
Chapter 2
Hypergraphs in Intuitionistic Fuzzy
Environment

In this chapter, we define intuitionistic fuzzy hypergraphs, dual intuitionistic fuzzy
hypergraphs, intuitionistic fuzzy line graphs, and 2-section of an intuitionistic fuzzy
hypergraph. We describe some applications of intuitionistic fuzzy hypergraphs in
planet surface networks, intersecting communities in social network, grouping of
incompatible chemical substances, and clustering problem. We design certain algo-
rithms to construct dual intuitionistic fuzzy hypergraphs, intuitionistic fuzzy line
graphs and the selection of objects in decision-making problems. Further, we present
concept of intuitionistic fuzzy directed hypergraphs and complex intuitionistic fuzzy
hypergraphs. This chapter is basically due to [2, 3, 6, 12, 14, 15, 17, 18].

2.1 Introduction

Presently, science and technology is featuredwith complex processes and phenomena
for which complete information are not always available. For such cases, mathemat-
ical models are developed to handle various types of systems containing elements of
uncertainty. A large number of these models is based on an extension of the ordinary
set theory, namely, fuzzy sets. The notion of fuzzy sets was introduced by Zadeh
[25] as a method of representing uncertainty and vagueness. Since then, the theory
of fuzzy sets has become a vigorous area of research in different disciplines, includ-
ing medical and life sciences, management sciences, social sciences, engineering,
statistics, graph theory, artificial intelligence, signal processing, multiagent systems,
pattern recognition, robotics, computer networks, expert systems, decision making,
and automata theory. In 1983, Atanassov [5] introduced the concept of intuitionistic
fuzzy sets as a generalization of fuzzy sets. Atanassov added in the definition of
fuzzy set a new component which determines the degree of nonmembership. Fuzzy
sets give the degree of membership of an element in a given set (the nonmembership
of degree equals one minus the degree of membership), while intuitionistic fuzzy
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sets give both a degree of membership and a degree of nonmembership, which are
more or less independent of each other; the only requirement is that the sum of these
two degrees is not greater than 1. Intuitionistic fuzzy sets are higher order fuzzy sets.
Application of higher order fuzzy sets makes the solution-procedure more complex,
but if the complexity in computation-time, computation-volume or memory-space
are not the matter of concern then a better result could be achieved. Fuzzy sets and
intuitionistic fuzzy sets cannot handle imprecise, inconsistent, and incomplete infor-
mation of periodic nature. These theories are applicable to different areas of science,
but there is one major deficiency in both sets, that is, a lack of capability to model
two-dimensional phenomena. To overcome this difficulty, the concept of complex
fuzzy sets was introduced by Ramot et al. [20]. A complex fuzzy set C is character-
ized by a membership functionμ(x), whose range is not limited to [0, 1] but extends
to the unit circle in the complex plane. Hence,μ(x) is a complex-valued function that
assigns a grade of membership of the form r(x)eiα(x), i = √−1 to any element x in
the universe of discourse. Thus, the membership function μ(x) of complex fuzzy set
consists of two terms, i.e., amplitude term r(x) which lies in the unit interval [0, 1]
and phase term (periodic term) w(x) which lies in the interval [0, 2π ]. This phase
term distinguishes a complex fuzzy set model from all other models available in the
literature. The potential of a complex fuzzy set for representing two-dimensional
phenomena makes it superior to handle ambiguous and intuitive information that are
prevalent in time-periodic phenomena. To generalize the concepts of intuitionistic
fuzzy sets, complex intuitionistic fuzzy sets were introduced by Alkouri and Salleh
[4] by adding nonmembership ν(x) = s(x)eiβ(x) to the complex fuzzy sets subjected
to the constraint r + s ≤ 1.

Graph theory has numerous applications to problems in computer science, electri-
cal engineering, system analysis, operations research, economics, networking rout-
ing, and transportation. However, in many cases, some aspects of a graph-theoretic
problem may be uncertain. For example, the vehicle travel time or vehicle capacity
on a road network may not be known exactly. In such cases, it is natural to deal
with the uncertainty using the methods of fuzzy sets and fuzzy logic. Graphs are
used to represent the pairwise relationships between objects. However, in many real
world phenomena, sometimes relationships are much problematic that they cannot
be perceived through simple graphs. By handling such complex relationships by
pairwise connections naively, one can face the loss of data which is considered to
be worthwhile for learning errands. To overcome these difficulties, we take into
account the generalization of simple graphs, named as hypergraphs, to personify
the complex relationships. A hypergraph is an extension of a classical graph in this
way that a hyperedge can combine two or more than two vertices. Hypergraphs
are the generalization of graphs in case of set of multiary relations. It means the
expansion of graph models for the modeling complex systems. In case of model-
ing systems with fuzzy binary and multiary relations between objects, transition to
fuzzy hypergraphs, which combine advantages both fuzzy and graphmodels, is more
natural. It allows to realize formal optimization and logical procedures. However,
using of the fuzzy graphs and hypergraphs as the models of various systems (social,
economic systems, communication networks, and others) leads to difficulties. The
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graph isomorphic transformations are reduced to redefine the vertices and edges.
This redefinition does not change properties the graph determined by an adjacent
and an incidence of its vertices and edges. Fuzzy independent sets, domination fuzzy
sets, and fuzzy chromatic sets are invariants concerning the isomorphism transfor-
mations of the fuzzy graphs and fuzzy hypergraph and allow their structural analysis.
Kaufamnn [10] applied the concept of fuzzy sets to hypergraphs. Mordeson and Nair
[13] presented fuzzy graphs and fuzzy hypergraphs. Generalization and redefinition
of fuzzy hypergraphs were discussed by Lee-Kwang and Lee [11]. The concept of
interval-valued fuzzy sets was applied to hypergraphs byChen [8]. Parvathi et al. [17]
established the notion of intuitionistic fuzzy hypergraph, and Myithili and Parvathi
[14], Myithili et al. [15] considered intuitionistic fuzzy directed hypergraphs.

Definition 2.1 A mapping A = (μA, νA) : X → [0, 1] × [0, 1] is called an intu-
itionistic fuzzy set on X if μA(x) + νA(x) ≤ 1, for all x ∈ X , where the mappings
μA : X → [0, 1], and νA : X → [0, 1] denote the degree of membership (namely
μA(x)) and the degree of nonmembership (namely νA(x)) of each element x ∈ X to
A, respectively.

An intuitionistic fuzzy set A in X can be represented as an object of the form

A = (μA, νA) = {(x, μA(x), νA(x)) | x ∈ X},

where the functions μA : X → [0, 1] and νA : X → [0, 1] denote the degree of
membership (namelyμA(x)) and the degree of nonmembership (namely νA(x)) of the
element x ∈ X , respectively, and for all x ∈ X , 0 ≤ μA(x) + νA(x) ≤ 1.Obviously,
each fuzzy set maybe written as

A = {(x, μA(x), 1 − μA(x)) | x ∈ X}.

The value

πA(x) = 1 − μA(x) − νA(x) (2.1)

is called uncertainty (intuitionistic index) of the elements x ∈ X to the intuition-
istic fuzzy set A. It represents hesitancy degree of x to A.

Clearly, in the case of ordinary fuzzy set, πA(x) = 0, for all x ∈ X .

Geometrical Interpretations of an Intuitionistic Fuzzy Set [5]

A geometrical interpretation of an intuitionistic fuzzy set is shown in Fig. 2.1.
Atanassov considered a universe X and subset F in the Euclidean plane with the
Cartesian coordinates.

This geometrical interpretation can be used as an example when considering a
situation at the beginning of negotiations (applications of intuitionistic fuzzy sets
for group decision-making, negotiations and other real situations are presented in
Fig. 2.2). Each expert i is represented as a point having coordinates

〈
μi , νi , πi

〉
. Expert



80 2 Hypergraphs in Intuitionistic Fuzzy Environment

Fig. 2.1 A geometrical
interpretation of an
intuitionistic fuzzy set X
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Fig. 2.2 An orthogonal
projection (three dimension)
representation of an
intuitionistic fuzzy set
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A : 〈
1, 0, 0

〉
—fully accepts a discussed idea. Expert B : 〈

0, 1, 0
〉
—fully rejects it. The

experts placed on the segment AB fixed their point of view (their hesitation margins
equal zero for segment AB, so each expert is convinced to the extent μi , is against to
the extent νi andμi + νi = 1; segment AB represents a fuzzy set). ExpertC : 〈

0, 0, 1
〉

is absolutely hesitant, i.e., undecided he or she is the most open to the influence of the
arguments presented. A line parallel to AB describe a set of experts with the same
level of hesitancy. For example, in Fig. 2.2, two sets are presented with intuitionistic
indices equal to πm and πn , where πn > πm . In other words, Fig. 2.2 (the triangle
ABC) is an orthogonal projection of the real situation (the triangle ABD) presented
in Fig. 2.3.

An element of an intuitionistic fuzzy sets has three coordinates
〈
μi , νi , πi

〉
, hence

the most natural representation of an intuitionistic fuzzy set is to draw a cube (with
edge length equal to 1) and because of Eq. (2.1), the triangle ABD (Fig. 2.3) repre-
sents an intuitionistic fuzzy set. As before (Fig. 2.2), the triangle ABC is the orthog-
onal projection of ABD.

Definition 2.2 Let A = (μA, νA) and B = (μB, νB) be intuitionistic fuzzy sets
on a set X . If A = (μA, νA) is an intuitionistic fuzzy relation on a set X , then
A = (μA, νA) is called an intuitionistic fuzzy relation on B = (μB, νB) ifμA(x, y) ≤
min(μB(x), μB(y)) and νA(x, y) ≤ max(νB(x), νB(y)), for all x , y ∈ X . An intu-
itionistic fuzzy relation A on X is called symmetric if μA(x, y) = μA(y, x) and
νA(x, y) = νA(y, x), for all x , y ∈ X .
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Fig. 2.3 A three-dimension
representation of an
intuitionistic fuzzy set

π

D

A

B
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μ

ν

Definition 2.3 The support of an intuitionistic fuzzy set A = (μA, νA), denoted by
supp(A), is defined by

supp(A) = {x | μA(x) �= 0 and νA(x) �= 0}.

The support of the intuitionistic fuzzy set is a crisp set.

Definition 2.4 Let A = (μA, νA) be an intuitionistic fuzzy set on X and let α, β ∈
[0, 1] such that α + β ≤ 1. Then, the set A(α,β) = {x | μA(x) ≥ α, νA(x) ≤ β} is
called an (α, β)-level subset of A. A(α,β) is a crisp set.

Definition 2.5 The height of an intuitionistic fuzzy set A = (μA, νA) is defined as
h(A) = supx∈X (A)(x) = (supx∈X μA(x), inf x∈X νA(x)). We shall say that intuition-
istic fuzzy set A is normal if there is at least one x ∈ X such that μA(x) = 1.

Definition 2.6 An intuitionistic fuzzy graph on X is defined as a pair G = (C, D),

where C is an intuitionistic fuzzy set on X and D is an intuitionistic fuzzy relation
in X such that λD(yz) ≤ min{λC(y), λC(z)} and τD(yz) ≤ max{τC(y), τC (z)}, for
all y, z ∈ X .

For further terminologies and studies on intuitionistic fuzzy hypergraphs, readers
are referred to [1, 7, 9, 16, 19, 21, 22, 24].

2.2 Intuitionistic Fuzzy Hypergraphs

Definition 2.7 An intuitionistic fuzzy hypergraph on a non-empty set X is a pair
H = (S, R) where, S = {η1, η2, . . . , ηs} is a family of intuitionistic fuzzy subsets
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Table 2.1 Intuitionistic fuzzy subsets on X

y ∈ X η1 η2 η3 η4 η5

a1 (0.2, 0.4) (0, 1) (0, 1) (0, 1) (0, 1)

a2 (0.3, 0.5) (0, 1) (0, 1) (0.3, 0.5) (0, 1)

a3 (0, 1) (0.4, 0.6) (0.4, 0.6) (0, 1) (0, 1)

a4 (0.1, 0.3) (0, 1) (0, 1) (0, 1) (0, 1)

a5 (0, 1) (0.3, 0.1) (0, 1) (0, 1) (0, 1)

a6 (0, 1) (0, 1) (0.9, 0.1) (0, 1) (0, 1)

a7 (0, 1) (0, 1) (0.5, 0.4) (0.2, 0.8) (0, 1)

a8 (0, 1) (0, 1) (0, 1) (0, 1) (0.5, 0.3)

on X and R is an intuitionistic fuzzy relation on intuitionistic fuzzy subsets ηi ’s such
that

1. λR(Ei ) = λR({y1, y2, . . . , yr }) ≤ min{ληi (y1), ληi (y2), . . . , ληi (yr )},
2. τR(Ei ) = τR({y1, y2, . . . , yr }) ≤ max{τηi (y1), τηi (y2), . . . , τηi (yr )},
3. λR(Ei ) + τR(Ei ) ≤ 1, for each Ei ⊂ X ,
4.

