
Chapter 5
Extended Bipolar Fuzzy (Directed)
Hypergraphs to m-Polar Information

Anm-polar fuzzy set is a useful tool to solve real-world problems that involve multi-
agents, multi-attributes, multi-objects, multi-indexes, and multipolar information.
In this chapter, we present the notions of regular m-polar fuzzy hypergraphs and
totally regularm-polar fuzzy hypergraphs. We discuss applications ofm-polar fuzzy
hypergraphs in decision-making problems. Furthermore, we discuss the notion of
m-polar fuzzy directed hypergraphs and depict certain operations on them. We also
describe an application of m-polar fuzzy directed hypergraphs in business strategy.
This chapter is based on [7–9, 12].

5.1 Introduction

Fuzzy set theory deals with real-life data incorporating vagueness. Zhang [20]
extended the theory of fuzzy sets to bipolar fuzzy sets, which register the bipolar
behavior of objects. Nowadays, analysts believe that the world is moving toward
multipolarity. Therefore, it comes as no surprise that multipolarity in data and infor-
mation plays a vital role in various fields of science and technology. In neurobiology,
multipolar neurons in brain gather a great deal of information from other neurons.
In information technology, multipolar technology can be exploited to operate large-
scale systems. Based on this motivation, Chen et al. [12] introduced the concept of
m-polar fuzzy set as a generalization of a bipolar fuzzy set and shown that 2-polar
and bipolar fuzzy sets are cryptomorphic mathematical notions. The framework of
this theory is that “multipolar information” (not like the bipolar information which
gives two-valued logic) arises because information for a natural world is frequently
from n factors (n ≥ 2). For example, “Pakistan is a good country”. The truth value
of this statement may not be a real number in [0, 1]. Being good country may have
several properties: good in agriculture, good in political awareness, good in regaining
macroeconomic stability, etc. The each component may be a real number in [0, 1].
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If n is the number of such components under consideration, then the truth value of
fuzzy statement is a n-tuple of real numbers in [0, 1], that is, an element of [0, 1]n .

Hypergraphs have many applications in various fields, including biological sci-
ences, computer science, and natural sciences. To study the degree of dependence of
anobject to the other,Kaufamnn [14] applied the concept of fuzzy sets to hypergraphs.
Mordeson and Nair [16] presented fuzzy graphs and fuzzy hypergraphs. Generaliza-
tion and redefinition of fuzzy hypergraphs were discussed by Lee-Kwang and Lee
[15]. The concept of interval-valued fuzzy sets was applied to hypergraphs by Chen
[11]. Parvathi et al. [17] established the notion of intuitionistic fuzzy hypergraphs.

Definition 5.1 An m-polar fuzzy set C on a non-empty set X is a mapping C :
X → [0, 1]m . The membership value of every element x ∈ X is denoted by C(x) =
(P1 ◦ C(x), P2 ◦ C(x), . . . , Pm ◦ C(x)), where Pi ◦ C : [0, 1]m → [0, 1] is defined
as the i−th projection mapping.

Note that, [0, 1]m (mth-power of [0, 1]) is considered as a partially ordered setwith the
point-wise order≤, wherem is an arbitrary ordinal number (wemake an appointment
thatm = {n|n < m}whenm > 0),≤ is defined by x ≤ y ⇔ Pi (x) ≤ Pi (y) for each
i ∈ m (x, y ∈ [0, 1]m), and Pi : [0, 1]m → [0, 1] is the i−th projection mapping
(i ∈ m). 1 = (1, 1, . . . , 1) is the greatest value and 0 = (0, 0, . . . , 0) is the smallest
value in [0, 1]m . mF (X) is the power set of all m-polar fuzzy subsets on X .

1. Whenm = 2, [0, 1]2 is the ordinary closed unit square inR
2, the Euclidean plane.

The righter (resp., the upper), the point in this square, the larger it is. Let x =
(0, 0) = 0 (the smallest element of [0, 1]2), a = (0.35, 0.85), b = (0.85, 0.35),
and y = (1, 1) = 1 (the largest element of [0, 1]2). Then x ≤ c ≤ y, ∀ c ∈
[0, 1]2, (especially, x ≤ a ≤ y and x ≤ b ≤ y hold). It is easy to note that a �

b � a because P0(a) = 0.35 < 0.85 = P0(b) and P1(a) = 0.85 > 0.35 = P1(b)
hold. The “order relation ≤” on [0, 1]2 can be described in at least two ways. It
can be seen in Fig. 5.1.

2. When m = 4, the order relation can be seen in Fig. 5.2.

Example 5.1 Suppose that a democratic country wants to elect its leader. Let
C = {Irtiza, Moeed, Ramish, Ahad} be the set of four candidates and X = {a, b,
c, . . . , s, t} be the set of voters. We assume that the voting is weighted. A voter in
{a, b, c} can send a value in [0, 1] to each candidate but a voter in X − {a, b, c} can

Fig. 5.1 Order relation
when m = 2
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Fig. 5.2 Order relation
when m = 4
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only send a value in [0.2, 0.7] to each candidate. Let A(a) = (0.8, 0.6, 0.5, 0.1)
(which shows that the preference degrees of a corresponding to Irtiza, Moeed,
Ramish, and Ahad are 0.8, 0.6, 0.5, and 0.1, respectively.), A(b) = (0.9, 0.7,
0.5, 0.8), A(c) = (0.9, 0.9, 0.8, 0.4), . . . , A(s) = (0.6, 0.7, 0.5, 0.3), and A(t) =
(0.5, 0.7, 0.2, 0.5). Thus, we obtain a 4-polar fuzzy set A : X → [0, 1]4 which can
also be written as

A = {(a, (0.8, 0.6, 0.5, 0.1)), (b, (0.9, 0.7, 0.5, 0.8)), (c, (0.9, 0.9, 0.8, 0.4)), . . . ,

(s, (0.6, 0.7, 0.5, 0.3)), (t, (0.5, 0.7, 0.2, 0.5))}.

Definition 5.2 Let C and D be two m-polar fuzzy sets on X . Then, the operations
C ∪ D, C ∩ D, C ⊆ D, and C = D are defined as

1. Pi ◦ (C ∪ D)(x) = sup{Pi ◦ C(x), Pi ◦ D(x)} = Pi ◦ C(x) ∨ Pi ◦ D(x),
2. Pi ◦ (C ∩ D)(x) = inf{Pi ◦ C(x), Pi ◦ D(x)} = Pi ◦ C(x) ∧ Pi ◦ D(x),
3. C ⊆ D if and only if Pi ◦ C(x) ≤ Pi ◦ D(x),
4. C = D if and only if Pi ◦ C(x) = Pi ◦ D(x),

for all x ∈ X , for each 1 ≤ i ≤ m.

Definition 5.3 LetC be anm-polar fuzzy set on a non-empty crisp set X . Anm-polar
fuzzy relation onC is a mapping (P1 ◦ D, P2 ◦ D, . . . , Pm ◦ D) = D : C → C such
that

D(xy) ≤ inf{C(x),C(y)}, for all x, y ∈ X

that is, for each 1 ≤ i ≤ m,

Pi ◦ D(xy) ≤ inf{Pi ◦ C(x), Pi ◦ C(y)}, for all x, y ∈ X

where Pi ◦ C(x) denotes the i−th degree of membership of the vertex x and Pi ◦
D(xy) denotes the i−th degree of membership of the edge xy. D is also an m-polar
fuzzy relation in X defined by the mapping D : X × X → [0, 1]m .
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Definition 5.4 Anm-polar fuzzy graph on a non-empty set X is a pair G = (C, D),
where C : X → [0, 1]m is an m-polar fuzzy set on the set of vertices X and D :
X × X → [0, 1]m is an m-polar fuzzy relation in X such that

D(xy) ≤ inf{C(x),C(y)}, for all x, y ∈ X.

Note that, D(xy) = 0, for all xy ∈ X × X − E , where 0 = (0, 0, . . . , 0) and E ⊆
X × X is the set of edges. C is called an m-polar fuzzy vertex set of G and D is
an m-polar fuzzy edge set of G. An m-polar fuzzy relation D on X is symmetric
if Pi ◦ D(xy) = Pi ◦ D(yx), for all x, y ∈ X .

For further terminologies and studies on m-polar fuzzy hypergraphs, readers are
referred to [1–6, 10, 13, 18, 19].

5.2 m-Polar Fuzzy Hypergraphs

Definition 5.5 An m-polar fuzzy hypergraph on a non-empty set X is a pair H =
(A, B), where A = {ζ1, ζ2, . . . , ζr } is a family of m-polar fuzzy subsets on X and B
is an m-polar fuzzy relation on the m-polar fuzzy subsets ζi ’s such that

1. B(Ei ) = B({x1, x2, . . . , xs}) ≤ inf{ζi (x1), ζi (x2), . . . , ζi (xs)}, for all
x1, x2, . . . , xs ∈ X.

2.
⋃

k supp(ζk) = X, for all ξk ∈ A.

Example 5.2 Let A = {ζ1, ζ2, ζ3, ζ4, ζ5} be a family of 4-polar fuzzy sub-
sets on X = {a, b, c, d, e, f, g} given in Table5.1. Let B be a 4-polar
fuzzy relation on ζ j ’s, 1 ≤ j ≤ 5, given as, B({a, c, e}) = (0.2, 0.4, 0.1, 0.3),
B({b, d, f }) = (0.2, 0.1, 0.1, 0.1), B({a, b}) = (0.3, 0.1, 0.1, 0.6), B({e, f }) =
(0.2, 0.4, 0.3, 0.2), B({b, e, g}) = (0.2, 0.1, 0.2, 0.4). Thus, the 4-polar fuzzy
hypergraph is shown in Fig. 5.3.

