
Chapter 6
(Directed) Hypergraphs: q-Rung
Orthopair Fuzzy Models and Beyond

A q-rung orthopair fuzzy set is a powerful tool for depicting fuzziness and uncer-
tainty, as compared to the Pythagorean fuzzy model. In this chapter, we present
concepts including q-rung orthopair fuzzy hypergraphs, (α, β)-level hypergraphs,
and transversals and minimal transversals of q-rung orthopair fuzzy hypergraphs.
We implement some interesting notions of q-rung orthopair fuzzy hypergraphs into
decision-making. We describe additional concepts like q-rung orthopair fuzzy
directed hypergraphs, dual directed hypergraphs, line graphs, and coloring of
q-rung orthopair fuzzy directed hypergraphs. We also apply other interesting notions
of q-rung orthopair fuzzy directed hypergraphs to real life problems. We introduce
complex q-rung orthopair fuzzy graphs, complex Pythagorean fuzzy hypergraphs,
and complex q-rung orthopair fuzzy hypergraphs.We study the transversals andmin-
imal transversals of complex q-rung orthopair fuzzy hypergraphs. We present some
algorithms to construct theminimal transversals and certain related concepts. Finally,
we illustrate a collaboration network model through complex q-rung orthopair fuzzy
hypergraphs to find the author having powerful collaboration skills using score and
choice values. This chapter is basically due to [22–24, 35].

6.1 Introduction

Zadeh [37] proposed the notion of fuzzy sets in his monumental paper in 1965, to
model uncertainty or vague ideas by nominating a degree of membership to each
entity, ranging between 0 and 1. In 1983, intuitionistic fuzzy sets, primarily pro-
posed byAtanassov [14], offeredmany significant advantages in representing human
knowledge by denoting fuzzy membership not only with a single value but pairs of
mutually orthogonal fuzzy sets called orthopairs, which allow the incorporation of
uncertainty. Since intuitionistic fuzzy sets confine the selection of orthopairs to come
only from a triangular region, as shown in Fig. 6.1, Pythagorean fuzzy sets, proposed
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Fig. 6.1 Spaces of acceptable q-rung orthopairs

by Yager [32], as a new extension of intuitionistic fuzzy sets have emerged as an
efficient tool for conducting uncertainty more properly in human analysis. Although
both intuitionistic fuzzy sets and Pythagorean fuzzy sets make use of orthopairs to
narrate assessment objects, they still have visible differences. The truth-membership
function T : X → [0, 1] and falsity-membership function F : X → [0, 1] of intu-
itionistic fuzzy sets are required to satisfy the constraint condition T (x) + F(x) ≤ 1.
However, these two functions in Pythagorean fuzzy sets are needed to satisfy the con-
dition T (x)2 + F(x)2 ≤ 1,which shows that Pythagorean fuzzy sets have expanded
space to assign orthopairs, as compared to intuitionistic fuzzy sets, displayed in
Fig. 6.1.

A q-rung orthopair fuzzy set, originally proposed by Yager [35] in 2017, is a new
generalization of orthopair fuzzy sets, which further relax the constraint of orthopair
membership grades with T (x)q + F(x)q ≤ 1 (q ≥ 1) [21]. As q increases, it is
easy to see that the representation space of allowable orthopair membership grade
increases. Figure6.1 displays spaces of the most widely acceptable orthopairs for
different q rungs. Ali [12] calculated the area of spaces with admissible orthopairs
up to 10-rungs. Consider an example in the field of economics: in a market structure,
a huge number of firms compete against each other with differentiated products with
respect to branding or quality, which in nature are vague words. Since intuitionistic
fuzzy sets have the capability to explore both aspects of ambiguous words, for exam-
ple, it assigns an orthopair membership grade to “quality”, i.e., support for quality
and support for not-quality of an object with the condition that their sum is bounded
by 1. This constraint clearly limits the selection of orthopairs.

The innovative concept of complex fuzzy sets was initiated by Ramot et al. [28] as
an extension of fuzzy sets. Opposing to a fuzzy characteristic function, the range of
complex fuzzy set’s membership degrees is not restricted to [0, 1], but extends to the
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complex plane with the unit circle. Ramot et al. [29] discussed the union, intersec-
tion, and compliment of complex fuzzy sets with the help of illustrative examples.
To generalize the concepts of intuitionistic fuzzy sets, complex intuitionistic fuzzy
sets were introduced by Alkouri and Salleh [13]. As an extension of Pythagorean
fuzzy sets and complex intuitionistic fuzzy sets, Ullah et al. [31] proposed complex
Pythagorean fuzzy sets and discussed some applications. In complex Pythagorean
fuzzy sets, membership μ = ueiα and nonmembership ν = veiβ can take values in
the unit circle subjected to the constraint μ2 + ν2 ≤ 1. Complex Pythagorean fuzzy
model, containing the phase term, is a more effective tool to capture the vague and
uncertain data of periodic nature than the Pythagorean fuzzy model.

Definition 6.1 A q-rung orthopair fuzzy set Q in the universe X is an object having
the representation

Q = (x, TQ(x), FQ(x)|x ∈ X),

where the function TQ : X → [0, 1] defines the truth-membership and FQ : X →
[0, 1] defines the falsity-membership of the element x ∈ X and for every x ∈ X ,
0 ≤ T q

Q(x) + Fq
Q(x) ≤ 1, q ≥ 1.

Furthermore, πQ(x) = q

√
1 − T q

Q(x) − Fq
Q(x) is called a q-rung orthopair fuzzy

index or indeterminacy degree of x to the set Q.
For convenience, Liu and Wang [21] called the pair (T q

Q(x), Fq
Q(x)) as a q-rung

orthopair fuzzy number, which is denoted as (T q
Q, Fq

Q).

Definition 6.2 A q-rung orthopair fuzzy relation R in X is defined as
R = {x1x2, TR (x1x2), FR (x1x2)|x1, x2 ∈ X × X}, where TR : X × X → [0, 1]
and FR : X × X → [0, 1] represent the truth-membership and falsity-membership
function ofR, respectively, such that 0 ≤ T q

R (x1x2) + Fq
R (x1x2) ≤ 1, for all x1x2 ∈

X × X .

Example 6.1 Let X = {x1, x2, x3} be a non-empty set and R be a subset of
X × X such thatR = {(x1x2, 0.9, 0.7),(x1x3, 0.7, 0.9), (x2x3, 0.6, 0.8)}. Note that,
0 ≤ T 5

R (x1x2) + F5
R (x1x2) ≤ 1, for all x1x2 ∈ X × X . Hence, R is a 5-rung

orthopair fuzzy relation on X .

For further terminologies and studies on Pythagorean fuzzy graphs and q-rung
orthopair fuzzy graphs, readers are referred to [1–11, 15–20, 25–27, 30, 33, 34, 36].

6.2 q-Rung Orthopair Fuzzy Hypergraphs

Definition 6.3 A q-rung orthopair fuzzy graph on a non-empty set X is defined as
an ordered pair G = (V ,E ), where V is a q-rung orthopair fuzzy set on X and E is
a q-rung orthopair fuzzy relation on X such that

TE (x1x2) ≤ min{TV (x1), TV (x2)}, FE (x1x2) ≤ max{FV (x1), FV (x2)},
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and 0 ≤ T q
E (x1x2) + Fq

E (x1x2) ≤ 1, q ≥ 1, for all x1, x2 ∈ X, where TE : X ×
X → [0, 1] and FE : X × X → [0, 1] represent the truth-membership and falsity-
membership degrees of E , respectively.

Remark 6.1

• When q = 1, 1-rung orthopair fuzzy graph is called an intuitionistic fuzzy graph.
• When q = 2, 2-rung orthopair fuzzy graph is called Pythagorean fuzzy graph.

Definition 6.4 The support of a q-rung orthopair fuzzy set Q = (x, TQ(x), FQ(x)|
x ∈ X) is defined as supp(Q) = {x|TQ(x) �= 0, FQ(x) �= 1}.
The height of a q-rung orthopair fuzzy set Q = (x, TQ(x), FQ(x)|x ∈ X) is defined
as h(Q) = (max

x∈X TQ(x),min
x∈X FQ(x)).

If h(Q) = (1, 0), then q-rung orthopair fuzzy set Q is called normal.

Example 6.2 Let Q = {(q1, 1, 0), (q2, 0, 1), (q3, 0.5, 0.6), (q4, 0.6, 0.7), (q5, 0.9,
0.3)} be a 4-rung orthopair fuzzy set on X . Then, the support and height of Q are
given as, supp(Q) = {q1, q3, q4, q5}, h(Q) = (1, 0), respectively. Note that Q is
normal.

Definition 6.5 Let X be a non-empty set. A q-rung orthopair fuzzy hypergraph
H on X is defined in the form of an ordered pair H = (Q, ζ ), where Q =
{Q1,Q2,Q3, . . .Qn} is a finite collection of nontrivial q-rung orthopair fuzzy sub-
sets on X and ζ is a q-rung orthopair fuzzy relation on q-rung orthopair fuzzy sets
Qi ’s such that

1. Tζ (Ek) = Tζ (x1, x2, x3, . . . , xm) ≤ min{Qi (x1),Qi (x2),Qi (x3), . . . ,Qi (xm)},
Fζ (Ek)=Fζ (x1, x2, x3, . . . , xm) ≤ max{Qi (x1),Qi (x2),Qi (x3), . . . ,Qi (xm)},
for all x1, x2, x3, . . ., xm ∈ X ,

2.
⋃
i
supp(Qi ) = X , for allQi ∈ Q.

Definition 6.6 The height of a q-rung orthopair fuzzy hypergraph H = (Q, ζ )

is defined as h(H ) = {max(ζl),min(ζm)}, where ζl = max Tζ j (xi ) and ζm = min
Fζ j (xi ). Here, Tζ j (xi ) and Fζ j (xi ) denote the truth-membership degree and falsity-
membership degree of vertex xi to the hyperedge ζ j , respectively.

Definition 6.7 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. The order
of H , which is denoted by O(H ), and is defined as O(H ) = ∑

x∈X
∧Qi (x). The

size of H , which is denoted by S(H ), and is defined as S(H ) = ∑
x∈X

∨Qi (x).

In a q-rung orthopair fuzzy hypergraph, adjacent vertices xi and x j are the ver-
tices which are the part of the same q-rung orthopair fuzzy hyperedge. Two q-rung
orthopair fuzzy hyperedges ζi and ζ j are said to be adjacent hyperedges if they
possess the non-empty intersection, i.e., supp(ζi ) ∩ supp(ζi ) �= ∅.

We now define the adjacent level between two q-rung orthopair fuzzy vertices
and q-rung orthopair fuzzy hyperedges.
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Definition 6.8 The adjacent level between two vertices xi and x j is denoted by
γ (xi , x j ) and is defined as γ (xi , x j ) = (maxk min[Tk(xi ), Tk(x j )],mink
max[Fk(xi ), Fk(x j )]).

The adjacent level between two hyperedges ζi and ζ j is denoted by σ(ζi , ζ j ) and
is defined as σ(ζi , ζ j ) = (max j min[Tj (x), Tk(x)],min j max[Fj (x), Fk(x)]).
Definition 6.9 A simple q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is defined
as a hypergraph, which has no repeated hyperedges contained in it, i.e., if ζi , ζ j ∈ ζ

and ζi ⊆ ζ j , then ζi = ζ j .
A q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is support simple if ζi , ζ j ∈ ζ ,

supp(ζi ) = supp(ζ j ), and ζi ⊆ ζ j , then ζi = ζ j .
A q-rung orthopair fuzzy hypergraph H = (Q, ζ ) is strongly support simple if

ζi , ζ j ∈ ζ and supp(ζi ) = supp(ζ j ), then ζi = ζ j .

Definition 6.10 Aq-rungorthopair fuzzy setQ : X → [0, 1] is called an elementary
set if TQ and FQ are single-valued on the support of Q.
Aq-rungorthopair fuzzyhypergraphH = (Q, ζ ) is elementary if all it’s hyperedges
are elementary.

Proposition 6.1 A q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is the general-
ization of fuzzy hypergraph and intuitionistic fuzzy hypergraph.

An upper bound on the cardinality of hyperedges of a q-rung orthopair fuzzy hyper-
graph of order n can be achieved by using the following result.

Theorem 6.1 Let H = (Q, ζ ) be a simple q-rung orthopair fuzzy hypergraph of
order n. Then, |ζ | acquires no upper bound.

Proof Let X = {x1, x2}. Define ζN = {Q j , j = 1, 2, 3, . . . , N }, where

TQ j (x1) = 1

1 + j
, FQ j (x1) = 1 − 1

1 + j

and

TQ j (x2) = 1

1 + j
, FQ j (x2) = 1 − 1

1 + j
.

Then,HN = (Q, ζN ) is a simple q-rung orthopair fuzzy hypergraph having N hyper-
edges.

Theorem 6.2 LetH = (Q, ζ ) be an elementary and simple q-rung orthopair fuzzy
hypergraph on a non-empty set X having n elements. Then |ζ | ≤ 2n − 1. The equality
holds if and only if {supp(ζ j )|ζ j ∈ ζ , ζ �= 0} = P(X)\∅.
Proof Since H is elementary and simple then at most one ζi ∈ ζ can have each
nontrivial subset of X as its support, therefore, we have |ζ | ≤ 2n − 1.

To prove that the relation satisfies the equality, consider a set of mappings ζ =
{(TA, FA)|A ⊆ X} such that,
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TA(x) =
{

1
|A| , if x ∈ A,

0, otherwise.
, FA(x) =

{
1

|A| , if x ∈ A,

0, otherwise.

Then each set containing single element has height (1, 1) and the height of the set
having two elements is (0.5, 0.5) and so on. Hence, H is simple and elementary
with |ζ | = 2n − 1.

Definition 6.11 The cut level set of a q-rung orthopair fuzzy set Q is defined to be
a crisp set of the following form, Q(α,β) = {x ∈ X |TQ(x) ≥ α, FQ(x) ≤ β}, where
α, β ∈ [0, 1].
Definition 6.12 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. The
(α, β)-level hypergraph of H is defined as H (α,β) = (Q(α,β), ζ (α,β)), where

1. ζ (α,β) = {ζ (α,β)

i : ζi ∈ ζ } and ζ
(α,β)

i = {x ∈ X |Tζi (x) ≥ α, Fζi (x) ≤ β},
2. Q(α,β) = ⋃

ζi∈ζ

ζ
(α,β)

i .

Example 6.3 LetH = (Q, ζ ) be a 4-rung orthopair fuzzy hypergraph as shown in
Fig. 6.2, where ζ = {ζ1, ζ2, ζ3, ζ4, ζ5}. Incidence matrix of H is given in Table6.1.

By direct calculations, it can be seen that it is a 4-rung orthopair fuzzy hyper-
graph. All the above mentioned concepts can be well explained by considering
this example. Here, h(H ) = {max(ζl),min(ζm)} = (0.6, 0.2). Since, H does not
contain repeated hyperedges, it is simple 4-rung orthopair fuzzy hypergraph. Also,
H is support simple and strongly support simple, i.e., whenever ζi , ζ j ∈ ζ and
supp(ζi ) = supp(ζ j ), then ζi = ζ j . Adjacency level between x1, x2 and between
two hyperedges ζ1, ζ2 is given as follows:

Table 6.1 Incidence matrix of H

I ζ1 ζ2 ζ3 ζ4 ζ5

x1 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0, 1) (0, 1)

x2 (0.2, 0.3) (0, 1) (0, 1) (0, 1) (0, 1)

x3 (0.3, 0.4) (0, 1) (0, 1) (0, 1) (0.3, 0.4)

x4 (0, 1) (0, 1) (0.4, 0.5) (0, 1) (0, 1)

x5 (0, 1) (0.5, 0.6) (0, 1) (0, 1) (0, 1)

x6 (0, 1) (0, 1) (0, 1) (0, 1) (0.5, 0.4)

x7 (0, 1) (0, 1) (0.4, 0.3) (0.4, 0.3) (0, 1)

x8 (0, 1) (0, 1) (0, 1) (0.6, 0.5) (0, 1)

x9 (0, 1) (0, 1) (0, 1) (0.6, 0.7) (0.6, 0.7)
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Fig. 6.2 4-rung orthopair fuzzy hypergraph

Fig. 6.3 (0.1, 0.4)-level
hypergraph of H
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γ (x1, x2) = (max
k

min[Tk(x1), Tk(x2)],min
k

max[Fk(x1), Fk(x2)]), k = 1, 2, 3, 4, 5.

= (0.1, 0.3),

σ (ζ1, ζ2) = (maxmin[T1(x), T2(x)],minmax[F1(x), F2(x)])
= (0.2, 0.6).

For α = 0.1, β = 0.4 ∈ [0, 1], (0.1, 0.4)-level hypergraph of H is H (0.1,0.4) =
(Q(0.1,0.4), ζ (0.1,0.4)), where

ζ (0.1,0.4) = {ζ (0.1,0.4)
1 , ζ

(0.1,0.4)
2 , ζ

(0.1,0.4)
3 , ζ

(0.1,0.4)
4 , ζ

(0.1,0.4)
5 }

= {{x1, x2, x3}, {x5}, {x4}, {x8, x9}, {x3, x6, x9}},
Q(0.1,0.4) = {x1, x2, x3} ∪ {x5} ∪ {x4} ∪ {x8, x9} ∪ {x3, x6, x9}

= {x1, x2, x3, x4, x5, x6, x8, x9}.

Note that, (0.1, 0.4)-level hypergraph ofH is a crisp hypergraph as shown inFig. 6.3.
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Remark 6.2 If α ≥ μ and β ≤ ν and Q is a q-rung orthopair fuzzy set on X , then
Q(α,β) ⊆ Q(μ,ν). Thus, we can have ζ (α,β) ⊆ ζ (μ,ν), for level hypergraphs of H ,
i.e., if a q-rung orthopair fuzzy hypergraph has distinct hyperedges, its (α, β)-level
hyperedges may be same and hence (α, β)-level hypergraphs of a simple q-rung
orthopair fuzzy hypergraphs may have repeated edges.

Definition 6.13 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph and
H (α,β) be the (α, β)-level hypergraph of H . The sequence of real numbers ρ1 =
(Tρ1 , Fρ1), ρ2 = (Tρ2 , Fρ2), ρ3 = (Tρ3 , Fρ3), . . ., ρn = (Tρn , Fρn ), 0 < Tρ1 < Tρ2 <

Tρ3 < · · · < Tρn , Fρ1 > Fρ2 > Fρ3 > · · · > Fρn > 0,where (Tρn , Fρn ) = h(H ) such
that

(i) if ρi−1 = (Tρi−1 , Fρi−1) < ρ = (Tρ, Fρ) ≤ ρi =(Tρi , Fρi ), then ζ ρ = ζ ρi ,

(ii) ζ ρi ⊆ ζ ρi+1 ,

is called the fundamental sequence of H , denoted by fS(H). The set of ρi -level
hypergraphs {H ρ1 ,H ρ2 ,H ρ3 , . . . ,H ρn } is called the core hypergraphs of H or
simply the core set ofH and is denoted by c(H ).

Definition 6.14 A q-rung orthopair fuzzy hypergraphH1 = (Q1, ζ1) is called par-
tial hypergraph of H2 = (Q2, ζ2) if ζ1 ⊆ ζ2 and is denoted as H1 ⊆ H2.

Definition 6.15 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph having
fundamental sequence fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and let ρn+1 = 0, if for all
hyperedges ζk ∈ ζ , k = 1, 2, 3, . . . , n, and for all ρ ∈ (ρi+1, ρi ], we have ζ

ρ

i = ζ
ρi
i

then H is called sectionally elementary.

Theorem 6.3 Let H = (Q, ζ ) be an elementary q-rung orthopair fuzzy hyper-
graph. Then the necessary and sufficient condition for H = (Q, ζ ) to be strongly
support simple is that H is support simple.

Proof Suppose thatH is support simple, elementary and supp(ζi ) = supp(ζ j ), for
ζi , ζ j ∈ ζ . Let h(ζi ) ≤ h(ζ j ). SinceH is elementary, we have ζi ≤ ζ j and sinceH
is support simple, we have ζi = ζ j . Hence, H is strongly support simple. On the
same lines, the converse part may be proved.

Definition 6.16 A q-rung orthopair fuzzy hypergraph H = (Q, ζ ) is said to be a
B = (TB , FB ) tempered q-rung orthopair fuzzy hypergraph if for H = (X, ξ), a
crisp hypergraph, and a q-rung orthopair fuzzy setB = (TB , FB ):X → [0, 1] such
that, ζ = {DA = (TDA , FDA)|A ⊂ X}, where

TDA(x) =
{
min(TB (y)) : y ∈ A, if x ∈ A,

0, otherwise.
,

FDA(x) =
{
max(FB (y)) : y ∈ A, if x ∈ A,

0, otherwise.
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Table 6.2 Incidence matrix of H

I ζ1 ζ2 ζ3 ζ4

x1 (0.6, 0.7) (0, 1) (0.6, 0.7) (0, 1)

x2 (0, 1) (0.7, 0.6) (0, 1) (0.7, 0.6)

x3 (0.8, 0.7) (0.8, 0.7) (0, 1) (0, 1)

x4 (0, 1) (0.6, 0.5) (0.6, 0.7) (0, 1)

x5 (0.7, 0.8) (0, 1) (0, 1) (0.7, 0.8)

Fig. 6.4 B-tempered 3-rung
orthopair fuzzy hypergraph

x1(0.6,0.7) x2(0.7,0.6)

x3(0.8,0.7)

x4(0.6,0.5) x5(0.7,0.8)
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,0.
7)

ζ 3
(0

.6
,0

.7
)

ζ 4
(0

.7
,0

.8
)

Example 6.4 Consider a 3-rung orthopair fuzzy hypergraphH = (Q, ζ ) as shown
in Fig. 6.4. Incidence matrix of H = (Q, ζ ) is given in Table6.2.

Define a 3-rung orthopair fuzzy set B = {(x1, 0.6, 0.7), (x2, 0.7, 0.6), (x3, 0.8,
0.7), (x4, 0.6, 0.5), (x5, 0.7, 0.8)}. By direct calculations, we have

TD{x1,x3,x5}(x1) = min{0.6, 0.8, 0.7} = 0.6, FD{x1,x3,x5}(x1) = max{0.7, 0.8, 0.7} = 0.8,

TD{x2,x3,x4}(x2) = min{0.7, 0.8, 0.6} = 0.6, FD{x2,x3,x4}(x2) = max{0.6, 0.5, 0.7} = 0.7,

TD{x1,x4}(x4) = min{0.6, 0.6} = 0.6, FD{x1,x4}(x4) = max{0.7, 0.7} = 0.7,

TD{x2,x5}(x5) = min{0.7, 0.7} = 0.7, FD{x2,x5}(x5) = max{0.6, 0.8} = 0.8.