⋃
i supp(ηi ) = X , for all ηi ∈ S.

Example 2.1 Let S = {η1, η2, η3, η4, η5} be a family of intuitionistic fuzzy subsets
on X = {a1, a2, . . . , a8} as shown in Table2.1.

The intuitionistic fuzzy relation R on each ηi , 1 ≤ i ≤ 5, is given as
R({a1, a2, a4}) = (0.1, 0.5), R({a3, a5}) = (0.3, 0.6), R({a3, a6, a7}) = (0.4, 0.6),
R({a2, a7}) = (0.2, 0.8), and R({a8}) = η5(a8). It is clear From Fig. 2.4 that H is
an intuitionistic fuzzy hypergraph.

Example 2.2 Consider another example of an intuitionistic fuzzy hypergraph con-
sisting of nine vertices X = {a1, a2, . . . , a9} and two hyperedges E1, E2. The
membership values of vertices are given in (Fig. 2.5) and the membership values
of hyperedges are R({a1, a2, a3, a4, a9}) = (0.3, 0.6) and R({a5, a6, a7, a8, a9}) =
(0.2, 0.5). The corresponding intuitionistic fuzzy hypergraph in shown in Fig. 2.6.

Definition 2.8 An intuitionistic fuzzy set C = (μA, νA) : X → [0, 1] × [0, 1] is an
elementary intuitionistic fuzzy set if A is single valued on supp(A). An intuitionistic
fuzzy hypergraph H = (S, R) is elementary if each ηi ∈ A and R are elementary
otherwise, it is called nonelementary.

Proposition 2.1 Intuitionistic fuzzy graphs are special cases of the intuitionistic
fuzzy hypergraphs.

An intuitionistic fuzzy multigraph is a multivalued symmetric mapping D =
(μD, νD) : V × V → [0, 1]. An intuitionistic fuzzy multigraph can be considered
to be the “disjoint union” or “disjoint sum” of a collection of simple intuitionistic
fuzzy graphs, as is done with crisp multigraphs. The same holds for multidigraphs.
Therefore, these structures can be considered as “disjoint unions” or “disjoint sums”
of intuitionistic fuzzy hypergraphs.
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Fig. 2.4 Intuitionistic fuzzy hypergraph

Fig. 2.5 Table of
intuitionistic fuzzy subsets
on X

y ∈ X η1 η2
a1 (0.5,0.4) (0,1)
a2 (0.6,0.3) (0,1)
a3 (0.4,0.6) (0,1)
a4 (0.3,0.5) (0,1)
a5 (0,1) (0.6,0.3)
a6 (0,1) (0.4,0.3)
a7 (0,1) (0.2,0.4)
a8 (0,1) (0.4,0.3)
a9 (0.5,0.5) (0.5,0.5)

Definition 2.9 An intuitionistic fuzzy hypergraph H = (S, R) is called simple if
every ηi , η j ∈ S, ηi ⊆ η j implies that ηi = η j .

An intuitionistic fuzzy hypergraphH = (S, R) is called support simple if every
ηi , η j ∈ S, ηi ⊆ η j , and supp(ηi ) = supp(η j ) imply that ηi = η j .

An intuitionistic fuzzy hypergraphH = (S, R) is called support simple if every
ηi , η j ∈ S, ηi ⊆ η j , and supp(ηi ) = supp(η j ) imply that ηi = η j .

H = (S, R) is called strongly support simple if every ηi , η j ∈ S, supp(ηi ) =
supp(η j ) imply that ηi = η j .

Remark 2.1 Definition2.9 reduces to familiar definitions in the special case where
H is a crisp hypergraph. The definition of simple intuitionistic fuzzy hypergraph is
identical to the definition of simple crisp hypergraph. A crisp hypergraph is support
simple and strongly support simple if and only if it has no multiple edges. For
intuitionistic fuzzy hypergraphs all three concepts imply no multiple edges. Any
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simple intuitionistic fuzzy hypergraph is support simple and every strongly support
simple intuitionistic fuzzy hypergraph is support simple. Simple and strongly support
simple are independent concepts in intuitionistic fuzziness.

Definition 2.10 Let H = (S, R) be an intuitionistic fuzzy hypergraph on X . For
α, β ∈ [0, 1], 0 ≤ α + β ≤ 1, the (α, β)-level hyperedge of an intuitionistic fuzzy
hyperedge η is defined as

η(α,β) = {u ∈ X |λη(u) ≥ α, τη)(u) ≤ β}.

H(α,β) = (S(α,β), R(α,β)) is called an (α, β)-level hypergraph of H where, S(α,β) is
defined as S(α,β) = ∪r

k=1ηk(α,β).

Definition 2.11 Let H = (S, R) be an intuitionistic fuzzy hypergraph. The
sequence of order pairs (αi , βi ) ∈ [0, 1] × [0, 1], 0 ≤ αi + βi ≤ 1, 1 ≤ i ≤ n, such
that α1 > α2 > · · · > αn , β1 < β2 < · · · < βn satisfying the properties

1. if 1 ≥ α > α1 and 0 ≤ β < β1 then R(α,β) = ∅,
2. if αi+1 < α ≤ αi and βi ≤ β < βi+1 then R(α,β) = R(αi ,βi ),

3. R(αi ,βi ) � R(αi+1,βi+1),

is called fundamental sequence of H , denoted by fs(H ). The corresponding
sequence of (αi , βi )-level hypergraphsH(α1,β1),H(α2,β2), . . . ,H(αn ,βn) is called core
set of H , denoted by C(H ). The (αn, βn)-level hypergraph, H(αn ,βn), is called
support level of H .

Definition 2.12 An intuitionistic fuzzy hypergraph H = (S, R) is called a partial
intuitionistic fuzzy hypergraph ofH ′ = (S′, R′) if following conditions are satisfied

1. supp(S) ⊆ supp(S′) and supp(R) ⊆ supp(R′),
2. if supp(ηi ) ∈ supp(S) and supp(η

′
i ) ∈ supp(S′) such that supp(ηi )=supp(η

′
i )

then ηi = η
′
i .

It is denoted by H ⊆ H ′. An intuitionistic fuzzy hypergraph H = (S, R) is
ordered if the core set C(H ) = {H(α1,β1),H(α2,β2), . . . ,H(αn ,βn)} is ordered, that
is, H(α1,β1) ⊆ H(α2,β2) ⊆ . . . ⊆ H(αn ,βn). H is simply ordered if H is ordered and
whenever, R′ ⊂ R(αi+1,βi+1) \ R(αi ,βi ) then R′ � R(αi ,βi ).

Observation 2.1 Let H be an elementary intuitionistic fuzzy hypergraph then H
is ordered. IfH is ordered intuitionistic fuzzy hypergraph and support levelH(αn ,βn)

is simple then H is an elementary intuitionistic fuzzy hypergraph.

Definition 2.13 LetH = (S, R) andH ′ = (S′, R′) be any two intuitionistic fuzzy
hypergraphs on X and X ′, respectively, where S = {η1, η2, . . . , ηr } and S′ = {η′

1, η
′
2,

. . . , η′
r }. A homomorphism between H and H ′ is a mapping ψ : X → X ′ such that
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1. ∧s
i=1ληi (y) ≤ ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) ≤ ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X ,

3. λR({y1, y2, . . . , ys}) ≤ λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
4. τR({y1, y2, . . . , ys}) ≤ τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2, . . . ,

ys ∈ X.

Definition 2.14 A co-weak isomorphism of two intuitionistic fuzzy hypergraphsH
and H ′ is defined as a bijective homomorphism ψ : X → X ′ such that

1. λR({y1, y2, . . . , ys}) = λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
2. τR({y1, y2, . . . , ys}) = τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2,

. . . , ys ∈ X.

Definition 2.15 A weak isomorphism of two intuitionistic fuzzy hypergraphs H
and H ′ is defined as a bijective homomorphism ψ : X → X ′ such that

1. ∧s
i=1ληi (y) = ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) = ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X .

Definition 2.16 An isomorphism of H and H ′ is a mapping ψ : X → X ′ such
that

1. ∧s
i=1ληi (y) = ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) = ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X ,

3. λR({y1, y2, . . . , ys}) = λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
4. τR({y1, y2, . . . , ys}) = τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2,

. . . , ys ∈ X.

Example 2.3 Assume that S = {η1, η2, η3, η4} and S′ = {η′
1, η

′
2, η

′
3, η

′
4} are the fami-

lies of intuitionistic fuzzy subsets on X = {a1, a2, . . . , a6} and X ′ = {a′
1, a

′
2, . . . , a

′
6},

respectively, as shown in Tables2.2 and 2.3.
The intuitionistic fuzzy relations R and R′ are defined as R({a1, a3, a4, a6}) =

(0.1, 0.5), R({a1, a2, a3}) = (0.2, 0.5), D({a3, a4}) = (0.5, 0.4), R({a4, a5, a6}) =
(0.1, 0.8) and R′({a′

1, a
′
2, a

′
3, a

′
6}) = (0.1, 0.5),D

′
({a′

1, a
′
3, a

′
4}) = (0.2, 0.5),D

′
({a′

1,

a′
2}) = (0.5, 0.4), R′({a′

2, a
′
5, a

′
6})=(0.1, 0.8). The corresponding intuitionistic

fuzzy hypergraphs are given in Figs. 2.7 and 2.8.

Table 2.2 Intuitionistic fuzzy subsets on X

y ∈ X η1 η2 η3 η4

a1 (0.2, 0.5) (0.2, 0.5) (0, 1) (0, 1)

a2 (0, 1) (0.5, 0.4, 0.4) (0, 1) (0, 1)

a3 (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0, 1)

a4 (0.8, 0.1) (0, 1) (0.8, 0.2) (0.8, 0.2)

a5 (0, 0, 0, 0) (0, 1) (0, 1) (0.1, 0.8)

a6 (0.1, 0.2) (0, 1) (0, 1) (0.1, 0.2)
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Table 2.3 Intuitionistic fuzzy subsets on X ′

y′ ∈ X ′ η′
1 η′

2 η′
3 η′

4

a′
1 (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0, 1)

a′
2 (0.8, 0.2) (0, 1) (0.8, 0.2) (0.8, 0.2)

a′
3 (0.2, 0.5) (0.2, 0.5) (0, 1) (0, 1)

a′
4 (0, 1) (0.5, 0.4) (0, 1) (0, 1)

a′
5 (0, 1) (0, 0, 1) (0, 1) (0.1, 0.8)

a′
6 (0.1, 0.2) (0, 0, 1) (0, 1) (0.1, 0.2)

Fig. 2.6 Intuitionistic fuzzy
hypergraph
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Defineamappingψ : X → X ′ byψ(a1) = a′
3,ψ(a2) = a′

4,ψ(a4) = a′
2,ψ(a3) =

a′
1, ψ(a5) = a′

5, and ψ(a6) = a′
6 then, it can be easily seen that

η1(a1) = (0.2, 0.5) = η′
1(a

′
3) = η′

1(ψ(a1)), η2(a1) = (0.2, 0.5) = η′
2(a

′
3) = η′

2(ψ(a1)),

η2(a2) = (0.5, 0.4) = η′
2(a

′
4) = η′

1(ψ(a2)), η1(a3) = (0.5, 0.4) = η′
1(a

′
1) = η′

1(ψ(a3)).

Similarly, ηi (y) = η′
i (ψ(y)), and R({y1, y2, . . . , ys}) = R′({ψ(y1), ψ(y2), . . . ,

ψ(ys)}), for all y, yi ∈ X . Therefore, H and H ′ are isomorphic.

Definition 2.17 The order and size of an intuitionistic fuzzy hypergraph H =
(S, R) can be defined as

O(H ) =
∑

y∈X
(∧ jλη j (y),∨ jτη j (y)), S(H ) =

∑

E j⊂X

(λR(E j ), τR(E j )).
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Fig. 2.7 Intuitionistic fuzzy
hypergraph H
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Theorem 2.2 For any two isomorphic intuitionistic fuzzy hypergraphs, the order
and size are same.

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be any two intuitionistic fuzzy hyper-
graphswhere, S = {η1, η2, . . . , ηs} and S′ = {η′

1, η2, . . . , η
′
s} are the families of intu-

itionistic fuzzy subsets on X and X ′, respectively. If ψ : X → X ′ is an isomorphism
between H and H ′ then

O(H ) =
∑

y∈X
(∧iληi (y),∨iτηi (y))

=
∑

y∈X
(∧iλη′

i
(ψ(y)),∨iτη′

i
(ψ(y))) =

∑

y′∈X ′
(∧iλη′

i
(y′),∨iτη′

i
(y′)) = O(H ′).

