
Chapter 3
Hypergraphs for Interval-Valued
Structures

In this chapter, we present interval-valued fuzzy hypergraphs, A = [μ−, μ+]–
tempered interval-valued fuzzy hypergraphs, and some of their properties. More-
over, we discuss the notions of vague hypergraphs, dual vague hypergraphs, and
A-tempered vague hypergraphs. Finally, we describe interval-valued intuitionistic
fuzzy hypergraphs and interval-valued intuitionistic fuzzy transversals of H . This
chapter is due to [4–6, 8, 11, 22, 27].

3.1 Introduction

Zadeh [27] introduced the notionof interval-valued fuzzy sets as an extensionof fuzzy
set theory [25] for representing vagueness and uncertainty. Interval-valued fuzzy
set theory reflects the uncertainty by the length of the interval membership degree
[μ1, μ2]. In intuitionistic fuzzy set theory for every membership degree (μ1, μ2), the
value π = 1 − μ1 − μ2 denotes a measure of non-determinacy (or undecidedness).
Interval-valued fuzzy sets provide a more adequate description of vagueness than
traditional fuzzy sets. It is, therefore, important to use interval-valued fuzzy sets
in applications, such as fuzzy control. One of the computationally most intensive
parts of fuzzy control is defuzzification [20]. Since interval-valued fuzzy sets are
widely studied and used, we describe briefly the work of Gorzalczany [14, 15]
on approximate reasoning, Roy and Biswas [23] on medical diagnosis, Turksen
[24] on multivalued logic and Mendel [20] on intelligent control. Atanassov and
Gargov [6] introduced the notion of interval-valued intuitionistic fuzzy sets which is
a generalization of both intuitionistic fuzzy sets and interval-valued fuzzy sets.

Graph theory has numerous applications to problems in systems analysis, opera-
tions research, economics, and transportation. However, in many cases, some aspects
of a graph-theoretic problem may be uncertain. For example, the vehicle travel time
or vehicle capacity on a road network may not be known exactly. In such cases, it
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is natural to deal with the uncertainty using the methods of fuzzy sets and fuzzy
logic. Hypergraph models are more general types of relations than graphs do and can
be used to model networks, social networks, biology networks, process scheduling,
data structures, computations, and a variety of other systems where complex rela-
tionships between the objects in the system play a dominant role. Fuzzy hypergraphs
were proposed by Kaufmann [17] and then generalized and redefined by Lee-kwang
and Lee [19]. Goetschel Jr. [12] discussed the concept of hypergraphs by initiating
a glimpse of what may be done within a fuzzy setting. Also the idea of transversal
of a hypergraph has been extended to fuzzy transversal of a fuzzy hypergraph by
Goetschel Jr. et al. [13]. Chen [8] presented the notion of the interval-valued fuzzy
hypergraph theory which is based on a combination of the interval-valued fuzzy set
and hypergraph models. Akram and Dudek [1] presented some properties of intu-
itionistic fuzzy hypergraphs and provided its application in clustering problem. Naz
et al. [22] proposed the concept of the interval-valued intuitionistic fuzzy hypergraphs
by combining the interval-valued intuitionistic fuzzy set and hypergraph models.

Definition 3.1 An interval number D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤
1. The interval [a, a] is identified with the number a ∈ [0, 1]. Let D[0, 1] be the set
of all interval numbers. For interval numbers D1 = [a−

1 , b+
1 ] and D2 = [a−

2 , b+
2 ], we

define

• min{D1, D2} = min{[a−
1 , b+

1 ], [a−
2 , b+

2 ]} = [min{a−
1 , a−

2 },min{b+
1 , b+

2 }],
• max{D1, D2} = max{[a−

1 , b+
1 ], [a−

2 , b+
2 ]} = [max{a−

1 , a−
2 },max{b+

1 , b+
2 }],

• D1 + D2 = [a−
1 + a−

2 − a−
1 · a−

2 , b+
1 + b+

2 − b+
1 · b+

2 ],
• D1 ≤ D2 ⇐⇒ a−

1 ≤ a−
2 and b+

1 ≤ b+
2 ,• D1 = D2 ⇐⇒ a−

1 = a−
2 and b+

1 = b+
2 ,• D1 < D2 ⇐⇒ D1 ≤ D2 and D1 �= D2,

• kD = k[a−
1 , b+

1 ] = [ka−
1 , kb+

1 ], where 0 ≤ k ≤ 1.

Similarly,

sup
i∈I

{[a−
i , b+

i ]} = [sup
i∈I

{a−
i }, sup

i∈I
{b+

i }] and inf
i∈I {[a

−
i , b+

i ]} = [inf
i∈I {a

−
i }, inf

i∈I {b
+
i }].

It is known that (D[0, 1],≤,∨,∧) is a complete latticewith [0, 0] as the least element
and [1, 1] as the greatest.
Definition 3.2 The interval-valued fuzzy set A in X is defined by, A = {(x, [μ−

A(x),
μ+

A(x)]) : x ∈ X},whereμ−
A(x) andμ+

A(x) are fuzzy subsets of X such thatμ−
A(x) ≤

μ+
A(x), for all x ∈ X.

Let X be a non-empty set, then by an interval-valued fuzzy relation B on a set X
we mean an interval-valued fuzzy set such that

μ−
B (xy) ≤ min(μ−

A(x), μ−
A(y)), μ+

B (xy) ≤ min(μ+
A(x), μ+

A(y)),

for all xy ∈ X × X . In the clustering, the interval-valued fuzzy set A, is called
an interval-valued fuzzy class. We define the support of A by supp (A) = {x ∈
X | [μ−

A(x), μ+
A(x)] �= [0, 0]} and say A is nontrivial if supp(A) is non-empty.
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Interval-valued fuzzy relations reflect the idea that membership grades are often
not precise and the intervals represent such uncertainty.

Definition 3.3 The height of an interval-valued fuzzy set A = [μ−
A(x), μ+

A(x)] is
defined as

h(A) = sup
x∈X

(A)(x) = [sup
x∈X

μ−
A(x), sup

x∈X
μ+

A(x)].

We shall say that interval-valued fuzzy set A is normal if A = [μ−
A(x), μ+

A(x)] =
[1, 1], for all x ∈ X .

Definition 3.4 By an interval-valued fuzzy graph on non-empty set X , we mean
a pair G = (A, B), where A = [μ−

A, μ+
A] is an interval-valued fuzzy set on X and

B = [μ−
B , μ+

B ] is an interval-valued fuzzy relation on X such that

μ−
B (xy) ≤ min(μ−

A(x), μ−
A(y)),

μ+
B (xy) ≤ min(μ+

A(x), μ+
A(y)),

for all x , y ∈ X .

For further terminologies and studies on interval-valued fuzzy hypergraphs, read-
ers are referred to [2, 3, 7, 9, 10, 16, 18, 21, 26, 27].

3.2 Interval-Valued Fuzzy Hypergraphs

Definition 3.5 Let X be a finite set and let E = {E1, E2, . . . , Em} be a finite family
of nontrivial interval-valued fuzzy subsets of X such that

X =
⋃

j

supp[μ−
j , μ

+
j ], j = 1, 2, . . . ,m,

where A = [μ−
j , μ

+
j ] is an interval-valued fuzzy set defined on E j ∈ E . Then, the

pair I = (X, E) is an interval-valued fuzzy hypergraph on X , E is the family of
interval-valued fuzzy edges of I and X is the (crisp) vertex set of I . The order of I
(number of vertices) is denoted by |X | and the number of edges is denoted by |E |.
Definition 3.6 Let A = [μ−

A, μ+
A] be an interval-valued fuzzy subset of X and let

E be a collection of interval-valued fuzzy subsets of X such that for each B =
[μ−

B , μ+
B ] ∈ E and x ∈ X ,μ−

B (x) ≤ μ−
A(x),μ+

B (x) ≤ μ+
A(x). Then the pair (A, B) is

an interval-valued fuzzy hypergraph on the interval-valued fuzzy set A. The interval-
valued fuzzy hypergraph (A, B) is also an interval-valued fuzzy hypergraph on X
= supp(A), the interval-valued fuzzy set A defines a condition for interval-valued in
the edge set E . This condition can be stated separately, so without loss of generality
we restrict attention to interval-valued fuzzy hypergraphs on crisp vertex sets.
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Example 3.1 Consider an interval-valued fuzzy hypergraph I = (X, E) as shown
in Fig. 3.1 such that X = {a, b, c, d} and E = {E1, E2, E3}, where

E1 =
{

a

[0.2, 0.3] ,
b

[0.4, 0.5]
}

, E2 =
{

b

[0.4, 0.5] ,
c

[0.2, 0.5]
}

, E3 =
{

a

[0.2, 0.3] ,
d

[0.2, 0.4]
}

.

The corresponding incidence matrix is given in Table3.1.

Definition 3.7 An interval-valued fuzzy set A = [μ−
A, μ+

A] : X → D[0, 1] is an ele-
mentary interval-valued fuzzy set if A is single valued on supp(A). An elementary
interval-valued fuzzy hypergraph I = (X, E) is an interval-valued fuzzy hypergraph
whose edges are elementary.

We explore the sense in which an interval-valued fuzzy graph is an interval-valued
fuzzy hypergraph.

Proposition 3.1 Interval-valued fuzzy graphs and interval-valued fuzzy digraphs
are special cases of the interval-valued fuzzy hypergraphs.

An interval-valued fuzzy multigraph is a multivalued symmetric mapping D =
[μ−

D, μ+
D] : X × X → D[0, 1]. An interval-valued fuzzy multigraph can be consid-

ered to be the “disjoint union” or “disjoint sum” of a collection of simple interval-
valued fuzzy graphs, as is done with crisp multigraphs. The same holds for multidi-
graphs. Therefore, these structures can be considered as “disjoint unions” or “disjoint
sums” of interval-valued fuzzy hypergraphs.

