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Foreword

It was stated by G. J. Klir that among the various paradigmatic changes in science
and mathematics in the twentieth century, one such change concerned the concept
of uncertainty. In science, this change has been manifested by a gradual transition
from the traditional view, which states that uncertainty is undesirable in science and
should be avoided by all possible means, to an alternative view, which is tolerant of
uncertainty and insists that science cannot avoid it. Uncertainty is essential to
science and has great utility. An important point in the evolution of the modern
concept of uncertainty is the publication of a seminal paper by Lotfi Zadeh.

Fuzzy set theory provides a methodology for carrying out approximate reasoning
processes when available information is uncertain, incomplete, imprecise, or vague.
This is especially true when observations are expressed in linguistic terms. The
success of this methodology has been demonstrated in a variety of fields such as
control systems where mathematical models are difficult to specify and in expert
systems where rules express knowledge and facts are linguistic in nature. The
capability of fuzzy sets to express gradual transitions from membership to non-
membership and vice-versa has a broad utility. It provides us not only with
meaningful and powerful representations of measurement of uncertainties, but also
with a meaningful representation of vague concepts expressed in natural language.
Concerning the future of fuzzy logic, it might lie in the new ideas arising from
computing with words and perceptions.

Based on Zadeh’s fuzzy relations, the first definition of fuzzy graphs was given
in 1973 by Arnold Kauffman, the French engineer and professor of applied
mechanics and operations research, in the world’s first textbook on fuzzy sets and
systems. An English version of this book, titled Introduction to the Theory of Fuzzy
Subsets, was published in 1975. This was the same year Azriel Rosenfeld also
provided a concept of a fuzzy graph. He introduced fuzzy analogs of several basic
graph-theoretic concepts. Rosenfeld’s paper presented the concepts of subgraphs,
paths, connectedness, cliques, bridges, trees, and forests and established some
of their properties. It appeared in the proceedings of the US-Japan Seminar on
Fuzzy Sets and Their Applications. At this seminar, an alternative analysis of fuzzy
graphs was also presented by Raymond T. Yeh and S. Y. Bang. Their definition of a
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fuzzy graph was suitable for cluster analysis and also for database theory.
Rosenfeld’s paper opened the door for the development of an entire new area in
graph theory. Fuzzy graph theory is now a discipline in itself. Hundreds of papers
and numerous books have been published in this area. Lee-Kwang and Lee
extended crisp hypergraphs by introducing the notion of fuzzy hypergraphs.

This book, Fuzzy Hypergraphs and Related Extensions, by Prof. Akram and
Dr. Luqman is another strong contribution to fuzzy graph theory. Professor Akram
has been a leader in this field for some time. He has published several papers on a
wide variety of fuzzy graph-theoretic structures. The results in this book should be
very useful in modeling various applications. Crisp hypergraphs have found
applications in chemistry, psychology, genetics, human activities, optimization,
cellular networks, parallel computing, clustering, information system architecture,
social networks, traffic control, engineering, and image processing. The potential
for applications of fuzzy hypergraphs can be seen by merely pondering the defi-
nition of a fuzzy hypergraph.

It is my hope that researchers will apply the concepts of fuzzy hypergraphs to
examine the existential problem of climate change. This may be the most serious
problem facing the world at this time. All member states of the United Nations
adopted the Agenda 2030 and the Sustainable Development Goals (SDGs). The
17 SDGs describe a universal agenda that applies to and must be implemented by
all countries. Among these SDGs is SDG 13 Climate Change. Adverse effects of
climate change result in a substantial increase in cruel crimes of human trafficking
and modern slavery. These crimes should be brought to a halt. Human trafficking is
a prime candidate to be studied using techniques from fuzzy logic. Accurate data
concerning trafficking in persons is impossible to obtain. The goal of the trafficker is
to be undetected. The size of the problem also makes it very difficult to obtain
accurate data. There are also many other reasons for the scarcity of data. I thank
Prof. Akram and Dr. Luqman for their timely publication.

Omaha, NE, USA John N. Mordeson
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Preface

Hypergraphs are one of the most successful tools for modeling practical problems
in different fields, inclusive of computer science, systems modeling, web infor-
mation system architecture, service-oriented architecture, and social networks.
However, crisp hypergraphs are not sufficient to describe all existing relations
between objects. Motivated by this concern, Lee-Kwang and Lee redefined and
extended crisp hypergraphs by means of the notion of fuzzy hypergraphs, whose
inception had been earlier discussed by Kaufmann. Professors Mordeson and Nair
made a real contribution by compiling their comprehensive monograph Fuzzy
Graphs and Fuzzy Hypergraphs, which motivated us to work in this direction.

Fuzzy set theory was introduced by Lotfi Zadeh in 1965 as a generalization of
classical set theory that allows us to represent imprecise and vague phenomena.
Since then, fuzzy sets and fuzzy logic have been applied in many real situations that
implemented uncertainty. The traditional fuzzy set uses one real value from the unit
interval [0,1] in order to represent the grade of membership of objects to a fuzzy set
defined on the concerned universe. In some applications such as expert systems,
belief systems, and information fusion, not only should we consider the
truth-membership supported by evidence but also the falsity-membership against
such evidence. Similarly, in most real problems, information consistently comes
from more than one agent or from various sources. Due to the limitation of human’s
knowledge to understand the complex problems, one cannot aspire to apply a single
type of uncertain methodology to deal with all such situations. It is therefore nec-
essary to develop generalized mathematical models rather than being satisfied with
narrow structures of uncertainty. Researchers have put forward several generalized
models of fuzzy sets, including intuitionistic fuzzy sets, bipolar fuzzy sets, m-polar
fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, and single-valued
neutrosophic sets. We have applied these generalized models to hypergraphs.

This monograph deals with fuzzy hypergraphs, their related extensions, and
applications. It originates from our papers published in various scientific journals.
This book may be useful for researchers in mathematics, computer scientists, and
social scientists alike. In Chap. 1, we present fundamental and technical concepts
like fuzzy hypergraphs, fuzzy column hypergraphs, fuzzy row hypergraphs, fuzzy
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competition hypergraphs, fuzzy k-competition hypergraphs and fuzzy neighbor-
hood hypergraphs, and N-hypergraphs, complex fuzzy hypergraphs, leih-level
hypergraphs, and Cf -tempered complex fuzzy hypergraphs. We describe applica-
tions of fuzzy competition hypergraphs in decision support systems, including
predator–prey relations in ecological niches, social networks, and business
marketing.

Chapter 2 defines intuitionistic fuzzy hypergraphs, dual intuitionistic fuzzy
hypergraphs, intuitionistic fuzzy line graphs, and 2-section of an intuitionistic fuzzy
hypergraph. It also includes applications of intuitionistic fuzzy hypergraphs in planet
surface networks, selection of authors of intersecting communities in a social net-
work, and grouping of incompatible chemical substances. We have designed certain
algorithms to construct dual intuitionistic fuzzy hypergraphs, intuitionistic fuzzy line
graphs, and the selection of objects in decision-making problems. Further, we define
complex intuitionistic fuzzy hypergraphs, 2-section, and line graphs of complex
intuitionistic fuzzy hypergraphs.

In Chap. 3, we present the notion of A = [l−, l+]-tempered interval-valued
fuzzy hypergraphs and some of their properties. Moreover, we discuss the notions
of vague hypergraphs, dual vague hypergraphs, and A-tempered vague hyper-
graphs. Finally, we describe interval-valued intuitionistic fuzzy hypergraphs and
interval-valued intuitionistic fuzzy transversals of H.

Chapter 4 discusses the concept of bipolar fuzzy directed hypergraph. We
describe certain operations on bipolar fuzzy directed hypergraphs, which include
addition, multiplication, vertex-wise multiplication, and structural subtraction. We
discuss the concept of B = (m+, m−)-tempered bipolar fuzzy directed hypergraphs
and investigate some of their basic properties. We present an algorithm to compute
the minimum arc length of a bipolar fuzzy directed hyperpath.

Chapter 5 includes the notions of regular m-polar fuzzy hypergraphs and totally
regular m-polar fuzzy hypergraphs. We discuss the applications of m-polar fuzzy
hypergraphs in decision-making problems. Furthermore, the notion of m-polar
fuzzy directed hypergraph is discussed along with the depiction of certain opera-
tions on them. We also describe an application of m-polar fuzzy directed hyper-
graphs in business strategy.

Chapter 6 presents the concepts including q-rung orthopair fuzzy hypergraphs,
(a, b)-level hypergraphs, and transversals and minimal transversals of q-rung
orthopair fuzzy hypergraphs. We implement some interesting notions of q-rung
orthopair fuzzy hypergraphs into decision-making. We describe additional concepts
like q-rung orthopair fuzzy directed hypergraphs, dual directed hypergraphs, line
graphs, and coloring of q-rung orthopair fuzzy directed hypergraphs. We also apply
other interesting notions of q-rung orthopair fuzzy directed hypergraphs to real-life
problems. Further, we study complex q-rung orthopair fuzzy hypergraphs with
application.

In Chap. 7, we present q-rung picture fuzzy hypergraphs and illustrate the for-
mation of granular structures using q-rung picture fuzzy hypergraphs and level
hypergraphs. Moreover, we define q-rung picture fuzzy equivalence relations and
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its associated q-rung picture fuzzy hierarchical quotient space structures. We also
present an arithmetic example in order to demonstrate the benefits and validity of
this model.

In Chap. 8, we illustrate the formation of granular structures using m-polar fuzzy
hypergraphs and level hypergraphs. Further, we define m-polar fuzzy hierarchical
quotient space structures. The mappings between the m-polar fuzzy hypergraphs
depict the relationships among granules occurred in different levels. The conse-
quences reveal that the representation of partition of universal set is more efficient
through m-polar fuzzy hypergraphs as compared to crisp hypergraphs. We also
present some examples and a real world problem to signify the validity of our
proposed model.

Chapter 9 discusses the concepts including single-valued neutrosophic hyper-
graphs, dual single-valued neutrosophic hypergraphs, and transversal single-valued
neutrosophic hypergraphs. Additionally, we discuss the notions of intuitionistic
single-valued neutrosophic hypergraphs, and dual intuitionistic single-valued neu-
trosophic hypergraphs. We describe an application of intuitionistic single-valued
neutrosophic hypergraphs in a clustering problem. Then, we present other related
concepts like single-valued neutrosophic directed hypergraphs, single-valued neu-
trosophic line directed graphs, and dual single-valued neutrosophic directed
hypergraphs. Finally, in this section, we describe the applications of single-valued
neutrosophic directed hypergraphs. Additionally, we define complex neutrosophic
hypergraphs and T-related complex neutrosophic hypergraphs with applications.

In Chap. 10, we present bipolar neutrosophic hypergraphs and B-tempered
bipolar neutrosophic hypergraphs. We describe the concepts of transversals, min-
imal transversals, and locally minimal transversals of bipolar neutrosophic hyper-
graphs. Furthermore, we put forward some applications of bipolar neutrosophic
hypergraphs in marketing and biology. We also introduce bipolar neutrosophic
directed hypergraphs, regular bipolar neutrosophic directed hypergraphs, homo-
morphism, and isomorphism on bipolar neutrosophic directed hypergraphs. To
conclude, we describe an efficient algorithm to solve decision-making problems.

The authors are grateful to the administration of the University of the Punjab,
Lahore, Pakistan, particularly Prof. Dr. Niaz Ahmad Akhtar (Vice Chancellor) and
Dr. Muhammad Khalid Khan (Registrar) for their encouraging attitude and for
providing the state of art research facilities.

Lahore, Pakistan Muhammad Akram
Anam Luqman
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Chapter 1
Fuzzy Hypergraphs

In this chapter, we present fundamental and technical concepts like fuzzy hyper-
graphs, fuzzy column hypergraphs, fuzzy row hypergraphs, fuzzy competition hyper-
graphs, fuzzy k-competition hypergraphs, fuzzy neighborhood hypergraphs, and
N -hypergraphs.We describe applications of fuzzy competition hypergraphs in deci-
sion support systems, including predator–prey relations in ecological niches, social
networks, and businessmarketing. Further,we introduce complex fuzzy hypergraphs,
μeiθ−level hypergraphs, covering constructions, 2-sections, and L2-sections of these
hypergraphs. We define certain new products, including Cartesian product, minimal
rank preserving, and maximal rank preserving direct products on complex fuzzy
hypergraphs. Moreover, we present an application of our proposed model to illus-
trate the publication data in co-authorship networks. This chapter is basically due to
[3, 7–9, 12, 25].

1.1 Introduction

In 1965, Zadeh [30] introduced the strong mathematical notion of fuzzy sets in order
to discuss the phenomena of vagueness and uncertainty in various real-life problems.
Fuzzy sets are a kind of useful mathematical structure to represent a collection of
objects whose boundary is vague. The basic idea of fuzzy set is that the element
belongs to a fuzzy set with a certain degree of membership. This branch of mathe-
matics has instilled new life into scientific fields that have been dormant for a long
time. Examples of fuzziness are words such as red roses, tall men, and beautiful
women. Fuzziness can be found in many areas of daily life including, engineering,
meteorology, and manufacturing. Fuzzy sets cannot handle imprecise, inconsistent,
and incomplete information of periodic nature. This theory is applicable to different
areas of science, but there is one major deficiency in fuzzy sets, that is, a lack of capa-
bility tomodel two-dimensional phenomena. To overcome this difficulty, the concept
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of complex fuzzy sets was introduced by Ramot et al. [21]. A complex fuzzy set C is
characterized by a membership function μC(x), whose range is not limited to [0, 1]
but extends to the unit circle in the complex plane. Hence, μC(x) is a complex-
valued function that assigns a grade of membership of the form rC(x)eiwC (x),
i = √−1 to any element x in the universe of discourse. Thus, the membership func-
tion μC(x) of complex fuzzy set consists of two terms, i.e., amplitude term rC(x)
which lies in the unit interval [0, 1] and phase term (periodic term) wC(x) which
lies in the interval [0, 2π ]. This phase term distinguishes a complex fuzzy set model
from all other models available in the literature. The potential of a complex fuzzy set
for representing two-dimensional phenomenamakes it superior to handle ambiguous
and intuitive information that are prevalent in time-periodic phenomena. Opposing
to a fuzzy characteristic function, the range of a complex fuzzy set’s membership
degrees is not restricted to [0, 1], but extends to the unit circle in the complex plane.

Graph theory has numerous applications to problems in systems analysis, opera-
tions research, economics, and transportation. However, in many cases, some aspects
of a graph-theoretic problem may be uncertain. For example, the vehicle travel time
or vehicle capacity on a road networkmay not be known exactly. The ambiguousness
in the representation of different objects or in the relationships between them gen-
erates the essentiality of fuzzy graphs, which were originally studied and developed
by Kaufmann [11] in 1977. The fuzzy relations in fuzzy sets were studied by Rosen-
feld [22] and he introduced the structure of fuzzy graphs, obtaining an analysis of
various graph theoretical concepts. The concept of fuzzy graphs was generalized to
complex fuzzy graphs by Thirunavukarasu et al. [28]. They discussed the energy of
complex fuzzy graph and defined its lower and upper bounds. They also illustrated
these concepts using numeric examples.

Hypergraphs, a generalization of graphs, have been widely and deeply studied in
Berge [5], and quite often have proved to be a successful tool to represent and model
concepts and structures in various areas of computer science and discrete mathemat-
ics. Hypergraphs are able to describe complex systems as their descriptive power
is fairly strong because they are one of the most general graphs and mathematical
structures for representing relationships. The hypergraphs are the generalization and
extension of concept graphs and finite sets. The mathematical theory of hypergraphs
was developed in the past decades; the generalizations of definitions as trees, cycles,
and coloring for hypergraphs have been elaborated with the accompanying theorems.
Hypergraphs have many applications in different fields including computer science,
biological sciences, and natural sciences. The crisp hypergraphs are not sufficient
to describe all real-world relations between objects. Hypergraphs do not study the
degree of dependence of an object to the other. In 1995, Lee-Kwang and Lee [12]
generalized the concept of hypergraphs to fuzzy hypergraphs and extended the notion
of fuzzy hypergraphs, whose idea was first discussed by Kaufmann [11]. Later, the
idea of fuzzy hypergraphs was studied by Goetschel Jr. in [7–9], and the concepts of
Hebbian structures, fuzzy colorings, and fuzzy transversals were introduced.

Definition 1.1 A pair G∗ = (X, E) is a crisp graph, where E ⊆ ˜X2 is a collection
of 2−element subsets of a non-empty set X .
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A crisp hypergraph on a non-empty set X is a pair H∗ = (X, E) such that

(i) X = {x1, x2, . . . , xn} is non-empty set of vertices,
(ii) E = {E1, E2, . . . , Er } is a family of non-empty subsets of X ,
(iii) ∪k Ek = X , k = 1, 2, · · · , r .

A hypergraph is a generalized case of a graph in which a hyperedge may have more
than two vertices. A hypergraph is called simple if for any Ei ⊆ Ek ⇒ i = k.

A hypergraph is called linear if it is simple, and |Ei ∩ Ek | ≤ 1, for each Ei ,

Ek ∈ E .
The line graph L(H∗) of a hypergraph is a graph in which E = {E1, E2, . . . , Er }

is the set of vertices and there is an edge between two vertices Ei and Ek if
Ei ∩ Ek 
= ∅.

A hypergraph is a generalization of an ordinary undirected graph, such that an
edge need not contain exactly two nodes, but can instead contain an arbitrary nonzero
number of vertices. An ordinary undirected graph (without self-loops) is, of course,
a hypergraph where every edge has exactly two nodes (vertices). Hypergraphs are
often defined by an incidence matrix with columns indexed by the edge set and rows
indexed by the vertex set.

The rank r(H∗) of a hypergraph is defined as the maximum number of nodes
in one edge, r(H∗) = max j |E j |, and the anti rank s(H∗) is defined likewise, i.e.,
s(H∗) = min j |E j |.

We say that a hypergraph is uniform if r(H∗) = s(H∗). A uniform hypergraph
of rank k is called k-uniform hypergraph. Hence, a simple graph is a 2−uniform
hypergraph, and thus all simple graphs are also hypergraphs.

A hypergraph is vertex (resp. hyperedge) symmetric if for any two vertices (resp.
hyperedges) xi and x j (resp. Ei and E j ), there is an automorphism of the hypergraph
that maps xi to x j (resp. Ei to E j ).

Example 1.1 Let H∗ = (X, E) be a crisp hypergraph as shown in Fig. 1.1 such that
X = {x1, x2, x3, x4, x5, x6, x7}, and E = {E1, E2, E3, E4}.

The incidence matrix of H∗ is given in Table1.1.
Here, E1 = {x1, x2, x3}, E2 = {x4, x5, x6}, E3 = {x1, x6, x7},, and E4 = {x3,

x4, x7} are hyperedges of H∗ such that |E1| = 3, |E2| = 3, |E3| = 3 and |E4| = 3.
Note that r(H∗) = 3, and s(H∗) = 3. Hence, H∗ is 3−uniform hypergraph. Also,
H∗ is simple as there are no repeated hyperedges.

Definition 1.2 The dual of a hypergraph H∗ = (X, E) with vertex set X = {x1,
x2, . . . , xn} and hyperedge set E = {e1, e2, . . . , em} is a hypergraph H∗d = (Xd , Ed)

with vertex set Xd = {xd1 , xd2 , . . . , xdm} and hyperedge set Ed = {(e1)d , (e2)d , . . . ,
(en)d} such that xdj corresponds to e j with hyperedges (ei )d = {xdj | xi ∈ e j and
e j ∈ E}. In other words, H∗d is obtained from H∗ by interchanging vertices and
hyperedges in H∗. The incidence matrix of H∗d is the transpose of the incidence
matrix of H∗. Thus, (H∗d)d = H∗.
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Fig. 1.1 Uniform crisp
hypergraph x1

x2

x3

x4

x5

x6

x7

E1

E2

E3 E4

Table 1.1 The incidence matrix of H∗

IH∗ E1 E2 E3 E4

x1 1 0 1 0

x2 1 0 0 0

x3 1 0 0 1

x4 0 1 0 1

x5 0 1 0 0

x6 0 1 1 0

x7 0 0 1 1

Table 1.2 Incidence matrix of H∗d

IH∗d X1 X2 X3 X4 X5 X6 X7

e1 1 1 1 0 0 0 0

e2 0 0 0 1 1 1 0

e3 1 0 0 0 0 1 1

e4 0 0 1 1 0 0 1

Example 1.2 Consider a crisp hypergraph H∗ = (X, E) as shown in Fig. 1.1. The
dual hypergraph of H∗ is given in Fig. 1.2 such that Xd = {e1, e2, e3, e4} are vertices
of H∗d corresponding to the edge set of H∗ and Ed = {X1, X2, X3, X4, X5, X6, X7}
are hyperedges of H∗d corresponding to the vertex set of H∗.

Note that X1 = {e1, e3}, X2 = {e1}, X3 = {e1, e4}, X4 = {e2, e4}, X5 = {e2},
X6 = {e2, e3}, and X7 = {e3, e4} are hyperedges of H∗d . The incidence matrix of
H∗d is given in Table1.2, which is the transpose of Table1.1.

Note that H∗d is not a simple and uniform hypergraph.

Proposition 1.1 H∗ is r-uniform if and only if H∗d is r-regular.
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Fig. 1.2 Dual hypergraph
H∗d
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e4

X 1

X
2

X
3

X 4

X5

X6

X7

Proposition 1.2 The dual of a linear hypergraph is also linear.

Proposition 1.3 A hypergraph H∗ is vertex symmetric if and only if H∗d is hyper-
edge symmetric.

Proposition 1.4 The dual of a sub-hypergraph of H∗ is a partial hypergraph of the
dual hypergraph H∗d .

Definition 1.3 A fuzzy set μ on a set X is a map μ : X → [0, 1]. In clustering , the
fuzzy set μ, is called a fuzzy class.
Wedefine the supportofμby supp(μ) = {x ∈ X |μ(x) 
= 0}, and sayμ is nontrivial
if supp(μ) is non-empty.
The height of μ is h(μ) = max{μ(x) | x ∈ X}. We say μ is normal if h(μ) = 1.

Definition 1.4 Amap ν : X × X → [0, 1] is called a fuzzy relationon X if ν(x, y) ≤
min(μ(x), μ(y)), for all x, y ∈ X .
A fuzzy partition of a set X is a family of nontrivial fuzzy sets {μ1, μ2, μ3, . . . , μm}
such that

(i)
⋃

i supp(μi ) = X , i = 1, 2, . . . ,m,
(ii)

∑m
i=1 μi (x) = 1, for all x ∈ X ,

(iii) μi ∩ μ j 
= ∅, i 
= j .

We call a family {μ1, μ2, μ3, . . . , μm} a fuzzy covering of X if it verifies only the
above conditions (i) and (i i).

Definition 1.5 A fuzzy graph on a non-empty universe X is a pair G = (μ, λ),
where μ is a fuzzy set on X , and λ is a fuzzy relation on X such that λ(xy) ≤
min{μ(x), μ(y)}, for all x, y ∈ X.

Remark 1.1

1. μ is called fuzzy vertex set of G, λ is called fuzzy edge set of G. If λ is a sym-
metric fuzzy relation on μ, G = (μ, λ) is called a fuzzy graph on a non-empty
universe X .
A fuzzy relation λ on X is called symmetric if λ(x, y) = λ(y, x), for all x , y ∈ X .
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2. If λ is not a symmetric fuzzy relation onμ,
−→
G = (μ,

−→
λ ) is called a fuzzy digraph

on a non-empty universe X .
3. λ is a fuzzy relation on μ, and λ(xy) = 0 for all xy ∈ X × X − E , E ⊆ X × X.

4. A fuzzy graph is needed only when vertices and edges are fuzzy. Otherwise, a
weighted graph is enough. That is, when there is no precise information about
storage/capacity at vertices, or no exact flow through the edges. The flow should
not exceed from the capacity of the source. If flow exceeds from the capacity of
the source in a network model, is called a cofuzzy graph , that is,

λ(xy) ≥ max{μ(x), μ(y)}, ∀ x, y ∈ X.

For further terminologies and studies on fuzzy sets, fuzzy graphs and fuzzy hyper-
graphs, readers are referred to [1–4, 15–20, 22–27, 29–32].

1.2 Fuzzy Hypergraphs

Definition 1.6 A fuzzy hypergraph is defined as an ordered pair H = (X, ξ) such
that

(i) X = {x1, x2, · · · , xm} is finite set of vertices,
(ii) ξ = {ξ1, ξ2, · · · , ξk} is finite family of fuzzy subsets of X ,
(iii) ∪i supp(ξi ) = X , for all ξi ∈ ξ .

Note that the hyperedges ξi are fuzzy subsets of X . The membership degree of vertex
xi to the hyperedge ξ j is defined by ξ j (xi ).

Definition 1.7 Let H = (X, ξ) be a fuzzy hypergraph. The height, denoted by h(H),
is defined as h(H) = max{h(μ)|μ ∈ ξ}.

The order of H (number of vertices) is denoted by |X | and the number of edges
is denoted by |ξ |. The rank is the maximal column sum of the incidence matrix and
the anti rank is the minimal column sum. We say H = (X, ξ) is a uniform fuzzy
hypergraph if and only if rank(H) = anti rank(H).

Definition 1.8 A fuzzy set μ : X → [0, 1] is an elementary fuzzy set if μ is single
valued on supp(μ).

An elementary fuzzy hypergraph H = (X, ξ) is a fuzzy hypergraph, whose fuzzy
hyperedges are all elementary.

Example 1.3 Consider a fuzzy hypergraph H = (X, ξ), where X = {x1, x2, x4, x5}
and ξ = {ξ1, ξ2, ξ3} such that

ξ1 = {(x1, 0.8), (x2, 0.5)},
ξ2 = {(x2, 0.8), (x3, 1), (x4, 0.7)},
ξ3 = {(x4, 0.8), (x5, 1)}.
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Table 1.3 Incidence matrix
of fuzzy hypergraph

x ∈ X ξ1 ξ2 ξ3

x1 0.8 0 0

x2 0.5 0.5 0

x3 0 1 0

x4 0 0.8 0.8

x5 0 0 1

Fig. 1.3 Fuzzy hypergraph (x1,0.8)

(x5,1)

(x2,0.5)

(x3,1)

(x4,0.8)

ξ1

ξ 2 ξ3

The corresponding incidence matrix is given in Table1.3.
The fuzzy hypergraph is shown in Fig. 1.3.

Definition 1.9 A fuzzy hypergraph H = (X, ξ) is simple if ξi , ξ j ∈ ξ , and ξi ⊆ ξ j

imply ξi = ξ j .
In particular, a (crisp) hypergraph H = (X, E) is simple if A, B ∈ E , and A ⊆ B

imply that A = B.

A fuzzy hypergraph H = (X, ξ) is support simple if ξi , ξ j ∈ ξ , supp(ξi ) =
supp(ξ j ), and ξi ⊆ ξ j imply ξi = ξ j .

A fuzzy hypergraph H = (X, ξ) is strongly support simple if ξi , ξ j ∈ ξ , and
supp(ξi ) = supp(ξ j ) imply ξi = ξ j .

Remark 1.2 For fuzzy hypergraphs, all three concepts imply no multiple edges.
Simple fuzzy hypergraphs are support simple and strongly support simple fuzzy
hypergraphs are support simple. Simple and strongly support simple are independent
concepts.

Proposition 1.5 A fuzzy hypergraph H = (X, ξ) is a fuzzy graph (with loops) if
and only if H is elementary, support simple, and each edge has two (or one) element
support.

Lemma 1.1 Let H = (X, ξ) be an elementary fuzzy hypergraph. Then, H is support
simple if and only if H is strongly support simple.
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Proof Suppose that H = (X, ξ) is elementary, support simple, and supp(ξi ) =
supp(ξ j ). We assume that h(ξi ) ≤ h(ξ j ). Since, H is elementary it follows that
ξi ⊆ ξ j , and since H is support simple, then ξi = ξ j . Therefore, H is strongly sup-
port simple.

Conversely, by Remark 1.2, it follows that if H is strongly support simple, then
H is support simple.

Proposition 1.6 Let H = (X, ξ) be a simple fuzzy hypergraph of order n. Then,
there is no upper bound on |ξ |.
Proof Let X = {x, y}, and define ξN = {μi |i = 1, 2, · · · , N }, where

μi (x) = 1

i + 1
, μi (y) = 1 − 1

i + 1
.

Then, HN = (X, ξN ) is a simple fuzzy hypergraph with N edges.

Proposition 1.7 Let H = (X, ξ) be an elementary, simple fuzzy hypergraph of
order n. Then, |ξ | ≤ 2n − 1, with equality if and only if {supp(μ)|μ ∈ ξ, μ 
= 0} =
P(X) \ ∅.

Proof Since H is elementary and simple, each nontrivial A ⊆ X can be the support
of at most one μ ∈ ξ . Therefore, |ξ | ≤ 2n − 1. To show there exists an elementary,
simple H with |ξ | = 2n − 1, let ξ = {μA|A ⊆ X} be the set of functions defined by,

μA =
{

1
|A| , if x ∈ A,

0, otherwise.

Then, each one element set has height 1, each two element set has height 0.5, and so
on. H is elementary and simple, and |ξ | = 2n − 1.

Definition 1.10 Let H = (X, ξ) be a fuzzy hypergraph. The adjacent level between
two vertices is defined as γ (xi , xk) = max j min[ξ j (xi ), ξ j (xk)], j = 1, 2, · · · , k.

The adjacent level between two edges is defined as ρ(ξ j , ξk) = max j min[ξ j (x),
ξk(x)], x ∈ X .

Note that in fuzzy hypergraph as given in Fig. 1.3, γ (x1, x2) = 0.5 and
ρ(ξ1, ξ2) = 0.5.

Definition 1.11 Let H = (X, ξ) be a fuzzy hypergraph. The α−cut hypergraph of
H is defined as an ordered pair Hα = (Xα, ξα), where

(i) Xα = {x1, x2, · · · , xm},
(ii) ξα = ∪ξα

i , where ξα
i = {x |ξi (x) ≥ α},

(iii) ξα
i+1 = {x |ξi (x) < α}.

Note that Hα = (Xα, ξα) is a crisp hypergraph. The edge ξα
i+1 is added to group the

elements which are not contained in any edge of Hα .
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Fig. 1.4 H0.8−level
hypergraph of H

x1

x2

x3

x4

x5

ξ 0.8
1

ξ 0.8
2

ξ 0.8
3

ξ 0.8
4

Example 1.4 Consider a fuzzy hypergraph as shown in Fig. 1.3. For α = 0.8,
H 0.8−cut hypergraph is shown in Fig. 1.4.

Here,

ξ 0.8
1 = {x1}, ξ 0.8

2 = {x3, x4}, ξ 0.8
3 = {x14, x5}, ξ 0.8

4 = {x2}.

Note that a new edge ξ 0.8
4 is added to contain the element x2.

Definition 1.12 The strength of an hyperedge in H is defined as the minimum
membership degree of vertices in that hyperedge, i.e., β(ξi ) = min{ξi (x j )|
ξi (x j ) > 0}.

Its interpretation is that the edge ξi groups elements have participation degree at
least β(ξi ) in the hypergraph.

Example 1.5 For example, in fuzzy hypergraph as given in Fig. 1.3, the strength of
each hyperedge is given as β(ξ1) = 0.5, β(ξ2) = 0.5 and β(ξ3) = 0.8, respectively.

The edges having high strength are called the strong hyperedges because the cohesion
in them is strong. In Example1.5, the hyperedge ξ3 is stronger than ξ1 and ξ2.

Definition 1.13 Let H = (X, ξ) be a fuzzy hypergraph and for each α ∈ [0, 1], let
Hα = (Xα, ξα) be the α−level hypergraph of H . The sequence of real numbers
rl, r2, . . . , rn , with 1 ≥ r1 > r2 > . . . > rn > 0, and having the properties,

(i) if 1 ≥ s > r1, then ξs = ∅,
(ii) if ri ≥ s > ri+1, then ξs = ξri ,
(iii) ξri ⊆ ξri+1 ,

is called the fundamental sequence of H , and is denoted by fs(H). The corresponding
sequence of ri level hypergraphs Hrl ⊆ Hr2 ⊆ · · · ⊆ Hrn is called the H induced
fundamental sequence and is denoted by I (H). The rn level is called the support
level of H and the hypergraph Hrn is called the support hypergraph of H .
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Table 1.4 Incidence matrix
of fuzzy hypergraph

x ∈ X ξ1 ξ2 ξ3

x1 0.8 0.7 0.6

x2 0.8 0.7 0.6

x3 0 0.6 0

x4 0 0 0.6

x1 x2

x4x3

H0.8 =H0.7−level hypergraph

x1 x2

x4
x3

H0.6−level hypergraph

Fig. 1.5 H -induced fundamental sequence of H

Example 1.6 Let H = (X, ξ) be a fuzzy hypergraph, where X = {x1, x2, x3, x4} and
ξ = {ξ1, ξ2, ξ3} such that

ξ1 = {(x1, 0.8), (x2, 0.8)},
ξ2 = {(x1, 0.7), (x2, 0.7), (x3, 0.6)},
ξ3 = {(x1, 0.6), (x2, 0.6), (x4, 0.6)}.

The hypergraph is represented by the incidence matrix as given in Table1.4.
By direct calculations, we have H 0.8 = (X, ξ 0.8), where ξ 0.8 = {{x1, x2}},

H 0.7 = (X, ξ 0.7), where ξ 0.7 = {{x1, x2}}, and H 0.6 = (X, ξ 0.6), where ξ 0.6 =
{{x1, x2}, {x1, x2, x3}, {x1, x2, x4}}. We see H 0.8 = H 0.7 and so fs(H) = {0.8, 0.6}.
Note that 0.7 is not an element of fs(H). The H induced fundamental sequence of
H is shown in Fig. 1.5.

Definition 1.14 Let H be a fuzzy hypergraph with fs(H) = {rl, · · · , rn}, and
let rn+1 = 0. Then, H is sectionally elementary if for each edge μ ∈ ξ , each
i ∈ {1, 2, · · · , n}, and each c ∈ (r j+1, r j ], we have μc = μri .

Definition 1.15 A fuzzy hypergraph H is ordered if the H induced fundamental
sequence of hypergraphs is ordered.

The fuzzyhypergraph H is simply ordered if the H -induced fundamental sequence
of hypergraphs is simply ordered.
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Fig. 1.6 Dual fuzzy
hypergraph Hd

e1

e2

e3

X1

X
2

X3

X4

X
5

Proposition 1.8 If H = (X, ξ) is an elementary fuzzy hypergraph, then is ordered.
Also, if H = (X, ξ) is an ordered fuzzy hypergraph with simple support hypergraph,
then H is elementary.

Definition 1.16 Let H = (X, ξ) be a fuzzy hypergraph. The dual fuzzy hypergraph
is defined as Hd = (ξ, Xd), where

(i) ξ = {e1, e2, · · · , ek} is the set of vertices of Hd corresponding to hyperedges
{ξ1, ξ2, · · · , ξk},

(ii) Xd = {X1, X2, · · · , Xm} are the hyperedges corresponding to the vertices of
{x1, x2, · · · , xm}, such that Xi = {(e j , ξi (e j ))|ξi (e j ) = ξ j (xi )}.

Example 1.7 Consider a fuzzy hypergraph as shown in Fig. 1.3. Its dual fuzzy hyper-
graph is given as Hd = (ξ, Xd), where ξ = {e1, e2, e3}, and

X1 = {(e1, 0.8)},
X2 = {(e1, 0.5), (e2, 0.5)},
X3 = {(e2, 1)},
X4 = {(e2, 0.8), (e3, 0.8)},
X5 = {(e3, 1)}.

The corresponding dual fuzzy hypergraph is shown in Fig. 1.6.
Now, we cut the dual hypergraph at level 0.8 such that

X0.8
1 = {e1}, X0.8

2 = {∅}, X0.8
3 = {e2}, X0.8

4 = {e3}, X0.8
5 = {e2, e3}.

The corresponding 0.8−cut hypergraph of Hd is given in Fig. 1.7.

Definition 1.17 For a crisp hypergraph H = (X, E), a transversal of H is any subset
T of X with the property that for each A ∈ E , T ∩ A 
= ∅. A transversal T of H is
a minimal transversal of H , if no proper subset of T is a transversal of H .
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Fig. 1.7 0.8−cut
hypergraph of Hd

e1

e2

e3

X0.8
1

X
0.8
3

X0.8
4

X0.8
5

Clearly, a transversal always contains a minimal transversal. The collection of
minimal transversals of H can be considered the edge set of a hypergraph where the
vertex set is a (perhaps proper) subset of X . Both the set of all minimal transversals
of H = (X, E) and the hypergraph defined by this set will be denoted by Tr (H).

Definition 1.18 Let H = (X, ξ) be a fuzzy hypergraph and the height ofμ is h(μ) =
max{μ(x)|x ∈ X}. A fuzzy transversal of H is a fuzzy set τ ∈ F (X), whereF (X)

is the collection of all fuzzy sets defined on X such that τ h(μ) ∩ μh(μ) 
= ∅, for each
μ ∈ ξ . Aminimal fuzzy transversalof H is a fuzzy transversal τ of H forwhichρ < τ

implies ρ is not a fuzzy transversal of H . The set of all minimal fuzzy transversals
of H (and the fuzzy hypergraph formed by this set) will be denoted Tr(H).

Proposition 1.9 Let H = (X, ξ) be a fuzzy hypergraph. Then, the following state-
ments are equivalent,

(i) τ is a fuzzy transversal of H,
(ii) for each μ ∈ ξ and each c with 0 < c ≤ h(μ), τ c ∩ μc 
= ∅,
(iii) for each c with 0 < c ≤ r1, τ c is a transversal of Hc.

Example 1.8 Let H = (X, ξ) be a fuzzy hypergraph, which is defined by the inci-
dence matrix given in Table1.5.

Note that fuzzy transversals of H are given as

τ1 = {(x1, 0), (x2, 0.8), (x3, 0.7), (x4, 0), (x5, 0), (x6, 0.8)},
τ2 = {(x1, 0), (x2, 0.8), (x3, 0), (x4, 0), (x5, 0.7), (x6, 0.8)},

which are the minimal transversals of H and H has only these two minimal fuzzy
transversals.

Definition 1.19 If τ is a fuzzy set with the property that τ c is a minimal transversal
of Hc for each c ∈ (0, 1], then τ is called a locally minimal fuzzy transversal of H .
The set of all locally minimal fuzzy transversals on H is denoted by Tr∗(H).
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Table 1.5 Incidence matrix
of fuzzy hypergraph

x ∈ X ξ1 ξ2 ξ3 ξ4

x1 0.5 0 0 0

x2 0.5 0.8 0 0

x3 0.4 0 0 0.7

x4 0 0.4 0.7 0

x5 0 0 0 0.7

x6 0 0 0.8 0.4

Lemma 1.2 Let H = (X, ξ) be a fuzzy hypergraph with fs(H) = {rl, · · · , rn}. If τ
is a fuzzy transversal of H, then h(τ ) ≥ h(μ), for each μ ∈ ξ . If τ is minimal, then
h(τ ) = max{h(μ)|μ ∈ ξ)} = r1.