S(H ) =
∑

Ei⊂X

R(Ei ) =
∑

Ei⊂X

R′(ψ(Ei )) =
∑

E ′
i⊂X ′

R′(E ′
i ) = S(H ′).

It completes the proof.

Remark 2.2 The converse of Theorem2.2 does not hold, i.e., if the orders and sizes
of two intuitionistic fuzzy hypergraphs are same then they may not be isomorphic as
given in Example2.4.

Example 2.4 Consider two intuitionistic fuzzy hypergraphs H1 = (S1, R1) and
H2 = (S2, R2) given in Figs. 2.9 and 2.10. By Definition2.17, O(H1) = O(H2) =
(1.8, 1.3) and S(H1) = S(H2) = (0.4, 0.9). The orders and sizes of intuitionistic
fuzzy hypergraphs H1 and H2 but H1 �≈ H2.

Theorem 2.3 The order of any twoweak isomorphic intuitionistic fuzzy hypergraphs
is same.
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Fig. 2.8 Intuitionistic fuzzy
hypergraph H ′
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The proof follows from Definition2.15 and the proof of Theorem2.2.

Theorem 2.4 The size of any two co-weak isomorphic intuitionistic fuzzy hyper-
graphs is same.

The proof follows from Definition2.14 and the proof of Theorem2.2.

Remark 2.3 The intuitionistic fuzzy hypergraphs of same order and size may not
be weak isomorphic and co-weak isomorphic, respectively, i.e., the converse of
Theorems2.3 and 2.4 is not true in general as shown in Example2.5.

Example 2.5 Let H1 = (S1, R1) and H2 = (S2, R2) be two intuitionistic fuzzy
hypergraphs as shown in Figs. 2.11 and 2.12 where R1 = {η11, η12, η13} and R2 =
{η21, η22, η23}. Clearly,O(H1) = O(H2) = (1.6, 1.7) and S(H1) = S(H2) = (0.5,
1.3). Define a mapping ψ : X1 → X2 by ψ(u1) = u2, ψ(v1) = v2, ψ(x1) = x2,
ψ(y1) = y2, ψ(z1) = z2. But λη12(u1) = 0.5 � 0.2 = λη22(u2) so, H1 and H2 are
not weak isomorphic. Similarly, λR1({v1, y1}) = 0.2 � λR2({ψ(v1), ψ(y1)}) = 0.
Hence, H1 and H2 are not co-weak isomorphic.

Definition 2.18 For any intuitionistic fuzzy hypergraph, the degree of a vertex y is
defined as, deg(y) = ∑

y∈Ei⊆X R(Ei ).
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Fig. 2.10 Intuitionistic
fuzzy hypergraph H2
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Fig. 2.11 Intuitionistic
fuzzy hypergraph H1
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Theorem 2.5 The degree of vertices of isomorphic intuitionistic fuzzy hypergraphs
is preserved.

Proof Let ψ : X → X ′ be an isomorphism of intuitionistic fuzzy hypergraphs
H and H ′ where, X = {y1, y2, . . . , yn} and X ′ = {y′

1, y
′
2, . . . , y

′
n}. Then Defini-

tion2.18 implies that

deg(yi ) =
∑

yi∈Ei⊆X
R(Ei ) =

∑

yi∈Ei

R′(φ(Ei )) = deg(ψ(yi )).

Remark 2.4 If the degrees of vertices of any two intuitionistic fuzzy hypergraphs is
preserved then they may not be isomorphic as it is proved in Example2.6.
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Fig. 2.12 Intuitionistic
fuzzy hypergraph H2
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Fig. 2.13 Intuitionistic
fuzzy hypergraph H
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Example 2.6 Consider two intuitionistic fuzzy hypergraphsH = (S, R) andH ′ =
(S′, R′) as given in Figs. 2.13 and 2.14. Define amappingψ : X → X ′ byψ(u) = u′,
ψ(v) = x ′, ψ(x) = v′, ψ(y) = y′, ψ(z) = z′. Routine calculations show that

deg(u) = (0.2, 0.5) = deg(φ(u)), deg(v) = (0.3, 1.0) = deg(φ(v)).

The degree of all other vertices is also preserved but R({x, y, v}) �= R′({ψ(x),
ψ(y), ψ(v)}). Hence, H and H ′ are not isomorphic to each other.

Theorem 2.6 The relation of isomorphism between intuitionistic fuzzy hypergraphs
is an equivalence relation.

Proof Assume thatH1 = (S1, R1),H2 = (S2, R2) andH3 = (S3, R3) are intuition-
istic fuzzyhypergraphs on X1, X2 and X3, respectively,where S1={η11, η12, . . . , η1s},
S2 = {η21, η22, . . . , η2s} and S3 = {η31, η32, . . . , η3s}.
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Fig. 2.14 Intuitionistic
fuzzy hypergraph H ′
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1. Reflexivity: Define an identity mapping I : X1 → X1 by I (y1) = y1 for all y1 ∈
X1. Clearly I is bijective an
(∧ jλη1 j (y1),∨ jτη1 j (y1)) = (∧ jλη1 j (I (y1)),∨ jτη1 j (I (y1))) and R1(E1i ) = R1(I
(E1i )), for all y1 ∈ X1, E1i ⊆ X1.
So, I is an isomorphism of an intuitionistic fuzzy hypergraph to itself.

2. Symmetry: Let ψ : X1 → X2 be an isomorphism defined by ψ(y1) = y2. Since
ψ is bijective therefore, the inverse bijectivemappingψ−1 : X2 → X1 exists such
that ψ(y2) = y1 for all y2 ∈ X2. Then

(∧ jλη2 j (y2),∨ jτη2 j (y2)) = (∧ jλη2 j (ψ(y1)),∨ jτη2 j (ψ(y1))),

= (∧ jλη1 j (y1),∨ jτη1 j (y1)),

= (∧ jλη1 j (ψ
−1(y2)),∨ jτη1 j (ψ

−1(y2))).

R2(E2 j ) = R2(ψ(E1 j )) =R1(E1 j ) = R1(ψ
−1(E2 j )), E1 j ⊆ X1, E2 j ⊆ X2.

Thus, ψ−1 is an isomorphism.
3. Assume that ψ1 : X1 → X2, ψ2 : X2 → X3 are isomorphisms of H1 onto H2

andH2 ontoH3, respectively, such that ψ1(y1) = y2 and ψ2(y2) = y3. By Defi-
nition2.16
∧ jλη1 j (y1) = ∧ jλη2 j (y2) = ∧ jλη3 j (ψ(y2)) = ∧ jλη3 j (ψ2(ψ1(y1))) = ∧ jλη3 j (ψ2 ◦ ψ1(y1)),

∨ j τη1 j (y1) = ∨ j τη2 j (y2) = ∨ j τη3 j (ψ(y2)) = ∨ j τη3 j (ψ2(ψ1(y1))) = ∨ j τη3 j (ψ2 ◦ ψ1(y1)),

R1(E1 j ) = R2(E2 j ) = R3(ψ2(E2 j )) = R3(ψ2(ψ1(E1 j ))) = R3(ψ2 ◦ ψ1(E1 j )).

where, E1 j ⊆ X1, E2 j ⊆ X2 and E3 j ⊆ X3. Clearly, ψ2 ◦ ψ1 is an isomorphism
fromH1 ontoH3. Hence, isomorphism of intuitionistic fuzzy hypergraphs is an
equivalent relation.

Theorem 2.7 The relation of weak isomorphism between intuitionistic fuzzy hyper-
graphs is a partial order relation.
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Fig. 2.15 Intuitionistic
fuzzy hypergraph H
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The proof follows from Definition2.15 and the proof of Theorem2.6.

Definition 2.19 An intuitionistic fuzzy hyperpath P of length m in an intuitionis-
tic fuzzy hypergraph is defined as a sequence y1, E1, y2, E2, . . . , ym, Em, ym+1 of
distinct vertices yi ’s and hyperedges Ei ’s such that

1. λR(Ei ) > 0, for each 1 ≤ i ≤ m,
2. yi , yi+1 ∈ Ei , for each 1 ≤ i ≤ m.

If ym = ym+1 then, P is called an intuitionistic fuzzy hypercycle.

Example 2.7 Let H = (S, R) be an intuitionistic fuzzy hypergraph as shown in
Fig. 2.15. The sequence y5, E3, y6, E2, y4, E1, y1, E4, y8 is an intuitionistic fuzzy
hyperpath and y8, E2, y4, E1, y8 is an intuitionistic fuzzy hypercycle.

Definition 2.20 An intuitionistic fuzzy hypergraph H = (S, R) on a non-empty
set X is connected if every two distinct vertices inH are joined by an intuitionistic
fuzzy hyperpath.

Definition 2.21 Let y and z be two distinct vertices of an intuitionistic fuzzy hyper-
graph H which are joined by an intuitionistic fuzzy hyperpath y= y1, E1, y2,
E2, . . . , yp, Ep, yp+1 = z of length p. The strength of intuitionistic fuzzy hyper-
path y − z is denoted by Sp(y, z) = (λSp (y, z), τSp (y, z)) and defined as,

λSp (y, z) = λR(E1) ∧ λR(E2) ∧ . . . ∧ λR(Ep),

τSp (y, z) = τR(E1) ∨ τR(E2) ∨ . . . ∨ τR(Ep), u ∈ E1, v ∈ Ep.

The strength of connectedness between y and z is denoted by S∞(y, z) = (λS∞(y, z),
τS∞(y, z)) and defined as
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λS∞ (y, z) = sup
p

{λS p (y, z)|p = 1, 2, . . .}, τS∞(y, z) = inf
p

{τS p (y, z)|p = 1, 2, . . .}.

Theorem 2.8 An intuitionistic fuzzy hypergraph H is connected if and only if
λS∞(y, z) > 0, for all y, z ∈ X.

Proof Suppose that H is a connected intuitionistic fuzzy hypergraph then for any
two distinct vertices y and z, there exists an intuitionistic fuzzy hyperpath y − z such
that

λSp (y, z) > 0 ⇒ sup
p

{λSp (y, z)|p = 1, 2, . . .} > 0 ⇒ λS∞(y, z) > 0.

We can prove the converse part on the same lines as above.

Definition 2.22 A strong intuitionistic fuzzy hypergraph on a non-empty set X is an
intuitionistic fuzzy hypergraph H = (S, R) such that for all Ei = {y1, y2, . . . , yr }
∈ E ,

R(Ei ) = (
r

min
j=1

[∧iληi (y j )], r
max
j=1

[∨iτηi (y j )]).

Definition 2.23 A complete intuitionistic fuzzy hypergraph on a non-empty set X is
an intuitionistic fuzzy hypergraphH = (S, R) such that for all y1, y2, . . . , yr ∈ X ,

R(Ei ) = (
r

min
j=1

[∧iληi (y j )], r
max
j=1

[∨iτηi (y j )]).

Theorem 2.9 For any two intuitionistic fuzzy hypergraphsH1 andH2,H1 is con-
nected if and only ifH2 is connected.

Proof Let E1 = {E11, E21, . . . , Er1} and E2 = {E12, E22, . . . , Er2} be the families
of hyperedges if intuitionistic fuzzy hypergraphsH1 = (S1, R1) andH2 = (S2, R2),
respectively. Assume that ψ : X1 → X2 is an isomorphism ofH1 ontoH2 and that
H1 is connected then

0 < λS∞
1
(y1, z1) = sup

p
{∧p

k=1λR1(Ek1), p = 1, 2, . . .}
= sup

p
{∧p

k=1λR2(ψ(Ek1)), p = 1, 2, . . .}
= λS∞

2
(φ(y1), φ(z1)).

It follows that H2 is connected. The converse part can be proved similarly.

Theorem 2.10 For any two intuitionistic fuzzy hypergraphs H1 and H2, H1 is
strong if and only if H2 is strong.

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be the intuitionistic fuzzy hypergraphs
as defined in Theorem2.9. Assume that H1 is strong then
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R2(Ei2) = R2(ψ(Ei1)) = R1(Ei1) = (
r

min
j=1

[∧ jλη j1(y j1)], r
max
j=1

[∨ jτη j1(y j1)])

= (
r

min
j=1

[∧ jλη j2(ψ(y j1)], r
max
j=1

[∨ jτη j2(ψ(y j1))]).
(2.2)

Equation2.2 clearly shows that H2 is strong. Similarly, the converse part.