Fig. 3.1 Interval-valued
fuzzy hypergraph

E2
E3

a[0.2, 0.3]

d[0.2, 0.4]

E1 b[0.4, 0.5]

c[0.2, 0.5)

Table 3.1 The corresponding incidence matrix

MI E1 E2 E3

a [0.2, 0.3] [0, 0] [0.2, 0.3]

b [0.4, 0.5] [0.4, 0.5] [0, 0]

c [0, 0] [0.2, 0.5] [0, 0]

d [0, 0] [0, 0] [0.2, 0.4]
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Definition 3.8 An interval-valued fuzzy hypergraph I = (X, E) is simple if A =
[μ−

A, μ+
A ], B = [μ−

B , μ+
B ] ∈ E and μ−

A ≤ μ−
B , μ

+
A ≤ μ+

B imply that μ−
A = μ−

B , μ
+
A =

μ+
B .
An interval-valued fuzzy hypergraph I = (X, E) is support simple if A = [μ−

A,

μ+
A], B = [μ−

B , μ+
B ] ∈ E , supp(A) = supp(B), and μ−

A ≤ μ−
B , μ+

A ≤ μ+
B imply that

μ−
A = μ−

B , μ
+
A = μ+

B .
An interval-valued fuzzy hypergraph I = (X, E) is strongly support simple if

A = [μ−
A, μ+

A], B = [μ−
B , μ+

B ] ∈ E and supp(A) = supp(B) imply that A = B.

Remark 3.1 The Definition3.8 reduces to familiar definitions in the special case
where I is a crisp hypergraph. The interval-valued fuzzy definition of simple is
identical to the crisp definition of simple. A crisp hypergraph is support simple
and strongly support simple if and only if it has no multiple edges. For interval-
valued fuzzy hypergraphs all three concepts imply nomultiple edges. Simple interval-
valued fuzzy hypergraphs are support simple and strongly support simple interval-
valued fuzzy hypergraphs are support simple. Simple and strongly support simple
are independent concepts.

Definition 3.9 Let I = (X, E) be an interval-valued fuzzy hypergraph. Suppose
that α, β ∈ [0, 1]. Let

• E[α,β] = {A[α,β]| A ∈ E}, A[α,β] = {x | μ−
A(x) ≤ α or μ+

A(x) ≤ β}, and
• X [α,β] = ⋃

A∈E A[α,β].

If E[α,β] �= ∅, then the crisp hypergraph I[α,β] = (X [α,β], E[α,β]) is the [α, β]–level
hypergraph of I .

Clearly, it is possible that A[α,β] = B[α,β] for A �= B, by using distinct markers
to identity the various members of E a distinction between A[α,β] and B[α,β] to
represent multiple edges in I[α,β]. However, we do not take this approach unless
otherwise stated, we will always regard I[α,β] as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the [α, β]-cuts of an interval-
valued fuzzyhypergraph share an important relationshipwith eachother, as expressed
below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set Y belonging to Y which contains X . In this case, we say
that Y absorbs X and symbolically write X � Y to express this relationship between
X and Y. Since, it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X �= Y, then we write
X � Y.

Definition 3.10 Let I = (X, E) be an interval-valued fuzzy hypergraph, and for
[0, 0] < [s, t] ≤ h(I ). Let I[s,t] be the [s, t]–level hypergraph of I . The sequence
of real numbers {[s1, r1], [s2, r2], . . . , [sn, rn]}, [0, 0] < [s1, r1] < [s2, r2] < · · · <

[sn, rn] = h(I ), which satisfies the properties,

• if [si+1, ri+1] < [u, v] ≤ [si , ri ], then E[u,v] = E[si ,ri ],
• E[si ,ri ] � E[si+1,ri+1],



130 3 Hypergraphs for Interval-Valued Structures

is called the fundamental sequence of I, and is denoted by F(I ) and the set of [si , ri ]-
level hypergraphs {I[s1,r1], I[s2,r2], . . ., I[sn ,rn ]} is called the set of core hypergraphs of
I or, simply, the core set of I , and is denoted by C(I ).

Definition 3.11 Suppose I = (X, E) is an interval-valued fuzzy hypergraph with
F(I ) = {[s1, r1], [s2, r2], . . . , [sn, rn]}, and sn+1 = 0, rn+1 = 0. Then, I is called
sectionally elementary if for each edge A = (μ−

A, μ+
A) ∈ E , each i = {1, 2, . . . , n},

and [si , ri ] ∈ F(I ), A[s,t] = A[si ,ri ], for all [s, t] ∈ ([si+1, ri+1], [si , ri ]].
Clearly I is sectionally elementary if and only if A(x) = (μ−

A(x), μ+
A(x)) ∈ F(I )

for each A ∈ E and each x ∈ X .

Definition 3.12 Asequence of crisp hypergraphs Ii = (Xi , E∗
i ), [1, 1] ≤ i ≤ [n, n],

is said to be ordered if I1 ⊂ I2 ⊂ · · · ⊂ In . The sequence {Ii | [1, 1] ≤ i ≤ [n, n]} is
simply ordered if it is ordered and if whenever E∗ ∈ E∗

i+[1,1] − E∗
i , then E∗

� Xi .

Definition 3.13 An interval-valued fuzzy hypergraph I is ordered if the I induced
fundamental sequence of hypergraphs is ordered. The interval-valued fuzzy hyper-
graph I is simply ordered if the I induced fundamental sequence of hypergraphs is
simply ordered.

Example 3.2 Consider the interval-valued fuzzy hypergraph I = (X, E), where
X = {a, b, c, d} and E = {E1, E2, E3, E4, E5}which is represented by the following
incidence matrix Table3.2.

Clearly, h(I ) = [0.3, 0.9].
Now

E[0.1,0.9] = {{a, b}, {b, c}},

E[0.2,0.7) = {{a, b}, {b, c}},

E[0.3,0.4] = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

Thus, for [0.3, 0.4] < [s, t] ≤ [0.1, 0.9], E[s,t] = {{a, b}, {b, c}}, and for [0, 0] <

[s, t] ≤ [0.3, 0.4],

E[s,t] = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

Table 3.2 Incidence matrix of I

I E1 E2 E3 E4 E5

a [0.2, 0.7] [0.0, 0.9] [0, 0] [0, 0] [0.3, 0.4]

b [0.2, 0.7] [0.0, 0.9] [0.0, 0.9] [0.2, 0.7] [0, 0]

c [0, 0] [0, 0] [0.0, 0.9] [0.2, 0.7] [0.3, 0.4]

d [0, 0] [0.3, 0.4] [0, 0] [0.3, 0.4] [0.3, 0.4]
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We note that E[0.1,0.9] ⊆ E[0.3,0.4]. The fundamental sequence is F(I ) = {[s1, r1] =
[0.1, 0.9], [s2, r2] = [0.3, 0.4]} and the set of core hypergraph is C(I ) = {I1 =
(X1, E1) = I[0.1,0.9], I2 = (X2, E2) = I[0.3,0.4]}, where

X1 = {a, b, c}, E1 = {{a, b}, {b, c}, }

X2 = {a, b, c, d}, E2 = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

I is support simple, but not simple. I is not sectionally elementary since E1[s,t] �=
E1[0.1,0.9] for s = 0.2, t = 0.7. Clearly, interval-valued fuzzy hypergraph I is simply
ordered.

Proposition 3.2 Let I = (X, E)beanelementary interval-valued fuzzy hypergraph.
Then, I is support simple if and only if I is strongly support simple.

Proof Suppose that I is elementary, support simple and that supp(A) = supp(B). We
assumewithout loss of generality that h(A) ≤ h(B). Since, I is elementary, it follows
that μ−

A ≤ μ−
B , μ+

A ≤ μ+
B and since I is support simple then μ−

A = μ−
B , μ+

A = μ+
B .

Therefore, I is strongly support simple. The proof of converse part is obvious.

The complexity of an interval-valued fuzzy hypergraph depends in part on howmany
edges it has. The natural question arises: is there an upper bound on the number of
edges of an interval-valued fuzzy hypergraph of order n?

Proposition 3.3 Let I = (X, E) be a simple interval-valued fuzzy hypergraph of
order n. Then, there is no upper bound on |E |.
Proof Let X = {x, y}, and define EN= {Ai = [μ−

Ai
, μ+

Ai
] | i = 1, 2, . . . , N }, where

μ−
Ai

(x) = 1

i + 1
, μ+

Ai
(x) = 1 − 1

i + 1
,

μ−
Ai

(y) = 1

i + 1
, μ+

Ai
(y) = i

i + 1
.

Then IN = (X, EN ) is a simple interval-valued fuzzy hypergraph with N edges. This
ends the proof.

Proposition 3.4 Let I = (X, E) be a support simple interval-valued fuzzy hyper-
graph of order n. Then, there is no upper bound on |E |.
Proposition 3.5 Let I = (X, E) be a strongly support simple interval-valued fuzzy
hypergraph of order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if
{supp(A) | A ∈ E} = P(X) − ∅.
Proposition 3.6 Let I = (X, E) be an elementary simple interval-valued fuzzy
hypergraph of order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if
{supp(A) | A ∈ E} = P(X) − ∅.
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Proof Since I is elementary and simple, each nontrivial W ⊆ X can be the support
of at most one A = (μ−

A, μ+
A) ∈ E . Therefore, |E | ≤ 2n − 1. To show there exists

an elementary, simple I with |E | = 2n − 1, let E = {A = (μ−
A, μ+

A) | W ⊆ X} be
the set of functions defined by

μ−
A(x) = 1

|W | , if x ∈ W, μ−
A(x) = 0, if x /∈ W,

μ+
A(x) = 1 − 1

|W | , if x ∈ W, μ+
A(x) = 1, if x /∈ W.

Then, each one element has height [0, 1], each two elements have height [0.5, 0.5]
and so on. Hence, I is an elementary and simple, and |E | = 2n − 1.

Proposition 3.7 (a) If I = (X, E) is an elementary interval-valued fuzzy hyper-
graph, then I is ordered.
(b) If I is an ordered interval-valued fuzzy hypergraph with simple support hyper-
graph, then I is elementary.

Consider the situation where the vertex of a crisp hypergraph is fuzzified. Suppose
that each edge is given a uniform degree of membership consistent with the weakest
vertex of the edge. Some constructions describe the following subclass of interval-
valued fuzzy hypergraphs.