Construction 1.1 gives an algorithm for finding Tr(H).

Construction 1.1 Let H = (X, ξ) be a fuzzy hypergraph with I (H) = {Hrl ,

Hr2 , · · · , Hrn }. We construct a minimal fuzzy transversal τ of H by a recursive
process,

1. Find a (crisp) minimal transversal T1 of Hrl .
2. Find a transversal T2 of Hr2 that is minimal with respect to the property that T1 ⊆

T2. Equivalently, construct a new hypergraph H2 with edge set Er2 , augmented
by a loop at each x ∈ T1. Let T2 be any minimal transversal of H2.

3. Continue recursively, letting Tj be a transversal of Hr j that isminimalwith respect
to the property Tj ⊆ Tj+1.

4. For 1 ≤ j ≤ n, let τ j be the elementary fuzzy set with support Tj and height r j .
Then, τ = max{τ j |1 ≤ j ≤ n} is a minimal fuzzy transversal of H .

Lemma 1.3 For each τ ∈ Tr(H), and for each x ∈ X, τ(x) ∈ fs(H). Therefore,
the fundamental sequence of T r(H) is a (possibly proper) subset of fs(H).

Proof Let τ ∈ Tr(H) and τ(x) ∈ (ri+1, ri ]. Define φ as

φ(y) =
{

r1, if y = x,

τ (y), otherwise.

By definition of φ, φri = τ ri . By Definition1.13 of fs(H), Hc = Hri , for each c ∈
[ri+1, ri ]. Therefore,φri is a transversal of H for each c ∈ [ri+1, ri ]. Since, τ is a fuzzy
transversal, and φc 
= τ c for each c /∈ [ri+1, ri ], φ is a fuzzy transversal as well. Now,
φ ≤ τ, and the minimality of τ implies φ = τ . Hence, τ(x) = φ(x) = ri . It follows
that for each τ ∈ Tr(H), and for each x ∈ X , we have τ(x) ∈ fs(H). Therefore,
fs(Tr(H)) ⊆ fs(H).
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1.3 Fuzzy Competition Hypergraphs

Definition 1.20 A fuzzy out neighborhood of a vertex x of a fuzzy digraph �G =
(μ, �λ) is a fuzzy set N +(x) = (X+

x , μ+
x ), where X+

x = {y|�λ(xy) > 0}, and μ+
x :

X+
x → [0, 1] is defined by μ+

x (y) = �λ(xy).

Definition 1.21 The fuzzy in neighborhood of vertex x of a fuzzy digraph is a
fuzzy setN −(x) = (X−

x , μ−
x ),where X−

x = {y|�λ(yx) > 0}, andμ−
x : X−

x → [0, 1]
is defined by μ−

x (y) = �λ(yx).

Definition 1.22 Let �G = (μ, �λ) be a fuzzy digraph. The underlying fuzzy graph of
�G is a fuzzy graph U ( �G) = (μ, λ) such that

λ(xw) =
⎧

⎨

⎩

�λ(xw), if �wx /∈ �E,
�λ(wx), if �xw /∈ �E,
�λ(xw) ∧ �λ(wx), if �wx, �xw ∈ �E,

where �E = supp(�λ).

Definition 1.23 The fuzzy open neighborhood of a vertex y in a fuzzy graph
G = (μ, λ) is a fuzzy set N (y) = (Xy, μy) where Xy = {w|λ(yw) > 0} and μy :
Xy → [0, 1] a membership function defined by μy(w) = λ(yw).

Definition 1.24 The fuzzy closed neighborhoodN [y] of a vertex y in a fuzzy graph
G = (μ, λ) is defined as N [y] = N (y) ∪ {(y, μ(y))}.
Definition 1.25 Let A = [xi j ]n×n be the adjacency matrix of a fuzzy digraph
�G = (μ, �λ) on a non-empty set X . The fuzzy row hypergraph of �G, denoted by
R ◦ H ( �G) = (μ, λr ), having the same set of vertices as �G and the set of hyper-
edges is defined as

{

{x1, x2, . . . , xr }|A(xi j ) > 0, r ≥ 2, for each 1 ≤ i ≤ r, xi ∈ X, for some 1 ≤ j ≤ n
}

.

The degree of membership of hyperedges is defined as

λr ({x1, x2, . . . , xr }) = [

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )
] × max

j
{�λ(x1x j ) ∧ �λ(x2x j ) ∧ . . . ∧ �λ(xr x j )}.

Definition 1.26 The fuzzy column hypergraph of �G, denoted by C ◦ H ( �G) =
(μ, λcl), having the same set of vertices as �G and the set of hyperedges is defined as

{

{x1, x2, . . . , xs}|A(x ji ) > 0, s ≥ 2, for each 1 ≤ i ≤ s, xi ∈ X, for some 1 ≤ j ≤ n
}

.
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The degree of membership of hyperedges is defined as

λcl
({x1, x2, . . . , xs }

) = [

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )] × max
j

{�λ(x j x1) ∧ �λ(x j x2) ∧ . . . ∧ �λ(x j xs )}.

The methods for computing fuzzy row hypergraph and fuzzy column hypergraph are
given in Algorithms1.3.1 and 1.3.2, respectively.

Algorithm 1.3.1 Method for construction of fuzzy row hypergraph

1. Begin
2. Input the fuzzy set μ on set of vertices X = {x1, x2, . . . , xn}.
3. Input the adjacency matrix A = [xi j ]n×n of fuzzy digraph �G = (μ, �λ) such

that �λ(xi x j ) = xi j as shown in Table1.6.
4. do j from 1 → n
5. Take a vertex x j from first j th column.
6. value1 = ∞, value 2 = ∞, num = 0
7. do i from 1 → n
8. if (xi j > 0) then
9. xi belongs to the hyperedge E j .
10. num = num + 1
11. value1 = value1 ∧ μ(xi )
12. value2 = value2 ∧ xi j
13. end if
14. end do
15. if (num > 1) then
16. λr (E j ) = value1 × value2, where E j is a hyperedge.
17. end if
18. end do
19. If for some j , supp(E j ) = supp(Ek), k ∈ { j + 1, j + 2, . . . , n} then,λr (E j ) =

max{λr (E j ), λr (Ek), . . .}.
Algorithm 1.3.2 Method for construction of fuzzy column hypergraph

1. Begin
2. Follow steps 2 and 3 of Algorithm 1.3.1.
3. do i from 1 → n
4. Take a vertex xi from first i th row.
5. value1 = ∞, value2 = ∞, num = 0
6. do j from 1 → n
7. if (xi j > 0) then
8. x j belongs to the hyperedge Ei .
9. num = num + 1
10. value1 = value1 ∧ μ(x j )

11. value2 = value2 ∧ xi j
12. end if
13. end do
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14. if (num > 1) then
15. λcl(Ei ) = value1 × value2, where Ei is a hyperedge.
16. end if
17. end do
18. If for some i , supp(Ei ) = supp(Ek), k ∈ { j + 1, j + 2, . . . , n}, thenλcl(Ei ) =

max{λcl(E j ), λcl(Ek), . . .}.

Example 1.9 consider the universe X = {x1, x2, x3, x4, x5, x6}, μ a fuzzy set on X
and �λ a fuzzy relation in X as defined in Tables1.7 and 1.8, respectively. The fuzzy
digraph �G = (μ, �λ) is shown in Fig. 1.8. The adjacency matrix of �G is given in
Table1.9. Using Algorithm 1.3.1 and Table1.9, there are three hyperedges E2 =
{x1, x5, x6}, E3 = {x2, x5}, and E4 = {x3, x5} corresponding to the columns x2, x3,
and x4 of adjacency matrix, in fuzzy row hypergraph of �G. The membership degree
of the hyperedges is calculated as

λr (E2) = [

μ(x1) ∧ μ(x5) ∧ μ(x6)
] × [

x12 ∧ x52 ∧ x62
] = 0.3 × 0.3 = 0.09,

λr (E3) = [

μ(x2) ∧ μ(x5)
] × [

x23 ∧ x53
] = 0.4 × 0.1 = 0.04,

λr (E4) = [

μ(x3) ∧ μ(x5)
] × [

x34 ∧ x54
] = 0.4 × 0.4 = 0.16.

The fuzzy row hypergraph is shown in Fig. 1.9. Using Algorithm 1.3.2 and Table 1.9,
the hyperedges in fuzzy columnhypergraphof �G are E1 = {x2, x6}, E5 = {x2, x3, x4},
and E6 = {x2, x5}, corresponding to the rows x2, x5, and x6 of the adjacency matrix.
The membership degree of the hyperedges is calculated as

λcl(E5) = [

μ(x2) ∧ μ(x3) ∧ μ(x4)
] × [

x52 ∧ x53 ∧ x54
] = 0.4 × 0.3 = 0.12,

λcl(E1) = [

μ(x2) ∧ μ(x6)
] × [

x12 ∧ x16
] = 0.3 × 0.2 = 0.06,

λcl(E6) = [

μ(x2) ∧ μ(x5)
] × [

x62 ∧ x65
] = 0.4 × 0.1 = 0.04.

The fuzzy column hypergraph is given in Fig. 1.10.

Table 1.6 Adjacency matrix A x1 x2 … xn

x1 x11 x12 … x1n
x2 x21 x22 … x2n
.
.
.

.

.

.
.
.
. …

.

.

.

xn xn1 xn2 … xnn
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Table 1.7 Fuzzy vertex set μ x μ(x) x μ(x)

x1 0.5 x2 0.4

x3 0.7 x4 0.6

x5 0.4 x6 0.3

Table 1.8 Fuzzy relation �λ x �λ(x) x �λ(x)

x1x2 0.4 x6x5 0.1

x2x3 0.1 x1x6 0.2

x3x4 0.6 x6x2 0.3

x5x4 0.4 x5x2 0.4

x5x3 0.3

Fig. 1.8 Fuzzy digraph �G x1(0.5)

x2(0.4)

x3(0.7)

x4(0.6)

x5(0.4)

x6(0.3)
0.2 0.4

0.3

0.1 0.1

0.4

0.3

0.6

0.4

Definition 1.27 A fuzzy competition graph of a fuzzy digraph �G = (μ, �ν) is an
undirected fuzzy graph C ( �G) = (μ, ν), which has the same vertex set as in �G and
there is an edge between two vertices x and y if N +(x) ∩ N +(y) is non-empty.
The membership value of the edge xy is defined as

ν(xy) = min{μ(x), μ(y)}h(N +(x) ∩ N +(y)).

Table 1.9 Adjacency matrix

A x1 x2 x3 x4 x5 x6

x1 0 0.4 0 0 0 0.2

x2 0 0 0.1 0 0 0

x3 0 0 0 0.6 0 0

x4 0 0 0 0 0 0

x5 0 0.4 0.3 0.4 0 0

x6 0 0.3 0 0 0.1 0
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Fig. 1.9 Fuzzy row
hypergraph R ◦ H ( �G) x1(0.5)

x2(0.4)

x3(0.7)

x4(0.6)

x5(0.4)

x6(0.3) 0.04

0.09

0.16

Fig. 1.10 Fuzzy column
hypergraph C ◦ H ( �G)

x1(0.5)

x2 (0.4)

x 3
(0
.7)

x4 (0.6)

x5(0.4)

x6(0.3)

0.04

0.06

0.12

Definition 1.28 Let �G = (μ, �λ) be a fuzzy digraph on a non-empty set X . The fuzzy
competition hypergraph CH ( �G) = (μ, λc) on X having the same vertex set as �G
and there is a hyperedge consisting of vertices x1, x2, . . . , xs ifN +(x1) ∩ N +(x2) ∩
. . . ∩ N +(xs) 
= ∅. The degree of membership of hyperedge E = {x1, x2, . . . , xs}
is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs)),

where h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs)) denotes the height of fuzzy set
N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs).

The method for constructing fuzzy competition hypergraph of a fuzzy digraph is
given in Algorithm 1.3.3.
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Algorithm 1.3.3 Construction of fuzzy competition hypergraph

1. Begin
2. Input the adjacency matrix A = [xi j ]n×n of a fuzzy digraph �G.
3. Define a relation f : X → X by f (xi ) = x j , if xi j > 0.
4. do i from 1 → n
5. do j from 1 → n
6. If xi j > 0 then (x j , xi j ) belongs to the fuzzy out neighborhoodN +(xi ).
7. end do
8. end do
9. Compute the family of setsS = {Ei = f −1(xi ) : | f −1(xi )| ≥ 2, xi ∈ X}where

Ei = {xi1 , xi2 , . . . , xir } is a hyperedge of CH ( �G).
10. For each hyperedge Ei ∈ S , calculate the degree of membership of Ei as

λc(Ei ) = [μ(xi1 ) ∧ μ(xi2 ) ∧ . . . ∧ μ(xir )] × h
(

N +(xi1 ) ∩ N +(xi2 ) ∩ . . . ∩ N +(xir )
)

.

Lemma 1.4 The fuzzy competition hypergraph of a fuzzy digraph �G is a fuzzy row
hypergraph of �G.

Proof Let �G = (μ, �λ) be a fuzzy digraph, then for any hyperedge E =
{x1, x2, . . . , xs} of CH ( �G),

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs))

= [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × max
j

{N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs)}

= [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × max
j

{�λ(x1x j ) ∧ �λ(x2x j ) ∧ . . . ∧ �λ(xnx j )} = λr (E)

It follows that E is a hyperedge of fuzzy row hypergraph.

Example 1.10 Consider the fuzzy digraph given in Fig. 1.8. The fuzzy out neighbor-
hood and fuzzy in neighborhood of all the vertices are given in Table1.10.

Using Algorithm 1.3.3, the relation f : X → X of �G is given in Fig. 1.11. The
construction of fuzzy competition hypergraph from �G is given as follows.

1. Since f −1(x2) = E2 = {x1, x5, x6}, f −1(x3) = E3 = {x2, x5}, and f −1(x4) =
E4 = {x3, x5}, therefore, {x1, x5, x6}, {x2, x5}, and {x3, x5} are hyperegdes in
CH ( �G).

2. For hyperedge E2: N +(x1) ∩ N +(x5) ∩ N +(x6) = {(x2, 0.3)},
λc(E2) = [μ(x1) ∧ μ(x5) ∧ μ(x6)] × h

(

N +(x1) ∩ N +(x5) ∩ N +(x6)
) = 0.3 × 0.3 = 0.09.

3. Similarly,

λc(E3) = [μ(x2) ∧ μ(x5)] × h
(

N +(x2) ∩ N +(x5)
) = 0.04,

λc(E4) = [μ(x3) ∧ μ(x5)] × h
(

N +(x3) ∩ N +(x5)
) = 0.16.
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Table 1.10 Fuzzy out neighborhood and fuzzy in neighborhood of vertices in �G
x ∈ X N +(x) N −(x)

x1 {(x2, 0.4), (x6, 0.2)} ∅
x2 {(x3, 0.1)} {(x1, 0.4), (x5, 0.4), (x6, 0.3)}
x3 {(x4, 0.6)} {(x2, 0.1), (x5, 0.3)}
x4 ∅ {(x3, 0.6), (x5, 0.4)}
x5 {(x2, 0.4), (x3, 0.3), (x4, 0.4)} {(x6, 0.1)}
x6 {(x2, 0.3), (x5, 0.1)} {(x1, 0.2)}

Fig. 1.11 Representation of
fuzzy relation in �G

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

Fig. 1.12 Fuzzy competition
hypergraph CH ( �G) x1(0.5)

x2(0.4)

x3(0.7)

x4(0.6)

x5(0.4)

x6(0.3) 0.04

0.09

0.16

The fuzzy competition hypergraph is given in Fig. 1.12. From Figs. 1.9 and 1.12, it
is clear that fuzzy competition hypergraph is a fuzzy row hypergraph.

Definition 1.29 The fuzzy double competition hypergraph DCH ( �G) = (μ, λd)

having same vertex set as �G and there is hyperedge consisting of vertices x1,
x2, . . . , xs if N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs) 
= ∅ and N −(x1) ∩ N −(x2)
∩ . . . ∩ N −(xs) 
= ∅. The degree ofmembership of hyperedge E = {x1, x2, . . . , xs}
is defined as

λd (E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × [h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs))

∧ h(N −(x1) ∩ N −(x2) ∩ . . . ∩ N −(xs))].
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The method for the construction of fuzzy double competition hypergraph is given in
Algorithm 1.3.4.

Algorithm 1.3.4 Construction of fuzzy double competition hypergraph

1. Input the adjacency matrix A = [xi j ]n×n of a fuzzy digraph �G.
2. Define a relation f : X → X by f (xi ) = x j , if xi j > 0.
3. Compute the family of setsS = {Ei = f −1(xi ) : | f −1(xi )| ≥ 2, xi ∈ X} where

Ei = {xi1 , xi2 , . . . , xir }.
4. If N +(xi1) ∩ N +(xi2) ∩ . . . ∩ N +(xir ) and N −(xi1) ∩ N −(xi2) ∩ . . . ∩

N −(xir ) are non-empty, then Ei = {xi1 , xi2 , . . . , xir } is a hyperedge of
DCH ( �G).

5. For eachhyperedge Ei ∈ S , calculate the degree ofmembership of hyperedge Ei ,
λd(Ei ) = [μ(xi1) ∧ μ(xi2) ∧ . . . ∧ μ(xir )] × h

(

N +(xi1) ∩ N +(xi2) ∩ . . . ∩
N +(xir )

) ∧ h
(

N −(xi1) ∩ N −(xi2) ∩ . . . ∩ N −(xir )
)

.

Lemma 1.5 The fuzzy double competition hypergraph is the intersection of fuzzy
row hypergraph and fuzzy column hypergraph.

Proof Let �G = (μ, �λ) be a fuzzy digraph, then for any hyperedge E =
{x1, x2, . . . , xs} of CH ( �G),

λd (E) =[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )]×
[h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs )) ∧ h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs ))].

=[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )]×
[max

j
{�λ(x1x j ) ∧ �λ(x2x j ) ∧ . . . ∧ �λ(xnx j )} ∧ max

k
{�λ(xk x1) ∧ �λ(xk x2) ∧ . . . ∧ �λ(xk xn)}].

=[{μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )} × max
j

{�λ(x1x j ) ∧ �λ(x2x j ) ∧ . . . ∧ �λ(xnx j )}]×

[{μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )} × max
k

{�λ(xk x1) ∧ �λ(xk x2) ∧ . . . ∧ �λ(xk xn)}]
=λr (E) ∧ λcl (E).

It follows that fuzzy double competition hypergraph is the intersection of fuzzy row
hypergraph and fuzzy column hypergraph.

Example 1.11 Consider the example of fuzzy digraph shown inFig. 1.8. FromExam-
ple 1.10, the fuzzy double competition hypergraph of Fig. 1.8 is given in Fig. 1.13.
Also Figs. 1.9, 1.10, 1.13 show that the fuzzy double competition hypergraph is the
intersection of fuzzy row hypergraph and fuzzy column hypergraph.

Definition 1.30 Let �G = (μ, �λ) be a fuzzy digraph on a non-empty set X . The fuzzy
niche hypergraph N H ( �G) = (μ, λn) has the same vertex set as �G and there is
hyperedge consisting of vertices x1, x2, . . . , xs if eitherN +(x1) ∩ N +(x2) ∩ . . . ∩
N +(xs) 
= ∅ orN −(x1) ∩ N −(x2) ∩ . . . ∩ N −(xs) 
= ∅. The degree of member-
ship of hyperedge E = {x1, x2, . . . , xs} is defined as
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Fig. 1.13 Fuzzy double
competition hypergraph
DCH ( �G)
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λn(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs )]×
[

h
(

N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs )
) ∨ h

(

N −(x1) ∩ N −(x2) ∩ . . . ∩ N −(xs )
)]

.

Lemma 1.6 The fuzzy niche hypergraph is the union of fuzzy row hypergraph and
fuzzy column hypergraph.

Example 1.12 The fuzzy niche hypergraph of Fig. 1.8 is shown in Fig. 1.14, which
is the union of Figs. 1.10 and 1.9.

Definition 1.31 Let H be a fuzzy hypergraph and t be the smallest nonnegative
number such that H ∪ It is a fuzzy niche hypergraph of some fuzzy digraph �G,
where It is a fuzzy set on t isolated vertices Xt , then t is called fuzzy niche number
of H denoted by n(H).

Lemma 1.7 Let H be a fuzzy hypergraph on a non-empty set X with n(H) = t <

∞ and H ∪ It is a fuzzy niche hypergraph of an acyclic digraph �G then for all,
x ∈ X ∪ Xt ,

N +(y) ∩ It 
= ∅ ⇒ ∃ z ∈ supp(It ) such that supp(N +(y)) = z,

N −(y) ∩ It 
= ∅ ⇒ ∃ z ∈ supp(It ) such that supp(N −(y)) = z.

Proof On contrary assume that for some y ∈ X either supp(N +(y)) = {z} ∪ X
′

or supp(N −(y)) = {z} ∪ X
′′
where ∅ 
= X

′ ⊆ X ∪ Xt \ {z}. Then, by definition of
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fuzzy niche hypergraph, z is adjacent to all vertices X
′
in H ∪ It . A contradiction to

the fact that z ∈ Xt .

Lemma 1.8 Let H be a fuzzy hypergraph with n(H) = t < ∞ and H ∪ It is a fuzzy
niche hypergraph of an acyclic fuzzy digraph �G then for all z ∈ Xt ,N +(z) = ∅ and
N −(z) = ∅.
Proof On contrary assume that X+

z = {y1, y2, . . . , ys} and X−
z = {y ′

1, y
′
2, . . . , y

′
r }.

Clearly, N +(z) ∩ N −(z) = ∅ because �G is acyclic. According to Lemma1.7,
N +(yi ) = N +(y′

i ).
Consider another fuzzy digraph �G ′

such that X �G ′ = X �G \ {z} and E �G ′ = (E �G \
{E1}) ∪ E2 where

E1 = { �zyi : 1 ≤ i ≤ s} ∪ { �y′
i z : 1 ≤ i ≤ r},

E2 = { �y′
1yi : 1 ≤ i ≤ s} ∪ { �y′

i y1 : 1 ≤ i ≤ r}.

Clearly, N +(z) = N +(y1) and N −(z) = N −(y′
1). Thus N H ( �G ′) = H ∪ It−1

which contradicts the fact that n(H) = t . Hence, for all z ∈ Xt , N +(z) = ∅ and
N −(z) = ∅.
Definition 1.32 Let H = (μ, ρ) be a fuzzy hypergraph on a non-empty set X . A

hyperedge Ei = {x1, x2, . . . , xr } ⊆ X is called strong if ρ(Ei ) ≥ 1
2

r
∧

k=1
μi (xk).

Theorem 1.1 Let �G = (μ, �λ) be a fuzzy digraph. If N +(x1) ∩ N +(x2) ∩ . . . ∩
N +(xr ) contains exactly one vertex, then the hyperedge {x1, x2, . . . , xr } of C ( �G) is
strong if and only if |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )| > 1

2 .

Proof Assume that N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr ) = {(u, l)}, where l is
degree of membership of u. As |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )| = l =
h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )), therefore, λc({x1, x2, . . . , xr }) = (μ(x1)
∧ μ(x2) ∧ . . . ∧ μ(xr )) × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )) = l × (μ(x1) ∧
μ(x2) ∧ . . . ∧ μ(xr )}). Thus, the hyperedge {x1, x2, . . . , xr } in C ( �G) would be
strong if l > 1

2 by Definition1.32.

Definition 1.33 Let k be a nonnegative real number, then the fuzzy k−competition
hypergraph of a fuzzy digraph �G = (μ, �λ) is fuzzy hypergraph Ck( �G) = (μ, λkc)

which has the same fuzzy vertex set as in �G and there is a hyperedge E =
{x1, x2, . . . , xr } in Ck( �G) if |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )| > k. The mem-
bership degree of the hyperedge E is defined as

λkc(E) = l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )) × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr ))

where |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )| = l.

Example 1.13 The fuzzy 0.2−competition hypergraph of Fig. 1.8 is given in
Fig. 1.15.
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Fig. 1.15 Fuzzy
0.2−competition hypergraph x1(0.5)
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Remark 1.3 For k = 0, a fuzzy k−competition hypergraph is simply a fuzzy com-
petition hypergraph.

Theorem 1.2 Let �G = (μ, �λ) be a fuzzy digraph. If h(N +(x1) ∩ N +(x2) ∩ . . . ∩
N +(xr )) = 1 and |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )| > 2k for some
x1, x2, . . . , xr ∈ X, then the hyperedge {x1, x2, . . . , xr } is strong in Ck( �G).

Proof LetCk( �G) = (μ, λkc) be a fuzzy k−competition hypergraph of fuzzy digraph
�G = (μ, �λ). Suppose for E = {x1, x2, . . . , xr } ⊆ X , |N +(x1) ∩ N +(x2) ∩ . . . ∩
N +(xr )| = l. Now,

λkc(E) = l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )) × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )),

λkc(E) = l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )), ∵ h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )) = 1,

=⇒ λkc(E)

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )
>

1

2
, ∵ l > 2k.

Thus, the hyperedge E is strong in Ck( �G).

1.4 Fuzzy Neighborhood Hypergraphs

Definition 1.34 The fuzzy open neighborhood hypergraph of a fuzzy graph G =
(μ, λ) is a fuzzy hypergraph N (G) = (μ, λ

′
) whose fuzzy vertex set is same as G

and there is a hyperedge E = {x1, x2, . . . , xr } inN (G) ifN (x1) ∩ N (x2) ∩ . . . ∩
N (xr ) 
= ∅. The membership function λ

′ : X × X → [0, 1] is defined as

λ
′
(E) = (

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )
) × h

(

N (x1) ∩ N (x2) ∩ . . . ∩ N (xr )
)

.

The fuzzy closed neighborhood hypergraph is defined on the same lines in the fol-
lowing definition.

Definition 1.35 The fuzzy closed neighborhoodhypergraph ofG = (μ, λ) is a fuzzy
hypergraphN [G] = (μ, λ∗)whose fuzzy set of vertices is the same asG and there is
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Fig. 1.16 Fuzzy graph G y1(0.5)

y2(0.6) y3(0.7)

y4(0.4)0.4
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Table 1.11 Fuzzy open
neighborhood of vertices

y N (y)

y1 {(y2, 0.4), (y3, 0.5), (y4, 0.5)}
y2 {(y1, 0.4), (y4, 0.3)}
y3 {(y1, 0.5)}
y4 {(y1, 0.4), (y2, 0.3)}

Table 1.12 Fuzzy closed
neighborhood of vertices

y N [y]
y1 {(y1, 0.5), (y2, 0.4), (y3, 0.5), (y4, 0.5)}
y2 {(y2, 0.6), (y1, 0.4), (y4, 0.3)}
y3 {(y3, 0.7), (y1, 0.5)}
y4 {(y4, 0.4), (y1, 0.4), (y2, 0.3)}

a hyperedge E = {x1, x2, . . . , xr } inN [G] ifN [x1] ∩ N [x2] ∩ X . . . ∩ N [xr ] 
=
∅. The membership function λ∗ : X × X → [0, 1] is defined as

λ∗(E) = (

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )
) × h

(

N [x1] ∩ N [x2] ∩ . . . ∩ N [xr ]
)

.

Example 1.14 Consider the fuzzy graph G = (μ, λ) on set X = {y1, y2, y3, y4} as
shown in Fig. 1.16. The fuzzy open neighborhoods are given in Table1.11.

Define a relation f : X → X by f (yi ) = y j if y j ∈ supp(N (yi )) as shown
in Fig. 1.17. If for yi ∈ X , | f −1(yi )| > 1, then f −1(yi ) is a hyperedge of N [G].
Since from Fig. 1.17, f −1(y1) = {y2, y3, y4} = E1, f −1(y2) = {y1, y4} = E2, and
f −1(y4) = {y1, y2}3, therefore, E1, E2, E3 are hyperedges ofN (G). The degree of
membership of each hyperedge can be computed using Definition 1.34 as follows.

For f −1(y1) = E1 = {y2, y3, y4}, λ′(E1) = (

μ(y2) ∧μ(y3) ∧μ(y4)
)× h

(

N (y2)
∩N (y3)∩N (y4)

) = 0.4 × 0.4 = 0.16. Similarly, λ′({y1, y4}) = 0.4 × 0.3 = 0.12
and λ′({y1, y2}) = 0.5 × 0.3 = 0.15. The fuzzy open neighborhood hypergraph con-
structed using Definition1.23 from �G is given in Fig. 1.17.

The fuzzy closed neighborhoods of all the vertices in G are given in Table1.12.
Since,N [y1] ∩ N [y2] ∩ N [y3] ∩ N [y4] = {(y1, 0.4)}, therefore, E = {y1, y2,

y3, y4} is a hyperedge of N [G] and λ∗(E) = 0.4 × 0.4 = 0.16. The fuzzy closed
neighborhood hypergraph is given in Fig. 1.18.
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Fig. 1.17 Fuzzy open neighborhood hypergraph of G

Fig. 1.18 Fuzzy closed
neighborhood hypergraph y1(0
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Using different types of fuzzy neighborhood of the vertices, some other types of
fuzzy hypergraphs are defined here.

Definition 1.36 Let k be a nonnegative real number, then the fuzzy (k)−competition
hypergraph of a fuzzy graph G = (μ, λ) is a fuzzy hypergraph Nk(G) = (μ, λ

′
kc)

having the same fuzzy set of vertices as G and there is a hyperedge E =
{x1, x2, . . . , xr } in Nk(G) if |N (x1) ∩ N (x2) ∩ . . . ∩ N (xr )| > k. The member-
ship value of E is defined as

λ
′
kc(E) = l − k

l

(

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )
) × h

(

N (x1) ∩ N (x2) ∩ . . . ∩ N (xr )
)

,

where |N (x1) ∩ N (x2) ∩ . . . ∩ N (xr )| = l.

Definition 1.37 The fuzzy [k]−competitionhypergraphofG is denotedbyNk [G] =
(μ, λ∗

kc) and there is a hyperedge E inNk[G] if |N [x1] ∩ N [x2] ∩ . . . ∩ N [xr ]| >

k. The membership value of E is defined as

λ∗
kc(E) = p − k

p

(

μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )
) × h

(

N [x1] ∩ N [x2] ∩ . . . ∩ N [xr ]
)

,

where |N [x1] ∩ N [x2] ∩ . . . ∩ N [xr ]| = p.
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The relations between fuzzy neighborhood hypergraphs and fuzzy competition
hypergraphs are given in the following theorems.

Theorem 1.3 Let �G = (μ, �λ) be a symmetric fuzzy digraph without any loops, then
Ck( �G) = Nk(U ( �G)) where U ( �G) is the underlying fuzzy graph of �G.

Proof Let U ( �G) = (μ, λ) corresponds to fuzzy graph �G = (μ, �λ). Also, let
Nk(U ( �G)) = (μ, λ

′
kc) and Ck( �G) = (μ, λkc). Clearly, the fuzzy k−competition

hypergraphCk( �G) and the underlying fuzzy graph have the same fuzzy set of vertices
as �G. Hence,Nk(U ( �G)) has the same vertex set as �G. It remains only to show that
λkc(xw) = λ

′
kc(xw) for every x,w ∈ X . So there are two cases.

Case 1: If for each x1, x2, . . . , xr ∈ X , λkc({x1, x2, . . . , xr }) = 0 in Ck( �G), then
|N +(x1) ∩ N +(x2) ∩ . . .N +(xr )| ≤ k. Since �G is symmetric, therefore,
|N (x1) ∩ N (x2) ∩ . . .N (xr )| ≤ k in U ( �G). Thus, λ

′
kc({x1, x2, . . . , xr }) = 0 and

λkc(E) = λ
′
kc(E) for all x1, x2, . . . , xr ∈ X .

Case 2: If for some x1, x2, . . . , xr ∈ X , λkc(E) > 0 in Ck( �G), then |N +(x1) ∩
N +(x2) ∩ . . .N +(xr )| > k. Thus,

λkc(E) = l − k

l
[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )]h

(

N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )
)

,

where l = |N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )|. Since, �G is a symmetric fuzzy
digraph, |N (x1) ∩ N (x2) ∩ . . .N (xr )| > k. Hence, λkc(E) = λ

′
kc(E). Since

x1, x2, . . . , xr were taken to be arbitrary, therefore, the result holds for all hyper-
edges E of Ck( �G).

Theorem 1.4 Let �G = (C, �D) be a symmetric fuzzy digraph having loops at every
vertex, then Ck( �G) = Nk[U ( �G)] where U ( �G) is the underlying fuzzy graph of �G.

Proof Let U ( �G) = (μ, λ) be an underlying fuzzy graph corresponding to fuzzy
digraph �G = (μ, �λ). Let Nk[U ( �G)] = (μ, λ

′
kc) and Ck( �G) = (μ, λkc). The fuzzy

k−competition graph Ck( �G) as well as the underlying fuzzy graph have the same
vertex set as �G. It follows that Nk[U ( �G)] has the same fuzzy vertex set as �G.
It remains only to show that λkc({x1, x2, . . . , xr }) = λ

′
kc({x1, x2, . . . , xr }) for every

x1, x2, . . . , xr ∈ X . As the fuzzy digraph has a loop at every vertex, therefore, the
fuzzy out neighborhood contains the vertex itself. There are two cases.

Case 1: If for all x1, x2, . . . , xr ∈ X , λkc(E) = 0 in Ck( �G), then |N +(x1) ∩
N +(x2) ∩ . . .N +(xr )| ≤ k. As �G is symmetric, therefore, |N ([x1] ∩ N [x2] ∩
. . .N [xr ]| ≤ k in U ( �G). Hence, λ

′
kc(E) = 0 and so λkc(E) = λ

′
kc(E) for all

x1, x2, . . . , xr ∈ X .
Case 2: If for some x1, x2, . . . , xr ∈ X , λkc(E) > 0 in Ck( �G), then |N +(x1) ∩

N +(x2) ∩ . . .N +(xr )| > k.
As �G is symmetric fuzzy digraph and have loops at every vertex, therefore,

|N ([x1] ∩ N [x2] ∩ . . .N [xr ]| > k. Hence, λkc(xy) = λ
′
kc(xy). As x1, x2, . . . , xr

were taken to be arbitrary, therefore, the result holds for all hyperedges E =
{x1, x2, . . . , xr } of Ck( �G).
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1.5 Applications of Fuzzy Competition Hypergraphs

In this section, we present several applications of fuzzy competition hypergraphs in
food webs, business marketing, and social network.

1.5.1 Identifying Predator–Prey Relations in Ecosystem

Wenowpresent application of fuzzy competition hypergraphs in order to describe the
interconnection of food chains between species, flow of energy, and predator−prey
relationship in ecosystem. The strength of competition between species represents
the competition for food and common preys of species. We will discuss a method
to give description of species relationship, danger to the population growth rate of
certain species, powerful animals in ecological niches, and lack of food for weak
animals.

Competition graphs arose in connection with an application in food webs. How-
ever, in some cases, competition hypergraphs provide a detailed description of
predator–prey relations than competition graphs. In a competition hypergraph, it is
assumed that vertices are defined clearly but in real-world problems, vertices are not
defined precisely. As an example, species may be of different types like vegetarian,
nonvegetarian, weak, or strong.

Fuzzy food webs can be used to describe the combination of food chains that are
interconnected by a fuzzy network of food relationship. There are many interesting
variations of the notion of fuzzy competition hypergraph in ecological interpretation.
For instance, two species may have a common prey (fuzzy competition hypergraph),
a common enemy (fuzzy common enemy hypergraph), both common prey and com-
mon enemy (fuzzy competition common enemy hypergraph), either a common prey
or a common enemy (fuzzy niche hypergraph). We now discuss a type of fuzzy com-
petition hypergraph in which species have common enemies known as fuzzy common
enemy hypergraph.

Let �G = (μ, �λ) be a fuzzy food web. The fuzzy common enemy hypergraph
CH ( �G) = (μ, λc) has the same vertex set as �G and there is a hyperedge consisting
of vertices x1, x2, . . . , xs if N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs) 
= ∅. The degree
of membership of hyperedge E = {x1, x2, . . . , xs} is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)] × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xs)).

The strength of common enemies between species can be calculated using Algo-
rithm 1.3.3. Consider the example of a fuzzy foodweb of 13 species giraffe, lion, vul-
ture, rhinoceros, African skunk, fiscal shrike, grasshopper, baboon, leopard, snake,
caracal, mouse, and impala. The degree of membership of each species represents
the species’ ability to resource defense. The degree of membership of each directed
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Fig. 1.19 Fuzzy food web

edge represents the strength to which the prey is harmful for predator. The fuzzy
food web is shown in Fig. 1.19. The directed edge between giraffe and lion shows
that giraffe is eaten by a lion and similarly.

The degree of membership of lion is 0.9, which shows that lion has 90% ability of
resource defense, i.e, it can defend itself against other animals as well as can survive
many days if the lion doesn’t find any food. The directed edge between giraffe and
lion has degree of membership 0.25 which represents that giraffe is 25% harmful
for lion because a giraffe can kill a lion with its long legs. This is an acyclic fuzzy
digraph. The fuzzy out neighborhoods are given in Table1.13.

The fuzzy common enemy hypergraph is shown in Fig. 1.20. The hyperedges
in Fig. 1.20 show that there are common enemies between giraffe and rhinoceros,
rhinoceros, African skunk and leopard, grasshopper and snake, mouse and impala,
baboon and impala. The membership value of each hyperedge represents the degree
of common enemies among the species.

The hyperedge {impala, baboon} has maximum degree of membership which
shows that impala and baboon has largest number of common enemies whereas
mouse and impala has least number of common enemies.

1.5.2 Identifying Competitors in Business Market

Fuzzy competition hypergraphs are a key approach to study the competition, profit
and loss,market power, and rivalry amongbuyers and sellers using fuzziness in hyper-
graphical structures. We now discuss a method to study the business competition
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Table 1.13 Fuzzy out
neighborhoods of vertices

Species N +(u) : u is a specie

Giraffe {(lion, 0.25)}
Lion ∅
Rhinoceros {(lion, 0.25), (vulture, 0.1)}
Vulture ∅
African skunk {(vulture, 0.1)}
Fiscal shrike {(African skunk, 0.1)}
Grasshopper {(fiscal shrike, 0.01), (baboon, 0.09)}
Baboon {(leopard, 0.3)}
Leopard {(vulture, 0.5)}
Snake {(baboon, 0.4)}
Caracal {(snake, 0.1)}
Mouse {(caracal, 0.1), (snake, 0.15)}
Impala {(caracal, 0.2), (leopard, 0.09)}
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Fig. 1.20 Fuzzy common enemy hypergraph

for power and profit, success and business failure, and demanding products in mar-
ket.

