules in i-level are mapped to (i + 1)−level.
5. Calculate the m−polar fuzzy relationships between the vertices of (i + 1)−level and determine

the m−polar fuzzy equivalence relation matrix.
6. Determine the corresponding hierarchical quotient space structure according to τ , which is fixed in Step 2.
7. Get the hyperedges in (i + 1)−level and (i + 1)−level of the model is constructed.
8. Step 1 - Step 5 are repeated until the whole universe is formulated to a single granule.

Definition 8.27 Let N be an m-polar fuzzy equivalence relation on X . A coarse
gained universe X/Nτ can be obtained by using m-polar fuzzy equivalence relation,
where [wi ]Nτ

= {wj ∈ X |wi Nwj }. This equivalence class [wi ]Nτ
is considered as an

hyperedge in the level hypergraph.

Definition 8.28 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of m-
polar fuzzy hypergraphs and H2 has weaker granularity than H1. Suppose that e1i ,
e2j ∈ E1 and w2

i , w
2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-in operator ω : H2 → H1

is defined as ω(w2
i ) = e1i , e

1
i ∈ E1. The relations between the vertices of H 2 define

the relationships among the hyperedges in new level. The zoom-in operator of two
levels is shown in Fig. 8.5.

Remark 1 For all X ′
2, X ′′

2 ⊆ X2, we have ω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) and ω(X ′′

2) =
⋃

w2
j∈X ′′

2

ω(w2
j ).

w
2
1

w22

w 23

H2

e11

e1 2

e 1
3

ω(w2
1)

ω(w2
2)

ω(w2
3)

H1

Fig. 8.5 Zoom-in operator
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Theorem 8.3 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels and ω : H2 →
H1 be the zoom-in operator. Then for all X ′

2, X
′′
2 ⊆ X2, the zoom-in operator satisfies

(i) ω maps the empty set to an empty set, i.e., ω(∅) = ∅,
(ii) ω(X2) = E1,
(iii) ω([X ′

2]c) = [ω(X ′
2)]c,

(iv) ω(X ′
2 ∩ X ′′

2)= ω(X ′
2) ∩ ω(X ′′

2),
(v) ω(X ′

2 ∪ X ′′
2)= ω(X ′

2) ∪ ω(X ′′
2),

(vi) X ′
2 ⊆ X ′′

2 if and only if ω(X ′
2) ⊆ ω(X ′′

2).

Proof (i) It is trivially satisfied that ω(∅) = ∅.
(ii) Asweknow that for allw2

i ∈ X2,wehaveω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ). Sinceω(w2

i ) =
e1i , we have ω(X ′

2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈E1

e1i = E1.

(iii) Let [X ′
2]c = X ′

2 and [X ′′
2 ]c = X ′′

2 , then it is obvious that X ′
2 ∩ X ′

2 = ∅ and
X ′
2 ∪ X ′

2 = X2. It follows from (ii) that ω(X2) = E1 and we denote by W ′
1

that edge set of H1 on which the vertex set X ′
2 of H2 is mapped under

ω, i.e.,ω(X ′
2) = W ′

1. Thenω([X ′
2]c) = ω(X ′

2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈W ′
1

e1i = X ′
1

and [ω(X ′
2)]c = [ ⋃

w2
j∈X ′

2

ω(w2
j )]c = [ ⋃

e1j∈E ′
1

e1j ]c = (E ′
1)

c. Since, the relationship

between hyperedges in new level is same as that of relations among vertices
in original level so we have (E ′

1)
c = X ′

1. Hence, we conclude that ω([X ′
2]c) =

[ω(X ′
2)]c.

(iv) Assume that X ′
2 ∩ X ′′

2 = X̃2 then for allw2
i ∈ X̃2 implies thatw2

i ∈ X ′
2 andw

2
i ∈

X ′′
2 . Further, we haveω(X ′

2 ∩ X ′′
2) = ω(X̃2) = ⋃

w2
i ∈X̃2

ω(w2
i )=

⋃

e1i ∈Ẽ1

ω(e1i ) = Ẽ1.