Definition 3.14 An interval-valued fuzzy hypergraph I = (X, E) is called a A =
[μ−

A, μ+
A ]-tempered interval-valued fuzzy hypergraph of I = (X, E) if there is a

crisp hypergraph I ∗ = (X, E∗) and an interval-valued fuzzy set A = [μ−
A, μ+

A] :
X → D(0, 1] such that E = {BF = [μ−

BF
, μ+

BF
] | F ∈ E∗}, where

μ−
BF

(x) =
{
min(μ−

A(y) | y ∈ F), if x ∈ F,

0, otherwise,

μ+
BF

(x) =
{
min(μ+

A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let A ⊗ I denote the A-tempered interval-valued fuzzy hypergraph of I deter-
mined by the crisp hypergraph I ∗ = (X, E∗) and the interval-valued fuzzy set
A : X → D(0, 1].

Example 3.3 Consider the interval-valued fuzzy hypergraph I = (X, E), where
X = {a, b, c, d} and E = {E1, E2, E3, E4} which is represented by the following
incidence matrix given in Table3.3.
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Table 3.3 Incidence matrix of I

I E1 E2 E3 E4

a [0.2, 0.7] [0.0, 0.0] [0, 0] [0.2, 0.7]

b [0.2, 0.7] [0.3, 0.4] [0.0, 0.9] [0.0, 0.0]

c [0, 0] [0, 0] [0.0, 0.9] [0.2, 0.7]

d [0, 0] [0.3, 0.4] [0, 0] [0.0, 0.0]

Then, E[0.0,0.9] = {{b, c}}, E[0.2,0.7) = {{a, b}, {a, c}, {b, c}}, and E[0.3,0.4] =
{{a, b}, {a, c}, {b, c}, {b, d}}. Define A = [μ−

A, μ+
A] : X → D(0, 1] by

μ−
A(a) = 0.2, μ−

A(b) = μ−
A(c) = 0.0, μ−

A(d) = 0.3,

μ+
A(a) = 0.7, μ+

A(b) = μ+
A(c) = 0.9, μ+

A(d) = 0.4.

Note that

μ−
B{a,b}(a) = min(μ−

A(a), μ−
A(b)) = 0.0, μ−

B{a,b}(b) = min(μ−
A(a), μ−

A(b)) = 0.0,

μ−
B{a,b}(c) = 0.0, μ−

B{a,b}(d) = 0.0,

μ+
B{a,b}(a) = min(μ+

A(a), μ+
A(b)) = 0.7, μ+

B{a,b}(b) = min(μ+
A(a), μ+

A(b)) = 0.7

μ+
B{a,b}(c) = 1.0, μ+

B{a,b}(d) = 1.0.

Thus,
E1 = [μ−

B{a,b} , μ
+
B{a,b} ], E2 = [μ−

B{b,d} , μ
+
B{b,d} ],

E3 = [μ−
B{b,c} , μ

+
B{b,c} ], E4 = [μ−

B{a,c} , μ
+
B{a,c} ].

Hence, I is A-tempered hypergraph.

Proposition 3.8 An interval-valued fuzzy hypergraph I is an A-tempered interval-
valued fuzzy hypergraph of some crisp hypergraph I ∗ if and only if I is elementary,
support simple, and simply ordered.

Proof Suppose that I = (X, E) is an A-tempered interval-valued fuzzy hypergraph
of some crisp hypergraph I ∗. Clearly, I is elementary and support simple. We show
that I is simply ordered. Let

C(I ) = {(I ∗
1 )r1 = (X1, E

∗
1 ), (I ∗

2 )r2 = (X2, E
∗
2 ), . . . , (I ∗

n )rn = (Xn, E
∗
n )}.
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Since I is elementary, it follows fromProposition3.7 that I is ordered. To show that I
is simply ordered, suppose that there exists F ∈ E∗

i+1\E∗
i . Then, there exists x

∗ ∈ F
such that μ−

A(x∗) = ri+1, μ
+
A(x∗) = ŕi+1. Since μ−

A(x∗) = ri+1 < ri and μ+
A(x∗) =

ŕi+1 < ŕi , it follows that x∗ /∈ Xi and F � Xi , hence I is simply ordered.
Conversely, suppose I = (X, E) is elementary, support simple and simplyordered.

Let

C(I ) = {(I ∗
1 )r1 = (X1, E

∗
1 ), (I ∗

2 )r2 = (X2, E
∗
2 ), . . . , (I ∗

n )rn = (Xn, E
∗
n )},

where D(I ) = {r1, r2, . . . , rn} with 0 < rn < · · · < r1. Since (I ∗)rn = I ∗
n =

(Xn, E∗
n ) and define A = [μ−

A, μ+
A] : Xn → D(0, 1] by

μ−
A (x) =

{
r1, i f x ∈ X1,

ri , i f x ∈ Xi\Xi−1, i = 1, 2, . . . , n
μ+
A (x) =

{
s1, i f x ∈ X1,

si , i f x ∈ Xi\Xi−1, i = 1, 2, . . . , n

We show that E = {BF = [μ−
BF

, μ+
BF

] | F ∈ E∗}, where

μ−
BF

(x) =
{
min(μ−

A (y) | y ∈ F), if x ∈ F,

0, otherwise,
μ+
BF

(x) =
{
min(μ+

A (y) | y ∈ F), if x ∈ F,

1, otherwise.

Let F ∈ E∗
n . Since I is elementary and support simple, there is a unique interval-

valued fuzzy edge CF = [μ−
CF

, μ+
CF

] in E having support E∗. Indeed, distinct edges
in E must have distinct supports that lie in E∗

n . Thus, to show that E = {BF =
[μ−

BF
, μ+

BF
] | F ∈ E∗

n }, it suffices to show that for each F ∈ E∗
n , μ−

CF
= μ−

BF
and

μ+
CF

= μ+
BF
. As all edges are elementary and different edges have different supports,

it follows from the definition of fundamental sequence that h(CF ) is equal to some
number ri of D(I ). Consequently, E∗ ⊆ Xi . Moreover, if i > 1, then F ∈ E∗\E∗

i−1.
Since F ⊆ Xi , it follows from the definition of A = [μ−

A, μ+
A] that for each x ∈ F ,

μ−
A(x) ≥ ri and μ+

A(x) ≥ si . We claim that μ−
A(x) = ri and μ+

A(x) = si , for some
x ∈ F . If not, then by definition of A = [μ−

A, μ+
A], μ−

A(x) ≥ ri and μ+
A(x) ≥ si for

all x ∈ F which implies that F ⊆ Xi−1 and so F ∈ E∗\E∗
i−1 and since I is simply

ordered F � Xi−1, a contradiction. Thus, it follows from the definition of BF that
BF = CF . This completes the proof.

As a consequence of the above theorem we obtain.

Proposition 3.9 Suppose that I is a simply ordered interval-valued fuzzy hyper-
graph and F(I ) = {r1, r2, . . . , rn}. If I rn is a simple hypergraph, then there is a
partial interval-valued fuzzy hypergraph Í of I such that the following assertions
hold:

1. Í is an A-tempered interval-valued fuzzy hypergraph of In.
2. E � É .
3. F( Í ) = F(I ) and C( Í ) = C(I ).



3.3 Vague Hypergraphs 135

3.3 Vague Hypergraphs

Different authors from time to time havemade a number of generalizations of Zadeh’s
[25] fuzzy set theory. The notion of vague set was introduced by Gau and Buehrer
[11]. This is because in most cases of judgments, the evaluation is done by human
beings and so the certainty is a limitation of knowledge or intellectual functionaries.
Naturally, every decision-maker hesitates more or less on every evaluation activity.
For example, in order to judge whether a patient has cancer or not, a medical doctor
(the decision-maker) will hesitate because of the fact that a fraction of evaluation
he thinks in favor of the truthness, another fraction in favor of the falseness and the
rest part remains undecided to him. This is the breaking philosophy in the notion of
vague set theory introduced by Gau and Buehrer [11].

Definition 3.15 A vague set A in the universe of discourse X is a pair (tA, f A), where
tA : X → [0, 1], f A : X → [0, 1] are true and false memberships, respectively such
that tA(x) + f A(x) ≤ 1, for all x ∈ X .

In the above definition, tA(x) is considered as the lower bound for degree of mem-
bership of x in A (based on evidence), and f A(x) is the lower bound for negation of
membership of x in A (based on evidence against). Therefore, the degree of member-
ship of x in the vague set A is characterized by the interval [tA(x), 1 − f A(x)]. So,
a vague set is a special case of interval-valued sets. The interval [tA(x), 1 − f A(x)]
is called the vague value of x in A, and is denoted by XA(x). We denote zero vague
and unit vague value by 0 = [0, 0] and 1 = [1, 1], respectively. It is worth to mention
here that interval-valued fuzzy sets are not vague sets. In interval-valued fuzzy sets,
an interval-valued membership value is assigned to each element of the universe
considering the “evidence for x” only, without considering “evidence against x”. In
vague sets both are independently proposed by the decision-maker. This makes a
major difference in the judgment about the grade of membership.

Remark 3.2 The intuitionistic fuzzy sets and vague sets look similar, analytically
vague sets are more appropriate when representing vague data. The difference
between them is discussed below. The membership interval of element x for vague
set A is [tA(x), 1 − f A(x)]. But, the membership value for element x in an intuition-
istic fuzzy set B is < x, μB(x), νB(x) >. Here the semantics of tA is the same as
with A and μB is the same as with B. However, the boundary is able to indicate
the possible existence of a data value. This difference gives rise to a simpler but
meaningful graphical view of data sets (see Fig. 3.2).

A vague relation is a generalization of a fuzzy relation.