Similarly, all other values can be calculated by using the samemethod. Thus, we have
ζ1 = (TD{x1,x3 ,x5} , FD{x1 ,x3 ,x5}), ζ2 = (TD{x2 ,x3 ,x4} , FD{x2 ,x3 ,x4}), ζ3 = (TD{x1,x4} , FD{x1 ,x4}), ζ4 =
(TD{x2 ,x5} , FD{x2 ,x5}).

Hence, H isB-tempered 3-rung orthopair fuzzy hypergraph.
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6.3 Transversals of q-Rung Orthopair Fuzzy Hypergraphs

Definition 6.17 LetH = (Q, ζ )be aq-rungorthopair fuzzy hypergraphon X . Aq-
rung orthopair fuzzy subset τ of X , which satisfies the condition τ h(ζi ) ∩ ζ

h(ζi )

i �= ∅,
for all ζi ∈ ζ , is called a q-rung orthopair fuzzy transversal of H .
τ is called minimal transversal of H if τ1 ⊂ τ , τ1 is not a q-rung orthopair fuzzy
transversal. tr (H ) denotes the collection of minimal transversals of H .

We now discuss some results on q-rung orthopair fuzzy transversals.

Remark 6.3 Although τ can be regarded as a minimal transversal of H , it is not
necessary for τ (α,β) to be theminimal transversal ofH (α,β), for allα, β ∈ [0, 1].Also,
it is not necessary for the family of minimal q-rung orthopair fuzzy hypergraphs to
form a hypergraph on X . For those q-rung orthopair fuzzy transversals that satisfy
the above property, we have the following definition.

Definition 6.18 A q-rung orthopair fuzzy transversal τ with the property that τ (α,β)

is a minimal transversal ofH (α,β), for α, β ∈ [0, 1], is called locally minimal q-rung
orthopair fuzzy transversal ofH . The collection of locallyminimal q-rung orthopair
fuzzy transversals of H is denoted by t∗r (H ).

Lemma 6.1 Let fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} be the fundamental sequence of
a q-rung orthopair fuzzy hypergraph H and τ be the q-rung orthopair fuzzy
transversal of H . Then, h(τ ) ≥ h(ζi ), for each ζi ∈ ζ and if τ is minimal, then
h(τ ) = max{h(ζi )|ζi ∈ ζ } = ρ1.

Proof Since τ is a q-rung orthopair fuzzy transversal ofH then τ h(ζi ) ∩ ζ
h(ζi )

i �= ∅.
Consider an arbitrary element of supp(τ ), then ζi (x) > h(ζi ) and we have h(τ ) ≥
h(ζi ). If τ is minimal transversal then h(ζi ) = {max Tζi (x),min Fζi (x)|x ∈ X and
ζi ∈ ζ } = ρ1. Hence, h(τ ) = max{h(ζi )|ζi ∈ ζ } = ρ1.

Theorem 6.4 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph then the
statements,

(i) τ is a q-rung orthopair fuzzy transversal of H ,
(ii) For all ζi ∈ ζ and for each ρ = {Tρ, Fρ} ∈ [0, 1] satisfying 0 < (Tρ, Fρ) <

h(ζi ), τρ ∩ ζ ρ �= ∅,
(iii) τρ is a transversal of H ρ , for all ρ ∈ [0, 1], 0 < ρ < ρ1,

are equivalent.

Proof (i) ⇒ (i i). Suppose τ is a q-rung orthopair fuzzy transversal ofH . For any
ρ ∈ [0, 1], which satisfies 0 < (Tρ, Fρ) < h(ζi ), τρ ⊇ τ h(ζi ) and ζ

ρ

i ⊇ ζ
h(ζi )

i . Hence,
τρ ∩ ζ ρ ⊇ τ h(ζi ) ∩ ζ

h(ζi )

i �= ∅, because τ is a transversal.
(i i) ⇒ (i i i). Let τρ ∩ ζ

ρ

i �= ∅, for all ζi ∈ ζ and0 < Tρ < Tρ1 , 0 > Fρ < Fρ1 ,which
implies that τρ is a transversal of H ρ .
(i i i) ⇒ (i). This part can be proved trivially.
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Theorem 6.5 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. For each
x ∈ X such that τ(x) ∈ fS(H ) and for all τ ∈ tr (H ), the fundamental sequence
of tr (H ) ⊂ fS(H ).

Proof Let the fundamental sequence of H be fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and
τ ∈ tr (H ), for τ(x) ∈ (ρi+1, ρi ]. Consider a mapping ψ defined by

ψ(u) =
{

ρi , if x = u,

τ (u), otherwise.

Thus, from the definition ofψ , we haveψρi = τρi and theDefinition6.13 implies that
H ρ = H ρi , for all ρ ∈ (ρi+1, ρi ]. Since τ is a q-rung orthopair fuzzy transversal
ofH and ψρ = τρ , for all ρ /∈ (ρi+1, ρi ], ψ is a q-rung orthopair fuzzy transversal.
Nowψ ≤ τ andminimality of τ both implies thatψ = τ . Hence, τ(x) = ψ(x) = ρ1.
Thus, τ(x) ∈ fS(H ), therefore we have fS(tr (H )) ⊆ fS(H ).

Theorem 6.6 The collection of all minimal transversals tr (H ) is sectionally
elementary.

Proof Let the fundamental sequence of tr (H )be fs(tr (H )) = {ρ1, ρ2, ρ3, . . . , ρn}.
Consider an element τ of tr (H ) and some ρ ∈ (ρi+1, ρi ] such that τρi ⊂ τρ . In
consideration of [tr (H )]ρ = [tr (H )]ρi , we have ψ ∈ tr (H ) satisfying ψρ = τρi .
Then, the condition ψρ ⊃ τρi implies the existence of a q-rung orthopair fuzzy set
R such that,

R(x) =
{

ρ, if x ∈ ψρi \τρi ,

ψ(x), otherwise,

is the q-rung orthopair fuzzy transversal of H . Now, ρ < ψ yields a contradiction
to the minimality of ψ .

Lemma 6.2 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. Consider an
element x of supp(τ ), where τ ∈ tr (H ), then there exists a q-rung orthopair fuzzy
hyperedge ζ of H such that,

(i) τ(x) = h(ζ ) = ζ(x) > 0,
(ii) τ h(ζ ) ∩ ζ h(ζ ) = {x}.
Proof (i) Let τ(x) > 0 and Q denotes the set of all q-rung orthopair fuzzy hyper-

edges of H such that for each element ζ of Q, ζ(x) ≥ τ(x). Then this set is
non-empty because τ τ(x) is a transversal of H τ(x) and x ∈ τ τ(x). Additionally,
each element ζ of Q satisfies the inequality h(ζ ) ≥ ζ(x) ≥ τ(x). Suppose on
contrary, (i) is false then for each ζ ∈ Q, h(ζ ) > τ(x) and we have an element
xζ �= x , where xζ ∈ ζ h(ζ ) ∩ τ h(ζ ). Here, we define a q-rung orthopair fuzzy set
Q′ as
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Q′(v) =
{

τ(v), if x �= v,

max{h(ζ )|h(ζ ) < τ(x)}, if x = v.

Note that, Q′ is a q-rung orthopair fuzzy transversal of H and Q′ < τ , which
is contradiction to the fact that τ is minimal. Hence, (i) holds for some ζ .

(ii) Suppose each element of Q satisfies (i) and also have an element xζ �= x , where
xζ ∈ ζ h(ζ ) ∩ τ h(ζ ). The same arguments as given above completes the proof.

Theorem 6.7 Let H = (Q, ζ ) be an ordered q-rung orthopair fuzzy hypergraph
with fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and c(H ) = {H ρ1 ,H ρ2 ,H ρ3 ,. . .,H ρn }. Then,
t
r (H ) is non-empty. Further, if τn is a minimal transversal ofH ρn then there exists
T ∈ t
r (H ) such that supp(T ) = τn.

Proof Let τn be aminimal transversal ofH ρn ,H ρn−1 is a partial hypergraph ofH ρn

because H is ordered and consequently τn−1 is minimal transversal of H ρn−1 such
that τn−1 ⊆ τn . By continuing the same argument, we establish a nested sequence of
minimal transversals τ1 ⊆ τ2 ⊆ τ3 ⊆ · · · ⊆ τn , where every τi is minimal transver-
sal of H ρi . Let η j = η j (τ j , ρ j ) is an elementary q-rung orthopair fuzzy set having
height ρ j and support τ j . Then, T = max{η j |1 ≤ j ≤ n} is locallyminimal transver-
sal of H having support τn .

We now give an Algorithm 6.3.1 for finding tr (H ).

Algorithm 6.3.1 Algorithm for finding tr (H )

Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph having the set of core
hypergraphs c(H ) = {H ρ1 ,H ρ2 ,H ρ3 , . . . ,H ρn }. An iterative procedure to find
the minimal transversal τ of H is as follows,

1. Find a crisp minimal transversal τ1 ofH ρ1 .
2. Find a minimal transversal τ2 of H ρ2 , which satisfies τ1 ⊆ τ2, i.e., formulate a

new hypergraph H2 having hyperedges ζ ρ2 which is augmented having a loop
at each x ∈ τ1. In accordance with, we can say that ζ(H2) = ζ ρ2 ∪ {{x}|x ∈ τ1}.
Let τ2 be an arbitrary minimal transversal of H2.

3. By continuing the same procedure repeatedly, we have a sequence of minimal
transversals τ1 ⊆ τ2 ⊆ τ3 ⊆ · · · ⊆ τ j such that τ j be the minimal transversal of
H ρ j with the property τ j−1 ⊆ τ j .

4. Consider an elementary q-rung orthopair fuzzy set μ j having the support τ j

and h(μ j ) = ρ j , 1 ≤ j ≤ n. Then, τ =
n⋃
j=1

{μ j |1 ≤ j ≤ n} is a minimal q-rung

orthopair fuzzy transversal of H .

Example 6.5 Consider a 5-rung orthopair fuzzy hypergraphH = (Q, ζ ), as shown
in Fig. 6.5, where ζ = {ζ1, ζ2, ζ3}. Incidence matrix of H = (Q, ζ ) is given in
Table6.3.

By routine calculations, we have h(ζ1) = (0.8, 0.6), h(ζ2) = (0.8, 0.5), and
h(ζ3) = (0.8, 0.5). Consider a 5-rung orthopair fuzzy subset τ1 of X such that
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Fig. 6.5 5-rung orthopair
fuzzy hypergraph
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Table 6.3 Incidence matrix of H

I ζ1 ζ2 ζ3

x1 (0.8, 0.6) (0.8, 0.6) (0, 1)

x2 (0.7, 0.9) (0, 1) (0.7, 0.9)

x3 (0, 1) (0.8, 0.5) (0.8, 0.5)

x4 (0.6, 0.8) (0.6, 0.8) (0, 1)

x5 (0, 1) (0, 1) (0.7, 0.5)

τ1 = {(x1, 0.8, 0.6), (x2, 0.7, 0.9), (x3, 0.8, 0.5)}. Note that, ζ
h(ζ1)
1 = {x1}, ζ

h(ζ2)
2 =

{x3} and ζ
h(ζ3)
3 = {x3}. Also τ

(0.8,0.6)
1 = {x1}, τ (0.8,0.5)

2 = {x3} and τ
(0.8,0.5)
3 = {x3}. It

can be seen that τ h(ζi )
1 ∩ ζ

h(ζi )

i �= ∅, for all ζi ∈ ζ . Thus, τ1 is a 5-rung orthopair fuzzy
transversal ofH . Similarly, τ2 = {(x1, 0.8, 0.6), (x3, 0.8, 0.5)}, τ3 = {(x1, 0.8, 0.6),
(x3, 0.8, 0.5),(x4, 0.6, 0.8)}, τ4 = {(x1, 0.8, 0.6), (x3, 0.8, 0.5), (x5, 0.7, 0.5), } are
other transversals of H . The minimal transversal is τ2, i.e., whenever τ ⊆ τ2, τ is
not a 5-rung orthopair fuzzy transversal.

Letα = 0.8,β = 0.5, then ζ
(0.8,0.5)
1 = {∅}, ζ (0.8,0.5)

2 = {x3}, ζ (0.8,0.5)
3 = {x3} shows

that τ (0.8,0.5)
2 is not a minimal transversal of H (0.8,0.5).

Theorem 6.8 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph and x ∈ X.
Then, there exists an element τ of tr (H ) such that x ∈ supp(τ ) if and only if there
is an hyperedge ζ1 ∈ ζ which satisfies,

• ζ1(x) = h(ζ ′),
• For every ξ ∈ ζ with h(ξ) > h(ζ1), ξ h(ζi ) �⊂ ζ

h(ζ1)
1 ,

• h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge of H h(ζ1).
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Proof Let us suppose that τ(x) > 0 and τ is an element of tr (H ), then first condition
directly follows from Lemma6.2.

To prove the second condition, suppose that for every ζ1 which satisfies the first
condition, there is ξ ∈ ζ such that h(ξ) > h(ζ1) and ξ h(ξ) ⊆ ζ

h(ζ1)
1 . Then there exists

an element v �= x , where v ∈ ξ h(ξ) ∩ τ h(ξ) ⊆ ζ
h(ζ1)
1 ∩ τ h(ζ1), which is a contradiction.

To prove that h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge
ofH h(ζ1), suppose that for every ζ1, which satisfies the above two conditions, there
is ξ ∈ ζ with ∅ ⊂ ξ h(ξ) ⊂ ζ

h(ζ1)
1 , as ξ h(ξ) �= ∅ and from second condition, we have

h(ξ) = ζ1(x) = τ(x). If h(ξ) = ζ1(x), our supposition accommodates ξ ′ ∈ ζ such
that ∅ ⊂ ξ ′h(ζ1) ⊂ ξ h(ζ1) ⊂ ζ

h(ζ1)
1 . This recursive procedure must end after a finite

number of steps, so assume that ξ(x) < h(ξ), which implies the existence of an
element v �= x , where v ∈ ξ h(ζ1) ∩ τ h(ζ1) ⊆ ζ

h(ζ1)
1 ∩ τ h(ζ1), which is again a contra-

diction.
The sufficient condition is proved by using the construction given in

Algorithm6.3.1. By using first condition, we have h(ζ1) = ρ1,ρ1 ∈ fS(H ) and from
other two conditions, we have yξ ∈ ξ h(ξ)\ζ h(ζ1)

1 such that ξ �= ζ1 and h(ξ) ≥ h(ζ1).
Then Q ∩ ζ

h(ζ1)
1 , where Q is the collection of all such vertices. An initial sequence of

transversals of is constructed in a way that τ j ⊆ Q, for 1 ≤ j ≤ n and τi ⊆ Q ∪ {x}.
Continuing the construction given in Algorithm6.3.1 will give a minimal q-rung
orthopair fuzzy transversal with τ(x) = ζ1(x) = h(ζ1).

Definition 6.19 Let Q be a q-rung orthopair fuzzy set and α, β ∈ [0, 1]. The lower
truncation of Q at level α, β is a q-rung orthopair fuzzy set Q〈α,β〉 given by

Q〈α,β〉(x) =
{
Q(x), if x ∈ Q(α,β),

(0, 1), otherwise.

The upper truncation of Q at level α, β is a q-rung orthopair fuzzy set Q〈α,β〉 given
by

Q〈α,β〉(x) =
{

(α, β), if x ∈ Q(α,β),

Q(x), otherwise.

Definition 6.20 Let E be a collection of q-rung orthopair fuzzy sets of X and
E 〈α,β〉 = {q〈α,β〉|q ∈ E },E〈α,β〉 = {q〈α,β〉|q ∈ E }. Then, the upper and lower trun-
cations of a q-rung orthopair fuzzy hypergraph H = (Q, ζ ) at α, β level are
a pair of q-rung orthopair fuzzy hypergraphs, H 〈α,β〉 and H〈α,β〉, defined by
H 〈α,β〉 = (X,E 〈α,β〉) and H〈α,β〉 = (X,E〈α,β〉).

Definition 6.21 Let Q be a q-rung orthopair fuzzy set on X , then each (μ, ν) ∈
(0, h(Q)) for which Q(α,β) � Q(μ,ν), (μ, ν) < (α, β) ≤ h(Q), is called the transi-
tion level of Q.
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Definition 6.22 Let Q be a nontrivial q-rung orthopair fuzzy set of X . Then,

(i) the sequenceS (Q) = {t Q1 , t Q2 , t Q3 , . . . , t Qn } is called the basic sequence deter-
mined by Q, where

• t Q1 > t Q2 > t Q3 > · · · > t Qn > 0,
• t Q1 = h(Q),
• {t Q2 , t Q3 , . . . , t Qn } is the set of transition levels of Q.

(ii) The set of cuts of Q, C (Q), is defined as C (Q) = {Qt |t ∈ S (Q)}.
(iii) The join max{η(Qt , t)|t ∈ S (Q)} of basic elementary q-rung orthopair fuzzy

sets E(Q) = {η(Qt , t)|t ∈ S (Q)} is called the basic elementary join of Q.

Lemma 6.3 Let H be a q-rung orthopair fuzzy hypergraph with fS(H ) =
{ρ1, ρ2, ρ3, . . . , ρn}. Then,
(i) If t = (μ, ν) is a transition level of τ ∈ tr (H ), then there is an ε > 0 such that,

∀ (α, β) ∈ (t, t + ε], τ (μ,ν) is a minimalH (μ,ν)-transversal extension of τ (α,β),
i.e., if τ (α,β) ⊆ τ ′ ⊆ τ (μ,ν) then τ ′ is not a transversal of H (μ,ν).

(ii) tr (H ) is sectionally elementary.
(iii) fS(tr (H )) is properly contained in fS(H ).
(iv) τ (α,β) is a minimal transversal of H (α,β), for each τ ∈ tr (H ) and ρ2 <

(α, β) ≤ ρ1.

Proof (i) Let t̃ = (μ, ν) be a transition level of τ ∈ tr (H ). Then by definition, we
have τ (α,β) � τ (μ,ν), (μ, ν) < (α, β) ≤ h(H ), for all α, β. Since, τ possesses
a finite support, this implies the existence of an ε > 0 such that τ (α,β) is constant
on (t̃, t̃ + ε]. Assume that there is a transversal T ofH (μ,ν) such that τ (α′,β ′) ⊆
T ⊆ τ (μ,ν), for α′, β ′ ∈ (t̃, t̃ + ε]. We claim that this supposition is false. To
demonstrate the existence of this claim, we suppose that assumption is true
and consider the collection of basic elementary q-rung orthopair fuzzy sets
E(τ ) = {η(τ t , t)|t ∈ S(τ )} of τ . Note that a nested sequence of X is formed by
c(τ ) ∪ T , where c(τ ) is used to denote the basic cuts of τ . SinceH = (Q, ζ )

is defined on a finite set X andQ is a finite collection of q-rung orthopair fuzzy
sets of X , then each ρ ∈ (0, h(H )) corresponds a number ερ > 0 such that

• H (α,β) is constant on (ρ, ρ + ερ],
• H (α,β) is constant on (ρ − ερ, ρ].
It follows from these considerations that level cuts of τ 
(α,β) of the join τ 
 =
max{max{E(τ )\η(τ t̃ , t̃), η(τ t̃ , t̃ − εt̃ ), η(T, t̃)}} persuade

τ̃ (α,β) =
{
T, if (α, β) ∈ (t̃ − εt̃ , t̃),

τ (α,β), if (α, β) ∈ (0, h(H ))\(t̃, t̃ − εt̃ )].

This relation is derived because of supposition that εt̃ is so small that the open
interval (t̃ − εt̃ , t̃) does not contain any other transition level of τ .



250 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Since, it is assumed that T is a transversal ofH t̃ , T is a transversal ofH (α,β), for
all (α, β) ∈ (t̃ − εt̃ , t̃) andH

(α,β) is constant on (t̃ − εt̃ , t̃). Note that, τ
(α,β) is a

transversal ofH (α,β), for all (α, β) ∈ (0, h(H )], therefore, it follows that τ̃ is
a q-rung orthopair fuzzy transversal of H , as τ̃ < τ , implies that τ /∈ tr (H ),
which leads to a contradiction. Hence, the supposition is false and claim is
satisfied.

(ii) Let τ ∈ tr (H ), then τ (α,β) is a transversal of H (α,β) for 0 < (α, β) < h(H ).
Suppose that a transition level t of τ corresponds an interval (t, t + ε], ε > 0, on
which τ (α,β) is constant. Then for (α′, β ′) ∈ (t, t + ε], τ (α′,β ′) is not a transversal
ofH t , which implies that τ (α′,β ′) /∈ (tr (H ))t , where tr (H ))t denotes the t-cut
of tr (H ). However, the definition of fundamental sequence of tr (H ) implies
that t ∈ fS(tr (H )).

(iii) To prove (i i i), we suppose that if t = (μ, ν) is a transition level of some
τ ∈ tr (H ), then t belongs to fS(H ). On contrary, suppose that the transi-
tion level t of some τ ∈ tr (H ) does not belong to fS(H ). Then for some
ρ j ∈ fS(H ), we have ρ j+1 < t < ρ j , where ρn+1 = 0, asH (α,β) = H ρ j , for
all (α, β) ∈ (ρ j+1, ρ j ], follows that τ t is a transversal ofH t = H ρ j . Further-
more, there exists an ε > 0, such that τ (α,β) is constant on (t, t + ε]. Without
loss of generality, we assume that t + ε ≤ ρ j and (α′, β ′) ∈ (t, t + ε]. Since
t is a transition level of τ then τ (α′,β ′) � τ t and τ (α′,β ′) is not a transversal of
H t (from i), which is not possible, asH (α′,β ′) = H ρ j = H t , this proves our
claim. Along with this result and the fact that h(τ ) = ρ1 ∈ fS(H ), it follows
that fS(tr (H )) ⊆ fS(H ), for all τ ∈ tr (H ).

(iv) First, we will show that τρ1 is a minimal transversal of H ρ1 . Suppose on con-
trary that there is a minimal transversal T of H ρ1 such that T ⊆ τρ1 . Let
τ̃ = max{τρ2 , η1}, where η1 is the basic elementary q-rung orthopair fuzzy set
having support T and height ρ1. τρ2 is considered as the upper truncation of τ

at level ρ2. It is obvious that τ̃ is a transversal ofH with τ̃ < τ , which is con-
tradiction to the fact that τ is minimal. From (i i) and (i i i) parts, it is followed
that τ (α,β) ∈ tr (H )(α,β), for ρ2 < (α, β) < ρ1.