Definition 2.24 An intuitionistic fuzzy line graph of an intuitionistic fuzzy hyper-
graph H = (S, R) is a pair L(H ) = (Sl , Rl) where, Sl = R and two vertices Ei

and Ek in L(H ) are connected by an edge if |supp(ηi ) ∩ supp(ηk)| ≥ 1 where,
R(Ei ) = ηi and R(Ek) = ηk . The membership values of sets of vertices and edges
are defined as

1. Sl(Ei ) = R(Ei ),
2. Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek)).

The method for the construction of an intuitionistic fuzzy line graph from an intu-
itionistic fuzzy hypergraph is explained in Algorithm 2.2.1.

Algorithm 2.2.1 The construction of an intuitionistic fuzzy line graph

1. Input the number of edges n of an intuitionistic fuzzy hypergraph H = (S, R).
2. Input the degrees of membership of the hyperedges E1, E2, . . . , Es .
3. Construct an intuitionistic fuzzy graph L(H ) = (Sl , Rl) whose vertices are the

s hyperedges E1, E2, . . . , Es such that Sl(Ei ) = R(Ei ).
4. If |supp(ηi ) ∩ supp(ηk)| ≥ 1 then, draw an edge between Ei and Ek and

Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek)).

Example 2.8 An example of an intuitionistic fuzzy hypergraph is shown in Fig. 2.16.
The intuitionistic fuzzy line graph is constructed using Algorithm 2.2.1 and repre-
sented with dashed lines.

Definition 2.25 An intuitionistic fuzzy hypergraph is known as linear intuitionistic
fuzzy hypergraph if

supp(ηi ) ⊆ supp(ηk) ⇒ i = k and |supp(ηi ) ∩ supp(ηk)| ≤ 1.

Theorem 2.11 The intuitionistic fuzzy line graph L(H ) of an an intuitionistic fuzzy
hypergraph H is connected if and only ifH is connected.

Proof LetH = (S, R) be a connected intuitionistic fuzzy hypergraph and L(H ) =
(Sl, Rl). Assume that Ei and Ek are two vertices in L(H ) such that yi ∈ Ei , yk ∈
Ek and yi �= yk . By Definition2.20, there exists an intuitionistic fuzzy hyperpath
yi , Ei , yi+1, Ei+1, . . . , Ek, yk between yi and yk . Using Definition2.21, we have
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Fig. 2.16 Intuitionistic
fuzzy line graph L(H )
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λS∞(Ei , Ek) = sup{λS p (Ei , Ek)|p = 1, 2, . . .}
= sup{λRl (Ei Ei+1) ∧ λRl (Ei+1Ei+2) ∧ . . . ∧ λRl (Ek−1Ek)|p = 1, 2, . . .}
= sup{λR(Ei ) ∧ λR(Ei+1) ∧ . . . ∧ λR(E j )|p = 1, 2, . . .}
= sup{λS p (yi , yk)|p = 1, 2, . . .} = λS∞(yi , yk) > 0.

Hence, L(H ) is connected. Similarly, if L(H ) is connected then it can be easily
proved that H is connected.

Definition 2.26 The 2-section of an intuitionistic fuzzy hypergraphH = (S, R) is
denoted by [H ]2 = (S,U ) and defined as an intuitionistic fuzzy graph whose set of
vertices is same asH andU is an intuitionistic fuzzy set on {yi yk |yi , yk ∈ Ep, p =
1, 2, . . .}, i.e., any two vertices of the same hyperedge are joined by an edge and

U (yi yk) = (min{∧pληp (yi ),∧pληp (yk)},max{∨pτηp (yi ),∨pτηp (yk)}).

Example 2.9 An example of a 2-section of an intuitionistic fuzzy hypergraph is
shown in Fig. 2.17. The 2-section of H is represented with dashed lines.

Definition 2.27 Let H = (S, R) be an intuitionistic fuzzy hypergraph on X then
the dual of H is denoted byH D = (SD, RD) and it is defined as
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Fig. 2.17 2-section of an intuitionistic fuzzy hypergraph

1. SD = R is the intuitionistic fuzzy set of vertices of H D.

2. If |X | = n then, RD is an intuitionistic fuzzy set on the family of hypeedges
{X1, X2, . . . , Xn}ofH D such that Xk = {Ei |yk ∈ Ei , Ei is a hyperedge ofH }.
That is, Xk is the collection of those hyperedges which have a common vertex yk
and

RD(Xk) = (min{λR(Ei )|yk ∈ Ei },max{τR(Ei )|yk ∈ Ei }).

The method for the construction of dual of an intuitionistic fuzzy hypergraph is
presented in Algorithm 2.2.2.

Algorithm 2.2.2 The construction of dual of an intuitionistic fuzzy hypergraph

1. Input {y1, y2, . . . , yn}, the set of vertices and {E1, E2, . . . , Er }, the set of hyper-
edges ofH .

2. Construct an intuitionistic fuzzy set of vertices of H D by defining SD = R.
3. Draw a mapping g : X → E between sets of vertices and hyperedges. That is,

if a vertex yi belongs to Ek, Ek+1, . . . , Er then map yi to Ek, Ek+1, . . . , Er as
drawn in Fig. 2.18.

4. Construct a new family of hyperedges {X1, X2, . . . , Xn} of H D such that
Xi = {Ek |g(yi ) = Ek} and RD(Xi ) = (min{λR(Ek)|g(yi ) = Ek},max{τR(Ek)|
g(yi ) = Ek}).

Example 2.10 An intuitionistic fuzzy hypergraph H on X = {y1, y2, y3, y4, y5}
with a set of hyperedges E = {E1, E2, E3, E4, E5} is shown in Fig. 2.19. The dual
of H is represented by dashed lines with vertices E1, E2, E3, E4, E5 and a family
of hyperedges {X1, X2 = X3, X4, X5}.
Theorem 2.12 For any intuitionistic fuzzy hypergraph H , [H D]2 = L(H ).
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Fig. 2.18 Mapping between sets of vertices and hyperedges
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Fig. 2.19 Dual of an intuitionistic fuzzy hypergraph H

Proof LetH = (S, R)be an intuitionistic fuzzyhypergraphon X ={y1, y2, . . . , yn}
with a family of hyperedges {E1, E2, . . . , Es}. Assume that L(H ) = (Sl , Rl),
H D = (SD, RD) and [H D]2 = (SD,U ). The 2-section [H D]2 has the intuitionis-
tic fuzzy vertex set R which is also an intuitionistic fuzzy vertex set of L(H ). Sup-
pose {X1, X2, . . . , Xn} is the family of hyperedges ofH D . Clearly {Ei Ek |Ei , Ek ∈
Xi } is the set of edges of [H D]2 which the set of edges of L(H ). It remains to show
that Rl(Ei Ek) = U (Ei Ek).
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Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek))

= (λSD (Ei ) ∧ λSD (Ek), τSD (Ei ) ∨ τSD (Ek))

= U (Ei Ek).

Theorem 2.13 For any two isomorphic intuitionistic fuzzy hypergraphsH1 andH2,
ifH1 � H2 then H D

1 � H D
2 .

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be two isomorphic intuitionistic fuzzy
hypergraphs on X1 = {y11, y12, . . . , y1n} and X2 = {y21, y22, . . . , y2n}, respectively.
Takeψ : X1 → X2 as an isomorphism ofH1 ontoH2. Let {X11, X12, . . . , X1n} and
{X21, X22, . . . , X2n} be the families of hyperedges ofH D

1 andH D
2 . Also, let E1 and

E2 be the families of hyperedges ofH1 andH2 then define a mapping φ : E1 → E2.
It is to be shown that ψ is an isomorphism. For each E1k ∈ E1 and E2k ∈ E2

SD
1 (E1k) = R1(E1k) = R2(ψ(E1k)) = R2(E2k) = SD

2 (φ(E1k)).

RD
1 (X1k ) = (λR1 (E1k ) ∧ λR1 (E1k+1) ∧ . . . ∧ λR1 (E1l ), τR1 (E1k ) ∨ τR1 (E1k+1) ∨ . . . ∨ τR1 (E1l )),

= (λR2 (φ(E1k )) ∧ λR2 (φ(E1k+1)) ∧ . . . ∧ λR2 (φ(E1l )),

τR2 (φ(E1k )) ∨ τR2 (φ(E1k+1)) ∨ . . . ∨ τR2 (φ(E1l ))),

= RD
2 (X2k ) = RD

2 (ψ(X1k )).

Hence, H D
1 � H D

2 .

Theorem 2.14 The dualH D of a linear intuitionistic fuzzy hypergraphH is also
linear.

Proof Let H = (S, R) and H D = (SD, RD). On contrary, assume that H D is
not a linear intuitionistic fuzzy hypergraph then there exist Xi and Xk such that
|supp(ξi ) ∩ supp(ξk)| = 2 where, RD(Xi ) = ξi and RD(Xk) = ξk . Assume that
supp(ξi ) ∩ supp(ξk) = {Et , Es}. The definition of duality ofH D follows that there
exist yi , yk ∈ X such that yi , yk ∈ Et and yi , yk ∈ Es . A contradiction to the given
statement that H is linear. Hence, H D is a linear intuitionistic fuzzy hypergraph.

2.3 Applications of Intuitionistic Fuzzy Hypergraphs

Graph theory has proved very useful for solving combinatorial problems of computer
science and communication networks. To expand the origin of these applications,
graphswere further extended tohypergraphs tomodel complex systemswhich arise in
operation research, networking, and computer science. In some situations, the given
data is fuzzy in nature and contains information about the existence and somewhere
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non-existence of uncertainty. The intuitionistic fuzzy hypergraphs can be used to
formulate these concepts of existence and non-existence of uncertainty in a more
generalized form as hypergraphs and intuitionistic fuzzy graphs can do. We now
discuss some applications of intuitionistic fuzzy hypergraphs in social networking,
chemistry, and planet surface networks.

2.3.1 The Intersecting Communities in Social Network

Nowadays, social networks have become the widely studied areas of research. Social
networks are used to represent the lower and higher level interconnections among
several communities belonging to social, as well as biological networks. People
in society are connected to multiple areas which make them the part of various
communities such as companies, universities, colleges, and offices etc. Consider the
problem of grouping of authors according to their field of interest. An author can be
different from the other regarding his/her critical writing.We present an intuitionistic
fuzzy hypergraph H = (B, A) in which the vertices are authors and membership
value of each author represents the degree of good writing and nonmembership value
represents that the author’s critical writing is not so good. Each hyperedge is the
collection of those authors who belong to the same field of interest. The membership
value of each hyperedge depicts the commonability of good criticalwriting of authors
and nonmembership value shows the bad writing ability. An example is shown in
Fig. 2.20.

The intuitionistic fuzzy hypergraph model can be used for the selection of authors
having best writing ability in each field. The method for the selection of authors with
best writing is given in Algorithm 2.3.1.

John(0.6,0.3)

Tom(0.7,0.2)

Bill(0.4,0.5)

Adney(0
.4,0.6)

Me
rry
(0.
7,0

.3)

Gr
ey(
0.5
,0.
5)

Raina(0.7,0.2)

Roma(0.8,0.4)

Ozeti(0.7,0.3)

George(0.7,0.3)

M
athematical M

odeling

(0.5,0.3)

Inf
orm

ati
on
Th
eo
ry

(0
.5,
0.5
)

Mechanical Proj
ects

(0.4,0.5)

Psychology

(0.7,0.2)

British Fiction
(0.6,0.4)

Sociology
(0.7,0.3)

Fig. 2.20 Intuitionistic fuzzy social hypergraph
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Algorithm 2.3.1 Selection of authors in an intuitionistic fuzzy social networkmodel

1. Input the set of vertices (authors) y1, y2, . . . , yn .
2. Input the intuitionistic fuzzy set S of vertices such that S(yi ) = (λi , τi ), 1 ≤ i ≤

n.
3. Input the adjacency matrix ξ = [(λi j , τi j )]n×n of vertices.
4. do i from 1 → n
5. Ci = 0
6. do j from 1 → n
7. πi j = 1 − λi j − τi j

8. Si j =
√

λ2i j + π2
i j + (1 − τi j )2

9. Ci = Ci + Si j
10. end do
11. πi = 1 − λi − τi

12. Ci = Ci +
√

λ2
i + π2

i + (1 − τi )2

13. end do
14. Using Algorithm 2.2.1, construct the adjacency matrix ξl of intuitionistic fuzzy

line graph L(H ) of intuitionistic fuzzy hypergraphH whose adjacency matrix
is ξ .

15. Compute the score and choice values of all vertices (fields) in L(H ) using steps
4–13.

16. Choose a vertex (field) E in L(H ) with maximum choice value.
17. Select a vertex of hyperedge E inH with maximum choice value which is the

best option.

The adjacency matrix of Fig. 2.20 is given in Table2.4. The score values of intuition-
istic fuzzy hypergraph are computed using score function Si j =

√
λ2i j + π2

i j + (1 − τi j )2

and the choice values Ci = ∑

j
Si j +

√
λ2
i + π2

i + (1 − τi )2 are given in Table2.5

where, for any twovertices yi , y j ∈ E (E is a hyperedge), (λi j , τi j ) = (λA(E), τA(E)),
(λi , τi ) = (λB(yi ), τB yi ).