Definition 3.16 Let X and Y be ordinary finite non-empty sets. We call a vague
relation to be a vague subset of X × Y , that is, an expression R defined by

R = {< (x, y), tR(x, y), fR(x, y) > |x ∈ X, y ∈ Y },

where tR : X × Y → [0, 1], fR : X × Y → [0, 1], which satisfies the condition 0 ≤
tR(x, y) + fR(x, y) ≤ 1, for all (x, y) ∈ X × Y . A vague relation R on X is called
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Vague membership intervalVague

values

1

0

1− fA

tA

Elements

(a) Vague sets

1

0 Elements

νB

μB

μ − values

(b) Intuitionistic fuzzy sets

Fig. 3.2 Comparison between vague sets and intuitionistic fuzzy sets

reflexive if tR(x, x) = 1 and fR(x, x) = 0, for all x ∈ X . A vague relation R on X is
symmetric if tR(x, y) = tR(y, x) and fR(x, y) = fR(y, x), for all x, y ∈ X .

Definition 3.17 Let A = (tA, f A) be a vague set on X and let α, β ∈ [0, 1] be such
thatα ≤ β.Then, the set A(α,β) = {x | tA(x) ≥ α, 1 − f A(x) ≥ β} is called a (α, β)-
(weakly) cut set of A. A(α,β) is a crisp set.

Definition 3.18 The support of A is defined by supp(A) = {x ∈ X | (tA(x),
f A(x)) �= (0, 0)} and we say A is nontrivial if supp(A) is non-empty. The height
of a vague set A is defined as h(A) = supx∈X (A)(x).

Definition 3.19 A vague relation B on a set X is a vague relation from X to X . If
A is a vague set on a set X , then a vague relation B on A is a vague relation which
satisfies, tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max( f A(x), f A(y)), for all
xy ∈ E ⊆ X × X .

Definition 3.20 Let X be a non-empty set, members of X are called nodes. A vague
graph G = (A, B) with X as the set of nodes, is a pair of functions A, B, where A
is a vague set of X and B is a vague relation on X . We note that vague relation B in
vague digraph need not to be symmetric.

We now define vague hypergraph,

Definition 3.21 Let X be a finite set and letE = {E1,E2, . . . ,Em} be a finite family
of nontrivial vague subsets of X such that X = ⋃

j suppE j , j = 1, 2, . . . ,m. Then,
the pairH = (X,E) is a vague hypergraph on X, E is the family of vague edges of
H and X is the (crisp) vertex set of H.

Definition 3.22 Let A = (tA, f A) be a vague subset of X and letE be a collection of
vague subsets of X such that for each B = (tB, fB) ∈ E and x ∈ X , tA(x) ≤ tB(x),
fB(x) ≥ f A(x). Then, the pair (A, B) is a vague hypergraph on the vague set A. The
vague hypergraph (A, B) is also a vague hypergraph on X = supp(A), the vague set A
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defines a condition for interval-valued in the edge setE. This condition can be stated
separately, so without loss of generality we restrict attention to vague hypergraphs
on crisp vertex sets.

Definition 3.23 A vague set A is an elementary vague set if A is single valued on
supp(A). An elementary vague hypergraphH = (X,E) is a vague hypergraphwhose
edges are elementary.

Definition 3.24 A vague hypergraph H = (X,E) is simple if A = (tA, f A), B =
(tB, fB) ∈ E and tA ≤ tB , f A ≥ fB imply that tA = tB , f A = fB .

AvaguehypergraphH = (X,E) is support simple if A = (tA, f A), B = (tB, fB) ∈
E , supp(A) = supp(B), and tA ≤ tB , f A ≥ fB imply that tA = tB , f A = fB .

A vague hypergraphH = (X,E) is strongly support simple if A = (tA, f A), B =
(tB, fB) ∈ E , and supp(A) = supp(B) imply that A = B.

Example 3.4 Consider a vague hypergraph H = (X,E) as shown in Fig. 3.3 such
that X = {a, b, c, d} and E = {E1,E2,E3}, where

E1 =
{

a

(0.2, 0.3)
,

b

(0.4, 0.5)

}
, E2 =

{
b

(0.4, 0.5)
,

c

(0.2, 0.5)

}
, E3 =

{
a

(0.2, 0.3)
,

d

(0.2, 0.4)

}
.

The corresponding incidence matrix is given below in Table3.4.

Fig. 3.3 Vague hypergraph

Table 3.4 The incidence matrix of vague hypergraph

MH E1 E2 E3

a (0.2, 0.3) (0, 0) (0.2, 0.3)

b (0.4, 0.5) (0.4, 0.5) (0, 0)

c (0, 0) (0.2, 0.5) (0,0)

d (0,0) (0,0) (0.2, 0.4)
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Definition 3.25 LetH = (X,E) be a vague hypergraph. Suppose that α, β ∈ [0, 1].
Let

• E(α,β) = {A(α,β)| A ∈ E}, A(α,β) = {x | tA(x) ≥ α , 1 − f A(x) ≥ β}, and
• X(α,β) = ⋃

A∈E A(α,β).

If E(α,β) �= ∅, then the crisp hypergraph H(α,β) = (X(α,β),E(α,β)) is the (α, β)–
level hypergraph of H.

Clearly, it is possible that A(α,β) = B(α,β) for A �= B, by using distinct markers to
identity the variousmembers ofE a distinction between A(α,β) and B(α,β) to represent
multiple edges in H(α,β). However, we do not take this approach unless otherwise
stated, we will always regard H(α,β) as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the (α, β)-cuts of a vague
hypergraph share an important relationship with each other, as expressed below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set Y belonging to Y which contains X . In this case we say
that Y absorbs X and symbolically write X � Y to express this relationship between
X and Y. Since it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X �= Y, then we write
X � Y.

Definition 3.26 Let H = (X,E) be a vague hypergraph, and for (0, 0) < (s, t) ≤
h(H). LetH(s,t) be the (s, t)–level hypergraph ofH. The sequence of real numbers,

{(s1, r1), (s2, r2), . . . , (sn, rn)}, 0 < s1 < s2 < · · · < sn and 0 > r1 > r2 > · · · > rn,

where (sn, rn) = h(H),

which satisfies the properties

• if si < u ≤ si+1 and ri > v ≥ ri+1 , then E(u,v) = E(si+1,ri+1), and
• E(si ,ri ) � E(si+1,ri+1),

is called the fundamental sequence of H, and is denoted by F(H) and the set of
(si , ri )-level hypergraphs {H((s1,r1),H(s2,r2), . . . ,H(sn ,rn)} is called the set of core
hypergraphs ofH or, simply, the core set ofH, and is denoted by C(H).

Definition 3.27 Suppose H = (X,E) is vague hypergraph with F(H) = {(s1, r1),
(s2, r2), . . . , (sn, rn)}, and sn+1 = 0, rn+1 = 0,Then,H is called sectionally elemen-
tary if for each edge A = (tA, f A) ∈ E, each i = {1, 2, . . . , n}, and (si , ri ) ∈ F(H),
A(s,t) = A(si ,ri ) for all (s, t) ∈ ((si+1, ri+1), (si , ri )].
Clearly, H is sectionally elementary if and only if A(x) = (tA(x), f A(x)) ∈ F(H)

for each A ∈ E and each x ∈ X .

Definition 3.28 A sequence of crisp hypergraphsHi = (Xi , E∗
i ), 1 ≤ i ≤ n, is said

to be ordered if H1 ⊂ H2 ⊂ . . . ⊂ Hn . The sequence {Hi | 1 ≤ i ≤ n} is simply
ordered if it is ordered and if whenever E∗ ∈ E∗

i+1 − E∗
i , then E∗

� Xi .
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Definition 3.29 A vague hypergraph H is ordered if the H induced fundamental
sequence of hypergraphs is ordered. The vague hypergraph H is simply ordered if
theH induced fundamental sequence of hypergraphs is simply ordered.

We state the following Propositions without their proofs.

Proposition 3.10 LetH = (X,E) be an elementary vague hypergraph. Then,H is
support simple if and only if H is strongly support simple.

Proposition 3.11 Let H = (X,E) be a simple vague hypergraph of order n. Then,
there is no upper bound on |E|.
Proof Let X = {x, y}, and define EN = {Ai = (tAi , f Ai ) | i = 1, 2, . . . , N }, where

tAi (x) = 1

i + 1
, f Ai (x) = 1 − 1

i + 1
,

tAi (y) = 1

i + 1
, f Ai (y) = i

i + 1
.

Then HN = (X,EN ) is a simple vague hypergraph with N edges. This ends the
proof.

Proposition 3.12 Let H = (X,E) be a support simple vague hypergraph of order
n. Then, there is no upper bound on |E|.
Proposition 3.13 LetH = (X,E) be a strongly support simple vague hypergraph of
order n. Then, there is no upper bound on |E| ≤ 2n − 1 if and only if {supp(A) | A ∈
E} = P(X) − ∅.
Proposition 3.14 Let H = (X,E) be an elementary simple vague hypergraph of
order n. Then, there is no upper bound on |E| ≤ 2n − 1 if and only if {supp(A) | A ∈
E} = P(X) − ∅.
Proof SinceH is elementary and simple, each nontrivialW ⊆ X can be the support
of at most one A = (tA, f A) ∈ E. Therefore, |E| ≤ 2n − 1. To show there exists an
elementary, simple H with |E| = 2n − 1, let E = {A = (tA, f A) | W ⊆ X} be the
set of functions defined by

tA(x) = 1

|W | , if x ∈ W, tA(x) = 0, if x /∈ W,

f A(x) = 1 − 1

|W | , if x ∈ W, f A(x) = 1, if x /∈ W.

Then, each one element has height (1, 0), each two elements have height (0.5, 0.5)
and so on. Hence, H is an elementary and simple, and |E| = 2n − 1.
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Proposition 3.15 (a) IfH = (X,E) is an elementary vague hypergraph, thenH is
ordered.
(b) IfH is an ordered vague hypergraph with simple support hypergraph, thenH is
elementary.

Definition 3.30 The dual of a vague hypergraph H = (X,E) is a vague hyper-
graph HD = (ED, XD) whose vertex set is the edge set of H and with edges
XD : ED → [0, 1] × [0, 1] by XD(AD) = (t DA (x), f DA (x)). HD is a vague hyper-
graph whose incidence matrix is the transpose of the incidence matrix of H, thus
HDD = H.