Theorem 6.9 At least one minimal q-rung orthopair fuzzy transversal is contained
in every q-rung orthopair fuzzy transversal of a q-rung orthopair fuzzy hyper-
graph H .

Proof Let fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} be the fundamental sequence of H and
suppose that ξ be a transversal of H , which is not minimal. Let τ be a mini-
mal transversal of H , τ ≤ ξ , which is constructed in such a way, {qi ∈ Q(X)|i =
0, 1, 2, . . . , n} satisfying τ = qn ≤ · · · ≤ q1 ≤ q0 ≤ ξ , where Q(X) is the collection
of q-rung orthopair fuzzy sets on X . It can be noted that h(ξ) ≥ h(H ) = ρ1 and
ξ (α,β) is a transversal of H (α,β), for 0 < (α, β) ≤ ρ1. Therefore, the reduction pro-
cess is started asq0 = ξ 〈ρ1〉,where ξ 〈ρ1〉 represents the upper truncation level of ξ atρ1.
Since the top level cut ξρ1 of ρ0 comprises a crisp minimal transversal T1 ofH ρ1 , we
have q1 = max{ξ 〈ρ2〉, λT1}, where λT1 is elementary q-rung orthopair fuzzy set having
height ρ1 and support T1. Note that, q1 ≤ q2 ≤ ξ . The same procedure will determine
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the all other remaining members. For instance, we have q2 = max{ξ 〈ρ3〉, λT1 , λT2},
where λT2 is an elementary q-rung orthopair fuzzy set having height ρ2 and support
T2, such that

T2 =
{
T1, ifT1 is a transversal of H ρ2 ,

B2, otherwise,

where B2 is the minimal transversal extension of T1, i.e., if T1 ⊆ B ⊆ B2, then B2 is
not considered as a transversal of H ρ2 and B2 is contained in ρ-level of ξ because
ξρ2 contains a transversal of H ρ2 . Further, as T2 ⊆ ξρ2 , it is obvious that q2 ≤ q1.
When this process is finished, we certainly have qn = τ a q-rung orthopair fuzzy
transversal ofH and is included in ξ . We now claim that τ is a minimal transversal
ofH , i.e., τ ∈ tr (H ). On contrary, suppose that τ1 is a transversal ofH such that
τ1 < τ . Then, we have

(i) τ
(α,β)

1 ⊆ τ (α,β) for all α, β ∈ (0, h(H )],
(ii) τ

(α′,β ′)
1 ⊆ τ (α′,β ′) for some α′, β ′ ∈ (0, h(H )].

However, no such α′, β ′ exist. To prove this, let α, β ∈ (ρ2, ρ1], then as τ
(α,β)

1 ⊆
τ (α,β), τ (α,β)

1 is a transversal ofH (α,β) = H ρ1 and τ (α,β) ∈ tr (H ρ1), which implies
that τ

(α,β)

1 = τ (α,β) on (ρ2, ρ1]. Moreover, suppose that α, β ∈ (ρ3, ρ2] then by
using τ

(α,β)

1 = τ (α,β), we have τ
(α,β)

1 ⊇ τρ1 on (ρ3, ρ2] and if T2 = T1 = τρ1 , then
by previous arguments τ

(α,β)

1 = τ (α,β) on (ρ3, ρ2]. Furthermore, if T1 ⊆ T2 and
T1 ⊆ τ

(α,β)

1 � T2 then τ
(α,β)

1 is not a transversal of H (α,β) = H ρ2 , which is con-
tradiction to the fact that τ1 is a transversal of H . Hence, we have τ

(α,β)

1 = τ (α,β)

on (ρ3, ρ2]. In general, we have τ
(α,β)

1 = τ (α,β) on (0, h(H )], which completes the
proof.

6.4 Applications to Decision-Making

Decision-making is considered as the abstract technique, which results in the selec-
tion of an opinion or a strategy among a couple of elective potential results. Every
decision-making procedure delivers a final decision, whichmay ormay not be appro-
priate for our problem. We have to make hundreds of decisions everyday, some are
easy but others may be complicated, confused and miscellaneous. That is the rea-
son which leads to the process of decision-making. Decision-making is the foremost
way to choose themost desirable alternative. It is essential in real-life problemswhen
there are many possible choices. Thus, decision makers evaluate numerous merits
and demerits of every choice and try to select the most fitting alternative.
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6.4.1 Selection of Most Desirable Appliance

Here, we consider a decision-making problem of selecting themost appropriate prod-
uct from different brands or organizations. Suppose that a person wants to purchase
a product, which is available in many brands. Let he/she considers the following
nine organizations or brands O = {O1, O2, O3, . . . , O9}, of which product can be
chosen to purchase. We will discuss that how the (α, β)-level cuts can be applied
to q-rung orthopair fuzzy hypergraph to make a good decision. A 6-rung orthopair
fuzzy hypergraph model depicting the problem is shown in Fig. 6.6.

The truth-membership degrees and falsity-membership degrees of vertices (which
represent the organizations) depicts that how much that organization fulfills the cos-
tumer’s requirements and up to which percentage the product is not suitable. The
hyperedges of our graph represent the characteristics of those organizations which
are (as vertices) contained in that hyperedge. It can be shown from Table6.4.

The attributes, which we have considered as hyperedges {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}
to describe the characteristics of different organizations are {Delivery and service,
Durability, Affordability, Quality, Functionality, Marketability}. Note that, if ζ2 is
considered as durability, then the membership degrees (0.9, 0.5) of O3 describes
that the product manufactured by organization O3 is 90% durable and 50% lacks
the requirements of the customer. Similarly, O4 is 60% durable and 40% lacks the
condition. In the same way, we can describe the characteristics of all products man-
ufactured by different organizations. Now to select the most appropriate product, we
will find out the (α, β)-level cuts of all hyperedges. We choose the values of α and β

in such manner that they will be fixed according to customer’s demand. Let α = 0.7
and β = 0.4, it means that customer will consider that product, which will satisfy

O1(0.8,0.2)

O2(0.7,0.3)

O3(0.9,0.5)

O
4(
0.
6,
0.
4)

O
5 (0.7,0.5)

O
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O7(0.6,0.5)
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O
9(
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0.
2)
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Fig. 6.6 6-rung orthopair fuzzy model for most appropriate appliance
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Table 6.4 Incidence matrix

I ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

O1 (0.8, 0.2) (0, 1) (0.8, 0.2) (0, 1) (0, 1) (0, 1)

O2 (0.7, 0.3) (0, 1) (0, 1) (0.7, 0.3) (0, 1) (0, 1)

O3 (0.9, 0.5) (0.9, 0.5) (0, 1) (0, 1) (0.9, 0.5) (0, 1)

O4 (0.6, 0.4) (0.6, 0.4) (0, 1) (0, 1) (0, 1) (0, 1)

O5 (0, 1) (0.7, 0.5) (0.7, 0.5) (0.7, 0.5) (0.7, 0.5) (0, 1)

O6 (0, 1) (0.8, 0.4) (0, 1) (0, 1) (0, 1) (0.8, 0.4)

O7 (0.6, 0.5) (0, 1) (0, 1) (0, 1) (0.6, 0.5) (0.6, 0.5)

O8 (0, 1) (0, 1) (0, 1) (0.8, 0.3) (0, 1) (0.8, 0.3)

O9 (0, 1) (0, 1) (0.8, 0.2) (0, 1) (0, 1) (0.8, 0.2)

70% or more of the the characteristics mentioned above and will have deficiency less
than or equal to 40%. The (α, β)-levels of all hyperedges are given as follows:

ζ
(0.7,0.4)
1 = {O1, O2}, ζ

(0.7,0.4)
2 = {O6}, ζ

(0.7,0.4)
3 = {O1, O5, O9},

ζ
(0.7,0.4)
4 = {O2, O8}, ζ

(0.7,0.4)
5 = {∅}, ζ

(0.7,0.4)
6 = {O6, O8, O9}.

Note that, ζ
(0.7,0.4)
1 level set represents that O1 and O2 are the organizations that

provide the best delivery services among all other organizations, ζ
(0.7,0.4)
2 level set

represents that O6 is the organization, whose products are more durable as compared
to all other organizations. Similarly, ζ (0.7,0.4)

4 indicates that the products proposed by
O2 and O8 organizations, are more cheap and affordable in comparison to others.
Thus, if a customer wants some specific speciality of product, for example he she
wants to purchase a product with good marketablity, then the organizations O6, O8

and O9 are more suitable. Similarly, if the satisfaction and dissatisfaction level of a
customer are taken as α = 0.8 and β = 0.3, respectively. Then, (0.8, 0.3)-level cuts
are given as,

ζ
(0.8,0.3)
1 = {O1}, ζ

(0.8,0.3)
2 = {∅}, ζ

(0.8,0.3)
3 = {O1, O9},

ζ
(0.8,0.3)
4 = {O8}, ζ

(0.8,0.3)
5 = {∅}, ζ

(0.8,0.3)
6 = {O8, O9}.

Here, ζ (0.8,0.3)
4 = {O8} indicates that the products proposed by organization O8 satisfy

the customer’s requirement 80%, which is affordability and so on. For α = 0.7 and
β = 0.3, we have,

ζ
(0.7,0.3)
1 = {O1, O2}, ζ

(0.7,0.3)
2 = {∅}, ζ

(0.7,0.3)
3 = {O1, O9},

ζ
(0.7,0.3)
4 = {O2, O8}, ζ

(0.7,0.3)
5 = {∅}, ζ

(0.7,0.3)
6 = {O8, O9}.

Hence, by considering different (α, β)-levels corresponding to the satisfaction and
dissatisfaction levels of customers, we can conclude that which organization fulfill
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the actual demands of a customer. The method adopted in this application is given
in the following Algorithm 6.4.1.

Algorithm 6.4.1

Finding the most suitable organization
1. Input the degree of membership of all q−rung orthopair fuzzy vertices O1, O2, O3,· · · ,Om .
2. Calculate the membership degrees of q−rung orthopair fuzzy hyperedges using the formula,

Tζ (Ek ) = Tζ (O1, O2, O3, . . . , Om ) ≤ min{Qi (O1),Qi (O2),Qi (O3), . . . ,Qi (Om )},
Fζ (Ek ) = Fζ (O1, O2, O3, . . . , Om ) ≤ max{Qi (O1),Qi (O2),Qi (O3), . . . ,Qi (Om )},

for all O1, O2, O3, · · · , Om representing the organizations as vertices of hyperedge.
3. Calculate the (α, β)−levels of q−rung orthopair fuzzy hyperedges by using,

ζ
(α,β)
i = {O j ∈ O|Tζi (O j ) ≥ α , Fζi (O j ) ≤ β},

for i = 1, 2, 3, · · · , k, j = 1, 2, 3 · · · ,m and α, β ∈ [0, 1].
4. Crisp sets describe the most suitable organization according to the customer’s satisfaction levels.

6.4.2 Adaptation of Most Alluring Residential Scheme

The essential factor for any purchase of property is the budget and location for a
purchaser, particularly. However, it is a complicated procedure to select a residential
area for buying a house. In addition to scrutinizing the further details such as the
pricing, loan options, payments, and developer’s credentials a customer must exam-
ine closely some other facilities which should be possessed by every housing colony.
Now, to adopt a favorable housing scheme, an obvious initial step is to compare
the differen societies. After analyzing the characteristics of different societies, one
will be able to make a wise decision. We will investigate the problem of adopting
the most alluring residential scheme using 7-rung orthopair fuzzy hypergraph. Let
the set of vertices of 7-rung orthopair fuzzy hypergraph is taken as the represen-
tative of those attributes characteristics, which one has been considered to make a
comparison between different housing societies. The hyperedges of 7-rung orthopair
fuzzy hypergraph represents some housing schemes, which will be compared. The
portrayal of our problem is illustrated in Fig. 6.7.

The description of hyperedges {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7} and vertices {x1, x2, x3, x4,
x5, x6, x7, x8, x9, x10} of above hypergraph is given in Tables6.5 and 6.6, respectively.

Note that, each hyperedge represents a distinct housing scheme and the vertices
contained in hyperedges are those attributes, which will be provided by the soci-
eties represented through hyperedges. It means that Senate Avenue housing society
provides 80% the basic facilities of life such as water, gas, and electricity and 20%
deprives these facilities. Similarly, the same society 90% accommodates its residents
being easy assessable and only 10% lacks the facility. In the same way, taking into
account the truth-membership and falsity-membership degrees of all other attributes,
we can identify the characteristics of all societies.

Now, to determine the overall comforts of each society, we will calculate the
heights of all hyperedges and the society having the maximum truth-membership



6.4 Applications to Decision-Making 255

Fig. 6.7 7-rung orthopair
fuzzy hypergraph model
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Table 6.5 Description of hyperedges

Set of hyperedges Corresponding
housing scheme

Provision of facilities
(%)

Deprival of facilities
(%)

ζ1 Senate avenue 70 20

ζ2 Soan gardens 50 50

ζ3 CBR town 60 70

ζ4 OPF housing scheme 80 50

ζ5 Paradise city 60 70

ζ6 RP corporation 80 50

ζ7 Tele gardens housing
scheme

70 50

Table 6.6 Description of attributes

Set of attributes Depicting facility Provision level of
corresponding facility

Deprival of
corresponding facility

x1 Basic amenities of life 0.8 0.2

x2 Easily assessable 0.9 0.1

x3 Land ownership 0.7 0.2

x4 The power back-up 0.6 0.3

x5 Eco-friendly
construction

0.9 0.4

x6 Social infrastructure 0.8 0.5

x7 Drainage system 0.5 0.6

x8 Security 0.6 0.7

x9 Regular sanitation 0.8 0.5

x10 The parking area 0.9 0.3
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Table 6.7 Heights of
hyperedges

Heights of hyperedges (max(ζl ),min(ζm))

h (Senate Avenue) (0.9, 0.1)

h (Soan Gardens) (0.9, 0.3)

h (CBR Town) (0.9, 0.3)

h (OPF Housing Scheme) (0.9, 0.2)

h (Paradise City) (0.9, 0.1)

h (RP Corporation) (0.9, 0.1)

h (Tele Gardens Housing
Scheme)

(0.8, 0.2)

and minimum falsity-membership will be considered as a most comfortable society
to be live in. The calculated heights of all schemes are given in Table6.7.

It can be noted from Table6.7 that there are three societies which have the maxi-
mum membership and minimum nonmembership degrees, i.e., Senate Avenue, Par-
adise City, and RP Corporation are those housing societies which will provide 90%
facilities to their habitants and only 10% amenities will be dispersed. Thus, it is more
beneficial and substantial to select one of these three housing schemes.

The same problem can be speculated to a more extended idea that if some one
wants to built a new housing scheme, which will carry out the facilities of all above
societies. The concept of 7-rung orthopair fuzzy hypergraphs can be utilized to
speculate such housing scheme. Consider a 7-rung orthopair fuzzy set of vertices
given as follows,

τ1 = {(x1, 0.8, 0.2), (x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)}.

By applying the definition of 7-rung orthopair fuzzy transversal, it can be seen that

ζ
(0.9,0.1)
1 ∩ τ

(0.9,0.1)
1 = {x2}, ζ

(0.9,0.3)
2 ∩ τ

(0.9,0.3)
1 = {x5},

ζ
(0.9,0.3)
3 ∩ τ

(0.9,0.3)
1 = {x10}, ζ

(0.9,0.2)
4 ∩ τ

(0.9,0.2)
1 = {x5},

ζ
(0.9,0.1)
5 ∩ τ

(0.9,0.1)
1 = {x2}, ζ

(0.9,0.1)
6 ∩ τ

(0.9,0.1)
1 = {x2},

ζ
(0.8,0.2)
7 ∩ τ

(0.8,0.2)
1 = {x6},

that is, the q-rung orthopair fuzzy subset τ1 satisfies the condition of transversal and
the housing society that will be represented through this hyperedge will contain at
least one attribute of each scheme mentioned above. Similarly, some other societies
can be figured out by following the samemethod. Hence, some other 7-rung orthopair
fuzzy subsets are given as

τ2 = {(x1, 0.8, 0.2), (x2, 0.9, 0.1), (x3, 0.7, 0.2), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ3 = {(x2, 0.9, 0.1), (x4, 0.6, 0.3), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ4 = {(x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ5 = {(x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x7, 0.5, 0.5), (x8, 0.6, 0.7), (x10, 0.9, 0.3)}.
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Fig. 6.8 7-rung orthopair fuzzy transversals

The graphical description of these schemes is displayed in Fig. 6.8 through dashed
lines.

Thus, the schemes shown through dashed lines will contain the attributes of all
other societies andmay bemore advantageous to their dwellers. The method adopted
in our application is explained through the Algorithm 6.4.2.

Algorithm 6.4.2

Finding the more advantageous schemes
1. Input the degree of membership of all q−rung orthopair fuzzy vertices x1, x2, x3,· · · ,xm .
2. Calculate the membership degrees of q−rung orthopair fuzzy hyperedges using the formula,

Tζ (Ek) ≤ min{Qi (x1),Qi (x2), . . . ,Qi (xm)},
Fζ (Ek) ≤ max{Qi (x1),Qi (x2), . . . ,Qi (xm)},

for all x1, x2, x3, · · · , xm representing the attributes of housing societies.
3. Calculate the heights of all q−rung orthopair fuzzy hyperedges using,

h(ζ j ) = (max Tζ j (xi ),min Fζ j (xi )),
j = 1, 2, 3, · · · , k and i = 1, 2, 3, · · · ,m.

4. Maximum truth-membership and minimum falsity-membership will denote the most alluring
residential area.

5. Input the different q−rung orthopair fuzzy subsets.
6. Determine the q−rung orthopair fuzzy transversals using the formula,
7. Find the more advantageous schemes, which will contain the attributes of all other societies.
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6.5 q-Rung Orthopair Fuzzy Directed Hypergraphs

In this section, we define q-rung orthopair fuzzy digraphs and q-rung orthopair fuzzy
directed hypergraphs. A q-rung orthopair fuzzy directed hypergraph generalizes the
concept of an intuitionistic fuzzy directed hypergraph and broaden the space of
orthopairs. We also define and construct the dual and line graphs of q-rung orthopair
fuzzy directed hypergraphs. All these concepts are explained and justified through
concrete examples.

Definition 6.23 A q-rung orthopair fuzzy digraph on a non-empty set X is a pair−→
D = (A ,

−→
B ), where A is a q-rung orthopair fuzzy set on X and

−→
B is a q-rung

orthopair fuzzy relation on X such that

T−→
B

(x1x2) ≤ min{TA (x1), TA (x2)}, F−→
B

(x1x2) ≤ max{FA (x1), FA (x2)},

and 0 ≤ T q−→
B

(x1x2) + Fq−→
B

(x1x2) ≤ 1, q ≥ 1, for all x1, x2 ∈ X.

Remark 6.4 • When q = 1, 1-rung orthopair fuzzy digraph is called an intuitionistic
fuzzy digraph.

• When q = 2, 2-rung orthopair fuzzy digraph is called Pythagorean fuzzy digraph.

Example 6.6 Let X = {x1, x2, x3, x4} be the set of universe, A = {(x1, 0.7, 0.8),
(x2, 0.6, 0.9), (x3, 0.5, 0.8), (x4, 0.7, 0.8)} be a 5-rung orthopair fuzzy set and

−→
B

be a 5-rung orthopair fuzzy relation on X such that, 0 ≤ T 5−→
B

(xi x j ) + F5−→
B

(xi x j ) ≤ 1,

for all xi , x j ∈ X. The corresponding 5-rung orthopair fuzzy digraph
−→
D = (A ,

−→
B )

is shown in Fig. 6.9.

Definition 6.24 A q-rung orthopair fuzzy directed hypergraph D on X is defined
as an ordered pair D = (Q, ξ), where Q is the collection of q-rung orthopair fuzzy
subsets of X and ξ is a family of q-rung orthopair fuzzy directed hyperedges (or
hyperarcs) such that,

Fig. 6.9 5-rung orthopair

fuzzy digraph
−→
D

(x1,0.7,0.8) (x2,0.6,0.9)

(x3,0.5,0.8) (x4,0.7,0.8)

(x1x2,0.5,0.8)

(x2 x4 ,0.5,0.9)

(x1 x3 ,0.4,0.7)

(x4 x1 ,0.6,0.7)

(x2
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0.5
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1.
Tξ (Ek) = Tξ (x1, . . . , xm) ≤ min{TQi (x1), . . . , TQi (xm)},

Fξ (Ek) = Fξ (x1, . . . , xm) ≤ max{FQi (x1), . . . , FQi (xm)},

for all x1, x2, . . ., xm ∈ X .
2.

⋃
i
supp(Qi ) = X , for all Qi ∈ Q.

A q-rung orthopair fuzzy directed hyperedge ξi ∈ ξ is defined as an ordered pair
(h(ξi ), t (ξi )), where h(ξi ) and t (ξi ) ∈ X − h(ξi ), nontrivial subsets of X , are called
the head of ξi and tail of ξi , respectively.
A source vertex v in ξi is defined as h(ξi ) �= v, for all ξi ∈ ξ and a destination vertex
v′ in ξi is defined as t (ξi ) �= v′, for all ξi ∈ ξ .

Definition 6.25 A q-rung orthopair fuzzy directed hypergraph is called a backward
q-rung orthopair fuzzy directed hypergraph if all of its hyperarcs are B-arcs, i.e.,
ξi = (h(ξi ), t (ξi )) with |h(ξi )| = 1, for all ξi ∈ ξ .
A q-rung orthopair fuzzy directed hypergraph is called a forward q-rung orthopair
fuzzy directed hypergraph if all of its hyperarcs are F-arcs, i.e., ξi = (h(ξi ), t (ξi ))
with |t (ξi )| = 1, for all ξi ∈ ξ .

Definition 6.26 The height of a q-rung orthopair fuzzy directed hypergraph
D = (Q, ξ) is defined as h
(D) = {max(ξl),min(ξm)}, where ξl = max Tξ j (xi ) and
ξm = min Fξ j (xi ). Here, Tξ j (xi ) and Fξ j (xi ) denote the truth-membership and falsity-
membership of vertex xi to the directed hyperedge ξ j , respectively.

Definition 6.27 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The order of D , which is denoted by O(D), and is defined as O(D) = ∑

x∈X
∧ξi (x).

The size of D , which is denoted by S(D), and is defined as S(D) = ∑
x∈X

∨ξi (x).

Definition 6.28 A repeatedly occurring sequence v1, ξ1, v2, ξ2, . . ., vn−1, ξn−1, vn of
definite vertices and directed hyperarcs such that,

• 0 < Tξ (ξi ) ≤ 1 and 0 ≤ Fξ (ξi ) < 1,
• vi−1, vi ∈ ξi , i = 1, 2, 3, . . . , n,

is called a q-rung orthopair fuzzy directed hyperpath of length n − 1 from v1 to vn .
If v1 = vn , then this q-rung orthopair fuzzy directed hyperpath is called a q-rung
orthopair fuzzy directed hypercycle.