The intuitionistic fuzzy line graph of Fig. 2.20 is shown in Fig. 2.21.
The adjacency matrix of Fig. 2.21 in given in Table2.6. The score and choice values
of Fig. 2.21 are calculated in Table2.7.

The choice values in Table2.7 show that the company can gainmaximumbenefit if
it publishes articles and books on Psychology. There are three authors of Psychology,
George, Raina, and Adney. The choice values of Table2.7 show that Adney is the
best author of Psychology. The best authors for all the fields are given in Table2.8
which clearly shows that Raina, Adney, and Merry are the suitable options for all
fields.
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Table 2.4 Adjacency matrix

ξ Roma George Ozeti Raina Adney Grey Merry John Bill Tom

Roma (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

George (0.6,
0.4)

(0, 1) (0.7,
0.3)

(0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Ozeti (0, 1) (0.7,
0.3)

(0, 1) (0.7,
0.3)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Raina (0.6,
0.4)

(0.6,
0.4)

(0.7,
0.3)

(0, 1) (0.7,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Adney (0, 1) (0, 1) (0, 1) (0.7,
0.2)

(0, 1) (0.5,
0.5)

(0.5,
0.5)

(0, 1) (0.4,
0.5)

(0.4,
0.5)

Grey (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.5)

(0, 1) (0.5,
0.5)

(0, 1) (0, 1) (0, 1)

Merry (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.5)

(0.5,
0.5)

(0, 1) (0.5,
0.3)

(0, 1) (0.5,
0.3)

John (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.3)

(0, 1) (0, 1) (0.5,
0.3)

Bill (0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

(0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

Tom (0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

(0, 1) (0.5,
0.3)

(0.5,
0.3)

(0.4,
0.5)

(0, 1)

Table 2.5 Score and choice values

Si j Roma George Ozeti Raina Adney Grey Merry John Bill Tom Ci

Roma 0 0.8485 0 0.8485 0 0 0 0 0 0 2.8284

George 0.8485 0 0.9899 0.8485 0 0 0 0 0 0 3.6768

Ozeti 0 0.9899 0 0.9899 0 0 0 0 0 0 2.9697

Raina 0.8485 0.8485 0.9899 0 1.0677 0 0 0 0 0 4.8223

Adney 0 0 0 1.0677 0 0.7071 0.7071 0 0.6481 0.6481 4.3438

Grey 0 0 0 0 0.7071 0 0.7071 0 0 0 2.1213

Merry 0 0 0 0 0.7071 0.7071 0 0.8832 0 0.8832 4.1705

John 0 0 0 0 0 0 0.8832 0 0 0.8832 2.6938

Bill 0 0 0 0 0.6481 0 0 0 0 0.6481 1.9443

Tom 0 0 0 0 0.6481 0 0.8832 0.8832 0.6481 0 4.1303

2.3.2 Planet Surface Networks

There are various types of satellites in space for network communication and explo-
ration of planets. Hypergraphs are a key tool to model such communication links
among surface networks and satellites. There exist disturbance and uncertainty in
planet surface communication due to climate change and electrical interference of
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Table 2.6 Adjacency matrix of intuitionistic fuzzy line graph

ξl British
fiction

Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

British
Fiction

(0, 1) (0.6,0.3) (0.6,0.2) (0, 1) (0, 1) (0, 1)

Sociology (0.6,0.3) (0, 1) (0.7,0.2) (0, 1) (0, 1) (0, 1)

Psychology (0.6,0.2) (0.7,0.2) (0, 1) (0.5, 0.2) (0.4, 0.2) (0, 1)

Information
Theory

(0, 1) (0, 1) (0.5, 0.2) (0, 1) (0.4, 0.5) (0.5,0.3)

Mechanical
Projects

(0, 1) (0, 1) (0.4, 0.2) (0.4, 0.5) (0, 1) (0.4,0.3)

Mathematical
Modeling

(0, 1) (0, 1) (0.4, 0.2) (0.5, 0.5) (0.4, 0.5) (0, 1)

Table 2.7 Score and choice values of intuitionistic fuzzy line graph

Si j British
fiction

Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

C j

British Fiction 0 0.9274 1.0198 0 0 0 2.7957

Sociology 0.9274 0 1.0677 0 0 0 2.9850

Psychology 1.0198 1.0677 0 0.9899 0.9798 0 5.1249

Information
Theory

0 0 0.9899 0 0.6481 0.8832 3.2283

Mechanical
Projects

0 0 0.9798 0.6481 0 0.8602 3.1362

Mathematical
Modeling

0 0 0.9798 0.7071 0.6481 0 3.2010

Table 2.8 Authors with best and critical writing

British Fiction Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

Raina Raina Raina Adney Adney Merry

devices. This type of uncertainty in planet surface networks can be modeled using
intuitionistic fuzzy hypergraphs as given in Fig. 2.22.

The circular dots denote the wireless devices on Earth, square style vertices show
the satellites and diamond style vertices show the Earth gateway links. The member-
ship value of each vertex represents the degree of disturbance in signal communi-
cation due to climate change and electrical interference. The nonmembership value
shows the falsity of disturbance in signal communication. The membership value of
each hyperedge represents the disturbance in corresponding access point. This is an
application of intuitionistic fuzzy hypergraphs in planet surface networks and this
model can be expanded to large-scale networks.
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Fig. 2.21 Intuitionistic fuzzy line graph of Fig. 2.20
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Fig. 2.22 Planet surface communication model

2.3.3 Grouping of Incompatible Chemical Substances

In thismodernworld, chemical engineers are tryingday andnight to save the economy
by converting rawmaterials into useful products. Various types of chemicals are used
for this purpose. Chemical industries are producing a variety of chemicals to be used
by other companies to produce different products. But the major problem is to store
the chemicals in order to avoid the accidental mixing to prevent chemical explosions,



104 2 Hypergraphs in Intuitionistic Fuzzy Environment

Sodium

Potassium
Water(0.8,0.2)

Nak Alloy(0.4,0.6)

Alkai Metal

(0
.5,
0.5
)

Hy
dro
flo
uri
c

ac
id

(0.3,0.7)

(0.8,0.2)

(0.8,0.2)

G
lycerol

(0.6,0.4)Nitric Acid

(0.8,0.2)

(0.6,0.4)Nitrating

Cellulus

Is
op
ro
py
l A

lc
ho
ho
l

(0
.9
,0
.1
)

Acetic Acid(0.8,0.2)

Aceton
(0.9,0.1)

(0.6,0.4)
Ethanol

(0.8,0.2)

(0.3,0.7)

(0.
3,
0.7
)

(0.3,0.6)

(0.5,0.4)

(0.6,0.4)

(0.6,0.4
)

(0.7,0.2)

Fig. 2.23 Grouping of incompatible chemicals

oxygen deficiency, and dangerous toxic gases. Intuitionistic fuzzy hypergraphs can
be used to model the chemicals in different groups to study the degree of disaster
that could happen due to the accidental chemical reactions. An example is shown in
Fig. 2.23 in which the vertices represent the chemicals.

Each hyperedge is the collection of those chemicals which can explode when
mixed together. The membership value of each chemical show the degree of violent
explosion and oxygen deficiency when reacted with various other chemicals. The
nonmembership value represents the weakness of disaster. The membership and
nonmembership value of each hyperedge represents the strength and weakness of
disaster that cause due to chemical reaction. The degree of membership of Sodium
is (0.8, 0.2)which shows that sodium is 80% explosive and 20% not explosive when
mixed with other chemicals. Intuitionistic fuzzy hypergraphs can also be used for
the classification of chemicals which are the most and least destructive in the given
group. The method for the computation of such chemicals follows from steps 1–13
of Algorithm 2.3.1. The adjacency matrix of Fig. 2.23 is given in Table2.9. The score
values and choice of chemicals are computed in Table2.10.
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Table 2.9 Adjacency matrix of Fig. 2.23

ξ Hyd
acid

Alkai
metal

Sod Potas Water Nak
alloy

Glyc Nitric
acid

Cell
nitrat

Isop
alcho

Acetic
acid

Acet Ethan

Hyd
acid

(0, 1) (0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Alkai
metal

(0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Sod (0, 1) (0.3,
0.7)

(0, 1) (0.8,
0.2)

(0.8,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Potas (0, 1) (0, 1) (0.8,
0.2)

(0, 1) (0.3,
0.6)

(0.3,
0.6)

(0.5,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Water (0, 1) (0.3,
0.7)

(0.8,
0.2)

(0.8,
0.2)

(0, 1) (0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Nak
alloy

(0, 1) (0, 1) (0, 1) (0.3,
0.6)

(0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Water (0, 1) (0.3,
0.7)

(0.8,
0.2)

(0.8,
0.2)

(0, 1) (0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Glyc (0, 1) (0, 1) (0, 1) (0.5,
0.4)

(0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1)

Nitric
acid

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0.7,
0.2)

(0.6,
0.4)

(0.6,
0.4)

(0.6,
0.4)

Cell
nitrat

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0.7,
0.2)

(0.6,
0.4)

(0.6,
0.4)

(0.6,
0.4)

Isop
alcho

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.7,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Acetic
acid

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

Acet (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

Ethan (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

(0, 1)

The score value 0 of some pair of chemicals show that they have no relation in
given intuitionistic fuzzy hypergraph. There could be a little hazard due to themixing
of these chemicals. It can be studied on large-scale because it is not in the scope of
this article. Table2.10 shows that Nitric Acid and Cellulus Nitrating are the most
explosive chemicals in the given group. These should be stored separately.

2.3.4 Radio Coverage Network

A hypernetwork M is a network whose underlying structure is a hypergraph H∗, in
which each vertex vi corresponds to a unique processor pi of M , and each hyper-
edge e∗

j corresponds to a connector that connects processors represented by the ver-
tices in e∗

j . A connector is loosely defined as an electronic or a photonic component
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throughwhichmessages are transmitted between connected processors, not necessar-
ily simultaneously. We call a connector a hyperlink. Unlike a point-to-point network,
in which a link is dedicated to a pair of processors, a hyperlink in a hypernetwork is
shared by a set of processors. A hyperlink can be implemented by a bus or a crossbar
switch. Current optical technologies allow a hyperlink to be implemented by optical
waveguides in a foldedbus using time-division multiplexing (TDM). Freespace opti-
cal or optoelectronic switching devices such as bulk lens, microlens array, and spatial
light modulator (SLM) can also be used to implement hyperlinks. A star coupler,
which uses wavelength-division multiplexing (WDM), can be considered either as
a generalized bus structure or as a photonic switch, is another implementation of a
hyperlink. Similarly, an ATM switch, which uses a variant TDM, is a hyperlink.

In telecommunications, the coverage of a radio station is the geographic area
where the station can communicate.

Example 2.11 (Radio Coverage Network) Let X be a finite set of radio receivers
(vertices); perhaps a set of representative locations at the centroid of a geographic
region. For each of m radio transmitters we define the intuitionistic fuzzy set “lis-
tening area of station j” where A j (x) = (μ j (x), ν j (x)) represents the “quality of
reception of station j at location x . The membership and nonmembership values
near 1 and 0, respectively, could signify “very clear reception on a very poor radio”
while membership and nonmembership values near 0 and 1, respectively, could sig-
nify “very poor reception on even a very sensitive radio”. Also, for a fixed radio
the reception will vary between different stations. The stations can be considered as
hyperedges. The membership and nonmembership values of the hyperedge indicate
the clear and poor communication between stations. This model uses the full defi-
nition of an intuitionistic fuzzy hypergraph. The model could be used to determine
station programming or marketing strategies or to establish an emergency broadcast
network (is there a minimal subset of stations that reaches every radio with at least
strength?). Further variables could relate signal strength to changes in time of day,
weather and other conditions.

2.3.5 Clustering Problem

A cluster is two or more interconnected computers that create a solution to provide
higher availability, higher scalability or both. The advantage of clustering computers
for high availability is seen if one of these computers fails, another computer in the
cluster can then assume the workload of the failed computer. The users of the system
see no interruption of access. The advantages of clustering computers for scalability
include increased application performance and the support of a greater number of
users.

Definition 2.28 Let X be a reference set. A family of nontrivial intuitionistic fuzzy
sets {A1, A2, A3, . . . , Am}, where Ai = (μi , νi ), is an intuitionistic fuzzy partition if

1.
⋃

i supp(Ai ) = X , i = 1, 2, . . . ,m,
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Table 2.11 Intuitionistic fuzzy partition matrix

H At Bh

x1 (0.96, 0.04) (0.04, 0.96)

x2 (1, 0) (0, 1)

x3 (0.61, 0.39) (0.39, 0.61)

x4 (0.05, 0.95) (0.95, 0.05)

x5 (0.03, 0.97) (0.97, 0.03)

2.
∑m

i=1 μi (x) = 1, for all x ∈ X,

3. There is at most one i such that νi (x) = 0, for all x ∈ X , (there is at most one
intuitionistic fuzzy set such that μi (x) + νi (x) = 1, for all x).