Example 3.5 Consider a vague hypergraph H = (X,E) as shown in Fig. 3.4 such

that X = {x1, x2, x3, x4}, E = {E1,E2,E3,E4}, where E1 =
{

x1
(0.5,0.3) ,

x2
(0.4,0.2)

}
,

E2 =
{

x2
(0.4,0.2) ,

x3
(0.3,0.6)

}
, E3 =

{
x3

(0.3,0.6) ,
x4

(0.5,0.1)

}
, E4 =

{
x4

(0.5,0.1) ,
x1

(0.5,0.3)

}
.

The corresponding incidence matrix of H is given in Table3.5.
Consider the dual vague hypergraph HD = (ED, XD) of H such that ED =

{e1, e2, e3, e4}, XD = {A, B,C, D}, where A = { e1
(0.5,0.3) ,

e4
(0.5,0.3) }, B = { e1

(0.4,0.2) ,
e2

(0.4,0.2) }, C = { e2
(0.3,0.6) ,

e3
(0.3,0.6) }, D = { e3

(0.5,0.1) ,
e4

(0.5,0.1) }. The dual vague hypergraph
HD = (ED, XD) of H is shown in Fig. 3.5.

The corresponding incidence matrix of HD is given in Table3.6.

Definition 3.31 A vague hypergraph H = (X,E) is called A = (tA, f A)-tempered
vague hypergraph of H = (X,E) if there is a crisp hypergraph H∗ = (X, E∗) and
a vague set A = (tA, f A) : X → (0, 1] such that E = {BF = (tBF , fBF ) | F ∈ E∗},
where

Fig. 3.4 Vague hypergraph

Table 3.5 The corresponding incidence matrix of H

MH E1 E2 E3 E4

x1 (0.5, 0.3) (0, 0) (0, 0) (0.5, 0.3)

x2 (0.4, 0.2) (0.4, 0.2) (0, 0) (0, 0)

x3 (0, 0) (0.3, 0.6) (0.3, 0.6) (0, 0)

x4 (0, 0) (0, 0) (0.5, 0.1) (0.5, 0.1)



3.3 Vague Hypergraphs 141

Fig. 3.5 Dual vague
hypergraph

D

CA

e1

e4

B e2

e3

Table 3.6 The incidence matrix of HD

MHD A B C D

e1 (0.5, 0.3) (0.4, 0.2) (0, 0) (0, 0)

e2 (0, 0) (0.4, 0.2) (0.3, 0.6) (0, 0)

e3 (0, 0) (0, 0) (0.3, 0.6) (0.5, 0.1)

e4 (0.5, 0.3) (0, 0) (0, 0) (0.5, 0.1)

tBF (x) =
{
min(tA(y) | y ∈ F), if x ∈ F,

0, otherwise,
fBF (x) =

{
max( f A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let A ⊗ H denote the A-tempered vague hypergraph of H determined by the
crisp hypergraph H∗ = (X, E∗) and the vague set A.

Example 3.6 Consider the vague hypergraph H = (X,E), where X = {a, b, c, d}
and E = {E1,E2,E3,E4} which is represented by the following incidence matrix
Table3.7.

We define a vague set A = (tA, f A) by

tA(a) = 0.2, tA(b) = tA(c) = 0.0, tA(d) = 0.3, f A(a) = 0.7, f A(b) = f A(c) = 0.9, f A(d) = 0.4.

Note that

tB{a,b} (a) = min(tA(a), tA(b)) = 0.0, tB{a,b} (b) = min(tA(a), tA(b)) = 0.0, tB{a,b} (c) = 0.0, tB{a,b} (d) = 0.0,

fB{a,b} (a) = max( f A(a), f A(b)) = 0.9, fB{a,b} (b) = max( f A(a), f A(b)) = 0.9, fB{a,b} (c) = 1, fB{a,b} (d) = 1.

Thus,

E1 = (tB{a,b} , fB{a,b}), E2 = (tB{b,d} , fB{b,d} ), E3 = (tB{b,c} , fB{b,c}), E4 = (tB{a,c} , fB{a,c} ).

Hence, H is A-tempered hypergraph.

Theorem 3.1 A vague hypergraph H is an A-tempered vague hypergraph of some
crisp hypergraph H∗ if and only if H is elementary, support simple, and simply
ordered.
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Table 3.7 Incidence matrix of H

H E1 E2 E3 E4

a (0.2, 0.7) (0, 0) (0, 0) (0.2, 0.7)

b (0.2, 0.7) (0.3, 0.4) (0.0, 0.9) (0, 0)

c (0, 0) (0, 0) (0, 0.9) (0.2, 0.7)

d (0, 0) (0.3, 0.4) (0, 0) (0, 0)

Proof Suppose thatH = (X,E) is an A-tempered vague hypergraph of some crisp
hypergraph H∗. Clearly, H is elementary and support simple. We show that H is
simply ordered. Let

C(H) = {(H∗
1 )r1 = (X1, E

∗
1 ), (H∗

2 )r2 = (X2, E
∗
2 ), . . . , (H∗

n )rn = (Xn, E
∗
n )}.

Since, H is elementary, it follows from Proposition3.15 that H is ordered. To
show that H is simply ordered, suppose that there exists F ∈ E∗

i+1\E∗
i . Then, there

exists x∗ ∈ F such that tA(x∗) = ri+1, f A(x∗) = ŕi+1. Since, tA(x∗) = ri+1 < ri and
f A(x∗) = ŕi+1 < ŕi , it follows that x∗ /∈ XI and F � Xi , henceH is simply ordered.
Conversely, supposeH = (X,E) is elementary, support simple, and simply ordered.
Let

C(H) = {(H∗
1 )r1 = (X1, E

∗
1 ), (H∗

2 )r2 = (X2, E
∗
2 ), . . . , (H∗

n )rn = (Xn, E
∗
n ), }

where D(H) = {r1, r2, . . . , rn} with 0 < rn < · · · < r1. Since (H∗)rn = H∗
n =

(Xn, E∗
n ) and define A = (tA, f A) by,

tA(x) =
{
r1, if x ∈ X1,

ri , if x ∈ Xi\Xi−1, i = 1, 2, . . . , n.
f A(x) =

{
s1, if x ∈ X1,

si , if x ∈ Xi\Xi−1, i = 1, 2, . . . , n.

We show that E = {BF = (tBF , fBF ) | F ∈ E∗}, where

tBF (x) =
{
min(tA(y) | y ∈ F), if x ∈ F,

0, otherwise,
fBF (x) =

{
max( f A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let F ∈ E∗
n . Since, H is elementary and support simple, there is a unique vague

edge CF = (tCF , fCF ) in E having support E∗. Indeed, distinct edges in E must
have distinct supports that lie in E∗

n . Thus, to show that E = {BF = (tBF , fBF ) | F ∈
E∗
n }, it suffices to show that for each F ∈ E∗

n , tCF = tBF and fCF = fBF . As all
edges are elementary and different edges have different supports, it follows from
the definition of fundamental sequence that h(CF ) is equal to some number ri of
D(H). Consequently, E∗ ⊆ Xi . Moreover, if i > 1, then F ∈ E∗\E∗

i−1. Since F ⊆
Xi , it follows from the definition of A = (tA, f A) that for each x ∈ F , tA(x) ≥ ri
and f A(x) ≤ si . We claim that tA(x) = ri and f A(x) = si , for some x ∈ F . If not,
then by definition of A = (tA, f A), tA(x) ≥ ri and f A(x) ≤ si for all x ∈ F which
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implies that F ⊆ Xi−1 and so F ∈ E∗\E∗
i−1 and since H is simply ordered F �

Xi−1, a contradiction. Thus it follows from the definition of BF that BF = CF . This
completes the proof.

As a consequence of the above theorem we obtain.

Proposition 3.16 Suppose that H is a simply ordered vague hypergraph and
F(H) = {r1, r2, . . . , rn}. IfHrn is a simple hypergraph, then there is a vague subhy-
pergraph H́ of H such that the following assertions hold,

(i) H́ is an A-tempered vague hypergraph ofHn.
(ii) E � É.
(iii) F(H́) = F(H) and C(H́) = C(H).

3.4 Interval-Valued Intuitionistic Fuzzy Hypergraphs

Atanassov and Gargov [6] initiated the concept of interval-valued intuitionistic fuzzy
sets as a generalization of intuitionistic fuzzy sets. An interval-valued intuitionistic
fuzzy set is characterized by an interval-valued membership degree and an interval-
valued nonmembership degree.

Definition 3.32 An interval-valued intuitionistic fuzzy set V in X is an object of the
form,

V = {〈x, μV (x), νV (x)〉 | x ∈ X},

whereμV : X → Int([0, 1]) and νV : X → Int([0, 1]) such thatμ+
V (x) + ν+

V (x) ≤ 1
for all x ∈ X .

Definition 3.33 The support of an interval-valued intuitionistic fuzzy set V =
{〈x, μV (x), νV (x)〉 | x ∈ X} is defined as, supp(V ) = {x | μ−

V (x) �= 0, μ+
V (x) �=

0, ν−
V (x) �= 1 and ν+

V (x) �= 1}.
Definition 3.34 Theheight of an interval-valued intuitionistic fuzzy set V =
{〈x, μV (x), νV (x)〉 | x ∈ X} is defined as, h(V ) = 〈[supx∈X μ−

V (x), supx∈X μ+
V (x)],

[inf x∈X ν−
V (x), inf x∈X ν+

V (x)]〉.
Definition 3.35 For α, β, γ, δ ∈ [0, 1], the 〈[α, β], [γ, δ]〉-cut of interval-valued
intuitionistic fuzzy set V is

V〈[α,β],[γ,δ]〉 = {x | μ−
V (x) ≥ α,μ+

V (x) ≥ β, ν−
V (x) ≤ γ and ν−

V (x) ≤ δ}.