In business market, there are competitive rivalries among companies which are
endeavoring to increase the demand and profit of their product. More than one com-
panies in market sell identical products. Since various companies regularly market
identical products, every companywants to attract consumer’s attention to its product.
There is always a competitive situation in business market. Hypergraph theory is a
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key approach to study the competitive behavior of buyers and sellers using structures
of hypergraphs. In some cases, these structures do not study the level of competi-
tion, profit, and loss between the companies. As an example, companies may have
different repute in market according to market power and rivalry. These are fuzzy
concepts and motivates the necessity of fuzzy competition hypergraphs. The compe-
tition among companies can be studied using fuzzy competition hypergraph known
as fuzzy enmity hypergraph.

We present a method for calculating the strength of competition of companies in
the following Algorithm 1.5.1.

Algorithm 1.5.1 Business competition hypergraph

1. Input the adjacency matrix [xi j ]n×n of bipolar fuzzy digraph �G = (C, �D) of n
companies x1, x2, . . . , xn .

2. Construct the table of fuzzy out neighborhoods of all the companies.
3. Construct fuzzy competition hypergraph using Algorithm 1.3.3.
4. do i from 1 → n
5. Calculate the degree of each vertex as S(xi ) = ∑

xi∈E
λc(E) where E is a hyper-

edge in fuzzy enmity hypergraph.
6. end do
7. S(xi ) denotes the strength of competition of each company xi , 1 ≤ i ≤ n.

Consider the example of amarketing competition between seven companies DEL,
CB, HW, AK, LR, RP, SONY, RA, LR, three retailers, one retailer outlet and one
multinational brand as shown inFig. 1.21. Thevertices represent companies, retailers,
outlets, and brands. The degree of membership of each vertex represents the strength
of rivalry (aggression) of each company in the market. The degree of membership of
each directed edge �xy represents the degree of rejectability of company’s x product
by company y. The strength of competition of each company can be discussed using
fuzzy competition hypergraph known as fuzzy enmity hypergraph. The fuzzy out
neighborhoods are calculated in Table1.14.

The fuzzy enmity hypergraph of Fig. 1.21 is shown in Fig. 1.22. The degree of
membership of each hyperedge shows the strength of rivalry between the companies.

The strength of rivalry of each company is calculated in Table1.15 which shows
its enmity value within business market. Table1.15 shows that SONY is the biggest
rival company among other companies.

1.5.3 Finding Influential Communities in a Social Network

Fuzzy competition hypergraphs have awide range of applications in decision-making
problems and decision support systems based on social networking. To elaborate on
the necessity of the idea discussed in this paper, we apply the notion of fuzzy com-
petition hypergraphs to study the influence, centrality, socialism, and proactiveness
of human beings in any social network.
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Fig. 1.21 Fuzzy marketing digraph

Table 1.14 Fuzzy out neighborhoods of companies

Company N +(u) : u is a company

Chemical and plastic industries {(DEL, 0.4), (AK, 0.3), (Retailer1, 0.1),
(CB, 0.3), (TS, 0.3)}

DEL {(LR, 0.3)}
AK {(Multinational Brand, 0.05)}
LR {(Multinational Brand, 0.1)}
Retailer1 {(SONY, 0.2), (RP, 0.1), (Retailer2, 0.5)}
CB {(Retailer2, 0.2)}
TS {(Retailer2, 0.2)}
Retailer2 {(RP, 0.1)}
SONY {(Retailer3, 0.2), (R. Outlet, 0.2), (M. Brand, 0.1)}
Retailer3 {(R.Outlet, 0.2)}
RP {(Retailer3, 0.2), (R. Outlet, 0.1)}
M. Brand ∅
R. Outlet ∅
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Fig. 1.22 Fuzzy competition hypergraph

Table 1.15 Strength of
rivalry between companies

Company Strength of rivalry

LR 0.03

AK 0.03

SONY 0.05

Retailer3 0.02

RP 0.02

Retailer2 0.01

Retailer1 0.03

CB 0.02

TS 0.02

Social competition is a widespread mechanism to figure out a best-suited group
economically, politically, or educationally. Social competition occurs when indi-
vidual’s opinions, decisions, and behaviors are influenced by others. Graph theory
is a conceptual framework to study and analyze the units that are intensely or fre-
quently connected in a network. Fuzzy hypergraphs can be used to study the influence
and competition between objects more precisely. The social influence and conflict
between different communities can be studied using fuzzy competition hypergraph
known as fuzzy influence hypergraph.
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The fuzzy influence hypergraphG = (μ, λc) has the same set of vertices as �G and
there is a hyperedge consisting of vertices x1, x2, . . . , xr if N −(x1) ∩ N −(x2) ∩
. . . ∩ N −(xr ) 
= ∅. The degree of membership of hyperedge E = {x1, x2, . . . , xr }
is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr )] × h(N +(x1) ∩ N +(x2) ∩ . . . ∩ N +(xr )).

The strength of influence betweendifferent objects in a fuzzy influence hypergraph
can be calculated by the method presented in Algorithm 1.5.2. The complexity of
algorithm is O(n2).

Algorithm 1.5.2 Fuzzy influence hypergraph

1. Input the adjacency matrix [xi j ]n×n of fuzzy digraph �G = (C, �D) of n families
x1, x2, . . . , xn .

2. Using fuzzy in neighborhoods, construct the fuzzy influence hypergraph follow-
ing Algorithm 1.3.3.

3. do i from 1 → n
4. If xi belongs to the hyperedge E in fuzzy influence hypergraph, then calculate

the degree of each vertex xi as

deg(xi ) =
∑

xi∈E
λc(E) and Ai =

∑

xi∈E
(|E | − 1).

5. end do
6. do i from 1 → n
7. If Ai > 1, then calculate the degree of influence of each vertex xi a,

S(xi ) = deg(xi )

Ai
.

8. end do

Consider a fuzzy social digraph of Florientine trading families Peruzzi,
Lambertes, Bischeri, Strozzi, Guadagni, Tornabuon, Castellan, Ridolfi, Albizzi, Bar-
badori,Medici, Acciaiuol, Salviati, Ginori, and Pazzi. The vertices in a fuzzy network
represent the name of trading families. The degree of membership of each family
represents the strength of centrality in that network. The directed edge �xy indicates
that the family x is influenced by y. The degree of membership of each directed edge
indicates that to what extent the opinions and suggestions of one family influence the
other. The degree of membership of Medici is 0.9 which shows that Medici has 90%
central position in trading network. The degree of membership between Redolfi and
Medici is 0.6 which indicates that Redolfi follows 60% of the suggestions of Medici.
Fuzzy social digraph is shown in Fig. 1.23.

To find the most influential family in this fuzzy network, we construct its fuzzy
influence hypergraph. The fuzzy in neighborhoods are given in Table1.16.
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Fig. 1.23 Fuzzy social digraph

Table 1.16 Fuzzy in neighborhoods of all vertices in social network

Family N −(family) Family N −(family)

Acciaiuol {(Babadori, 0.5, )} Pazzi ∅
Ginori {(Albizzi, 0.5)} Salviati {(Pazzi, 0.4)}
Babadori {(Castellan, 0.5)} Castellan {(Strozzi, 0.4)}
Tornabuon {(Gaudagni, 0.5)} Perozzi {(Castellan, 0.5)}
Lambertes ∅ Strozzi {(Perozzi, 0.4)}
Medici {(Babadori, 0.6), (Acciaiuol, 0.5), (Salviati, 0.5), (Ridolfi, 0.6)}
Bischeri {(Perozzi, 0.4), (Strozzi, 0.4), (Redolfi, 0.4)}
Albizzi {(Medici, 0.6), (Gaudagni, 0.5)}
Redolfi {(Strozzi, 0.4), (Tornabuon, 0.6)}
Gaudgani {(Bischeri, 0.3), (Lambertes, 0.3)}

The fuzzy influence hypergraph is shown in Fig. 1.24. The degree of membership
of each hyperedge shows the strength of social competition between families to
influence the other trading families.

The strength of competition of vertices using Algorithm 1.5.2 is calculated in
Table1.17 where S(x) represents the strength to which each trading family influence
the other families. Table1.17 shows that Acciaiuol and Medici are most influential
families in the network.
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Fig. 1.24 Fuzzy influence hypergraph

Table 1.17 Degree of influence of vertices

x deg(x) S(x) x deg(x) S(x)

Acciaiuol 0.25 0.25 Medici 0.25 0.25

Babadori 0.16 0.16 Perozzi 0.16 0.16

Castellan 0.16 0.08 Redolfii 0.16 0.08

Strozzi 0.16 0.16 Besceri 0.32 0.12

AView of Fuzzy Competition Hypergraphs in Comparison with Fuzzy Compe-
tition Graphs

The concept of fuzzy competition graphs can be utilized successfully in different
domains of applications. In the existing methods, we usually consider fuzziness in
pair-wise competition and conflicts between objects. But in these representations,
we miss some information that whether there is a conflict or a relation among three
or more objects. For example, Fig. 1.22 shows strong competition for profit among
SONY, LR, and AK. But if we draw the fuzzy competition graph of Fig. 1.21, we
cannot discuss the group-wise conflict among companies. Sometimes we are not
only interested in pair-wise relations but also in group-wise conflicts, influence, and
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relations. The novel notion of fuzzy competition hypergraphs is a mathematical tool
to overcome this difficulty.We have presented differentmethods for solving decision-
making problems. These methods not only generalize the existing ones but also give
better results regarding uncertainty.

1.6 N −Hypergraphs

A (crisp) set A in a universe X can be defined in the form of its characteristic function
μA : X → {0, 1} yielding the value 1 for elements belonging to the set A and the
value 0 for elements excluded from the set A. The most of the generalization of
the crisp set have been introduced on the unit interval [0, 1] and they are consistent
with the asymmetry observation. In other words, the generalization of the crisp set
to fuzzy sets relied on spreading positive information that fit the crisp point {1} into
the interval [0, 1]. Because no negative meaning of information is suggested, we
now feel a need to deal with negative information. To do so, we also feel a need
to supply mathematical tool. To attain such object, Jun et al. [10] have introduced
a new function which is called negative-valued function (briefly, N −function) to
deal with negative information that fit the crisp point {−1} into the interval [−1, 0],
and constructed N −structures.

Definition 1.38 Denote by F (X, [−1, 0]) the collection of functions from a non-
empty set X to [−1, 0].We say that an element ofF (X, [−1, 0]) is a negative-valued
function from X to [−1, 0] (briefly,N -functionon X ). By anN −structure,wemean
an ordered pair (X, μ) of X and anN -function μ on X.

The support of μ is defined by supp (μ) = {x ∈ X | μ(x) 
= 0} and say μ is
nontrivial if supp(μ) is non-empty. The height ofμ is h(μ) = min{μ(x) | x ∈ X}.We
sayμ is normal if h(μ) = − 1. By anN −relation on X , we mean anN −function
ν on X × X satisfying the following inequality,

(∀x, y ∈ X)(ν(x, y) ≥ max{μ(x), μ(y)}),

where μ ∈ F (X, [−1, 0]).
Definition 1.39 An N −graph with an underlying set X is defined to be a pair
G = (μ, ν), whereμ is anN −function in X and ν is anN −function in E ⊆ X × X
such that

ν({x, y}) ≥ max(μ(x), μ(y)),

for all {x, y} ∈ E . We call μ theN −vertex function of X, ν theN −edge function
of E , respectively. Note that ν is a symmetric N −relation on μ in an undirected
graph. But ν may not be a symmetricN −relation on μ in a digraph

Definition 1.40 LetX be a finite set and let E be a finite family of nontrivial
N −functions onX such that V = ⋃

j supp(μ j ), j = 1, 2, . . . ,m, where μ j is an
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N −function defined on E j ∈ E . Then, the pair N = (X, E) is a N −hypergraph
on X , E is the family of N −edges of N and X is the (crisp) vertex set of N . The
order of N (number of vertices) is denoted by |X | and the number of edges is denoted
by |E |.
Letμbe anN −functionofX and let E be a collection ofN −functions ofX such that
for each ν ∈ E and x ∈ X , ν(x) ≥ μ(x). Then, the pair (μ, ν) is anN −hypergraph
on theN −functionμ. TheN −hypergraph (μ, ν) is also anN −hypergraph onX =
supp(μ), theN −functionμdefines a condition formembership andnonmembership
in the edge set E . This condition can be stated separately, sowithout loss of generality,
we restrict attention to N −hypergraphs on crisp vertex sets.

Throughout this section, H will be a crisp hypergraph, and N anN −hypergraph.

Example 1.15 Consider anN −hypergraph N = (X, E) such that X = {a, b, c, d}
and E = {E1, E2, E3}, where

E1 = { a

−0.2
,

b

−0.4
}, E2 = { b

−0.4
,

c

−0.5
}, E3 = { a

−0.2
,

d

−0.3
}.

The N −hypergraph is given in Fig. 1.25 and corresponding incidence matrix is
given in Table1.18.

Definition 1.41 An N −function μ : X → [−1, 0] is an elementary N −function
if μ is single valued on supp(μ). An elementaryN −hypergraph N = (V, E) is an
N −hypergraph whose edges are elementary.

Proposition 1.10 N −graphs and N −digraphs are special cases of the
N −hypergraphs.

Fig. 1.25 N −hypergraph

E2
E3

a(-0.2)

d(-0.3)

E1 b(-0.4)

c(-0.5)

Table 1.18 The
corresponding incidence
matrix of N −hypergraph

MN E1 E2 E3

a −0.2 0 −0.2

b −0.4 −0.4 0

c 0 −0.5 0

d 0 0 −0.3
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Proof An N −graph on a set X is a pair N = (X, E), where E is a symmet-
ric N −function of X × X . That is, ν : X × X → [−1, 0] and for each x and
y inX , we have ν(x, y) = ν(y, x). An N −graph on an N −function μ ∈ V is
a pair N = (μ, ν) where the symmetric mapping ν : X × X → [−1, 0] satisfies
ν(x, y) ≥ max(μ(x), μ(y)) for all x , y ∈ X . Since, ν is well defined, anN −graph
has nomultiple edges. An edge is nontrivial if ν(x, y) 
= 0. A loop at x is represented
by ν(x, y) 
= 0.

Alternately, a nontrivial edge (or loop) represents an elementary N −function
ofX with two (or one) element supports. That there are no multiple edges equivalent
to the property that each pair of edges have distinct supports. AnN −graph without
loops is defined by an antireflexive relation; or equivalently, by not allowing fuzzy
subsetswith single element support. Therefore, anN −graph (N −graphwith loops)
is an elementary N −hypergraph for which edges have distinct two vertex (or one
element) supports.

Directed N −graphs (N −digraphs) on a setX or an N −function μ ofX are
similarly defined in terms of a mapping λ : V × V → [−1, 0] where λ(x, y) ≥
max(μ(x), μ(y)) for all x , y ∈ V . Since λ is well defined, an N −digraph has
at most two edges (which must have opposite orientation) between any two vertices.
Therefore, N −graphs and N −digraphs are special cases of N −hypergraphs.

AnN −multigraph is a multivalued symmetric mapping ρ : X × X → [−1, 0]. An
N −multigraph can be considered to be the “disjoint union” or “disjoint sum” of a
collection of simpleN −graphs, as is done with crisp multigraphs. The same holds
for multidigraphs. Therefore, these structures can be considered as “disjoint unions”
or “disjoint sums” of N −hypergraphs.

Definition 1.42 AnN −hypergraph N = (X, E) is simple if μ, ν ∈ E, and μ ≥ ν

imply that μ = μ, ν = ν.
AnN −hypergraph N = (X, E) is support simple ifμ, ν ∈ E , supp(μ) = supp(ν),

and μ ≥ ν imply that μ = ν.
An N −hypergraph N = (X, E) is strongly support simple if μ, ν ∈ E, and

supp(μ) = supp(ν) imply that μ = ν.

Remark 1.4 The Definition 1.42 reduces to familiar definitions in the special case
where N is a crisp hypergraph. TheN −definition of simple is identical to the crisp
definition of simple.A crisp hypergraph is support simple and strongly support simple
if and only if it has no multiple edges. ForN −hypergraphs, all three concepts imply
no multiple edges. SimpleN −hypergraphs are support simple and strongly support
simpleN −hypergraphs are support simple. Simple and strongly support simple are
independent concepts.
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Definition 1.43 Let N = (X, E) be anN −hypergraph. Suppose that α ∈ [−1, 0].
Let

• E(α) = {μα| μ ∈ E}, μα = {x | μ(x) ≤ α}, and
• Xα = ⋃

μ∈E μα.

If Eα 
= ∅, then the crisp hypergraph Nα = (Nα, Eα) is the α−level hypergraph
of N .

Clearly, it is possible that μα = να for μ 
= ν, by using distinct markers to identity
the various members of E a distinction between μα and να to represent multiple
edges in Nα . However, we do not take this approach unless otherwise stated, we will
always regard Nα as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the α-cuts of an
N −hypergraph share an important relationshipwith each other, as expressed below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set Y belonging to Y which contains X . In this case, we say
that Y absorbs X and symbolically write X � Y to express this relationship between
X and Y. Since it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X 
= Y, then we write
X � Y.

Definition 1.44 Let N = (X, E) be anN −hypergraph, and for 0 > s ≥ h(N ). Let
Ns be the s−level hypergraph of N . The sequence of real numbers {s1, s2, . . . , sn},
0 > s1 > s2 > · · · > sn = h(N ), which satisfies the properties,

• if si > si+1, then Eu = Esi , and
• Esi+1 � Esi ,

is called the fundamental sequence of N , and is denoted by F(N ) and the set of
si -level hypergraphs {Ns1 , Ns2 , . . ., Nsn } is called the set of core hypergraphs of N
or, simply, the core set of N , and is denoted by C(N ).

Definition 1.45 Suppose N = (X, E) is an N −hypergraph with F(N ) =
{s1, s2, . . . , sn}, and sn+1 = 0. Then, N is called sectionally elementary if for each
edge μ ∈ E , each i = {1, 2, . . . , n}, and si ∈ F(N ), μs = μsi , for all s ∈ (si+1, si ].
Clearly, N is sectionally elementary if and only if μ(x) ∈ F(N ), for each μ ∈ E
and each x ∈ X .

Definition 1.46 A sequence of crisp hypergraphs Ni = (Xi , E∗
i ), 1 ≤ i ≤ n, is said

to be ordered if N1 ⊂ N2 ⊂ . . . ⊂ Nn . The sequence {Ni | 1 ≤ i ≤ n} is simply
ordered if it is ordered and if whenever E∗ ∈ E∗

i+1 − E∗
i , then E∗

� Xi .

Definition 1.47 An N −hypergraph N is ordered if the N -induced fundamental
sequence of hypergraphs is ordered. TheN −hypergraph N is simply ordered if the
N -induced fundamental sequence of hypergraphs is simply ordered.
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Table 1.19 Incidence matrix of N

N E1 E2 E3 E4 E5

a −0.7 −0.9 0 0 −0.4

b −0.7 −0.9 −0.9 −0.7 0

c 0 0 −0.9 −0.7 −0.4

d 0 −0.4 0 −0.4 −0.4

Example 1.16 Consider the N −hypergraph N = (X, E), where X = {a, b, c, d},
and E = {E1, E2, E3, E4, E5} which is represented by the following incidence
matrix in Table1.19.

Clearly, h(N ) = −0.9. Now, E−0.9 = {{a, b}, {b, c}}, E−0.7 = {{a, b}, {b, c}},
E−0.4 = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}. Thus, for −0.4 > s ≥ −0.9,
Es = {{a, b}, {b, c}}, and for 0 > s ≥ −0.4, Es = {{a, b}, {a, b, d}, {b, c}, {b, c, d},
{a, c, d}}. We note that E−0.9 ⊆ E−0.4. The fundamental sequence is F(N )={s1 =
−0.9, s2 = −0.4}, and the set of core hypergraph is C(N ) = {N1 = (X1, E1) =
N−0.9, N2 = (X2, E2) = N−0.4}, where X1 = {a, b, c}, E1 = {{a, b}, {b, c}}, X2 =
{a, b, c, d}, E2 = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}. N is support simple,
but not simple. N is not sectionally elementary since E1(s) 
= E1(−0.9) for s = −0.7.
Clearly, N −hypergraph N is simply ordered.

Proposition 1.11 Let N = (X, E) be an elementary N −hypergraph. Then, N is
support simple if and only if N is strongly support simple.

Proof Suppose that N is elementary, support simple, and that supp(μ) = supp(ν).
We assume without loss of generality that h(μ) ≥ h(ν). Since, N is elementary, it
follows thatμ ≥ ν and since N is support simple thatμ = ν. Therefore, N is strongly
support simple. The proof of converse part is obvious.

Proposition 1.12 Let N = (X, E) be a simple N −hypergraph of order n. Then,
there is no upper bound on |E |.
Proof Let X = {x, y}, and define EN = {μi | i = 1, 2, . . . , N }, where

μi (x) = −1 + 1

i + 1
, μi (y) = − i

i + 1
.

Then, NN = (X, EN ) is a simpleN −hypergraph with N edges. This ends the proof.

Proposition 1.13 Let N = (X, E) be a support simpleN −hypergraph of order n.
Then, there is no upper bound on |E |.
Proof The class of support simple N −hypergraphs contains the class of simple
N −hypergraphs, thus the result follows from Proposition1.12.
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Proposition 1.14 Let N = (X, E) be a strongly support simpleN −hypergraph of
order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if {supp(μ) | μ ∈
E} = P(V ) − ∅.
Proof Each nontrivial W ⊆ X can be the support of at most one μ ∈ E and so
|E | ≤ 2n − 1. The second statement is clear.

Proposition 1.15 Let N = (X, E) be an elementary simple N −hypergraph of
order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if {supp(μ) | μ ∈
E} = P(V ) − ∅.
Proof Since N is elementary and simple, each nontrivialW ⊆ X can be the support
of at most one μ ∈ E . Therefore, |E | ≤ 2n − 1. To show there exists an elementary,
simple N with |E | = 2n − 1, let E = {μ | W ⊆ X} be the set of functions defined
by

μ(x) = −1 + 1

|W | , if x ∈ W, μ(x) = −1, if x /∈ W.

Then, each one element has height (−1, 0), each two elements has height
(−0.5,−0.5), and so on. Hence, N is an elementary and simple, and |E | = 2n − 1.

We state the following proposition without proof.

Proposition 1.16 (a) If N = (X, E) is an elementary N −hypergraph, then N is
ordered.

(b) If N is an ordered N −hypergraph with simple support hypergraph, then N is
elementary.

Definition 1.48 The dual of anN −hypergraph N = (X, E) is anN −hypergraph
ND = (ED, XD) whose vertex set is the edge set of N and with edges XD : ED →
[−1, 0] by XD(μD) = μD(x). ND is anN −hypergraph whose incidence matrix is
the transpose of the incidence matrix of N , thus NDD = N .

Example 1.17 Consider an N −hypergraph N = (X, E) such that X = {x1, x2,
x3, x4}, E = {E1, E2, E3, E4}, where E1 = { x1

−0.5 ,
x2

−0.4 }, E2 = { x2
−0.4 ,

x3
−0.3 }, E3 =

{ x3
−0.3 ,

x4
−0.5 }, E4 = { x4

−0.5 ,
x1

−0.5 }. The corresponding hypergraph is shown in Fig. 1.26.
The corresponding incidence matrix of N is given in Table1.20.
Consider the dual N −hypergraph ND = (ED, XD) of N such that ED =

{e1, e2, e3, e4}, XD = {A, B,C, D}, where A = { e1
−0.5 ,

e4
−0.5 }, B = { e1

−0.4 ,
e2

−0.4 },C =
{ e2

−0.3 ,
e3

−0.3 }, D = { e3
−0.5 ,

e4
−0.5 }. The dualN −hypergraph of N is shown in Fig. 1.27.

The corresponding incidence matrix of ND is given in Table1.21.

We see that some edges contain only vertices having high membership degree.
We define here the concept of strength of an edge.
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Fig. 1.26 N −hypergraph

E3

E2E4

x1(-0.5)

x4(-0.5)

E1 x2(-0.4)

x3(-0.3)

Table 1.20 The corresponding incidence matrix of N

MN E1 E2 E3 E4

x1 −0.5 0 0 −0.5

x2 −0.4 −0.4 0 0

x3 0 −0.3 -0.3 −0

x4 0 0 −0.5 −0.5

Fig. 1.27 Dual
N −hypergraph

D

CA

e1

e4

B e2

e3

Table 1.21 The incidence matrix of ND

MND A B C D

e1 −0.5 −0.4 0 0

e2 0 −0.4 −0.3 0

e3 0 0 −0.3 −0.5

e4 −0.5 0 0 −0.5

Definition 1.49 The strength η of an edge E is the maximum membership μ(x) of
vertices in the edge E . That is,

η(E j ) = {max(μ j (x) | μ j (x) < 0)}.
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Fig. 1.28 N −hypergraph

E3

E2
E4

x1(-0.5)

x4(-0.4)

E1 x2(-0.6)

x3(-0.5)

Its interpretation is that the edge E j groups elements having participation degree at
least η(E j ) in the hypergraph.

Example 1.18 Consider anN −hypergraph N = (X, E) such that V = {a, b, c, d},
E = {E1, E2, E3, E4} as shown in Fig. 1.28.

It is easy to see that E3 is strong than E1, and E4 is strong than E2. We call the
edges with high strength the strong edges because the cohesion in them is strong.

1.7 Application of N −Hypergraphs

In this section, we describe an application of N −hypergraphs.

Definition 1.50 AnN −partition of a set X is a family of nontrivialN −functions
{μ1, μ2, μ3, . . . , μm} such that

1.
⋃

i supp(μi ) = X , i = 1, 2, . . . ,m,

2.
∑m

i=1 μi (x) = −1, for all x ∈ X ,
3. supp(μi ) ∩ supp(μ j ) = ∅, for i 
= j .

We call a family {μ1, μ2, μ3, . . . , μm} aN −covering of X if it verifies only the
above conditions (1) and (2). AnN −partition can be represented by anN −matrix
[ai j ], where ai j is the negative-value of element xi in class j. We see that the matrix
is the same as the incidence matrix in N −hypergraph. Then, we can represent an
N −partition by an N −hypergraph N = (X, E) such that

(1) X : a set of elements xi , i = 1, . . ., n,
(2) E = {E1, E2, . . . , Em}= a set of nontrivial N −classes,
(3) V = ⋃

j supp(E j ), j = 1, 2, . . . ,m,

(4)
∑m

i=1 μi (x) = −1, for all x ∈ X .

Note that the last conditions (4) is added to the N −hypergraph for N −partition.
If the last condition (4) is eliminated, the N −hypergraph can represent an
N −covering. Naturally, we can apply the α-cut to the N −partition.
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Table 1.22 N −partition
matrix

N At Bh

x1 −0.96 −0.04

x2 −1 0

x3 −0.61 −0.39

x4 −0.05 −0.95

x5 −0.03 −0.97

Table 1.23 Hypergraph
N(−0.61)

N(−0.61) At (−0.61) Bh(−0.61)

x1 1 0

x2 1 0

x3 1 0

x4 0 1

x5 0 1

We consider an example of clustering problem. This problem is a typical example
ofN −partition on the visual image processing. There are five objects and they are
classified into two classes: tank and house. To cluster the elements x1, x2, x3, x4,
x5 into At (tank) and Bh (house), an N −partition matrix is given as the form of
incidence matrix of N −hypergraph in Table1.22.

We can apply the α-cut to the hypergraph and obtain a hypergraph Nα which is
not N −hypergraph. We denote the edge (class) in α-cut hypergraph Nα as E j (α).
This hypergraph N represents generally the covering because of the conditions:
(4)

∑m
i=1 μi (x) = −1 for all x ∈ X is not always guaranteed. The hypergraph

N(−0.61) is shown in Table1.23.
We obtain dualN −hypergraph ND

(−0.61) of N(−0.61) which is given in Table1.24.
We consider the strength of edge (class) E j (α), or in the α-cut hypergraph Nα . It

is necessary to apply Definition1.49 to obtain the strength of edge E j (α) in Nα . The
possible interpretations of η(E j (α)) are

• the edge (class) in the hypergraph (partition) Nα , groups elements having at least
η membership and nonmembership,

• the strength (cohesion) of edge (class) E j (α) in Nα is η.

Thus, we can use the strength as a measure of the cohesion or strength of a class
in a partition. For example, the strengths of classes At (−0.61) and Bh(−0.61) at

Table 1.24 Dual N −hypergraph

ND(−0.61) X1 X2 X3 X4 X5

At 1 1 1 0 0

Bh 0 0 0 1 1
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s = −0.61 are η(At(−0.61))=(-0.61), η(Bh(−0.61)) = (−0.95). Thus, we say that
the class η(Bh(−0.61)) is stronger than η(At (−0.61)) because η(Bh(−0.61)) <

η(At(−0.61)). From the above discussion on the hypergraph N(−0.61) and ND
(−0.61),

we can state that

• TheN −hypergraph can represent the fuzzy partition visually. The α−cut hyper-
graph also represents the α-cut partition.

• The dual hypergraph ND
(−0.61) can represent elements Xi , which can be grouped

into a class E j (α). For example, the edges X1, X2, X3 of the dual hypergraph in
Table9 represent that the elements x1, x2, x3 that can be grouped into At at level
−0.61.

• In theN −partition, we have
∑m

i=1 μi (x) = −1 for all x ∈ X . If we α−cut at level
α < −0.5, there is no element which is grouped into two classes simultaneously.
That is, if α < −0.5, every element is contained in only one class in N−α . There-
fore, the hypergraph N−α , represents a partition (if s ≥ −0.05, the hypergraph
may represent a covering).

• At α = −0.61−level, the strength of class Bh(−0.61) is the lowest −0.95, so it
is the strongest class. It means that this class can be grouped independently from
the other parts. Thus, we can eliminate the class Bh from the others and continue
clustering. Therefore, the discrimination of strong classes from others can allow
us to decompose a clustering problem into smaller ones. This strategy allows us
to work with the reduced data in a clustering problem.

1.8 Complex Fuzzy Hypergraphs

A complex fuzzy set, as an extension of fuzzy set, is used to handle uncertainty
and vagueness having the membership degrees which range over complex subset
with unit disk instead of real subset with [0, 1]. A complex fuzzy set provides a
powerful mathematical framework to describe the membership degrees in the form
of a complex number. To illustrate the applicability of this work, we consider a
group of three persons working on the same project for a fixed interval of time. To
represent the combined work of any two persons, we use a complex fuzzy graph but
this graph fails to illustrate the collective efforts of all three persons as an edge can
connect only two vertices. To combine these three members through a single edge
and to illustrate the level of combined work, we use a fuzzy hypergraph. A fuzzy
hypergraph explains the combine efforts of corresponding members by representing
the persons as vertices and these vertices are combined by a fuzzy hyperedge to show
their collaboration. In this case, we lack the information on the time period which is
given to complete that particular task. To handle such type of difficulties occurring
in simple graphs and hypergraphs, we propose a novel concept called complex fuzzy
hypergraphs.
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Definition 1.51 A complex fuzzy set on X is defined asC f = {(a, MC f (a)eiψC f (a)
) :

a ∈ X}, where i = √−1, MC f : X → [0, 1], and ψC f (a) ∈ [0, 2π ]. Here, MC f (a)

is named as the amplitude term and ψC f (x) is named as the phase term.

Definition 1.52 A complex fuzzy relation on X × X is an object of the form,
R f = {(ab, MR f (ab)e

iψR f (ab)) : ab ∈ X × X}, where i = √−1, MR f is called the
amplitude term, and ψR f (ab) ∈ [0, 2π ] is called the phase term.

Definition 1.53 A complex fuzzy graphon a non-empty set X is defined as an ordered
pair G = (A, B), where A is a complex fuzzy set on X and B is a complex fuzzy
relation on X such that

MB(ab) ≤ min{MA(a), MA(b)}, (for amplitude term)

ψB(ab) ≤ min{ψA(a), ψA(b)}, (for phase term)

for all a, b ∈ X . Note that A is called the complex fuzzy vertex set and B is called
the complex fuzzy edge set of G.

Example 1.19 Let X = {a1, a2, a3, a4} be a non-empty set, we define complex fuzzy
set A and complex fuzzy relation B on X such that

A = {(a1, 0.3ei π
2 ), (a2, 0.4e

i π
3 ), (a3, 0.5e

i π
4 ), (a4, 0.5e

i π
5 )},

B = {(a1a2, 0.3ei π
3 ), (a1a3, 0.3e

i π
4 ), (a2a3, 0.4e

i π
4 ), (a1a4, 0.3e

i π
5 ), (a2a4, 0.4e

i π
5 ), (a3a4, 0.4e

i π
5 )}.

Then,G = (A, B) is a complex fuzzy graph on X . The corresponding graph is shown
in Fig. 1.29.

Fig. 1.29 Complex fuzzy
graph
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i
π 5 )

(a3 a4 ,0.4e i π
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Definition 1.54 Let C f = {(a, MC f (a)eiψC f (a)
) : a ∈ X} be a complex fuzzy set on

X . The support of C f , denoted by supp(C f ), is defined as supp(C f ) = {c ∈ X :
MC f (c) 
= 0, 0 < ψC f (c) < 2π}.

The height of C f , denoted by h(C f ), is defined as h(C f ) = max
u∈X MC f (u)

e
i max
u∈X ψC f (u)

.

If h(C f ) = 1ei2π , then C f is called normal complex fuzzy set.

Definition 1.55 Let X be a nontrivial set of universe. A complex fuzzy hypergraph
is defined as an ordered pair H = (C, ξ), where C = {α1, α2, · · · , αk} is a finite
family of complex fuzzy sets on X and ξ is a complex fuzzy relation on complex
fuzzy sets α j ’s such that

(i)

Mξ ({r1, r2, · · · , rl }) ≤ min{Mα j (r1), Mα j (r2), · · · , Mα j (rl )}, (for amplitude term)

ψξ ({r1, r2, · · · , rl }) ≤ min{ψα j (r1), ψα j (r2), · · · , ψα j (rl )}, (for phase term)

for all r1, r2, · · · , rl ∈ X.

(ii)
⋃

j
supp(α j ) = X, for all α j ∈ C.

Note that Ek = {r1, r2, · · · , rl} is the crisp hyperedge of H = (C, ξ).

Definition 1.56 A complex fuzzy hypergraph H = (C, ξ) is simple if whenever
ξi , ξ j ∈ ξ and ξi ⊆ ξ j , then ξi = ξ j .

A complex fuzzy hypergraphH = (C, ξ) is support simple if whenever ξi , ξ j ∈
ξ , ξi ⊆ ξ j , and supp(ξi ) = supp(ξ j ), then ξi = ξ j .

Definition 1.57 Let μ be a complex fuzzy set on X . Then, μ is elementary on X if
|μ(supp(μ))| = 1.

An elementary complex fuzzy hypergraph is one whose all hyperedges are ele-
mentary.

Definition 1.58 LetH = (C, ξ) be a complex fuzzy hypergraph. Suppose thatμ ∈
[0, 1] and θ ∈ [0, 2π ]. Then, μeiθ−level hypergraph ofH is defined as an ordered
pair Hμeiθ = (Cμeiθ , ξμeiθ ), where

(i) ξμeiθ = {ρ j (μeiθ ) : ρ j ∈ ξ} and ρ j (μeiθ ) = {d ∈ X : Mρ j (d) ≥ μ,ψρ j (d) ≥ θ},
(ii) Cμeiθ = ⋃

ρ j∈ξ

suppρ j (μeiθ ).

Note that μeiθ−level hypergraph ofH is a crisp hypergraph. Here, Mρ j (d) denotes
the membership degree of vertex d to complex fuzzy hyperedge ρ j .

Remark 1.5 It can be clearly seen that ρ j (μeiθ ) and ρk(μeiθ ) may be the same for
ρ j 
= ρk . That is, μeiθ−level hypergraph of a simple complex fuzzy hypergraph
may not be simple in general.
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Table 1.25 Complex fuzzy sets on X

x ∈ X α1 α2 α3

r1 0.1ei
π
2 0.1ei

π
2 0

r2 0.2ei
π
2 0 0

r3 0.3ei
π
3 0 0

r4 0 0.4ei
π
4 0

r5 0 0 0.5ei
π
5

r6 0 0 0.6ei
π
6

r7 0 0.7ei
π
7 0.7ei

π
7

Fig. 1.30 Complex fuzzy
hypergraph
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iπ
2 )
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π
2 )
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(r5 ,0.5ei π
5 )

(r6,0.6ei
π
6 )

(r7,0.7e
i π
7 )

(ξ1,0.1ei
π
3 )

(ξ2 ,0.1e i π
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(ξ3,0.5
ei

π
7 )

Example 1.20 Let C = {α1, α2, α3} be a finite family of complex fuzzy sets on
X = {r1, r2, r3, r4, r5, r6, r7} as given in Table1.25 and ξ be a complex fuzzy relation
on αi , 1 ≤ i ≤ 3 such that

ξ({r1, r2, r3}) = 0.1ei
π
3 ,

ξ({r1, r4, r7}) = 0.1ei
π
7 ,

ξ({r5, r6, r7}) = 0.5ei
π
7 .

The corresponding complex fuzzy hypergraphH = (C, ξ) is shown in Fig. 1.30.

Let μ = 0.3 and θ = π
7 , then 0.3e

i π
7 −level hypergraph ofH = (C, ξ) is shown

in Fig. 1.31. Note that ξ1(0.3ei π
7 )

= {r3}, ξ2(0.3ei
π
7 )

= {r4, r7}, ξ3(0.3ei
π
7 )

= {r5, r6, r7}.
Definition 1.59 LetH = (C, ξ) be a complex fuzzy hypergraph. The height ofH ,
denoted by h(H ), is defined as h(H ) = max ξl ei maxψ , where ξl = maxMρ j (xk)
and ψ = maxψρ j (xk).

Definition 1.60 Let H = (C, ξ) be a complex fuzzy hypergraph and for 0 < μ ≤
M(h(H )), 0 < θ ≤ ψ(h(H )), let Hμeiθ = (Cμeiθ , ξμeiθ ) be the level hypergraph
of H . The sequence of complex numbers {μ1eiθ1 , μ2eiθ2 , · · · , μneiθn } such that
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Fig. 1.31 0.3ei
π
7 −level

hypergraph of H

r4

r5 r6 r7

r3

ξ
1(0.3ei

π
7 )

ξ
2(0.3e i π

7 )

ξ
3(0.3ei

π
7 )

0 < μ1 < μ2 < · · · < μn = M(h(H )), 0 < θ1 < θ2 < · · · < θn = ψ(h(H )) sat-
isfying the conditions,

(i) if μk+1 < ν ≤ μk , θk+1 < φ ≤ θk , then ξνeiφ = ξμkeiθk , and
(ii) ξμkeiθk ⊂ ξμk+1eiθk+1 ,

is called the fundamental sequence of H = (C, ξ), denoted by Fs(H ). The set
of μ j eiθ j −level hypergraphs {Hμ1eiθ1 ,Hμ2eiθ2 , · · · ,Hμneiθn } is called the set of core
hypergraphs or the core set of H , denoted by Cor(H ).