Definition 6.29 The strength of q-rung orthopair fuzzy directed hyperpath of length
k, which connects the two vertices v1 and v2, is defined as λk(v1, v2) = {min{Tξ (ξ1),
Tξ (ξ2),Tξ (ξ3), . . .,Tξ (ξk)},max{Fξ (ξ1), Fξ (ξ2), Fξ (ξ3), . . ., Fξ (ξk)}}, v1 ∈ ξ1, v2 ∈ ξk
and ξ1, ξ2, ξ3, . . ., ξk are q-rung orthopair fuzzy directed hyperedges.

The strength of connectedness between v1 and v2 is given as, λ∞(v1, v2) =
{max

k
T (λk(v1, v2)),min

k
F(λk(v1, v2))}.
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Fig. 6.10 A 5-rung
orthopair fuzzy directed
hypergraph
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A connected q-rung orthopair fuzzy directed hypergraph is one in which we have
at least one q-rung orthopair fuzzy directed hyperpath between each pair of vertices
of D .

We now illustrate the Definitions6.24, 6.25, 6.26, 6.27, 6.28 and 6.29 through an
example of 5-rung orthopair fuzzy directed hypergraph.

Example 6.7 Consider a 5-rung orthopair fuzzy directed hypergraph D = (Q, ξ),
as shown in Fig. 6.10.

In this 5-rung orthopair fuzzy directed hypergraph, we have

ξ1 = {{(v1, 0.8, 0.6), (v3, 0.8, 0.5)}, {(v5, 0.7, 0.8)}} = {t (ξ1), h(ξ1)},
ξ2 = {{(v1, 0.8, 0.6), (v2, 0.7, 0.9)}, {(v3, 0.8, 0.5), (v4, 0.6, 0.8)}}={t (ξ2), h(ξ2)},
ξ3 = {{(v3, 0.8, 0.5), (v6, 0.7, 0.6)}, {(v4, 0.6, 0.8)}} = {t (ξ3), h(ξ3)},
ξ4 = {{(v4, 0.6, 0.8), (v6, 0.7, 0.6)}, {(v7, 0.8, 0.7)}} = {t (ξ4), h(ξ4)}.

A 5-rung orthopair fuzzy directed hyperpath from v1 to v7 of length 3 is shown
through dashed lines and is given by an alternating sequence v1, ξ2, v3, ξ3, v4, ξ4, v7
of distinct vertices and directed hyperarcs. The strength of this hyperpath is

λ3(v1, v7) = {min{Tξ (ξ2), Tξ (ξ3), Tξ (ξ4)},max{Fξ (ξ2), Fξ (ξ3), Fξ (ξ4)}}
= (0.6, 0.9),

λ∞(v1, v7) = (0.6, 0.9).

Note that, D = (Q, ξ) is not connected because we don’t have a directed hyperpath
between each pair of vertices, i.e., v1 is not connected to v6. A backward and forward
5-rung orthopair fuzzy directed hypergraph is shown in Fig. 6.11a, b, respectively.
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Fig. 6.11 Backward and forward 5-rung orthopair fuzzy directed hypergraphs

Definition 6.30 A q-rung orthopair fuzzy directed hypergraphD = (Q, ξ) is linear
if every pair of q-rung orthopair fuzzy directed hyperedges ξi , ξ j ∈ ξ satisfies

• supp(ξi ) ⊆ supp(ξ j ) ⇒ i = j ,
• |supp(ξi ) ∩ supp(ξ j )| ≤ 1.

Example 6.8 Consider a 5-rung orthopair fuzzy directed hypergraph D = (Q, ξ),
as shown in Fig. 6.10. In this 5-rung orthopair fuzzy directed hypergraph, we
have supp(ξ1) = {v1, v3, v5}, supp(ξ2) = {v1, v2, v3, v4}, supp(ξ3) = {v3, v6, v4},
supp(ξ4) = {v4, v6, v7}. Note that, supp(ξi ) ⊆ supp(ξ j ) ⇒ i = j and

|supp(ξ1) ∩ supp(ξ2)| = |{v1, v3}| = 2,

|supp(ξ1) ∩ supp(ξ3)| = |{v3}| = 1,

|supp(ξ1) ∩ supp(ξ4)| = |{∅}| = 0,

|supp(ξ2) ∩ supp(ξ3)| = |{v4, v3}| = 2,

|supp(ξ2) ∩ supp(ξ4)| = |{v4}| = 1,

|supp(ξ3) ∩ supp(ξ4)| = |{v4, v6}| = 2.

That is, |supp(ξi ) ∩ supp(ξ j )| � 1, for all ξi , ξ j ∈ ξ . Hence, D = (Q, ξ) is not
linear.

Definition 6.31 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The q-rung orthopair fuzzy line graph of D is the graph l(D) = (Xl , ξl) such that,

1. Xl = ξ ,
2. {ξi , ξ j } ∈ ξl ⇔ |supp(ξi ) ∩ supp(ξ j )| �= ∅, for i �= j .

The truth-membership and falsity-membership of vertices and edges of l(D) are
determined as follows:

• Xl(ξi ) = ξ(ξi ),
• Tξl ({ξi , ξ j }) = min{Tξ (ξi ), Tξ (ξ j )|ξi , ξ j ∈ ξ}, Fξl ({ξi , ξ j }) = max{Fξ (ξi ),

Fξ (ξ j )|ξi , ξ j ∈ ξ}.



262 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Theorem 6.10 Let G = (U, ε) be a simple q-rung orthopair fuzzy directed graph.
Then G is the q-rung orthopair fuzzy line graph of a linear q-rung orthopair fuzzy
directed hypergraph.

Proof LetG = (U, ε)be a simpleq-rungorthopair fuzzydirectedgraph.We suppose
that G = (U, ε) is connected, with no loss of generality. A q-rung orthopair fuzzy
directed hypergraph D = (Q, ξ) can be formulated from G as follows:

(i) The set of directed edges of G will be taken as vertices of D , i.e., ε =
{ε1, ε2, ε3, . . . , εn} be the directed edges of G and hence the set of vertices of
D . Let X = {q1, q2, q3, . . . , qk} be the set of nontrivial q-rung orthopair fuzzy
sets on U such that qi (ε j ) = (1, 0), i = 1, 2, 3, . . . , k, j = 1, 2, 3, . . . , n.

(ii) Let U = {u1, u2, u3, . . . , u j } then the directed hyperedges of D are
ξ = {ξ1, ξ2, ξ3, . . . , ξn}, where ξi are those directed edges of G , which contain
the vertex ui as their incidence vertex, i.e., ξi = {ε j |ui ∈ ε j , j = 1, 2, 3, . . . , n}.
Moreover, ξ(ξi ) = U (ui ), i = 1, 2, 3, . . . , k.

We now claim thatD = (Q, ξ) is linear q-rung orthopair fuzzy directed hypergraph.
Consider an arbitrary directed hyperedge ξ j = {ε1, ε2, ε3, . . ., εr } and from the
defining relation of q-rung orthopair fuzzy directed hypergraph, we have

Tξ (ξ j ) = min{Tqj (ε1), Tqj (ε2), . . . , Tqj (εr )} = TU (ui ) ≤ 1,

Fξ (ξ j ) = max{Fqj (ε1), Fqj (ε2), . . . , Fqj (εr )} = FU (ui ) ≥ 0,

i = 1, 2, 3, . . . , k and
⋃
k
supp(qk) = X , for all qk .

We now prove that D = (Q, ξ) is linear.

1. By our supposition, membership degree of each vertex εi ofD is (1, 0). Thus, we
have supp(ξi ) ⊆ supp(ξ j ) implies i = j .

2. Suppose on contrary that |supp(ξi ) ∩ supp(ξ j )| = {εl ,εm}, i.e., these edges have
two incidence vertices in common, which is contradiction to the fact that G is
simple. Hence, |supp(ξi ) ∩ supp(ξ j )| ≤ 1, for 1 ≤ i, j ≤ r .

Theorem 6.11 A necessary and sufficient condition for l(D) to be connected is that
D is connected.

Proof Let D = (Q, ξ) be a connected q-rung orthopair fuzzy directed hypergraph
and l(D) = (Xl , ξl) be the line graph of D . Suppose that ξi and ξ j be two vertices
of l(D) and vi ∈ ξi , v j ∈ ξ j , for vi �= v j . Since D is connected then there exists an
alternating sequence vi , ξi , vi+1, ξi+1, . . ., ξ j , v j , which connects vi and v j . From the
definition of strength of connectedness between vi and v j , we have
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λ∞(ξi , ξ j ) = max
k

T (λk(ξi , ξ j )),min
k

F(λk(ξi , ξ j ))

= {max
k

(Tξl (ξi , ξi+1) ∧ Tξl (ξi+1, ξi+2) ∧ · · · ∧ Tξl (ξ j−1, ξ j )),

min
k

(Fξl (ξi , ξi+1) ∨ Fξl (ξi+1, ξi+2) ∨ · · · ∨ Fξl (ξ j−1, ξ j ))}, k = 1, 2, . . .

= {max
k

(Tξl (ξi ) ∧ Tξl (ξi+1) ∧ Tξl (ξi+2) ∧ · · · ∧ Tξl (ξ j−1) ∧ Tξl (ξ j )),

min
k

(Fξl (ξi ) ∨ Fξl (ξi+1) ∨ Fξl (ξi+2) ∨ · · · ∨ Fξl (ξ j−1) ∨ Fξl (ξ j ))},
= max T (λk(vi , v j )),min F(λk(vi , v j ))

= λ∞(vi , v j ) > 0.

Hence, l(D) is connected. By reversing the same procedure, we can easily prove that
if l(D) is connected then D is connected.

Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph. The construction
of a q-rung orthopair fuzzy directed line graph from a q-rung orthopair fuzzy directed
hypergraph is illustrated in Algorithm 6.5.1.

Algorithm 6.5.1

Finding the q−rung orthopair fuzzy directed line graph
1. Input the number of directed hyperedges r of q−rung orthopair fuzzy directed hypergraph D = (Q, ξ).
2. Input the truth-membership and falsity membership of directed hyperedges ξ1, ξ2, ξ3, · · · , ξr .
3. Construct a q−rung orthopair fuzzy line graph l(D) = (Xl , ξl ), whose vertices are taken as the directed

hyperedges ξ1, ξ2, ξ3, · · · , ξr .
4. Calculate the degrees of membership of vertices l(D) = (Xl , ξl ) as Xl (ξ j ) = ξ(ξ j ).
5. Draw an edge between ξi and ξ j in l(D) if |supp(ξi ) ∩ supp(ξ j )| ≥ 1.
6. Calculate the degrees of membership of edges in l(D) as,

ξl (ξi ξ j ) = (min{Tξ (ξi ), Tξ (ξ j )}, max{Fξ (ξi ), Fξ (ξ j )}).

Definition 6.32 The 2-section graph of a q-rung orthopair fuzzy directed hyper-
graph D = (Q, ξ) is a q-rung orthopair fuzzy graph [D]2 = (X ′,E ) such that

(i) X = X ′, i.e., the set of vertices of both graphs is same.
(ii) E = {vi v j |vi �= v j , vi v j ∈ ξk ,k =1,2,3, . . .}, i.e., vi and v j are adjacent in D .

We now justify the Definitions6.31 and 6.32 through Example6.9.

Example 6.9 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown in Fig. 6.12. By following the above Algorithm 6.5.1, it’s line graph is con-
structed and shown by dashed lines.

The 2-section graph of 7-rung orthopair fuzzy directed hypergraph given in
Fig. 6.12 is shown in Fig. 6.13.

Definition 6.33 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The dual q–rung orthopair fuzzy directed hypergraphDd = (Xd , ξ d) ofD = (Q, ξ)

is defined as,
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Fig. 6.12 A 7-rung orthopair fuzzy directed hypergraph and its line graph
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Fig. 6.13 The 2-section graph of 7-rung orthopair fuzzy directed hypergraph

(i) Xd = ξ is the q-rung orthopair fuzzy set of vertices of Dd .
(ii) If |X | = n, then ξ d isq-rung orthopair fuzzy set on the set of directed hyperedges

{X1, X2, X3, . . ., Xn} such that Xi = {ξ j |vi ∈ ξ j , ξ j ∈ ξ}, i.e., Xi is the set of
those directed hyperedges in which vi is a common vertex.
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Fig. 6.14 Dual directed hypergraph of 7-rung orthopair fuzzy directed hypergraph

The membership degrees of Xi are defined as

Tξ d (Xi ) = min{Tξ (ξ j )|vi ∈ ξ j }, Fξ d (Xi ) = max{Fξ (ξ j )|vi ∈ ξ j }.

The method of forming the dual of q-rung orthopair fuzzy directed hypergraph is
described in Algorithm 6.5.2. We also explain this concept through an example.

Algorithm 6.5.2

The dual of q−rung orthopair fuzzy directed hypergraph
1. Input {v1, v2, v3, · · · , vn} the set of vertices and {ξ1, ξ2, ξ3, · · · , ξm} the set of directed hyperedges of D .
2. Formulate a q−rung orthopair fuzzy set of vertices of Dd as Xd = ξ .
3. Define a mapping ψ : X → ξ , which maps the set of vertices to the directed hyperedges of D , i.e.,

if vertex vi is contained in ξl , ξl+1, ξl+2, · · · , ξm then vi is mapped onto ξl , ξl+1, ξl+2, · · · , ξm .
4. Construct the directed hyperedges {X1, X2, X3, · · · , Xn} of Dd such that Xi = {ξ j |ψ(vi ) = ξ j }.
5. Draw the q−rung orthopair fuzzy directed hyperedge, the vertex ξ j of Dd is associated to h(Xi ) if

and only if vi ∈ t (ξ j ) in D and viceversa.
6. Formulate the truth-membership and falsity-membership of directed hyperedges of Dd as,

Tξd (Xi ) = min{Tξ (ξ j )|vi ∈ ξ j }, Fξd (Xi ) = max{Fξ (ξ j )|vi ∈ ξ j }.

Example 6.10 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown in Fig. 6.12. The dual 7-rung orthopair fuzzy directed hypergraph Dd =
(Xd , ξ d) of D = (Q, ξ) is shown in Fig. 6.14, which is constructed by following
the Algorithm6.5.2.

Theorem 6.12 The 2-section of dual of q-rung orthopair fuzzy directed hypergraph
[Dd ]2 is same as the line graph of D , i.e., [Dd ]2 = l(D).
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Proof Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph having {v1,
v2, v3, . . ., vn} the set of vertices and {ξ1, ξ2, ξ3, . . ., ξm} the set of directed hyper-
edges. Suppose that l(D) = (Xl , ξl), Dd = (Xd , ξ d) and [Dd ]2 = (Xd ,E ) be the
line graph, dual directed hypergraph, and 2-section of dual ofD , respectively. The 2-
section [Dd ]2 has the same vertex set as that of l(D). Assume that the set of directed
hyperedges ofDd be {X1, X2, X3, . . ., Xn}. Obviously {ξiξ j |ξi , ξ j ∈ Xi } are the edges
of [Dd ]2 and also the set of edges of l(D). We now show that ξl(ξiξ j ) = E (ξiξ j ).

ξl(ξiξ j ) = (max{Tξ (ξi ), Tξ (ξi )},min{Fξ (ξi ), Fξ (ξi )}),
= (max{Tξ d (ξi ), Tξ d (ξi )},min{Fξ d (ξi ), Fξ d (ξi )}),
= E (ξiξ j ),

which completes the proof.

We now justify the result of Theorem6.12 through a concrete example.

Example 6.11 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown inFig. 6.12. Its line graph is constructed and shownbydashed lines inFig. 6.15.

The dual ofD is shown in Fig. 6.14.We now determine the 2-section ofDd , which
is given in Fig. 6.16.

Thus, Figs. 6.15 and 6.16 show that [Dd ]2 = l(D).
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6.6 Coloring of q-Rung Orthopair Fuzzy Directed
Hypergraphs

In this section, we define the (α, β)-level hypergraph ofD , which is a useful concept
in the coloring of q-rung orthopair fuzzy directed hypergraphs. A sequence of real
numbers, called the fundamental sequence of D , is also defined using the (α, β)-
level sets. The concept of the fundamental sequence is used to prove various results
related to the coloring of q-rung orthopair fuzzy directed hypergraphs. Moreover,
we defineL -coloring, chromatic number, and p-coloring ofD . We also prove some
useful results, which simplify the complicated procedure of coloring and finding the
chromatic number of q-rung orthopair fuzzy directed hypergraphs.

Definition 6.34 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The (α, β)-level hypergraph of D is defined as D (α,β) = (X (α,β),ξ (α,β)), where

1. ξ (α,β) = {ξ (α,β)

i : ξi ∈ ξ} and ξ
(α,β)

i = {x ∈ X |Tξi (x) ≥ α, Fξi (x) ≤ β},
2. X (α,β) = ⋃

ξi∈ξ

ξ
(α,β)

i .

Definition 6.35 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
andD (α,β) be the (α, β)-level hypergraph of D . The sequence of real numbers ρ1 =
(Tρ1 , Fρ1), ρ2 = (Tρ2 , Fρ2), ρ3 = (Tρ3 , Fρ3),. . .,ρn = (Tρn , Fρn ), 0 < Tρ1 < Tρ2 <

Tρ3 < · · · < Tρn , Fρ1 > Fρ2 > Fρ3 > · · · > Fρn > 0,where (Tρn , Fρn ) = h(H ) such
that,

(i) if ρi−1 = (Tρi−1 , Fρi−1) < ρ = (Tρ , Fρ) ≤ ρi = (Tρi , Fρi ) then ξρ = ξρi ,

(ii) ξρi ⊆ ξρi+1 ,

is called the fundamental sequence of D , denoted by fS(D). The set of ρi -level
hypergraphs {Dρ1 ,Dρ2 ,Dρ3 , . . . ,Dρn } is called the core hypergraphs ofD or simply
the core set of D and is denoted by c(D).
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Fig. 6.17 Fundamental sequence of D

Definition 6.36 A q-rung orthopair fuzzy directed hypergraph D = (X, ξ) is
ordered if c(D) = {Dρ1 , Dρ2 , Dρ3 , . . ., Dρn } is ordered, i.e., Dρ1 < Dρ2 < Dρ3 <

· · · < Dρn and is simply ordered if c(D) is simply ordered.

Example 6.12 Consider a 2-rung orthopair fuzzy directed hypergraph D = (X, ξ),
where X = {x1, x2, x3, x4} and ξ = {ξ1, ξ2, ξ3} such that ξ1 = {(x1, 0.8, 0.1),
(x2, 0.8, 0.1)}, ξ2 = {(x1, 0.6, 0.2), (x2, 0.6, 0.2), (x3, 0.4, 0.3)}, ξ3 = {(x1, 0.4,0.3),
(x2, 0.4, 0.3), (x4, 0.4, 0.3)}. By determining the (α, β)-level hypergraphs of D , we
haveD (0.8,0.1) = D (0.6,0.2) and fS(D) = {(0.6, 0.2), (0.8, 0.1)}. Further,D (0.4,0.3) =
D (0.6,0.2). The corresponding sequence of level hypergraphs is shown in Fig. 6.17.

We now define the primitive k-coloring (or simply a p-coloring), L -coloring, and
chromatic number of q-rung orthopair fuzzy directed hypergraphs and illustrate these
concepts by considering a concrete example.

Definition 6.37 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph.
A primitive k-coloring C (or simply a p-coloring) is defined as a partition of X in
k subgroups, called colors, such that the elements from at least two colors of C are
contained in the support of every q-rung orthopair fuzzy directed hyperedge of D .

Definition 6.38 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and c(D) = {Dρ1 , Dρ2 , Dρ3 , . . ., Dρn } be the set of core hypergraphs of D . An L -
coloring is defined as a partition of X , with k components, into k subgroups {s1, s2, s3,
. . ., sk} such that C persuades a coloring for each core hypergraphDρi = (Xρi , ξρi ).
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Remark 6.5 Note that, an L -coloring of D is a p-coloring, but in general, the
converse does not hold. The preceding theorem states the condition under which an
L -coloring and p-coloring of D coincides.

Theorem 6.13 LetD = (X, ξ)beanorderedq-rungorthopair fuzzy directed hyper-
graph and C is a p-coloring of D then L -coloring of D is also C.

Definition 6.39 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and let k ≥ 2 be an integer then the k-coloring of vertex set is defined as a function
κ:X → {1, 2, 3, . . . , k} such that for allρ ∈ fS(D) and for each hyperedge ξρ , which
is not a loop, κ is not a constant on ξρ .
The minimum integer k, for which there exists a k-coloring ofD is called chromatic
number of D , denoted by χ(D).

Example 6.13 Let D = (X, ξ) be a 1-rung orthopair fuzzy directed hypergraph,
where X = {t1, t2, t3, t4, t5, t6, t7} and ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} such that

ξ1 = {(t1, 0.6, 0.3), (t2, 0.6, 0.3), (t4, 0.5, 0.2)},
ξ2 = {(t1, 0.6, 0.3), (t3, 0.6, 0.3), (t5, 0.3, 0.1), (t7, 0.5, 0.2)},
ξ3 = {(t1, 0.6, 0.3), (t3, 0.6, 0.3), (t6, 0.2, 0.1), (t7, 0.5, 0.2)},
ξ4 = {(t2, 0.6, 0.3), (t3, 0.6, 0.3), (t4, 0.5, 0.2)},
ξ5 = {(t2, 0.6, 0.3), (t4, 0.5, 0.2), (t5, 0.3, 0.1), (t7, 0.5, 0.2)},
ξ6 = {(t2, 0.6, 0.3), (t4, 0.5, 0.2), (t6, 0.2, 0.1)},
ξ7 = {(t4, 0.5, 0.2), (t5, 0.3, 0.1), (t6, 0.2, 0.1)},

Let ρ1 = (0.6, 0.3), ρ2 = (0.5, 0.2), ρ3 = (0.30.1) and ρ4 = (0.2, 0.1). The corre-
sponding ρi -level hyperedges are given as follows:

ξρ1 = {{t1, t2}, {t1, t3}, {t2, t3}},
ξρ2 = {{t1, t2, t4}, {t1, t3, t7}, {t2, t3, t4}, {t2, t7, t4}},
ξρ3 = {{t1, t2, t4}, {t1, t3, t5, t7}, {t1, t3, t7}, {t2, t3, t4}, {t2, t4, t5}, {t2, t4}, {t4, t5}},
ξρ3 = {{t1, t2, t4}, {t1, t3, t5, t7}, {t1, t3, t6, t7}, {t2, t3, t4}, {t2, t4, t5, t7}, {t2, t4, t6}, {t4, t5, t6}}.