Example 5.3 Consider a 5-polar fuzzy hypergraph with vertex set X = {a, b, c, d,

e, f, g} whose degrees of membership are given in Table5.2 and three hyperedges
{a, b, c}, {b, d, e}, {b, f, g} such that B({a, b, c}) = (0.2, 0.1, 0.3, 0.1, 0.2),

Table 5.1 4-polar fuzzy subsets on X = {a, b, c, d, e, f, g}
x ∈ X ζ1 ζ2 ζ3 ζ4 ζ5

a (0.3, 0.4, 0.5, 0.6) (0, 0, 0, 0) (0.3, 0.4, 0.5, 0.6) (0, 0, 0, 0) (0, 0, 0, 0)

b (0, 0, 0, 0) (0.4, 0.1, 0.1, 0.6) (0.4, 0.1, 0.1, 0.6) (0, 0, 0, 0) (0.4, 0.1, 0.1, 0.6)

c (0.3, 0.5, 0.1, 0.3) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

d (0, 0, 0, 0) (0.4, 0.2, 0.5, 0.1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e (0.2, 0.4, 0.6, 0.8) (0, 0, 0, 0) (0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8) (0.2, 0.4, 0.6, 0.8)

f (0, 0, 0, 0) (0.2, 0.5, 0.3, 0.2) (0, 0, 0, 0) (0.2, 0.5, 0.3, 0.2) (0, 0, 0, 0)

g (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.3, 0.5, 0.1, 0.4)
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Fig. 5.3 4-polar fuzzy hypergraph

Table 5.2 5-polar fuzzy subsets on X

x ∈ X ζ1 ζ2 ζ3

a (0.2, 0.1, 0.3, 0.1, 0.3) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

b (0.2, 0.3, 0.5, 0.6, 0.2) (0.2, 0.3, 0.5, 0.6, 0.2) (0.2, 0.3, 0.5, 0.6, 0.2)

c (0.3, 0.2, 0.4, 0.5, 0.2) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

d (0, 0, 0, 0, 0) (0.6, 0.2, 0.2, 0.3, 0.3) (0, 0, 0, 0, 0)

e (0, 0, 0, 0, 0) (0.4, 0.5, 0.6, 0.7, 0.3) (0, 0, 0, 0, 0)

f (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0.1, 0.2, 0.3, 0.4, 0.4)

g (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8, 0.4)

B({b, d, e}) = (0.1, 0.2, 0.3, 0.4, 0.2), B({b, f, g}) = (0.2, 0.2, 0.3, 0.3, 0.2).
Hence, the 5-polar fuzzy hypergraph is shown in Fig. 5.4.

Example 5.4 Let A = {ζ1, ζ2, ζ3, ζ4, ζ5} be a family of 4-polar fuzzy subsets on
X = {a, b, c, d, e, f, g} as given in Table5.3. Let B be a 4-polar fuzzy relation on
ζ

′
i s, 1 ≤ i ≤ 5, which is given as follows.

B({a, c, e}) = (0.2, 0.4, 0.1, 0.3), B({b, d, f }) = (0.2, 0.1, 0.1, 0.1),

B({a, b}) = (0.3, 0.1, 0.1, 0.6), B({e, f }) = (0.2, 0.4, 0.3, 0.2),

B({b, e, g}) = (0.2, 0.1, 0.2, 0.4).

By routine computations, it is easy to see that H = (A, B) is a 4-polar fuzzy hyper-
graph as shown in Fig. 5.5.

Definition 5.6 An m-polar fuzzy hypergraph H = (A, B) is called m-polar fuzzy
r-uniform hypergraph if |supp(Bi )| = r for each ζi ∈ B, 1 ≤ i ≤ r .

Example 5.5 Consider H = (A, B) is a 3-polar fuzzy hypergraph as shown
in Fig. 5.6, where A = {(v1, 0.1, 0.3, 0.2), (v2, 0.1, 0.1, 0.3), (v3, 0.2, 0.1, 0.1),
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Fig. 5.4 5-polar fuzzy hypergraph

Table 5.3 4-polar fuzzy subsets on X = {a, b, c, d, e, f, g}
x ∈ X ζ1 ζ2 ζ3 ζ4 ζ5

a (0.4, 0.5, 0.6, 0.7) (0, 0, 0, 0) (0.4, 0.5, 0.6, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

b (0, 0, 0, 0) (0.3, 0.2, 0.2, 0.7) (0.3, 0.2, 0.2, 0.7) (0, 0, 0, 0) (0.3, 0.2, 0.2, 0.7)

c (0.4, 0.6, 0.1, 0.4) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

d (0, 0, 0, 0) (0.5, 0.3, 0.6, 0.1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e (0.2, 0.4, 0.6, 0.8) (0, 0, 0, 0) (0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8) (0.2, 0.4, 0.6, 0.8)

g (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.4, 0.6, 0.5, 0.5)
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Fig. 5.5 4-polar fuzzy hypergraph

(v4, 0.1, 0.1, 0.2)} is a 3-polar fuzzy set of vertices on X = {v1, v2, v3, v4} and the B is
defined as B({v1, v2}) = (0.1, 0.1, 0.2), B({v2, v3}) = (0.1, 0.1, 0.1), B({v3, v4}) =
(0.1, 0.1, 0.2). Clearly, |supp(ζi )| = 2, for each i = 1, 2, 3. Thus, H = (A, B) is a
3-polar fuzzy 2-uniform hypergraph, as shown in Fig. 5.6.
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Fig. 5.6 3-polar fuzzy 2-uniform hypergraph
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Fig. 5.7 3-polar fuzzy hypergraphs H1 and H2

Definition 5.7 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively. TheCartesian product of H1 and H2 is an ordered
pair H = H1�H2 = (A1�A2, B1�B2) such that

1. Pi ◦ (A1�A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1�B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1�B2)(e1 × {v2} = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2, ∀ e1 ∈
E1.

Example 5.6 Let H1 = (A1, B1) and H2 = (A2, B2) be two 3-polar fuzzy hyper-
graphs on X1 = {a, b, c} and X2 = {d, e, f }, respectively, as shown in Fig. 5.7.

The Cartesian product H1�H2 is shown in Fig. 5.8.

Theorem 5.1 If H1 and H2 are the m-polar fuzzy hypergraphs then H1�H2 is as
m-polar fuzzy hypergraph.
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Fig. 5.8 Cartesian product
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Proof Case (i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1�B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)},
. . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1�A2)(v1, v21), Pi ◦ (A1�A2)(v1, v22), . . . , Pi ◦ (A1�A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1�A2)(v1, v2).

Case (ii): Let v2 ∈ X2, e1 = {v11, v12, . . . , v1p} ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1�B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)},
. . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
= inf{Pi ◦ (A1�A2)(v11, v2), Pi ◦ (A1�A2)(v12, v2), . . . , Pi ◦ (A1�A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1�A2)(v1, v2).
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Definition 5.8 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively. Then, the direct product of H1 and H2 is an
ordered pair H = H1 × H2 = (A1 × A2, B1 × B2) such that

1. Pi ◦ (A1 × A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 ×
X2,

2. Pi ◦ (B1 × B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}, ∀ e1 ∈ E1, e2 ∈ E2.

Definition 5.9 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively, then the strong product of H1 and H2 is an ordered
pair H = H1 � H2 = (A1 � A, B1 � B2) such that

1. Pi ◦ (A1 � A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 � B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1 � B2)(e1 × {v2}) = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2, ∀ e1 ∈
E1,

4. Pi ◦ (B1 � B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}, ∀ e1 ∈ E1, e2 ∈ E2.

Theorem 5.2 If H1 and H2 are two m-polar fuzzy r-uniform hypergraphs, then
H1 � H2 is a m-polar fuzzy hypergraph.

Proof Case (i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)},
. . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 � A2)(v1, v21), Pi ◦ (A1 � A2)(v1, v22),

. . . , Pi ◦ (A1 � A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case (ii): Let v2 ∈ X2, e1 = {v11, v12, . . . , v1p} ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)},
. . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
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= inf{Pi ◦ (A1 � A2)(v11, v2), Pi ◦ (A1 � A2)(v12, v2),

. . . , Pi ◦ (A1 � A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case (iii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1 and e2 = {v21, v22, . . . , v2q} ⊆ X2 then
for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × e2)

= inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q )}}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}
, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q )}}

= inf{Pi ◦ (A1 � A2)(v11, v21), Pi ◦ (A1 � A2)(v12, v22), . . . , Pi ◦ (A1 � A2)(v1p, v2q )}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Definition 5.10 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then composition of H1 and H2 is an ordered
pair H = H1 � H2 = (A1 � A2, B1 � B2) such that,

1. Pi ◦ (A1 � A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 � B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1,

∀ e2 ∈ E2,

3. Pi ◦ (B1 � B2)(e1 × {v2} = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2,

∀ e1 ∈ E1,

4. Pi ◦ (B1 � B2)((v11, v21)(v12, v22) · · · (v1p, v2q)) = inf{Pi ◦ B1(e1),
Pi ◦ A2(v21), Pi ◦ A2(v22), . . . ,
Pi ◦ A2(v2q)}, ∀ e1 ∈ E1, v21, v22, . . . , v2q ∈ X2.

Theorem 5.3 If H1 and H2 are two m-polar fuzzy hypergraphs, then H1 � H2 is a
m-polar fuzzy hypergraph.

Proof Case(i): Let v1 ∈ X1, e2 ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 � A2)(v1, v21), Pi ◦ (A1 � A2)(v1, v22)
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, . . . , Pi ◦ (A1 � A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case(ii): Let v2 ∈ X2, e1 ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)}

, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
= inf{Pi ◦ (A1 � A2)(v11, v2), Pi ◦ (A1 � A2)(v12, v2)

, . . . , Pi ◦ (A1 � A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case(iii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1, v21, v22, . . . , v2q ∈ X2 then for
each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)((v11, v21)(v12, v22) · · · (v1p, v2q))
= inf{Pi ◦ B1(e1), Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}
, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q)}}

= inf{Pi ◦ (A1 � A2)(v11, v21), Pi ◦ (A1 � A2)(v12, v22)

, . . . , Pi ◦ (A1 � A2)(v1p, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Definition 5.11 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the union of H1 and H2 is an ordered
pair H = H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) such that

1. Pi ◦ (A1 ∪ A2)(v) =
⎧
⎨

⎩

Pi ◦ A1(v), if v ∈ X1 − X2,

Pi ◦ A2(v), if v ∈ X2 − X1,

sup{Pi ◦ A1(v), Pi ◦ A2(v)}, if v ∈ X1 ∩ X2.

2. Pi ◦ (B1 ∪ B2)(e) =
⎧
⎨

⎩

Pi ◦ B1(e), if e ∈ E1 − E2,

Pi ◦ B2(e), if e ∈ E2 − E1,

sup{Pi ◦ B1(e), Pi ◦ B2(e)}, if e ∈ E1 ∩ E2.
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Fig. 5.9 3-polar fuzzy hypergraphs H1 and H2

Fig. 5.10 H1 ∪ H2
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where E1 = supp(B1) and E2 = supp(B2).

Example 5.7 Consider 3-polar fuzzy hypergraphs H1 = (A1, B1) and H2 =
(A2, B2) as shown in Fig. 5.9.