Definition 1.61 Let H = (C, ξ) be a complex fuzzy hypergraph and Fs(H ) =
{μ1eiθ1 , μ2eiθ2 , · · · , μneiθn }. Then, H is sectionally elementary if for every ρ ∈
ξ and μneiθn ∈ Fs(H ), we have ρνeiφ = ρμneiθn , for all ν ∈ (μn+1, μn] and φ ∈
(θn+1, θn].
Definition 1.62 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be complex fuzzy hyper-
graphs on X1 and X2, respectively. If X1 ⊆ X2 and ξ1 ⊆ ξ2, thenH1 is called partial
hypergraph of H2, denoted as H1 ⊆ H2.

Example 1.21 Let H = (C, ξ) be a complex fuzzy hypergraph on X = {u1, u2,
u3, u4} and C = {α1, α2, α3, α4, α5} be the family of complex fuzzy sets on X as
given in Table1.26.

The corresponding complex fuzzy hypergraphH = (C, ξ) is shown in Fig. 1.32.
Note that h(H ) = 0.9ei

π
4 , i.e., μ1 = 0.9, θ1 = π

4 . Now,

ξ
(0.9ei

π
4 )

= {{u1, u2}, {u2, u3}}, ξ
(0.7ei

π
7 )

= {{u1, u2}, {u2, u3}},
ξ
(0.4ei

π
9 )

= {{u1, u2}, {u1, u2, u4}, {u2, u3}, {u2, u3, u4}, {u1, u3, u4}}.

Since, ξ
(0.9ei

π
4 )

= ξ
(0.7ei

π
7 )
. Thus, we have for 0.4 < ν ≤ 0.9, π

9 < θ ≤ π
4 , ξνeiθ =

{{u1, u2}, {u2, u3}}, and for 0 < ν ≤ 0.4, 0 < θ ≤ π
9 , ξνeiθ = {{u1, u2}, {u1, u2, u4},

{u2, u3}, {u2, u3, u4}, {u1, u3, u4}}. Furthermore, ξ
(0.9ei

π
4 )

⊆ ξ
(0.4ei

π
9 )

and ξ
(0.9ei

π
4 )


=
ξ
(0.4ei

π
9 )

. Hence, Fs(H ) = {μ1eiθ1 = 0.9ei
π
4 , μ2eiθ2 = 0.4ei

π
9 }. The set of core
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Table 1.26 Complex fuzzy sets on X

x ∈ X α1 α2 α3 α4 α5

u1 0.7ei
π
7 0.9ei

π
4 0 0 0.4ei

π
9

u2 0.7ei
π
7 0.9ei

π
4 0.9ei

π
4 0.7ei

π
7 0

u3 0 0 0.9ei
π
4 0.7ei

π
7 0.4ei

π
9

u4 0 0.4ei
π
9 0 0.4ei

π
9 0.4ei

π
9

Fig. 1.32 Complex fuzzy
hypergraph
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hypergraphs is Cor(H ) = {H1 = (C1, ξ1) = H0.9ei
π
4
,H2 = (C2, ξ2) = H0.4ei

π
9
},

where

ξ1 = {{u1, u2}, {u2, u3}}, ξ2 = {{u1, u2}, {u1, u2, u4}, {u2, u3}, {u2, u3, u4}, {u1, u3, u4}}.

Note that H is support simple but not simple. Also ξ
(0.9ei

π
4 )


= ξ
(0.7ei

π
7 )
, H is not

sectionally elementary.

Definition 1.63 Anordered sequenceof crisp hypergraphs Hj = (X j , E j ), 1 ≤ j ≤
m is defined as the sequence which satisfies H1 ⊂ H2 ⊂ · · · ⊂ Hm . The sequence is
called simply ordered if it is ordered and whenever E ∈ Ek+1 \ Ek , then E � Xk .

Definition 1.64 A complex fuzzy hypergraph H = (C, ξ) is called ordered if the
corresponding set of core hypergraphs Cor(H ) is ordered, i.e., if Cor(H ) =
{Hμ1eiθ1 ,Hμ2eiθ2 , · · · ,Hμneiθn }, then Hμ1eiθ1 ⊂ Hμ2eiθ2 ⊂ · · · ⊂ Hμneiθn . The com-
plex fuzzy hypergraph H = (C, ξ) is said to be simply ordered if Cor(H ) =
{Hμ1eiθ1 ,Hμ2eiθ2 , · · · ,Hμneiθn } is simply ordered.

Proposition 1.17 Let H = (C, ξ) be an elementary complex fuzzy hypergraph,
thenH is ordered. IfH is orderedwithCor(H ) = {Hμ1eiθ1 ,Hμ2eiθ2 , · · · ,Hμneiθn }
and Hμneiθn is simple, then H is elementary.

Definition 1.65 A complex fuzzy hypergraphH = (C, ξ) is called C f −tempered
complex fuzzy hypergraph of H = (X, E), if there exists a crisp hypergraph
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Table 1.27 Complex fuzzy sets on X

x ∈ X α1 α2 α3 α4

u1 0.7ei
π
7 0 0 0.7ei

π
7

u2 0.7ei
π
7 0.4ei

π
9 0.9ei

π
4 0

u3 0 0 0.9ei
π
4 0.7ei

π
7

u4 0 0.4ei
π
9 0 0

H = (X, E) and a complex fuzzy set C f = {(a, MC f (a)eiψC f (a)
) : a ∈ X}, where

i = √−1, MC f : X → [0, 1], and ψC f (a) ∈ [0, 2π ] such that ξ = {B ′
E |E ′ ∈ E},

where

B ′
E (x) =

{

min{MC f (y)e
i minψC f (y)}, if x ∈ E ′,

0, otherwise.

Let us denote byC f ∗ H theC f −tempered complex fuzzy hypergraph of H obtained
by H = (X, E) and the complex fuzzy set C f = {(a, MC f (a)eiψC f (a)

) : a ∈ X}.
Example 1.22 Let H = (C, ξ) be a complex fuzzy hypergraph on X = {u1, u2,
u3, u4} and C = {α1, α2, α3, α4} be complex fuzzy sets on X as given in Table1.27.

Note that

ξ
(0.9ei

π
4 )

= {{u2, u3}}, ξ(0.7ei
π
7 )

= {{u1, u2}, {u1, u3}, {u2, u3}},
ξ
(0.4ei

π
9 )

= {{u1, u2}, {u1, u3}, {u2, u3}, {u2, u4}}.

Let us define a complex fuzzy set C f = {(a, MC f (a)eiψC f (a)
) : a ∈ X}, where

i = √−1,MC f : X → [0, 1], andψC f (a) ∈ [0, 2π ] byC f (u1) = 0.7ei
π
7 ,C f (u2) =

0.9ei
π
4 , C f (u3) = 0.9ei

π
4 , and C f (u4) = 0.4ei

π
9 . Note that

B ′
{u1,u2}(u1) = min{MC f (u1), MC f (u2)}ei min{ψC f (u1),ψC f (u2)} = 0.7ei

π
9 ,

B ′
{u1,u2}(u2) = min{MC f (u1), MC f (u2)}ei min{ψC f (u1),ψC f (u2)} = 0.7ei

π
9 ,

B ′
{u1,u2}(u3) = 0, B ′

{u1,u2}(u3) = 0.

Thus, B ′
{u1,u2} = ρ1. Also, B ′

{u2,u4} = ρ2, B ′
{u2,u3} = ρ3, and B ′

{u1,u4} = ρ4. Hence,
H = (C, ξ) is C f −tempered complex fuzzy hypergraph. The corresponding graph
is shown in Fig. 1.33.

Theorem 1.5 A complex fuzzy hypergraph H = (C, ξ) is C f −tempered complex
fuzzy hypergraph of some crisp hypergraph H = (X, E) if and only if H = (C, ξ)

is support simple, elementary, and simply ordered.

Proof Let us suppose that H = (C, ξ) is C f −tempered complex fuzzy hyper-
graph of H = (X, E). Then,H = (C, ξ) is support simple and elementary. To show
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Fig. 1.33 C f −tempered
complex fuzzy
hypergraph H
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that H = (X, E) is simply ordered, let Cor(H ) = {Hμ1eiθ1 = (C1, ξ1),Hμ2eiθ2 =
(C2, ξ2), · · · ,Hμneiθn = (Cn, ξn)}. Since, H = (C, ξ) is elementary, Proposition
1.17 follows thatH = (C, ξ) is ordered. We now suppose that ρ ∈ ξl+1 \ ξl . Then,
there exists an element h ∈ ρ such that C f (h) = μl+1eiθl+1 < μl eiθl , then h /∈ Xl ,
ρ � Xl , hence H = (C, ξ) is simply ordered.

Conversely, assume that H = (C, ξ) is support simple, elementary, and simply
ordered. Let Cor(H ) = {Hμ1eiθ1 = (C1, ξ1),Hμ2eiθ2 = (C2, ξ2), · · · ,Hμneiθn =
(Cn, ξn)}. Since,H = (C, ξ) andFs(H ) = {μ1eiθ1 , μ2eiθ2 , · · · , μneiθn } with 0 <

μ1 < μ2 < · · · < μn = M(h(H )), 0 < θ1 < θ2 < · · · < θn = ψ(h(H )). Define a
complex fuzzy set C f on Xn by

C f (x) =
{

μ1eiθ1 , if x ∈ X1,

μkeiθk , if x ∈ Xk \ Xk−1, l = 1, 2, · · · , n.

We now prove that ξ = {B ′
E |E ′ ∈ ξn}, where

B ′
E (x) =

{

min{MC f (y)e
i minψC f (y)|y ∈ E ′}, if x ∈ E ′,

0, otherwise.

Let E ′ ∈ ξn , since H = (C, ξ) is support simple and elementary, then there is a
unique CF hyperedge ρ in ξ having support E ′, i.e., distinct hyperedges in ξ must
have distinct supports lying in ξn . Thus, it is sufficient to prove that for every E ′ ∈ ξn ,
B ′
E = ρ. Since, all hyperedges have distinct supports and are elementary, Defini-

tion1.60 implies that h(ρ) = μ j eiθ j , for someμ j eiθ j ∈ Fs(H ). Thus, E ′ ⊆ X j and
if j > 1, then E ′ ∈ ξ j \ ξ j−1. Since, E ′ ⊆ X j , definition ofC f implies that for every
e ∈ E ′,C f (e) ≥ μ j eiθ j . We now claim thatC f (e) = μ j eiθ j , for some e ∈ E ′. If not,
then definition of C f implies that C f (e) ≥ μ j−1eiθ j−1 , for all e ∈ E ′. This implies



54 1 Fuzzy Hypergraphs

that E ′ ⊆ X j−1 and E ′ ∈ ξ j \ ξ j−1, which is in contradiction to the assumption that
H = (C, ξ) is simply ordered. Hence, for every E ′ ∈ ξn , B ′

E = ρ.

Proposition 1.18 Let H = (C, ξ) be a simply ordered complex fuzzy hypergraph
and Fs(H ) = {μ1eiθ1 , μ2eiθ2 , · · · , μneiθn }. IfHμneiθn is simple, then there exists a
partial complex fuzzy hypergraph H1 = (C1, ξ1) of H = (C, ξ) such that

(i) H1 = (C1, ξ1) is C f −tempered complex fuzzy hypergraph ofHμneiθn ,
(ii) ξ1 ⊆ ξ , i.e., for all ρ ∈ ξ1 there exists ρ ′ ∈ ξ such that ρ ⊆ ρ ′,
(iii) Fs(H ) = Fs(H1) and Cor(H ) = Cor(H1).

Proof Proposition 1.17 implies that H = (C, ξ) is an elementary complex fuzzy
hypergraph. The partial complex fuzzy hypergraphH1 = (C2, ξ1) ofH = (C, ξ) is
obtained by removing those hyperedges which are properly contained in some other
hyperedge of H , where ξ1 = {ρ ∈ ξ |if ρ ⊆ ρ1 and ρ1 ∈ ξ, then ρ = ρ1}. Since,
Hμneiθn is simple and contains all elementary hyperedges. Hence, (iii) holds. Further-
more,H1 = (C1, ξ1) is support simple. Thus,H1 = (C1, ξ1) satisfies all conditions
of Theorem 1.5 and other conditions are satisfied.

Definition 1.66 Let H = (C, ξ) be a complex fuzzy hypergraph. The vertices
a, b ∈ X are said to be adjacent vertices if there exists an hyperedge ρ ∈ ξ such
that a, b ∈ ρ. If for ρi , ρ j ∈ ξ , we have ρi ∩ ρ j 
= ∅ then ρi , ρ j are adjacent hyper-
edges.

Definition 1.67 LetH = (C, ξ) be a complex fuzzy hypergraph. The rank ofH ,
denoted by�(H ), is defined as�(H ) = max

ρk∈ξ
M(ρk)ei maxψ(ρk ), where ρk ∈ ξ such

that |supp(ρk)| = max
ρ j∈ξ

|supp(ρ j )|.
The anti rank of H , denoted by ∇(H ), is defined as ∇(H ) = min

ρk∈ξ
M(ρk)

ei minψ(ρk ), where ρk ∈ ξ such that |supp(ρk)| = min
ρ j∈ξ

|supp(ρ j )|. A complex fuzzy

hypergraph H = (C, ξ) is uniform if �(H ) = ∇(H ).

1.8.1 Homomorphisms and Covering Constructions of
Complex Fuzzy Hypergraphs

Definition 1.68 LetH1 = (C1, ξ1) andH2 = (C2, ξ2) be two complex fuzzy hyper-
graphs, where C1 = {λ11, λ12, · · · , λ1l} and C2 = {λ21, λ22, · · · , λ2l}. A homomor-
phism of complex fuzzy hypergraphsH1 andH2 is a mapping κ : X1 → X2 which
satisfies

(i)
l

min
k=1

Mλ1k (x) ≤ l
min
k=1

Mλ2k (κ(x)),

(ii) Mξ1({r1, r2, · · · , r j }) ≤ Mξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for amplitude term)

(iii)
l

min
k=1

ψλ1k (x) ≤ l
min
k=1

ψλ2k (κ(x)),
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(iv) ψξ1({r1, r2, · · · , r j }) ≤ ψξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for phase term)

for all x ∈ X , for all {r1, r2, · · · , r j } ∈ E .

Definition 1.69 A weak isomorphism of complex fuzzy hypergraphsH1 andH2 is
a bijective homomorphism κ : X1 → X2 which satisfies

(i)
l

min
k=1

Mλ1k (x) = l
min
k=1

Mλ2k (κ(x)),

(ii) Mξ1({r1, r2, · · · , r j }) ≤ Mξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for amplitude term)

(iii)
l

min
k=1

ψλ1k (x) = l
min
k=1

ψλ2k (κ(x)),

(iv) ψξ1({r1, r2, · · · , r j }) ≤ ψξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for phase term)

for all x ∈ X , for all {r1, r2, · · · , r j } ∈ E .

Definition 1.70 A co-weak isomorphism of complex fuzzy hypergraphsH1 andH2

is a bijective homomorphism κ : X1 → X2 which satisfies

(i)
l

min
k=1

Mλ1k (x) ≤ l
min
k=1

Mλ2k (κ(x)),

(ii) Mξ1({r1, r2, · · · , r j }) = Mξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for amplitude term)

(iii)
l

min
k=1

ψλ1k (x) ≤ l
min
k=1

ψλ2k (κ(x)),

(iv) ψξ1({r1, r2, · · · , r j }) = ψξ2({κ(r1), κ(r2), · · · , κ(r j )}), (for phase term)

for all x ∈ X , for all {r1, r2, · · · , r j } ∈ E .

Definition 1.71 An isomorphism of complex fuzzy hypergraphs H1 and H2 is a
mapping κ : X1 → X2 which satisfies

(i)
l

min
k=1

Mλ1k (x)e
i

l
min
k=1

ψλ1k (x) = l
min
k=1

Mλ2k (κ(x))e
i

l
min
k=1

ψλ2k (κ(x))
, for all x ∈ X ,

(ii) Mξ1({r1, r2, · · · , r j })eiψξ1 ({r1,r2,··· ,r j }) = Mξ2({κ(r1), κ(r2), · · · , κ(r j )})
eiψξ2 ({κ(r1),κ(r2),··· ,κ(r j )}), for all {r1, r2, · · · , r j } ∈ E .

Example 1.23 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two complex fuzzy hyper-
graphs, where C1 = {λ11, λ12, λ13, λ14} and C2 = {λ21, λ22, λ23, λ24} are complex
fuzzy sets on X1 = {r1, r2, r3, r4, r5, r6} and X2 = {r ′

1, r
′
2, r

′
3, r

′
4, r

′
5, r

′
6} as given in

Tables1.28, 1.29, respectively.
The complex fuzzy relations ξ1 and ξ2 are defined as

ξ11({r1, r3, r4, r6}) = 0.1ei
π
5 , ξ12({r1, r2, r3}) = 0.2ei

3π
10 ,

ξ13({r3, r4}) = 0.5ei
π
5 , ξ14({r4, r5, r6}) = 0.2ei

3π
10 ,

ξ21({r ′
1, r

′
2, r

′
3, r

′
6}) = 0.1ei

π
5 , ξ22({r ′

1, r
′
3, r

′
4}) = 0.2ei

3π
10 ,

ξ23({r ′
1, r

′
2}) = 0.5ei

π
5 , ξ24({r ′

2, r
′
5, r

′
6}) = 0.1ei

π
5 .

The complex fuzzy hypergraphs H1 = (C1, ξ1) and H2 = (C2, ξ2) are shown in
Figs. 1.34 and 1.35, respectively.



56 1 Fuzzy Hypergraphs

Table 1.28 Complex fuzzy sets on X1

x ∈ X λ11 λ12 λ13 λ14

r1 0.2ei
3π
10 0.2ei

3π
10 0 0

r2 0 0.5ei
2π
5 0 0

r3 0.5ei
3π
5 0.5ei

3π
5 0.5ei

3π
5 0

r4 0.8ei
π
5 0 0.8ei

π
5 0.8ei

π
5

r5 0 0 0 0.5ei
π
2

r6 0.1ei
π
2 0 0 0.1ei

π
2

Table 1.29 Complex fuzzy sets on X2

x ∈ X λ21 λ22 λ23 λ24

r ′
1 0.5ei

3π
5 0.5ei

3π
5 0.5ei

3π
5 0

r ′
2 0.8ei

π
5 0 0.8ei

π
5 0.8ei

π
5

r ′
3 0.2ei

3π
10 0.2ei

3π
10 0 0

r ′
4 0 0.5ei

2π
5 0 0

r ′
5 0 0 0 0.5ei

π
2

r ′
6 0.1ei

π
2 0 0 0.1ei

π
2

Define amappingκ : X1 → X2 byκ(r1) = r ′
3,κ(r2) = r ′

4,κ(r3) = r ′
1,κ(r4) = r ′

2,
κ(r5) = r ′

5, and κ(r6) = r ′
6. Note that

λ11(r1) = 0.2ei
3π
10 = λ21(r

′
3) = λ21(κ(r1)),

λ11(r2) = 0.5ei
2π
5 = λ21(r

′
4) = λ21(κ(r2)),

λ11(r3) = 0.5ei
3π
5 = λ21(r

′
1) = λ21(κ(r3)),

λ11(r4) = 0.8ei
π
5 = λ21(r

′
2) = λ21(κ(r4)),

λ11(r5) = 0.5ei
π
2 = λ21(r

′
5) = λ21(κ(r5)),

λ11(r6) = 0.1ei
π
2 = λ21(r

′
6) = λ21(κ(r6)).

Similarly, λ1 j (x) = λ2 j (κ(x)) and ξ1({r1, r2, · · · , rk}) = ξ2({κ(r1), κ(r2), · · · ,

κ(rk)}), for all x, r j ∈ X . Hence,H1 = (C1, ξ1) andH2 = (C2, ξ2) are isomorphic.

Definition 1.72 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be complex fuzzy hyper-
graphs on X1 and X2, respectively. The complex fuzzy hypergraphH1 is anm−fold
covering of H2 if there exists a surjective homomorphism κ : X1 → X2 such that

(i) |κ−1(v)| = m, for all v ∈ X2,
(ii) |supp(κ−1(ρ ′

j ))| = m, for all ρ ′
j ∈ ξ2,

(iii) supp(ρ j ) ∩ supp(ρk) = ∅, for all ρ j , ρk ∈ κ−1(ρ ′
l ), ρ

′
l ∈ ξ2.
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Fig. 1.34 Complex fuzzy
hypergraph H1 = (C1, ξ1)
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Then, H2 = (C2, ξ2) is called the quoitient complex fuzzy hypergraph of H1 =
(C1, ξ1) and κ is called the covering projection. If m = 2, H1 is called the double
covering of H2.

Example 1.24 LetH1 = (C1, ξ1) andH2 = (C2, ξ2) be complex fuzzy hypergraphs
on X1 = {v1, v2, v3, v4, v5, v6, v7, v8} and X2 = {v′

1, v
′
2, v

′
3, v

′
4}, respectively, where

C1 = {α1, α2, α3, α4} is the family of complex fuzzy sets on X1 as given inTable1.30.
The complex fuzzy hypergraph H1 = (C1, ξ1) is shown in Fig. 1.36.
Let C2 = {α′

1, α
′
2, α

′
3, α

′
4} be the family of complex fuzzy sets on X2 as given in

Table1.31.
The complex fuzzy hypergraph H2 = (C2, ξ2) is shown in Fig. 1.37.
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Table 1.30 Complex fuzzy sets on X1

x ∈ X1 α1 α2 α3 α4

v1 0.2ei
3π
10 0 0 0

v2 0.5ei
2π
5 0 0 0

v3 0 0 0.5ei
3π
5 0

v4 0 0.8ei
π
5 0 0

v5 0 0.5ei
3π
5 0 0

v6 0 0 0.1ei
π
2 0

v7 0 0 0 0.5ei
π
5

v8 0 0 0 0.2ei
π
5

Fig. 1.36 Complex fuzzy
hypergraph H1 (v1,0.

2ei
3π
10 ) (v2,0.5ei 2π

5 )

(v3,0.5ei
3π
5 )

(v4,0.8ei
π
5 ) (v5,0.5ei

3π
5 )

(v6,0.1ei
π
2 )
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iπ5 ) (v8 ,0.2ei π

5 )

(ρ1,0.2ei
3π
10 )

(ρ2,0.5ei
π
5 )

(ρ4,0.2ei
π
5 )

(ρ
3 ,0.1e

i π2)

Define a mapping κ : X1 → X2 as κ(v1) = v′
1, κ(v2) = v′

1, κ(v3) = v′
2, κ(v4) =

v′
2, κ(v5) = v′

3, κ(v6) = v′
3, κ(v7) = v′

4, and κ(v8) = v′
4, which is surjective homo-

morphism. Note that

|κ−1(v′
1)| = |{v1, v2}| = 2,

|κ−1(v′
2)| = |{v3, v4}| = 2,

|κ−1(v′
3)| = |{v5, v6}| = 2,

|κ−1(v′
4)| = |{v7, v8}| = 2.

Also, |supp(κ−1(ρ ′
j ))| = 2, for all ρ ′

j ∈ ξ2, supp(ρ j ) ∩ supp(ρk) = ∅, for all
ρ j , ρk ∈ κ−1(ρ ′

l ), ρ ′
l ∈ ξ2. Hence, H1 is the two-fold covering or double covering

of H2.
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Table 1.31 Complex fuzzy sets on X2

x ∈ X1 α′
1 α′

2 α′
3 α′

4

v′
1 0.1ei

3π
10 0 0 0

v′
2 0 0.5ei

π
5 0 0

v′
3 0 0.1ei

π
2 0 0

v′
4 0 0 0 0.2ei

π
5

Fig. 1.37 Complex fuzzy
hypergraph H2
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e
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π 5

Definition 1.73 The 2-section of a complex fuzzy hypergraph H = (C, ξ) is a
complex fuzzy graph [H ]2 = (C, [ξ ]2) having same set of vertices as that of H
and [ξ ]2 is a complex fuzzy set on {ε = u juk |u j , uk ∈ El, l = 1, 2, · · · }, i.e., there
is an edge between u j and uk in [H ]2 if they are incident to same hyperedge inH
such that

[ξ ]2(u juk) = inf{min
l

(Mαl (u j )),min
l

(Mαl (uk))}ei inf{min
l

(ψαl (u j )),min
l

(ψαl (uk ))}.

Definition 1.74 The L2-section of a complex fuzzy hypergraph H = (C, ξ) is its
2-section complex fuzzy graph [H ]2 = (C, [ξ ]2) together with a mapping δ : ε →
P(X) such that δ({u j , uk}) = {supp(ρ j )|{u j , uk} ⊆ supp(ρ j )}, for ρ j ∈ ξ . The L2-
section of a complex fuzzy hypergraph is denoted by Γ = (X, [ξ ]2, δ).
Example 1.25 Consider a complex fuzzy hypergraph H = (C, ξ), where X =
{r1, r2, r3, r4}, and C = {α1, α2} be Complex fuzzy sets on X as given in Table1.32.

The relation ξ on α j , j = 1, 2 is defined as ξ({r1, r2, r4}) = 0.1ei
3π
10 and

ξ({r3, r4}) = 0.2ei
π
5 . The corresponding complex fuzzy hypergraph is shown in

Fig. 1.38.
Then, the 2-section [H ]2 of H is given in Fig. 1.39.
Define a mapping δ : ε → P(X) such that δ(r1r2) = E1(H ), δ(r2r4) = E1(H ),

δ(r1r4) = E1(H ), and δ(r2r3) = E2(H ).Here, E j (H )denotes the j th crisp hyper-
edge of H . Then, the triplet Γ = (X, [ξ ]2, δ) is the L2-section ofH .
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Table 1.32 Complex fuzzy sets on X

r ∈ X α1 α2

r1 0.1ei
3π
10 0.1ei

3π
10

r2 0.2ei
π
2 0

r3 0 0.5ei
π
5

r4 0.3ei
π
3 0.4ei

3π
4

Fig. 1.38 Complex fuzzy
hypergraph (r1,0

.1e
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π
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Fig. 1.39 2-section [H ]2 of
H
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Definition 1.75 A complex fuzzy hyperpath HP of length k in a complex fuzzy
hypergraph H = (C, ξ) is defined as a sequence of distinct nodes and hyperedges,
i.e., s1, E1, s2, E2, · · · , sk, Ek, sk+1 such that

(i) Mξ (E j ) > 0 and ψξ(E j ) > 0, j = 1, 2, · · · , k,
(ii) s j , s j+1 ∈ E j , j = 1, 2, · · · , k.

If s1 = sk+1, then the complex fuzzy hyperpath is called complex fuzzy hypercycle.
A complex fuzzy hypergraph H = (C, ξ) is connected if every pair of distinct

vertices is connected through a complex fuzzy hyperpath.

Definition 1.76 The distance between two vertices si and s j , denoted by

disH (si , s j ), is defined as DH (si , s j ) = ∑

j
Mξ (E j )e

i
∑

j
ψξ (E j )

, where E j are the

hyperedges belonging to the shortest hyperpath between si and s j .
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Definition 1.77 The strength of complex fuzzy hyperpath of length k between u and
v is defined as

ηk(u, v) = min{Mξ (E1), Mξ (E2), · · · , Mξ (Ek)}ei min{ψξ (E1),ψξ (E2),··· ,ψξ (Ek )},

u ∈ E1, v ∈ Ek , where E1, E2, · · · , Ek are hyperedges. The strength of connected-
ness between u and v is given as

η∞(u, v) = sup
k

{(ηk(u, v)), k = 1, 2, · · · }.

Theorem 1.6 A complex fuzzy hypergraph H = (C, ξ) is connected if and only if
η∞(u, v) > 0, for all u, v ∈ X.

Definition 1.78 Let H = (C, ξ) be a complex fuzzy hypergraph, where C =
{α1, α2, · · · , αk} is a finite family of complex fuzzy sets on X . Then, H = (C, ξ)

is strong if for all {r1, r2, · · · , rl} ∈ E ,

Mξ ({r1, r2, · · · , rl})eiψξ ({r1,r2,··· ,rl }) = min{Mαi (r1), Mαi (r2), · · · , Mαi (rl)}
× ei min{ψαi (r1),ψαi (r2),··· ,ψαi (rl )},

Theorem 1.7 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two isomorphic complex
fuzzy hypergraphs. Then, H1 is connected if and only ifH2 is connected.

Proof Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two isomorphic complex fuzzy
hypergraphs, such that ξ1 = {E11, E12, · · · ,E1r } and ξ2 = {E21,E22, · · · ,E2r } be the
sets of hyperedges ofH1 andH2, respectively. Let κ : H1 → H2 be an isomorphism
fromH1 onto H2. Suppose that H1 is connected, then we have

0 < η∞
1 (u, v) = sup

r
{min{Mξ1 (E11), Mξ1 (E12), · · · , Mξ1 (E1r )}ei min{ψξ1 (E11),ψξ1 (E12),··· ,ψξ1 (E1r )}}

= sup
r

{min{Mξ2 (κ(E11)), Mξ2 (κ(E12)), · · · , Mξ2 (κ(E1r ))}

× ei min{ψξ2 (κ(E11)),ψξ2 (κ(E12)),··· ,ψξ2 (κ(E1r ))}}
= η∞

2 (κ(u), κ(v)).

Hence,H2 = (C2, ξ2) is connected. The converse part can be proved on same lines.

Lemma 1.9 Let H = (C, ξ) be a complex fuzzy hypergraph on X and si , s j ∈ X.
Then, the distance between ui and u j inH is same as in [H ]2 = (C, [ξ ]2).
Proof Let H = (C, ξ) be a disconnected complex fuzzy hypergraph. Then, si
and s j belong to the different connected components of H if and only if they
are contained in distinct connected components of [H ]2. Hence, DH (si , s j ) =
D[H ]2(si , s j ) = ∞. Thus, WLOG we assume that H = (C, ξ) (and therefore
[H ]2) is connected. Let HP = si , Ei , si+1, Ei+1, · · · , s j−1, E j−1, s j be the short-
est CFHP between si and s j . Then, the construction of [H ]2 implies that there
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exists a walk H∗
P = si , E∗

i , si+1, E∗
i+1, · · · , s j−1, E∗

j−1, s j in [H ]2. Thus, for
DH (si , s j ) = ∑

j
Mξ (E j )e

i
∑

j
ψξ (E j )

and D[H ]2(si , s j ) = ∑

j
Mε(E∗

j )e
i
∑

j
ψε(E∗

j )

, we

have Mξ (E j ) ≥ Mε(E∗
j ) and ψξ(E j ) ≥ ψε(E∗

j ). Suppose that Mξ (E j ) > Mε(E∗
j )

and ψξ(E j ) > ψε(E∗
j ), then there exists a path Q∗

P = si , E ′
i , si+1, E ′

i+1, · · · , s j−1,
E ′

j−1, s j in [H ]2, i.e., for all E ′
i there is an edge Ei ∈ ξ(H ) such that E ′

i ⊆ Ei and

we obtain a walk of length Mε(E∗
j )e

iψε(E∗
j ) in H , which is a contradiction. Hence,

Mξ (E j ) = Mε(E∗
j ) and ψξ(E j ) = ψε(E∗

j ).

1.8.2 Products on Complex Fuzzy Hypergraphs

Definition 1.79 Let
m
⊗

j=1
H j = (A, λ) be an arbitrary product of complex fuzzy

hypergraphs H j , where A is the complex fuzzy set on
m
⊗

j=1
X j . The projection

σ j : v ∈
m
⊗

j=1
X j → V (H j ) is defined as v = (v1, v2, · · · , vm) → v j and v j is called

the j th coordinate of v ∈
m
⊗

j=1
X j .

TheHk−layer hypergraphH w=(w1,w2,··· ,wm )
k , which is the partial complex fuzzy

hypergraph of H j , determined by w ∈
m
⊗

j=1
X j , is defined as

(i) V (
m
⊗

j=1
H j ) = V (H w=(w1,w2,··· ,wm )

k ), i.e., the vertex set is same.

(ii) E(H w=(w1,w2,··· ,wm )
k ) = {v ∈

m
⊗

j=1
X j |σ j (v) = σ j (w), k 
= j} such that

Mλ(El(H
w
k ))eiψλ(El (H

w
k )) = Mλ(El(

m
⊗

j=1
H j )e

iψλ(El (
m
⊗

j=1
H j ))

.

Definition 1.80 LetH1 = (C1, ξ1) andH2 = (C2, ξ2) be two complex fuzzy hyper-
graphs on X1 = {x1, x2, · · · , xm} and X2 = {y1, y2, · · · , yn}, where C1 =
{α11, α12, · · · , α1 j } and C2 = {α21, α22, · · · , α2k} are complex fuzzy sets on X1 and
X2, respectively. TheCartesian productH1�H2 = (C1�C2, ξ1�ξ2) ofH1 andH2,
having the vertex set X1 × X2 is defined as

(i) C1�C2(xp, yq) = min{Mα1r (xp), Mα2s (yq)}ei min{ψα1r (xp),ψα2s (yq )}, for all (xp,
yq) ∈ X1 × X2,

(ii) ξ1�ξ2({xp} × e2) = min{Mα1r (xp), Mξ2(e2)}ei min{ψα1r (xp),ψξ2 (e2)}, for all xp ∈
X1, e2 ∈ E(H2),

(iii) ξ1�ξ2(e1 × {yq}) = min{Mξ1(e1), Mα2s (yq)}emin{ψξ1 (e1),ψα2s (yq )}}, for all e1 ∈
E(H1), yq ∈ X2,
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Fig. 1.40 Complex fuzzy hypergraphs H1 and H2

where p = 1, 2, · · · ,m, q = 1, 2, · · · , n, r = 1, 2, · · · , j , and s = 1, 2, · · · , k.

Remark 1.6 Note that the Cartesian product of two simple complex fuzzy hyper-
graphs is also simple. Furthermore,H1�H2 is connected if and only ifH1 andH2

both are connected.

Example 1.26 Let Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two complex fuzzy
hypergraphs on X1 = {x1, x2, x3, x4} and X2 = {y1, y2, y3, y4}, respectively. The
corresponding complex fuzzy hypergraphs are given in Fig. 1.40a and b, respectively.

Then, the Cartesian product of H1 and H2 is given in Fig. 1.41.

Definition 1.81 The rank and anti rank of H1�H2 are defined as

(i) �(H1�H2) = max{�(H1),�(H2)},
(ii) ∇(H1�H2) = min{∇(H1),∇(H2)}, respectively.
Example 1.27 Consider the complex fuzzy hypergraphs as shown in Fig. 1.40a and
b, respectively. For H1, we have �(H1) = ξ({x1, x2, x4}) = 0.1ei

3π
10 and ∇(H1) =

ξ({x2, x3}) = 0.2ei
π
5 . For H2, we have �(H2) = ξ({y1, y4}) = 0.3ei

3π
5 and

∇(H1) = ξ({y2, y3}) = 0.2ei
3π
7 . Thus, we have

�(H1�H2) = max{0.1ei 3π10 , 0.3ei 3π5 } = 0.3ei
3π
5 ,

∇(H1�H2) = min{0.2ei π
5 , 0.2ei

3π
7 } = 0.2ei

π
5 .

Proposition 1.19 The 2-section of H1�H2 is the Cartesian product of
2-section of H1 and 2-section of H2, i.e., [H1�H2]2 = [H1]2�[H2]2.
Definition 1.82 LetΓ1 = (X1, [ξ1]2, δ1) andΓ2 = (X2, [ξ2]2, δ2)be the L2-sections
of H1 and H2, respectively. Then, the Cartesian product of Γ1 and Γ2, denoted by
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Fig. 1.41 Cartesian product H1�H2 of H1 and H2

Γ1�Γ2, is defined asΓ1�Γ2 = (X, [ξ ]2, Φ), which contain a CFG (C1, ξ1)�(C2, ξ2)

along with a function Φ : [ξ ]2 → P(X) such that

Φ({(x1, y1), (x2, y2)}) =
{

{{x1} × e2|e2 ∈ δ2({y1, y2})}, if x1 = x2,

{e1 × {y1}|e1 ∈ δ1({x1, x2})}, if y1 = y2.

Lemma 1.10 LetH1 andH2 be two complex fuzzy hypergraphs. Then, the distance
between two arbitrary vertices inH1�H2 is given as

DH 1�H 2(vi , v j )(uk, ul) = DH 1(vi , uk) + DH 2(v j , ul).

Definition 1.83 LetH1 = (C1, ξ1) andH2 = (C2, ξ2) be two complex fuzzy hyper-
graphs on X1 = {x1, x2, · · · , xm} and X2 = {y1, y2, · · · , yn}, where C1 =
{α11, α12, · · · , α1 j } and C2 = {α21, α22, · · · , α2k} are complex fuzzy sets on X1

and X2, respectively. The minimal crisp rank preserving direct product H1♦H2 =
(C1♦C2, ξ1♦ξ2) of H1 and H2, having the vertex set X1 × X2 is defined as

(i) C1♦C2(xp, yq) = min{Mα1r (xp), Mα2s (yq)}ei min{ψα1r (xp),ψα2s (yq )}, for all (xp,
yq) ∈ X1 × X2,

(ii) ξ1♦ξ2({(x1, y1), (x2, y2), · · · , (xm, yn)})=min{Mξ1({x1, x2, · · · xm}),
minMα2s (yq)}×
ei min{ψξ1 ({x1,x2,···xm }),minMα2s (yq )}, for all {x1, x2, · · · xm} ∈ E(H1), {y1, y2, · · · yn}
⊆ E(H2),
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Fig. 1.42 Complex fuzzy hypergraphs H1 and H2

Fig. 1.43 Direct product
H1♦H2 of H1 and H2
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(iii) ξ1♦ξ2({(x1, y1), (x2, y2), · · · , (xm, yn)})=min{minMα1r (xp), Mξ2({y1, y2, · · ·
yn})}× ei min{minψα1r (xp),ψξ2 ({y1,y2,···yn})}, for all {x1, x2, · · · xm} ⊆ E(H1), {y1,
y2, · · · yn} ∈ E(H2),

where r = 1, 2, · · · , j , and s = 1, 2, · · · , k.

Example 1.28 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two complex fuzzy hyper-
graphs on X1 = {x1, x2, x3} and X2 = {y1, y2}, respectively. The corresponding com-
plex fuzzy hypergraphs are given in Fig. 1.42a and b, respectively.

Then, the direct product (preserving the minimal crisp rank) of H1 and H2 is
given in Fig. 1.43.

Remark 1.7 For the minimal crisp rank preserving direct product H1♦H2 holds

(i) max |supp(ξ1♦ξ2)| = min{|supp(ξ1)|, |supp(ξ1)|},
(ii) min |supp(ξ1♦ξ2)| = min{|supp(ξ1)|, |supp(ξ1)|}.
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Theorem 1.8 The (minimal crisp rank preserving) direct productH1♦H2 of simple
complex fuzzy hypergraphs is simple.