Suppose {C1,C2} is a coloring of Dρ1 . Then, {t1, t2} ∩ {C1,C2} �= ∅, {t1, t3} ∩
{C1,C2} �= ∅ and {t2, t3} ∩ {C1,C2} �= ∅. Thus, C1 ∩ C2 �= ∅, which is a contra-
diction. Hence, χ(Dρ1) = 3. {{t1, t2, t3}, {t4, t5, t6, t7}} is the coloring ofDρ2 . Hence,
χ(Dρ2) = 2. Similarly, χ(Dρ3) = 3 and χ(Dρ4) = 3.

Definition 6.40 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and Q = {q1, q2, q3, . . ., qk} be the collection of non trivial q-rung orthopair fuzzy
sets on X then Q is a q-rung orthopair fuzzy k-coloring if Q satisfies the following:

• min{qi , q j } = (0, 1), if i �= j ,
• for every (α, β) ∈ (0, 1], ⋃

i
q(α,β)

i = X ,
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• for every (α, β) ∈ (0, 1], each hyperedge ξ
(α,β)

j possesses non-empty intersection

with at least two color classes q(α,β)

i .

Observation 6.14 LetD = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn}. Then, the coloring
of core hypergraphDρi can be enlarged to the coloring ofDρi+1 if and only if a single
color class of κ does not contain any hyperedge ofDρi+1 . Particularly, ifD is simply
ordered then any coloring κ of Dρi maybe elongated to the coloring of D .

Theorem 6.14 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn}. Let D̃ρn be the core
coloring ofDρn then every coloring ofDρn is a coloring ofD if and only if for every
ρ ∈ fS(D) there exists A ∈ D̃ρn such that A ⊆ ξ

ρ

i , for each ξi ∈ ξ for which ξ
ρ

i is a
non loop edge.

Proof Suppose the existance of some ρ ∈ fS(D) and ξi ∈ ξ such that |ξρ

i | ≥ 2 and
A � ξ

ρ

i , for every A ∈ D̃ρn . Let a color class is defined for the vertex set of ξ
ρ

i .
Construct a sub-hypergraphD ′ ofD , which is constructed by removing ξ

ρ

i from the
vertices of D̃ρn . Thus, {A\ξρ

i |A ∈ D̃ρn } is the set of hyperedges of D ′. Since every
ξ

ρn
j ∈ Dρn , which is not a loop and also including ξ

ρn
i , contains some A ∈ D̃ρn and

this non loop edge ξ
ρn
j has non empty intersection with the vertices ofD ′. Let {q2, q3,

. . ., qk} be the coloring of D ′ then the coloring of Dρn is {ξρ , q2, q3, . . ., qk}, where
ξρ is contained in single color class. Hence, there exists a coloring of Dρn which is
not a coloring of D .
Conversely, assume that there exists some ρ ∈ fS(D) and ξi ∈ ξ such that |ξρ

i | ≥ 2
and A ⊆ ξ

ρ

i , for every A ∈ D̃ρn . Suppose that ρ and ξi are taken as arbitrary but fixed
and κ be the coloring of Dρn . Since κ is not a constant on A, it is also non constant
on ξ

ρ

i , hence κ is a coloring of D .

The coloring problem ofD can be reduced to the correlated crisp coloring. It can be
done by replacingD with a more simpler frameworkD�, it will be noted thatD� is
ordered, simpler to color and every p-coloring of D� will generate the L -coloring
of D .

Definition 6.41 A spike reduction of ξi ∈ P(X), which is denoted by ξ̃i , is defined
as

ξ̃i
(α,β) =

{
ξ

(α,β)

i , if |ξ (α,β)

i | ≥ 2,
∅, if |ξ (α,β)

i | ≤ 1,

for 0 < α, β ≤ 1. Particularly, if ξi is a loop then ξ̃i = ∅.
Definition 6.42 Given D = (Q, ξ) then D̃ = (X̃ , ξ̃ ), where ξ̃ = {ξ̃i |ξi ∈ ξ}.
Construction 6.2 LetD = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn} and c(D) = {Dρ1 ,
Dρ2 , Dρ3 , . . ., Dρn }. Then, the conversion of D into D s is given in the following
construction.
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1. Obtain a partial hypergraph D
ρ1 of Dρ1 by abolishing all those directed hyper-

edges of Dρ1 that properly accommodate any other hyperedge of Dρ1 .
2. Subsequently, obtain a partial hypergraph D

ρ2 of Dρ2 by abolishing all those
directed hyperedges of Dρ2 that properly accommodate any other hyperedge of
Dρ2 or (properly or improperly) contain a hyperedge of partial hypergraph D

ρ1 .
(It may be possible that D

ρ2 possesses no hyperedges, in such case existance of
D

ρ2 is ignored.)
3. By following the same procedure, obtain a partial hypergraph D

ρ3 of Dρ3 by
abolishing all those directed hyperedges of Dρ3 that properly accommodate any
other hyperedge ofDρ3 or (properly or improperly) contain a hyperedge of partial
hypergraph either D

ρ1 or D
ρ2 .

4. Following this iterative procedure, we obtain a subsequence of fS(D), ρs
m · · · <

ρs
1 = ρ1 and the set of partial hypergraphs corresponding to this subsequence is

c(D) = {Dρs
1 , D

ρs
2 , D

ρs
3 , . . ., D

ρs
m } from the c(D). It is obvious from above pro-

cedure that each D
ρs
i , 1 ≤ i ≤ m, contain non-empty set of hyperedges because

all those hypergraphs having empty set of hyperedges have been eliminated from
the consideration.

5. Construct the elementary q-rung orthopair fuzzy directed hypergraph D s =
(Xs, ξ s) satisfying the following conditions

• fS(D s) = {ρs
1, ρ

s
2, ρ

s
3, . . . , ρ

s
m},

• if ξ j ∈ ξ s then h(ξ j ) ∈ {ρs
1, ρ

s
2, ρ

s
3, . . . , ρ

s
m},

• the family of hyperedges in ξ s having heights ρs
k is the collection of elementary

q-rung orthopair fuzzy sets {η(Q, ρs
k )|Q ∈ D

ρs
k }, for all k, 1 ≤ k ≤ m.

Definition 6.43 Let D� be a q-rung orthopair fuzzy directed hypergraph obtained
from D̃ by the procedure described above, i.e., D� = (D̃)s .

Definition 6.44 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn} and c(D) = {Dρ1 ,
Dρ2 , Dρ3 , . . ., Dρn } with Dρi = (Xi ,Ei ) and the elements of fS(D) are ordered
then D is called sequentially simple if whenever E ∈ Ei\Ei−1 then E � Xi−1,
i = 1, 2, 3, . . . , n.

Theorem 6.15 Let D = (X, ξ) be a sequentially simple q-rung orthopair fuzzy
directed hypergraph having core set c(D) = {Dρi = (Xi ,Ei )|i = 1, 2, 3, . . . , n}
and the elements of fS(D) are ordered. Suppose that E ∈ E j+k\E j , j < n and
k ∈ {1, 2, 3, . . . , n − j} then E � X j .

Proof The general proof of this theorem is illustrated by considering an example.
Assume that E ∈ E j+3\E j , then

(i) either E ∈ E j+2 or E /∈ E j+2. In the succeeding condition E ∈ E j+3\E j+2,
which indicates that E � X j+2, thus E � X j because X j ⊆ X j+2. Now sup-
pose that E ∈ E j+2. Then
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(ii) either E ∈ E j+1 or E /∈ E j+1. In the succeeding condition E ∈ E j+2\E j+1,
which indicates that E � X j+1, thus E � X j because X j ⊆ X j+1. Now sup-
pose that E ∈ E j+1. Then

(iii) since E /∈ E j , this implies that E ∈ E j+1\E j . Thus, E � X j . Hence it is clear
that E � X j .

Theorem 6.16 Let D = (X, ξ) be a sequentially simple q-rung orthopair fuzzy
directed hypergraph the D̃ ,D s andD� are also sequentially simple q-rung orthopair
fuzzy directed hypergraphs.

Proof Since D = (X, ξ) is a sequentially simple q-rung orthopair fuzzy directed
hypergraph. Since D̃ is obtained by removing all those hyperedges of D , which are
spikes(loops) and also by eliminating all terminal spikes from the directed hyper-
edges of D . Certainly D̃ is a sequentially simple q-rung orthopair fuzzy directed
hypergraph. Also the skeleton of D , denoted by D s , is a sequentially simple q-rung
orthopair fuzzy directed hypergraph. Therefore,D� = (D̃)s is also sequentially sim-
ple q-rung orthopair fuzzy directed hypergraph.

6.7 Applications

6.7.1 The Most Proficient Arrangement for Hazardous
Chemicals

Hazardous waste is a type of waste that is considered to have potential and substan-
tial threats to the environment and human health. There are many human activities,
including medical practice, industrial manufacturing procedures, and batteries that
generate the hazardous waste in various categories, including solids, gases, liquids,
and sludges. The improper arrangement of these hazardous wastes results in many
serious tragedies. Serious health issues, including cancer, birth defects, and nerve
damage may occur due to improper handling for those who ingest the contaminated
air, water or food. Remediation and cleanup cost of these hazardous substances may
amount to millions and billions of dollars. To ensure the well being of the population,
protection of the surrounding environment, and to avoid any type of threat or haz-
ard proper management of hazardous chemicals is extremely important. A q-rung
orthopair fuzzy directed hypergraph can be used to well demonstrate the manage-
ment system of hazardous elements. The 5-rung orthopair fuzzy directed hypergraph
model of some compatible and incompatible elements is shown in Fig. 6.18.

The set of oval vertices G = {G1, G2, G3, G4, G5} of this directed hypergraph
represents the types of those elements, which are adjacent to them. The description
of these vertices is given in Table6.8.

For the cost efficient and secure management of hazardous elements, it is imper-
ative to fill the containers up to 75% and also the container’s material should be
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Fig. 6.18 5-rung orthopair fuzzy directed hypergraph model

Table 6.8 Description of oval vertices

Category Membership
values

Proficiency (%) Ineptness (%)

GROUP1 Inorganic acids (0.7, 0.3) 70 30

GROUP2 Organic acids (0.72, 0.28) 72 28

GROUP3 Caustics (0.71, 0.29) 71 29

GROUP4 Amines and
alkanolamines

(0.75, 0.25) 75 25

GROUP5 Halogenated
compounds

(0.73, 0.27) 73 27

compatible to the elements stored in it. Only those chemical substances are con-
nected through the same directed hyperedges, which are compatible to each other
and are not dangerous when stored together. For a proficient management of such
elements, one should know the characteristics of hazardous elements such as cor-
rosivity, reactivity or toxicity of these elements. A 5-rung orthopair fuzzy set Q
describes the corrosivity of these chemical substances.

Q = {(w1, 0.81, 0.23), (w2, 0.81, 0.23), (w3, 0.81, 0.23), (w4, 0.90, 0.17),

(w5, 0.90, 0.17), (w6, 0.90, 0.17), (w7, 0.87, 0.13), (w8, 0.87, 0.13),

(w9, 0.87, 0.13), (w10, 0.75, 0.30), (w11, 0.70, 0.20), (w12, 0.85, 0.20),

(w13, 0.70, 0.10), (w14, 0.70, 0.10), (w15, 0.90, 0.20)}.

Table6.9 describes the importance of defining this 5-rung orthopair fuzzy set.
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Table 6.9 Corrosivity and fortifying level of square vertices

Square vertices Corrosivity
(%)

Vitriolicity
(%)

Square vertices Corrosivity
(%)

Vitriolicity
(%)

Nitric acid 81 23 Triethylamine 75 30

Sulfuric acid 81 23 Diethanolamine 70 20

Hydrochloric
acid

81 23 Ethylenediamine 85 20

Acetic acid 90 17 Chlorobenzene 70 10

Butyric acid 90 17 Trichloroethylene 70 10

Formic acid 90 17 Trichlorofluoromethane 90 20

Sodium
hydroxide

87 13 Solutions 87 13

Ammonium
hydroxide

87 13

Table 6.10 Compatibility and incompatibility levels of containers to chemicals

C Inorganic Organic Caustics Alkanolamines Compounds

C1 (0.81, 0.23) (0.001, 0.980) (0.10, 0.75) (0.001, 0.980) (0.010, 0.908)

C2 (0.10, 0.83) (0.90, 0.17) (0.75, 0.10) (0.010, 0.908) (0.75, 0.10)

C3 (0.001, 0.980) (0.81, 0.23) (0.10, 0.83) (0.10, 0.83) (0.91, 0.23)

C4 (0.10, 0.83) (0.81, 0.23) (0.90, 0.17) (0.81, 0.23) (0.81, 0.23)

C5 (0.001, 0.980) (0.71, 0.23) (0.930, 0.200) (0.001, 0.980) (0.870, 0.210)

The containers which are holding these chemicals should be in good condition,
non-leaking and compatible and these wastes should not be kept in a container that
is made of an incompatible material. For example, acids must not be stored in metal
material, hydrofluoric acid should not be stored in glass and lightweight polyethy-
lene containers should not be used to store or transfer solvents. Thus, one should
make sure that containers possess a high-level of compatibility with chemicals. We
now consider a set of containers/cabinets C = {C1, C2, C3, C4, C5} and define five
5-rung orthopair fuzzy sets on C according to their compatibility with these ele-
ments. For example, the membership degrees C1(G1) = (0.001, 0.980) implies that
C1 container is made up of such material which is incompatible to store inorganic
acids and suitable to store organic acids asC1(G2) = (0.81, 0.23). Similarly, by tak-
ing the same assumptions, we define other 5-rung orthopair fuzzy sets as given in
Table6.10.

It can be noted from Table6.10 that inorganic acids should be stored in C1 con-
tainer as this is highly compatible to inorganic acids, so this storage will be most
secure and risk less. Note that, the material of C2 is compatible with organic acids,
caustics, and halogenated compounds but we will use this container to store organic
acids because the truth-membership degree is greatest in this case. In the same way,
we find that C3 is good for halogenated compounds, C4 is used to store amines and



6.7 Applications 275

GROUP1 GROUP2

GROUP3

GROUP4

GROUP5

Nitr
ic a

cid

Sulfuric acid

Hydrochloric acid Acetic acid

Butyric acid

Formic acid

Sodium hydroxide

Am
mon

ium
hyd

roxi
de

solution

Diethanolamine
Ethylenediamine en

i
ma

ly
ht

eir
T

Chlorobenzene
Trichloroethylene

Trichlorofluoromethane

(0.7,0.3)

(0.72,0.28)

(0.71,0.29)

(0.75,0.25)

(0.73,0.27)

w1

w2

w3 w4

w5

w6

w7

w8

w9

w
10

w11

w12

w13
w14

w15

C1
C2

C3

C4

C5

Fig. 6.19 Graphical representations of storages of chemical substances

alkanolamines and C5 is suitable for storing caustics. The graphical representations
of these storages are shown in Fig. 6.19.

Thus, by taking the above model under consideration, hazardous chemicals can
be systemized in a more appropriate and acceptable manner to reduce the precarious
risks to human health and environment.

6.7.2 Assessment of Collaborative Enterprise to Achieve a
Particular Objective

Collaboration is the demonstration of working as a team of members to achieve
some piece of work, including research projects. Many organizations are realizing
the significance of collaboration as a key factor in innovations. The collaborativework
provides more opportunities for studying team-work skills and improves personal
and professional relationships. Here, we consider a few projects in chemical industry,
which are assigned to different groups of trainees. A 7-rung orthopair fuzzy directed
hypergraph model is used to well demonstrate this collaborative activity of different
teams/groups.

6.7.2.1 The Project Possessesing the Powerful Collaboration

Consider the peculiar projects in the field of chemical industry, includingZeroEnergy
Homes,Heat Exchanger Network Retrofit,Genetic Algorithms for Process Optimiza-
tion, Progressive Crude Distillation, Water Management (for pollution prevention)
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Fig. 6.20 7-rung orthopair fuzzy directed hypergraph model

Table 6.11 Collaboration capabilities of groups to projects

Assigned projects Collaboration
team

Collaborative
competency (%)

Collaborative
incompetency (%)

Zero energy homes {t1, t2, t4, t7} 65 11

Heat exchanger network retrofit {t7, t9, t12} 79 23

Genetic algorithms for process
optimization

{t10, t12} 70 25

Progressive crude distillation {t9, t11} 79 34

Water management {t5, t7, t8} 65 23

Design of LNG facilities {t3, t4, t5, t6} 70 23

and Design of LNG Facilities. The assignment of these projects to different groups
is well explained through a 7-rung orthopair fuzzy directed hypergraph model as
shown in Fig. 6.20.

Note that, the set of triangular vertices {p1, p2, p3, p4, p5, p6} represents the
projects that are considered to be worked on and the set of circular vertices {t1, t2,
t3, t4, t5, t6, t7, t8, t9, t10, t11, t12} represents the trainees, to whom these projects
are assigned. Each directed hyperedge connects the corresponding project to it’s
allocated trainees. The projects assigned to different groups are illustrated through
Table6.11.

Note that, collaborative competency levels of different teams narrate that how
much mutual understanding is there between the members of corresponding teams
towards their projects. For example, the trainees of “Zero Energy Homes” project
have 65% collaborative competency, i.e., they give respect to each other’s ideas,
contribution, and acknowledge the opinions of other trainees and their collective
strength to achieve the goal is 65%. Incompetency degree shows that they have 11%
conflicts of ideas and opinions. Similarly, the collaborative competency of all other
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Table 6.12 Heights of all directed hyperedges

h(ξ1) (0.90, 0.11) h(ξ2) (0.83, 0.23)

h(ξ3) (0.91, 0.20) h(ξ4) (0.91, 0.23)

h(ξ5) (0.97, 0.03) h(ξ6) (0.97, 0.03)

h(ξ7) (0.93, 0.12)

teams can be studied through the table. Now, to evaluate the strength of determination
and competent behavior of all teams towards their collaborative project, we calculate
the heights of all directed hyperedges, which are given in Table6.12.

The directed hyperedge having a maximum height, i.e., maximum
truth-membership and minimum falsity-membership will correspond to the most
efficient team working in collaboration. Note that, ξ5 and ξ6 have maximum heights
showing that {t7, t9, t12} and {t10, t12} share the most powerful collaborative charac-
teristics. The method adopted in this part can be explained by a simple algorithm
given in Table6.13.

6.7.2.2 The Enduring Connection Between Projects:

Now, the line graph of the above 7-rung orthopair fuzzy directed hypergraph model
can be used to determine the common trainees of distinct projects. The corresponding
line graph is shown in Fig. 6.21.

The dashed lines between the projects demonstrate that they share some common
trainees. The truth-membership and falsity-membership of these edges are given
here.

(Tp1 p2 , Fp1 p2) = (0.80, 0.11),

(Tp1 p5 , Fp1 p5) = (0.80, 0.11),

(Tp1 p6 , Fp1 p6) = (0.80, 0.11),

(Tp2 p5 , Fp2 p5) = (0.79, 0.23),

(Tp2 p3 , Fp2 p3) = (0.79, 0.23),

(Tp3 p4 , Fp3 p4) = (0.79, 0.25).

Themaximum truth-membership andminimum falsity-membership reveal the robust
connection among the distinct projects. For instance, projects p1 and p5 are 80%
connected to each other, i.e., the trainees of these projects can share their ideas,
creative thinkings and motives among themselves to enhance the output of their
projects. The method adopted in this section can be explained by a simple algorithm
given in Table6.14.
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Table 6.13 Algorithm

Algorithm for powerful collaboration

1. m =input(‘enter the number of trainees’);

2. T =input(‘enter the degrees of membership of vertices(trainees) as m × 2’);

3. r =input(‘enter the number of directed hyperedges’);

4. Xi =input(‘enter the degrees of membership of directed hyperedges r × 2’);

5. Y =input(‘enter the set valued function that tells us how many vertices are

contained in a hyperedge as r × m’);

6. J=[zeros(r,1) ones(r,1)];

7. for i = 1 : r
8. for k = 1 : m
9. if Y (i, k) == 1;

10. J (i, 1) = max(J (i, 1), T (k, 1));

11. T (i, 2) = min(J (i, 2), T (k, 2));

12. end
13. end
14. end
15. H = max(J (:, 1));j=0;v=zeros(r,2); b=1;
16. for l = 1 : r
17. if J(l,1)==H
18. j=j+1;v(l,1)=l;b=min(b,J(l,2));

19. end
20. end
21. if j>1

22. for l = 1 : r
23. if J(l,2)==b
24. k=k+1;v(l,2)=l;

25. fprintf(‘you can choice (any of these) hyperedge(s) %d’,l)

26. end
27. end
28. else
29. for l = 1 : r
30. if J(l,1)==H
31. fprintf(‘you can choice edge %d’,l)

32. end
33. end
34. end
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Fig. 6.21 Line graph of 7-rung orthopair fuzzy directed hypergraph

Table 6.14 Algorithm for the enduring connection between projects

1. m =input(‘enter the number of vertices’);

2. T =input(‘enter the degrees of membership of vertices as m × 2’);

3. r =input(‘enter the number of directed hyperedges’);

4. Xi =input(‘enter the degrees of membership of directed hyperedges r × 2’);

5. s =input(‘enter the number of edges in line graph’);

6. P =input(‘enter the degrees of membership of edges s × 2’);

7. H = max(P(:, 1));j=0;v=zeros(s,2); b=1;
8. for n=1:s
9. if P(n,1)==H
10. j=j+1;v(n,1)=l;b=min(b,P(n,2));

11. end
12. end
13. if j>1

14. for n=1:s
15. if P(n,2)==b
16. k=k+1;v(n,2)=n;

17. fprintf(‘you can choice (any of these) hyperedge(s) %d’,n)

18. end
19. end
20. else
21. for n=1:s
22. if P(n,1)==H
23. fprintf(‘you can choice edge %d’,n)

24. end
25. end
26. end
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6.8 Comparative Analysis

Orthopair fuzzy sets are defined as those fuzzy sets in which the membership degrees
of an element is taken as the pair of values in the unit interval [0, 1], given as
(T (x), F(x), T (x)) indicates support formembership (truth-membership), and F(x)
indicates support against membership (falsity-membership) to the fuzzy set. Intu-
itionistic fuzzy sets and Pythagorean fuzzy sets are examples of orthopair fuzzy
sets. Atanassov’s [14] intuitionistic fuzzy set has been studied widely by various
researchers, but the range of applicability of intuitionistic fuzzy set is limited because
of its constraint that the sum of truth-membership and falsity-membership must
be equal to or less than one. Under this condition, intuitionistic fuzzy sets cannot
express some decision evaluation information effectively, because a decision maker
may provide information for a particular attribute such that the sum of the degrees
of truth-membership and the degrees of falsity-membership becomes greater than
one. In order to solve such types of problems, Pythagorean fuzzy sets were defined
by Yager [32], whose prominent characteristic is that the square sum of the truth-
membership degree and the falsity-membership degree is less than or equal to one.
Thus, a Pythagorean fuzzy set can solve a number of practical problems that can-
not be handled using intuitionistic fuzzy set and is a generalization of intuitionistic
fuzzy set. Due to the more complicated information in society and the development
of theories, q-rung orthopair fuzzy sets were proposed by Yager [35]. A q-rung
orthopair fuzzy set is characterized in such a way that the sum of the q th power of
the truth-membership degree and the q th power of the degrees of falsity-membership
is restricted to less than or equal to one. Note that, intuitionistic fuzzy sets and
Pythagorean fuzzy sets are particular cases of q-rung orthopair fuzzy sets. The flexi-
bility and effectiveness of a q-rung orthopair fuzzy model can be proven as follows:
Suppose that (x, y) is an intuitionistic fuzzy grade, where x ∈ [0, 1], y ∈ [0, 1],
and 0 ≤ x + y ≤ 1, since xq ≤ x , yq ≤ y, q ≥ 1, so we have 0 ≤ xq + yq ≤ 1.
Thus, every intuitionistic fuzzy grade is also a Pythagorean fuzzy grade, as well as a
q-rung orthopair fuzzy grade. However, there are q-rung orthopair fuzzy grades that
are not intuitionistic fuzzy nor Pythagorean fuzzy grades. For example, (0.9, 0.8),
here (0.9)5 + (0.8)5 ≤ 1, but 0.9 + 0.8 = 1.7 > 1 and (0.9)2 + (0.8)2 = 1.45 > 1.
This implies that the class of q-rung orthopair fuzzy sets extend the classes of intu-
itionistic fuzzy sets and Pythagorean fuzzy sets. It is worth noting that as the param-
eter q increases, the space of acceptable orthopairs also increases, and thus, the
bounding constraint is satisfied by more orthopairs. Thus, a wider range of uncertain
information can be expressed by using q-rung orthopair fuzzy sets. We can adjust
the value of the parameter q to determine the expressed information range; thus,
q-rung orthopair fuzzy sets are more effective and more practical for the uncertain
environment. Based on these advantages of q-rung orthopair fuzzy sets, we proposed
q-rung orthopair fuzzy hypergraphs and q-rung orthopair fuzzy directed hypergraphs
to combine the benefits of both theories. A wider range of uncertain information
can be expressed using the methods proposed in this paper, and they are closer
to real decision-making. Our proposed models are more general as compared to the
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intuitionistic fuzzy and Pythagorean fuzzymodels, aswhen q = 1, themodel reduces
to the intuitionistic fuzzymodel, andwhen q = 2, it reduces to the Pythagorean fuzzy
model. Hence, our approach is more flexible and generalized, and different values
of q can be chosen by decision makers according to the different attitudes.