Definition 3.36 Let X = {x1, x2, ..., xn} be a finite set of vertices and let τ =
{τ1, τ2, ..., τm} be a finite family of nontrivial interval-valued intuitionistic fuzzy
sets on X such that
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x1, [0.2,0.4], [0.3,0.5]

x4, [0.3,0.5], [0.1,0.3]

τ1

τ3

τ2

x2, [0.1,0.2], [0.4,0.7]

x3, [0.4,0.5], [0.2,0.3]

Fig. 3.6 Interval-valued intuitionistic fuzzy hypergraph

X =
⋃

j

supp〈μ j , ν j 〉, j = 1, 2, ...,m,

where μ j , ν j are interval-valued membership and interval-valued nonmembership
functions defined on τ j ∈ τ . Then, the pair H = (X, τ ) denotes an interval-valued
intuitionistic fuzzy hypergraph on X , τ is the family of interval-valued intuitionistic
fuzzy hyperedges of H .

Example 3.7 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3} as shown in Fig. 3.6, where
τ1 = {x1|〈[0.2, 0.4], [0.3, 0.5]〉, x2|〈[0.1, 0.2], [0.4, 0.7]〉},
τ2 = {x2|〈[0.1, 0.2], [0.4, 0.7]〉, x3|〈[0.4, 0.5], [0.2, 0.3]〉, x4|〈[0.3, 0.5], [0.1, 0.3]〉},
τ3 = {x1|〈[0.2, 0.4], [0.3, 0.5]〉, x4|〈[0.3, 0.5], [0.1, 0.3]〉}.

The corresponding incidence matrix MH is as follows:

τ1 τ2 τ3

MH =
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.3, 0.5]〉
〈[0.1, 0.2], [0.4, 0.7]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0.4, 0.5], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉 〈[0.3, 0.5], [0.1, 0.3]〉 〈[0.3, 0.5], [0.1, 0.3]〉

⎞

⎟⎟⎠ .

Definition 3.37 The 〈[α, β], [γ, δ]〉-cut of an interval-valued intuitionistic fuzzy
hypergraphH , denoted by H〈[α,β],[γ,δ]〉 and is defined as H〈[α,β],[γ,δ]〉 = (X〈[α,β],[γ,δ]〉,
E〈[α,β],[γ,δ]〉), where

X〈[α,β],[γ,δ]〉 = X,

E j,〈[α,β],[γ,δ]〉 = {xi | μ−
j (xi ) ≥ α,μ+

j (xi ) ≥ β, ν−
j (xi ) ≤ γ and ν−

j (xi ) ≤ δ, j = 1, 2, . . . ,m},
Em+1,〈[α,β],[γ,δ]〉 = {xi | μ−

j (xi ) < α,μ+
j (xi ) < β, ν−

j (xi ) > γ and ν−
j (xi ) > δ, ∀ j}.

The hyperedge Em+1,〈[α,β],[γ,δ]〉 is added to group the elements which are not
contained in any hyperedge E j,〈[α,β],[γ,δ]〉 of H〈[α,β],[γ,δ]〉. The hyperedges in the
〈[α, β], [γ, δ]〉-cut hypergraph are now crisp sets.
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x2

x4 x3

x1

E4, [0.2,0.3],[0.3,0.5]

E1, [0.2,0.3],[0.3,0.5]

E3, [0.2,0.3],[0.3,0.5]

E2, [0.2,0.3],[0.3,0.5]

Fig. 3.7 〈[0.2, 0.3], [0.3, 0.5]〉-cut hypergraph

Example 3.8 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), where X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3}, given in Example3.7.

Incidence matrix of H〈[0.2,0.3],[0.3,0.5]〉
E1,〈[0.2,0.3],[0.3,0.5]〉 E2,〈[0.2,0.3],[0.3,0.5]〉 E3,〈[0.2,0.3],[0.3,0.5]〉 E4,〈[0.2,0.3],[0.3,0.5]〉

MH〈[0.2,0.3],[0.3,0.5]〉 =
x1
x2
x3
x4

⎛

⎜⎜⎝

1 0 1 0
0 0 0 1
0 1 0 0
0 1 1 0

⎞

⎟⎟⎠.

The new hyperedge E4,〈[0.2,0.3],[0.3,0.5]〉 is added to group the vertex x2 as shown
in Fig. 3.7.

Definition 3.38 The dual interval-valued intuitionistic fuzzy hypergraph of an
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is defined as H ∗ =
(X∗, τ ∗), where X∗ = {e′

1, e
′
2, ..., e

′
m} is the set of vertices corresponding to

τ1, τ2, ..., τm , respectively, and {X1, X2, ..., Xn} is the set of hyperedges corre-
sponding to x1, x2, ..., xn , respectively, where Xi (e

′
j ) = τ j (xi ), i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

Example 3.9 Consider the dual interval-valued intuitionistic fuzzy hypergraph
H ∗ = (X∗, τ ∗) (shown in Fig. 3.8) of an interval-valued intuitionistic fuzzy hyper-
graph H = (X, τ ) given in Example3.7, such that
X∗ = {e′

1, e
′
2, e

′
3} and E∗ = {X1, X2, X3, X4}, where

X1 = {e′
1|〈[0.2, 0.4], [0.3, 0.5]〉, e′

3|〈[0.2, 0.4], [0.3, 0.5]〉},
X2 = {e′

1|〈[0.1, 0.2], [0.4, 0.7]〉, e′
2|〈[0.1, 0.2], [0.4, 0.7]〉},

X3 = {e′
2|〈[0.4, 0.5], [0.2, 0.3]〉},

X4 = {e′
2|〈[0.3, 0.5], [0.1, 0.3]〉, e′

3|〈[0.3, 0.5], [0.1, 0.3]〉}.
The corresponding incidence matrix MH ∗ is as follows:

X1 X2 X3 X4 X5

MH ∗ =
e

′
1
e

′
2
e

′
3

⎛

⎝
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0.4, 0.5], [0.2, 0.3]〉 〈[0.3, 0.5], [0.1, 0.3]〉
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.3, 0.5], [0.1, 0.3]〉

⎞

⎠ .
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Fig. 3.8 Dual
interval-valued intuitionistic
fuzzy hypergraph X3

X4

X2

X1

e3

e2e1

Definition 3.39 The strength ρ of a hyperedge τ j is defined as

ρ(τ j ) = {min(μ−
j (x) | μ−

j (x) > 0),min(μ+
j (x) | μ+

j (x) > 0),

max(ν−
j (x) | ν−

j (x) > 0),max(ν+
j (x) | ν+

j (x) > 0)}.

In other words, the minimum membership values μ−
j (x), μ

+
j (x) of vertices and

maximum nonmembership values ν−
j (x), ν+

j (x) of vertices in the hyperedge τ j . Its
interpretation is that the hyperedge τ j groups elements having participation degree
at least ρ(τ j ) in the hypergraph. The hyperedges with high strength are called the
strong hyperedges because the cohesion in them is strong.

Example 3.10 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), where X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4} as shown in Fig. 3.9.

Here, ρ(τ1) = 〈[0.5, 0.7], [0.1, 0.2]〉, ρ(τ2) = 〈[0.2, 0.4], [0.2, 0.3]〉, ρ(τ3) =
〈[0.1, 0.3], [0.5, 0.6]〉 and ρ(τ4) = 〈[0.1, 0.3], [0.5, 0.6]〉, respectively. Therefore,
the hyperedge τ1 is stronger than τ2, τ3 and τ4.

Definition 3.40 An interval-valued intuitionistic fuzzy hypergraph H
′ = (X

′
, τ

′
)

is a partial interval-valued intuitionistic fuzzy hypergraph ofH = (X, τ ) if τ
′ ⊆ τ

and is written as H
′ ⊆ H . IfH

′ ⊆ H and τ
′ ⊂ τ , we writeH

′ ⊂ H .

Definition 3.41 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is
simple if τ has no repeated interval-valued intuitionistic fuzzy hyperedges and

x1, [0.5,0.7], [0.1,0.2]

x3, [0.2,0.4], [0.2,0.3]

x2, [0.8,0.9], [0,0.1]

x4, [0.1,0.3], [0.5,0.6]

τ1

τ4

τ3

τ2

Fig. 3.9 Interval-valued intuitionistic fuzzy hypergraph
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whenever X = 〈μX , νX 〉,Y = 〈μY , νY 〉 ∈ τ and μ−
X (x) ≤ μ−

Y (x), μ+
X (x) ≤ μ+

Y (x),
ν−
X (x) ≥ ν−

Y (x), ν+
X (x) ≥ ν+

Y (x), for all x ∈ X, then μ−
X (x) = μ−

Y (x), μ+
X (x) =

μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x).

Definition 3.42 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ )

is support simple if X = 〈μX , νX 〉, Y = 〈μY , νY 〉 ∈ τ , μ−
X (x) ≤ μ−

Y (x), μ+
X (x) ≤

μ+
Y (x), ν−

X (x) ≥ ν−
Y (x), ν+

X (x) ≥ ν+
Y (x), for all x ∈ X, and supp(X) = supp(Y ),

then μ−
X (x) = μ−

Y (x), μ+
X (x) = μ+

Y (x), ν−
X (x) = ν−

Y (x), ν+
X (x) = ν+

Y (x). An
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is strongly support
simple if X = 〈μX , νX 〉,Y = 〈μY , νY 〉 ∈ τ and supp(X)=supp(Y ), then μ−

X (x) =
μ−
Y (x), μ+

X (x) = μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x).

Definition 3.43 An interval-valued intuitionistic fuzzy set X = {〈x, μX (x),
νX (x)〉 | x ∈ X} is an elementary interval-valued intuitionistic fuzzy set if X is single
valued on supp(X). An interval-valued intuitionistic fuzzy hypergraphH = (X, τ )

whose all interval-valued intuitionistic fuzzy hyperedges are elementary is called an
elementary interval-valued intuitionistic fuzzy hypergraph.

Example 3.11 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4}, represented by the fol-
lowing incidence matrix:

τ1 τ2 τ3 τ4 τ5

MH =
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.5, 0.7], [0.1, 0.2]〉 〈[0.8, 0.9], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.5, 0.7], [0.1, 0.2]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉
〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉

⎞

⎟⎟⎠.

Clearly, H is simple, support simple, and strongly support simple. The partial
interval-valued intuitionistic fuzzy hypergraph τ

′ = {τ1, τ3} ofH is elementary.

Theorem 3.2 LetH = (X, τ ) be an elementary interval-valued intuitionistic fuzzy
hypergraph. Then,H is support simple if and only ifH is strongly support simple.