Proof Let H1 and H2 be two simple complex fuzzy hypergraphs. Then,
max |supp(ρ j )| ≥ 2, max |supp(ρk)| ≥ 2, for ρ j ∈ ξ1 and ρk ∈ ξ2, therefore,
max |supp(ξ1♦ξ2)| = min{|supp(ξ1)|, |supp(ξ1)|} ≥ 2. This implies that no loops
are contained in E(H1♦H2). Suppose that there exists an edge γ1 ∈ ξ1♦ξ2 contained
in some other edge γ2 ∈ ξ1♦ξ2, i.e., γ1 ⊆ γ2. Note that σ j (γ1) ⊆ σ j (γ2), j = 1, 2
holds. Suppose that |supp(α1)| ≤ |supp(α2)|, which implies that σ1(γ1) = α1. Then,
we have α1 = σ1(γ1) ⊆ σ1(γ2) ⊆ α∗

1 . Since, H1 is simple, α1 = α∗
1 must satisfied

and hence σ1(γ2) = α∗
1 . This implies that |supp(γ1)| = |supp(α1)| = |supp(α∗

1)| =
|σ1(γ2)| = |γ2| and hence γ1 = γ2.

Lemma 1.11 The 2-section of the direct product H1♦H2 is the direct product of
2-section of H1 and the 2-section of H2, i.e., [H1♦H2]2 = [H1]2♦[H2]2.
Proof Let σ1 and σ2 denote the σH 1 and σH 2 , respectively. Definitions1.83 and
1.73 imply that [H1♦H2]2 and [H1]2♦[H2]2 both have same set of vertices.
Thus, it is enough to show that the identity mapping given by V ([H1♦H2]2) →
V ([H1]2♦[H2]2) is an isomorphism. Since, we have {x1, x2} ∈ E([H1♦H2]2) if
and only if there exists an edge e ∈ E(H1]2♦[H2) such that {x1, x2} ⊆ e. Also
x1 
= x2 if and only if there exist ρ1 ∈ ξ1 and ρ2 ∈ ξ2 such that {σ1(x1), σ1(x2)} ⊆
σ1(e) ⊆ ρ1, σ1(x1) 
= σ1(x2) and {σ2(x1), σ2(x2)} ⊆ σ2(e) ⊆ ρ2, σ2(x1) 
= σ2(x2) if
and only if {σ1(x1), σ1(x2)} ∈ E(H1]2), {σ2(x1), σ2(x2)} ∈ E(H2]2) ⇔ {x1, x2} ∈
E([H1]2♦[H2]2). Hence, the result is proved.
Definition 1.84 LetH1 = (C1, ξ1) andH2 = (C2, ξ2) be two complex fuzzy hyper-
graphs on X1 = {x1, x2, · · · , xm} and X2 = {y1, y2, · · · , yn}, where C1 = {α11,

α12, · · · , α1 j } and C2 = {α21, α22, · · · , α2k} are complex fuzzy sets on X1 and
X2, respectively. The maximal crisp rank preserving direct product H1 ⊗ H2 =
(C1 ⊗ C2, ξ1 ⊗ ξ2) of H1 and H2, having the vertex set X1 × X2 is defined as

(i) C1 ⊗ C2(xp, yq) = min{Mα1r (xp), Mα2s (yq)}ei min{ψα1r (xp),ψα2s (yq )}, for all (xp,
yq) ∈ X1 × X2,

(ii) ξ1 ⊗ ξ2({(x1, y1), (x2, y2), · · · , (xm, yn)})=min{Mξ1({x1, x2, · · · xm}),min
Mα2s (yq)} × ei min{ψξ1 ({x1,x2,···xm }),minMα2s (yq )}, for all {x1, x2, · · · xm} ∈ E(H1),
there is an edge e ∈ E(H2) such that
{y1, y2, · · · yn} is a multiset of elements of e and e ⊆ {y1, y2, · · · yn},

(iii) ξ1 ⊗ ξ2({(x1, y1), (x2, y2), · · · , (xm, yn)})=min{minMα1r (xp), Mξ2({y1,
y2, · · · yn})} × ei min{minψα1r (xp),ψξ2 ({y1,y2,···yn})}, for all {y1, y2, · · · yn} ∈ E(H2),
there is an edge f ∈ E(H1) such that {x1, x2, · · · xm} is a multiset of elements
of f and f ⊆ {x1, x2, · · · xm},

where p = 1, 2, · · · ,m, q = 1, 2, · · · , n, r = 1, 2, · · · , j , and s = 1, 2, · · · , k.
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Fig. 1.44 Direct product
H1 ⊗ H2 of H1 and H2
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Example 1.29 Let H1 = (C1, ξ1) and H2 = (C2, ξ2) be two complex fuzzy hyper-
graphs on X1 = {x1, x2, x3} and X2 = {y1, y2}, respectively. The corresponding com-
plex fuzzy hypergraphs are given in Fig. 1.42a and b, respectively. Themaximal crisp
rank preserving direct product H1 ⊗ H2 is given in Fig. 1.44.

Remark 1.8 For the maximal crisp rank preserving direct product H1 ⊗ H2 holds,

(i) max |supp(ξ1 ⊗ ξ2)| = max{|supp(ξ1)|, |supp(ξ1)|},
(ii) min |supp(ξ1 ⊗ ξ2)| = max{|supp(ξ1)|, |supp(ξ1)|}.
Theorem 1.9 The (maximal crisp rank preserving) direct productH1 ⊗ H2 of sim-
ple complex fuzzy hypergraphs is simple.

Proof Let H1 and H2 be two simple complex fuzzy hypergraphs. Then,
max |supp(ρ j )| ≥ 2, max |supp(ρk)| ≥ 2, for ρ j ∈ ξ1 and ρk ∈ ξ2, therefore,
max |supp(ξ1♦ξ2)| = max{|supp(ξ1)|, |supp(ξ1)|} ≥ 2. This implies that no loops
are contained in E(H1 ⊗ H2). Suppose that there exists an edge γ1 ∈ ξ1 ⊗ ξ2 con-
tained in some other edge γ2 ∈ ξ1 ⊗ ξ2, i.e., γ1 ⊆ γ2. Note that σ j (γ1) ⊆ σ j (γ2),
j = 1, 2 holds. Suppose that |supp(α1)| ≤ |supp(α2)|, which implies that σ1(γ1) =
α1. Then, we have α1 = σ1(γ1) ⊆ σ1(γ2) ⊆ α∗

1 . Since, H1 is simple, α1 = α∗
1 must

be satisfied and hence σ1(γ2) = α∗
1 . This implies that |supp(γ1)| = |supp(α1)| =

|supp(α∗
1)| = |σ1(γ2)| = |γ2| and hence γ1 = γ2.
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1.9 A Complex Fuzzy Hypergraph Model of Co-authorship
Network

Co-authorship is a form of association in which two or more researchers jointly
report their research results on some topics. Therefore, co-authorship networks can
be viewed as social networks encompassing researchers that reflect collaboration
among them. Analysis and representation of publications and research articles in
the form of a graph network is the most common methodology to illustrate and
evaluate the scientific output of a group of researchers. In a co-authorship network,
vertices are considered as authors and these authors are connected together if they
have published one or more papers together. However, co-authorship networks that
are constructed in this waymay not fully illustrate the scientific outputs. On the other
hand, the networks are constructed by taking vertices as papers and these vertices are
connected by hyperedges if they have the same author are more useful in describing
the scientific outputs. In this section, we propose a complex fuzzy hypergraph model
to represent the publication data by considering the research articles as the vertices of
hypergraph. The proposedmodel includes the information such as number of research
articles, number of co-authors as well as collaborations. The authors are represented
by hyperedges connecting the papers of corresponding authors. Then, we propose
the collaboration measure of authors that illustrate the influence of corresponding
author over the publications of their respective co-authors.

Consider a complex fuzzy hypergraph H = (C, ξ) model of collaborative net-
work in which articles are represented as vertices and these vertices are connected
by hyperedges if they have a common author. The corresponding complex fuzzy
hypergraph model is shown in Fig. 1.45 in which we have considered nine research
articles as the vertices of this hypergraph and six hyperedges representing the authors
that have written more than two articles.

Fig. 1.45 Complex fuzzy
hypergraph model of
co-authorship network
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Table 1.33 Complex fuzzy sets on X

p ∈ X α1 α2 α3

p1 0.3ei
π
2 0.4ei

2π
3 0.5ei

3π
2

p2 0.4ei
π
2 0.5ei

2π
4 0.4ei

3π
4

p3 0.5ei
π
3 0.4ei

2π
5 0.6ei

3π
2

p4 0.6ei
π
3 0.3ei

2π
6 0.7ei

3π
5

p5 0.7ei
π
4 0.5ei

2π
7 0.8ei

3π
2

p6 0.8ei
π
4 0.3ei

2π
8 0.4ei

3π
7

p7 0.2ei
π
5 0.7ei

2π
9 0.5ei

3π
2

p8 0.3ei
π
2 0.5ei

2π
6 0.3ei

3π
9

p9 0.4ei
π
5 0.4ei

2π
5 0.8ei

3π
2

Note that we have six authors {A1, A2, A3, A4, A5, A6}, represented by the hyper-
edges of complex fuzzy hypergraph that have published more than two research
articles and nine published papers {p1, p2, p3, p4, p5, p6, p7, p8, p9}. Let C =
{α1, α2, α3} be the family of complex fuzzy sets on X = {p1, p2, p3, p4, p5, p6, p7,
p8, p9} as shown in Table1.33.

The membership degrees M ∈ [0, 1] of each research article represent contribu-
tion of corresponding article to the relative field and the phase angle ψ ∈ [0, 2π ]
represents the specific period of time in which the corresponding contribution is
considered. For example, membership degrees 0.3ei

π
2 , 0.4ei

2π
3 , and 0.5ei

3π
2 illustrate

that the contribution of research article p1 is 0.3, 0.4, and 0.5 during the correspond-
ing time periods and so on. The complex fuzzy relation ξ representing the authors
of corresponding papers is defined as

ξ({p1, p2, p3}) = (A1, 0.3e
i π
3 ), ξ({p3, p4, p5, p6}) = (A2, 0.3e

i π
4 ),

ξ({p4, p5, p7}) = (A3, 0.2e
i π
5 ), ξ({p7, p8, p9}) = (A4, 0.2e

i π
3 ),

ξ({p1, p5, p9}) = (A5, 0.3e
i π
5 ), ξ({p3, p6, p9}) = (A6, 0.2e

i π
5 ).

A complex fuzzy hypergraph model provides a better illustration to evaluate the
collaboration measure of an author by analyzing the condition when we remove the
corresponding author from our network. That is removal of an influential author
from a co-authorship network will strongly affect its structure. Let H = (C, ξ) be
a complex fuzzy hypergraph model of co-authorship and A j ∈ E be the hyperedge
representing author j . Then, n(A j , Ak) = |supp(A j ) ∩ supp(Ak)| represents the
number of research articles co-authored by A j and Ak . The magnitude of collabora-
tion measure Πc of an author relative to the complex fuzzy hypergraphH = (C, ξ)

is defined as
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Πc(A|H ) = (1 −

∑

A j ,Ak∈E\A
μpl∈supp(A j )∩supp(Ak )(pl )

∑

A j ,Ak∈E
μpl∈supp(A j )∩supp(Ak )(pl )

) ×

∑

A j ,Ak∈E\A
θpl∈supp(A j )∩supp(Ak )(pl )

∑

A j ,Ak∈E
θpl∈supp(A j )∩supp(Ak )(pl )

,

whereμpl∈n(A j ,Ak )(pl ) = min
q

Mαq (pl), θpl∈n(A j ,Ak )(pl ) = min
q

ψαq (pl), l=1, 2, · · · , 9.

The magnitude of collaboration measure illustrates the influence of removal of an
author from the network. A higher value of Πc(A|H ) indicates that the removal of
author A will change the structure of co-authorship network more and may influ-
ence possible collaborations among its co-authors. Here, we have considered only
absolute value of collaboration measure because we cannot compare the complex
values to check the influence of authors in corresponding co-authorship networks.
Note that

supp(A1) ∩ supp(A2) = {p1}, supp(A1) ∩ supp(A3) = ∅,

supp(A1) ∩ supp(A4) = ∅, supp(A2) ∩ supp(A3) = {p4, p5},
supp(A2) ∩ supp(A4) = ∅, supp(A3) ∩ supp(A4) = {p7},
supp(A1) ∩ supp(A5) = {p1}, supp(A2) ∩ supp(A5) = {p5},
supp(A3) ∩ supp(A5) = {p5}, supp(A4) ∩ supp(A5) = {p9},
supp(A6) ∩ supp(A5) = {p9}, supp(A6) ∩ supp(A1) = ∅,

supp(A6) ∩ supp(A2) = {p6}, supp(A6) ∩ supp(A3) = ∅,

supp(A6) ∩ supp(A4) = {p9}.

By routine calculations, we find the magnitudes of collaboration measure of all
authors as follows:

Πc(A1|H ) = (1 − 0.3 + 0.5 + 0.2

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
5 = 0.5ei

π
5 ,

Πc(A2|H ) = (1 − 0.5 + 0.2 + 0.4

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
4 = 0.45ei

π
4 ,

Πc(A3|H ) = (1 − 0.3 + 0.5 + 0.3 + 0.4

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
3 = 0.25ei

π
3 ,

Πc(A4|H ) = (1 − 0.3 + 0.3 + 0.5 + 0.3 + 0.4

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
5 = 0.1ei

π
5 ,

Πc(A5|H ) = (1 − 0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
5 = 0.0ei

π
5 ,

Πc(A6|H ) = (1 − 0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4

0.3 + 0.3 + 0.5 + 0.3 + 0.2 + 0.4
)ei

π
5 = 0.0ei

π
5 .

By considering the maximum membership degree and minimum phase angle of
collaboration measure, we find out the most influential author in the co-authorship
network. The maximum membership value and minimum phase angle 0.5ei

π
5 of

researcher A1 indicate that if we remove author A1 from the structure, it will effect
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the performance of overall network within a short period of time. Thus, A1 is the
most influential author of under consideration co-authorship network. Similarly, we
note that the removal of A5 and A6 will affect the structure of this network fewer.
The collaboration measure can also be calculated by considering a partial complex
fuzzy hypergraph, which illustrates the influence of an author relative to a specific
group of research articles. The procedure adopted in our application is described in
the following Algorithm 1.9.1.

Algorithm 1.9.1 A complex fuzzy hypergraph model for representing scientific
outputs
Input: Complex fuzzy hypergraph model of co-authorship network.
Output: The most influential author of co-authorship network.

1. Input the set of research articles (vertices) {p1, p2, · · · , pr }.
2. Combine these research articles (vertices) through an hyperedge if they have a

common author.
3. Input the set of authors (hyperedges) A = {A1, A2, · · · , As}.
4. Define complex fuzzy sets {α1, α2, · · · , αt }on the set of vertices {p1, p2, · · · , pr }.
5. Calculate the membership degrees of authors using the formula

MA({p1, p2, · · · , pl})eiψA({p1,p2,··· ,pl }) ≤ min{Mαi (p1), Mαi (p2), · · · , Mαi (pl)}

× ei min{ψαi (p1),ψαi (p2),··· ,ψαi (pl )}.

6. Find the research articles which are co-authored by A j and Ak as supp(A j ) ∩
supp(Ak) = {p1, p2, · · · , pm}.

7. Compute the collaboration measures of all authors A j ’s relative to the complex
fuzzy hypergraph H as follows:

Πc(A|H ) = (1 −

∑

A j ,Ak∈E\A
μpl∈supp(A j )∩supp(Ak )(pl )

∑

A j ,Ak∈E
μpl∈supp(A j )∩supp(Ak )(pl )

) ×

∑

A j ,Ak∈E\A
θpl∈supp(A j )∩supp(Ak )(pl )

∑

A j ,Ak∈E
θpl∈supp(A j )∩supp(Ak )(pl )

.

8. Find out the most influential author of co-authorship network having the maxi-
mum membership degree and minimum phase angle of collaboration measures,
i.e., if

Πc(A|H ) = max{MΠc(A j |H )}ei minψΠc (A j |H ),

j = 1, 2, · · · , s, then A is themost influential author and removing the hyperedge
of A will change the structure of the network more.

1.9.1 Flow Chart of Proposed Model

The flow chart describing the procedure of our proposed model is given in Fig. 1.46.
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Fig. 1.46 Flow chart of our
proposed model Start

Input t, α

Input s, E

Input Aj

MA({p1, p2, · · · , pl})×

eiψA({p1 ,p2,··· ,pl})

≤ min{Mαt (p1),Mαt (p2), · · · ,Mαt (pl )}

eimin{ψαt (p1),ψαt (p2),··· ,ψαt (pl )}

If supp(Aj)∩ supp(Ak)

= {p1 , p2, · · · , pm}

Πc(A|H ) =

(1−
∑

A j ,Ak∈E\A
μpl∈supp(A j )∩supp(Ak)(pl )

∑
A j ,Ak∈E

μpl∈supp(A j )∩supp(Ak)(pl )
)

×
∑

A j ,Ak∈E\A
θpl∈supp(A j)∩supp(Ak)(pl )

∑
A j ,Ak∈E

θpl∈supp(A j )∩supp(Ak)(pl )

Find out the most influential author of co-authorship network as

Πc(A|H ) = $max{MΠc (Aj|H )}eiminψΠc (Aj |H )
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No

Yes

Yes

No

No

Yes

×
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Fig. 1.47 Hypergraph
model of the paper network
representing three authors
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1.9.2 Comparative Analysis

To represent and analyze publication data in the form of a network has become a
common method of illustrating and evaluating the scientific output of a group or of
a scientific field. A hypergraph model illustrates co-authorship data in a simple and
elegant manner. In [13], authors have proposed the use of a crisp hypergraphmodel to
represent publication data by considering papers as hypergraph nodes. Hyperedges,
connecting the nodes, represent the authors connecting all their papers. In this work,
the number of authors is equal to the number of hyperedges. The degree of its
hyperedge represents the number of papers written by an author. The number of
co-authors is represented by the number of intersecting hyperedges. The strength of
the collaboration is represented by the number of nodes in the intersecting hyper-
edges. A hypergraph model of co-authorship network represented in [13] is given in
Fig. 1.47.

This model illustrates the number of papers written by authors A1, A2, A3. For
example, hyperedge A1 shows that author A1 has written three research papers. Now,
if someone wants to evaluate the worth of these research articles or the collabora-
tion degrees of authors toward their collective papers, then this model fails to fully
illustrate a co-authorship network.

To handle fuzziness in hypergraph models, we use fuzzy hypergraphs. A fuzzy
hypergraphs model of co-authorship network not only describe the number of papers
written by some author but also explain the level of contribution of that author.
This model fails in some circumstances when we have to analyze the co-authorship
networks for a fixed interval of time. For example, a fuzzy hypergraphs model illus-
trates the worth of research articles and the collaboration degrees of authors toward
their collective papers usingmembership degrees of vertices and hyperedges, respec-
tively, but it does not tell us about that interval of time for which the corresponding
co-authorship network is being analyzed.
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Fig. 1.48 Complex fuzzy
graph model of
co-authorship network
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A complex fuzzy graphmodel is used to represent a simple co-authorship network
describing the worth of research articles as well as specific time period. This network
is constructed by taking the vertices as articles and two vertices (or articles) are
connected through an edge if they have the same author as shown in Fig. 1.48. The
membership degrees and phase terms represent the publication data and some specific
time interval for which we analyze the co-authorship network, respectively.

The disadvantage of considering a complex fuzzy graph model for co-authorship
networks is that it connects only two articles if they have same author. The structure
of network model based on a complex fuzzy graph does not reflect the number of
papers written by an author and cannot illustrate the information completely if more
than two papers are written by the same author as represented by a hyperedge.

To overcome such type of difficulties and deficiencies occurring in crisp hyper-
graphs, fuzzy hypergraphs, and complex fuzzy graphs models of co-authorship net-
works, we have constructed a co-authorship network by considering the vertices of
a complex fuzzy hypergraph as research articles and these articles are combined
through complex fuzzy hyperedges if they have same author. We have generalized
the work of [13] using complex fuzzy hypergraph model of co-authorship network.
Thus, a complex fuzzy hypergraph is a more generalized framework to deal with
vagueness having periodic nature in hypernetworks when the relationships are more
generalized rather than the pair-wise interactions.

References

1. Abdul-Jabbar, N., Naoom, J.H., Ouda, E.H.: Fuzzy dual graph. J. Al-Nahrain Univ. 12(4),
168–171 (2009)

2. Akram, M.: Studies in Fuzziness and Soft Computing. Fuzzy Lie algebras, vol. 9, pp. 1–302.
Springer, Berlin (2018)



References 75

3. Akram, M., Alshehri, N.O.: Tempered interval-valued fuzzy hypergraphs. Sci. Bull. Ser. A
Appl. Math. Phys. 77(1), 39–48 (2015)

4. Akram, M., Chen, W.J., Davvaz, B.: OnN -hypergraphs. J. Intell. Fuzzy Syst. 26, 2937–2944
(2014)

5. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)
6. Craine, M.W.L.: Fuzzy hypergraphs and fuzzy intersection graphs. University of Idaho, Ph.D

Thesis (1993)
7. Goetschel Jr., R.H.: Introduction to fuzzy hypergraphs andHebbian structures. Fuzzy Sets Syst.

76, 113–130 (1995)
8. Goetschel Jr., R.H.: Fuzzy colorings of fuzzy hypergraphs. Fuzzy Sets Syst. 94, 185–204 (1998)
9. Goetschel Jr., R.H., Craine,W.L., Voxman,W.: Fuzzy transversals of fuzzy hypergraphs. Fuzzy

Sets Syst. 84, 235–254 (1996)
10. Jun, Y.B., Lee, K.J., Song, S.Z.: N -ideals of BCK/BC I -algebras. J. Chungcheong Math.

Soc. 22, 417–437 (2009)
11. Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous, 1. Masson, Paris (1977)
12. Lee-kwang, H., Lee, K.-M.: Fuzzy hypergraph and fuzzy partition. IEEE Trans. Syst. Man

Cybern. 25(1), 196–201 (1995)
13. Lung, R.I., Gasko, N., Suciu, M.A.: A hypergraph model for representing scientific output.

Scientometrics 117(3), 1361–1379 (2018)
14. Mendel, J.M.: Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions.

Prentice-Hall, Upper Saddle River, New Jersey (2001)
15. Mordeson, J.N., Chang-Shyh, P.: Operations on fuzzy graphs. Inf. Sci. 79, 159–170 (1994)
16. Mordeson, J.N.: Fuzzy line graph. Pattern Recognit. Lett. 14, 381–384 (1993)
17. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, 2nd edn. Physica Verlag,

Heidelberg (2001)
18. Mordeson, J.N., Yao, Y.Y.: Fuzzy cycles and fuzzy trees. J. Fuzzy Math. 10, 189–202 (2002)
19. Radhamani, C., Radhika, C.: Isomorphism on fuzzy hypergraphs. IOSR J. Math. 2(6), 24–31

(2012)
20. Radhika, C., Radhamani, C., Suresh, S.: Isomorphism properties on strong fuzzy hypergraphs.

Int. J. Comput. Appl. 64(1)(2013)
21. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst.

10(2), 171–186 (2002)
22. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and

their Applications, pp. 77–95. Academic Press, New York (1975)
23. Samanta, S., Akram, M., Pal, M.: m-Step fuzzy competition graphs. J. Appl. Math. Comput.

47, 461–472 (2015)
24. Samanta, S., Pal, M.: Fuzzy k-competition graphs and p-competition fuzzy graphs. Fuzzy Inf.

Eng. 5, 191–204 (2013)
25. Sarwar, M., Akram, M., Alshehri, N.O.: A new method to decision-making with fuzzy com-

petition hypergraphs. Symmetry 10(9), 404 (2018). https://doi.org/10.3390/sym10090404
26. Sonntag, M., Teichert, H.M.: Competition hypergraphs. Discr. Appl. Math. 143, 324–329

(2004)
27. Sonntag, M., Teichert, H.M.: Competition hypergraphs of digraphs with certain properties II,

Hamiltonicity. Discuss. Math. Graph Theory 28, 23–34 (2008)
28. Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J.

Math. Sci. Eng. Appl. 10(1), 243–248 (2016)
29. Yazdanbakhsh, O., Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets

Syst. 338, 1–22 (2018)
30. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
31. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)
32. Zadeh, L.A.: The concept of a linguistic and application to approximate reasoning-I. Inf. Sci.

8, 199–249 (1975)

https://doi.org/10.3390/sym10090404


Chapter 2
Hypergraphs in Intuitionistic Fuzzy
Environment

In this chapter, we define intuitionistic fuzzy hypergraphs, dual intuitionistic fuzzy
hypergraphs, intuitionistic fuzzy line graphs, and 2-section of an intuitionistic fuzzy
hypergraph. We describe some applications of intuitionistic fuzzy hypergraphs in
planet surface networks, intersecting communities in social network, grouping of
incompatible chemical substances, and clustering problem. We design certain algo-
rithms to construct dual intuitionistic fuzzy hypergraphs, intuitionistic fuzzy line
graphs and the selection of objects in decision-making problems. Further, we present
concept of intuitionistic fuzzy directed hypergraphs and complex intuitionistic fuzzy
hypergraphs. This chapter is basically due to [2, 3, 6, 12, 14, 15, 17, 18].

2.1 Introduction

Presently, science and technology is featuredwith complex processes and phenomena
for which complete information are not always available. For such cases, mathemat-
ical models are developed to handle various types of systems containing elements of
uncertainty. A large number of these models is based on an extension of the ordinary
set theory, namely, fuzzy sets. The notion of fuzzy sets was introduced by Zadeh
[25] as a method of representing uncertainty and vagueness. Since then, the theory
of fuzzy sets has become a vigorous area of research in different disciplines, includ-
ing medical and life sciences, management sciences, social sciences, engineering,
statistics, graph theory, artificial intelligence, signal processing, multiagent systems,
pattern recognition, robotics, computer networks, expert systems, decision making,
and automata theory. In 1983, Atanassov [5] introduced the concept of intuitionistic
fuzzy sets as a generalization of fuzzy sets. Atanassov added in the definition of
fuzzy set a new component which determines the degree of nonmembership. Fuzzy
sets give the degree of membership of an element in a given set (the nonmembership
of degree equals one minus the degree of membership), while intuitionistic fuzzy
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sets give both a degree of membership and a degree of nonmembership, which are
more or less independent of each other; the only requirement is that the sum of these
two degrees is not greater than 1. Intuitionistic fuzzy sets are higher order fuzzy sets.
Application of higher order fuzzy sets makes the solution-procedure more complex,
but if the complexity in computation-time, computation-volume or memory-space
are not the matter of concern then a better result could be achieved. Fuzzy sets and
intuitionistic fuzzy sets cannot handle imprecise, inconsistent, and incomplete infor-
mation of periodic nature. These theories are applicable to different areas of science,
but there is one major deficiency in both sets, that is, a lack of capability to model
two-dimensional phenomena. To overcome this difficulty, the concept of complex
fuzzy sets was introduced by Ramot et al. [20]. A complex fuzzy set C is character-
ized by a membership functionμ(x), whose range is not limited to [0, 1] but extends
to the unit circle in the complex plane. Hence,μ(x) is a complex-valued function that
assigns a grade of membership of the form r(x)eiα(x), i = √−1 to any element x in
the universe of discourse. Thus, the membership function μ(x) of complex fuzzy set
consists of two terms, i.e., amplitude term r(x) which lies in the unit interval [0, 1]
and phase term (periodic term) w(x) which lies in the interval [0, 2π ]. This phase
term distinguishes a complex fuzzy set model from all other models available in the
literature. The potential of a complex fuzzy set for representing two-dimensional
phenomena makes it superior to handle ambiguous and intuitive information that are
prevalent in time-periodic phenomena. To generalize the concepts of intuitionistic
fuzzy sets, complex intuitionistic fuzzy sets were introduced by Alkouri and Salleh
[4] by adding nonmembership ν(x) = s(x)eiβ(x) to the complex fuzzy sets subjected
to the constraint r + s ≤ 1.

Graph theory has numerous applications to problems in computer science, electri-
cal engineering, system analysis, operations research, economics, networking rout-
ing, and transportation. However, in many cases, some aspects of a graph-theoretic
problem may be uncertain. For example, the vehicle travel time or vehicle capacity
on a road network may not be known exactly. In such cases, it is natural to deal
with the uncertainty using the methods of fuzzy sets and fuzzy logic. Graphs are
used to represent the pairwise relationships between objects. However, in many real
world phenomena, sometimes relationships are much problematic that they cannot
be perceived through simple graphs. By handling such complex relationships by
pairwise connections naively, one can face the loss of data which is considered to
be worthwhile for learning errands. To overcome these difficulties, we take into
account the generalization of simple graphs, named as hypergraphs, to personify
the complex relationships. A hypergraph is an extension of a classical graph in this
way that a hyperedge can combine two or more than two vertices. Hypergraphs
are the generalization of graphs in case of set of multiary relations. It means the
expansion of graph models for the modeling complex systems. In case of model-
ing systems with fuzzy binary and multiary relations between objects, transition to
fuzzy hypergraphs, which combine advantages both fuzzy and graphmodels, is more
natural. It allows to realize formal optimization and logical procedures. However,
using of the fuzzy graphs and hypergraphs as the models of various systems (social,
economic systems, communication networks, and others) leads to difficulties. The
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graph isomorphic transformations are reduced to redefine the vertices and edges.
This redefinition does not change properties the graph determined by an adjacent
and an incidence of its vertices and edges. Fuzzy independent sets, domination fuzzy
sets, and fuzzy chromatic sets are invariants concerning the isomorphism transfor-
mations of the fuzzy graphs and fuzzy hypergraph and allow their structural analysis.
Kaufamnn [10] applied the concept of fuzzy sets to hypergraphs. Mordeson and Nair
[13] presented fuzzy graphs and fuzzy hypergraphs. Generalization and redefinition
of fuzzy hypergraphs were discussed by Lee-Kwang and Lee [11]. The concept of
interval-valued fuzzy sets was applied to hypergraphs byChen [8]. Parvathi et al. [17]
established the notion of intuitionistic fuzzy hypergraph, and Myithili and Parvathi
[14], Myithili et al. [15] considered intuitionistic fuzzy directed hypergraphs.

Definition 2.1 A mapping A = (μA, νA) : X → [0, 1] × [0, 1] is called an intu-
itionistic fuzzy set on X if μA(x) + νA(x) ≤ 1, for all x ∈ X , where the mappings
μA : X → [0, 1], and νA : X → [0, 1] denote the degree of membership (namely
μA(x)) and the degree of nonmembership (namely νA(x)) of each element x ∈ X to
A, respectively.

An intuitionistic fuzzy set A in X can be represented as an object of the form

A = (μA, νA) = {(x, μA(x), νA(x)) | x ∈ X},

where the functions μA : X → [0, 1] and νA : X → [0, 1] denote the degree of
membership (namelyμA(x)) and the degree of nonmembership (namely νA(x)) of the
element x ∈ X , respectively, and for all x ∈ X , 0 ≤ μA(x) + νA(x) ≤ 1.Obviously,
each fuzzy set maybe written as

A = {(x, μA(x), 1 − μA(x)) | x ∈ X}.

The value

πA(x) = 1 − μA(x) − νA(x) (2.1)

is called uncertainty (intuitionistic index) of the elements x ∈ X to the intuition-
istic fuzzy set A. It represents hesitancy degree of x to A.

Clearly, in the case of ordinary fuzzy set, πA(x) = 0, for all x ∈ X .

Geometrical Interpretations of an Intuitionistic Fuzzy Set [5]

A geometrical interpretation of an intuitionistic fuzzy set is shown in Fig. 2.1.
Atanassov considered a universe X and subset F in the Euclidean plane with the
Cartesian coordinates.

This geometrical interpretation can be used as an example when considering a
situation at the beginning of negotiations (applications of intuitionistic fuzzy sets
for group decision-making, negotiations and other real situations are presented in
Fig. 2.2). Each expert i is represented as a point having coordinates

〈
μi , νi , πi

〉
. Expert
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Fig. 2.1 A geometrical
interpretation of an
intuitionistic fuzzy set X

μ

ν

F
fA

(0,0) (1,0)

(0,1)

Fig. 2.2 An orthogonal
projection (three dimension)
representation of an
intuitionistic fuzzy set

(π = 0)
B(0,1)

πm

πn

C(0,0)
(π = 1)

A(1,0)
(π = 0)

(π = 0)

A : 〈
1, 0, 0

〉
—fully accepts a discussed idea. Expert B : 〈

0, 1, 0
〉
—fully rejects it. The

experts placed on the segment AB fixed their point of view (their hesitation margins
equal zero for segment AB, so each expert is convinced to the extent μi , is against to
the extent νi andμi + νi = 1; segment AB represents a fuzzy set). ExpertC : 〈

0, 0, 1
〉

is absolutely hesitant, i.e., undecided he or she is the most open to the influence of the
arguments presented. A line parallel to AB describe a set of experts with the same
level of hesitancy. For example, in Fig. 2.2, two sets are presented with intuitionistic
indices equal to πm and πn , where πn > πm . In other words, Fig. 2.2 (the triangle
ABC) is an orthogonal projection of the real situation (the triangle ABD) presented
in Fig. 2.3.

An element of an intuitionistic fuzzy sets has three coordinates
〈
μi , νi , πi

〉
, hence

the most natural representation of an intuitionistic fuzzy set is to draw a cube (with
edge length equal to 1) and because of Eq. (2.1), the triangle ABD (Fig. 2.3) repre-
sents an intuitionistic fuzzy set. As before (Fig. 2.2), the triangle ABC is the orthog-
onal projection of ABD.

Definition 2.2 Let A = (μA, νA) and B = (μB, νB) be intuitionistic fuzzy sets
on a set X . If A = (μA, νA) is an intuitionistic fuzzy relation on a set X , then
A = (μA, νA) is called an intuitionistic fuzzy relation on B = (μB, νB) ifμA(x, y) ≤
min(μB(x), μB(y)) and νA(x, y) ≤ max(νB(x), νB(y)), for all x , y ∈ X . An intu-
itionistic fuzzy relation A on X is called symmetric if μA(x, y) = μA(y, x) and
νA(x, y) = νA(y, x), for all x , y ∈ X .
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Fig. 2.3 A three-dimension
representation of an
intuitionistic fuzzy set

π

D

A

B

C
μ

ν

Definition 2.3 The support of an intuitionistic fuzzy set A = (μA, νA), denoted by
supp(A), is defined by

supp(A) = {x | μA(x) �= 0 and νA(x) �= 0}.

The support of the intuitionistic fuzzy set is a crisp set.

Definition 2.4 Let A = (μA, νA) be an intuitionistic fuzzy set on X and let α, β ∈
[0, 1] such that α + β ≤ 1. Then, the set A(α,β) = {x | μA(x) ≥ α, νA(x) ≤ β} is
called an (α, β)-level subset of A. A(α,β) is a crisp set.

Definition 2.5 The height of an intuitionistic fuzzy set A = (μA, νA) is defined as
h(A) = supx∈X (A)(x) = (supx∈X μA(x), inf x∈X νA(x)). We shall say that intuition-
istic fuzzy set A is normal if there is at least one x ∈ X such that μA(x) = 1.

Definition 2.6 An intuitionistic fuzzy graph on X is defined as a pair G = (C, D),

where C is an intuitionistic fuzzy set on X and D is an intuitionistic fuzzy relation
in X such that λD(yz) ≤ min{λC(y), λC(z)} and τD(yz) ≤ max{τC(y), τC (z)}, for
all y, z ∈ X .

For further terminologies and studies on intuitionistic fuzzy hypergraphs, readers
are referred to [1, 7, 9, 16, 19, 21, 22, 24].

2.2 Intuitionistic Fuzzy Hypergraphs

Definition 2.7 An intuitionistic fuzzy hypergraph on a non-empty set X is a pair
H = (S, R) where, S = {η1, η2, . . . , ηs} is a family of intuitionistic fuzzy subsets
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Table 2.1 Intuitionistic fuzzy subsets on X

y ∈ X η1 η2 η3 η4 η5

a1 (0.2, 0.4) (0, 1) (0, 1) (0, 1) (0, 1)

a2 (0.3, 0.5) (0, 1) (0, 1) (0.3, 0.5) (0, 1)

a3 (0, 1) (0.4, 0.6) (0.4, 0.6) (0, 1) (0, 1)

a4 (0.1, 0.3) (0, 1) (0, 1) (0, 1) (0, 1)

a5 (0, 1) (0.3, 0.1) (0, 1) (0, 1) (0, 1)

a6 (0, 1) (0, 1) (0.9, 0.1) (0, 1) (0, 1)

a7 (0, 1) (0, 1) (0.5, 0.4) (0.2, 0.8) (0, 1)

a8 (0, 1) (0, 1) (0, 1) (0, 1) (0.5, 0.3)

on X and R is an intuitionistic fuzzy relation on intuitionistic fuzzy subsets ηi ’s such
that

1. λR(Ei ) = λR({y1, y2, . . . , yr }) ≤ min{ληi (y1), ληi (y2), . . . , ληi (yr )},
2. τR(Ei ) = τR({y1, y2, . . . , yr }) ≤ max{τηi (y1), τηi (y2), . . . , τηi (yr )},
3. λR(Ei ) + τR(Ei ) ≤ 1, for each Ei ⊂ X ,
4.

⋃
i supp(ηi ) = X , for all ηi ∈ S.

Example 2.1 Let S = {η1, η2, η3, η4, η5} be a family of intuitionistic fuzzy subsets
on X = {a1, a2, . . . , a8} as shown in Table2.1.

The intuitionistic fuzzy relation R on each ηi , 1 ≤ i ≤ 5, is given as
R({a1, a2, a4}) = (0.1, 0.5), R({a3, a5}) = (0.3, 0.6), R({a3, a6, a7}) = (0.4, 0.6),
R({a2, a7}) = (0.2, 0.8), and R({a8}) = η5(a8). It is clear From Fig. 2.4 that H is
an intuitionistic fuzzy hypergraph.

Example 2.2 Consider another example of an intuitionistic fuzzy hypergraph con-
sisting of nine vertices X = {a1, a2, . . . , a9} and two hyperedges E1, E2. The
membership values of vertices are given in (Fig. 2.5) and the membership values
of hyperedges are R({a1, a2, a3, a4, a9}) = (0.3, 0.6) and R({a5, a6, a7, a8, a9}) =
(0.2, 0.5). The corresponding intuitionistic fuzzy hypergraph in shown in Fig. 2.6.

Definition 2.8 An intuitionistic fuzzy set C = (μA, νA) : X → [0, 1] × [0, 1] is an
elementary intuitionistic fuzzy set if A is single valued on supp(A). An intuitionistic
fuzzy hypergraph H = (S, R) is elementary if each ηi ∈ A and R are elementary
otherwise, it is called nonelementary.

Proposition 2.1 Intuitionistic fuzzy graphs are special cases of the intuitionistic
fuzzy hypergraphs.