ω(X ′
2) ∩ ω(X ′′

2)={ ⋃

w2
i ∈X ′

2

ω(w2
i )} ∩ { ⋃

w2
j∈X ′′

2

ω(w2
j )} = ⋃

e1i ∈E ′
1

e1i ∩ ⋃

e1j∈E ′′
1

e1j = E ′
1 ∩

E ′′
1 . Since, the relationship between hyperedges in new level is same as that of

relations among vertices in original level so we have E ′
1 ∩ E ′′

1 = Ẽ1. Hence, we
conclude that ω(X ′

2 ∩ X ′′
2)= ω(X ′

2) ∩ ω(X ′′
2).

(v) Assume that X ′
2 ∪ X ′′

2 = X̄2. Then we have ω(X ′
2 ∪ X ′′

2) = ω(X̄2) =⋃

w2
i ∈X̄2

ω(w2
i )=

⋃

e1i ∈Ē1

ω(e1i ) = Ē1.

ω(X ′
2) ∪ ω(X ′′

2)={ ⋃

w2
i ∈X ′

2

ω(w2
i )} ∪ { ⋃

w2
j∈X ′′

2

ω(w2
j )} = ⋃

e1i ∈E ′
1

e1i ∪ ⋃

e1j∈E ′′
1

e1j = E ′
1 ∪

E ′′
1 . Since, the relationship between hyperedges in new level is same as that of

relations among vertices in original level so we have E ′
1 ∪ E ′′

1 = Ē1. Hence, we
conclude that ω(X ′

2 ∪ X ′′
2)= ω(X ′

2) ∪ ω(X ′′
2).

(vi) First we show that X ′
2 ⊆ X ′′

2 implies that ω(X ′
2) ⊆ ω(X ′′

2). Since, X
′
2 ⊆ X ′′

2 ,
which implies that X ′

2 ∩ X ′′
2 = X ′

2 and ω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈E ′
1

e1i = E ′
1.

Also ω(X ′′
2) = ⋃

w2
j∈X ′′

2

ω(w2
j ) = ⋃

e1j∈E ′′
1

e1j = E ′′
1 . Since, the relationship between
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Fig. 8.6 Zoom-out operator
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hyperedges in new level is same as that of relations among vertices in original
level so we have E ′

1 ⊆ E ′′
1 , i.e., ω(X ′

2) ⊆ ω(X ′′
2). Hence, X

′
2 ⊆ X ′′

2 implies that
ω(X ′

2) ⊆ ω(X ′′
2).

We now prove thatω(X ′
2) ⊆ ω(X ′′

2) implies that X ′
2 ⊆ X ′′

2 . Suppose on contrary
thatwheneverω(X ′

2) ⊆ ω(X ′′
2) then there is at least onevertexw

2
i ∈ X ′

2 butw
2
i /∈

X ′′
2 , i.e., X

′
2 � X ′′

2 . Since, ω(w2
i ) = e1i and the relationship between hyperedges

in new level is same as that of relations among vertices in original level so we
have e1i ∈ E ′

1 but e1i /∈ E ′′
1 , i.e., E ′

1 � E ′′
1 ,

which is contradiction to the supposition. Thus, we have ω(X ′
2) ⊆ ω(X ′′

2)

implies that X ′
2 ⊆ X ′′

2 . Hence, X
′
2 ⊆ X ′′

2 if and only if ω(X ′
2) ⊆ ω(X ′′

2).

Definition 8.29 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of m-
polar fuzzy hypergraphs and H2 has weaker granularity than H1. Suppose that e1i ,
e2j ∈ E1 and w2

i , w
2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-out operator σ : H1 → H2

is defined as σ(e1i ) = w2
i , w

2
i ∈ X2. The zoom-out operator of two levels is shown in

Fig. 8.6.