The union of H1 and H2 is given in Fig. 5.10.

Theorem 5.4 The union H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) of two m-polar fuzzy
hypergraphs H1 = (A1, B1) and H2 = (A2, B2) is an m-polar fuzzy hypergraph.

Proof Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hypergraphs
on X1 and X2, respectively, such that E1 = supp(B1) and E2 = supp(B2). It is to
be shown that that H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) is an m-polar fuzzy hypergraph.
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Since, all conditions for A1 ∪ A2 are satisfied automatically, therefore, it is enough
to show that B1 ∪ B2 is an m-polar fuzzy relation on A1 ∪ A2.
Case(i): If e ∈ E1 − E2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = Pi ◦ B1(e1)

≤ inf
v1∈e1

PioA1(v1)

= inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
= inf{Pi ◦ (A1 ∪ A2)(v11), Pi ◦ (A1 ∪ A2)(v12), . . . , Pi ◦ (A1 ∪ A2)(v1p)}.

Case(ii): If e ∈ E2 − E1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = Pi ◦ B2(e2)

≤ inf
v2∈e2

PioA2(v2)

= inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q )}
= inf{Pi ◦ (A1 ∪ A2)(v21), Pi ◦ (A1 ∪ A2)(v22), . . . , Pi ◦ (A1 ∪ A2)(v2q )}.

Case(iii): If e ∈ E1 ∩ E2 or v j1, v j2, . . . , v jp ∈ X1 ∩ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = sup{Pi ◦ B1(e), Pi ◦ B2(e)}
≤ sup{inf{Pi ◦ A1(v j1), Pi ◦ A1(v j2), . . . , Pi ◦ A1(v jp)}

, inf{Pi ◦ A2(v j1), Pi ◦ A2(v j2), . . . , Pi ◦ A2(v jp)}}
= inf{sup{Pi ◦ A1(v j1), Pi ◦ A2(v j1)}, sup{Pi ◦ A1(v j2), Pi ◦ A2(v j2)}

, . . . , sup{Pi ◦ A1(v jp), Pi ◦ A2(v jp)}
= inf{Pi ◦ (A1 ∪ A2)(v11), Pi ◦ (A1 ∪ A2)(v12), . . . , Pi ◦ (A1 ∪ A2)(v1p)}.

Definition 5.12 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the join H = H1 + H2 of twom-polar
fuzzy hypergraphs H1 and H2 is defined as follows:

1. Pi ◦ (A1 + A2)(v) = Pi ◦ (A1 ∪ A2)(v), if v ∈ X1 ∪ X2,
2. Pi ◦ (B1 + B2)(e) = Pi ◦ (B1 ∪ B2)(e), if e ∈ E1 ∪ E2,
3. Pi ◦ (B1 + B2)(e) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, if e ∈ E ′,

where E ′ is the set of all the edges joining the vertices of X1 and X2 and X1 ∩ X2 = ∅.
Example 5.8 Consider H1 = (A1, B1) and H2 = (A2, B2) be two 3-polar fuzzy
hypergraphs as shown in Fig. 5.11 then their join is given in Fig. 5.12.
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Definition 5.13 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the lexicographic product of H1 and
H2 is defined by the ordered pair H = H1 • H2 = (A1 • A2, B1 • B2) such that

1. Pi ◦ (A1 • A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 • B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1 • B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(v2)}, ∀ e1 ∈ E1, ∀ e2 ∈
E2.

Theorem 5.5 If H1 and H2 are m-polar fuzzy hypergraphs then H1 • H2 is an m-
polar fuzzy hypergraph.

Proof Case(i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,
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Pi ◦ (B1 • B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 • A2)(v1, v21), Pi ◦ (A1 • A2)(v1, v22), . . . , Pi ◦ (A1 • A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 • A2)(v1, v2).

Case(ii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for
each 1 ≤ i ≤ m,

Pi ◦ (B1 • B2)(e1 × e2)

= inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 • A2)(v11, v21), Pi ◦ (A1 • A2)(v12, v22)

, . . . , Pi ◦ (A1 • A2)(v1p, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 • A2)(v1, v2).

Definition 5.14 Let H = (A, B) be an m-polar fuzzy hypergraph on a non-empty
set X . The dual m-polar fuzzy hypergraph of H , denoted by HD = (A∗, B∗), is
defined as

1. A∗ = B is the m-polar fuzzy set of vertices of HD .
2. If |X | = n then, B∗ is an m-polar fuzzy set on the family of hyperedges {X1, X2,

..., Xn} such that, Xi={E j | x j ∈ E j , E j is a hyperedge of H}, i.e., Xi is the
m-polar fuzzy set of those hyperedges which share the common vertex xi and
B∗(Xi ) = inf{E j | x j ∈ E j }.

Example 5.9 Consider the example of a 3-polar fuzzy hypergraph H = (A, B) given
in Fig. 5.13, where X = {x1, x2, x3, x4, x5, x6} and E = {E1, E2, E3, E4}. The dual
3-polar fuzzy hypergraph is shown in Fig. 5.14 with dashed lines with vertex set E =
{E1, E2, E3, E4} and set of hyperedges {X1, X2, X3, X4, X5, X6} such that X1 = X3.

Definition 5.15 The open neighborhood of a vertex x in an m-polar fuzzy hyper-
graph is the set of adjacent vertices of x excluding that vertex and it is denoted by
N (x).
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Fig. 5.14 Dual 3-polar fuzzy hypergraph

Example 5.10 Consider the 3-polar fuzzy hypergraph H = (A, B), where A =
{ζ1, ζ2, ζ3, ζ4} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a
3polar fuzzy relation on the 3-polar fuzzy subsets ζi ’s such that ζ1 = {(a, 0.3, 0.4,
0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4,
0.4)}. In this example, the open neighborhood of the vertex a is {b, d} as shown
in Fig. 5.15.



5.2 m-Polar Fuzzy Hypergraphs 203

a(0.3,0.4,0.5)

b(0.2,0.4,0.6)

c(
0.
2,
0.
1,
0.
4)

d
(0
.5
,0
.1
,0
.1
)

e(
0.
2.
0.
3,
0.
1)

(0
.2
,0
.4
,0
.5
)

(0.2,0.1,0.4)

(0.
3,0

.1,
0.1
)

(0.2,0.1,0.1)

Fig. 5.15 3-polar fuzzy hypergraph

Definition 5.16 The closed neighborhood of a vertex x in an m-polar fuzzy hyper-
graph is the set of adjacent vertices of x including x and it is denoted by N [x].
Example 5.11 Consider a 3-polar fuzzy hypergraph H = (A, B) as shown in
Fig. 5.15. In this example, closed neighborhood of the vertex a is {a, b, d}.
Definition 5.17 The open neighborhood degree of a vertex x in H is denoted by
deg(x) and defined as an m-tuple deg(x) = (deg(1)(x), deg(2)(x), deg(3)(x), . . . ,

deg(m)(x)), such that
deg(1)(x) = Σx∈N (x)P1 ◦ ζ j (x),

deg(2)(x) = Σx∈N (x)P2 ◦ ζ j (x),

deg(3)(x) = Σx∈N (x)P3 ◦ ζ j (x),

...

deg(m)(x) = Σx∈N (x)Pm ◦ ζ j (x).

Definition 5.18 Let H = (A, B) be an m-polar fuzzy hypergraph on a non-empty
set X . If all vertices in A have the same open neighborhood degree n, then H is
called n-regular m-polar fuzzy hypergraph.

Definition 5.19 The closed neighborhood degree of a vertex x in H is denoted
by deg[x] and defined as an m-tuple such that deg[x] = (deg(1)[x], deg(2)[x],
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Fig. 5.16 Regular and
totally regular 4-polar fuzzy
hypergraph

a(0.4,0.4,0.4,0.4)
b(0.4,0.4,0.4,0.4)

c(0.4,0.4,0.4,0.4)

d(0.4,0.4,0.4,0.4) e(0.4,0.4,0.4,0.4)
f (0.4,0.4,0.4,0.4)

g(0.4,0.4,0.4,0.4)
h(0.4,0.4,0.4,0.4)

i(0.4,0.4,0.4,0.4)

deg(3)[x], . . . , deg(m)[x]), where

deg(1)[x] = deg(1)(x) + ∧ j P1 ◦ ζ j (x),

deg(2)[x] = deg(2)(x) + ∧ j P2 ◦ ζ j (x),

deg(3)[x] = deg(3)(x) + ∧ j P3 ◦ ζ j (x),

...

deg(m)[x] = d(m)
G (x) + ∧ j Pm ◦ ζ j (x).

Example 5.12 Consider the example of a 3-polar fuzzy hypergraph H = (A, B),
where A = {ζ1, ζ2, ζ3, ζ4} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e}
and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζ j , where ζ1 =
{(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1),
(e, 0.2, 0.3, 0.1)}, ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 ={(a, 0.1, 0.3, 0.2),
(d, 0.3, 0.4, 0.4)}. Then, deg(a) = (0.5, 0.8, 1) and deg[a] = (0.6, 1.1, 1.2).

Definition 5.20 Let H = (A, B) be an m-polar fuzzy hypergraph on X . If all ver-
tices in A have the same closed neighborhood degree m, then H is called m-totally
regular m-polar fuzzy hypergraph.

Example 5.13 Consider the 3-polar fuzzy hypergraph H = (A, B), where A =
{ζ1, ζ2, ζ3} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a
3-polar fuzzy relation on the 3-polar fuzzy subsets ζ j such

ζ1 = {(a, 0.5, 0.4, 0.1), (b, 0.3, 0.4, 0.1), (c, 0.4, 0.4, 0.3)},
ζ2 = {(a, 0.3, 0.1, 0.1), (d, 0.2, 0.3, 0.2), (e, 0.4, 0.6, 0.1)},
ζ3 = {(b, 0.3, 0.4, 0.3), (d, 0.4, 0.3, 0.4), (e, 0.4, 0.3, 0.1)}.
By routine calculations, it easy to see that the H is neither regular nor totally

regular 3-polar fuzzy graph.

Example 5.14 The 4-polar fuzzy hypergraph shown in Fig. 5.16 is both regular and
totally regular.
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Remark 5.1 (a) For anm-polar fuzzy hypergraph H = (A, B) to be both regular and
totally regular, the number of vertices in each hyperedge E j must be same. Suppose
that |E j | = k for every j , then H is said to be k-uniform.