An intuitionistic fuzzy multigraph is a multivalued symmetric mapping D =
(μD, νD) : V × V → [0, 1]. An intuitionistic fuzzy multigraph can be considered
to be the “disjoint union” or “disjoint sum” of a collection of simple intuitionistic
fuzzy graphs, as is done with crisp multigraphs. The same holds for multidigraphs.
Therefore, these structures can be considered as “disjoint unions” or “disjoint sums”
of intuitionistic fuzzy hypergraphs.
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Fig. 2.4 Intuitionistic fuzzy hypergraph

Fig. 2.5 Table of
intuitionistic fuzzy subsets
on X

y ∈ X η1 η2
a1 (0.5,0.4) (0,1)
a2 (0.6,0.3) (0,1)
a3 (0.4,0.6) (0,1)
a4 (0.3,0.5) (0,1)
a5 (0,1) (0.6,0.3)
a6 (0,1) (0.4,0.3)
a7 (0,1) (0.2,0.4)
a8 (0,1) (0.4,0.3)
a9 (0.5,0.5) (0.5,0.5)

Definition 2.9 An intuitionistic fuzzy hypergraph H = (S, R) is called simple if
every ηi , η j ∈ S, ηi ⊆ η j implies that ηi = η j .

An intuitionistic fuzzy hypergraphH = (S, R) is called support simple if every
ηi , η j ∈ S, ηi ⊆ η j , and supp(ηi ) = supp(η j ) imply that ηi = η j .

An intuitionistic fuzzy hypergraphH = (S, R) is called support simple if every
ηi , η j ∈ S, ηi ⊆ η j , and supp(ηi ) = supp(η j ) imply that ηi = η j .

H = (S, R) is called strongly support simple if every ηi , η j ∈ S, supp(ηi ) =
supp(η j ) imply that ηi = η j .

Remark 2.1 Definition2.9 reduces to familiar definitions in the special case where
H is a crisp hypergraph. The definition of simple intuitionistic fuzzy hypergraph is
identical to the definition of simple crisp hypergraph. A crisp hypergraph is support
simple and strongly support simple if and only if it has no multiple edges. For
intuitionistic fuzzy hypergraphs all three concepts imply no multiple edges. Any
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simple intuitionistic fuzzy hypergraph is support simple and every strongly support
simple intuitionistic fuzzy hypergraph is support simple. Simple and strongly support
simple are independent concepts in intuitionistic fuzziness.

Definition 2.10 Let H = (S, R) be an intuitionistic fuzzy hypergraph on X . For
α, β ∈ [0, 1], 0 ≤ α + β ≤ 1, the (α, β)-level hyperedge of an intuitionistic fuzzy
hyperedge η is defined as

η(α,β) = {u ∈ X |λη(u) ≥ α, τη)(u) ≤ β}.

H(α,β) = (S(α,β), R(α,β)) is called an (α, β)-level hypergraph of H where, S(α,β) is
defined as S(α,β) = ∪r

k=1ηk(α,β).

Definition 2.11 Let H = (S, R) be an intuitionistic fuzzy hypergraph. The
sequence of order pairs (αi , βi ) ∈ [0, 1] × [0, 1], 0 ≤ αi + βi ≤ 1, 1 ≤ i ≤ n, such
that α1 > α2 > · · · > αn , β1 < β2 < · · · < βn satisfying the properties

1. if 1 ≥ α > α1 and 0 ≤ β < β1 then R(α,β) = ∅,
2. if αi+1 < α ≤ αi and βi ≤ β < βi+1 then R(α,β) = R(αi ,βi ),

3. R(αi ,βi ) � R(αi+1,βi+1),

is called fundamental sequence of H , denoted by fs(H ). The corresponding
sequence of (αi , βi )-level hypergraphsH(α1,β1),H(α2,β2), . . . ,H(αn ,βn) is called core
set of H , denoted by C(H ). The (αn, βn)-level hypergraph, H(αn ,βn), is called
support level of H .

Definition 2.12 An intuitionistic fuzzy hypergraph H = (S, R) is called a partial
intuitionistic fuzzy hypergraph ofH ′ = (S′, R′) if following conditions are satisfied

1. supp(S) ⊆ supp(S′) and supp(R) ⊆ supp(R′),
2. if supp(ηi ) ∈ supp(S) and supp(η

′
i ) ∈ supp(S′) such that supp(ηi )=supp(η

′
i )

then ηi = η
′
i .

It is denoted by H ⊆ H ′. An intuitionistic fuzzy hypergraph H = (S, R) is
ordered if the core set C(H ) = {H(α1,β1),H(α2,β2), . . . ,H(αn ,βn)} is ordered, that
is, H(α1,β1) ⊆ H(α2,β2) ⊆ . . . ⊆ H(αn ,βn). H is simply ordered if H is ordered and
whenever, R′ ⊂ R(αi+1,βi+1) \ R(αi ,βi ) then R′

� R(αi ,βi ).

Observation 2.1 Let H be an elementary intuitionistic fuzzy hypergraph then H
is ordered. IfH is ordered intuitionistic fuzzy hypergraph and support levelH(αn ,βn)

is simple then H is an elementary intuitionistic fuzzy hypergraph.

Definition 2.13 LetH = (S, R) andH ′ = (S′, R′) be any two intuitionistic fuzzy
hypergraphs on X and X ′, respectively, where S = {η1, η2, . . . , ηr } and S′ = {η′

1, η
′
2,

. . . , η′
r }. A homomorphism between H and H ′ is a mapping ψ : X → X ′ such that
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1. ∧s
i=1ληi (y) ≤ ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) ≤ ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X ,

3. λR({y1, y2, . . . , ys}) ≤ λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
4. τR({y1, y2, . . . , ys}) ≤ τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2, . . . ,

ys ∈ X.

Definition 2.14 A co-weak isomorphism of two intuitionistic fuzzy hypergraphsH
and H ′ is defined as a bijective homomorphism ψ : X → X ′ such that

1. λR({y1, y2, . . . , ys}) = λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
2. τR({y1, y2, . . . , ys}) = τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2,

. . . , ys ∈ X.

Definition 2.15 A weak isomorphism of two intuitionistic fuzzy hypergraphs H
and H ′ is defined as a bijective homomorphism ψ : X → X ′ such that

1. ∧s
i=1ληi (y) = ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) = ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X .

Definition 2.16 An isomorphism of H and H ′ is a mapping ψ : X → X ′ such
that

1. ∧s
i=1ληi (y) = ∧s

i=1λη′
i
(ψ(y)),

2. ∨s
i=1τηi (y) = ∨s

i=1τη′
i
(ψ(y)), for all y ∈ X ,

3. λR({y1, y2, . . . , ys}) = λR′({ψ(y1), ψ(y2), . . . , ψ(ys)}),
4. τR({y1, y2, . . . , ys}) = τR′({ψ(y1), ψ(y2), . . . , ψ(ys)}), for all y1, y2,

. . . , ys ∈ X.

Example 2.3 Assume that S = {η1, η2, η3, η4} and S′ = {η′
1, η

′
2, η

′
3, η

′
4} are the fami-

lies of intuitionistic fuzzy subsets on X = {a1, a2, . . . , a6} and X ′ = {a′
1, a

′
2, . . . , a

′
6},

respectively, as shown in Tables2.2 and 2.3.
The intuitionistic fuzzy relations R and R′ are defined as R({a1, a3, a4, a6}) =

(0.1, 0.5), R({a1, a2, a3}) = (0.2, 0.5), D({a3, a4}) = (0.5, 0.4), R({a4, a5, a6}) =
(0.1, 0.8) and R′({a′

1, a
′
2, a

′
3, a

′
6}) = (0.1, 0.5),D

′
({a′

1, a
′
3, a

′
4}) = (0.2, 0.5),D

′
({a′

1,

a′
2}) = (0.5, 0.4), R′({a′

2, a
′
5, a

′
6})=(0.1, 0.8). The corresponding intuitionistic

fuzzy hypergraphs are given in Figs. 2.7 and 2.8.

Table 2.2 Intuitionistic fuzzy subsets on X

y ∈ X η1 η2 η3 η4

a1 (0.2, 0.5) (0.2, 0.5) (0, 1) (0, 1)

a2 (0, 1) (0.5, 0.4, 0.4) (0, 1) (0, 1)

a3 (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0, 1)

a4 (0.8, 0.1) (0, 1) (0.8, 0.2) (0.8, 0.2)

a5 (0, 0, 0, 0) (0, 1) (0, 1) (0.1, 0.8)

a6 (0.1, 0.2) (0, 1) (0, 1) (0.1, 0.2)
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Table 2.3 Intuitionistic fuzzy subsets on X ′

y′ ∈ X ′ η′
1 η′

2 η′
3 η′

4

a′
1 (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0, 1)

a′
2 (0.8, 0.2) (0, 1) (0.8, 0.2) (0.8, 0.2)

a′
3 (0.2, 0.5) (0.2, 0.5) (0, 1) (0, 1)

a′
4 (0, 1) (0.5, 0.4) (0, 1) (0, 1)

a′
5 (0, 1) (0, 0, 1) (0, 1) (0.1, 0.8)

a′
6 (0.1, 0.2) (0, 0, 1) (0, 1) (0.1, 0.2)

Fig. 2.6 Intuitionistic fuzzy
hypergraph
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Defineamappingψ : X → X ′ byψ(a1) = a′
3,ψ(a2) = a′

4,ψ(a4) = a′
2,ψ(a3) =

a′
1, ψ(a5) = a′

5, and ψ(a6) = a′
6 then, it can be easily seen that

η1(a1) = (0.2, 0.5) = η′
1(a

′
3) = η′

1(ψ(a1)), η2(a1) = (0.2, 0.5) = η′
2(a

′
3) = η′

2(ψ(a1)),

η2(a2) = (0.5, 0.4) = η′
2(a

′
4) = η′

1(ψ(a2)), η1(a3) = (0.5, 0.4) = η′
1(a

′
1) = η′

1(ψ(a3)).

Similarly, ηi (y) = η′
i (ψ(y)), and R({y1, y2, . . . , ys}) = R′({ψ(y1), ψ(y2), . . . ,

ψ(ys)}), for all y, yi ∈ X . Therefore, H and H ′ are isomorphic.

Definition 2.17 The order and size of an intuitionistic fuzzy hypergraph H =
(S, R) can be defined as

O(H ) =
∑

y∈X
(∧ jλη j (y),∨ jτη j (y)), S(H ) =

∑

E j⊂X

(λR(E j ), τR(E j )).
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Fig. 2.7 Intuitionistic fuzzy
hypergraph H
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Theorem 2.2 For any two isomorphic intuitionistic fuzzy hypergraphs, the order
and size are same.

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be any two intuitionistic fuzzy hyper-
graphswhere, S = {η1, η2, . . . , ηs} and S′ = {η′

1, η2, . . . , η
′
s} are the families of intu-

itionistic fuzzy subsets on X and X ′, respectively. If ψ : X → X ′ is an isomorphism
between H and H ′ then

O(H ) =
∑

y∈X
(∧iληi (y),∨iτηi (y))

=
∑

y∈X
(∧iλη′

i
(ψ(y)),∨iτη′

i
(ψ(y))) =

∑

y′∈X ′
(∧iλη′

i
(y′),∨iτη′

i
(y′)) = O(H ′).

S(H ) =
∑

Ei⊂X

R(Ei ) =
∑

Ei⊂X

R′(ψ(Ei )) =
∑

E ′
i⊂X ′

R′(E ′
i ) = S(H ′).

It completes the proof.

Remark 2.2 The converse of Theorem2.2 does not hold, i.e., if the orders and sizes
of two intuitionistic fuzzy hypergraphs are same then they may not be isomorphic as
given in Example2.4.

Example 2.4 Consider two intuitionistic fuzzy hypergraphs H1 = (S1, R1) and
H2 = (S2, R2) given in Figs. 2.9 and 2.10. By Definition2.17, O(H1) = O(H2) =
(1.8, 1.3) and S(H1) = S(H2) = (0.4, 0.9). The orders and sizes of intuitionistic
fuzzy hypergraphs H1 and H2 but H1 �≈ H2.

Theorem 2.3 The order of any twoweak isomorphic intuitionistic fuzzy hypergraphs
is same.
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Fig. 2.8 Intuitionistic fuzzy
hypergraph H ′
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The proof follows from Definition2.15 and the proof of Theorem2.2.

Theorem 2.4 The size of any two co-weak isomorphic intuitionistic fuzzy hyper-
graphs is same.

The proof follows from Definition2.14 and the proof of Theorem2.2.

Remark 2.3 The intuitionistic fuzzy hypergraphs of same order and size may not
be weak isomorphic and co-weak isomorphic, respectively, i.e., the converse of
Theorems2.3 and 2.4 is not true in general as shown in Example2.5.

Example 2.5 Let H1 = (S1, R1) and H2 = (S2, R2) be two intuitionistic fuzzy
hypergraphs as shown in Figs. 2.11 and 2.12 where R1 = {η11, η12, η13} and R2 =
{η21, η22, η23}. Clearly,O(H1) = O(H2) = (1.6, 1.7) and S(H1) = S(H2) = (0.5,
1.3). Define a mapping ψ : X1 → X2 by ψ(u1) = u2, ψ(v1) = v2, ψ(x1) = x2,
ψ(y1) = y2, ψ(z1) = z2. But λη12(u1) = 0.5 � 0.2 = λη22(u2) so, H1 and H2 are
not weak isomorphic. Similarly, λR1({v1, y1}) = 0.2 � λR2({ψ(v1), ψ(y1)}) = 0.
Hence, H1 and H2 are not co-weak isomorphic.

Definition 2.18 For any intuitionistic fuzzy hypergraph, the degree of a vertex y is
defined as, deg(y) = ∑

y∈Ei⊆X R(Ei ).
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Fig. 2.10 Intuitionistic
fuzzy hypergraph H2
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Fig. 2.11 Intuitionistic
fuzzy hypergraph H1
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Theorem 2.5 The degree of vertices of isomorphic intuitionistic fuzzy hypergraphs
is preserved.

Proof Let ψ : X → X ′ be an isomorphism of intuitionistic fuzzy hypergraphs
H and H ′ where, X = {y1, y2, . . . , yn} and X ′ = {y′

1, y
′
2, . . . , y

′
n}. Then Defini-

tion2.18 implies that

deg(yi ) =
∑

yi∈Ei⊆X
R(Ei ) =

∑

yi∈Ei

R′(φ(Ei )) = deg(ψ(yi )).

Remark 2.4 If the degrees of vertices of any two intuitionistic fuzzy hypergraphs is
preserved then they may not be isomorphic as it is proved in Example2.6.
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Fig. 2.12 Intuitionistic
fuzzy hypergraph H2
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Fig. 2.13 Intuitionistic
fuzzy hypergraph H
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Example 2.6 Consider two intuitionistic fuzzy hypergraphsH = (S, R) andH ′ =
(S′, R′) as given in Figs. 2.13 and 2.14. Define amappingψ : X → X ′ byψ(u) = u′,
ψ(v) = x ′, ψ(x) = v′, ψ(y) = y′, ψ(z) = z′. Routine calculations show that

deg(u) = (0.2, 0.5) = deg(φ(u)), deg(v) = (0.3, 1.0) = deg(φ(v)).

The degree of all other vertices is also preserved but R({x, y, v}) �= R′({ψ(x),
ψ(y), ψ(v)}). Hence, H and H ′ are not isomorphic to each other.

Theorem 2.6 The relation of isomorphism between intuitionistic fuzzy hypergraphs
is an equivalence relation.

Proof Assume thatH1 = (S1, R1),H2 = (S2, R2) andH3 = (S3, R3) are intuition-
istic fuzzyhypergraphs on X1, X2 and X3, respectively,where S1={η11, η12, . . . , η1s},
S2 = {η21, η22, . . . , η2s} and S3 = {η31, η32, . . . , η3s}.
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Fig. 2.14 Intuitionistic
fuzzy hypergraph H ′
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y
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1. Reflexivity: Define an identity mapping I : X1 → X1 by I (y1) = y1 for all y1 ∈
X1. Clearly I is bijective an
(∧ jλη1 j (y1),∨ jτη1 j (y1)) = (∧ jλη1 j (I (y1)),∨ jτη1 j (I (y1))) and R1(E1i ) = R1(I
(E1i )), for all y1 ∈ X1, E1i ⊆ X1.
So, I is an isomorphism of an intuitionistic fuzzy hypergraph to itself.

2. Symmetry: Let ψ : X1 → X2 be an isomorphism defined by ψ(y1) = y2. Since
ψ is bijective therefore, the inverse bijectivemappingψ−1 : X2 → X1 exists such
that ψ(y2) = y1 for all y2 ∈ X2. Then

(∧ jλη2 j (y2),∨ jτη2 j (y2)) = (∧ jλη2 j (ψ(y1)),∨ jτη2 j (ψ(y1))),

= (∧ jλη1 j (y1),∨ jτη1 j (y1)),

= (∧ jλη1 j (ψ
−1(y2)),∨ jτη1 j (ψ

−1(y2))).

R2(E2 j ) = R2(ψ(E1 j )) =R1(E1 j ) = R1(ψ
−1(E2 j )), E1 j ⊆ X1, E2 j ⊆ X2.

Thus, ψ−1 is an isomorphism.
3. Assume that ψ1 : X1 → X2, ψ2 : X2 → X3 are isomorphisms of H1 onto H2

andH2 ontoH3, respectively, such that ψ1(y1) = y2 and ψ2(y2) = y3. By Defi-
nition2.16
∧ jλη1 j (y1) = ∧ jλη2 j (y2) = ∧ jλη3 j (ψ(y2)) = ∧ jλη3 j (ψ2(ψ1(y1))) = ∧ jλη3 j (ψ2 ◦ ψ1(y1)),

∨ j τη1 j (y1) = ∨ j τη2 j (y2) = ∨ j τη3 j (ψ(y2)) = ∨ j τη3 j (ψ2(ψ1(y1))) = ∨ j τη3 j (ψ2 ◦ ψ1(y1)),

R1(E1 j ) = R2(E2 j ) = R3(ψ2(E2 j )) = R3(ψ2(ψ1(E1 j ))) = R3(ψ2 ◦ ψ1(E1 j )).

where, E1 j ⊆ X1, E2 j ⊆ X2 and E3 j ⊆ X3. Clearly, ψ2 ◦ ψ1 is an isomorphism
fromH1 ontoH3. Hence, isomorphism of intuitionistic fuzzy hypergraphs is an
equivalent relation.

Theorem 2.7 The relation of weak isomorphism between intuitionistic fuzzy hyper-
graphs is a partial order relation.
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Fig. 2.15 Intuitionistic
fuzzy hypergraph H
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The proof follows from Definition2.15 and the proof of Theorem2.6.

Definition 2.19 An intuitionistic fuzzy hyperpath P of length m in an intuitionis-
tic fuzzy hypergraph is defined as a sequence y1, E1, y2, E2, . . . , ym, Em, ym+1 of
distinct vertices yi ’s and hyperedges Ei ’s such that

1. λR(Ei ) > 0, for each 1 ≤ i ≤ m,
2. yi , yi+1 ∈ Ei , for each 1 ≤ i ≤ m.

If ym = ym+1 then, P is called an intuitionistic fuzzy hypercycle.

Example 2.7 Let H = (S, R) be an intuitionistic fuzzy hypergraph as shown in
Fig. 2.15. The sequence y5, E3, y6, E2, y4, E1, y1, E4, y8 is an intuitionistic fuzzy
hyperpath and y8, E2, y4, E1, y8 is an intuitionistic fuzzy hypercycle.

Definition 2.20 An intuitionistic fuzzy hypergraph H = (S, R) on a non-empty
set X is connected if every two distinct vertices inH are joined by an intuitionistic
fuzzy hyperpath.

Definition 2.21 Let y and z be two distinct vertices of an intuitionistic fuzzy hyper-
graph H which are joined by an intuitionistic fuzzy hyperpath y= y1, E1, y2,
E2, . . . , yp, Ep, yp+1 = z of length p. The strength of intuitionistic fuzzy hyper-
path y − z is denoted by Sp(y, z) = (λSp (y, z), τSp (y, z)) and defined as,

λSp (y, z) = λR(E1) ∧ λR(E2) ∧ . . . ∧ λR(Ep),

τSp (y, z) = τR(E1) ∨ τR(E2) ∨ . . . ∨ τR(Ep), u ∈ E1, v ∈ Ep.

The strength of connectedness between y and z is denoted by S∞(y, z) = (λS∞(y, z),
τS∞(y, z)) and defined as
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λS∞ (y, z) = sup
p

{λS p (y, z)|p = 1, 2, . . .}, τS∞(y, z) = inf
p

{τS p (y, z)|p = 1, 2, . . .}.

Theorem 2.8 An intuitionistic fuzzy hypergraph H is connected if and only if
λS∞(y, z) > 0, for all y, z ∈ X.

Proof Suppose that H is a connected intuitionistic fuzzy hypergraph then for any
two distinct vertices y and z, there exists an intuitionistic fuzzy hyperpath y − z such
that

λSp (y, z) > 0 ⇒ sup
p

{λSp (y, z)|p = 1, 2, . . .} > 0 ⇒ λS∞(y, z) > 0.

We can prove the converse part on the same lines as above.

Definition 2.22 A strong intuitionistic fuzzy hypergraph on a non-empty set X is an
intuitionistic fuzzy hypergraph H = (S, R) such that for all Ei = {y1, y2, . . . , yr }
∈ E ,

R(Ei ) = (
r

min
j=1

[∧iληi (y j )], r
max
j=1

[∨iτηi (y j )]).

Definition 2.23 A complete intuitionistic fuzzy hypergraph on a non-empty set X is
an intuitionistic fuzzy hypergraphH = (S, R) such that for all y1, y2, . . . , yr ∈ X ,

R(Ei ) = (
r

min
j=1

[∧iληi (y j )], r
max
j=1

[∨iτηi (y j )]).

Theorem 2.9 For any two intuitionistic fuzzy hypergraphsH1 andH2,H1 is con-
nected if and only ifH2 is connected.

Proof Let E1 = {E11, E21, . . . , Er1} and E2 = {E12, E22, . . . , Er2} be the families
of hyperedges if intuitionistic fuzzy hypergraphsH1 = (S1, R1) andH2 = (S2, R2),
respectively. Assume that ψ : X1 → X2 is an isomorphism ofH1 ontoH2 and that
H1 is connected then

0 < λS∞
1
(y1, z1) = sup

p
{∧p

k=1λR1(Ek1), p = 1, 2, . . .}
= sup

p
{∧p

k=1λR2(ψ(Ek1)), p = 1, 2, . . .}
= λS∞

2
(φ(y1), φ(z1)).

It follows that H2 is connected. The converse part can be proved similarly.

Theorem 2.10 For any two intuitionistic fuzzy hypergraphs H1 and H2, H1 is
strong if and only if H2 is strong.

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be the intuitionistic fuzzy hypergraphs
as defined in Theorem2.9. Assume that H1 is strong then
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R2(Ei2) = R2(ψ(Ei1)) = R1(Ei1) = (
r

min
j=1

[∧ jλη j1(y j1)], r
max
j=1

[∨ jτη j1(y j1)])

= (
r

min
j=1

[∧ jλη j2(ψ(y j1)], r
max
j=1

[∨ jτη j2(ψ(y j1))]).
(2.2)

Equation2.2 clearly shows that H2 is strong. Similarly, the converse part.

Definition 2.24 An intuitionistic fuzzy line graph of an intuitionistic fuzzy hyper-
graph H = (S, R) is a pair L(H ) = (Sl , Rl) where, Sl = R and two vertices Ei

and Ek in L(H ) are connected by an edge if |supp(ηi ) ∩ supp(ηk)| ≥ 1 where,
R(Ei ) = ηi and R(Ek) = ηk . The membership values of sets of vertices and edges
are defined as

1. Sl(Ei ) = R(Ei ),
2. Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek)).

The method for the construction of an intuitionistic fuzzy line graph from an intu-
itionistic fuzzy hypergraph is explained in Algorithm 2.2.1.

Algorithm 2.2.1 The construction of an intuitionistic fuzzy line graph

1. Input the number of edges n of an intuitionistic fuzzy hypergraph H = (S, R).
2. Input the degrees of membership of the hyperedges E1, E2, . . . , Es .
3. Construct an intuitionistic fuzzy graph L(H ) = (Sl , Rl) whose vertices are the

s hyperedges E1, E2, . . . , Es such that Sl(Ei ) = R(Ei ).
4. If |supp(ηi ) ∩ supp(ηk)| ≥ 1 then, draw an edge between Ei and Ek and

Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek)).

Example 2.8 An example of an intuitionistic fuzzy hypergraph is shown in Fig. 2.16.
The intuitionistic fuzzy line graph is constructed using Algorithm 2.2.1 and repre-
sented with dashed lines.

Definition 2.25 An intuitionistic fuzzy hypergraph is known as linear intuitionistic
fuzzy hypergraph if

supp(ηi ) ⊆ supp(ηk) ⇒ i = k and |supp(ηi ) ∩ supp(ηk)| ≤ 1.

Theorem 2.11 The intuitionistic fuzzy line graph L(H ) of an an intuitionistic fuzzy
hypergraph H is connected if and only ifH is connected.

Proof LetH = (S, R) be a connected intuitionistic fuzzy hypergraph and L(H ) =
(Sl, Rl). Assume that Ei and Ek are two vertices in L(H ) such that yi ∈ Ei , yk ∈
Ek and yi �= yk . By Definition2.20, there exists an intuitionistic fuzzy hyperpath
yi , Ei , yi+1, Ei+1, . . . , Ek, yk between yi and yk . Using Definition2.21, we have
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Fig. 2.16 Intuitionistic
fuzzy line graph L(H )
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λS∞(Ei , Ek) = sup{λS p (Ei , Ek)|p = 1, 2, . . .}
= sup{λRl (Ei Ei+1) ∧ λRl (Ei+1Ei+2) ∧ . . . ∧ λRl (Ek−1Ek)|p = 1, 2, . . .}
= sup{λR(Ei ) ∧ λR(Ei+1) ∧ . . . ∧ λR(E j )|p = 1, 2, . . .}
= sup{λS p (yi , yk)|p = 1, 2, . . .} = λS∞(yi , yk) > 0.

Hence, L(H ) is connected. Similarly, if L(H ) is connected then it can be easily
proved that H is connected.

Definition 2.26 The 2-section of an intuitionistic fuzzy hypergraphH = (S, R) is
denoted by [H ]2 = (S,U ) and defined as an intuitionistic fuzzy graph whose set of
vertices is same asH andU is an intuitionistic fuzzy set on {yi yk |yi , yk ∈ Ep, p =
1, 2, . . .}, i.e., any two vertices of the same hyperedge are joined by an edge and

U (yi yk) = (min{∧pληp (yi ),∧pληp (yk)},max{∨pτηp (yi ),∨pτηp (yk)}).

Example 2.9 An example of a 2-section of an intuitionistic fuzzy hypergraph is
shown in Fig. 2.17. The 2-section of H is represented with dashed lines.

Definition 2.27 Let H = (S, R) be an intuitionistic fuzzy hypergraph on X then
the dual of H is denoted byH D = (SD, RD) and it is defined as
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Fig. 2.17 2-section of an intuitionistic fuzzy hypergraph

1. SD = R is the intuitionistic fuzzy set of vertices of H D.

2. If |X | = n then, RD is an intuitionistic fuzzy set on the family of hypeedges
{X1, X2, . . . , Xn}ofH D such that Xk = {Ei |yk ∈ Ei , Ei is a hyperedge ofH }.
That is, Xk is the collection of those hyperedges which have a common vertex yk
and

RD(Xk) = (min{λR(Ei )|yk ∈ Ei },max{τR(Ei )|yk ∈ Ei }).

The method for the construction of dual of an intuitionistic fuzzy hypergraph is
presented in Algorithm 2.2.2.

Algorithm 2.2.2 The construction of dual of an intuitionistic fuzzy hypergraph

1. Input {y1, y2, . . . , yn}, the set of vertices and {E1, E2, . . . , Er }, the set of hyper-
edges ofH .

2. Construct an intuitionistic fuzzy set of vertices of H D by defining SD = R.
3. Draw a mapping g : X → E between sets of vertices and hyperedges. That is,

if a vertex yi belongs to Ek, Ek+1, . . . , Er then map yi to Ek, Ek+1, . . . , Er as
drawn in Fig. 2.18.

4. Construct a new family of hyperedges {X1, X2, . . . , Xn} of H D such that
Xi = {Ek |g(yi ) = Ek} and RD(Xi ) = (min{λR(Ek)|g(yi ) = Ek},max{τR(Ek)|
g(yi ) = Ek}).

Example 2.10 An intuitionistic fuzzy hypergraph H on X = {y1, y2, y3, y4, y5}
with a set of hyperedges E = {E1, E2, E3, E4, E5} is shown in Fig. 2.19. The dual
of H is represented by dashed lines with vertices E1, E2, E3, E4, E5 and a family
of hyperedges {X1, X2 = X3, X4, X5}.
Theorem 2.12 For any intuitionistic fuzzy hypergraph H , [H D]2 = L(H ).
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Fig. 2.18 Mapping between sets of vertices and hyperedges
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Fig. 2.19 Dual of an intuitionistic fuzzy hypergraph H

Proof LetH = (S, R)be an intuitionistic fuzzyhypergraphon X ={y1, y2, . . . , yn}
with a family of hyperedges {E1, E2, . . . , Es}. Assume that L(H ) = (Sl , Rl),
H D = (SD, RD) and [H D]2 = (SD,U ). The 2-section [H D]2 has the intuitionis-
tic fuzzy vertex set R which is also an intuitionistic fuzzy vertex set of L(H ). Sup-
pose {X1, X2, . . . , Xn} is the family of hyperedges ofH D . Clearly {Ei Ek |Ei , Ek ∈
Xi } is the set of edges of [H D]2 which the set of edges of L(H ). It remains to show
that Rl(Ei Ek) = U (Ei Ek).
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Rl(Ei Ek) = (λR(Ei ) ∧ λR(Ek), τR(Ei ) ∨ τR(Ek))

= (λSD (Ei ) ∧ λSD (Ek), τSD (Ei ) ∨ τSD (Ek))

= U (Ei Ek).

Theorem 2.13 For any two isomorphic intuitionistic fuzzy hypergraphsH1 andH2,
ifH1 � H2 then H D

1 � H D
2 .

Proof LetH1 = (S1, R1) andH2 = (S2, R2) be two isomorphic intuitionistic fuzzy
hypergraphs on X1 = {y11, y12, . . . , y1n} and X2 = {y21, y22, . . . , y2n}, respectively.
Takeψ : X1 → X2 as an isomorphism ofH1 ontoH2. Let {X11, X12, . . . , X1n} and
{X21, X22, . . . , X2n} be the families of hyperedges ofH D

1 andH D
2 . Also, let E1 and

E2 be the families of hyperedges ofH1 andH2 then define a mapping φ : E1 → E2.
It is to be shown that ψ is an isomorphism. For each E1k ∈ E1 and E2k ∈ E2

SD
1 (E1k) = R1(E1k) = R2(ψ(E1k)) = R2(E2k) = SD

2 (φ(E1k)).

RD
1 (X1k ) = (λR1 (E1k ) ∧ λR1 (E1k+1) ∧ . . . ∧ λR1 (E1l ), τR1 (E1k ) ∨ τR1 (E1k+1) ∨ . . . ∨ τR1 (E1l )),

= (λR2 (φ(E1k )) ∧ λR2 (φ(E1k+1)) ∧ . . . ∧ λR2 (φ(E1l )),

τR2 (φ(E1k )) ∨ τR2 (φ(E1k+1)) ∨ . . . ∨ τR2 (φ(E1l ))),

= RD
2 (X2k ) = RD

2 (ψ(X1k )).

Hence, H D
1 � H D

2 .

Theorem 2.14 The dualH D of a linear intuitionistic fuzzy hypergraphH is also
linear.

Proof Let H = (S, R) and H D = (SD, RD). On contrary, assume that H D is
not a linear intuitionistic fuzzy hypergraph then there exist Xi and Xk such that
|supp(ξi ) ∩ supp(ξk)| = 2 where, RD(Xi ) = ξi and RD(Xk) = ξk . Assume that
supp(ξi ) ∩ supp(ξk) = {Et , Es}. The definition of duality ofH D follows that there
exist yi , yk ∈ X such that yi , yk ∈ Et and yi , yk ∈ Es . A contradiction to the given
statement that H is linear. Hence, H D is a linear intuitionistic fuzzy hypergraph.

2.3 Applications of Intuitionistic Fuzzy Hypergraphs

Graph theory has proved very useful for solving combinatorial problems of computer
science and communication networks. To expand the origin of these applications,
graphswere further extended tohypergraphs tomodel complex systemswhich arise in
operation research, networking, and computer science. In some situations, the given
data is fuzzy in nature and contains information about the existence and somewhere
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non-existence of uncertainty. The intuitionistic fuzzy hypergraphs can be used to
formulate these concepts of existence and non-existence of uncertainty in a more
generalized form as hypergraphs and intuitionistic fuzzy graphs can do. We now
discuss some applications of intuitionistic fuzzy hypergraphs in social networking,
chemistry, and planet surface networks.

2.3.1 The Intersecting Communities in Social Network

Nowadays, social networks have become the widely studied areas of research. Social
networks are used to represent the lower and higher level interconnections among
several communities belonging to social, as well as biological networks. People
in society are connected to multiple areas which make them the part of various
communities such as companies, universities, colleges, and offices etc. Consider the
problem of grouping of authors according to their field of interest. An author can be
different from the other regarding his/her critical writing.We present an intuitionistic
fuzzy hypergraph H = (B, A) in which the vertices are authors and membership
value of each author represents the degree of good writing and nonmembership value
represents that the author’s critical writing is not so good. Each hyperedge is the
collection of those authors who belong to the same field of interest. The membership
value of each hyperedge depicts the commonability of good criticalwriting of authors
and nonmembership value shows the bad writing ability. An example is shown in
Fig. 2.20.

The intuitionistic fuzzy hypergraph model can be used for the selection of authors
having best writing ability in each field. The method for the selection of authors with
best writing is given in Algorithm 2.3.1.
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Fig. 2.20 Intuitionistic fuzzy social hypergraph
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Algorithm 2.3.1 Selection of authors in an intuitionistic fuzzy social networkmodel

1. Input the set of vertices (authors) y1, y2, . . . , yn .
2. Input the intuitionistic fuzzy set S of vertices such that S(yi ) = (λi , τi ), 1 ≤ i ≤

n.
3. Input the adjacency matrix ξ = [(λi j , τi j )]n×n of vertices.
4. do i from 1 → n
5. Ci = 0
6. do j from 1 → n
7. πi j = 1 − λi j − τi j

8. Si j =
√

λ2i j + π2
i j + (1 − τi j )2

9. Ci = Ci + Si j
10. end do
11. πi = 1 − λi − τi

12. Ci = Ci +
√

λ2
i + π2

i + (1 − τi )2

13. end do
14. Using Algorithm 2.2.1, construct the adjacency matrix ξl of intuitionistic fuzzy

line graph L(H ) of intuitionistic fuzzy hypergraphH whose adjacency matrix
is ξ .

15. Compute the score and choice values of all vertices (fields) in L(H ) using steps
4–13.

16. Choose a vertex (field) E in L(H ) with maximum choice value.
17. Select a vertex of hyperedge E inH with maximum choice value which is the

best option.

The adjacency matrix of Fig. 2.20 is given in Table2.4. The score values of intuition-
istic fuzzy hypergraph are computed using score function Si j =

√
λ2i j + π2

i j + (1 − τi j )2

and the choice values Ci = ∑

j
Si j +

√
λ2
i + π2

i + (1 − τi )2 are given in Table2.5

where, for any twovertices yi , y j ∈ E (E is a hyperedge), (λi j , τi j ) = (λA(E), τA(E)),
(λi , τi ) = (λB(yi ), τB yi ).

The intuitionistic fuzzy line graph of Fig. 2.20 is shown in Fig. 2.21.
The adjacency matrix of Fig. 2.21 in given in Table2.6. The score and choice values
of Fig. 2.21 are calculated in Table2.7.

The choice values in Table2.7 show that the company can gainmaximumbenefit if
it publishes articles and books on Psychology. There are three authors of Psychology,
George, Raina, and Adney. The choice values of Table2.7 show that Adney is the
best author of Psychology. The best authors for all the fields are given in Table2.8
which clearly shows that Raina, Adney, and Merry are the suitable options for all
fields.
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Table 2.4 Adjacency matrix

ξ Roma George Ozeti Raina Adney Grey Merry John Bill Tom

Roma (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

George (0.6,
0.4)

(0, 1) (0.7,
0.3)

(0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Ozeti (0, 1) (0.7,
0.3)

(0, 1) (0.7,
0.3)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Raina (0.6,
0.4)

(0.6,
0.4)

(0.7,
0.3)

(0, 1) (0.7,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Adney (0, 1) (0, 1) (0, 1) (0.7,
0.2)

(0, 1) (0.5,
0.5)

(0.5,
0.5)

(0, 1) (0.4,
0.5)

(0.4,
0.5)

Grey (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.5)

(0, 1) (0.5,
0.5)

(0, 1) (0, 1) (0, 1)

Merry (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.5)

(0.5,
0.5)

(0, 1) (0.5,
0.3)

(0, 1) (0.5,
0.3)

John (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.5,
0.3)

(0, 1) (0, 1) (0.5,
0.3)

Bill (0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

(0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

Tom (0, 1) (0, 1) (0, 1) (0, 1) (0.4,
0.5)

(0, 1) (0.5,
0.3)

(0.5,
0.3)

(0.4,
0.5)

(0, 1)

Table 2.5 Score and choice values

Si j Roma George Ozeti Raina Adney Grey Merry John Bill Tom Ci

Roma 0 0.8485 0 0.8485 0 0 0 0 0 0 2.8284

George 0.8485 0 0.9899 0.8485 0 0 0 0 0 0 3.6768

Ozeti 0 0.9899 0 0.9899 0 0 0 0 0 0 2.9697

Raina 0.8485 0.8485 0.9899 0 1.0677 0 0 0 0 0 4.8223

Adney 0 0 0 1.0677 0 0.7071 0.7071 0 0.6481 0.6481 4.3438

Grey 0 0 0 0 0.7071 0 0.7071 0 0 0 2.1213

Merry 0 0 0 0 0.7071 0.7071 0 0.8832 0 0.8832 4.1705

John 0 0 0 0 0 0 0.8832 0 0 0.8832 2.6938

Bill 0 0 0 0 0.6481 0 0 0 0 0.6481 1.9443

Tom 0 0 0 0 0.6481 0 0.8832 0.8832 0.6481 0 4.1303

2.3.2 Planet Surface Networks

There are various types of satellites in space for network communication and explo-
ration of planets. Hypergraphs are a key tool to model such communication links
among surface networks and satellites. There exist disturbance and uncertainty in
planet surface communication due to climate change and electrical interference of
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Table 2.6 Adjacency matrix of intuitionistic fuzzy line graph

ξl British
fiction

Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

British
Fiction

(0, 1) (0.6,0.3) (0.6,0.2) (0, 1) (0, 1) (0, 1)

Sociology (0.6,0.3) (0, 1) (0.7,0.2) (0, 1) (0, 1) (0, 1)

Psychology (0.6,0.2) (0.7,0.2) (0, 1) (0.5, 0.2) (0.4, 0.2) (0, 1)

Information
Theory

(0, 1) (0, 1) (0.5, 0.2) (0, 1) (0.4, 0.5) (0.5,0.3)

Mechanical
Projects

(0, 1) (0, 1) (0.4, 0.2) (0.4, 0.5) (0, 1) (0.4,0.3)

Mathematical
Modeling

(0, 1) (0, 1) (0.4, 0.2) (0.5, 0.5) (0.4, 0.5) (0, 1)

Table 2.7 Score and choice values of intuitionistic fuzzy line graph

Si j British
fiction

Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

C j

British Fiction 0 0.9274 1.0198 0 0 0 2.7957

Sociology 0.9274 0 1.0677 0 0 0 2.9850

Psychology 1.0198 1.0677 0 0.9899 0.9798 0 5.1249

Information
Theory

0 0 0.9899 0 0.6481 0.8832 3.2283

Mechanical
Projects

0 0 0.9798 0.6481 0 0.8602 3.1362

Mathematical
Modeling

0 0 0.9798 0.7071 0.6481 0 3.2010

Table 2.8 Authors with best and critical writing

British Fiction Sociology Psychology Information
theory

Mechanical
projects

Mathematical
modeling

Raina Raina Raina Adney Adney Merry

devices. This type of uncertainty in planet surface networks can be modeled using
intuitionistic fuzzy hypergraphs as given in Fig. 2.22.