Note that, this definition generalizes fuzzy partitions because the definition is
equivalent to a fuzzy partition when for all x , νi (x) =0.We call a family {A1, A2, A3,

. . . , Am} an intuitionistic fuzzy covering of X if it satisfies above conditions 1 − 2.
The concept of intuitionistic fuzzy partition is essential for cluster analysis. An

intuitionistic fuzzy partition can be represented by an intuitionistic fuzzy matrix
[ai j ]5×5 where ai j is the membership degree and nonmembership degree of element
xi in class j.Wesee that thismatrix is the same as the incidencematrix in intuitionistic
fuzzy hypergraph. Then, we can represent an intuitionistic fuzzy partition by an
intuitionistic fuzzy hypergraph H = (S, R) such that

1. X : A set of elements xi , i = 1, 2, . . . , n.
2. S = {η1, η2, . . . , ηm}: A set of nontrivial intuitionistic fuzzy classes.
3. X = ⋃

j supp(η j ), j = 1, 2, . . . ,m.

4. An intuitionistic fuzzy relation R on intuitionistic fuzzy classes ηi ’s satisfying
Definition2.7.

5.
∑m

i=1 μi (x) = 1, for all x ∈ X .
6. There is at most one i such that νi (x) = 0, for all x ∈ X ,that is, there is at most

one intuitionistic fuzzy set such that μi (x) + νi (x) = 1 for all x ∈ X .

Note that conditions 5–6 are added to intuitionistic fuzzy hypergraph for intuitionistic
fuzzy partition. If these conditions are added, the intuitionistic fuzzy hypergraph can
represent an intuitionistic fuzzy covering. Naturally, we can apply the (α, β)-cut to
the intuitionistic fuzzy partition.

Example 2.12 We consider the clustering problem which is a typical example of
an intuitionistic fuzzy partition on the visual image processing. Let us assume
that there are five objects classified into two classes: tank and house. To clus-
ter the elements x1, x2, x3, x4, x5 into At (tank) and Bh (house), an intuitionis-
tic fuzzy partition matrix is given in Table2.11 in the form of incidence matrix
of an intuitionistic fuzzy hypergraph H = (S, R) such that S = At , Bh , R =
{(x1x3x4x5, 0.03, 0.97), (x1x3x4x5, 0.04, 0.96)}.

We can apply the (α, β)-cut to intuitionistic fuzzy hypergraph and obtain a crisp
hypergraph H(α,β). This hypergraph H represents, generally, the covering because
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Table 2.12 Hypergraph H(0.61,0.04)

H(0.61,0.04) At (0.61,0.04) Bh(0.61,0.04)

x1 1 0

x2 1 0

x3 1 0

x4 0 1

x5 0 1

Table 2.13 Dual of the above intuitionistic fuzzy hypergraph

H D
(0.61,0.04) X1 X2 X3 X4 X5

At 1 1 1 0 0

Bh 0 0 0 1 1

of condition: 5
∑m

i=1 μi (x) = 1 for all x ∈ X , and 6 for all x ∈ X , there is at most
one i such that νi (x) = 0, is not always guaranteed. The hypergraph H(0.61,0.04) is
shown in Table2.12.

We obtain the dual of hypergraphH(0.61,0.04) asH D
(0.61,0.04) as given in Table2.13.

The strength (cohesion) of an edge (class) E j = η j (α,β) = {y1, y2, . . . , yr } inH(α,β)

can be used by taking minimum of membership values and maximum of nonmem-
bership values of vertices yi ’s in H . Thus, we can use the strength as a measure of
the cohesion or strength of a class in a partition. For example, the strengths of classes
At (0.61,0.04) and Bh(0.61,0.04) at s = 0.61, t = 0.04 are β(At (0.61,0.04))=(0.61, 0.39) and
β(Bh(0.61,0.04)) = (0.95, 0.05), respectively. It can be seen that the class Bh(0.61,0.04) is
stronger than At (0.61,0.04) because β(Bh(0.61,0.04)) > β(At (0.61,0.04)). From the above
discussion on the hypergraph H(0.61,0.04) and H D

(0.61,0.04) we can state that

• The intuitionistic fuzzy hypergraph can represent the fuzzy partition visually. The
(α, β)-cut hypergraph also represents the (α, β)-cut partition.

• The dual hypergraphH D
(0.61,0.04) can represent elements Xi , which can be grouped

into a class η j (α,β). For example, the edges X1, X2, X3 of the dual hypergraph in
Table2.13 represent that the elements x1, x2, x3 that can be grouped into At at
level (0.61, 0.04).

• In the intuitionistic fuzzy partition, we have
∑m

i=1 μi (x) = 1 for all x ∈ X , and
there is at most one i such that νi (x) = 0, for all x ∈ X . If we define (α, β)-cut at
level (α > 0.5 or β < 0.5), there is no element which is grouped into two classes
simultaneously. That is, if α > 0.5 or β < 0.5, every element is contained in
only one class in H(α,β). Therefore, the hypergraph H(α,β) represents a partition.
(If s ≤ 0.05 or t ≥ 0.05 the hypergraph may represent a covering).

• If (α, β) = (0.61, 0.04) then the strength of class Bh(0.61,0.04) is the highest as
(0.95, 0.05), so it is the strongest class. It means that this class can be grouped
independently from other parts. Thus, we can eliminate the class Bh from other
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classes and continue clustering. Therefore, the discrimination of strong classes
from others can allow us to decompose a clustering problem into smaller ones.
This strategy allows us to work with the reduced data in a clustering problem.

2.4 Intuitionistic Fuzzy Directed Hypergraphs

In this section, certain types of intuitionistic fuzzy directed hypergraphs including
core, simple, elementary, sectionally elementary, and (μ, ν)-tempered intuitionistic
fuzzy directed hypergraphs are introduced and some of their properties are discussed.
The concept of transversals of intuitionistic fuzzy directed hypergraphs has been
studied with the notion of fundamental sequence and locally minimal transversals.

Definition 2.29 If A1 = (λA1 , τA1) and A2 = (λA2 , τA2) are two intuitionistic fuzzy
sets on a non-empty set X then the Cartesian product of A1 and A2 is defined as

A1 × A2 = {〈(x1, x2), λA1(x1) ∧ λA2(x2), τA1(x1) ∨ τA2(x2)〉|x1, x2 ∈ X}.

The Cartesian product of n intuitionistic fuzzy sets A1, A2, . . . , An over the non-
empty crisp set X can be defined as

A1 × A2 × . . . × An = {〈(x1, x2, . . . , xn),∧n
i=1λAi (xi ),∨n

i=1τAi (xi )〉|x1, x2, . . . , xn ∈ X}.

Definition 2.30 A directed hyperarc on a non-empty set of vertices X is defined as
a pair �E = (t ( �E), h( �E)) where, t ( �E) and h( �E) are disjoint subsets of X . A vertex x
in �E is said to be a source vertex if x /∈ h( �E). A vertex d is said to be a destination
vertex in �E if d /∈ t ( �E). An intuitionistic fuzzy directed hyperedge or intuitionistic
fuzzy directed hyperarc is an ordered pair �η = (t (�η), h(�η)) of disjoint intuitionistic
fuzzy subsets of vertices such that t (�η) is the tail of �η while h(�η) is its head.

Definition 2.31 An intuitionistic fuzzy directed hypergraph on a non-empty set X
is a pair �H = (I, R), where I = { �ζ1, �ζ2, . . . , �ζr } is a family of order pairs �ζk =
(t ( �ζk), h( �ζk)), where t ( �ζk) and h( �ζk) are disjoint intuitionistic fuzzy subsets on X ,
and R is an intuitionistic fuzzy relation on �ζk’s such that

1. λR( �Ek)=λR(t ( �Ek), h( �Ek)) ≤ min{∧m
i=1λt ( �ζk )(xi ),∧n

i=1λh( �ζk )(yi )},
2. τR( �Ek)=τR(t ( �Ek), h( �Ek)) ≤ max{∨m

i=1τt ( �ζk )(xi ),∨n
i=1τh( �ζk )(yi )},

3. λR( �Ek) + τR( �Ek) ≤ 1, for each �Ek , 1 ≤ k ≤ r,
where t ( �Ek) = {x1, x2, . . . , xm} ⊂ X and h( �Ek) = {y1, y2, . . . , yn} ⊂ X .

4.
⋃

k
supp(t ( �ζk)) ∪ ⋃

k
supp(h( �ζk)) = X , k = 1, 2, . . . r .

Example 2.13 Let I = { �ζ1, �ζ2, �ζ3} be a class of intuitionistic fuzzy directed hyper-
arcs on X = {v1, v2, v3, v4} as given inTable2.14 and �E1 = supp( �ζ1) = ({v2}, {v4}),�E2 = supp( �ζ2) = ({v3}, {v4}), �E3 = supp( �ζ3) = ({v1}, {v2, v4}). R is an intuition-
istic fuzzy relation on �ζk’s given as, R( �E1) = (0.5, 0.1), R( �E2) = (0.4, 0.3) and
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Table 2.14 Intuitionistic fuzzy directed hyperarcs on X

x ∈ X �ζ1 �ζ2 �ζ3
v1 (0, 1) (0, 1) (0.3, 0.4)

v2 (0.5, 0.1) (0, 1) (0.5, 0.1)

v3 (0, 1) (0.4, 0.3) (0, 1)

v4 (0.5, 0.1) (0.5, 0.1) (0.2, 0.5)

Fig. 2.24 Intuitionistic
fuzzy directed hypergraph

�H
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)
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v 4
(0
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,0
.1
)

v3 (0.4,0.3)

(0.2
, 0.
5)

R( �E3) = (0.2, 0.5). The corresponding intuitionistic fuzzy directed hypergraph is
shown in Fig. 2.24.

Definition 2.32 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph then
height of an intuitionistic fuzzy directed hyperarc �ζ is denoted by h(�ζ ) and defined
as

h(�ζ ) = (λh(�ζ ), τh(�ζ )) = (
max{∨x∈Xλt (�ζ )(x),∨x∈Xλh(�ζ )(x)},
min{∧x∈Xτt (�ζ )(x),∧x∈Xτh(�ζ )(x)}

)
.

Definition 2.33 An intuitionistic fuzzy directed hypergraph is called simple if for
each �ζi , �ζ j ∈ I , supp(t ( �ζi )) ⊆ supp(t ( �ζi )), and supp(h( �ζi )) ⊆ supp(h( �ζi )) then
i = j .

Definition 2.34 An intuitionistic fuzzy directed hypergraph �H = (I, R) is sup-
port simple if whenever �ζi , �ζ j ∈ I , t ( �ζi ) ⊆ t ( �ζi ), h( �ζi ) ⊆ h( �ζi ), and supp(t ( �ζi )) =
supp(t ( �ζi )), supp(h( �ζi )) = supp(h( �ζi )) then �ζi = �ζ j , for all i, j .

Example 2.14 Let I = { �ζ1, �ζ2, �ζ3, �ζ4} be a family of intuitionistic fuzzy directed
hyperarcs on X = {v1, v2, v3, v4} as shown in Table2.15. Take �E1 = supp( �ζ1) =
({v1}, {v2}), �E2 = supp( �ζ2) = ({v1}, {v2, v4}), �E3 = supp( �ζ3) = ({v2}, {v3}) and
�E4 = supp( �ζ4) = ({v2}, {v3, v4}). R is an intuitionistic fuzzy relation on �ζk’s given
as, R( �E1) = (0.5, 0.1), R( �E2) = (0.4, 0.3), R( �E3) = (0.5, 0.2), and R( �E4)=
(0.4, 0.3).
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Table 2.15 Intuitionistic fuzzy directed hyperarcs on X

x ∈ X �ζ1 �ζ2 �ζ3 �ζ4
v1 (0.7, 0.1) (0.5, 0.2) (0, 1) (0, 1)

v2 (0.7, 0.1) (0.5, 0.2) (0.5, 0.2) (0.5, 0.2)

v3 (0, 1) (0, 1) (0.5, 0.2) (0.5, 0.2)

v4 (0, 1) (0.4, 0.3) (0, 1) (0.4, 0.3)

Fig. 2.25 Support simple
intuitionistic fuzzy directed
hypergraph
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The corresponding support simple intuitionistic fuzzy directed hypergraph is
shown in Fig. 2.25.