(b) Each vertex lies in exactly same number of hyperedges.

Definition 5.21 Let H = (A, B) be a regular m-polar fuzzy hypergraph. The order
of a regular m-polar fuzzy hypergraph H is an m-tuple of the form,

O(H) = (Σx∈X ∧ P1 ◦ ζ j (x),Σx∈X ∧ P2 ◦ ζ j (x), . . . , Σx∈X ∧ Pm ◦ ζ j (x)).

The size of a regular m-polar fuzzy hypergraph is S(H) = ∑
E j⊆X B(E j ).

Example 5.15 Consider the 4-polar fuzzy hypergraph H = (A, B) on X = {a, b, c,
d, e, f, g, h, i} and A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where

ζ1 = {(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},
ζ2 = {(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), ( f, 0.4, 0.4, 0.4, 0.4)},
ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},
ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},
ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},
ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), ( f, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.
Clearly, O(H) = (3.6, 3.6, 3.6, 3.6) and S(H) = (7.2, 7.2, 7.2, 7.2).

Theorem 5.6 Let H = (A, B) be an m-polar fuzzy hypergraph on X. Then, A :
X −→ [0, 1]m is a constant function if and only if the following statements are
equivalent,

(a) H is a regular m-polar fuzzy hypergraph,
(b) H is a totally regular m-polar fuzzy hypergraph.

Proof Suppose that A : X −→ [0, 1]m , where A = {ζ1, ζ2, ..., ζr } is a constant func-
tion. That is, Pi ◦ ζ j (x) = ci , for all x ∈ ζ j , 1 ≤ i ≤ m, 1 ≤ j ≤ r .

(a) ⇒ (b) Suppose that H is n-regular m-polar fuzzy hypergraph. Then
deg(i)(x) = ni , for all x ∈ X , 1 ≤ i ≤ m. By using Definition5.19, deg(i)[x] =
ni + ki , for all x ∈ X , 1 ≤ i ≤ m. Hence, H is a totally regularm-polar fuzzy hyper-
graph.

(b) ⇒ (a) Suppose that H is a k-totally regularm-polar fuzzy hypergraph. Then,
deg(i)[x] = ki , for all x ∈ X , 1 ≤ i ≤ m.

⇒ deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ki for all x ∈ ζ j ,
⇒ deg(i)(x) + ci = ki , for all x ∈ ζ j ,
⇒ deg(i)(x) = ki − ci , for all x ∈ ζ j . Thus, H is a regular m-polar fuzzy hyper-

graph. Hence, (a) and (b) are equivalent.
Conversely, suppose that (a) and (b) are equivalent, i.e., H is regular if and only if

H is a totally regular. On contrary suppose that A is not constant, that is, Pi ◦ ζ j (x) �=
Pi ◦ ζ j (y) for some x and y in A. Let H = (A, B) be a n-regular m-polar fuzzy
hypergraph then, deg(i)(x) = ni for all x ∈ ζ j (x). Consider,

deg(i)[x] = deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ni + ∧ j Pi ◦ ζ j (x),

deg(i)[y] = deg(i)(y) + ∧ j Pi ◦ ζ j (y) = ni + ∧ j Pi ◦ ζ j (y).
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Since, Pi ◦ ζ j (x) and Pi ◦ ζ j (y) are not equal for some x and y in X , hence deg[x]
and deg[y] are not equals, thus H is not a totally regular m-poalr fuzzy hypergraph,
which is a contradiction to our assumption. Next, let H be a totally regular m-polar
fuzzy hypergraph, then deg[x] = deg[y], that is,

deg(i)(x) + ∧ j Pi ◦ ζ j (x) = deg(i)(y) + ∧ j Pi ◦ ζ j (y),

deg(i)(x) − deg(i)(y) = ∧ j Pi ◦ ζ j (y) − ∧ j Pi ◦ ζ j (x).

It follows that deg(x) and deg(y) are not equal, so H is not a regular m-polar fuzzy
hypergraph, which is again a contradiction to our assumption. Hence, A must be
constant and it completes the proof.

Theorem 5.7 If an m-polar fuzzy hypergraph is both regular and totally regular
then A : X −→ [0, 1]m is constant function.

Proof Let H be a regular and totally regular m-polar fuzzy hypergraph then,

deg(i)(x) = ni for all x ∈ X, 1 ≤ i ≤ m.

deg(i)[x] = ki for all x ∈ ζ j (x),

⇔ deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ki , for all x ∈ ζ j (x),

⇔ n1 + ∧ j Pi ◦ ζ j (x) = ki , for all x ∈ ζ j (x),

⇔ ∧ j Pi ◦ ζ j (x) = ki − ni , for all x ∈ ζ j (x),

⇔ Pi ◦ ζ j (x) = ki − ni , for all x ∈ X, 1 ≤ i ≤ m.

Hence, A : X −→ [0, 1]m is a constant function.

Remark 5.2 The converse of Theorem5.7 may not be true, in general as it can be
seen in the following example.

Consider a 3-polar fuzzy hypergraph H = (A, B) on X = {a, b, c, d, e},
ζ1 = {(a, 0.2, 0, 2, 0.2), (b, 0.2, 0.2, 0.2), (c, 0.2, 0.2, 0.2)},
ζ2 = {(a, 0.2, 0, 2, 0.2), (d, 0.2, 0.2, 0.2)},
ζ3 = {(b, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)},
ζ4 = {(c, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)}. Then, A : X −→ [0, 1]m , where A =

{ζ1, ζ2, ..., ζr } is a constant function. But deg(a) = (0.6, 0.6, 0.6) �= (0.4, 0.4,
0.4) = deg(e). Also (deg[a] = (0.8, 0.8, 0.8) �= (0.6, 0.6, 0.6) = deg[e]). So H is
neither regular nor totally regular m-polar fuzzy hypergraph.

Definition 5.22 An m-polar fuzzy hypergraph H = (A, B) is called complete if
for every x ∈ X, N (x) = {xy| y ∈ X − x}, that is, N (x) contains all the remaining
vertices of X except x .

Example 5.16 Consider a 3-polar fuzzy hypergraph H = (A, B)on X = {a, b, c, d}
as shown in Fig. 5.17 then N (a) = {b, c, d}, N (b) = {a, c, d}, and N (c) = {a, b, d}.
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Fig. 5.17 Complete 3-polar
fuzzy hypergraph
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Remark 5.3 For a complete m-polar fuzzy hypergraph, the cardinality of N (x) is
same for every vertex.

Theorem 5.8 Every complete m-polar fuzzy hypergraph is a totally regular
m-polar fuzzy hypergraph.

Proof Since given m-polar fuzzy hypergraph H is complete, each vertex lies in
exactly same number of hyperedges and each vertex have same closed neighbor-
hood degreem. That is, deg[x1] = deg[x2] for all x1, x2 ∈ X. Hence, H ism-totally
regular.

5.3 Applications of m-Polar Fuzzy Hypergraphs

Analysis of human nature and their culture has been tangledwith assessment of social
networks from many years. Such networks are refined by designating one or more
relations on the set of individuals and the relations can be taken from efficacious
relationships, facets of some management and from a large range of others means.
For super-dyadic relationships between the nodes, network models represented by
simple graph are not sufficient. Natural presence of hyperedges can be found in co-
citation, e-mail networks, co-authorship, web log networks, and social networks, etc.
Representation of these models as hypergraphs maintain the dyadic relationships.

5.3.1 Super-Dyadic Managements in Marketing Channels

In marketing channels, dyadic correspondence organization has been a basic imple-
mentation. Marketing researchers and managers are realized that their common
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engagement in marketing channels is a central key for successful marketing and
to yield benefits for company. m-polar fuzzy hypergraphs consist of marketing man-
agers as vertices and hyperedges show their dyadic communication involving their
parallel thoughts, objectives, plans, and proposals. The more powerful close relation
in the researchers is more beneficial for the marketing strategies and the production
of an organization. A 3-polar fuzzy network model showing the dyadic communi-
cations among the marketing managers of an organization is given in Fig. 5.18. The
membership degrees of each person symbolize the percentage of its dyadic behavior
toward the other persons of the same dyad group. Adjacent level between any pair
of vertices illustrates that how much their dyadic relationship is proficient. The adja-
cent levels are given in Table5.4. It can be seen that the most capable dyadic pair is
(Kashif, Kaamil). 3-polar fuzzy hyperedges are taken as the different digital market-
ing strategies adopted by the different dyadic groups of the same organization. The
vital goal of this model is to figure out the most potent dyad of digital marketing tech-
niques. The six different groups are made by the marketing managers and the digital
marketing strategies adopted by these six groups are represented by hyperedges, i.e.,
the 3-polar fuzzy hyperedges {T1, T2, T3, T4, T5, T6} show the following strategies
{Product pricing, Product planning, Environment analysis and marketing research,
Brand name, Build the relationships, Promotions}, respectively. The exclusive effects

kaab(0.1,0.2,0.3)

kabeer(0.1,0.1,0.3)

kaamil(0.2,0.3,0.5)

kaarim(0.2,0.4,0.3)
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kaazhim(0.3,0.3,0.4)

kabaark(0.1,0.3,0.2)
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Fig. 5.18 Super-dyadic managements in marketing channels
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Table 5.4 Adjacent levels of 3-polar fuzzy hypergraph

Dyad pairs Adjacent level Dyad pairs Adjacent level

γ (Kadeen, Kashif) (0.2, 0.3, 0.3) γ (Kaarim, Kaazhim) (0.2, 0.3, 0.3)

γ (Kadeen, Kaamil) (0.2, 0.3, 0.3) γ (Kaarim, Kaab) (0.1, 0.2, 0.3)

γ (Kadeen, Kaarim) (0.2, 0.3, 0.3) γ (Kaarim, Kadar) (0.2, 0.3, 0.3)

γ (Kadeen, Kaazhim) (0.2, 0.3, 0.3) γ (Kaab, Kadar) (0.1, 0.2, 0.3)

γ (Kashif, Kaamil) (0.2, 0.3, 0.4) γ (Kaab, Kabeer) (0.1, 0.1, 0.3)

γ (Kashif, Kaab) (0.1, 0.2, 0.3) γ (Kadar, Kabaark) (0.1, 0.3, 0.2)

γ (Kashif, Kabeer) (0.1, 0.1, 0.3) γ (Kaazhim, Kabeer) (0.1, 0.1, 0.3)

γ (Kaamil, Kadar)) (0.2, 0.2, 0.3) γ (Kaazhim, Kabaark) (0.1, 0.3, 0.2)