The circular dots denote the wireless devices on Earth, square style vertices show
the satellites and diamond style vertices show the Earth gateway links. The member-
ship value of each vertex represents the degree of disturbance in signal communi-
cation due to climate change and electrical interference. The nonmembership value
shows the falsity of disturbance in signal communication. The membership value of
each hyperedge represents the disturbance in corresponding access point. This is an
application of intuitionistic fuzzy hypergraphs in planet surface networks and this
model can be expanded to large-scale networks.
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Fig. 2.21 Intuitionistic fuzzy line graph of Fig. 2.20
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Fig. 2.22 Planet surface communication model

2.3.3 Grouping of Incompatible Chemical Substances

In thismodernworld, chemical engineers are tryingday andnight to save the economy
by converting rawmaterials into useful products. Various types of chemicals are used
for this purpose. Chemical industries are producing a variety of chemicals to be used
by other companies to produce different products. But the major problem is to store
the chemicals in order to avoid the accidental mixing to prevent chemical explosions,
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Fig. 2.23 Grouping of incompatible chemicals

oxygen deficiency, and dangerous toxic gases. Intuitionistic fuzzy hypergraphs can
be used to model the chemicals in different groups to study the degree of disaster
that could happen due to the accidental chemical reactions. An example is shown in
Fig. 2.23 in which the vertices represent the chemicals.

Each hyperedge is the collection of those chemicals which can explode when
mixed together. The membership value of each chemical show the degree of violent
explosion and oxygen deficiency when reacted with various other chemicals. The
nonmembership value represents the weakness of disaster. The membership and
nonmembership value of each hyperedge represents the strength and weakness of
disaster that cause due to chemical reaction. The degree of membership of Sodium
is (0.8, 0.2)which shows that sodium is 80% explosive and 20% not explosive when
mixed with other chemicals. Intuitionistic fuzzy hypergraphs can also be used for
the classification of chemicals which are the most and least destructive in the given
group. The method for the computation of such chemicals follows from steps 1–13
of Algorithm 2.3.1. The adjacency matrix of Fig. 2.23 is given in Table2.9. The score
values and choice of chemicals are computed in Table2.10.
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Table 2.9 Adjacency matrix of Fig. 2.23

ξ Hyd
acid

Alkai
metal

Sod Potas Water Nak
alloy

Glyc Nitric
acid

Cell
nitrat

Isop
alcho

Acetic
acid

Acet Ethan

Hyd
acid

(0, 1) (0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Alkai
metal

(0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0.3,
0.7)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Sod (0, 1) (0.3,
0.7)

(0, 1) (0.8,
0.2)

(0.8,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Potas (0, 1) (0, 1) (0.8,
0.2)

(0, 1) (0.3,
0.6)

(0.3,
0.6)

(0.5,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Water (0, 1) (0.3,
0.7)

(0.8,
0.2)

(0.8,
0.2)

(0, 1) (0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Nak
alloy

(0, 1) (0, 1) (0, 1) (0.3,
0.6)

(0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Water (0, 1) (0.3,
0.7)

(0.8,
0.2)

(0.8,
0.2)

(0, 1) (0.3,
0.6)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Glyc (0, 1) (0, 1) (0, 1) (0.5,
0.4)

(0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0, 1)

Nitric
acid

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0.7,
0.2)

(0.6,
0.4)

(0.6,
0.4)

(0.6,
0.4)

Cell
nitrat

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

(0.7,
0.2)

(0.6,
0.4)

(0.6,
0.4)

(0.6,
0.4)

Isop
alcho

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.7,
0.2)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Acetic
acid

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

Acet (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0.6,
0.4)

Ethan (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0.6,
0.4)

(0, 1) (0, 1) (0.6,
0.4)

(0.6,
0.4)

(0, 1)

The score value 0 of some pair of chemicals show that they have no relation in
given intuitionistic fuzzy hypergraph. There could be a little hazard due to themixing
of these chemicals. It can be studied on large-scale because it is not in the scope of
this article. Table2.10 shows that Nitric Acid and Cellulus Nitrating are the most
explosive chemicals in the given group. These should be stored separately.

2.3.4 Radio Coverage Network

A hypernetwork M is a network whose underlying structure is a hypergraph H∗, in
which each vertex vi corresponds to a unique processor pi of M , and each hyper-
edge e∗

j corresponds to a connector that connects processors represented by the ver-
tices in e∗

j . A connector is loosely defined as an electronic or a photonic component
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throughwhichmessages are transmitted between connected processors, not necessar-
ily simultaneously. We call a connector a hyperlink. Unlike a point-to-point network,
in which a link is dedicated to a pair of processors, a hyperlink in a hypernetwork is
shared by a set of processors. A hyperlink can be implemented by a bus or a crossbar
switch. Current optical technologies allow a hyperlink to be implemented by optical
waveguides in a foldedbus using time-division multiplexing (TDM). Freespace opti-
cal or optoelectronic switching devices such as bulk lens, microlens array, and spatial
light modulator (SLM) can also be used to implement hyperlinks. A star coupler,
which uses wavelength-division multiplexing (WDM), can be considered either as
a generalized bus structure or as a photonic switch, is another implementation of a
hyperlink. Similarly, an ATM switch, which uses a variant TDM, is a hyperlink.

In telecommunications, the coverage of a radio station is the geographic area
where the station can communicate.

Example 2.11 (Radio Coverage Network) Let X be a finite set of radio receivers
(vertices); perhaps a set of representative locations at the centroid of a geographic
region. For each of m radio transmitters we define the intuitionistic fuzzy set “lis-
tening area of station j” where A j (x) = (μ j (x), ν j (x)) represents the “quality of
reception of station j at location x . The membership and nonmembership values
near 1 and 0, respectively, could signify “very clear reception on a very poor radio”
while membership and nonmembership values near 0 and 1, respectively, could sig-
nify “very poor reception on even a very sensitive radio”. Also, for a fixed radio
the reception will vary between different stations. The stations can be considered as
hyperedges. The membership and nonmembership values of the hyperedge indicate
the clear and poor communication between stations. This model uses the full defi-
nition of an intuitionistic fuzzy hypergraph. The model could be used to determine
station programming or marketing strategies or to establish an emergency broadcast
network (is there a minimal subset of stations that reaches every radio with at least
strength?). Further variables could relate signal strength to changes in time of day,
weather and other conditions.

2.3.5 Clustering Problem

A cluster is two or more interconnected computers that create a solution to provide
higher availability, higher scalability or both. The advantage of clustering computers
for high availability is seen if one of these computers fails, another computer in the
cluster can then assume the workload of the failed computer. The users of the system
see no interruption of access. The advantages of clustering computers for scalability
include increased application performance and the support of a greater number of
users.

Definition 2.28 Let X be a reference set. A family of nontrivial intuitionistic fuzzy
sets {A1, A2, A3, . . . , Am}, where Ai = (μi , νi ), is an intuitionistic fuzzy partition if

1.
⋃

i supp(Ai ) = X , i = 1, 2, . . . ,m,
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Table 2.11 Intuitionistic fuzzy partition matrix

H At Bh

x1 (0.96, 0.04) (0.04, 0.96)

x2 (1, 0) (0, 1)

x3 (0.61, 0.39) (0.39, 0.61)

x4 (0.05, 0.95) (0.95, 0.05)

x5 (0.03, 0.97) (0.97, 0.03)

2.
∑m

i=1 μi (x) = 1, for all x ∈ X,

3. There is at most one i such that νi (x) = 0, for all x ∈ X , (there is at most one
intuitionistic fuzzy set such that μi (x) + νi (x) = 1, for all x).

Note that, this definition generalizes fuzzy partitions because the definition is
equivalent to a fuzzy partition when for all x , νi (x) =0.We call a family {A1, A2, A3,

. . . , Am} an intuitionistic fuzzy covering of X if it satisfies above conditions 1 − 2.
The concept of intuitionistic fuzzy partition is essential for cluster analysis. An

intuitionistic fuzzy partition can be represented by an intuitionistic fuzzy matrix
[ai j ]5×5 where ai j is the membership degree and nonmembership degree of element
xi in class j.Wesee that thismatrix is the same as the incidencematrix in intuitionistic
fuzzy hypergraph. Then, we can represent an intuitionistic fuzzy partition by an
intuitionistic fuzzy hypergraph H = (S, R) such that

1. X : A set of elements xi , i = 1, 2, . . . , n.
2. S = {η1, η2, . . . , ηm}: A set of nontrivial intuitionistic fuzzy classes.
3. X = ⋃

j supp(η j ), j = 1, 2, . . . ,m.

4. An intuitionistic fuzzy relation R on intuitionistic fuzzy classes ηi ’s satisfying
Definition2.7.

5.
∑m

i=1 μi (x) = 1, for all x ∈ X .
6. There is at most one i such that νi (x) = 0, for all x ∈ X ,that is, there is at most

one intuitionistic fuzzy set such that μi (x) + νi (x) = 1 for all x ∈ X .

Note that conditions 5–6 are added to intuitionistic fuzzy hypergraph for intuitionistic
fuzzy partition. If these conditions are added, the intuitionistic fuzzy hypergraph can
represent an intuitionistic fuzzy covering. Naturally, we can apply the (α, β)-cut to
the intuitionistic fuzzy partition.

Example 2.12 We consider the clustering problem which is a typical example of
an intuitionistic fuzzy partition on the visual image processing. Let us assume
that there are five objects classified into two classes: tank and house. To clus-
ter the elements x1, x2, x3, x4, x5 into At (tank) and Bh (house), an intuitionis-
tic fuzzy partition matrix is given in Table2.11 in the form of incidence matrix
of an intuitionistic fuzzy hypergraph H = (S, R) such that S = At , Bh , R =
{(x1x3x4x5, 0.03, 0.97), (x1x3x4x5, 0.04, 0.96)}.

We can apply the (α, β)-cut to intuitionistic fuzzy hypergraph and obtain a crisp
hypergraph H(α,β). This hypergraph H represents, generally, the covering because
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Table 2.12 Hypergraph H(0.61,0.04)

H(0.61,0.04) At (0.61,0.04) Bh(0.61,0.04)

x1 1 0

x2 1 0

x3 1 0

x4 0 1

x5 0 1

Table 2.13 Dual of the above intuitionistic fuzzy hypergraph

H D
(0.61,0.04) X1 X2 X3 X4 X5

At 1 1 1 0 0

Bh 0 0 0 1 1

of condition: 5
∑m

i=1 μi (x) = 1 for all x ∈ X , and 6 for all x ∈ X , there is at most
one i such that νi (x) = 0, is not always guaranteed. The hypergraph H(0.61,0.04) is
shown in Table2.12.

We obtain the dual of hypergraphH(0.61,0.04) asH D
(0.61,0.04) as given in Table2.13.

The strength (cohesion) of an edge (class) E j = η j (α,β) = {y1, y2, . . . , yr } inH(α,β)

can be used by taking minimum of membership values and maximum of nonmem-
bership values of vertices yi ’s in H . Thus, we can use the strength as a measure of
the cohesion or strength of a class in a partition. For example, the strengths of classes
At (0.61,0.04) and Bh(0.61,0.04) at s = 0.61, t = 0.04 are β(At (0.61,0.04))=(0.61, 0.39) and
β(Bh(0.61,0.04)) = (0.95, 0.05), respectively. It can be seen that the class Bh(0.61,0.04) is
stronger than At (0.61,0.04) because β(Bh(0.61,0.04)) > β(At (0.61,0.04)). From the above
discussion on the hypergraph H(0.61,0.04) and H D

(0.61,0.04) we can state that

• The intuitionistic fuzzy hypergraph can represent the fuzzy partition visually. The
(α, β)-cut hypergraph also represents the (α, β)-cut partition.

• The dual hypergraphH D
(0.61,0.04) can represent elements Xi , which can be grouped

into a class η j (α,β). For example, the edges X1, X2, X3 of the dual hypergraph in
Table2.13 represent that the elements x1, x2, x3 that can be grouped into At at
level (0.61, 0.04).

• In the intuitionistic fuzzy partition, we have
∑m

i=1 μi (x) = 1 for all x ∈ X , and
there is at most one i such that νi (x) = 0, for all x ∈ X . If we define (α, β)-cut at
level (α > 0.5 or β < 0.5), there is no element which is grouped into two classes
simultaneously. That is, if α > 0.5 or β < 0.5, every element is contained in
only one class in H(α,β). Therefore, the hypergraph H(α,β) represents a partition.
(If s ≤ 0.05 or t ≥ 0.05 the hypergraph may represent a covering).

• If (α, β) = (0.61, 0.04) then the strength of class Bh(0.61,0.04) is the highest as
(0.95, 0.05), so it is the strongest class. It means that this class can be grouped
independently from other parts. Thus, we can eliminate the class Bh from other
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classes and continue clustering. Therefore, the discrimination of strong classes
from others can allow us to decompose a clustering problem into smaller ones.
This strategy allows us to work with the reduced data in a clustering problem.

2.4 Intuitionistic Fuzzy Directed Hypergraphs

In this section, certain types of intuitionistic fuzzy directed hypergraphs including
core, simple, elementary, sectionally elementary, and (μ, ν)-tempered intuitionistic
fuzzy directed hypergraphs are introduced and some of their properties are discussed.
The concept of transversals of intuitionistic fuzzy directed hypergraphs has been
studied with the notion of fundamental sequence and locally minimal transversals.

Definition 2.29 If A1 = (λA1 , τA1) and A2 = (λA2 , τA2) are two intuitionistic fuzzy
sets on a non-empty set X then the Cartesian product of A1 and A2 is defined as

A1 × A2 = {〈(x1, x2), λA1(x1) ∧ λA2(x2), τA1(x1) ∨ τA2(x2)〉|x1, x2 ∈ X}.

The Cartesian product of n intuitionistic fuzzy sets A1, A2, . . . , An over the non-
empty crisp set X can be defined as

A1 × A2 × . . . × An = {〈(x1, x2, . . . , xn),∧n
i=1λAi (xi ),∨n

i=1τAi (xi )〉|x1, x2, . . . , xn ∈ X}.

Definition 2.30 A directed hyperarc on a non-empty set of vertices X is defined as
a pair �E = (t ( �E), h( �E)) where, t ( �E) and h( �E) are disjoint subsets of X . A vertex x
in �E is said to be a source vertex if x /∈ h( �E). A vertex d is said to be a destination
vertex in �E if d /∈ t ( �E). An intuitionistic fuzzy directed hyperedge or intuitionistic
fuzzy directed hyperarc is an ordered pair �η = (t (�η), h(�η)) of disjoint intuitionistic
fuzzy subsets of vertices such that t (�η) is the tail of �η while h(�η) is its head.

Definition 2.31 An intuitionistic fuzzy directed hypergraph on a non-empty set X
is a pair �H = (I, R), where I = { �ζ1, �ζ2, . . . , �ζr } is a family of order pairs �ζk =
(t ( �ζk), h( �ζk)), where t ( �ζk) and h( �ζk) are disjoint intuitionistic fuzzy subsets on X ,
and R is an intuitionistic fuzzy relation on �ζk’s such that

1. λR( �Ek)=λR(t ( �Ek), h( �Ek)) ≤ min{∧m
i=1λt ( �ζk )(xi ),∧n

i=1λh( �ζk )(yi )},
2. τR( �Ek)=τR(t ( �Ek), h( �Ek)) ≤ max{∨m

i=1τt ( �ζk )(xi ),∨n
i=1τh( �ζk )(yi )},

3. λR( �Ek) + τR( �Ek) ≤ 1, for each �Ek , 1 ≤ k ≤ r,
where t ( �Ek) = {x1, x2, . . . , xm} ⊂ X and h( �Ek) = {y1, y2, . . . , yn} ⊂ X .

4.
⋃

k
supp(t ( �ζk)) ∪ ⋃

k
supp(h( �ζk)) = X , k = 1, 2, . . . r .

Example 2.13 Let I = { �ζ1, �ζ2, �ζ3} be a class of intuitionistic fuzzy directed hyper-
arcs on X = {v1, v2, v3, v4} as given inTable2.14 and �E1 = supp( �ζ1) = ({v2}, {v4}),�E2 = supp( �ζ2) = ({v3}, {v4}), �E3 = supp( �ζ3) = ({v1}, {v2, v4}). R is an intuition-
istic fuzzy relation on �ζk’s given as, R( �E1) = (0.5, 0.1), R( �E2) = (0.4, 0.3) and
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Table 2.14 Intuitionistic fuzzy directed hyperarcs on X

x ∈ X �ζ1 �ζ2 �ζ3
v1 (0, 1) (0, 1) (0.3, 0.4)

v2 (0.5, 0.1) (0, 1) (0.5, 0.1)

v3 (0, 1) (0.4, 0.3) (0, 1)

v4 (0.5, 0.1) (0.5, 0.1) (0.2, 0.5)

Fig. 2.24 Intuitionistic
fuzzy directed hypergraph

�H

v4(0.2,0.5)

(0.5, 0.1)

(0.4
, 0.3

)

v1 (0.3,0.4)

v2(0.5,0.1)

v 4
(0
.5
,0
.1
)

v3 (0.4,0.3)

(0.2
, 0.
5)

R( �E3) = (0.2, 0.5). The corresponding intuitionistic fuzzy directed hypergraph is
shown in Fig. 2.24.

Definition 2.32 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph then
height of an intuitionistic fuzzy directed hyperarc �ζ is denoted by h(�ζ ) and defined
as

h(�ζ ) = (λh(�ζ ), τh(�ζ )) = (
max{∨x∈Xλt (�ζ )(x),∨x∈Xλh(�ζ )(x)},
min{∧x∈Xτt (�ζ )(x),∧x∈Xτh(�ζ )(x)}

)
.

Definition 2.33 An intuitionistic fuzzy directed hypergraph is called simple if for
each �ζi , �ζ j ∈ I , supp(t ( �ζi )) ⊆ supp(t ( �ζi )), and supp(h( �ζi )) ⊆ supp(h( �ζi )) then
i = j .

Definition 2.34 An intuitionistic fuzzy directed hypergraph �H = (I, R) is sup-
port simple if whenever �ζi , �ζ j ∈ I , t ( �ζi ) ⊆ t ( �ζi ), h( �ζi ) ⊆ h( �ζi ), and supp(t ( �ζi )) =
supp(t ( �ζi )), supp(h( �ζi )) = supp(h( �ζi )) then �ζi = �ζ j , for all i, j .

Example 2.14 Let I = { �ζ1, �ζ2, �ζ3, �ζ4} be a family of intuitionistic fuzzy directed
hyperarcs on X = {v1, v2, v3, v4} as shown in Table2.15. Take �E1 = supp( �ζ1) =
({v1}, {v2}), �E2 = supp( �ζ2) = ({v1}, {v2, v4}), �E3 = supp( �ζ3) = ({v2}, {v3}) and
�E4 = supp( �ζ4) = ({v2}, {v3, v4}). R is an intuitionistic fuzzy relation on �ζk’s given
as, R( �E1) = (0.5, 0.1), R( �E2) = (0.4, 0.3), R( �E3) = (0.5, 0.2), and R( �E4)=
(0.4, 0.3).
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Table 2.15 Intuitionistic fuzzy directed hyperarcs on X

x ∈ X �ζ1 �ζ2 �ζ3 �ζ4
v1 (0.7, 0.1) (0.5, 0.2) (0, 1) (0, 1)

v2 (0.7, 0.1) (0.5, 0.2) (0.5, 0.2) (0.5, 0.2)

v3 (0, 1) (0, 1) (0.5, 0.2) (0.5, 0.2)

v4 (0, 1) (0.4, 0.3) (0, 1) (0.4, 0.3)

Fig. 2.25 Support simple
intuitionistic fuzzy directed
hypergraph

v 1
(0
.7
,0
.1
)

v2 (0.7,0.1)

v3(0.5,0.2)

v 4
(0
.4
,0
.3
)

(0.7
,0.1

)

(0.
5,
0.2
)

(0.4,0.3)

(0.5,0.2)

(0.5,0.2)

The corresponding support simple intuitionistic fuzzy directed hypergraph is
shown in Fig. 2.25.

Definition 2.35 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph on
X . For α, β ∈ [0, 1], the (α, β)-level hyperarc of an intuitionistic fuzzy directed
hyperarc �ζ is defined as

�ζ(α,β) = (t (�ζ(α,β)), h(�ζ(α,β)))

= ({u ∈ X |λt (�ζ )(u) ≥ α, τt (�ζ )(u) ≤ β}, {v ∈ X |λh(�ζ )(v) ≥ α, τh(�ζ )(v) ≤ β}) .

�H(α,β) = (I(α,β), R(α,β)) is called a (α, β)-level directed hypergraph of �H where,
I(α,β) is defined as I(α,β) = {∪r

k=1h(�ζk(α,β))
⋃ ∪r

k=1t (�ζk(α,β)), 1 ≤ k ≤ r}.
Definition 2.36 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph. The
sequence of order pairs (αi , βi ) ∈ [0, 1] × [0, 1], 0 ≤ αi + βi ≤ 1, 1 ≤ i ≤ n, such
that α1 > α2 > . . . > αn , β1 < β2 < · · · < βn satisfying the properties

1. if 1 ≥ α > α1 and 0 ≤ β < β1 then R(α,β) = ∅,
2. if αi+1 < α ≤ αi and βi ≤ β < βi+1 then R(α,β) = R(αi ,βi ),

3. R(αi ,βi ) � R(αi+1,βi+1),

is called fundamental sequence of �H , denoted by fs( �H ). The corresponding
sequence of (αi , βi )-level directed hypergraphs �H(α1,β1),

�H(α2,β2), . . . ,
�H(αn ,βn) is

called core set of �H , denoted by C ( �H ). The (αn, βn)-level directed hypergraph,
�H(αn ,βn), is called support level of �H .
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Fig. 2.26 Intuitionistic
fuzzy directed hypergraph on
four vertices

v1(0.8,0.1) v2(0.6,0.2)

v3(0.4,0.5)

v4 (0.5,0.4)
(0.5,0.4)

(0.6,0.2)

(0.4,0.5)

Fig. 2.27 �H(0.8,0.1) v1

Fig. 2.28 �H(0.6,0.2) v 1 v 2

Fig. 2.29 �H(0.5,0.4)

v 1 v 2

v4

Example 2.15 Let �H be an intuitionistic fuzzy directed hypergraph as shown in
Fig. 2.26. Take (α1, β1) = (0.8, 0.1), (α2, β2) = (0.6, 0.2), (α3, β3) = (0.5, 0.4) and
(α4, β4) = (0.4, 0.5). Clearly, the set {(α1, β1),(α2, β2), (α3, β3), (α4, β4)} satisfies
all conditions of Definition2.36 and hence is a fundamental sequence of �H . The
corresponding (αi , βi )-level directed hypergraphs are shown in Fig. 2.27, 2.28 and
2.29 whereas, �H(0.4,0.5) = supp( �H ) = (supp(I ), supp(R)).

Definition 2.37 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph on X
then supp(I ) = {(supp(t ( �ζk)), supp(h( �ζk))) | �ζk ∈ I }. The family of intuitionistic
fuzzy directed hyperarcs I is called elementary if I is single-valued on supp(I ). An
intuitionistic fuzzy directed hypergraph �H is elementary if I and R are elementary,
otherwise it is nonelementary.

Example 2.16 The elementary and nonelementary intuitionistic fuzzy directed
hypergraphs are given in Figs. 2.30 and 2.31, respectively.

Definition 2.38 An intuitionistic fuzzy directed hypergraph �H = (I, R) is called
a partial intuitionistic fuzzy directed hypergraph of �H ′ = (I ′, R′) if following con-
ditions are satisfied

1. supp(I ) ⊆ supp(I ′) and supp(R) ⊆ supp(R′),
2. if supp( �ζi ) ∈ supp(I ) and supp( �ζi ′) ∈ supp(I ′) such that supp( �ζi ) = supp( �ζi ′)

then �ζi = �ζi ′.
It is denoted by �H ⊆ �H ′. An intuitionistic fuzzy directed hypergraph �H = (I, R)

is ordered if the core set C ( �H ) = { �H(α1,β1),
�H(α2,β2), . . .

�H(αn ,βn)} is ordered, that
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Fig. 2.30 Elementary
intuitionistic fuzzy directed
hypergraph

v1(0.7,0.1)

v2(0.5,
0.2)

v3(0.3,0.4)

v4(0.2,0.6)

(0.
5,0

.2) (0.3,0.4)

(0
.2
,0
.6
)(0.1,0.6)

Fig. 2.31 Nonelementary
intuitionistic fuzzy directed
hypergraph

v1(0.7,0.1)

v2(0.5,
0.2)

v3(0.3,0.6)

v4(0.2,0.6)

(0.
5,0

.2)

(0
.2
,0
.6
)(0.1,0.6)

v3 (0.1,0.4)

(0
.1
,0
.6
)

v 4
(0
.1
,0
.4
)

is �H(α1,β1) ⊆ �H(α2,β2) ⊆ . . . ⊆ �H(αn ,βn). �H is simply ordered if �H is ordered and
whenever R′ ⊂ R(αi+1,βi+1) \ R(αi ,βi ) then R′

� R(αi ,βi ).

Observation 2.15 Let �H be an elementary intuitionistic fuzzy directed hypergraph
then �H is ordered. If �H is ordered intuitionistic fuzzy directed hypergraph and
support level �H(αn ,βn) is simple then �H is an elementary intuitionistic fuzzy directed
hypergraph.

Note 2.1 1. If �H = (I, R) is an intuitionistic fuzzy directed hypergraph with
I = { �ζ1, �ζ2, . . . , �ζr } then I ∗ = { �ζ1∗

, �ζ2∗
, . . . , �ζr ∗} is the family of crisp directed

hyperarcs corresponding to I .
2. In intuitionistic fuzzy directed hypergraph �H = (I, R), if x is a vertex of tail

of any intuitionistic fuzzy directed hyperarc �ζ then �ζ (x) = (τt (�ζ ), λt (�ζ )). If x ∈
h(�ζ )∗ then �ζ (x) = (τh(�ζ ), λt (�ζ )).

Definition 2.39 Let �H = (I, R) and �H
′ = (I

′
, R

′
) be any two intuitionistic fuzzy

directed hypergraphs on X and X ′, respectively, where I = {ζ1, ζ2, . . . , ζr } and I
′ =

{ζ ′
1, ζ

′
2, . . . , ζ

′
r }. A homomorphism of intuitionistic fuzzy directed hypergraphs �H

and �H
′
is a mapping φ : X → X

′
that satisfies

1. ∧r
j=1τ �ζ j

(x) ≤ ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) ≥ ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈ X .
2. τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) ≤ τR′ ({φ(t1), φ(t2), . . . , φ(ts)},

{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) ≥ λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
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{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

Definition 2.40 A weak isomorphism of intuitionistic fuzzy directed hypergraphs
�H and �H

′
is a bijective homomorphism φ : X → X

′
that satisfies

∧r
j=1τ �ζ j

(x) = ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) = ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈
X .

Definition 2.41 A co-weak isomorphism of intuitionistic fuzzydirectedhypergraphs
�H and �H

′
is a bijective homomorphism φ : X → X

′
that satisfies

τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = τR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

Definition 2.42 An isomorphism of intuitionistic fuzzy directed hypergraphs �H
and �H

′
is a bijective mapping φ : X → X

′
that satisfies

1. ∧r
j=1τ �ζ j

(x) = ∧r
j=1τ �ζ j

′(φ(x)), ∨r
j=1λ �ζ j

(x) = ∨r
j=1λ �ζ j

′(φ(x)), for all x ∈
X .

2. τR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = τR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
λR ({t1, t2, . . . , ts}, {h1, h2, . . . , hm}) = λR′ ({φ(t1), φ(t2), . . . , φ(ts)},
{φ(h1), φ(h2), . . . , φ(hm)}),
for all t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X.

In this case, �H and �H
′
are called isomorphic to each other.

Definition 2.43 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph then
the order O( �H ) and size S( �H ) of �H are defined as

O( �H ) =
(

∑

x∈X
∧ jτ �ξ j (x),

∑

x∈X
∨ jλ �ξ j (x)

)

, S( �H ) =
⎛

⎝
∑

�Ei∈I ∗
τR( �Ei ),

∑

�Ei∈I ∗
λR( �Ei )

⎞

⎠ .

Theorem 2.16 The order and size of isomorphic intuitionistic fuzzy directed hyper-
graphs are same.

Proof Let �H1 = (I1, R1) and �H2 = (I2, R2) be any two intuitionistic fuzzy directed
hypergraphs on X1 and X2, respectively, where I1 = {ζ11, ζ12, . . . , ζ1r } and I2 =
{ζ21, ζ22, . . . , ζ2r } be the classes of intuitionistic fuzzy directed hyperarcs. Let φ :
X1 → X2 be an isomorphism from �H1 to �H2 then using Definition2.42,
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O( �H1) =
( ∑

x1∈X1

∧ jτ�ζ1 j (x1),
∑

x1∈X1

∨ jλ�ζ1 j (x1)
)

=
( ∑

x1∈X1

∧ jτ�ζ2 j (φ(x1)),
∑

x1∈X1

∨ jλ�ζ2 j (φ(x1))
)

=
( ∑

x2∈X2

∧ jτ�ζ2 j (x2),
∑

x2∈X2

∨ jλ�ζ2 j (x2)
)

= O( �H2).

S( �H1) =
( ∑

�E1i∈I ∗
1

τR1(
�E1i ),

∑

�E1i∈I ∗
1

λR1(
�E1i )

)

=
( ∑

�E1i∈I ∗
1

τR2(φ( �E1i )),
∑

�E1i∈I ∗
1

λR2(φ( �E1i ))
)

=
( ∑

�E2i∈I ∗
2

τR2(
�E2i ),

∑

�E2i∈I ∗
2

λR2(
�E2i )

)
= S( �H2).

Remark 2.5 1. The order of weak isomorphic intuitionistic fuzzy directed hyper-
graphs is same.
2. The size of co-weak isomorphic intuitionistic fuzzy directed hypergraphs is same.

Theorem 2.17 The relation of isomorphism between intuitionistic fuzzy directed
hypergraphs is an equivalence relation.

Proof Let �H1 = (I1, R1), �H2 = (I2, R2) and �H3 = (I3, R3) be intuitionistic fuzzy
directed hypergraphs on X1, X2 and X3, respectively, where, I1 = {ζ11, ζ12, . . . , ζ1r },
I2 = {ζ21, ζ22, . . . , ζ2r } and I3 = {ζ31, ζ32, . . . , ζ3r }.
1. Reflexive: Define I : X1 → X1 by I (x1) = x1, for all x1 ∈ X1. Then, I is a bijec-

tive homomorphism and
1. (∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1)) = (∧ jτ�ζ1 j (I (x1)),∨ jλ�ζ1 j (I (x1))),
2. (τR1(

�E1i ), λR1(
�E1i )) = (τR1(I ( �E1i )), λR1(I ( �E1i ))),

for all x1 ∈ X1, t ( �E1i ) ⊂ X1, h( �E1i ) ⊂ X1.
I is an isomorphism of an intuitionistic fuzzy directed hypergraph to itself.

2. Symmetric: Let φ : X1 → X2 be an isomorphism defined by φ(x1) = x2. Since,
φ is a bijective mapping therefore, φ−1 : X2 → X1 exists and φ−1(x2) = x1, for
all x2 ∈ X2. Then

(∧ jτ�ζ2 j (x2),∨ jλ�ζ2 j (x2)) = (∧ jτ�ζ2 j (φ(x1)),∨ jλ�ζ2 j (φ(x1)))

= (∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1))

= (∧ jτ�ζ1 j (φ
−1(x2)),∨ jλ�ζ1 j (φ

−1(x2))).

R2( �E2 j ) = R2(φ( �E1 j )) = R1( �E1 j ) = R1(φ
−1( �E2 j )), t ( �E2 j ) ⊆ X2, h( �E2 j ) ⊆ X2.

Hence, φ−1 is an isomorphism.
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3. Transitive: Let φ : X1 → X2 and ψ : X2 → X3 be the isomorphisms of �H1 onto�H2 and �H2 onto �H3 defined by φ(x1) = x2 and ψ(x2) = x3, respectively. By
Definition2.42

(∧ jτ�ζ1 j (x1),∨ jλ�ζ1 j (x1)) = (∧ jτ�ζ2 j (x2),∨ jλ�ζ2 j (x2))

= (∧ jτ�ζ3 j (ψ(x2)),∨ jλ�ζ3 j (ψ(x2)))

= (∧ jτ�ζ3 j (ψ(φ(x1))),∨ jλ�ζ3 j (ψ(φ(x1))))

= (∧ jτ�ζ3 j (ψ ◦ φ(x1)),∨ jλ�ζ3 j (ψ ◦ φ(x1))).

R1( �E1 j ) = R2( �E2 j ) = R3(ψ( �E2 j )) = R3(ψ(φ( �E1 j ))) = R3(ψ ◦ φ( �E1 j )),

where �Ei j = (t ( �Ei j ), h( �Ei j )), t ( �Ei j ) ⊂ Xi , h( �Ei j ) ⊂ Xi . Clearly, ψ ◦ φ is an
isomorphism from �H1 onto �H3. Hence, isomorphism of intuitionistic fuzzy
directed hypergraphs is an equivalent relation.

Remark 2.6 The relation of weak isomorphism between intuitionistic fuzzy directed
hypergraphs is a partial order relation.

Definition 2.44 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph. A
set of intuitionistic fuzzy directed hyperarcs T with the property that Th( �ζi ) ∩ �ζih(�ζi ) �=
∅, for each �ζi ∈ I , is called intuitionistic fuzzy transversal of �H . T is a minimal
intuitionistic fuzzy transversal of �H if whenever ρ ⊂ T , ρ is not an intuitionistic
fuzzy transversal of �H . The family of all minimal intuitionistic fuzzy transversals
of �H is denoted by Tr( �H ).

Example 2.17 Consider the intuitionistic fuzzy directed hypergraph as shown in
Fig. 2.32 where I = {�ζ1, �ζ2, �ζ3} is defined in Table2.16.

Fig. 2.32 Intuitionistic
fuzzy directed hypergraph on
four vertices

v1(0.4,0.5) v2(0.8,0.1)

v3(0.6,0.2)

v4 (0.5,0.4)

(0.5,0.4)

(0.6,0.2)

(0.4,0.5)

Table 2.16 Intuitionistic fuzzy hyperarcs of �H in Fig. 2.32

Intuitionistic fuzzy hyperarc h(�ζi ) �ζih(�ζi )
�ζ1 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1), (v4, 0.5, 0.4)})} (0.8, 0.1)

{({}, {v2}
)}

�ζ2 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1)})} (0.8, 0.1) {({}, {v2})}
�ζ3 {({(v1, 0.4, 0.5)}, {(v2, 0.8, 0.1), (v3, 0.6, 0.2)})} (0.8, 0.1) {({}, {v2})}
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Clearly, for each 1 ≤ i ≤ 3, �ζih(�ζi ) ∩ Tih(�ζi ) �= ∅ where, T =
{({(v1, 0.8, 0.1)},

{(v2, 0.6, 0.2)}
)}
. Hence, T is an intuitionistic fuzzy transversal of �H .

We now provide results and discussions of intuitionistic fuzzy transversals.

Lemma 2.1 Let �H = (I, R) be an intuitionistic fuzzy directed hypergraph with
fundamental sequence fs( �H ) = {(α1, β1), (α2, β2), . . . , (αn, βn)}. If T is an intu-
itionistic fuzzy transversal of �H then λh(T ) ≥ λh( �ζi ) and τh(T ) ≤ τh( �ζi ). If T is

a minimal intuitionistic fuzzy transversals of �H then h(T ) = (max{λh( �ζi )| �ζi ∈
I },min{τh( �ζi )| �ζi ∈ I }) = (α1, β1).

Proposition 2.2 Let �H be an intuitionistic fuzzy directed hypergraph then the fol-
lowing statements are equivalent.
1. T is an intuitionistic fuzzy transversal of �H .
2. For each �ζi ∈ I , (α, β) ∈ [0, 1] × [0, 1], 0 ≤ α + β ≤ 1 with α < λh( �ζi ) and

β > τh( �ζi ) then T(α,β) ∩ �ζi(α,β) �= ∅.
3. T(α,β) is a transversal of �H(α,β).

2.5 Complex Intuitionistic Fuzzy Hypergraphs

To generalize the concepts of intuitionistic fuzzy sets, complex intuitionistic fuzzy
sets were introduced by Alkouri and Salleh [4]. Complex intuitionistic fuzzy set is a
distinctive intuitionistic fuzzy set in which the membership degrees are determined
on the unit disc of the complex plane and can more clearly express the imprecision
and ambiguity in the data. Yaqoob et al. [23] defined complex intuitionistic fuzzy
graphs and discussed an application of these graphs in cellular networks to test the
proposed model.

Definition 2.45 A complex intuitionistic fuzzy set I on the universal set X is defined
as, I = {(u, TI (u)eiφI (u), FI (u)eiψI (u))|u ∈ X}, where i = √−1, TI (u), FI (u) ∈
[0, 1], φI (u), ψI (u) ∈ [0, 2π ], and for every u ∈ X, 0 ≤ TI (u) + FI (u) ≤ 1. Here,
TI (u), FI (u) and φI (u), ψI (u) are called the amplitude terms and phase terms for
truth membership and falsity membership grades, respectively.