Theorem 8.4 Let σ : H1 → H2 be the zoom-out operator from H1 = (X1, E1) to
H2 = (X2, E2) and let E ′

1 ⊆ E1. Then, the zoom-out operator σ satisfies the follow-
ing properties:

(i) σ(∅) = ∅,
(ii) σ maps the set of hyperedges of H1 onto the set of vertices of H2, i.e., σ(E1) =

X2,
(iii) σ([E ′

1]c) = [σ(E ′
1)]c.
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Fig. 8.7 Internal and
external zoom-out operators
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Proof (i) This part is trivially satisfied.
(ii) According to the definition of σ , we have σ(e1i ) = w2

i . Since, the hyperedges
define a partition of hypergraph so we have E1 = {e11, e12, e13, . . ., e1n} = ⋃

e1i ∈E1

e1i .

Then
σ(E1) = σ(

⋃

e1i ∈E1

e1i ) = ⋃

e1i ∈E1

σ(e1i ) = ⋃

w2
i ∈X2

w2
i = X2.

(iii) Assume that [E ′
1]c = V ′

1 then it is obvious that E
′
1 ∩ V ′

1 = ∅ and E ′
1 ∪ V ′

1 = E1.
Suppose on contrary that there exists at least one vertexw2

i ∈ σ([E ′
1]c) butw2

i /∈
[σ(E ′

1)]c.w2
i ∈ σ([E ′

1]c) implies thatw2
i ∈ σ(V ′

1) ⇒ w2
i ∈ ⋃

e1i ∈V ′
1

σ(e1i ) ⇒ w2
i ∈

⋃

e1i ∈E1\E ′
1

σ(e1i ). Since, w2
i /∈ [σ(E ′

1)]c ⇒ w2
i ∈ σ(E ′

1) ⇒ w2
i ∈ ⋃

e1i ∈E ′
1

σ(e1i ),

which is contradiction to our assumption. Hence, σ([E ′
1]c) = [σ(E ′

1)]c.
Definition 8.30 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of m-polar
fuzzy hypergraphs and H1 possesses the stronger granularity than H2. Let E ′

1 ⊆ E1

then σ̂ (E ′
1) = {e2i |e2i ∈ E2, κ(e2i ) ⊆ E ′

1} is called internal zoom-out operator.
The operator σ̌ (E ′

1) = {e2i |e2i ∈ E2, κ(e2i ) ∩ E ′
1 �= ∅} is called external zoom-out

operator.

Example 8.3 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels ofm-polar fuzzy
hypergraphs and H1 possesses the stronger granularity than H2, where E1 = {e11,
e12, e

1
3, e

1
4, e

1
5, e

1
6} and E2 = {e21, e22, e23}. Furthermore, e21 = {w2

1, w
2
3}, e22 = {w2

2, w
2
4},

e23 = {w2
5, w

2
6} as shown in Fig. 8.7.

Let E ′
1 = {e12, e13, e14, e15} be the subset of hyperedges of H1 then we can not zoom-

out to H2 directly, thus by using the internal and external zoom-out operators we
have the following relations.
σ̂ ({e12, e13, e14, e15}) = {e22},
σ̌ ({e12, e13, e14, e15}) = {e21, e22, e23}.
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8.5 A Granular Computing Model of Web Searching
Engines

The most fertile way to direct a search on the Internet is through a search engine.
A web search engine is defined as a system software which is designed to search
for queries on World Wide Web. A user may utilize a number of search engines
to gather information and similarly various searchers may make an effective use of
same engine to fulfill their queries. In this section, we construct a granular comput-
ing model of web searching engines based on 4-polar fuzzy hypergraph. In a web
searching hypernetwork, the vertices denote the various search engines. According
to the relation set N , the vertices having some relationship are united together as
an hyperedge, in which the search engines serve only one user. After assigning the
membership degrees to that unit, a 4-polar fuzzy hyperedge is constructed, which is
also considered as a granule. A 4-polar fuzzy hyperedge indicates a user who wants
to gather some information and the vertices in that hyperedge represent those search
engines which provide relevant data to the user. Let us consider there are ten search
engines and the corresponding 4-polar fuzzy hypergraph H = (A, B) is shown in
Fig. 8.8. Note that, A = {e1, e2, e3, . . ., e10} and B = {U1, U2, U3, U4, U5}.