Definition 2.35 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph on
X . For α, β ∈ [0, 1], the (α, β)-level hyperarc of an intuitionistic fuzzy directed
hyperarc �ζ is defined as

�ζ(α,β) = (t (�ζ(α,β)), h(�ζ(α,β)))

= ({u ∈ X |λt (�ζ )(u) ≥ α, τt (�ζ )(u) ≤ β}, {v ∈ X |λh(�ζ )(v) ≥ α, τh(�ζ )(v) ≤ β}) .

�H(α,β) = (I(α,β), R(α,β)) is called a (α, β)-level directed hypergraph of �H where,
I(α,β) is defined as I(α,β) = {∪r

k=1h(�ζk(α,β))
⋃ ∪r

k=1t (�ζk(α,β)), 1 ≤ k ≤ r}.
Definition 2.36 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph. The
sequence of order pairs (αi , βi ) ∈ [0, 1] × [0, 1], 0 ≤ αi + βi ≤ 1, 1 ≤ i ≤ n, such
that α1 > α2 > . . . > αn , β1 < β2 < · · · < βn satisfying the properties

1. if 1 ≥ α > α1 and 0 ≤ β < β1 then R(α,β) = ∅,
2. if αi+1 < α ≤ αi and βi ≤ β < βi+1 then R(α,β) = R(αi ,βi ),

3. R(αi ,βi ) � R(αi+1,βi+1),

is called fundamental sequence of �H , denoted by fs( �H ). The corresponding
sequence of (αi , βi )-level directed hypergraphs �H(α1,β1),

�H(α2,β2), . . . ,
�H(αn ,βn) is

called core set of �H , denoted by C ( �H ). The (αn, βn)-level directed hypergraph,
�H(αn ,βn), is called support level of �H .
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Fig. 2.26 Intuitionistic
fuzzy directed hypergraph on
four vertices

v1(0.8,0.1) v2(0.6,0.2)

v3(0.4,0.5)

v4 (0.5,0.4)
(0.5,0.4)

(0.6,0.2)

(0.4,0.5)

Fig. 2.27 �H(0.8,0.1) v1

Fig. 2.28 �H(0.6,0.2) v 1 v 2

Fig. 2.29 �H(0.5,0.4)

v 1 v 2

v4

Example 2.15 Let �H be an intuitionistic fuzzy directed hypergraph as shown in
Fig. 2.26. Take (α1, β1) = (0.8, 0.1), (α2, β2) = (0.6, 0.2), (α3, β3) = (0.5, 0.4) and
(α4, β4) = (0.4, 0.5). Clearly, the set {(α1, β1),(α2, β2), (α3, β3), (α4, β4)} satisfies
all conditions of Definition2.36 and hence is a fundamental sequence of �H . The
corresponding (αi , βi )-level directed hypergraphs are shown in Fig. 2.27, 2.28 and
2.29 whereas, �H(0.4,0.5) = supp( �H ) = (supp(I ), supp(R)).

Definition 2.37 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph on X
then supp(I ) = {(supp(t ( �ζk)), supp(h( �ζk))) | �ζk ∈ I }. The family of intuitionistic
fuzzy directed hyperarcs I is called elementary if I is single-valued on supp(I ). An
intuitionistic fuzzy directed hypergraph �H is elementary if I and R are elementary,
otherwise it is nonelementary.

Example 2.16 The elementary and nonelementary intuitionistic fuzzy directed
hypergraphs are given in Figs. 2.30 and 2.31, respectively.

Definition 2.38 An intuitionistic fuzzy directed hypergraph �H = (I, R) is called
a partial intuitionistic fuzzy directed hypergraph of �H ′ = (I ′, R′) if following con-
ditions are satisfied

1. supp(I ) ⊆ supp(I ′) and supp(R) ⊆ supp(R′),
2. if supp( �ζi ) ∈ supp(I ) and supp( �ζi ′) ∈ supp(I ′) such that supp( �ζi ) = supp( �ζi ′)

then �ζi = �ζi ′.
It is denoted by �H ⊆ �H ′. An intuitionistic fuzzy directed hypergraph �H = (I, R)

is ordered if the core set C ( �H ) = { �H(α1,β1),
�H(α2,β2), . . .

�H(αn ,βn)} is ordered, that
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Fig. 2.30 Elementary
intuitionistic fuzzy directed
hypergraph
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Fig. 2.31 Nonelementary
intuitionistic fuzzy directed
hypergraph
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is �H(α1,β1) ⊆ �H(α2,β2) ⊆ . . . ⊆ �H(αn ,βn). �H is simply ordered if �H is ordered and
whenever R′ ⊂ R(αi+1,βi+1) \ R(αi ,βi ) then R′ � R(αi ,βi ).

Observation 2.15 Let �H be an elementary intuitionistic fuzzy directed hypergraph
then �H is ordered. If �H is ordered intuitionistic fuzzy directed hypergraph and
support level �H(αn ,βn) is simple then �H is an elementary intuitionistic fuzzy directed
hypergraph.

Note 2.1 1. If �H = (I, R) is an intuitionistic fuzzy directed hypergraph with
I = { �ζ1, �ζ2, . . . , �ζr } then I ∗ = { �ζ1∗

, �ζ2∗
, . . . , �ζr ∗} is the family of crisp directed

hyperarcs corresponding to I .
2. In intuitionistic fuzzy directed hypergraph �H = (I, R), if x is a vertex of tail

of any intuitionistic fuzzy directed hyperarc �ζ then �ζ (x) = (τt (�ζ ), λt (�ζ )). If x ∈
h(�ζ )∗ then �ζ (x) = (τh(�ζ ), λt (�ζ )).

Definition 2.39 Let �H = (I, R) and �H
′ = (I

′
, R

′
) be any two intuitionistic fuzzy

directed hypergraphs on X and X ′, respectively, where I = {ζ1, ζ2, . . . , ζr } and I
′ =

{ζ ′
1, ζ

′
2, . . . , ζ

′
r }. A homomorphism of intuitionistic fuzzy directed hypergraphs �H

and �H
′
is a mapping φ : X → X

′
that satisfies

1. ∧r
j=1τ �ζ j

(x) ≤ ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) ≥ ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈ X .
2. τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) ≤ τR′ ({φ(t1), φ(t2), . . . , φ(ts)},

{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) ≥ λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
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{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

Definition 2.40 A weak isomorphism of intuitionistic fuzzy directed hypergraphs
�H and �H

′
is a bijective homomorphism φ : X → X

′
that satisfies

∧r
j=1τ �ζ j

(x) = ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) = ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈
X .

Definition 2.41 A co-weak isomorphism of intuitionistic fuzzydirectedhypergraphs
�H and �H

′
is a bijective homomorphism φ : X → X

′
that satisfies

τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = τR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

Definition 2.42 An isomorphism of intuitionistic fuzzy directed hypergraphs �H
and �H

′
is a bijective mapping φ : X → X

′
that satisfies

1. ∧r
j=1τ �ζ j

(x) = ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) = ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈
X .

2. τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = τR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

In this case, �H and �H
′
are called isomorphic to each other.

Definition 2.43 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph then
the order O( �H ) and size S( �H ) of �H are defined as

O( �H ) =
(

∑

x∈X
∧ jτ �ξ j (x),

∑

x∈X
∨ jλ �ξ j (x)

)

, S( �H ) =
⎛

⎝
∑

�Ei∈I ∗
τR( �Ei ),

∑

�Ei∈I ∗
λR( �Ei )

⎞

⎠ .

Theorem 2.16 The order and size of isomorphic intuitionistic fuzzy directed hyper-
graphs are same.

Proof Let �H1 = (I1, R1) and �H2 = (I2, R2) be any two intuitionistic fuzzy directed
hypergraphs on X1 and X2, respectively, where I1 = {ζ11, ζ12, . . . , ζ1r } and I2 =
{ζ21, ζ22, . . . , ζ2r } be the classes of intuitionistic fuzzy directed hyperarcs. Let φ :
X1 → X2 be an isomorphism from �H1 to �H2 then using Definition2.42,
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O( �H1) =
( ∑

x1∈X1

∧ jτ�ζ1 j (x1),
∑

x1∈X1

∨ jλ�ζ1 j (x1)
)

=
( ∑

x1∈X1

∧ jτ�ζ2 j (φ(x1)),
∑

x1∈X1

∨ jλ�ζ2 j (φ(x1))
)

=
( ∑

x2∈X2

∧ jτ�ζ2 j (x2),
∑

x2∈X2

∨ jλ�ζ2 j (x2)
)

= O( �H2).

S( �H1) =
( ∑

�E1i∈I ∗
1

τR1(
�E1i ),

∑

�E1i∈I ∗
1

λR1(
�E1i )

)

=
( ∑

�E1i∈I ∗
1

τR2(φ( �E1i )),
∑

�E1i∈I ∗
1

λR2(φ( �E1i ))
)

=
( ∑

�E2i∈I ∗
2

τR2(
�E2i ),

∑

�E2i∈I ∗
2

λR2(
�E2i )

)
= S( �H2).

Remark 2.5 1. The order of weak isomorphic intuitionistic fuzzy directed hyper-
graphs is same.
2. The size of co-weak isomorphic intuitionistic fuzzy directed hypergraphs is same.

Theorem 2.17 The relation of isomorphism between intuitionistic fuzzy directed
hypergraphs is an equivalence relation.

Proof Let �H1 = (I1, R1), �H2 = (I2, R2) and �H3 = (I3, R3) be intuitionistic fuzzy
directed hypergraphs on X1, X2 and X3, respectively, where, I1 = {ζ11, ζ12, . . . , ζ1r },
I2 = {ζ21, ζ22, . . . , ζ2r } and I3 = {ζ31, ζ32, . . . , ζ3r }.
1. Reflexive: Define I : X1 → X1 by I (x1) = x1, for all x1 ∈ X1. Then, I is a bijec-

tive homomorphism and
1. (∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1)) = (∧ jτ�ζ1 j (I (x1)),∨ jλ�ζ1 j (I (x1))),
2. (τR1(

�E1i ), λR1(
�E1i )) = (τR1(I ( �E1i )), λR1(I ( �E1i ))),

for all x1 ∈ X1, t ( �E1i ) ⊂ X1, h( �E1i ) ⊂ X1.
I is an isomorphism of an intuitionistic fuzzy directed hypergraph to itself.

2. Symmetric: Let φ : X1 → X2 be an isomorphism defined by φ(x1) = x2. Since,
φ is a bijective mapping therefore, φ−1 : X2 → X1 exists and φ−1(x2) = x1, for
all x2 ∈ X2. Then

(∧ jτ�ζ2 j (x2),∨ jλ�ζ2 j (x2)) = (∧ jτ�ζ2 j (φ(x1)),∨ jλ�ζ2 j (φ(x1)))

= (∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1))

= (∧ jτ�ζ1 j (φ
−1(x2)),∨ jλ�ζ1 j (φ

−1(x2))).

R2( �E2 j ) = R2(φ( �E1 j )) = R1( �E1 j ) = R1(φ
−1( �E2 j )), t ( �E2 j ) ⊆ X2, h( �E2 j ) ⊆ X2.

Hence, φ−1 is an isomorphism.
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3. Transitive: Let φ : X1 → X2 and ψ : X2 → X3 be the isomorphisms of �H1 onto�H2 and �H2 onto �H3 defined by φ(x1) = x2 and ψ(x2) = x3, respectively. By
Definition2.42

(∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1)) = (∧ jτ�ζ2 j (x2),∨ jλ�ζ2 j (x2))

= (∧ jτ�ζ3 j (ψ(x2)),∨ jλ�ζ3 j (ψ(x2)))

= (∧ jτ�ζ3 j (ψ(φ(x1))),∨ jλ�ζ3 j (ψ(φ(x1))))

= (∧ jτ�ζ3 j (ψ ◦ φ(x1)),∨ jλ�ζ3 j (ψ ◦ φ(x1))).

R1( �E1 j ) = R2( �E2 j ) = R3(ψ( �E2 j )) = R3(ψ(φ( �E1 j ))) = R3(ψ ◦ φ( �E1 j )),

where �Ei j = (t ( �Ei j ), h( �Ei j )), t ( �Ei j ) ⊂ Xi , h( �Ei j ) ⊂ Xi . Clearly, ψ ◦ φ is an
isomorphism from �H1 onto �H3. Hence, isomorphism of intuitionistic fuzzy
directed hypergraphs is an equivalent relation.

Remark 2.6 The relation of weak isomorphism between intuitionistic fuzzy directed
hypergraphs is a partial order relation.

Definition 2.44 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph. A
set of intuitionistic fuzzy directed hyperarcs T with the property that Th( �ζi ) ∩ �ζih(�ζi ) �=
∅, for each �ζi ∈ I , is called intuitionistic fuzzy transversal of �H . T is a minimal
intuitionistic fuzzy transversal of �H if whenever ρ ⊂ T , ρ is not an intuitionistic
fuzzy transversal of �H . The family of all minimal intuitionistic fuzzy transversals
of �H is denoted by Tr( �H ).