γ (Kaamil, Kabaark) (0.1, 0.3, 0.2) γ (Kabeer, Kabaark) (0.1, 0.1, 0.2)

Table 5.5 Effects of marketing strategies

Marketing strategy Profitable growth Instruction manual for
company success

Create longevity of the
business

Product pricing 0.1 0.2 0.3

Product planning 0.2 0.3 0.3

Environment analysis
and marketing
research

0.1 0.2 0.2

Brand name 0.1 0.3 0.3

Build the relationships 0.1 0.3 0.2

Promotions 0.2 0.3 0.3

of membership degrees of each marketing strategy toward the achievements of an
organization are given in Table5.5. Effective dyads of market strategies enhance the
performance of an organization and discover the better techniques to be adopted. The
adjacency of all dyadic communication managements is given in Table5.6. The most
dominant and capable marketing strategies adopted mutually are Product planning
and Promotions. Thus to increase the efficiency of an organization, dyadic man-
agements should make the powerful planning for products and use the promotions
skill to attract customers to purchase their products. The membership degrees of this
dyad is (0.2, 0.3, 0.3) which shows that the amalgamated effect of this dyad will
increase the profitable growth of an organization up to 20%, instruction manual for
company success up to 30%, create longevity of the business up to 30% . Thus, to
promote the performance of an organization, super dyad marketing communications
are more energetic. The method of finding out the most effective dyads is explained
in Algorithm 5.3.1.
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Table 5.6 Adjacency of all dyadic communication managements

Dyadic strategies Effects

σ (Product pricing, Product planning) (0.1, 0.2, 0.3)

σ (Product pricing, Environment analysis and marketing research) (0.1, 0.2, 0.2)

σ (Product pricing, Brand name) (0.1, 0.2, 0.3)

σ (Product pricing, Build the relationships) (0.1, 0.2, 0.2)

σ (Product pricing, Promotions) (0.1, 0.2, 0.3)

σ (Product planning, Environment analysis and marketing research) (0.1, 0.2, 0.2)

σ (Product planning, Brand name) (0.1, 0.3, 0.3)

σ (Product planning, Build the relationships) (0.1, 0.3, 0.2)

σ (Product planning, Promotions) (0.2, 0.3, 0.3)

σ (Environment analysis and marketing research, Brand name) (0.1, 0.2, 0.2)

σ (Environment analysis and marketing research, Build the relationships) (0.1, 0.2, 0.2)

σ (Environment analysis and marketing research, Promotions) (0.1, 0.2, 0.2)

σ (Brand name, Build the relationships) (0.1, 0.3, 0.2)

σ (Brand name, Promotions) (0.1, 0.3, 0.3)

σ (Build the relationships, Promotions) (0.1, 0.3, 0.2)

Algorithm 5.3.1 Finding the most effective dyads

1. Input the membership values A(xi ) of all nodes (marketing managers) x1, x2, ..., xn .
2. Input the membership values B(Ti ) of all hyperedges T1, T2, ..., Tr .
3. Find the adjacent level between nodes xi and x j as,
4. do i from 1 → n − 1
5. do j from i + 1 → n
6. do k from 1 → r
7. if xi , x j ∈ Ek then
8. γ (xi , x j ) = supk inf{A(xi ), A(x j )}.
9. end if
10. end do
11. end do
12. end do
13. Find the best capable dyadic pair as supi, j γ (xi , x j ).
14. do i from 1 → r − 1
15. do j from i + 1 → r
16. do k from 1 → r
17. if xk ∈ Ti ∩ Tj then
18. σ(Ti , Tj ) = supk inf{B(Ti ), B(Tj )}.
19. end if
20. end do
21. end do
22. end do
23. Find the best effective super dyad management as supi, j σ(Ti , Tj ).
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Description of Algorithm 5.3.1: Lines 1 and 2 passes the input ofm-polar fuzzy set
A on n vertices x1, x2, . . . , xn andm-polar fuzzy relation B on r edges T1, T2, ..., Tr .
Lines 3–12 calculate the adjacent level between each pair of nodes. Line 14 calculates
the best capable dyadic pair. The loop initializes by taking the value i = 1 of do loop
which is always true, i.e., the loop runs for the first iteration. For any i th iteration
of do loop on line 3, the do loop on line 4 runs n − i times and, the do loop on line
5 runs r times. If there exists a hyperedge Ek containing xi and x j then, line 7 is
executed otherwise the if conditional terminates. For every i th iteration of the loop
on line 3, this process continues n times and then increments i for the next iteration
maintaining the loop throughout the algorithm. For i = n − 1, the loop calculates the
adjacent level for every pair of distinct vertices and terminates successfully at line
12. Similarly, the loops on lines 13, 14 , and 15 maintain and terminate successfully.

5.3.2 m-Polar Fuzzy Hypergraphs in Work Allotment
Problem

In customer care centers, availability of employees plays a vital to solve people’s
problems. Such a department should ensure that the system has been managed care-
fully to overcome practical difficulties. A lot of customers visit such centers to find
a solution of their problems. In this part, focus is given to alteration of duties for
the employees taking leave. The problem is that employees are taking leave without
proper intimation and alteration. We now show the importance of m-polar fuzzy
hypergraphs for the allocation of duties to avoid any difficulties.

Consider the example of a customer care center consisting of 30 employees.
Assuming that six workers are necessary to be available at their duties. We present
the employees as vertices and degree of membership of each employee represents
the workload, percentage of available time and number of workers who are also
aware of the employee’s work type. The range of values for present time and the
workers knowing the type of work is given in Tables5.7 and 5.8, respectively. The
degree of membership of each edge represents the common work load, percentage
of available time and number of workers who are also aware of the employee’s work
type. This phenomenon can be represented by a 3-polar fuzzy graph as shown in
Fig. 5.19. Using Algorithm 5.3.2, the strength of allocation and alteration of duties
among employees is given in Table5.9. Column 3 in Table5.9 shows the percentage
of alteration of duties. For example, in case of leave, duties of a1 can be given to a3
and similarly for other employees. The method for the calculation of alteration of
duties is given in Algorithm 5.3.2.
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Table 5.7 Range of
membership values of table
time

Time Membership value

5 h 0.40

6 h 0.50

8 h 0.70

10 h 0.90

Table 5.8 Workers knowing
the work type

Workers Membership value

3 0.40

4 0.60

5 0.80

6 0.90

Fig. 5.19 3-polar fuzzy
hypergraph
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Table 5.9 Alteration of duties

Workers A(ai , a j ) S(ai , a j )

a1, a2 (0.7, 0.8, 0.8) 0.77

a1, a3 (0.7, 0.9, 0.8) 0.80

a2, a3 (0.5, 0.7, 0.7) 0.63

a3, a4 (0.7, 0.6, 0.8) 0.70

a3, a5 (0.7, 0.9, 0.8) 0.80

a4, a5 (0.9, 0.9, 0.9) 0.90

a5, a6 (0.7, 0.8, 0.8) 0.77

a5, a1 (0.5, 0.6, 0.7) 0.60

a1, a6 (0.6, 0.8, 0.5) 0.63
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Algorithm 5.3.2 Calculation of alteration of duties

1. Input the n number of employees a1, a2, . . . , an .
2. Input the number of edges E1, E2, . . . , Er .
3. Input the incident matrix Bi j where, 1 ≤ i ≤ n, 1 ≤ j ≤ r .
4. Input the membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1 → n
6. do j from 1 → n
7. do k from 1 → r
8. if ai , a j ∈ Ek then
9. do t from 1 → m
10. Pt ◦ A(ai , a j ) = |Pt ◦ Bik − Pt ◦ Bjk | + Pt ◦ ξk
11. end do
12. end if
13. end do
14. end do
15. end do
16. do i from 1 → n
17. do j from 1 → n
18. if A(ai , a j ) > 0 then

19. S(ai , a j ) = P1 ◦ A(ai , a j ) + P2 ◦ A(ai , a j ) + . . . + Pm ◦ A(ai , a j )

m
20. end if
21. end do
22. end do

Description of Algorithm 5.3.2: Lines 1, 2, 3 and 4 passes the input of member-
ship values of vertices, hyperedges and an m-polar fuzzy adjacency matrix Bi j . The
nested loops on lines 5 to 15 calculate the r th, 1 ≤ r ≤ m, strength of allocation and
alteration of duties between each pair of employees. The nested loops on lines 16 to
22 calculate the strength of allocation and alteration of duties between each pair of
employees. The net time complexity of the algorithm is O(n2rm).

5.3.3 Availability of Books in Library

A library in college is a collection of sources of information and similar resources,
made accessible to student community for reference and examination preparation.
A student preparing for some examination will use the knowledge sources such as
1. Prescribed textbooks (A)
2. Reference books in syllabus (B)
3. Other books from library (C)
4. Knowledgeable study materials (D)
5. E-gadgets and internet (E)
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Fig. 5.20 3-polar fuzzy
hypergraph
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Table 5.10 Library sources

Sources si T (si ) S(ai , a j )

A (1.7, 1.7, 1.4) 1.60

B (1.6, 1.6, 1.1) 1.43

E (1.6, 1.6, 1.0) 1.40

C (0.9, 1.2, 1.0) 1.03

D (0.8, 1.2, 1.0) 1.0

The important thing is to consider the maximum availability of the sources which
students mostly use. This phenomenon can be discussed using m-polar fuzzy hyper-
graphs. We now calculate the importance of each source in student community.

Consider the example of five library resources {A, B,C, D, E} in a college. We
represent these sources as vertices in a 3-polar fuzzy hypergraph. The degree of
membership of each vertex represents the percentage of students using a particular
source for exam preparation, percentage of faculty of members using the sources
and number of sources available. The degree of membership of each edge represents
the common percentage. The 3-polar fuzzy hypergraph is shown in Fig. 5.20. Using
Algorithm 5.3.3, the strength of each library source is given in Table5.10.