The incidence matrix of 4-polar fuzzy hypergraph is given in Table8.1.

Fig. 8.8 A 4-polar fuzzy
hypergraph representation of
web searching

e 1

e2

e3

e4

e5e6
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e8
e9

e 1
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User1(0.2,0.3,0.3,0.2)

User2(0.5,0.4,0
.4,0.5)

U
se
r3
(0
.6
,0
.6
,0
.5
,0
.5
)

User4(0.6,0.5,0.5,0.6)

User5(0.7,0.5,0.4,0.5)

Table 8.1 Incidence matrix
X U1 U2 U3 U4 U5

e1 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e2 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e3 (0.2, 0.3, 0.3, 0.2) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e4 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)

e5 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e6 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e7 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)

e8 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)

e9 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)

e10 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)
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Table 8.2 The information table

X Core technology Scalability Content processing Query functionality

e1 0.7 0.6 0.5 0.7

e2 0.6 0.5 0.5 0.6

e3 0.7 0.8 0.8 0.7

e4 0.8 0.6 0.6 0.8

e5 0.7 0.5 0.5 0.7

e6 0.7 0.6 0.5 0.7

e7 0.6 0.5 0.5 0.6

e8 0.7 0.8 0.8 0.7

e9 0.8 0.6 0.6 0.8

e10 0.7 0.8 0.8 0.7

An m-polar fuzzy hypergraph model of granular computing illustrates a vague
set having some membership degrees. In this model, there are five users need the
search engines to gather information. Note that, the membership degrees of these
engines are different to the users because whenever a user selects a search engine,
he/she considers various factors or attributes. Hence, an m-polar fuzzy hypergraph
in granular computing is more meaning full and effective.

Let us suppose that each search engine possesses four attributes which are Core
Technology, Scalability, Content Processing, Query Functionality. The information
table for various search engines having these attributes is given in Table8.2.

The membership degrees of search engines reveal the percentage of attributes
possessed by them, e.g., e1 own 70% of core technology, 60% scalability, 50%
provide content processing and query functionality of this engine is 70%. The 4-polar
fuzzy equivalence relation matrix describes the similarities between these search
engines and is given as follows:

P̃N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0
1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0
0.6 0.7 1 0.8 0.8 0.8 0.8 0.8 0.8 0
0.6 0.7 0.8 1 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.7 0.8 0.6 1 0.5 0.5 0.5 0.5 0
0.6 0.7 0.8 0.6 0.5 1 0.6 0.6 0.6 0
0.6 0.7 0.8 0.6 0.5 0.6 1 0.7 0.7 0.7
0.6 0.7 0.8 0.6 0.5 0.6 0.7 1 0.8 0.8
0.6 0.7 0.8 0.6 0.5 0.6 0.7 0.8 1 0.8
0 0 0 0.6 0 0 0.7 0.8 0.8 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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e1 e2

e3

e4

e5

e6

e7 e9 e10e8

n2,n4,n6,
n3,n8,n9 =

Fig. 8.9 A single-level model of 4-polar fuzzy hypergraph

where 1 = (1, 1, 1, 1), 0 = (0, 0, 0, 0), 0.5 = (0.5, 0.5, 0.5, 0.5), 0.6 = (0.6, 0.6,
0.6, 0.6), 0.7 = (0.7, 0.7, 0.7, 0.7) and 0.8 = (0.8,0.8,0.8,0.8). Let τ = (t1, t2,
t3, t4) = (0.7, 0.7, 0.7, 0.7), then its corresponding hierarchical quotient space struc-
ture is given as follows:

X/Nτ = X/N(0.7,0.7,0.7,0.7) = {{e1, e2}, {e1, e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e5},
{e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e4}, {e2, e3, e6},
{e2, e3, e7, e8, e9, e10}, {e7, e8, e9, e10}}.

Note that,n1 = n5 = n7 = n10 = {∅},n2 = {(e1, e2)},n3 = {(e2, e3, e4), (e2, e3, e5),
(e2, e3, e6)}, n4 = {(e7, e8, e9, e10)}, n6 = {(e2, e3, e7, e8, e9, e10)}, n8 = {(e2, e3, e4,
e5, e6, e7, e8, e9)}, n9 = {(e1, e2, e3, e4, e5, e6, e7, e8, e9)}. Hence, a single level of
4-polar fuzzy hypergraph model is constructed and is shown in Fig. 8.9.