6.9 Complex Pythagorean Fuzzy Hypergraphs

A complex Pythagorean fuzzy set is an extension of a Pythagorean fuzzy set that is
used to handle the vagueness with the degrees whose ranges are enlarged from real to
complex subset with unit disc. For example, a clothing brand considers five locations
to open new outlet regarding some particular criteria. If an expert assign membership
0.8 and nonmembership 0.6 to a location with respect to a criterion then intuitionistic
fuzzy set fails to deal with this problem because 0.8 + 0.6 ≥ 1, but this problem can
be effectively handled by Pythagorean fuzzy set as 0.82 + 0.62 ≤ 1. On the other
hand, if we consider the maximum number of people visiting the outlet at a partic-
ular time then Pythagorean fuzzy set also fails because to handle time we have to
introduce the periodic term. Now expert assign membership 0.8eι(1.4π) and nonmem-
bership 0.6eι(1.1π) which satisfy the conditions of complex Pythagorean fuzzy set as
0.82 + 0.62 ≤ 1. Therefore, complex Pythagorean fuzzy set is proficient in dealing
with data involving time period (periodic nature) due to complex membership and
nonmembership grades along with the constraints.

Definition 6.45 A complex Pythagorean fuzzy set P on the universal set X is defined
as, P = {(u, TP(u)eiφP (u), FP(u)eiψP (u))|u ∈ X}, where i = √−1, TP(u), FP(u) ∈
[0, 1],φP(u), ψP(u) ∈ [0, 2π ], and for every u ∈ X, 0 ≤ T 2

P(u) + F2
P(u) ≤ 1.Here,

TP(u), FP(u) and φP(u), ψP(u) are called the amplitude terms and phase terms for
truth membership and falsity membership grades, respectively.

Definition 6.46 A complex Pythagorean fuzzy graph on X is an ordered pair
G∗ = (C, D), where C is a complex Pythagorean fuzzy set on X and D is com-
plex Pythagorean fuzzy relation on X such that,

TD(ab) ≤ min{TC(a), TC (b)},
FD(ab) ≤ max{FC(a), FC(b)}, (for amplitude terms)

φD(ab) ≤ min{φC(a), φC (b)},
ψD(ab) ≤ max{ψC(a), ψC(b)}, (for phase terms)

0 ≤ T 2
D(ab) + F2

D(ab) ≤ 1, for all a, b ∈ X .

Definition 6.47 A complex Pythagorean fuzzy hypergraph on X is defined as an
ordered pair H∗ = (C ∗,D∗), whereC ∗ = {β1, β2, . . . , βk} is a finite family of com-
plex Pythagorean fuzzy sets on X and D∗ is a complex Pythagorean fuzzy relation
on complex Pythagorean fuzzy sets β j ’s such that
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(i)

TD∗({s1, s2, . . . , sl }) ≤ min{Tβ j (s1), Tβ j (s2), . . . , Tβ j (sl )},
FD∗({s1, s2, . . . , sl }) ≤ max{Fβ j (s1), Fβ j (s2), . . . , Fβ j (sl )}, (for amplitude terms)

φD∗({s1, s2, . . . , sl }) ≤ min{φβ j (s1), φβ j (s2), . . . , φβ j (sl )},
ψD∗({s1, s2, . . . , sl }) ≤ max{ψβ j (s1), ψβ j (s2), . . . , ψβ j (sl )}, (for phase terms)

0 ≤ T 2
D ∗ + F2

D ∗ ≤ 1, for all s1, s2, . . . , sl ∈ X.

(ii)
⋃
j
supp(β j ) = X, for all β j ∈ C ∗.

Note that, Ek = {s1, s2, . . . , sl} is the crisp hyperedge of H∗ = (C ∗,D∗).

Example 6.15 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
on X = {s1, s2, s3, s4, s5, s6}. The complex Pythagorean fuzzy relation is defined
as, D∗(s1, s2, s3) = ((0.6ei(0.2)2π , 0.5ei(0.9)2π )), D∗(s4, s5, s6) = (0.6ei(0.4)2π ,

0.4ei(0.6)2π ), D∗(s3, s6) = (0.6ei(0.6)2π , 0.5ei(0.6)2π ), D∗(s2, s5) = (0.6ei(0.4)2π ,

0.5ei(0.6)2π ), and D∗(s1, s4) = (0.6ei(0.2)2π , 0.9ei(0.9)2π ). The corresponding com-
plex Pythagorean fuzzy hypergraph is shown in Fig. 6.22.

Definition 6.48 A complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is sim-
ple if whenever D∗

j ,D
∗
k ∈ D∗ and D∗

j ⊆ D∗
k , then D∗

j = D∗
k .

A complexPythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is support simple ifwhen-
ever D∗

j ,D
∗
k ∈ D∗, D∗

j ⊆ D∗
k , and supp(D∗

j ) = supp(D∗
k ), then D∗

j = D∗
k .

Definition 6.49 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
Suppose that α1, β1 ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ α2

1 + β2
1 ≤ 1. The
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Fig. 6.22 Complex Pythagorean fuzzy hypergraph
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Fig. 6.23 (α1eiθ , β1eiϕ)-
level hypergraph
of H∗

s1
s2 s3

s4 s5

(α1eiθ , β1eiϕ)-level hypergraph of H∗ is defined as an ordered pair H∗(α1eiθ ,β1eiϕ) =
(C ∗(α1eiθ ,β1eiϕ),D∗(α1eiθ ,β1eiϕ)), where

(i) D∗(α1eiθ ,β1eiϕ) = {D∗(α1eiθ ,β1eiϕ)

j : D∗
j ∈ D∗} andD∗(α1eiθ ,β1eiϕ)

j = {y ∈ X : TD∗
j
(y)

≥ α1, φD∗
j
(y) ≥ θ, and FD∗

j
(y) ≤ β1, ψD∗

j
(y) ≤ ϕ},

(ii) C ∗(α1eiθ ,β1eiϕ) = ⋃
D∗

j∈D ∗
D∗(α1eiθ ,β1eiϕ)

j .

Note that, (α1eiθ , β1eiϕ)-level hypergraph of H∗ is a crisp hypergraph.

Example 6.16 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
as shown in Fig. 6.22. Let α1 = 0.5, β1 = 0.6, θ = 0.3π , and ϕ = 0.7π . Then,
(α1eiθ , β1eiϕ)-level hypergraph of H∗ is shown in Fig. 6.23.

Definition 6.50 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
The complex Pythagorean fuzzy line graph of H∗ is defined as an ordered pair
l(H∗) = (C ∗

l ,D∗
l ), where C ∗

l = D∗ and there exists an edge between two vertices
in l(H∗) if |supp(Dj ) ∩ supp(Dk)| ≥ 1, for all Dj , Dk ∈ D∗. The membership
degrees of l(H∗) are given as

(i) C ∗
l (Ek) = D∗(Ek),

(ii) D∗
l (E j Ek) = (min{TD ∗(E j ), TD ∗(Ek)}ei min{φD ∗ (E j ),φD ∗ (Ek )},max{FD ∗(E j ),

FD ∗(Ek)}ei max{ψD ∗ (E j ),ψD ∗ (Ek )}).

Definition 6.51 A complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is said
to be linear if for every Dj , Dk ∈ D∗,

(i) supp(Dj ) ⊆ supp(Dk) ⇒ j = k,
(ii) |supp(Dj ) ∩ supp(Dk)| ≤ 1.
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Fig. 6.24 Line graph of complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)

Example 6.17 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
as shown in Fig. 6.22. By direct calculations, we have

supp(D1) = {s1, s2, s3}, supp(D2) = {s4, s5, s6}, supp(D3) = {s1, s4},
supp(D4) = {s2, s5}, supp(D5) = {s3, s6}.

Note that, supp(Dj ) ⊆ supp(Dk) ⇒ j = k and |supp(Dj ) ∩ supp(Dk)| ≤ 1.
Hence, complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is linear. The corre-
sponding complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) and its line graph
is shown in Fig. 6.24.

Theorem 6.17 A simple strong complex Pythagorean fuzzy hypergraph is the com-
plexPythagorean fuzzy line graph of a linear complexPythagorean fuzzy hypergraph.

Definition 6.52 The 2-section H∗
2 = (C ∗

2 ,D∗
2 ) of a complex Pythagorean fuzzy

hypergraph H∗ = (C ∗,D∗) is a complex Pythagorean fuzzy graph having same
set of vertices as that of H∗, D∗

2 is a complex Pythagorean fuzzy set on {e =
u juk |u j , uk ∈ El , l = 1, 2, 3, . . .}, andD∗

2 (u juk) = (min{min Tβl (u j ),min Tβl (uk)}
ei min{min φβl (u j ),min φβl (uk )}, max{max Fβl (u j ),max Fβl (uk)}ei max{maxψβl (u j ),maxψβl (uk )})
such that 0 ≤ T 2

D ∗
2
(u juk) + F2

D ∗
2
(u juk) ≤ 1.

Example 6.18 An example of a complex Pythagorean fuzzy hypergraph is given in
Fig. 6.25. The 2-section of H∗ is presented with dashed lines.

Definition 6.53 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
A complex Pythagorean fuzzy transversal τ is a complex Pythagorean fuzzy set of X
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Fig. 6.25 2-section of complex Pythagorean fuzzy hypergraph H∗

satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ D∗, where h(ρ) is the height
of ρ.

A minimal complex Pythagorean fuzzy transversal t is the complex Pythagorean
fuzzy transversal of H∗ having the property that if τ ⊂ t , then τ is not a complex
Pythagorean fuzzy transversal of H∗.

6.10 Complex q-Rung Orthopair Fuzzy Hypergraphs

A complex q-rung orthopair fuzzy model provides more flexibility due to its most
prominent feature that is the sum of the qth powers of the truth-membership, falsity-
membership must be less than or equal to one, and the sum of qth powers of the
corresponding phase angles should lie between 0 and2π . A complexq-rung orthopair
fuzzy hypergraph model proves to be more generalized framework to deal with
vagueness in complex hypernetworks when the relationships are more generalized
rather than the pairwise interactions. The generalization of our proposedmodel can be
observed from the reduction of complex q-rung orthopair fuzzy model to complex
intuitionistic fuzzy and complex Pythagorean fuzzy models for q = 1 and q = 2,
respectively.

Definition 6.54 A complex q-rung orthopair fuzzy set S in the universal set X is
given as

S = {(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ X},
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where i = √−1, TS(u), FS(u) ∈ [0, 1] are named as amplitude terms, φS(u), ψS(u)

∈ [0, 2π ] are named as phase terms, and for every u ∈ X, 0 ≤ T q
S (u) + Fq

S (u) ≤ 1,
q ≥ 1.

Remark 6.6 • When q = 1, complex 1-rung orthopair fuzzy set is called a complex
intuitionistic fuzzy set.

• When q = 2, complex 1-rung orthopair fuzzy set is called a complex Pythagorean
fuzzy set.

Definition 6.55 Let S1 = {(u, TS1(u)eiφS1 (u), FS1(u)eiψS1 (u))|u ∈ X} and S2 =
{(u, TS2(u)eiφS2 (u), FS2(u)eiψS2 (u))|u ∈ X} be two complex q-rung orthopair fuzzy
sets in X , then

(i) S1 ⊆ S2 ⇔ TS1 ≤ TS2(u), FS1(u) ≥ FS2(u), and φS1(u) ≤ φS2(u), ψS1(u) ≥
ψS2(u) for amplitudes and phase terms, respectively, for all u ∈ X .

(ii) S1 = S2 ⇔ TS1 = TS2(u), FS1(u) = FS2(u), and φS1(u) = φS2(u), ψS1(u) =
ψS2(u) for amplitudes and phase terms, respectively, for all u ∈ X .

Definition 6.56 Let S1 = {(u, TS1(u)eiφS1 (u), FS1(u)eiψS1 (u))|u ∈ X} and S2 =
{(u, TS2(u)eiφS2 (u), FS2(u)eiψS2 (u))|u ∈ X} be two complex q-rung orthopair fuzzy
sets in X , then

(i) S1 ∪ S2 = {(u,max{TS1(u), TS2(u)}ei max{φS1 (u),φS2 (u)},min{FS1(u), FS2(u)}
ei min{ψS1 (u),ψS2 (u)})|u ∈ X}.

(ii) S1 ∩ S2 = {(u,min{TS1(u), TS2(u)}ei min{φS1 (u),φS2 (u)},max{FS1(u), FS2(u)}
ei max{ψS1 (u),ψS2 (u)})|u ∈ X}.

Definition 6.57 A complex q-rung orthopair fuzzy relation is a complex q-rung
orthopair fuzzy set on X × X given as

R = {(rs, TR(rs)eiφR(rs), FR(rs)eiψR(rs))|rs ∈ X × X},

where i = √−1, TR : X × X → [0, 1], FR : X × X → [0, 1] characterize the
amplitudes of truth and falsity degrees of R, and φR(rs), ψR(rs) ∈ [0, 2π ] are called
the phase terms such that for all rs ∈ X × X, 0 ≤ T q

R (rs) + Fq
R(rs) ≤ 1, q ≥ 1.

Example 6.19 Let X = {b1, b2, b3} be the universal set and {b1b2, b2b3, b1b3} be the
subset of X × X . Then, the complex 5-rung orthopair fuzzy relation R is given as

R = {(b1b2, 0.9ei(0.7)π , 0.7ei(0.9)π ), (b2b3, 0.6e
i(0.7)π , 0.8ei(0.9)π ), (b1b3, 0.7e

i(0.8)π , 0.5ei(0.6)π )}.

Note that, 0 ≤ T 5
R(xy) + F5

R(xy) ≤ 1, for all xy ∈ X × X. Hence, R is a complex
5-rung orthopair fuzzy relation on X .

Definition 6.58 A complex q-rung orthopair fuzzy graph on X is an ordered pair
G = (A ,B), where A is a complex q-rung orthopair fuzzy set on X and B is
complex q-rung orthopair fuzzy relation on X such that
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TB (ab) ≤ min{TA (a), TA (b)},
FB (ab) ≤ max{FA (a), FA (b)}, (for amplitude terms)

φB (ab) ≤ min{φA (a), φA (b)},
ψB (ab) ≤ max{ψA (a), ψA (b)}, (for phase terms)

0 ≤ T q
B (ab) + Fq

B (ab) ≤ 1, q ≥ 1, for all a, b ∈ X .

Remark 6.7 Note that,

• When q = 1, complex 1-rung orthopair fuzzy graph is called a complex intuition-
istic fuzzy graph.

• When q = 2, complex 2-rung orthopair fuzzy graph is called a complex
Pythagorean fuzzy graph.

Example 6.20 Let G = (A ,B) be a complex 6-rung orthopair fuzzy graph on X =
{s1, s2, s3, s4}, where A = {(s1, 0.7ei(0.9)π , 0.9ei(0.7)π ), (s2, 0.5ei(0.6)π , 0.6ei(0.5)π ),
(s3, 0.7ei(0.4)π , 0.4ei(0.7)π ), (s4, 0.8ei(0.5)π , 0.5ei(0.8)π )} and B = {(s1s4, 0.7ei(0.7)π ,
0.8ei(0.8)π ), (s2s4, 0.5ei(0.5)π , 0.6ei(0.8)π ), (s3s4, 0.7ei(0.4)π , 0.5ei(0.8)π )} are complex
6-rung orthopair fuzzy set and complex 6-rung orthopair fuzzy relation on X , respec-
tively. The corresponding complex 6-rung orthopair fuzzy graph G is shown in
Fig. 6.26.

We now define the more extended concept of complex q-rung orthopair fuzzy
hypergraphs.

Definition 6.59 The support of a complex q-rung orthopair fuzzy set S =
{(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ X} is defined as supp(S) = {u|TS(u) �= 0,
FS(u) �= 1, 0 < φS(u), ψS(u) < 2π}.

Fig. 6.26 Complex 6-rung
orthopair fuzzy graph

(s1 ,0.7ei(0.9)π ,0.9ei(0.7)π )

(s2,0.5ei(0.6)π ,0.6ei(0.5)π )(s3,0.7ei(0.4)π ,0.4ei(0.7)π )

(s4,0.8ei(0.5)π ,0.5ei(0.8)π )

(s
1s

4,
0.
7e

i(
0.
7)

π
,0

.8
ei
(0

.8
)π
)

(s2 s4 ,0.5e i(0.5)π
,0.6e i(0.8)π)

(s3
s4,
0.7

ei
(0.
4)π ,0.

5e
i(0

.8)
π )



288 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

The height of a complex q-rung orthopair fuzzy set S = {(u, TS(u)eiφS(u),

FS(u)eiψS(u))|u ∈ X} is defined as

h(S) = {max
u∈X TS(u)e

i max
u∈X φS(u)

,min
u∈X FS(u)e

i min
u∈X ψS(u)}.

If h(S) = (1ei2π , 0ei0), then S is called normal.

Definition 6.60 Let X be a nontrivial set of universe. A complex q-rung orthopair
fuzzy hypergraph is defined as an ordered pair H = (Q, η), where Q = {Q1,

Q2, . . . , Qk} is a finite family of complex q-rung orthopair fuzzy sets on X and
η is a complex q-rung orthopair fuzzy relation on complex q-rung orthopair fuzzy
sets Q j ’s such that

(i)

Tη({a1, a2, . . . , al }) ≤ min{TQ j (a1), TQ j (a2), . . . , TQ j (al )},
Fη({a1, a2, . . . , al }) ≤ max{FQ j (a1), FQ j (a2), . . . , FQ j (al )}, (for amplitude terms)

φη({a1, a2, . . . , al }) ≤ min{φQ j (a1), φQ j (a2), . . . , φQ j (al )},
ψη({a1, a2, . . . , al }) ≤ max{ψQ j (a1), ψQ j (a2), . . . , ψQ j (al )}, (for phase terms)

0 ≤ T q
η + Fq

η ≤ 1, q ≥ 1, for all a1, a2, . . . , al ∈ X.

(ii)
⋃
j
supp(Q j ) = X, for all Q j ∈ Q.

Note that, Ek = {a1, a2, . . . , al} is the crisp hyperedge of H = (Q, η).

Remark 6.8 Note that,

• When q = 1, complex 1-rung orthopair fuzzy hypergraph is a complex intuition-
istic fuzzy hypergraph.

• When q = 2, complex 2-rung orthopair fuzzy hypergraph is a complex
Pythagorean fuzzy hypergraph.

Definition 6.61 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph.
The height of H , given as h(H ), is defined as h(H ) = (max ηl ei max φ,min ηm
ei minψ), where ηl = max Tρ j (xk), φ = max φρ j (xk), ηm = min Fρ j (xk), ψ =
minψρ j (xk). Here, Tρ j (xk) and Fρ j (xk) denote the truth and falsity degrees of vertex
xk to hyperedge ρ j , respectively.