Column 3 in Table5.10 shows that sources A and B are mostly used by students
and faculty. Therefore, these should be available in maximum number. There is also
a need to confirm the availability of source E to students and faculty. The method for
the calculation of percentage importance of the sources is given in Algorithm 5.3.3
whose net time complexity is O(nrm).
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Algorithm 5.3.3 Calculation of percentage importance of the sources

1. Input the n number of sources s1, s2, . . . , sn .
2. Input the number of edges E1, E2, . . . , Er .
3. Input the incident matrix Bi j , where 1 ≤ i ≤ n, 1 ≤ j ≤ r .
4. Input the membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1 → n
6. A(si ) = 1
7. C(si ) = 1
8. do k from 1 → r
9. if si ∈ Ek then
10. A(si ) = sup{A(si ), ξk}
11. C(si ) = inf{C(si ), Bik}
12. end if
13. end do
14. T (si ) = C(si ) + A(si )
15. end do
16. do i from 1 → n
17. if T (si ) > 0 then

18. S(si ) = P1 ◦ T (si ) + P2 ◦ T (si ) + . . . + Pm ◦ T (si )

m
19. end if
20. end do

Description of Algorithm 5.3.3: Lines 1, 2, 3, and 4 passes the input of membership
values of vertices, hyperedges and anm-polar fuzzy adjacencymatrix Bi j . The nested
loops on lines 5 to 15 calculate the degree of usage and availability of library sources.
The nested loops on lines 16–20 calculate the strength of each library source.

5.3.4 Selection of a Pair of Good Team for Competition

Competition grants the inspiration to achieve a goal; to demonstrate determination,
creativity, and perseverance to overcomechallenges; and to understand that hardwork
and commitment leads to a greater chance of success. It is inarguably accepted that a
bit of healthy competition in any field is known to enhance motivation and generate
increased effort from those competing. The sporting field is no exception to this rule.
While there will always be varying levels of sporting talent and interest across any
group of people, the benefits that competitive sport provides are still accessible to
all. There is a role for both competitive and noncompetitive sporting pursuits. To get
success in any competition, a strong team can be held largely accountable for the
success.

The purpose of this application is to select a pair of good player team for com-
petition with other country. For example, we have three teams of players (three
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Table 5.11 3-polar subsets of teams

Players Self confidence Strong sense of
motivation

Adaptability

Adnan 0.5 0.6 0.5

Usman 0.6 0.4 0.8

Awais 0.5 0.8 0.9

Hamza 0.7 0.7 0.6

Waseem 0.3 0.7 0.4

Usama 0.4 0.2 0.3

Iqbal 0.5 0.5 0.5

Noman 0.3 0.6 0.6

Arshad 0.4 0.3 0.7

Saeed 0.4 0.2 0.9

Nawab 0.7 0.5 0.6

Haris 0.6 0.6 0.5

3-polar fuzzy hypergraphs) and we have to select only one pair of team for com-
petition with other country. Then to select it, we use union operation of m-polar
fuzzy hypergraphs. Hypergraph is used because there is a link in one teammore than
two players and m-polar represents different qualities of players and teams. Con-
sider three teams, team 1 consists of players {Adnan,Usman, Hamza, Awais}.
Team 2 consists of players {Waseem,Usama, I qbal, Noman}. Team 3 consists of
players {Arshad, Saeed, Nawab, Haris}. The 3-polar fuzzy set of players repre-
sent the three different qualities of each player, i.e., self confidence, strong sense of
motivation, adaptability. 3-polar fuzzy hyperedges represent the three characteristics
of a good team. First membership degree of 3-polar fuzzy hyperedges represents
the focus of team on goals, second represents the communication with each other,
third represents how much team is organized. We want to select a pair of good team
which qualify these three properties with maximum membership degrees values
(Tables5.11 and 5.12).

Let A = {(Adnan, 0.5, 0.6, 0.5), (Usman, 0.6, 0.4, 0.8), (Awais, 0.5, 0.8, 0.9),
(Hamza, 0.7, 0.7, 0.6),

(Waseem, 0.3, 0.7, 0.4), (Usama, 0.4, 0.2, 0.3), (I qbal, 0.5, 0.5, 0.5),
(Noman, 0.3, 0.6, 0.6),

(Arshad, 0.4, 0.3, 0.7), (Saeed, 0.4, 0.2, 0.9), (Nawab, 0.7, 0.5, 0.6), (Haris,
0.6, 0.6, 0.5)} be a 3-polar fuzzy set of players and B = {(T eam 1, 0.5, 0.4, 0.5),
(T eam 2, 0.3, 0.2, 0.3), (T eam 3, 0.4, 0.2, 0.6)} is a set of 3-polar fuzzy hyper-
edges.

We select that pair of team whose union is strong, i.e., we select that union
whose edges have maximum membership degrees. It represents the focus of teams
on goals, second represents the communication with each other of both teams, and



5.3 Applications of m-Polar Fuzzy Hypergraphs 217

Table 5.12 3-polar fuzzy qualities of teams

Teams Focus on goals Communication skills Organization

1 0.5 0.4 0.5

2 0.3 0.2 0.3

3 0.4 0.2 0.6

Fig. 5.21 3-polar fuzzy
hypergraph H1
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Fig. 5.24 H1 ∪ H2
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third represents how much team is organized. So, we select the pair of team 1 and
team 3 (Figs. 5.21, 5.22, 5.23, 5.24, 5.25 and 5.26).

We present our proposed method in Algorithm 5.3.4.

Algorithm 5.3.4 Selection of team for competition

Step 1: Input
The set of players.
Assign the membership values to each player.
Select the players of each team.

Step 2: Compute the membership values of each team(edges) by using the relation
B(Ei ) = B({x1, x2, . . . , xr }) ≤ inf{ζi (x1), ζi (x2), . . . , ζi (xs)}, for all x1,
x2, . . . , xs ∈ X .

Step 3: Compute union of teams.
Compute their union by using the relation

(i) Pi ◦ (A1 ∪ A2)(v) =
⎧
⎨

⎩

Pi ◦ A1(v) i f v ∈ X1 − X2,

Pi ◦ A2(v) i f v ∈ X2 − X1,

sup{Pi ◦ A1(v), Pi ◦ A2(v)} i f v ∈ X1 ∩ X2.

(ii) Pi ◦ (B1 ∪ B2)(e) =
⎧
⎨

⎩

Pi ◦ B1(e) i f e ∈ E1 − E2,

Pi ◦ B2(e) i f e ∈ E2 − E1,

sup{Pi ◦ B1(e), Pi ◦ B2(e)} i f e ∈ E1 ∩ E2.

Step 4: Output
Select that pair of team for competition for which edges of union have maximum
membership degree.

5.4 m-Polar Fuzzy Directed Hypergraphs

Definition 5.23 A directed hypergraph is a hypergraph with directed hyperedges. A
directed hyperedge or hyperarc is an ordered pair E = (X,Y ) of (possibly empty)
disjoint subsets of vertices. X is the tail of E , while Y is its head. A sequence of
crisp hypergraphs Hi = (Vi , Ei ), 1 ≤ i ≤ n, is said to ordered if H1 ⊂ H2 ⊂ ..., Hn .
The sequence {Hi | 1 ≤ i ≤ n} is said to be simply ordered if it is ordered, and if
whenever E ⊂ Ei+1\Ei , then E � Vi .

We now define an m-polar fuzzy directed hypergraph.

Definition 5.24 An m-polar fuzzy directed hypergraph with underlying set X is an
ordered pair H = (σ, ε), where σ is non-empty set of vertices and ε is a family of
m-polar fuzzy (m-polar fuzzy) directed hyperarcs (or hyperedges). Anm-polar fuzzy
directed hyperarc (or hyperedge) ei ∈ ε is an ordered pair (t (ei ), h(ei )), such that,
t (ei ) �= ∅, is called its tail andh(ei ) �= t (ei ) is its head, such that Pkoεi ({v1, v2, ..., vs})
≤ inf{Pkoσi (v1), Pkoσi (v2), ..., Pkoσi (vs)}, for all v1, v2, ..., vs ∈ V, 1 ≤ k ≤ m.
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Fig. 5.27 3-polar fuzzy directed hypergraph

Definition 5.25 Let H = (σ, ε) be anm-polar fuzzy directed hypergraph. The order
of H , denoted by O(H), is defined as O(H) = ∑

x∈V ∧σi (x).The size of H , denoted
by S(H), is defined by S(H) = ∑

ek⊂V ε(ek).
In anm-polar fuzzydirected hypergraph, the vertices vi and v j are adjacent vertices

if they both belong to the samem-polar fuzzy directed hyperedge. Twom-polar fuzzy
directed hyperedges ei and e j are called adjacent if they have non-empty intersection.
That is, supp(ei ) ∩ supp(e j ) �= ∅, i �= j .

Definition 5.26 An m-polar fuzzy directed hypergraph H = (σ, ε) is simple if it
contains no repeated directed hyperedges, i.e., if e j , ek ∈ ε and e j ⊆ ek then e j =
ek . An m-polar fuzzy directed hypergraph H = (σ, ε) is called support simple if
e j , ek ∈ ε and supp(e j ) = supp(ek) and e j ⊆ ek , then e j = ek . An m-polar fuzzy
directed hypergraph, H = (σ, ε) is called strongly support simple if e j , ek ∈ ε and
supp(e j ) = supp(ek), then e j = ek .

Example 5.17 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε), such that
σ = {σ1, σ2, σ3, σ4, σ5} is the family of 3-polar fuzzy subsets on X = {v1, v2, v3,
v4, v5, v6}, as shown in Fig. 5.27, such that

σ1 = {(v1, 0.1, 0.2, 0.3), (v2, 0.3., 0.4, 0.4), (v3, 0.1, 0.3, 0.4)},
σ2 = {(v5, 0.4, 0.3, 0.3), (v6, 0.2, 0.2, 0.3), (v7, 0.1, 0.1, 0.4)},
σ3 = {(v3, 0.1, 0.3, 0.4), (v4, 0.4, 0.3, 0.2), (v7, 0.1, 0.1, 0.4)}.
3-polar fuzzy relation ε is defined as, ε(v1, v2, v7) = (0.1, 0.1, 0.3), ε(v5, v6, v7)

= (0.1, 0.1, 0.3), ε(v3, v4, v7) = (0.1, 0.1, 0.2).
Clearly, H is simple, strongly support simple, and support simple, that is, it con-

tains no repeated directed hyperedges and if whenever e j , ek ∈ ε and supp(e j ) =
supp(ek), then e j = ek . Further,O(H) = (1.6, 1.8, 2.3) and S(H) = (0.3, 0.3, 0.8).
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Fig. 5.28 Regular 3-polar
fuzzy hypergraph
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Definition 5.27 Let ε = (ε−, ε+) be a directed m-polar fuzzy hyperedge in an m-
polar fuzzy directed hypergraph. Then, the vertex set ε− is called them-polar fuzzy in-
set and the vertex set ε+ is called them-polar fuzzy out-set of the directed hyperedge
ε. It is not necessary that the sets ε−, ε+ will be disjoint. The hyperedge ε is called
the join of the vertices of ε− and ε+.