Thus, we can obtain eight hyperedges E1 = {e1, e2}, E2 = {e2, e3, e4}, E3 =
{e2, e3, e5}, E4 = {e2, e3, e6}, E5 = {e7, e8, e9, e10}, E6 = {e2, e3, e7, e8, e9, e10},
E7 = {e2, e3, e4, e5, e6, e7, e8, e9}, E8 = {e1, e2, e3, e4, e5, e6, e7, e8, e9}. The proce-
dure of constructing this single-level model is explained in the following flow chart
Fig. 8.10.
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Input k, M

InputUi

B(Ui) ≤ inf{Mr(el)}, i.e.,
P joB(Ui) ≤ inf{P joMr(el)}
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=(1, · · · ,1)
A(es,et) = (P j ◦A(es,et))

=P j ◦A(et ,es)) = A(et ,es),

If A(e,e) = (P j ◦A(e,e))
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e∈X

{min(A(es,e),

A(e,et ))}.

Yes

If ξX (N) = {X/Nτ |τ ∈ D},
Nτ = {(es,et)|P j ◦N(es,et) ≥ tm}.

Yes

A single level model of m−polar fuzzy hypergraph is constructed.

No

Fig. 8.10 Flow chart of single-level model of m-polar fuzzy hypergraph
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Fig. 8.11 A 3-polar fuzzy hypergraph

Fig. 8.12 (0.5, 0.5, 0.6)-
level hypergraph of H
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z3
z5

z8 z9

E 1

E2 E5

E3

E4

x11

Example 8.4 Let H = (A, B) be a 3-polar fuzzy hypergraph as shown in Fig. 8.11.
Let X = {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12} and B = {E1, E2, E3, E4, E5}.

For t1 = 0.5, t2 = 0.5 and t3 = 0.6, the (0.5, 0.5, 0.6)-level hypergraph of H is
given in Fig. 8.12.

By considering the fixed t1, t2, t3 and following the Algorithm 8.4.1, the
bottom-up construction of this model is given in Fig. 8.13.

The possible method for the bottom-up construction is described in Algorithm 8.5.1.
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Algorithm 8.5.1
Algorithm for the method of the bottom-up construction
1. clc
2. P j ◦ zi=input(‘P j ◦ zi=’); T=input(‘τ=’); q=1;
3. while q==1
4. [r, m]=size(P j ◦ zi );N=zeros(r, r);N=input(‘N=’); [r1, r]=size(N); D=ones(r1, m)+1;
5. for l=1:r1
6. if N(l,:)==zeros(1, r)
7. D(l,:)=zeros(1, m);
8. else
9. for k=1:r
10. if N(l, k)==1
11. for j=1:m
12. D(l, j)=min(D(l, j),P j ◦ zi (k, j));
13. end
14. else
15. s=0;
16. end
17. end
18. end
19. end
20. D
21. P j ◦ E i=input(‘P j ◦ E i=’);
22. if size(P j ◦ E i )==[r1, m]
23. if P j ◦ E i <=D
24. if size(T)==[1, m]
25. S=zeros(r1, r);s=zeros(r1, 1);
26. for l=1:r1
27. for k=1:r
28. if N(l, k)==1
29. if P j ◦ zi (k,:)>=T(1,:)
30. S(l, k)=1;
31. s(l, 1)=s(l, 1)+1;
32. else
33. S(l, k)=0;
34. end
35. end
36. end
37. end
38. S
39. if s==ones(r1, 1)
40. q=2;
41. else
42. P j ◦ zi = P j ◦ E i ;
43. end
44. else
45. fprintf(‘error’)
46. end
47. else
48. fprintf(‘error’)
49. end
50. else
51. fprintf(‘error’)
52. end
53. end
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Fig. 8.13 Bottom-up
construction procedure
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