Definition 6.62 Let H = (Q, η) be a complex q-rung orthopair fuzzy hyper-
graph. Suppose that μ, ν ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ μq + νq ≤ 1.
The (μeiθ , νeiϕ)-level hypergraph ofH is defined as an ordered pairH (μeiθ ,νeiϕ) =
(Q(μeiθ ,νeiϕ), η(μeiθ ,νeiϕ)), where

(i) η(μeiθ ,νeiϕ) = {ρ(μeiθ ,νeiϕ)

j : ρ j ∈ η} and ρ
(μeiθ ,νeiϕ)

j = {u ∈ X : Tρ j (u) ≥ μ, φρ j

(u) ≥ θ, and Fρ j (u) ≤ ν, ψρ j (u) ≤ ϕ},
(ii) Q(μeiθ ,νeiϕ) = ⋃

ρ j∈η

ρ
(μeiθ ,νeiϕ)

j .
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Table 6.15 Incidence matrix of complex 6-rung orthopair fuzzy hypergraph H

u ∈ X η1 η2 η3 η4

u1 (0.8ei(0.8)π ,

0.6ei(0.6)π )

(0, 0) (0, 0) (0.8ei(0.8)π ,

0.6ei(0.6)π )

u2 (0.7ei(0.7)π ,

0.6ei(0.6)π )

(0, 0) (0, 0) (0, 0)

u3 (0.7ei(0.7)π ,

0.8ei(0.8)π )

(0.7ei(0.7)π ,

0.8ei(0.8)π )

(0, 0) (0, 0)

u4 (0, 0) (0.7ei(0.7)π ,

0.8ei(0.8)π )

(0.7ei(0.7)π ,

0.8ei(0.8)π )

(0, 0)

u5 (0, 0) (0.6ei(0.6)π ,

0.8ei(0.8)π )

(0, 0) (0, 0)

u6 (0, 0) (0, 0) (0.9ei(0.9)π ,

0.8ei(0.8)π )

(0.9ei(0.9)π ,

0.8ei(0.8)π )

Fig. 6.27 Complex 6-rung
orthopair fuzzy hypergraph

(u1,0
.8e

i(0.8)
π ,0.6e

i(0.6)
π )

(u2,0.7ei(0.7)π ,0.6ei(0.6)π )
(u3 ,0.7e i(0.7)π

,0.8e i(0.8)π)

(u
4,
0.
7e

i(0
.7
)π
,0

.8
e
i(0

.8
)π
)

(u
5,
0.6

e
i(0

.6
)π ,0

.8e
i(0

.8
)π )

(u6 ,0.9e i(0.9)π
,0.8e i(0.8)π)

(η1,0.7ei(0.7)π ,0.8ei(0.8)π )

(η2,0.6e
i(0.6)π,0.8e

i(0.8)π)

(η3,0.7ei(0.7)π ,0.8ei(0.8)π)

(η
4 ,0.8e i(0.8)π

,0.8e i(0.8)π)

Note that, (μeiθ , νeiϕ)-level hypergraph of H is a crisp hypergraph.

Example 6.21 Consider a complex 6-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {u1, u2, u3, u4, u5, u6}. The complex 6-rung orthopair fuzzy relation η is
given as, η(u1, u2, u3) = (0.7ei(0.7)π , 0.8ei(0.8)π ), η(u3, u4, u5) = (0.6ei(0.6)π ,

0.8ei(0.8)π ), η(u1, u6) = (0.8ei(0.8)π , 0.8ei(0.8)π ) and η(u4, u6) = (0.7ei(0.7)π ,

0.8ei(0.8)π ). The incidence matrix of H is given in Table6.15.
The corresponding complex 6-rung orthopair fuzzy hypergraph H = (Q, η) is

shown in Fig. 6.27.
Let μ = 0.7, ν = 0.6, θ = 0.7π , and ϕ = 0.6π , then (0.7ei(0.7)π , 0.6ei(0.6)π )-

level hypergraph ofH is shown in Fig. 6.28.
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Fig. 6.28 (0.7ei(0.7)π , 0.6ei(0.6)π )-
level hypergraph of H

u1 u3u2

u4

u5

u6

η (0.7ei(0.7)π ,0.6ei(0.6)π )
1

η (0.7ei(0.7)π ,0.6ei(0.6)π )
4

Note that,

η
(0.7ei(0.7)π ,0.6ei(0.6)π )
1 = {u1, u2}, η

(0.7ei(0.7)π ,0.6ei(0.6)π )
2 = {∅},

η
(0.7ei(0.7)π ,0.6ei(0.6)π )
3 = {∅}, η

(0.7ei(0.7)π ,0.6ei(0.6)π )
4 = {u1}.

6.11 Transversals of Complex q-Rung Orthopair Fuzzy
Hypergraphs

Definition 6.63 Let H = (Q, η) be a complex q-rung orthopair fuzzy hyper-
graph and for 0 < μ ≤ T (h(H )), ν ≥ F(h(H )) > 0, 0 < θ ≤ φ(h(H )), and ϕ ≥
ψ(h(H )) > 0 let H (μeiθ ,νeiϕ) = (Q(μeiθ ,νeiϕ), η(μeiθ ,νeiϕ)) be the level hypergraph
of H . The sequence of complex numbers {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . ,

(μneiθn , νneiϕn )} such that 0 < μ1 < μ2 < · · · < μn = T (h(H )), ν1 > ν2 > · · · >

νn = F(h(H )) > 0, 0 < θ1 < θ2 < · · · < θn = φ(h(H )), and ϕ1 > ϕ2 > · · · >

ϕn = ψ(h(H )) > 0 satisfying the conditions

(i) if μk+1 < α ≤ μk , νk+1 > β ≥ νk , θk+1 < φ ≤ θk , ϕk+1 > ψ ≥ ϕk , then
η(αeiφ,βeiψ ) = η(μkeiθk ,νk eiϕk ), and

(ii) η(μkeiθk ,νkeiϕk ) ⊂ η(μk+1eiθk+1 ,νk+1eiϕk+1 ),

is called the fundamental sequence of H = (Q, η), denoted by Fs(H ). The
set of (μ j eiθ j , ν j eiϕ j )-level hypergraphs {H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,

H (μneiθn ,νneiϕn )} is called the set of core hypergraphs or the core set of H , denoted
by cor(H ).

Definition 6.64 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph.
A complex q-rung orthopair fuzzy transversal τ is a complex q-rung orthopair fuzzy
set of X satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ η, where h(ρ) is the
height of ρ.
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Table 6.16 Incidence matrix of complex 5-rung orthopair fuzzy hypergraph H

a ∈ X η1 η2 η3

a1 (0.8ei(0.8)π , 0.6ei(0.6)π ) (0.8ei(0.8)π , 0.6ei(0.6)π ) (0, 0)

a2 (0.7ei(0.7)π , 0.9ei(0.9)π ) (0, 0) (0.7ei(0.7)π , 0.9ei(0.9)π )

a3 (0, 0) (0.8ei(0.8)π , 0.5ei(0.5)π ) (0.8ei(0.8)π , 0.5ei(0.5)π )

a4 (0.6ei(0.6)π , 0.8ei(0.8)π ) (0.6ei(0.6)π , 0.8ei(0.8)π ) (0, 0)

a5 (0, 0) (0, 0) (0.7ei(0.7)π , 0.5ei(0.5)π )

Fig. 6.29 Complex 5-rung
orthopair fuzzy hypergraph

(a1,0.8ei(0.8)π ,0.6ei(0.6)π) (a3,0.8ei(0.8)π ,0.5ei(0.5)π )

(a4 ,0.6e i(0.6)π
,0.8e i(0.8)π

)

(a5 ,0.7e i(0.7)π
,0.5e i(0.5)π

)

(a
2,
0.
7e

i(0
.7
)π ,0

.9
e
i(0

.9
)π
)

(0.6e i(0.6)π
,0.9e i(0.9)π)

(0.6ei(0.6)π ,0.8ei(0.8)π)

(0.7ei(0.7)π ,0.9ei(0.9)π )

A minimal complex q-rung orthopair fuzzy transversal t is the complex q-rung
orthopair fuzzy transversal of H having the property that if τ ⊂ t , then τ is not a
complex q-rung orthopair fuzzy transversal of H .

Let us denote the family of minimal complex q-rung orthopair fuzzy transversals
of H by tr (H ).

Example 6.22 Consider a complex 5-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {a1, a2, a3, a4, a5}. The complex 5-rungorthopair fuzzy relationη is given as,
η({a1a3, a4}) = (0.6ei(0.6)π , 0.9ei(0.9)π ), η({a2, a3, a5}) = (0.7ei(0.7)π , 0.9ei(0.9)π ),
and η({a1, a2, a4}) = (0.6ei(0.6)π , 0.9ei(0.9)π ). The incidence matrix of H is given
in Table6.16.

The corresponding complex 5-rung orthopair fuzzy hypergraph is shown in
Fig. 6.29.

By routine calculations, we have h(η1) = (0.8ei(0.8)π , 0.6ei(0.6)π ), h(η2) =
(0.8ei(0.8)π , 0.5ei(0.5)π ), and h(η3) = (0.8ei(0.8)π , 0.5ei(0.5)π ). Consider a complex
5-rung orthopair fuzzy set τ1 of X such that

τ1 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a2, 0.7e
i(0.7)π , 0.9ei(0.9)π ), (a3, 0.8e

i(0.8)π , 0.5ei(0.5)π )}.
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Note that,

η
(0.8ei(0.8)π ,0.6ei(0.6)π )
1 = {a1}, η

(0.8ei(0.8)π ,0.5ei(0.5)π )
2 = {a3}, η

(0.8ei(0.8)π ,0.5ei(0.5)π )
3 = {a3},

τ
(0.8ei(0.8)π ,0.6ei(0.6)π )
1 = {a1, a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π )
1 = {a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π )
1 = {a3}.

Thus, we have η
h(η j )

j ∩ τ
h(η j )

1 �= ∅, for all η j ∈ η. Hence, τ1 is a complex 5-rung
orthopair fuzzy transversal of H . Similarly,

τ2 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e
i(0.8)π , 0.5ei(0.5)π )},

τ3 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e
i(0.8)π , 0.5ei(0.5)π ), (a4, 0.6e

i(0.6)π , 0.8ei(0.8)π )},
τ4 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e

i(0.8)π , 0.5ei(0.5)π ), (a5, 0.7e
i(0.7)π , 0.5ei(0.5)π )},

are complex 5-rung orthopair fuzzy transversals ofH .

Definition 6.65 A complex q-rung orthopair fuzzy hypergraphH1 = (Q1, η1) is a
partial complex q-rung orthopair fuzzy hypergraph of H2 = (Q2, η2) if η1 ⊆ η2,
denoted by H1 ⊆ H2.
A complex q-rung orthopair fuzzy hypergraphH1 = (Q1, η1) is ordered if the core
set cor(H ) = {H (μ1eiθ1 ,ν1eiϕ1 ), H (μ2eiθ2 ,ν2eiϕ2 ), . . ., H (μneiθn ,νneiϕn )} is ordered, i.e.,
H (μ1eiθ1 ,ν1eiϕ1 ) ⊆ H (μ2eiθ2 ,ν2eiϕ2 ) ⊆ · · · ⊆ H (μneiθn ,νneiϕn ).H is simply ordered ifH
is ordered and η′ ⊂ η(μl+1eiθl+1 ,νl+1eiϕl+1 )\η(μl eiθl ,νl eiϕl ) ⇒ η′ � Q(μl eiθl ,νl eiϕl ).

Definition 6.66 A complex q-rung orthopair fuzzy set S on X is elementary if S
is single-valued on supp(S). A complex q-rung orthopair fuzzy hypergraph H =
(Q, η) is elementary if every Q j ∈ Q and η are elementary.

Proposition 6.2 If τ is a complex q-rung orthopair fuzzy transversal of H =
(Q, η), then h(τ ) ≥ h(ρ), for all ρ ∈ η. Furthermore, if τ is minimal complex q-
rung orthopair fuzzy transversal of H = (Q, η), then h(τ ) = max{h(ρ)|ρ ∈ η} =
h(H ).

Lemma 6.4 LetH1 = (Q1, η1) be a partial complex q-rung orthopair fuzzy hyper-
graph ofH2 = (Q2, η2). If τ2 is minimal complex q-rung orthopair fuzzy transversal
of H2, then there is a minimal complex q-rung orthopair fuzzy transversal of H1

such that τ1 ⊆ τ2.

Proof Let S1 be a complex q-rung orthopair fuzzy set on X , which is defined as
S1 = τ2 ∩ (∪Q1 j∈Q 1

Q1 j ). Then, S1 is a complex q-rung orthopair fuzzy transversal
of H1 = (Q1, η1). Thus, there exists a minimal complex q-rung orthopair fuzzy
transversal of H1 such that τ1 ⊆ S1 ⊆ τ2.

Lemma 6.5 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph then
fs(tr (H )) ⊆ fs(H ).

Proof Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )} and
τ ∈ tr (H ). Suppose that for u ∈ supp(τ ), (Tτ (u), Fτ (u)) ∈ (μ j+1, μ j ] × (ν j+1,

ν j ], φτ (u) ∈ (θ j+1, θ j ], and ψτ (u) ∈ (ϕ j+1, ϕ j ]. Define a function λ by
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Tλ(v)e
iφ =

{
μ j eiθ j , if u = v,

Tτ (u)eiφτ (u), otherwise.
, Fλ(v)e

iψ =
{

μ j eiϕ j , if u = v,

Fτ (u)eiψτ (u), otherwise.

From definition of λ, we have λ(μ j e
iθ j ,ν j e

iϕ j ) = τ (μ j e
iθ j ,ν j e

iϕ j ). Definition6.63 implies
that for every t ∈ (μ j+1eiθ j+1 , μ j eθ j ] × (ν j+1eiϕ j+1 , ν j eiϕ j ], H t = H (μ1eiθ1 ,ν1eiϕ1 ).

Thus, λ(μ j e
iθ j ,ν j e

iϕ j ) is a complex q-rung orthopair fuzzy transversal of H t . Since,
τ is minimal complex q-rung orthopair fuzzy transversal and λt = τ t , for all t /∈
(μ j+1eiθ j+1 , μ j eθ j ] × (ν j+1eiϕ j+1 , ν j eiϕ j ]. This implies that λ is also a complex q-
rung orthopair fuzzy transversal andλ ≤ τ but theminimality of τ implies thatλ = τ .
Hence, τ(u) = λ(u) = (μ j eiθ j , ν j eiϕ j ),which implies that for every complex q-rung
orthopair fuzzy transversal τ ∈ tr (H ) and for each u ∈ X , τ(u) ∈ fs(H ) and so
we have fs(tr (H )) ⊆ fs(H ).

We now illustrate a recursive procedure to find tr (H ) in Algorithm 6.11.1.

Algorithm 6.11.1 To find the family of minimal complex q-rung orthopair fuzzy
transversals tr (H )

LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph having the funda-
mental sequence fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . ., (μneiθn , νneiϕn )}
and core set cor(H ) = {H (μ1eiθ1 ,ν1eiϕ1 ), H (μ2eiθ2 ,ν2eiϕ2 ), . . ., H (μneiθn ,νneiϕn )}. The
minimal transversal ofH = (Q, η) is determined as follows:

1. Determine a crisp minimal transversal t1 of H (μ1eiθ1 ,ν1eiϕ1 ).
2. Determine a crispminimal transversal t2 ofH (μ2eiθ2 ,ν2eiϕ2 ) satisfying the condition

t1 ⊆ t2, i.e., obtain an hypergraph H2 having the hyperedges η(μ2eiθ2 ,ν2eiϕ2 ) and a
loop at every vertexu ∈ t1. Thus,wehaveη(H2) = η(μ2eiθ2 , ν2eiϕ2) ∪ {{u ∈ t1}}.

3. Let t2 be the minimal transversal of H2.

4. Obtain a sequence of minimal transversals t1 ⊆ t2 ⊆ · · · ⊆ t j such that t j is the

minimal transversal of H (μ j e
iθ j ,ν j e

iϕ j ) satisfying the condition t j−1 ⊆ t j .
5. Define an elementary complex q-rung orthopair fuzzy set Sj having the support

t j and h(Sj ) = (μ j eiθ j , ν j eiϕ j ), 1 ≤ j ≤ n.
6. Determine a minimal complex q-rung orthopair fuzzy transversal of H as τ =

n⋃
j=1

{Sj |1 ≤ j ≤ n}.

Example 6.23 Consider a complex 5-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {v1, v2, v3, v4, v5, v6} as shown in Fig. 6.30. Let (μ1eiθ1 , ν1eiϕ1) =
(0.9ei(0.9)2π , 0.7ei(0.7)2π ), (μ2eiθ2 , ν2eiϕ2) = (0.8ei(0.8)2π , 0.5ei(0.5)2π ), (μ3eiθ3 ,
ν3eiϕ3) = (0.6ei(0.6)2π , 0.4ei(0.4)2π ), and (μ4eiθ4 , ν4eiϕ4) = (0.3ei(0.3)2π , 0.2ei(0.2)2π ).
Clearly, the sequence {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), (μ3eiθ3 , ν3eiϕ3), (μ4eiθ4 ,
ν4eiϕ4)} satisfies all the conditions of Definition6.63. Hence, it is the fundamen-
tal sequence of H .
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Fig. 6.30 Complex 5-rung
orthopair fuzzy hypergraph
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Note that, t1 = t2 = {v4} is the minimal transversal of H (μ1eiθ1 ,ν1eiϕ1 ) and
H (μ2eiθ2 ,ν2eiϕ2 ), t3 = {v1} is the minimal transversal of H (μ3eiθ3 ,ν3eiϕ3 ), and t4 =
{v1, v4} is the minimal transversal of H (μ4eiθ4 ,ν4eiϕ4 ). Consider

S1 = {(v4, 0.9ei(0.9)2π , 0.7ei(0.7)2π )} = S2,

S3 = {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π )},
S4 = {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π ), (v4, 0.9e

i(0.9)2π , 0.7ei(0.7)2π )}.

Hence,
4⋃
j=1

= {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π ), (v4, 0.9ei(0.9)2π , 0.7ei(0.7)2π )} is a com-

plex 5-rung orthopair fuzzy transversal of H .

Lemma 6.6 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph with
fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}. If τ is a complex
q-rung orthopair fuzzy transversal ofH , then h(τ ) ≥ h(Q j ), for every Q j ∈ Q. If
τ ∈ tr (H ) then h(τ ) = max{h(Q j )|Q j ∈ Q} = (μ1eiθ1 , ν1eiϕ1).

Proof Since τ is a complex q-rung orthopair fuzzy transversal of H , implies that
τ h(Q j ) ∩ Q

h(Q j )

j �=∅.Let a ∈ supp(τ ), then Tτ (a) ≥ T (h(Q j )), Fτ (a) ≤ F(h(Q j )),
φτ (a) ≥ φ(h(Q j )), and ψτ (a) ≤ ψ(h(Q j )). This shows that h(τ ) ≥ h(Q j ). If τ ∈
tr (H ), i.e., τ is minimal complex q-rung orthopair fuzzy transversal then h(Q j ) =
(max TQ j (a)ei max φQ j (a)

,min FQ j (a)ei minψQ j (a)
) = (μ1eiθ1 , ν1eiϕ1). Thus, we have

h(τ ) = max{h(Q j )|Q j ∈ Q} = (μ1eiθ1 , ν1eiϕ1).

Lemma 6.7 Let β be a complex q-rung orthopair fuzzy transversal of a complex q-
rung orthopair fuzzy hypergraphH . Then, there exists γ ∈ tr (H ) such that γ ≤ β.

Proof Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}. Sup-
pose that λ(μkeiθk ,νk eiϕk ) is a transversal of H (μkeiθk ,νkeiϕk ) and τ (μkeiθk ,νkeiϕk ) ∈
tr (H (μkeiθk ,νk eiϕk )), for 1 ≤ k ≤ n such that τ (μkeiθk ,νkeiϕk ) ⊆ λ(μkeiθk ,νkeiϕk ). Let βk be
an elementary complex q-rung orthopair fuzzy set having support λk and γk be an
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elementary complex q-rung orthopair fuzzy set having support τk , for 1 ≤ k ≤ n.

Then, Algorithm 6.11.1 implies that β =
n⋃

k=1
βk is a complex q-rung orthopair

fuzzy transversal of H and γ =
n⋃

k=1
γk is minimal complex q-rung orthopair fuzzy

transversal of H such that γ ≤ β.

Theorem 6.18 LetH1 = (Q1, η1)andH2 = (Q2, η2)be complexq-rungorthopair
fuzzy hypergraphs. Then,Q2 = tr (H1) ⇔ H2 is simple,Q2 ⊆ Q1, h(ηk) = h(H1),
for every ρk ∈ η2, and for every complex q-rung orthopair fuzzy set ξ ∈ P(X),
exactly one of the conditions must satisfy,

(i) ρ ≤ ξ , for some ρ ∈ Q2 or
(ii) there is Q j ∈ Q1 and (μeiθ , νeiϕ), where (μ, ν) ∈ [0, Th(Q j )] × [0, Fh(Q j )], θ ∈

[0, φh(Q j )], ϕ ∈ [0, ψh(Q j )] such that Q(μeiθ ,νeiϕ)

j ∩ ξ (μeiθ ,νeiϕ) = ∅, i.e., ξ is not a
complex q-rung orthopair fuzzy transversal ofH1.

Proof LetQ2 = tr (H1). Since, the family of all minimal complex q-rung orthopair
fuzzy transversals form a simple complex q-rung orthopair fuzzy hypergraph on
X1 ⊆ X2. Lemma6.6 implies that every edge of tr (H1) has height (μ1eiθ1 , ν1eiϕ1) =
h(H1). Let ξ be an arbitrary complex q-rung orthopair fuzzy set.

Case (i) If ξ is a complex q-rung orthopair fuzzy transversal of H1), then
Lemma6.7 implies the existence of a minimal complex q-rung orthopair fuzzy
transversal ρ such that ρ ≤ ξ . Thus, the condition (i) holds and (ii) violates.

Case (ii) If ξ is not a complex q-rung orthopair fuzzy transversal ofH1), then there

is an edge Q j ∈ Q1 such that Q
(μeiθ ,νeiϕ)

j ∩ ξ (μeiθ ,νeiϕ) = ∅. If condition (i) holds,
ρ ≤ ξ implies that Q(μeiθ ,νeiϕ)

j ∩ ρ(μeiθ ,νeiϕ) = ∅, which is the contradiction against
the fact that ρ is complex q-rung orthopair fuzzy transversal. Hence, condition
(i) does not hold and (ii) is satisfied.

Conversely, suppose thatQ2 satisfies all properties as mentioned above and ρ ∈ Q2.
Let ρ = ξ , then we obtain ρ ≤ ρ and conditions (ii) is not satisfied, so ρ is complex
q-rung orthopair fuzzy transversal of H1. If t is minimal complex q-rung orthopair
fuzzy transversal ofH1 and t ≤ ρ, t does not satisfy (ii), this implies the existence of
ρ2 ∈ Q2 such that ρ2 ≤ t , henceQ2 ⊆ tr (H1). Since, t is minimal complex q-rung
orthopair fuzzy which implies that ρ = t , ρ and t were chosen arbitrarily therefore,
we have Q2 = tr (H1).

The construction of fundamental subsequence and subcore of complex q-rung
orthopair fuzzy hypergraph H = (Q, η) is discussed in Algorithm 6.11.2.