Definition 5.28 The in-degree D−
H (v) of a vertex v in an m-polar fuzzy directed

hypergraph is defined as the sum of membership degrees of all those directed hyper-
edges such that v is contained in their out-set, that is,

D−
H (v) =

∑

v∈h(ei )

ε(ei ), 1 ≤ k ≤ m.

The out-degree D+
H (v) of a vertex v in an m-polar fuzzy directed hypergraph is

defined as the sum of membership degrees of all those directed hyperedges such that
v is contained in their in-set, that is,

D+
H (v) =

∑

v∈t (ei )
ε(ei ), 1 ≤ k ≤ m.

Definition 5.29 An m-polar fuzzy directed hypergraph H = (σ, ε) is said to be k-
regular if in-degrees and out-degrees of all vertices in H are same.

Example 5.18 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε) as shown
in Fig. 5.28, where σ = {σ1, σ2, σ3, σ4} is the family of 3-polar fuzzy subsets on
V = {v1, v2, v3, v4, v5, v6} and

σ1 = {(v1, 0.2, 0.3, 0.5),(v2, 0.2, 0.3, 0.5),(v4, 0.2, 0.3, 0.5)},
σ2 = {(v4, 0.2, 0.3, 0.5),(v5, 0.2, 0.3, 0.5),(v6, 0.2, 0.3, 0.5)},
σ3 = {(v3, 0.2, 0.3, 0.5),(v5, 0.2, 0.3, 0.5),(v6, 0.2, 0.3, 0.5)},
σ4 = {(v1, 0.2, 0.3, 0.5),(v2, 0.2, 0.3, 0.5),(v3, 0.2, 0.3, 0.5)}. By routine calcu-

lations, we see that the 3-polar fuzzy directed hypergraph is regular.



222 5 Extended Bipolar Fuzzy (Directed) Hypergraphs to m-Polar Information

Fig. 5.29 Directed
hyperpath (denoted by a
thick line)
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Note that, D−
H (v1) = (0.2, 0.3, 0.5) = D+

H (v1) and D−
H (v2) = (0.2, 0.3, 0.5) =

D+
H (v2). Similarly, D−

H (v3) = D+
H (v3), D−

H (v4) = D+
H (v4), D−

H (v5) = D+
H (v5).

Hence, H is regular 3-polar fuzzy directed hypergraph.

Definition 5.30 Anm-polar fuzzy directed hyperpath of length k in anm-polar fuzzy
directed hypergraph is defined as a sequence v1, e1, v2, e2, . . . , ek, vk+1 of distinct
vertices and directed hyperedges such that

1. ε(ei ) > 0, i = 1, 2, ..., k,
2. vi , vi+1 ∈ ei .

The consecutive pairs (vi , vi+1) are called the directed arcs of the directed hyperpath.
The path is shown by a thick line in Fig. 5.29.

Definition 5.31 The incidencematrix of anm-polar fuzzy directed hypergraph H =
(σ, ε) is characterized by an n × m matrix [ai j ] as follows:

ai j =
{
Pkoε j (vi ), if vi ∈ ε j ,

0, otherwise.

Definition 5.32 Anm-polar fuzzydirectedhypergraph is called elementary if Pkoεi j :
V −→ [0, 1]m are constant functions, Pkoεi j is taken as the membership degree of
vertex i to hyperedge j .

Proposition 5.1 In an m-polar fuzzy directed hypergraph, when m-polar fuzzy ver-
tices have constant membership degrees, then m-polar fuzzy directed hyperedges are
elementary.

Example 5.19 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε), where σ =
{σ1, σ2, σ3} be the family of 3-polar fuzzy subsets on V = {v1, v2, v3, v4, v5}. The
corresponding incidence matrix is given in Table5.13.

The corresponding elementary 3-polar fuzzy directed hypergraph is shown in
Fig. 5.30.
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Table 5.13 Elementary 3-polar fuzzy directed hypergraph

I ε1 ε2 ε3

v1 (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3)

v2 (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3)

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0

v4 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)

v5 0 (0.1, 0.2, 0.3) 0

v5(0.1,0.2,0.3)

v2(0.1,0.2,0.3)

v3(0.1,0.2,0.3)

v4 (0.1,0.2,0.3)

v1(0.1,0.2,0.3)

(0.1,0.2,0.3)

(0.1,0.2,0.3)

(0.1,0.2,0.3)

Fig. 5.30 Elementary 3-polar fuzzy directed hypergraph

Definition 5.33 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph. Suppose
μ = (μ1, μ2, ..., μm) ∈ [0, 1]m . The μ-level is defined as εμ = {v ∈ σ | Pkoσ(v) ≥
μk}. The crisp directed hypergraph Hμ = (σμ, εμ), such that

• εμ = {v ∈ σ | Pkoσ(v) ≥ μk}, 1 ≤ k ≤ m.

• σμ = ⋃
εμ,

is called the μ-level directed hypergraph of H .

Definition 5.34 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
Hμi = (σμi , εμi ) be the μi -level directed hypergraphs of H . The sequence {μ1,μ2,

μ3, ...,μn} of m-tuples, where μ1 > μ2 > ...μn > 0 and μn = h(H)(height of m-
polar fuzzy directed hypergraph), such that the following properties,

1. if μi+1 < α ≤ μi , then εα = εμi ,
2. εμi � εμi+1 ,

are satisfied, is called a fundamental sequence of H . The sequence is denoted by
FS(H). The μi -level hypergraphs {Hμ1, Hμ2 , ..., Hμn} are called the core hyper-
graphs of H . This is also called core set of H and is denoted by c(H).
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Table 5.14 3-polar fuzzy directed hypergraph

I ε1 ε2 ε3

v1 (0.8, 0.6, 0.1) 0 0

v2 (0.8, 0.6, 0.5) (0.6, 0.4, 0.3) (0.5, 0.3, 0.2)

v3 (0.8, 0.6, 0.5) (0.6, 0.4, 0.3) (0.5, 0.3, 0.2)

v4 0 (0.6, 0.4, 0.1) 0

v5 0 0 (0.5, 0.3, 0.2)

v6 0 0 (0.5, 0.3, 0.2)

Fig. 5.31 3-polar fuzzy
directed hypergraph
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Definition 5.35 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
FS(H) = {μ1, μ2, μ3, ..., μn}. If for each e ∈ ε and each μi ∈ FS(H), eμ = εμi ,
for all μ ∈ (μi+1, μi ], then H is called sectionally elementary.

Definition 5.36 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
c(H) = {Hμ1, Hμ2 , ..., Hμn}. H is said to be ordered if c(H) is ordered. That is,
Hμ1 ⊂ Hμ2 ⊂ ... ⊂ Hμn . The m-polar fuzzy directed hypergraph is called simply
ordered if the sequence {Hμ1 , Hμ2 , ..., Hμn} is simply ordered.

Example 5.20 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε) as shown
in Fig. 5.31 and given by incidence matrix in Table5.14.

By computing the μi -level 3-polar fuzzy directed hypergraphs of H , we have
ε(0.8,0.6,0.5) = {v2, v3}, ε(0.6,0.4,0.3) = {v2, v3} and ε(0.5,0.3,0.2) = {v2, v3, v5, v6}. Note
that, H(0.8,0.6,0.5) = H(0.6,0.4,0.3) and H(0.8,0.6,0.5) ⊆ H(0.5,0.3,0.2). The fundamental
sequence is FS(H) = {(0.8, 0.6, 0.5), (0.5, 0.3, 0.2)}. Furthermore, H(0.8,0.6,0.5) �=
H(0.6,0.4,0.3). H is not sectionally elementary since ε2(μ) �= ε2(0.8,0.6,0.5) for μ =
(0.6, 0.4, 0.3). The 3-polar fuzzy directed hypergraph is ordered, and the set of core
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v1
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v3

v6v4

v5

H(0.5,0.3,0.2)-level graph

ε 3

Fig. 5.32 H induced fundamental sequence

Table 5.15 Index matrix of an m-polar fuzzy hypergraph

I t1 t2 . . . tn

t1 ε(t1t1) ε(t1t2) . . . ε(t1tn)

t2 ε(t2t1) ε(t2t2) . . . ε(t2tn)

. . . . .

. . . . .

. . . . .

tn ε(tn t1) ε(tn t2) . . . ε(tn tn)

hypergraphs is c(H) = {H1 = H(0.8,0.6,0.5), H2 = H(0.5,0.3,0.2)}. The induced funda-
mental sequence of H is given in Fig. 5.32 (Table5.15).

Proposition 5.2 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph, the fol-
lowing conditions hold

(a) If H = (σ, ε) is an elementary m-polar fuzzy directed hypergraph, then H is
ordered.

(b) If H is an ordered m-polar fuzzy directed hypergraph with c(H) = {Hμ1 ,

Hμ2 , ..., Hμn} and if Hμn is simple, then H is elementary.

Definition 5.37 Let H = (σ, ε) be anm-polar fuzzy directed hypergraph. The index
matrix of H is defined by

Now we present certain operations on m-polar fuzzy directed hypergraphs.
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Fig. 5.33 3-polar fuzzy
directed hypergraph H1
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Fig. 5.34 3-polar fuzzy
directed hypergraph H2
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Definition 5.38 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The addition of two m-polar fuzzy directed hypergraphs over a fixed
set X is denoted by H1 � H2 = (σ1 ∪ σ2, ε1 ∪ ε2) and defined as

Pko(σ1 ∪ σ2)(vr ) =

⎧
⎪⎪⎨

⎪⎪⎩

Pkoσ1(vr ), if vr ∈ σ1 \ σ2,

Pkoσ2(vr ), if vr ∈ σ2 \ σ1,

sup{Pkoσ1(vr ), Pkoσ2(vr )}, if vr ∈ σ1 ∩ σ2,

0, otherwise.

(5.1)

Pko(ε1 ∪ ε2)(ers)=

⎧
⎪⎪⎨

⎪⎪⎩

Pkoε1(ei j ), if vr = vi ∈ σ1 and vs = v j ∈ σ1 \ σ2,

Pkoε2(epq), if vr = vp ∈ σ2 and vs = vq ∈ σ2 \ σ1,

sup{Pkoε1(ei j ), Pkoε2(epq )}, if vr = vi = vp ∈ σ1 ∩ σ2, vs = v j = vq ∈ σ1 ∩ σ2,

0, otherwise.
(5.2)

Example 5.21 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs, where σ1 = {v1, v2, ..., v5}, ε1 = {({v1, v2}, v3), ({v1, v4}, v5), {{v2},
v5} and σ2 = {v1, v2, ..., v6}, ε2 = {({v1, v2}, v5), ({v4, v6}, v3), {{v1, v4}, v6} as
shown in Figs. 5.33 and 5.34, respectively.