Proof Suppose thatH is elementary, support simple, and that supp(X) = supp(Y ).
Without loss of generality we may assume that h(X) ≤ h(Y ). Since, H is ele-
mentary, it follows thatμ−

X (x) ≤ μ−
Y (x),μ+

X (x) ≤ μ+
Y (x), ν−

X (x) ≥ ν−
Y (x), ν+

X (x) ≥
ν+
Y (x) for all x ∈ X, and sinceH is support simple that μ−

X (x) = μ−
Y (x), μ+

X (x) =
μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x). Hence, H is strongly support simple.

Definition 3.44 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph. Let α, β, γ, δ ∈ [0, 1] and

E〈[α,β],[γ,δ]〉 = {X〈[α,β],[γ,δ]〉 �= ∅ | X ∈ τ }, X〈[α,β],[γ,δ]〉 =
⋃

X∈τ

X〈[α,β],[γ,δ]〉.

If E〈[α,β],[γ,δ]〉 �= ∅, then the crisp hypergraph H〈[α,β],[γ,δ]〉 = (X〈[α,β],[γ,δ]〉,
E〈[α,β],[γ,δ]〉) is the 〈[α, β], [γ, δ]〉-level hypergraph of H .
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The families of crisp sets (hypergraphs) produced by the 〈[α, β], [γ, δ]〉-cuts of an
interval-valued intuitionistic fuzzy hypergraph share an important relationship with
each other, as expressed below:

Suppose A and B are two families of sets such that for each set A ∈ A there is
at least one set B ∈ B which contains A. In this case we say that B absorbs A and
symbolically write A � B. Since it is possible for A � B while A ∩ B = ∅, we have
that A ⊆ B implies A � B, whereas the converse is generally false. If A � B and
A �= B, then we write A � B.

Definition 3.45 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph, and for 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H ), let H〈[α,β],[γ,δ]〉 =
(X〈[α,β],[γ,δ]〉, E〈[α,β],[γ,δ]〉) be the 〈[α, β], [γ, δ]〉-level hypergraph of H . The
sequence of real numbers {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n}, 0 < rn < . . . < r1, 0 <

sn < . . . < s1, 1 > tn > . . . > t1 and 1 > qn > . . . > q1, where h(H ) = 〈[r1, s1],
[t1, q1]〉, which satisfies the properties

(i) if ri+1 < u ≤ ri , si+1 < v ≤ si , ti+1 > l ≥ ti , and qi+1 > m ≥ qi , then
E〈[u,v],[l,m]〉 = E〈[ri ,si ],[ti ,qi ]〉, i = 1, 2, . . . , n,

(ii) E〈[ri ,si ],[ti ,qi ]〉 � E〈[ri+1,si+1],[ti+1,qi+1]〉, i = 1, 2, . . . , n − 1,

is called the fundamental sequence of H , denoted by F(H ). The set of 〈[ri , si ],
[ti , qi ]〉–level hypergraphs {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} is the set of core hypergraphs
of H or, the core set of H , denoted by C(H ).

Definition 3.46 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph and F(H ) = {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n}. Then, H is called section-
ally elementary if for each X , where X is an interval-valued intuitionistic fuzzy set
defined on τ j ∈ τ and each 〈[ri , si ], [ti , qi ]〉 ∈ F(H ), X〈[α,β],[γ,δ]〉 = X〈[ri ,si ],[ti ,qi ]〉
for all 〈[α, β], [γ, δ]〉 ∈ (〈[ri+1, si+1], [ti+1, qi+1]〉, 〈[ri , si ], [ti , qi ]〉]. (Take rn+1 =
0, sn+1 = 0, tn+1 = 0, qn+1 = 0.)

Definition 3.47 An interval-valued intuitionistic fuzzy hypergraphH is ordered if
C(H ) = {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} is ordered, and is simply ordered if C(H ) is
simply ordered.

Example 3.12 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), represented by incidence matrix, as in Example3.11. Clearly, h(H ) =
〈[0.8, 0.9], [0, 0]〉. Now

E〈[0.8,0.9],[0,0]〉 = E〈[0.5,0.7],[0.1,0.2]〉 = {{x1, x2}, {x2, x3}},
E〈[0.2,0.4],[0.2,0.3]〉 = {{x1, x2}, {x1, x2, x4}, {x2, x3}, {x2, x3, x4}}.

Thus, for 0.2 < α ≤ 0.8, 0.4 < β ≤ 0.9, 0.2 > γ ≥ 0, 0.3 > δ ≥ 0,

E〈[α,β],[γ,δ]〉 = {{x1, x2}, {x2, x3}, }
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and for 0 < α ≤ 0.2, 0 < β ≤ 0.4, 1 > γ ≥ 0.2, 1 > δ ≥ 0.3,

E〈[α,β],[γ,δ]〉 = {{x1, x2}, {x1, x2, x4}, {x2, x3}, {x2, x3, x4}}.

It is easy to see that, E〈[0.8,0.9],[0,0]〉 � E〈[0.2,0.4],[0.2,0.3]〉. Therefore, the fundamental
sequence is F(H ) = {〈[r1, s1], [t1, q1]〉 = 〈[0.8, 0.9], [0, 0]〉, 〈[r2, s2], [t2, q2]〉 =
〈[0.2, 0.4], [0.2, 0.3]〉} and the set of core hypergraphs is C(H ) = {H〈[0.8,0.9],[0,0]〉,
H〈[0.2,0.4],[0.2,0.3]〉}.H is not sectionally elementary, as τ1,〈[α,β],[γ,δ]〉 �= τ1,〈[0.8,0.9],[0,0]〉
for 〈[α, β], [γ, δ]〉 = 〈[0.5, 0.7], [0.1, 0.2]〉. Clearly, H is simply ordered.

Proposition 3.17 (i) An elementary interval-valued intuitionistic fuzzy hypergraph
H (X, τ ) is ordered.

(ii) An ordered interval-valued intuitionistic fuzzy hypergraph H (X, τ ) with
C(H ) = {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} and simple H〈[rn ,sn ],[tn ,qn ]〉, is elementary.

The complexity of an interval-valued intuitionistic fuzzy hypergraph depends in part
on how many hyperedges it has. The natural question arises: is there an upper bound
on the number of hyperedges of an interval-valued intuitionistic fuzzy hypergraph
of order n?

Proposition 3.18 Let H = (X, τ ) be a simple interval-valued intuitionistic fuzzy
hypergraph of order n. Then, there is no upper bound on |τ |.
Proof Let X = {x, y}, and define τN = {Xi = 〈[μ−

Xi
, μ+

Xi
][ν−

Xi
, ν+

Xi
]〉 | i = 1, 2, . . . ,

N }, where

μ−
Xi

(x) = 1/1 + i, μ+
Xi

(x) = 1/1 + i, ν−
Xi

(x) = 1/1 + i, ν+
Xi

(x) = 1/1 + i,

μ−
Xi

(y) = i/1 + i, μ+
Xi

(y) = i/1 + i, ν−
Xi

(y) = i/1 + i, ν+
Xi

(y) = i/1 + i.

Then,HN = (X, τN ) is a simple interval-valued intuitionistic fuzzy hypergraphwith
N hyperedges.

Proposition 3.19 LetH = (X, τ ) be a support simple interval-valued intuitionistic
fuzzy hypergraph of order n. Then, there is no upper bound on |τ |.
Proof The proof follows at once fromProposition3.18, as the class of support simple
interval-valued intuitionistic fuzzy hypergraphs contains the class of simple interval-
valued intuitionistic fuzzy hypergraphs.

Proposition 3.20 Let H = (X, τ ) be a strongly support simple interval-valued
intuitionistic fuzzy hypergraph of order n. Then, |τ | ≤ 2n − 1, with equality if and
only if {supp(X) | X ∈ τ } = P(X) − ∅.

Proof Each nontrivial U ⊆ X can be the support of at most one X ∈ τ , therefore
|τ | ≤ 2n − 1. The second statement is obvious.
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Consider the situationwhere the node set of a (crisp) hypergraph is fuzzified. Suppose
that each hyperedge is given a uniform degree of interval-valued membership and
interval-valued nonmembership consistent with the weakest node of the hyperedge.
Such constructions describe the following subclass of interval-valued intuitionistic
fuzzy hypergraphs.

Definition 3.48 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is
said to be a V = 〈[μ−

V , μ
+
V ], [ν−

V , ν
+
V ]〉-tempered interval-valued intuitionistic fuzzy

hypergraph of H∗, if there is a crisp hypergraph H∗ = (X, E∗) and an interval-
valued intuitionistic fuzzy set X = 〈[μ−

X , μ+
X ], [ν−

X , ν+
X ]〉 : X → Int((0, 1]) such that

τ = {Ye = 〈[(μ−
Y )e, (μ

+
Y )e], [(ν−

Y )e, (ν
+
Y )e]〉 | e ∈ E}, where

(μ−
Y )e(x) =

{
min(μ−

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(μ+
Y )e(x) =

{
min(μ+

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(ν−
Y )e(x) =

{
max(ν−

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(ν+
Y )e(x) =

{
max(ν+

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

The V -tempered interval-valued intuitionistic fuzzy hypergraph of H∗ will be
denoted by V ⊗ H∗.

Example 3.13 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4}, represented by the fol-
lowing incidence matrix:

τ1 τ2 τ3 τ4
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.5, 0.7], [0.1, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.3]〉
〈[0.5, 0.7], [0.1, 0.3]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.5, 0.7], [0.1, 0.3]〉
〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉

⎞

⎟⎟⎠ .