Algorithm 6.11.2 Construction of fundamental subsequence and subcore
Let H = (Q, η) be a complex q-rung orthopair fuzzy hypergraph and H1 =
(Q1, η1) be a partial complex q-rung orthopair fuzzy hypergraph ofH . The funda-
mental subsequence fss(H ) is constructed as follows:
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Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )} and cor(H )

= {H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,H (μneiθn ,νneiϕn )}.
1. Construct H̃ (μ1eiθ1 ,ν1eiϕ1 ), a partial hypergraph of H (μ1eiθ1 ,ν1eiϕ1 ), by removing

all hyperedges ofH (μ1eiθ1 ,ν1eiϕ1 ), which contain properly any other hyperedge of
H (μ1eiθ1 ,ν1eiϕ1 ).

2. In the same way, a partial hypergraph H̃ (μ2eiθ2 ,ν2eiϕ2 ) of H (μ2eiθ2 ,ν2eiϕ2 ) is con-
structed by removing all hyperedges of H (μ2eiθ2 ,ν2eiϕ2 ), which contain properly
any other hyperedge ofH (μ2eiθ2 ,ν2eiϕ2 ) or any other hyperedge of H (μ1eiθ1 ,ν1eiϕ1 ).
H̃ (μ2eiθ2 ,ν2eiϕ2 ) is nontrivial iff there exists a complex q-rung orthopair fuzzy
transversal τ ∈ tr (H ) and a vertex u ∈ Q(μ2eiθ2 ,ν2eiϕ2 ) such that (Tτ (u)eiφτ (u),

Fτ (u)eiψτ (u)) = (μ2eiθ2 , ν2eiϕ2).
3. Continuing the same procedure, construct H̃ (μkeiθk ,νk eiϕk ), a partial hypergraph

of H (μkeiθk ,νk eiϕk ), by removing all hyperedges of H (μkeiθk ,νkeiϕk ), which contain
properly any other hyperedge ofH (μkeiθk ,νkeiϕk ) or contain any other hyperedge of
H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,H (μk−1eiθk−1 ,νk−1eiϕk−1 ). H̃ (μkeiθk ,νk eiϕk ) is non-
trivial if and only if there exists a complex q-rung orthopair fuzzy transversal τ ∈
tr (H ) and an element u ∈ Q(μkeiθk ,νkeiϕk ) such that (Tτ (u)eiφτ (u), Fτ (u)eiψτ (u)) =
(μkeiθk , νkeiϕk ).

4. Let {(μ̃1ei θ̃1 , ν̃1ei ϕ̃1), (μ̃2ei θ̃2 , ν̃2ei ϕ̃2), . . . , (μ̃l ei θ̃l , ν̃l ei ϕ̃l )} be the set of complex

numbers such that the corresponding partial hypergraphs H̃ (μ̃1ei θ̃1 ,ν̃1ei ϕ̃1 ),

H̃ (μ̃2ei θ̃2 ,ν̃2ei ϕ̃2 ), . . . , H̃ (μ̃l ei θ̃l ,ν̃l ei ϕ̃l ) are non-empty.
5. Then, fss(H ) = {(μ̃1ei θ̃1 , ν̃1ei ϕ̃1), (μ̃2ei θ̃2 , ν̃2ei ϕ̃2), . . . , (μ̃l ei θ̃l , ν̃l ei ϕ̃l )} and

c̃or(H ) = {H̃ (μ̃1ei θ̃1 ,ν̃1ei ϕ̃1 ), H̃ (μ̃2ei θ̃2 ,ν̃2ei ϕ̃2 ), . . . , H̃ (μ̃l ei θ̃l ,ν̃l ei ϕ̃l )} are subsequence
and subcore set of H , respectively.

Definition 6.67 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph
having fundamental subsequence fss(H ) and subcore c̃or(H ) ofH . The complex
q-rung orthopair fuzzy transversal core of H is defined as an elementary complex
q-rung orthopair fuzzy hypergraph Ĥ = (Q̂, η̂) such that,

(i) fss(H ) = fss(Ĥ ), i.e., fss(H ) is also a fundamental subsequence of Ĥ ,
(ii) height of every Q̂ j ∈ Q̂ is (μ̃ j ei θ̃ j , ν̃ j ei ϕ̃ j ) ∈ fss(H ) iff supp(Q̂ j ) is an hyper-

edge of Ĥ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ).

Theorem 6.19 For every complex q-rung orthopair fuzzy hypergraph, we have
tr (H ) = tr (Ĥ ).

Proof Let t ∈ tr (H ) and Q̂ j ∈ Q̂. Definition6.67 implies that h(Q̂ j ) = (μ̃ j ei θ̃ j ,

ν̃ j ei ϕ̃ j ) and Q̂
(μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j )

j is an hyperedge of H̃ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ). Since H̃ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ) ⊆
H (μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j ) and τ (μ j e

iθ j ,ν j e
iϕ j ) is a transversal of H (μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j ) therefore

Q̂
(μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j )

j ∩ τ (μ j e
iθ j ,ν j e

iϕ j ) �= ∅. Thus, τ is acomplex q-rung orthopair fuzzy

transversal of Ĥ .
Let τ̂ ∈ tr (Ĥ ) andQ j ∈ Q.Definition6.63 implies thatQ

h(Q j )

j ∈ H (μ j e
iθ j ,ν j e

iϕ j ),
for h(Q j ) ≤ (μ j eiθ j , ν j eiϕ j ) ∈ fs(H ). Definition of subcore c̃or(H ) implies the
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Fig. 6.31 Complex 6-rung
orthopair fuzzy hypergraph
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existence of an hyperedge Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j of H̃ (μ j e
iθ j ,ν j e

iϕ j ) such that Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j ⊆
Q

h(Q j )

j and (μkeiθk , νkeiϕk ) ≥ (μ j eiθ j , ν j eiϕ j ) ≥ h(Q j ). For τ̂ ∈ tr (Ĥ ), we have

u ∈ Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j ∩ τ̂ (μ j e
iθ j ,ν j e

iϕ j ) ⊆ Q̂
h(Q j )

j ∩ τ̂ (μ j e
iθ j ,ν j e

iϕ j ). Hence, τ̂ is a complex
q-rung orthopair fuzzy transversal of H .

Let τ ∈ tr (H ) ⇒ τ is a complex q-rung orthopair fuzzy transversal of Ĥ . This
implies that there is τ̂ such that τ̂ ⊆ τ . But τ̂ is a complex q-rung orthopair fuzzy
transversal of H and τ ∈ tr (H ) implies that τ̂ = τ . Thus, tr (H ) ⊆ tr (Ĥ ). Also
tr (Ĥ ) ⊆ tr (H ) implies that tr (H ) = tr (Ĥ ).

Although τ can be taken as a minimal transversal of H , it is not necessary for
τ (μeiθ ,νeiϕ) to be the minimal transversal of H (μeiθ ,νeiϕ), for all μ, ν ∈ [0, 1], and
θ, ϕ ∈ [0, 2π ]. Furthermore, it is not necessary for the family of minimal complex
q-rung orthopair fuzzy transversals to form a hypergraph on X . For those complex
q-rung orthopair fuzzy transversals that satisfy the above property, we have

Definition 6.68 Acomplex q-rung orthopair fuzzy transversal τ having the property
that τ (μeiθ ,νeiϕ) ∈ tr (H (μeiθ ,νeiϕ)), for allμ, ν ∈ [0, 1], and θ, ϕ ∈ [0, 2π ] is called the
locally minimal complex q-rung orthopair fuzzy transversal ofH . The collection of
all locally minimal complex q-rung orthopair fuzzy transversals ofH is represented
by t∗r (H ).

Note that, t∗r (H ) ⊆ tr (H ), but the converse is not generally true.

Example 6.24 Consider a complex 6-rung orthopair fuzzy hypergraphH = (Q, η)

as shown in Fig. 6.31. The complex 6-rung orthopair fuzzy set

{(x1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (x5, 0.4e
i(0.4)2π , 0.7ei(0.7)2π ), (x6, 0.4e

i(0.4)2π , 0.7ei(0.7)2π )}

is a locally minimal complex 6-rung orthopair fuzzy transversal ofH .

Theorem 6.20 Let H = (Q, η) be an ordered complex q-rung orthopair fuzzy
hypergraph with fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}.
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If λk is a minimal transversal ofH (μkeiθk ,νkeiϕk ), then there exists α ∈ tr (H ) such that
α(μkeiθk ,νk eiϕk ) = λk and α(μl eiθl ,νl eiϕl ) is a minimal transversal ofH (μl eiθl ,νl eiϕl ), for all
l < k. In particular, if λ j ∈ tr (H (μ j e

iθ j ,ν j e
iϕ j )), then there exists a locally minimal

complex q-rung orthopair fuzzy transversal α(μ j e
iθ j ,ν j e

iϕ j ) = λ j and t∗r (H ) �= ∅.

Proof Let λk ∈ tr (H (μkeiθk ,νkeiϕk )). Since, H = (Q, η) is an ordered complex q-
rung orthopair fuzzy hypergraph, therefore, H (μk−1eiθk−1 ,νk−1eiϕk−1 ) ⊆ H (μkeiθk ,νkeiϕk ).
Also, there exists λk−1 ∈ tr (H (μk−1eiθk−1 ,νk−1eiϕk−1 )) such that λk−1 ⊆ λk . Following
this iterative procedure, we have a nested sequence λ1 ⊆ λ2 ⊆ · · · ⊆ λk−1 ⊆ λk of
minimal transversals, where every λl ∈ tr (H (μl eiθl ,νl eiϕl )). Let αl be an elementary
complex q-rung orthopair fuzzy set having height (μl eiθl , νl eiϕl ) and support αl . Let
us define α(x) such that α(x) = {(max Tαl (x)e

i max φαl (x),min Fαl (x)e
i minψαl (x))|1 ≤

l ≤ n}, that generates the requiredminimal complex q-rung orthopair fuzzy transver-
sal ofH . If k = n, α is locally minimal complex q-rung orthopair fuzzy transversal
of H . Hence, t∗r (H ) �= ∅.

Theorem 6.21 Let H = (Q, η) be a simply ordered complex q-rung orthopair
fuzzy hypergraph with fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn ,
νneiϕn )}. If λk ∈ tr (H (μkeiθk ,νk eiϕk )), then there exists α ∈ t∗r (H ) such that
α(μkeiθk ,νk eiϕk ) = λk .

Proof Let λk ∈ tr (H (μkeiθk ,νk eiϕk )) and H = (Q, η) is a simply ordered complex
q-rung orthopair fuzzy hypergraph. Theorem6.20 implies that a nested sequence
λ1 ⊆ λ2 ⊆ · · · ⊆ λk−1 ⊆ λk of minimal transversals can be constructed. Let αl be
an elementary complex q-rung orthopair fuzzy set having height (μl eiθl , νl eiϕl ) and
support αl such that α(x) = {(max Tαl (x)e

i max φαl (x),min Fαl (x)e
i minψαl (x))|1 ≤ l ≤

n} generates the locally minimal complex q-rung orthopair fuzzy transversal of H
with α(μkeiθk ,νk eiϕk ) = λk .

6.12 Application of Complex q-Rung Orthopair Fuzzy
Hypergraphs

Definition 6.69 Let Q = (T eiφ, Feiψ) be a complex q-rung orthopair fuzzy num-
ber. Then, score function of Q is defined as

s(Q) = (T q − Fq) + 1

2qπq
(φq − ψq).

The accuracy of Q is defined as

a(Q) = (T q + Fq) + 1

2qπq
(φq + ψq).

For two complex q-rung orthopair fuzzy numbers Q1 and Q2
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1. if s(Q1) > s(Q2), then Q1 � Q2,
2. if s(Q1) = s(Q2), then

• if a(Q1) > a(Q2), then Q1 � Q2,
• if a(Q1) = a(Q2), then Q1 ∼ Q2.

A complex 6-rung orthopair fuzzy hypergraph model of research collaboration
network A collaboration network is a group of independent organizations or people
that interact to complete a particular goal for achieving better collective results by
the means of joint execution of task. The entities of a collaborative network may
be geographically distributed and heterogenous in terms of their culture, goals, and
operating environment but they collaborate to achieve compatible or common goals.
For decades, science academies have been interested in research collaboration. The
most common reasons of research collaboration are funding, more experts working
on the same project imply the more chances for effectiveness, productivity, and
innovativeness. Nowadays, most of the public research is based on collaboration of
different types of expertise from different disciples and different economic sectors.
In this section, we study a research collaboration network model through complex
6-rung orthopair fuzzy hypergraph. Consider a science academy wants to select an
author among a group of researchers which has best collaborative skills. For this
purpose, following are the characteristics that can be considered,

• Cooperative spirit
• Mutual respect
• Critical thinking
• Innovations
• Creativity
• Embrace diversity.

Consider a complex 6-rung orthopair fuzzy hypergraph H = (Q, η) on X =
{A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}. The set of universe X represents the
group of authors as the vertices ofH and these authors are grouped through hyper-
edges if they have worked together on some projects. The truth-membership of each
author represents the collaboration strength and falsity-membership describes the
opposite behavior of corresponding author. Suppose that a team of experts assigns
that the collaboration power of A1 is 60%and non-collaborative behavior is 50%after
carefully observing the different attributes. The corresponding phase terms illustrate
the specific period of time in which the collaborative behavior of an author varies.We
model this data as (A1, 0.6ei(0.5)2π , 0.5ei(0.5)2π ). The complex 6-rung orthopair fuzzy
hypergraph H = (Q, η) model of collaboration network is shown in Fig. 6.32.

The membership degrees of hyperedges represent the collective degrees of col-
laboration and non-collaboration of the corresponding authors combined through
an hyperedge. The adjacency matrix of this network is given in Tables6.17, 6.18,
and 6.19.
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Fig. 6.32 Complex 6-rung orthopair fuzzy hypergraph model of collaboration network

Table 6.17 Adjacency matrix of collaboration network

η A1 A2 A3 A4

A1 (0, 0) (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

A2 (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0) (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0)

A3 (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0) (0, 0)

A4 (0.6ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0, 0)

A5 (0, 0) (0, 0) (0, 0) (0, 0)

A6 (0, 0) (0, 0) (0, 0) (0, 0)

A7 (0, 0) (0, 0) (0, 0) (0, 0)

A8 (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0)

A9 (0, 0) (0, 0) (0, 0) (0, 0)

A10 (0, 0) (0, 0) (0, 0) (0, 0)
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Table 6.18 Adjacency matrix of collaboration network

η A5 A6 A7 A8

A1 (0, 0) (0, 0) (0, 0) (0, 0)

A2 (0, 0) (0, 0) (0, 0) (0, 0)

A3 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.6ei(0.5)2π )

A4 (0, 0) (0, 0) (0, 0) (0, 0)

A5 (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.6ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A6 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A7 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0, 0)

A8 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0)

A9 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A10 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

Table 6.19 Adjacency matrix of collaboration network

η A9 A10

A1 (0, 0) (0, 0)

A2 (0, 0) (0, 0)

A3 (0, 0) (0, 0)

A4 (0, 0) (0, 0)

A5 (0, 0) (0.6ei(0.5)2π , 0.7ei(0.5)2π )

A6 (0, 0) (0, 0)

A7 (0, 0) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A8 (0.4ei(0.5)2π , 0.7ei(0.5)2π ) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A9 (0, 0) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A10 (0.4ei(0.5)2π , 0.7ei(0.5)2π ) (0, 0)

The score values and choice values of a complex 6-rung orthopair fuzzy hyper-
graph H = (Q, η) are calculated as follows:

s jk = (Tq
jk + Fq

jk) + 1

2qπq (φ
q
jk + ψ

q
jk), c j =

∑
k

s jk + (Tq
j + Fq

j ) + 1

2qπq (φ
q
j + ψ

q
j ),

respectively. These values are given in Table6.20.
The choice values of Table6.20 show that A5 is the author having maximum

strength of collaboration and good collective skills among all the authors. Similarly,
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Table 6.20 Score and choice values

s jk A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 c j

A1 0 0.1245 0.1245 0.1245 0 0 0 0 0 0 0.88690

A2 0.1245 0 0.1245 0 0 0 0 0 0 0 0.41377

A3 0.1245 0.1245 0 0 0 0 0 0.0820 0 0 0.67105

A4 0.1955 0 0 0 0 0 0 0 0 0 0.60654

A5 0 0 0 0 0 0.1529 0.1955 0.1529 0 0.1955 1.37714

A6 0 0 0 0 0.1529 0 0 0.1529 0 0 0.53480

A7 0 0 0 0 0.1955 0 0 0 0 0.1529 0.50139

A8 0 0 0.0820 0 0.1529 0.1529 0 0 0.1529 0.1529 0.74457

A9 0 0 0 0 0 0 0 0.1529 0 0.1529 0.38780

A10 0 0 0 0 0.1529 0 0.1529 0.1529 0.1529 0 0.76459

the choice values of all authors represent the strength of their respective collaboration
skills in a specific period of time. The method adopted in our model to select the
author having best collaboration skills is given in Algorithm 6.12.1.

Algorithm 6.12.1 Selection of author having maximum collaboration skills

1. Input the set of vertices (authors) A1, A2, . . . , A j .

2. Input the complex q-rung orthopair fuzzy set Q of vertices such that Q(Ak) =
(Tkeiφk , Fkeiψk ), 1 ≤ k ≤ j , 0 ≤ T q

k + Fq
k ≤ 1, q ≥ 1.

3. Input the adjacency matrix η = [(Tkleiφkl , Fkleiψkl )] j× j of vertices.
4. do k from 1 → j
5. ck = 0
6. do l from 1 → j
7. s jk = (T q

kl + Fq
kl) + 1

2qπq (φ
q
kl + ψ

q
kl)

8. ck = ck + s jk
9. end do
10. ck = ck + (T q

k + Fq
k ) + 1

2qπq (φ
q
k + ψ

q
k )

11. do
12. Select a vertex of H = (Q, η) having maximum choice value as the author

possessing strong collaboration powers.

6.13 Comparative Analysis

The proposed complex q-rung orthopair fuzzymodel is more flexible and compatible
to the systemwhen the given data ranges over complex subset with a unit disk instead
of the real subset with [0, 1]. We illustrate the flexibility of our proposed model by
taking an example. Consider an educational institute that wants to establish its min-
imum branches in a particular city in order to facilitate the maximum number of
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Table 6.21 Comparative analysis of three models

Methods Score values Ranking

Complex intuitionistic fuzzy
model

0.4 1.0 0.6 p2 > p3 > p1

Complex Pythagorean fuzzy
model

0.4 0.9 0.42 p2 > p3 > p1

Complex 3-rung orthopair
fuzzy model

0.104 0.67 0.234 p2 > p3 > p1

students according to some parameters such as transportation, suitable place, con-
nectivity with the main branch, and expenditures. Suppose a team of three decision
makers selects the different places. Let X = {p1, p2, p3} be the set of places where
the team is interested to establish the new branches. After carefully observing the
different attributes, the first decision makers assign the membership and nonmem-
bership degrees to support the place p1 as 60% and 40%, respectively. The phase
terms represent the period of time for which the place p1 can attract maximum num-
ber of students. This information is modeled using a complex intuitionistic fuzzy set
as (p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ). Note that, 0 ≤ 0.6 + 0.4 ≤ 1. Similarly, he models
the other places as, (p2, 0.7ei(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.5ei(0.5)2π , 0.2ei(0.2)2π ). We
denote this complex intuitionistic fuzzy model as

I = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7e
i(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.5e

i(0.5)2π , 0.2ei(0.2)2π )}.

Since, all complex intuitionistic fuzzy grades are complex Pythagorean fuzzy
as well as complex q-rung orthopair fuzzy grades. We find the score functions
of the above values using the formulas s(p j ) = (T − F) + 1

2π (φ − ψ), s(p j ) =
(T 2 − F2) + 1

22π2 (φ
2 − ψ2), and s(p j ) = (T 3 − F3) + 1

23π3 (φ
3 − ψ3). The results

corresponding to these three approaches are given in Table6.21.
Suppose that the second decision-maker assigns the membership values to

these places as, (p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7ei(0.7)2π , 0.2ei(0.2)2π ), (p3,
0.7ei(0.7)2π , 0.5ei(0.5)2π ). This information can not be modeled using complex intu-
itionistic fuzzy set as 0.7 + 0.5 = 1.2 > 1. We model this information using a com-
plex Pythagorean fuzzy set and the corresponding model is given as

P = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7e
i(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.7e

i(0.7)2π , 0.5ei(0.5)2π )}.

Since, all complexPythagorean fuzzy grades are also complexq-rung orthopair fuzzy
grades. We find the score functions of the above values using the formulas s(p j ) =
(T 2 − F2) + 1

22π2 (φ
2 − ψ2) and s(p j ) = (T 3 − F3) + 1

23π3 (φ
3 − ψ3). The results

corresponding to these two approaches are given in Table6.22.
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Table 6.22 Comparative analysis of two models

Methods Score values Ranking

Complex Pythagorean fuzzy
model

0.4 0.9 0.48 p2 > p3 > p1

Complex 3-rung orthopair
fuzzy model

0.104 0.67 0.436 p2 > p3 > p1

We now suppose that the third decision maker assigns the membership values to
these places as

(p1, 0.6e
i(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.8e

i(0.8)2π , 0.7ei(0.7)2π ), (p3, 0.7e
i(0.7)2π , 0.5ei(0.5)2π ).

This information cannot be modeled using complex intuitionistic fuzzy set and com-
plex Pythagorean fuzzy set as 0.7 + 0.8 = 1.5 > 1, 0.72 + 0.82 = 1.13 > 1. We
model this information using a complex 3-rung orthopair fuzzy set and the corre-
sponding model is given as

Q = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.8e
i(0.8)2π , 0.7ei(0.7)2π ), (p3, 0.7e

i(0.7)2π , 0.5ei(0.5)2π )}.

We find the score functions of the above values using the formula s(p j ) = (T 3 −
F3) + 1

23π3 (φ
3 − ψ3). The score values of complex 3-rung orthopair fuzzy informa-

tion are given as

s(p1) = 0.304, s(p2) = 0.438, s(p3) = 0.436.

Note that, p2 is the best optimal choice to establish a new branch according to the
given parameters. We see that every complex intuitionistic fuzzy grade is a complex
Pythagorean fuzzy grade, aswell as a complex q-rung orthopair fuzzy grade, however
there are complex q-rung orthopair fuzzy grades that are not complex intuitionistic
fuzzy nor complex Pythagorean fuzzy grades. This implies the generalization of
complexq-rung orthopair fuzzy values. Thus, the proposed complexq-rung orthopair
fuzzy model provides more flexibility due to its most prominent feature that is the
adjustment of the range of demonstration of given information by changing the
value of parameter q, q ≥ 1. The generalization of our proposed model can also be
observed from the reduction of complex q-rung orthopair fuzzy model to complex
intuitionistic fuzzy and complex Pythagorean fuzzy models for q = 1 and q = 2,
respectively.
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