The index matrix of H1 is given in Table5.16, where σ1 = {v1, v2, ..., v5}.
The index matrix of H2 is given in Table5.17, where σ2 = {v1, v2, ..., v6}.
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Table 5.16 Index matrix of H1

I v1 v2 v3 v4 v5

v1 0 0 0 0 0

v2 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 0 0

v4 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.2, 0.3, 0.2) 0 (0.1, 0.2, 0.2) 0

Table 5.17 Index matrix of H2

I v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) 0 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0

Table 5.18 Index matrix of H1 � H2

H1 � H2 v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) 0 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0

The index matrix of H1 � H2 is given in Table5.18, where σ1 ∪ σ2 = {v1, v2, ...,
v6}. The corresponding hypergraph is shown in Fig. 5.35.

Definition 5.39 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The vertex-wise multiplication of two m-polar fuzzy directed hyper-
graphs over a fixed set V is denoted by H1 ⊗ H2 = (σ1 ⊗ σ2, ε1 ⊗ ε2) and defined
as

Pko(σ1 ⊗ σ2) = inf{Pkoσ1(vr ), Pkoσ2(vr )} if vr ∈ σ1 ∩ σ2, (5.3)

Pko(ε1 ⊗ ε2)(ers)

= inf{Pkoε1(ei j ), Pkoσ2(epq )} if vr = vi = vp ∈ σ1 ∩ σ2, vs = v j = vq ∈ σ1 ∩ σ2. (5.4)
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Fig. 5.35 H1 � H2
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Table 5.19 Index matrix of H1 ⊗ H2

H1 ⊗ H2 v1 v2 v3 v4 v5

v1 0 0 0 0 0

v2 0 0 0 0 0

v3 0 0 0 0 0

v4 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.1, 0.2, 0.3) 0 0 0

Fig. 5.36 H1 ⊗ H2
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(0.1,0.2,0.2) (0.1,0.2,0.3)

Example 5.22 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs as shown in Figs. 5.33 and 5.34, respectively. The index matrix of H1 ⊗
H2 is shown in Table5.19, where σ1 ∩ σ2 = {v1, v2, ..., v5}.

The graph of H1 ⊗ H2 is shown in the Fig. 5.36.

Definition 5.40 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The structural subtraction of two m-polar fuzzy directed hypergraphs
over a fixed set V is denoted by H1 � H2 = (σ2 − σ1, ε2 − ε1) and defined as
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Table 5.20 Index matrix of
H1 � H2

H1 � H2 v6

v6 0

Fig. 5.37 H1 � H2 v6(0.1,0.3,0.3)

Pko(σ2 − σ1)(vr ) =
⎧
⎨

⎩

Pkoσ1(vr ), if vr ∈ σ1,

Pkoσ2(vr ), if vr ∈ σ2,

0, otherwise.
(5.5)

Pko(ε2 − ε1)(ers) = Pkoε1(ei j ) if vr = vi ∈ σ2 − σ1 and vs = v j ∈ σ2 − σ1. (5.6)

The graph H1 � H2 is empty when σ2 − σ1 = ∅.
Example 5.23 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs as shown in Figs. 5.33 and 5.34, respectively. The index matrix of H1 �
H2 is shown in Table5.20, where σ2 − σ1 = {v6}.

The graph H1 � H2 is shown in the following Fig. 5.37

Definition 5.41 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The multiplication of two m-polar fuzzy directed hypergraphs H1 and
H2, denoted by H1 � H2 = (σ1 � σ2, ε1 � ε2) is defined as

Pko(σ1 � σ2)(vr ) =
⎧
⎨

⎩

Pkoσ1(vr ), if vr ∈ σ1,

Pkoσ2(vr ), if vr ∈ σ2,

inf{Pkoσ1(vr ), Pkoσ2(vr )}, if vr ∈ σ1 ∩ σ2.

(5.7)

Pko(ε1 � ε2)(ers)

=

⎧
⎪⎨

⎪⎩

Pkoε1(ei j ), if vr = vi ∈ σ1 and vs = v j ∈ σ1 \ σ2,

Pkoε2(epq ), if vr = vp ∈ σ2 and vs = vq ∈ σ2 \ σ1,

sup
i,q

{inf
j,p

{Pkoε1(ei j ), Pkoε2(epq )}}, if vr = vi ∈ σ1 ∩ σ2 and vs = vq ∈ σ1 ∩ σ2.
(5.8)

Table 5.21 Index matrix of H1 � H2

H1 � H2 v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.1, 0.2, 0.2) 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0
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Fig. 5.38 H1 � H2

Example 5.24 The index matrix of graph H1 � H2 is shown in Table5.21, where
σ2 ∪ (σ1 − σ2) = {v1, v2, v3, ..., v6} is given in Table5.20.

The corresponding hypergraph is shown in Fig. 5.38.

5.5 Application of m-Polar Fuzzy Directed Hypergraphs

Decision-making is regarded as the intellectual process resulting in the selection of
a belief or a course of action among several alternative possibilities. Every decision-
making process produces a final choice, which may or may not prompt action.
Decision-making is the process of identifying and choosing alternatives based on the
values, preferences, and beliefs of the decision-maker. Problems in almost every cred-
ible discipline, including decision-making can be handled using graphical
models.

5.5.1 Business Strategy Company

A business strategy is a registered plan on how an organization is setting out to fulfill
their ambitions. A business strategy has a variety of successful key of principles that
sketch how a company will go about achieving their dreams in business. It deals with
competitors, look at their needs and expectations of customers and will examine the
long-term growth and sustainability of their organization.
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Fig. 5.39 3-polar fuzzy directed hypergraph model

Table 5.22 Collective interest of investors toward companies

Business strategy company Positive effects of investors

Company A (0.5, 0.4, 0.6)

Company B (0.5, 0.4, 0.5)

Company C (0.5, 0.5, 0.6)

Company D (0.2, 0.3, 0.2)

Company E (0.3, 0.4, 0.3)

In this fast running world where every investor is searching out a best business
strategy company so that they invest their money on the company to promote the
business and to compete their competitors. Then to select a good marketing business
companywhichwill achieve its goals,meet the expectations and sustain a competitive
advantage in the marketplace, we develop a 3-polar fuzzy directed hypergraphical
model that how an investor can choice the greatest salubrious company to promote
the business by following a step by step procedure. A 3-polar fuzzy directed hyper-
graph demonstrating a group of investors as members of different business strategy
companies is shown in Fig. 5.39.

If an investor wants to adopt the most suitable and powerful business company to
which he works and get the progress in business, the following procedure can help
the investors. Firstly, one should think about the cooperative contribution of investors
toward the company, which can be found out by means of membership values of 3-
polar fuzzy directed hypergraphs. The membership values given in Table5.22 shows
the collective interest of investors toward the company.
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Table 5.23 Benefits of company on the investors

Business strategy company Effects of company on investors

Company A (0.5, 0.4, 0.4)

Company B (0.4, 0.5, 0.4)

Company C (0.5, 0.6, 0.5)

Company D (0.3, 0.4, 0.2)

Company E (0.3, 0.2, 0.3)

Table 5.24 In-degrees and out-degrees of companies

Business strategy company In-degrees out-degrees

Company A (0.5, 0.4, 0.4) (0.5, 0.7, 0.5)

Company B (0.4, 0.4, 0.4) (0.2, 0.3, 0.2)

Company C (0.5, 0.5, 0.5) (0, 0, 0)

Company D (0.2, 0.3, 0.2) (0.3, 0.4, 0.3)

Company E (0.3, 0.2, 0.3) (0.6, 0.4, 0.6)

The first membership value showing how much investors invest money on com-
pany, second showing the sharp-minded quality of investors to run the business and
third showing how can strongly they make production by working with company. It
can be noticed that the company C has strong collective interest in investors which
is maximum among all other companies. Secondly, one should do his research on
the powerful impacts of all under consideration companies on their investors. The
membership degrees of all company nodes show their effects on their investors as
given in Table5.23.

The membership values showing three different positive effects of company on
investor, first one shows how much a company is financially strong already, sec-
ond showing its business growth in the market, and third one showing the strong
competitive position of company. Note that, company C has the most benefits for
investors. Thirdly, an investor can observe the influence of a company by calculating
its in-degrees and out-degrees. In-degrees show the percentage of investors joining
the company and out-degrees show the percentage of investors leaving that com-
pany. The in-degrees and out-degrees of all business strategy companies are given in
Table5.24.

Hence, a best business strategy company has maximum in-degrees and minimum
out-degrees.However, in casewhen twocompanies have sameminimumout-degrees,
then we compare their in-degrees. Similarly, when in-degrees same, we compare
out-degrees. From all the above discussion, we conclude that company C is the most
appropriate company to fulfill the requirements of the investors because it is more
financially strong, best in competitive position and business growth of this company
is more suitable to run the business and compete with the competitors. Themethod of
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searching out the constructive and profitable business strategy company is explained
in the following Algorithm 5.5.1.

Algorithm 5.5.1 To find out the constructive and profitable business strategy com-
pany
1. Input the membership values of all nodes(investors) v1, v2, ..., vn .
2. Determine the augmentation of investors toward companies by calculating the
membership values of all directed hyperedges as

Pkoεr ≤ inf{Pkov1, Pkov2, ..., Pkovn}, 1 ≤ k ≤ m.

3. Obtain the most suitable company as

sup Pkoεr .

4. Find the company having strong and more benefits for investors as,

sup Pkovr ,

where all vr here are vertices represent the different business strategy company.
5. Find the profitable influence of companies vr on the investors by calculating the
in-degrees D−(vr ) as ∑

vr∈h(εr )

Pkoεr .

6. Find the profitless impact of companies vk on the investors by calculating the
out-degrees D+(vr ) as, ∑

vr∈t (εr )
Pkoεr .

7. Obtain the most advantageous business strategy company as

(sup D−(vr ), inf D
+(vr )).

The algorithm runs linearly and its net time complexity is ©(n), where n is the
number of membership values of all nodes(investors).
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