Define V = 〈[μ−
V , μ+

V ], [ν−
V , ν+

V ]〉 : X → Int((0, 1]) by,

μ−
V (x1) = 0.5, μ−

X (x2) = μ−
V (x3) = 0.6, μ−

V (x4) = 0.2,

μ+
V (x1) = 0.7, μ+

X (x2) = μ+
V (x3) = 0.8, μ+

V (x4) = 0.4,

ν−
V (x1) = 0.1, ν−

X (x2) = ν−
V (x3) = 0.1, ν−

V (x4) = 0.2,

ν+
V (x1) = 0.3, ν+

X (x2) = ν+
V (x3) = 0.2, ν+

V (x4) = 0.3.
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Now

(μ−
Y ){x1,x2}(x1) = (μ−

Y ){x1,x2}(x2) = min(μ−
V (x1), μ

−
V (x2)) = 0.5,

(μ−
Y ){x1,x2}(x3) = (μ−

Y ){x1,x2}(x4) = 0,

(μ+
Y ){x1,x2}(x1) = (μ+

Y ){x1,x2}(x2) = min(μ+
V (x1), μ

+
V (x2)) = 0.7,

(μ+
Y ){x1,x2}(x3) = (μ+

Y ){x1,x2}(x4) = 0,

(ν−
Y ){x1,x2}(x1) = (ν−

Y ){x1,x2}(x2) = max(ν−
V (x1), ν

−
V (x2)) = 0.1,

(ν−
Y ){x1,x2}(x3) = (ν−

Y ){x1,x2}(x4) = 0,

(ν+
Y ){x1,x2}(x1) = (ν+

Y ){x1,x2}(x2) = max(ν+
V (x1), ν

+
V (x2)) = 0.3,

(ν+
Y ){x1,x2}(x3) = (ν+

Y ){x1,x2}(x4) = 0.

Therefore, τ1 = 〈[(μ−
Y ){x1,x2}, (μ

+
Y ){x1,x2}], [(ν−

Y ){x1,x2}.(ν
+
Y ){x1,x2}]〉.

Also, it is easy to see that
τ2 = 〈[(μ−

Y ){x2,x4}, (μ
+
Y ){x2,x4}], [(ν−

Y ){x2,x4}, (ν
+
Y ){x2,x4}]〉,

τ3 = 〈[(μ−
Y ){x2,x3}, (μ

+
Y ){x2,x3}], [(ν−

Y ){x2,x3}, (ν
+
Y ){x2,x3}]〉,

τ4 = 〈[(μ−
Y ){x1,x3}, (μ

+
Y ){x1,x3}], [(ν−

Y ){x1,x3}, (ν
+
Y ){x1,x3}]〉.

Thus, H is X = 〈[μ−
V , μ+

V ], [ν−
V , ν+

V ]〉-tempered interval-valued intuitionistic
fuzzy hypergraph.

Theorem 3.3 An interval-valued intuitionistic fuzzy hypergraphH is a V -tempered
interval-valued intuitionistic fuzzy hypergraph of some crisp hypergraph H∗ if and
only ifH is elementary, support simple, and simply ordered.

Proof Suppose thatH = (X, τ ) is aV -tempered interval-valued intuitionistic fuzzy
hypergraph of H∗ = (X, E∗). Clearly,H is elementary, support simple and ordered
(being elementary). To show that H is simply ordered, let C(H ) = {H〈[ri ,si ],[ti ,qi ]〉
(Xi , Ei ) | 1 ≤ i ≤ n}. Suppose there exists e ∈ Ei+1\Ei , then there exists z ∈ e such
that μ−

X (z) = ri+1, μ
+
X (z) = si+1, ν

−
X (z) = ti+1 and ν+

X (z) = qi+1. Since μ−
X (z) =

ri+1 < ri , μ
+
X (z) = si+1 < si , ν

−
X (z) = ti+1 > ti and ν+

X (z) = qi+1 > qi , it follows
that z /∈ Xi and e � Xi , hence H is simply ordered.

Conversely, suppose thatH = (X, τ ) is elementary, support simple, and simply
ordered. Define V = 〈[μ−

V , μ
+
V ], [ν−

V , ν
+
V ]〉 : Xn → Int((0, 1]) by

μ−
Y (x) =

{
r1, if x ∈ X1,

ri , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,

μ+
Y (x) =

{
s1, if x ∈ X1,

si , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,

ν−
Y (x) =

{
t1, if x ∈ X1,

ti , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,
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ν+
Y (x) =

{
q1, if x ∈ X1,

qi , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n.

We show that τ = {Ye = 〈[(μ−
Y )e, (μ

+
Y )e], [(ν−

Y )e, (ν
+
Y )e]〉 | e ∈ En}. Since, H is

elementary and support simple, there is a unique interval-valued intuitionistic fuzzy
hyperedge Ze in τ having support e. Since distinct hyperedges in τ must have dis-
tinct supports that lie in En. Thus, to show that τ = {Ye = 〈[(μ−

Y )e, (μ
+
Y )e], [(ν−

Y )e,

(ν+
Y )e]〉 | e ∈ En}, it suffices to show that Ye = Ze, for each e ∈ En .
Since, all hyperedges are elementary and different hyperedges have different

supports, it follows from Definition3.45 that h(Ze) = 〈[ri , si ], [ti , qi ]〉 ∈ F(H ).

Consequently, e ⊆ Xi . Moreover, e ∈ Ei\Ei−1, i = 2, 3, . . . , n. As e ⊆ Xi , it fol-
lows from the definition of V = 〈[μ−

V , μ+
V ], [ν−

V , ν+
V ]〉 that μ−

V (x) ≥ ri , μ
+
V (x) ≥ si ,

ν−
V (x) ≤ ti and ν+

V (x) ≤ qi for each x ∈ e. We claim that μ−
V (x) = ri , μ

+
V (x) = si ,

ν−
V (x) = ti and ν+

V (x) = qi , for some x ∈ e. For if not, then, by definition of V ,
μ−

V (x) ≥ ri−1, μ+
V (x) ≥ si−1, ν−

V (x) ≤ ti−1 and ν+
V (x) ≤ qi−1 for all x ∈ e which

implies that e ⊆ Xi−1 and so e ∈ Ei\Ei−1 and sinceH is simply ordered e � Xi−1,

a contradiction. Hence, Ye = Ze, by definition of Ye.

Corollary 3.1 Suppose that H = (X, τ ) is a simply ordered interval-valued intu-
itionistic fuzzy hypergraphwith F(H ) = {〈[ri , si ], [ti , qi ]〉 |1 ≤ i ≤ n}. If H〈[rn ,sn ],[tn ,qn ]〉
is a simple hypergraph, then there is a partial interval-valued intuitionistic fuzzy
hypergraph H

′ = (X, τ
′
) of H such that the following assertions hold.

(i) H
′ = (X, τ

′
) is a V -tempered interval-valued intuitionistic fuzzy hypergraph

of Hn.
(ii) τ � τ

′
.

(iii) F(H
′
) = F(H ) and C(H

′
) = C(H ).

Definition 3.49 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph. An interval-valued intuitionistic fuzzy transversal T of H = (X, τ ) is an
interval-valued intuitionistic fuzzy set defined on X such that Th(τ j ) ∩ (τ j )h(τ j ) �= ∅,
for each τ j ∈ τ, j = 1, 2, . . . ,m.

Definition 3.50 Aminimal interval-valued intuitionistic fuzzy transversalT ofH
is a transversal ofH such that ifT

′ ⊂ T , thenT
′
is not an interval-valued intuition-

istic fuzzy transversal of H . The class of all minimal interval-valued intuitionistic
fuzzy transversals of H will be denoted by Tr(H ).

Example 3.14 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4, x5} and τ = {τ1, τ2, τ3, τ4}, represented by the
following incidence matrix:
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τ1 τ2 τ3 τ4

MH =

x1
x2
x3
x4
x5

⎛

⎜⎜⎜⎜⎝

〈[0.3, 0.5], [0.2, 0.4]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.3, 0.5], [0.2, 0.4]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0.4, 0.6], [0.2, 0.3]〉 〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉

⎞

⎟⎟⎟⎟⎠
.

T

Tr(H ) =

x1
x2
x3
x4
x5

⎛

⎜⎜⎜⎜⎝

〈[0, 0], [0, 0]〉
〈[0.6, 0.8], [0.1, 0.2]〉
〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉

⎞

⎟⎟⎟⎟⎠
.

Theorem 3.4 If T is an interval-valued intuitionistic fuzzy transversal of an
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ), then h(T ) ≥ h(τ j )

for each τ j ∈ τ. Moreover, if T is a minimal interval-valued intuitionistic fuzzy
transversal of H , then h(T ) = h(H ).

Proof The proof follows at once from above definitions.

Theorem 3.5 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy
hypergraph. Then the following statements are equivalent:

(i) T is an interval-valued intuitionistic fuzzy transversal ofH ,
(ii) for each τ j ∈ τ and each 〈[α, β], [γ, δ]〉, 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤

h(τ j ), T〈[α,β],[γ,δ]〉 ∩ (τ j )〈[α,β],[γ,δ]〉 �= ∅,

(iii) for each 〈[α, β], [γ, δ]〉, 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H ),T〈[α,β],[γ,δ]〉
is a transversal of H〈[α,β],[γ,δ]〉.

If T is a minimal interval-valued intuitionistic fuzzy transversal of H , then
T〈[α,β],[γ,δ]〉 need not be a minimal transversal of H〈[α,β],[γ,δ]〉 for each 〈[α, β], [γ, δ]〉,
〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H). However, interval-valued intuitionistic
fuzzy transversals satisfying this condition are of interest.

Definition 3.51 An interval-valued intuitionistic fuzzy set T with the property
that T〈[α,β],[γ,δ]〉 is a minimal transversal of H〈[α,β],[γ,δ]〉, for each 〈[α, β], [γ, δ]〉,
〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H) is called a locally minimal interval-valued
intuitionistic fuzzy transversal ofH . The class of all locally minimal interval-valued
intuitionistic fuzzy transversals of H will be denoted by Tr∗(H ). That is

Tr∗(H ) = {T | h(T ) = h(H ) & T〈[α,β],[γ,δ]〉 ∈ Tr(H〈[α,β],[γ,δ]〉)}.

Remark 3.3 For any interval-valued intuitionistic fuzzy hypergraphH , Tr∗(H ) ⊆
Tr(H ).

Theorem 3.6 Suppose H = (X, τ ) is an ordered interval-valued intuitionistic
fuzzy hypergraph with F(H ) = {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n} and C(H ) =
{H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n}. Then, T r∗(H ) �= ∅.
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