Example 2.17 Consider the intuitionistic fuzzy directed hypergraph as shown in
Fig. 2.32 where I = {�ζ1, �ζ2, �ζ3} is defined in Table2.16.

Fig. 2.32 Intuitionistic
fuzzy directed hypergraph on
four vertices

v1(0.4,0.5) v2(0.8,0.1)

v3(0.6,0.2)

v4 (0.5,0.4)

(0.5,0.4)

(0.6,0.2)

(0.4,0.5)

Table 2.16 Intuitionistic fuzzy hyperarcs of �H in Fig. 2.32

Intuitionistic fuzzy hyperarc h(�ζi ) �ζih(�ζi )
�ζ1 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1), (v4, 0.5, 0.4)})} (0.8, 0.1)

{({}, {v2}
)}

�ζ2 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1)})} (0.8, 0.1) {({}, {v2})}
�ζ3 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1), (v3, 0.6, 0.2)})} (0.8, 0.1) {({}, {v2})}
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Clearly, for each 1 ≤ i ≤ 3, �ζih(�ζi ) ∩ Tih(�ζi ) �= ∅ where, T =
{({(v1, 0.8, 0.1)},

{(v2, 0.6, 0.2)}
)}
. Hence, T is an intuitionistic fuzzy transversal of �H .

We now provide results and discussions of intuitionistic fuzzy transversals.

Lemma 2.1 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph with
fundamental sequence fs( �H ) = {(α1, β1), (α2, β2), . . . , (αn, βn)}. If T is an intu-
itionistic fuzzy transversal of �H then λh(T ) ≥ λh( �ζi ) and τh(T ) ≤ τh( �ζi ). If T is

a minimal intuitionistic fuzzy transversals of �H then h(T ) = (max{λh( �ζi )| �ζi ∈
I },min{τh( �ζi )| �ζi ∈ I }) = (α1, β1).

Proposition 2.2 Let �H be an intuitionistic fuzzy directed hypergraph then the fol-
lowing statements are equivalent.
1. T is an intuitionistic fuzzy transversal of �H .
2. For each �ζi ∈ I , (α, β) ∈ [0, 1] × [0, 1], 0 ≤ α + β ≤ 1 with α < λh( �ζi ) and

β > τh( �ζi ) then T(α,β) ∩ �ζi(α,β) �= ∅.
3. T(α,β) is a transversal of �H(α,β).

2.5 Complex Intuitionistic Fuzzy Hypergraphs

To generalize the concepts of intuitionistic fuzzy sets, complex intuitionistic fuzzy
sets were introduced by Alkouri and Salleh [4]. Complex intuitionistic fuzzy set is a
distinctive intuitionistic fuzzy set in which the membership degrees are determined
on the unit disc of the complex plane and can more clearly express the imprecision
and ambiguity in the data. Yaqoob et al. [23] defined complex intuitionistic fuzzy
graphs and discussed an application of these graphs in cellular networks to test the
proposed model.

Definition 2.45 A complex intuitionistic fuzzy set I on the universal set X is defined
as, I = {(u, TI (u)eiφI (u), FI (u)eiψI (u))|u ∈ X}, where i = √−1, TI (u), FI (u) ∈
[0, 1], φI (u), ψI (u) ∈ [0, 2π ], and for every u ∈ X, 0 ≤ TI (u) + FI (u) ≤ 1. Here,
TI (u), FI (u) and φI (u), ψI (u) are called the amplitude terms and phase terms for
truth membership and falsity membership grades, respectively.

Definition 2.46 A complex intuitionistic fuzzy graph on X is an ordered pair
G = (A, B), where A is a complex intuitionistic fuzzy set on X and B is complex
intuitionistic fuzzy relation on X such that

TB(ab) ≤ min{TA(a), TA(b)}, FB(ab) ≤ max{FA(a), FA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)}, ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ TB(ab) + FB(ab) ≤ 1, for all a, b ∈ X .
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Definition 2.47 Let X be a nontrivial set of universe. A complex intuitionistic fuzzy
hypergraph is defined as an ordered pair H = (C ,D), where C = {α1, α2, · · · , αk}
is a finite family of complex intuitionistic fuzzy sets on X and D is a complex
intuitionistic fuzzy relation on complex intuitionistic fuzzy sets α j ’s such that

(i)

TD ({r1, r2, · · · , rl }) ≤ min{Tα j (r1), Tα j (r2), · · · , Tα j (rl )},
FD ({r1, r2, · · · , rl }) ≤ max{Fα j (r1), Fα j (r2), · · · , Fα j (rl )}, (for amplitude terms)

φD ({r1, r2, · · · , rl }) ≤ min{φα j (r1), φα j (r2), · · · , φα j (rl )},
ψD ({r1, r2, · · · , rl }) ≤ max{ψα j (r1), ψα j (r2), · · · , ψα j (rl )}, (for phase terms)

0 ≤ TD + FD ≤ 1, for all r1, r2, · · · , rl ∈ X.

(ii)
⋃

j
supp(α j ) = X, for all α j ∈ C .

Note that, Ek = {r1, r2, · · · , rl} is the crisp hyperedge of H = (C ,D).

Example 2.18 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D) on
X = {v1, v2, v3, v4}. The complex intuitionistic fuzzy relation is defined
as D({v1, v2, v3, v4}) = (0.2ei(0.4)π , 0.6ei(0.3)π ), D({v1, v2}) = (0.3ei(0.6)π ,

0.6ei(0.3)π ), and D({v3, v4}) = (0.2ei(0.4)π , 0.5ei(0.3)π ). The corresponding complex
intuitionistic fuzzy hypergraph is shown in Fig. 2.33.

Definition 2.48 A complex intuitionistic fuzzy hypergraph H = (C ,D) is simple
if whenever D j ,Dk ∈ D and D j ⊆ Dk , then D j = Dk .

A complex intuitionistic fuzzy hypergraph H = (C ,D) is support simple ifwhen-
ever D j ,Dk ∈ D , D j ⊆ Dk , and supp(D j ) = supp(Dk), then D j = Dk .

Definition 2.49 Let H = (C ,D)be a complex intuitionistic fuzzy hypergraph. Sup-
pose thatα, β ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ α + β ≤ 1. The (αeiθ , βeiϕ)-
level hypergraph of H is defined as an ordered pair H (αeiθ ,βeiϕ) = (C (αeiθ ,βeiϕ),

D (αeiθ ,βeiϕ)), where

(i) D (αeiθ ,βeiϕ) = {D(αeiθ ,βeiϕ)

j : Dj ∈ D} and D(αeiθ ,βeiϕ)

j = {u ∈ X : TDj (u) ≥ α,

φDj (u) ≥ θ, and FDj (u) ≤ β,ψDj (u) ≤ ϕ},
(ii) C (αeiθ ,βeiϕ) = ⋃

Dj∈D
D(αeiθ ,βeiϕ)

j .

Note that, (αeiθ , βeiϕ)-level hypergraph of H is a crisp hypergraph.

Example 2.19 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D)

as shown in Fig. 2.33. Let α = 0.2, β = 0.5, θ = 0.5π , and ϕ = 0.2π . Then,
(αeiθ , βeiϕ)-level hypergraph of H is shown in Fig. 2.34.
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(v1,0.3ei(0.6)π ,0.6ei(0.3)pi)

(v2,0.5ei(0.6)π ,0.4ei(0.3)pi)

(v3,0.3ei(0.5)π ,0.5ei(0.3)pi)

(v4,0.2e
i(0.4)π ,0.4ei(0.2)pi)

(D1,0.2ei(0.4)π ,0.6ei(0.3)π )

(D
2 ,0.3e i(0.6)π

,0.6e i(0.3)π
)

(D
3 ,0.2e i(0.4)π

,0.5e i(0.3)π
)

Fig. 2.33 Complex intuitionistic fuzzy hypergraph

Fig. 2.34 (0.2ei(0.5)π , 0.5ei(0.2)π )-
level hypergraph of
H v1

v2

D (0.2e i(0.5)π
,0.5e i(0.2)π

)

2

Definition 2.50 Let H = (C ,D) be a complex intuitionistic fuzzy hypergraph. The
complex intuitionistic fuzzy line graph of H is defined as an ordered pair l(H) =
(Cl ,Dl), where Cl = D and there exists an edge between two vertices in l(H) if
|supp(Dj ) ∩ supp(Dk)| ≥ 1. The membership degrees of l(H) are given as

(i) Cl(Ek) = D(Ek),
(ii) Dl(E j Ek) = (min{TD (E j ), TD (Ek)}ei min{φD (E j ),φD (Ek )},

max{FD (E j ), FD (Ek)}ei max{ψD (E j ),ψD (Ek )}).

Definition 2.51 A complex intuitionistic fuzzy hypergraph H = (C ,D) is said to
be linear if for every Dj , Dk ∈ D ,
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(v1,0.3ei(0.6)π ,0.6ei(0.3)pi)

(v2,0.5ei(0.6)π ,0.4ei(0.3)pi)

(v3,0.3ei(0.5)π ,0.5ei(0.3)pi)

(v4,0.2e
i(0.4)π ,0.4ei(0.2)pi)

(D1,0.2ei(0.4)π ,0.6ei(0.3)π )

(D
2 ,0.3e i(0.6)π

,0.6e i(0.3)π
)

(D
3 ,0.2e i(0.4)π

,0.5e i(0.3)π
)

(0.2e i(0.4)π
,0.6e i(0.3)π

)(0.2ei(0.4)π
,0.6ei(0.3)π

)

Fig. 2.35 Complex intuitionistic line graph of H

(i) supp(Dj ) ⊆ supp(Dk) ⇒ j = k,
(ii) |supp(Dj ) ∩ supp(Dk)| ≤ 1.

Example 2.20 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D) as
shown in Fig. 2.33. By direct calculations, we have

supp(D1) = {v1, v2, v3, v4}, supp(D2) = {v1, v2}, supp(D3) = {v3, v4}.

Note that, supp(Dj ) ⊆ supp(Dk) ⇒ j �= k and |supp(Dj ) ∩ supp(Dk)| � 1.Hence,
complex intuitionistic fuzzy hypergraph H = (C ,D) is not linear. The correspond-
ing complex intuitionistic fuzzy hypergraph H = (C ,D) and its line graph is shown
in Fig. 2.35.

Theorem 2.18 A simple strong complex intuitionistic fuzzy graph is the complex
intuitionistic line graph of a linear complex intuitionistic fuzzy hypergraph.

Definition 2.52 The 2-section H2 = (C2,D2) of a complex intuitionistic fuzzy
hypergraph H = (C ,D) is a complex intuitionistic fuzzy graph having same set
of vertices as that of H ,D2 is a complex intuitionistic fuzzy set on {e = u juk |u j , uk
∈ El, l = 1, 2, 3, · · · }, and D2(u juk) = (min{min Tαl (u j ),min Tαl (uk)}
ei min{min φαl (u j ),min φαl (uk )},max{max Fαl (u j ),max Fαl (uk)}ei max{maxψαl (u j ),maxψαl (uk )})
such that 0 ≤ TD2(u juk) + FD2(u juk) ≤ 1.
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(v1,0.3ei(0.6)π π,0.6ei(0.3) )

(v2,0.5ei(0.6)π π,0.4ei(0.3) )

(v3,0.3ei(0.5)π π,0.5ei(0.3) )

(v4,0.2e
i(0.4)π π

,0.4ei(0.2) )

(0.3e i(0.6)π
,0.6e i(0.3)π)(0.

2e
i(0
.4)

π , 0
.6e

i(0
.3)

π )

(0.
2ei(

0.4
)π

,0.
5ei(

0.3
)π

)

(0.
3e

i(0
.5)

π ,0
.5e

i(0
.3)

π )

(0
.3
ei
(0
.5
) π
,0
.6
ei
(0
.3
) π
)

(0.2ei(0.4)π ,0.4ei(0.2)π )

Fig. 2.36 2-section of complex intuitionistic fuzzy hypergraph

Example 2.21 An example of a complex intuitionistic fuzzy hypergraph is given in
Fig. 2.36. The 2-section of H is presented with dashed lines.

Definition 2.53 Let H = (C ,D) be a complex intuitionistic fuzzy hypergraph. A
complex intuitionistic fuzzy transversal τ is a complex intuitionistic fuzzy set of X
satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ D , where h(ρ) is the height
of ρ.

A minimal complex intuitionistic fuzzy transversal t is the complex intuitionistic
fuzzy transversal of H having the property that if τ ⊂ t , then τ is not a complex
intuitionistic fuzzy transversal of H .
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