Definition 2.46 A complex intuitionistic fuzzy graph on X is an ordered pair
G = (A, B), where A is a complex intuitionistic fuzzy set on X and B is complex
intuitionistic fuzzy relation on X such that

TB(ab) ≤ min{TA(a), TA(b)}, FB(ab) ≤ max{FA(a), FA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)}, ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ TB(ab) + FB(ab) ≤ 1, for all a, b ∈ X .
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Definition 2.47 Let X be a nontrivial set of universe. A complex intuitionistic fuzzy
hypergraph is defined as an ordered pair H = (C ,D), where C = {α1, α2, · · · , αk}
is a finite family of complex intuitionistic fuzzy sets on X and D is a complex
intuitionistic fuzzy relation on complex intuitionistic fuzzy sets α j ’s such that

(i)

TD ({r1, r2, · · · , rl }) ≤ min{Tα j (r1), Tα j (r2), · · · , Tα j (rl )},
FD ({r1, r2, · · · , rl }) ≤ max{Fα j (r1), Fα j (r2), · · · , Fα j (rl )}, (for amplitude terms)

φD ({r1, r2, · · · , rl }) ≤ min{φα j (r1), φα j (r2), · · · , φα j (rl )},
ψD ({r1, r2, · · · , rl }) ≤ max{ψα j (r1), ψα j (r2), · · · , ψα j (rl )}, (for phase terms)

0 ≤ TD + FD ≤ 1, for all r1, r2, · · · , rl ∈ X.

(ii)
⋃

j
supp(α j ) = X, for all α j ∈ C .

Note that, Ek = {r1, r2, · · · , rl} is the crisp hyperedge of H = (C ,D).

Example 2.18 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D) on
X = {v1, v2, v3, v4}. The complex intuitionistic fuzzy relation is defined
as D({v1, v2, v3, v4}) = (0.2ei(0.4)π , 0.6ei(0.3)π ), D({v1, v2}) = (0.3ei(0.6)π ,

0.6ei(0.3)π ), and D({v3, v4}) = (0.2ei(0.4)π , 0.5ei(0.3)π ). The corresponding complex
intuitionistic fuzzy hypergraph is shown in Fig. 2.33.

Definition 2.48 A complex intuitionistic fuzzy hypergraph H = (C ,D) is simple
if whenever D j ,Dk ∈ D and D j ⊆ Dk , then D j = Dk .

A complex intuitionistic fuzzy hypergraph H = (C ,D) is support simple ifwhen-
ever D j ,Dk ∈ D , D j ⊆ Dk , and supp(D j ) = supp(Dk), then D j = Dk .

Definition 2.49 Let H = (C ,D)be a complex intuitionistic fuzzy hypergraph. Sup-
pose thatα, β ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ α + β ≤ 1. The (αeiθ , βeiϕ)-
level hypergraph of H is defined as an ordered pair H (αeiθ ,βeiϕ) = (C (αeiθ ,βeiϕ),

D (αeiθ ,βeiϕ)), where

(i) D (αeiθ ,βeiϕ) = {D(αeiθ ,βeiϕ)

j : Dj ∈ D} and D(αeiθ ,βeiϕ)

j = {u ∈ X : TDj (u) ≥ α,

φDj (u) ≥ θ, and FDj (u) ≤ β,ψDj (u) ≤ ϕ},
(ii) C (αeiθ ,βeiϕ) = ⋃

Dj∈D
D(αeiθ ,βeiϕ)

j .

Note that, (αeiθ , βeiϕ)-level hypergraph of H is a crisp hypergraph.

Example 2.19 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D)

as shown in Fig. 2.33. Let α = 0.2, β = 0.5, θ = 0.5π , and ϕ = 0.2π . Then,
(αeiθ , βeiϕ)-level hypergraph of H is shown in Fig. 2.34.
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(v1,0.3ei(0.6)π ,0.6ei(0.3)pi)

(v2,0.5ei(0.6)π ,0.4ei(0.3)pi)

(v3,0.3ei(0.5)π ,0.5ei(0.3)pi)

(v4,0.2e
i(0.4)π ,0.4ei(0.2)pi)

(D1,0.2ei(0.4)π ,0.6ei(0.3)π )

(D
2 ,0.3e i(0.6)π

,0.6e i(0.3)π
)

(D
3 ,0.2e i(0.4)π

,0.5e i(0.3)π
)

Fig. 2.33 Complex intuitionistic fuzzy hypergraph

Fig. 2.34 (0.2ei(0.5)π , 0.5ei(0.2)π )-
level hypergraph of
H v1

v2

D (0.2e i(0.5)π
,0.5e i(0.2)π

)

2

Definition 2.50 Let H = (C ,D) be a complex intuitionistic fuzzy hypergraph. The
complex intuitionistic fuzzy line graph of H is defined as an ordered pair l(H) =
(Cl ,Dl), where Cl = D and there exists an edge between two vertices in l(H) if
|supp(Dj ) ∩ supp(Dk)| ≥ 1. The membership degrees of l(H) are given as

(i) Cl(Ek) = D(Ek),
(ii) Dl(E j Ek) = (min{TD (E j ), TD (Ek)}ei min{φD (E j ),φD (Ek )},

max{FD (E j ), FD (Ek)}ei max{ψD (E j ),ψD (Ek )}).

Definition 2.51 A complex intuitionistic fuzzy hypergraph H = (C ,D) is said to
be linear if for every Dj , Dk ∈ D ,
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(v1,0.3ei(0.6)π ,0.6ei(0.3)pi)

(v2,0.5ei(0.6)π ,0.4ei(0.3)pi)

(v3,0.3ei(0.5)π ,0.5ei(0.3)pi)

(v4,0.2e
i(0.4)π ,0.4ei(0.2)pi)

(D1,0.2ei(0.4)π ,0.6ei(0.3)π )

(D
2 ,0.3e i(0.6)π

,0.6e i(0.3)π
)

(D
3 ,0.2e i(0.4)π

,0.5e i(0.3)π
)

(0.2e i(0.4)π
,0.6e i(0.3)π

)(0.2ei(0.4)π
,0.6ei(0.3)π

)

Fig. 2.35 Complex intuitionistic line graph of H

(i) supp(Dj ) ⊆ supp(Dk) ⇒ j = k,
(ii) |supp(Dj ) ∩ supp(Dk)| ≤ 1.

Example 2.20 Consider a complex intuitionistic fuzzy hypergraph H = (C ,D) as
shown in Fig. 2.33. By direct calculations, we have

supp(D1) = {v1, v2, v3, v4}, supp(D2) = {v1, v2}, supp(D3) = {v3, v4}.

Note that, supp(Dj ) ⊆ supp(Dk) ⇒ j �= k and |supp(Dj ) ∩ supp(Dk)| � 1.Hence,
complex intuitionistic fuzzy hypergraph H = (C ,D) is not linear. The correspond-
ing complex intuitionistic fuzzy hypergraph H = (C ,D) and its line graph is shown
in Fig. 2.35.

Theorem 2.18 A simple strong complex intuitionistic fuzzy graph is the complex
intuitionistic line graph of a linear complex intuitionistic fuzzy hypergraph.

Definition 2.52 The 2-section H2 = (C2,D2) of a complex intuitionistic fuzzy
hypergraph H = (C ,D) is a complex intuitionistic fuzzy graph having same set
of vertices as that of H ,D2 is a complex intuitionistic fuzzy set on {e = u juk |u j , uk
∈ El, l = 1, 2, 3, · · · }, and D2(u juk) = (min{min Tαl (u j ),min Tαl (uk)}
ei min{min φαl (u j ),min φαl (uk )},max{max Fαl (u j ),max Fαl (uk)}ei max{maxψαl (u j ),maxψαl (uk )})
such that 0 ≤ TD2(u juk) + FD2(u juk) ≤ 1.
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(v1,0.3ei(0.6)π π,0.6ei(0.3) )

(v2,0.5ei(0.6)π π,0.4ei(0.3) )

(v3,0.3ei(0.5)π π,0.5ei(0.3) )

(v4,0.2e
i(0.4)π π

,0.4ei(0.2) )

(0.3e i(0.6)π
,0.6e i(0.3)π)(0.

2e
i(0
.4)

π , 0
.6e

i(0
.3)

π )

(0.
2ei(

0.4
)π

,0.
5ei(

0.3
)π

)

(0.
3e

i(0
.5)

π ,0
.5e

i(0
.3)

π )

(0
.3
ei
(0
.5
) π
,0
.6
ei
(0
.3
) π
)

(0.2ei(0.4)π ,0.4ei(0.2)π )

Fig. 2.36 2-section of complex intuitionistic fuzzy hypergraph

Example 2.21 An example of a complex intuitionistic fuzzy hypergraph is given in
Fig. 2.36. The 2-section of H is presented with dashed lines.

Definition 2.53 Let H = (C ,D) be a complex intuitionistic fuzzy hypergraph. A
complex intuitionistic fuzzy transversal τ is a complex intuitionistic fuzzy set of X
satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ D , where h(ρ) is the height
of ρ.

A minimal complex intuitionistic fuzzy transversal t is the complex intuitionistic
fuzzy transversal of H having the property that if τ ⊂ t , then τ is not a complex
intuitionistic fuzzy transversal of H .
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Chapter 3
Hypergraphs for Interval-Valued
Structures

In this chapter, we present interval-valued fuzzy hypergraphs, A = [μ−, μ+]–
tempered interval-valued fuzzy hypergraphs, and some of their properties. More-
over, we discuss the notions of vague hypergraphs, dual vague hypergraphs, and
A-tempered vague hypergraphs. Finally, we describe interval-valued intuitionistic
fuzzy hypergraphs and interval-valued intuitionistic fuzzy transversals of H . This
chapter is due to [4–6, 8, 11, 22, 27].

3.1 Introduction

Zadeh [27] introduced the notionof interval-valued fuzzy sets as an extensionof fuzzy
set theory [25] for representing vagueness and uncertainty. Interval-valued fuzzy
set theory reflects the uncertainty by the length of the interval membership degree
[μ1, μ2]. In intuitionistic fuzzy set theory for every membership degree (μ1, μ2), the
value π = 1 − μ1 − μ2 denotes a measure of non-determinacy (or undecidedness).
Interval-valued fuzzy sets provide a more adequate description of vagueness than
traditional fuzzy sets. It is, therefore, important to use interval-valued fuzzy sets
in applications, such as fuzzy control. One of the computationally most intensive
parts of fuzzy control is defuzzification [20]. Since interval-valued fuzzy sets are
widely studied and used, we describe briefly the work of Gorzalczany [14, 15]
on approximate reasoning, Roy and Biswas [23] on medical diagnosis, Turksen
[24] on multivalued logic and Mendel [20] on intelligent control. Atanassov and
Gargov [6] introduced the notion of interval-valued intuitionistic fuzzy sets which is
a generalization of both intuitionistic fuzzy sets and interval-valued fuzzy sets.

Graph theory has numerous applications to problems in systems analysis, opera-
tions research, economics, and transportation. However, in many cases, some aspects
of a graph-theoretic problem may be uncertain. For example, the vehicle travel time
or vehicle capacity on a road network may not be known exactly. In such cases, it
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is natural to deal with the uncertainty using the methods of fuzzy sets and fuzzy
logic. Hypergraph models are more general types of relations than graphs do and can
be used to model networks, social networks, biology networks, process scheduling,
data structures, computations, and a variety of other systems where complex rela-
tionships between the objects in the system play a dominant role. Fuzzy hypergraphs
were proposed by Kaufmann [17] and then generalized and redefined by Lee-kwang
and Lee [19]. Goetschel Jr. [12] discussed the concept of hypergraphs by initiating
a glimpse of what may be done within a fuzzy setting. Also the idea of transversal
of a hypergraph has been extended to fuzzy transversal of a fuzzy hypergraph by
Goetschel Jr. et al. [13]. Chen [8] presented the notion of the interval-valued fuzzy
hypergraph theory which is based on a combination of the interval-valued fuzzy set
and hypergraph models. Akram and Dudek [1] presented some properties of intu-
itionistic fuzzy hypergraphs and provided its application in clustering problem. Naz
et al. [22] proposed the concept of the interval-valued intuitionistic fuzzy hypergraphs
by combining the interval-valued intuitionistic fuzzy set and hypergraph models.

Definition 3.1 An interval number D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤
1. The interval [a, a] is identified with the number a ∈ [0, 1]. Let D[0, 1] be the set
of all interval numbers. For interval numbers D1 = [a−

1 , b+
1 ] and D2 = [a−

2 , b+
2 ], we

define

• min{D1, D2} = min{[a−
1 , b+

1 ], [a−
2 , b+

2 ]} = [min{a−
1 , a−

2 },min{b+
1 , b+

2 }],
• max{D1, D2} = max{[a−

1 , b+
1 ], [a−

2 , b+
2 ]} = [max{a−

1 , a−
2 },max{b+

1 , b+
2 }],

• D1 + D2 = [a−
1 + a−

2 − a−
1 · a−

2 , b+
1 + b+

2 − b+
1 · b+

2 ],
• D1 ≤ D2 ⇐⇒ a−

1 ≤ a−
2 and b+

1 ≤ b+
2 ,• D1 = D2 ⇐⇒ a−

1 = a−
2 and b+

1 = b+
2 ,• D1 < D2 ⇐⇒ D1 ≤ D2 and D1 �= D2,

• kD = k[a−
1 , b+

1 ] = [ka−
1 , kb+

1 ], where 0 ≤ k ≤ 1.

Similarly,

sup
i∈I

{[a−
i , b+

i ]} = [sup
i∈I

{a−
i }, sup

i∈I
{b+

i }] and inf
i∈I {[a

−
i , b+

i ]} = [inf
i∈I {a

−
i }, inf

i∈I {b
+
i }].

It is known that (D[0, 1],≤,∨,∧) is a complete latticewith [0, 0] as the least element
and [1, 1] as the greatest.
Definition 3.2 The interval-valued fuzzy set A in X is defined by, A = {(x, [μ−

A(x),
μ+

A(x)]) : x ∈ X},whereμ−
A(x) andμ+

A(x) are fuzzy subsets of X such thatμ−
A(x) ≤

μ+
A(x), for all x ∈ X.

Let X be a non-empty set, then by an interval-valued fuzzy relation B on a set X
we mean an interval-valued fuzzy set such that

μ−
B (xy) ≤ min(μ−

A(x), μ−
A(y)), μ+

B (xy) ≤ min(μ+
A(x), μ+

A(y)),

for all xy ∈ X × X . In the clustering, the interval-valued fuzzy set A, is called
an interval-valued fuzzy class. We define the support of A by supp (A) = {x ∈
X | [μ−

A(x), μ+
A(x)] �= [0, 0]} and say A is nontrivial if supp(A) is non-empty.
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Interval-valued fuzzy relations reflect the idea that membership grades are often
not precise and the intervals represent such uncertainty.

Definition 3.3 The height of an interval-valued fuzzy set A = [μ−
A(x), μ+

A(x)] is
defined as

h(A) = sup
x∈X

(A)(x) = [sup
x∈X

μ−
A(x), sup

x∈X
μ+

A(x)].

We shall say that interval-valued fuzzy set A is normal if A = [μ−
A(x), μ+

A(x)] =
[1, 1], for all x ∈ X .

Definition 3.4 By an interval-valued fuzzy graph on non-empty set X , we mean
a pair G = (A, B), where A = [μ−

A, μ+
A] is an interval-valued fuzzy set on X and

B = [μ−
B , μ+

B ] is an interval-valued fuzzy relation on X such that

μ−
B (xy) ≤ min(μ−

A(x), μ−
A(y)),

μ+
B (xy) ≤ min(μ+

A(x), μ+
A(y)),

for all x , y ∈ X .

For further terminologies and studies on interval-valued fuzzy hypergraphs, read-
ers are referred to [2, 3, 7, 9, 10, 16, 18, 21, 26, 27].

3.2 Interval-Valued Fuzzy Hypergraphs

Definition 3.5 Let X be a finite set and let E = {E1, E2, . . . , Em} be a finite family
of nontrivial interval-valued fuzzy subsets of X such that

X =
⋃

j

supp[μ−
j , μ

+
j ], j = 1, 2, . . . ,m,

where A = [μ−
j , μ

+
j ] is an interval-valued fuzzy set defined on E j ∈ E . Then, the

pair I = (X, E) is an interval-valued fuzzy hypergraph on X , E is the family of
interval-valued fuzzy edges of I and X is the (crisp) vertex set of I . The order of I
(number of vertices) is denoted by |X | and the number of edges is denoted by |E |.
Definition 3.6 Let A = [μ−

A, μ+
A] be an interval-valued fuzzy subset of X and let

E be a collection of interval-valued fuzzy subsets of X such that for each B =
[μ−

B , μ+
B ] ∈ E and x ∈ X ,μ−

B (x) ≤ μ−
A(x),μ+

B (x) ≤ μ+
A(x). Then the pair (A, B) is

an interval-valued fuzzy hypergraph on the interval-valued fuzzy set A. The interval-
valued fuzzy hypergraph (A, B) is also an interval-valued fuzzy hypergraph on X
= supp(A), the interval-valued fuzzy set A defines a condition for interval-valued in
the edge set E . This condition can be stated separately, so without loss of generality
we restrict attention to interval-valued fuzzy hypergraphs on crisp vertex sets.
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Example 3.1 Consider an interval-valued fuzzy hypergraph I = (X, E) as shown
in Fig. 3.1 such that X = {a, b, c, d} and E = {E1, E2, E3}, where

E1 =
{

a

[0.2, 0.3] ,
b

[0.4, 0.5]
}

, E2 =
{

b

[0.4, 0.5] ,
c

[0.2, 0.5]
}

, E3 =
{

a

[0.2, 0.3] ,
d

[0.2, 0.4]
}

.

The corresponding incidence matrix is given in Table3.1.

Definition 3.7 An interval-valued fuzzy set A = [μ−
A, μ+

A] : X → D[0, 1] is an ele-
mentary interval-valued fuzzy set if A is single valued on supp(A). An elementary
interval-valued fuzzy hypergraph I = (X, E) is an interval-valued fuzzy hypergraph
whose edges are elementary.

We explore the sense in which an interval-valued fuzzy graph is an interval-valued
fuzzy hypergraph.

Proposition 3.1 Interval-valued fuzzy graphs and interval-valued fuzzy digraphs
are special cases of the interval-valued fuzzy hypergraphs.

An interval-valued fuzzy multigraph is a multivalued symmetric mapping D =
[μ−

D, μ+
D] : X × X → D[0, 1]. An interval-valued fuzzy multigraph can be consid-

ered to be the “disjoint union” or “disjoint sum” of a collection of simple interval-
valued fuzzy graphs, as is done with crisp multigraphs. The same holds for multidi-
graphs. Therefore, these structures can be considered as “disjoint unions” or “disjoint
sums” of interval-valued fuzzy hypergraphs.

Fig. 3.1 Interval-valued
fuzzy hypergraph

E2
E3

a[0.2, 0.3]

d[0.2, 0.4]

E1 b[0.4, 0.5]

c[0.2, 0.5)

Table 3.1 The corresponding incidence matrix

MI E1 E2 E3

a [0.2, 0.3] [0, 0] [0.2, 0.3]

b [0.4, 0.5] [0.4, 0.5] [0, 0]

c [0, 0] [0.2, 0.5] [0, 0]

d [0, 0] [0, 0] [0.2, 0.4]
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Definition 3.8 An interval-valued fuzzy hypergraph I = (X, E) is simple if A =
[μ−

A, μ+
A ], B = [μ−

B , μ+
B ] ∈ E and μ−

A ≤ μ−
B , μ

+
A ≤ μ+

B imply that μ−
A = μ−

B , μ
+
A =

μ+
B .
An interval-valued fuzzy hypergraph I = (X, E) is support simple if A = [μ−

A,

μ+
A], B = [μ−

B , μ+
B ] ∈ E , supp(A) = supp(B), and μ−

A ≤ μ−
B , μ+

A ≤ μ+
B imply that

μ−
A = μ−

B , μ
+
A = μ+

B .
An interval-valued fuzzy hypergraph I = (X, E) is strongly support simple if

A = [μ−
A, μ+

A], B = [μ−
B , μ+

B ] ∈ E and supp(A) = supp(B) imply that A = B.

Remark 3.1 The Definition3.8 reduces to familiar definitions in the special case
where I is a crisp hypergraph. The interval-valued fuzzy definition of simple is
identical to the crisp definition of simple. A crisp hypergraph is support simple
and strongly support simple if and only if it has no multiple edges. For interval-
valued fuzzy hypergraphs all three concepts imply nomultiple edges. Simple interval-
valued fuzzy hypergraphs are support simple and strongly support simple interval-
valued fuzzy hypergraphs are support simple. Simple and strongly support simple
are independent concepts.

Definition 3.9 Let I = (X, E) be an interval-valued fuzzy hypergraph. Suppose
that α, β ∈ [0, 1]. Let

• E[α,β] = {A[α,β]| A ∈ E}, A[α,β] = {x | μ−
A(x) ≤ α or μ+

A(x) ≤ β}, and
• X [α,β] = ⋃

A∈E A[α,β].

If E[α,β] �= ∅, then the crisp hypergraph I[α,β] = (X [α,β], E[α,β]) is the [α, β]–level
hypergraph of I .

Clearly, it is possible that A[α,β] = B[α,β] for A �= B, by using distinct markers
to identity the various members of E a distinction between A[α,β] and B[α,β] to
represent multiple edges in I[α,β]. However, we do not take this approach unless
otherwise stated, we will always regard I[α,β] as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the [α, β]-cuts of an interval-
valued fuzzyhypergraph share an important relationshipwith eachother, as expressed
below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set Y belonging to Y which contains X . In this case, we say
that Y absorbs X and symbolically write X � Y to express this relationship between
X and Y. Since, it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X �= Y, then we write
X � Y.

Definition 3.10 Let I = (X, E) be an interval-valued fuzzy hypergraph, and for
[0, 0] < [s, t] ≤ h(I ). Let I[s,t] be the [s, t]–level hypergraph of I . The sequence
of real numbers {[s1, r1], [s2, r2], . . . , [sn, rn]}, [0, 0] < [s1, r1] < [s2, r2] < · · · <

[sn, rn] = h(I ), which satisfies the properties,

• if [si+1, ri+1] < [u, v] ≤ [si , ri ], then E[u,v] = E[si ,ri ],
• E[si ,ri ] � E[si+1,ri+1],
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is called the fundamental sequence of I, and is denoted by F(I ) and the set of [si , ri ]-
level hypergraphs {I[s1,r1], I[s2,r2], . . ., I[sn ,rn ]} is called the set of core hypergraphs of
I or, simply, the core set of I , and is denoted by C(I ).

Definition 3.11 Suppose I = (X, E) is an interval-valued fuzzy hypergraph with
F(I ) = {[s1, r1], [s2, r2], . . . , [sn, rn]}, and sn+1 = 0, rn+1 = 0. Then, I is called
sectionally elementary if for each edge A = (μ−

A, μ+
A) ∈ E , each i = {1, 2, . . . , n},

and [si , ri ] ∈ F(I ), A[s,t] = A[si ,ri ], for all [s, t] ∈ ([si+1, ri+1], [si , ri ]].
Clearly I is sectionally elementary if and only if A(x) = (μ−

A(x), μ+
A(x)) ∈ F(I )

for each A ∈ E and each x ∈ X .

Definition 3.12 Asequence of crisp hypergraphs Ii = (Xi , E∗
i ), [1, 1] ≤ i ≤ [n, n],

is said to be ordered if I1 ⊂ I2 ⊂ · · · ⊂ In . The sequence {Ii | [1, 1] ≤ i ≤ [n, n]} is
simply ordered if it is ordered and if whenever E∗ ∈ E∗

i+[1,1] − E∗
i , then E∗

� Xi .

Definition 3.13 An interval-valued fuzzy hypergraph I is ordered if the I induced
fundamental sequence of hypergraphs is ordered. The interval-valued fuzzy hyper-
graph I is simply ordered if the I induced fundamental sequence of hypergraphs is
simply ordered.

Example 3.2 Consider the interval-valued fuzzy hypergraph I = (X, E), where
X = {a, b, c, d} and E = {E1, E2, E3, E4, E5}which is represented by the following
incidence matrix Table3.2.

Clearly, h(I ) = [0.3, 0.9].
Now

E[0.1,0.9] = {{a, b}, {b, c}},

E[0.2,0.7) = {{a, b}, {b, c}},

E[0.3,0.4] = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

Thus, for [0.3, 0.4] < [s, t] ≤ [0.1, 0.9], E[s,t] = {{a, b}, {b, c}}, and for [0, 0] <

[s, t] ≤ [0.3, 0.4],

E[s,t] = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

Table 3.2 Incidence matrix of I

I E1 E2 E3 E4 E5

a [0.2, 0.7] [0.0, 0.9] [0, 0] [0, 0] [0.3, 0.4]

b [0.2, 0.7] [0.0, 0.9] [0.0, 0.9] [0.2, 0.7] [0, 0]

c [0, 0] [0, 0] [0.0, 0.9] [0.2, 0.7] [0.3, 0.4]

d [0, 0] [0.3, 0.4] [0, 0] [0.3, 0.4] [0.3, 0.4]
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We note that E[0.1,0.9] ⊆ E[0.3,0.4]. The fundamental sequence is F(I ) = {[s1, r1] =
[0.1, 0.9], [s2, r2] = [0.3, 0.4]} and the set of core hypergraph is C(I ) = {I1 =
(X1, E1) = I[0.1,0.9], I2 = (X2, E2) = I[0.3,0.4]}, where

X1 = {a, b, c}, E1 = {{a, b}, {b, c}, }

X2 = {a, b, c, d}, E2 = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.

I is support simple, but not simple. I is not sectionally elementary since E1[s,t] �=
E1[0.1,0.9] for s = 0.2, t = 0.7. Clearly, interval-valued fuzzy hypergraph I is simply
ordered.

Proposition 3.2 Let I = (X, E)beanelementary interval-valued fuzzy hypergraph.
Then, I is support simple if and only if I is strongly support simple.

Proof Suppose that I is elementary, support simple and that supp(A) = supp(B). We
assumewithout loss of generality that h(A) ≤ h(B). Since, I is elementary, it follows
that μ−

A ≤ μ−
B , μ+

A ≤ μ+
B and since I is support simple then μ−

A = μ−
B , μ+

A = μ+
B .

Therefore, I is strongly support simple. The proof of converse part is obvious.

The complexity of an interval-valued fuzzy hypergraph depends in part on howmany
edges it has. The natural question arises: is there an upper bound on the number of
edges of an interval-valued fuzzy hypergraph of order n?

Proposition 3.3 Let I = (X, E) be a simple interval-valued fuzzy hypergraph of
order n. Then, there is no upper bound on |E |.
Proof Let X = {x, y}, and define EN= {Ai = [μ−

Ai
, μ+

Ai
] | i = 1, 2, . . . , N }, where

μ−
Ai

(x) = 1

i + 1
, μ+

Ai
(x) = 1 − 1

i + 1
,

μ−
Ai

(y) = 1

i + 1
, μ+

Ai
(y) = i

i + 1
.

Then IN = (X, EN ) is a simple interval-valued fuzzy hypergraph with N edges. This
ends the proof.

Proposition 3.4 Let I = (X, E) be a support simple interval-valued fuzzy hyper-
graph of order n. Then, there is no upper bound on |E |.
Proposition 3.5 Let I = (X, E) be a strongly support simple interval-valued fuzzy
hypergraph of order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if
{supp(A) | A ∈ E} = P(X) − ∅.
Proposition 3.6 Let I = (X, E) be an elementary simple interval-valued fuzzy
hypergraph of order n. Then, there is no upper bound on |E | ≤ 2n − 1 if and only if
{supp(A) | A ∈ E} = P(X) − ∅.
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Proof Since I is elementary and simple, each nontrivial W ⊆ X can be the support
of at most one A = (μ−

A, μ+
A) ∈ E . Therefore, |E | ≤ 2n − 1. To show there exists

an elementary, simple I with |E | = 2n − 1, let E = {A = (μ−
A, μ+

A) | W ⊆ X} be
the set of functions defined by

μ−
A(x) = 1

|W | , if x ∈ W, μ−
A(x) = 0, if x /∈ W,

μ+
A(x) = 1 − 1

|W | , if x ∈ W, μ+
A(x) = 1, if x /∈ W.

Then, each one element has height [0, 1], each two elements have height [0.5, 0.5]
and so on. Hence, I is an elementary and simple, and |E | = 2n − 1.

Proposition 3.7 (a) If I = (X, E) is an elementary interval-valued fuzzy hyper-
graph, then I is ordered.
(b) If I is an ordered interval-valued fuzzy hypergraph with simple support hyper-
graph, then I is elementary.

Consider the situation where the vertex of a crisp hypergraph is fuzzified. Suppose
that each edge is given a uniform degree of membership consistent with the weakest
vertex of the edge. Some constructions describe the following subclass of interval-
valued fuzzy hypergraphs.

Definition 3.14 An interval-valued fuzzy hypergraph I = (X, E) is called a A =
[μ−

A, μ+
A ]-tempered interval-valued fuzzy hypergraph of I = (X, E) if there is a

crisp hypergraph I ∗ = (X, E∗) and an interval-valued fuzzy set A = [μ−
A, μ+

A] :
X → D(0, 1] such that E = {BF = [μ−

BF
, μ+

BF
] | F ∈ E∗}, where

μ−
BF

(x) =
{
min(μ−

A(y) | y ∈ F), if x ∈ F,

0, otherwise,

μ+
BF

(x) =
{
min(μ+

A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let A ⊗ I denote the A-tempered interval-valued fuzzy hypergraph of I deter-
mined by the crisp hypergraph I ∗ = (X, E∗) and the interval-valued fuzzy set
A : X → D(0, 1].

Example 3.3 Consider the interval-valued fuzzy hypergraph I = (X, E), where
X = {a, b, c, d} and E = {E1, E2, E3, E4} which is represented by the following
incidence matrix given in Table3.3.
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Table 3.3 Incidence matrix of I

I E1 E2 E3 E4

a [0.2, 0.7] [0.0, 0.0] [0, 0] [0.2, 0.7]

b [0.2, 0.7] [0.3, 0.4] [0.0, 0.9] [0.0, 0.0]

c [0, 0] [0, 0] [0.0, 0.9] [0.2, 0.7]

d [0, 0] [0.3, 0.4] [0, 0] [0.0, 0.0]

Then, E[0.0,0.9] = {{b, c}}, E[0.2,0.7) = {{a, b}, {a, c}, {b, c}}, and E[0.3,0.4] =
{{a, b}, {a, c}, {b, c}, {b, d}}. Define A = [μ−

A, μ+
A] : X → D(0, 1] by

μ−
A(a) = 0.2, μ−

A(b) = μ−
A(c) = 0.0, μ−

A(d) = 0.3,

μ+
A(a) = 0.7, μ+

A(b) = μ+
A(c) = 0.9, μ+

A(d) = 0.4.

Note that

μ−
B{a,b}(a) = min(μ−

A(a), μ−
A(b)) = 0.0, μ−

B{a,b}(b) = min(μ−
A(a), μ−

A(b)) = 0.0,

μ−
B{a,b}(c) = 0.0, μ−

B{a,b}(d) = 0.0,

μ+
B{a,b}(a) = min(μ+

A(a), μ+
A(b)) = 0.7, μ+

B{a,b}(b) = min(μ+
A(a), μ+

A(b)) = 0.7

μ+
B{a,b}(c) = 1.0, μ+

B{a,b}(d) = 1.0.

Thus,
E1 = [μ−

B{a,b} , μ
+
B{a,b} ], E2 = [μ−

B{b,d} , μ
+
B{b,d} ],

E3 = [μ−
B{b,c} , μ

+
B{b,c} ], E4 = [μ−

B{a,c} , μ
+
B{a,c} ].

Hence, I is A-tempered hypergraph.

Proposition 3.8 An interval-valued fuzzy hypergraph I is an A-tempered interval-
valued fuzzy hypergraph of some crisp hypergraph I ∗ if and only if I is elementary,
support simple, and simply ordered.

Proof Suppose that I = (X, E) is an A-tempered interval-valued fuzzy hypergraph
of some crisp hypergraph I ∗. Clearly, I is elementary and support simple. We show
that I is simply ordered. Let

C(I ) = {(I ∗
1 )r1 = (X1, E

∗
1 ), (I ∗

2 )r2 = (X2, E
∗
2 ), . . . , (I ∗

n )rn = (Xn, E
∗
n )}.
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Since I is elementary, it follows fromProposition3.7 that I is ordered. To show that I
is simply ordered, suppose that there exists F ∈ E∗

i+1\E∗
i . Then, there exists x

∗ ∈ F
such that μ−

A(x∗) = ri+1, μ
+
A(x∗) = ŕi+1. Since μ−

A(x∗) = ri+1 < ri and μ+
A(x∗) =

ŕi+1 < ŕi , it follows that x∗ /∈ Xi and F � Xi , hence I is simply ordered.
Conversely, suppose I = (X, E) is elementary, support simple and simplyordered.

Let

C(I ) = {(I ∗
1 )r1 = (X1, E

∗
1 ), (I ∗

2 )r2 = (X2, E
∗
2 ), . . . , (I ∗

n )rn = (Xn, E
∗
n )},

where D(I ) = {r1, r2, . . . , rn} with 0 < rn < · · · < r1. Since (I ∗)rn = I ∗
n =

(Xn, E∗
n ) and define A = [μ−

A, μ+
A] : Xn → D(0, 1] by

μ−
A (x) =

{
r1, i f x ∈ X1,

ri , i f x ∈ Xi\Xi−1, i = 1, 2, . . . , n
μ+
A (x) =

{
s1, i f x ∈ X1,

si , i f x ∈ Xi\Xi−1, i = 1, 2, . . . , n

We show that E = {BF = [μ−
BF

, μ+
BF

] | F ∈ E∗}, where

μ−
BF

(x) =
{
min(μ−

A (y) | y ∈ F), if x ∈ F,

0, otherwise,
μ+
BF

(x) =
{
min(μ+

A (y) | y ∈ F), if x ∈ F,

1, otherwise.

Let F ∈ E∗
n . Since I is elementary and support simple, there is a unique interval-

valued fuzzy edge CF = [μ−
CF

, μ+
CF

] in E having support E∗. Indeed, distinct edges
in E must have distinct supports that lie in E∗

n . Thus, to show that E = {BF =
[μ−

BF
, μ+

BF
] | F ∈ E∗

n }, it suffices to show that for each F ∈ E∗
n , μ−

CF
= μ−

BF
and

μ+
CF

= μ+
BF
. As all edges are elementary and different edges have different supports,

it follows from the definition of fundamental sequence that h(CF ) is equal to some
number ri of D(I ). Consequently, E∗ ⊆ Xi . Moreover, if i > 1, then F ∈ E∗\E∗

i−1.
Since F ⊆ Xi , it follows from the definition of A = [μ−

A, μ+
A] that for each x ∈ F ,

μ−
A(x) ≥ ri and μ+

A(x) ≥ si . We claim that μ−
A(x) = ri and μ+

A(x) = si , for some
x ∈ F . If not, then by definition of A = [μ−

A, μ+
A], μ−

A(x) ≥ ri and μ+
A(x) ≥ si for

all x ∈ F which implies that F ⊆ Xi−1 and so F ∈ E∗\E∗
i−1 and since I is simply

ordered F � Xi−1, a contradiction. Thus, it follows from the definition of BF that
BF = CF . This completes the proof.

As a consequence of the above theorem we obtain.

Proposition 3.9 Suppose that I is a simply ordered interval-valued fuzzy hyper-
graph and F(I ) = {r1, r2, . . . , rn}. If I rn is a simple hypergraph, then there is a
partial interval-valued fuzzy hypergraph Í of I such that the following assertions
hold:

1. Í is an A-tempered interval-valued fuzzy hypergraph of In.
2. E � É .
3. F( Í ) = F(I ) and C( Í ) = C(I ).
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3.3 Vague Hypergraphs

Different authors from time to time havemade a number of generalizations of Zadeh’s
[25] fuzzy set theory. The notion of vague set was introduced by Gau and Buehrer
[11]. This is because in most cases of judgments, the evaluation is done by human
beings and so the certainty is a limitation of knowledge or intellectual functionaries.
Naturally, every decision-maker hesitates more or less on every evaluation activity.
For example, in order to judge whether a patient has cancer or not, a medical doctor
(the decision-maker) will hesitate because of the fact that a fraction of evaluation
he thinks in favor of the truthness, another fraction in favor of the falseness and the
rest part remains undecided to him. This is the breaking philosophy in the notion of
vague set theory introduced by Gau and Buehrer [11].

Definition 3.15 A vague set A in the universe of discourse X is a pair (tA, f A), where
tA : X → [0, 1], f A : X → [0, 1] are true and false memberships, respectively such
that tA(x) + f A(x) ≤ 1, for all x ∈ X .

In the above definition, tA(x) is considered as the lower bound for degree of mem-
bership of x in A (based on evidence), and f A(x) is the lower bound for negation of
membership of x in A (based on evidence against). Therefore, the degree of member-
ship of x in the vague set A is characterized by the interval [tA(x), 1 − f A(x)]. So,
a vague set is a special case of interval-valued sets. The interval [tA(x), 1 − f A(x)]
is called the vague value of x in A, and is denoted by XA(x). We denote zero vague
and unit vague value by 0 = [0, 0] and 1 = [1, 1], respectively. It is worth to mention
here that interval-valued fuzzy sets are not vague sets. In interval-valued fuzzy sets,
an interval-valued membership value is assigned to each element of the universe
considering the “evidence for x” only, without considering “evidence against x”. In
vague sets both are independently proposed by the decision-maker. This makes a
major difference in the judgment about the grade of membership.

Remark 3.2 The intuitionistic fuzzy sets and vague sets look similar, analytically
vague sets are more appropriate when representing vague data. The difference
between them is discussed below. The membership interval of element x for vague
set A is [tA(x), 1 − f A(x)]. But, the membership value for element x in an intuition-
istic fuzzy set B is < x, μB(x), νB(x) >. Here the semantics of tA is the same as
with A and μB is the same as with B. However, the boundary is able to indicate
the possible existence of a data value. This difference gives rise to a simpler but
meaningful graphical view of data sets (see Fig. 3.2).

A vague relation is a generalization of a fuzzy relation.

Definition 3.16 Let X and Y be ordinary finite non-empty sets. We call a vague
relation to be a vague subset of X × Y , that is, an expression R defined by

R = {< (x, y), tR(x, y), fR(x, y) > |x ∈ X, y ∈ Y },

where tR : X × Y → [0, 1], fR : X × Y → [0, 1], which satisfies the condition 0 ≤
tR(x, y) + fR(x, y) ≤ 1, for all (x, y) ∈ X × Y . A vague relation R on X is called
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Fig. 3.2 Comparison between vague sets and intuitionistic fuzzy sets

reflexive if tR(x, x) = 1 and fR(x, x) = 0, for all x ∈ X . A vague relation R on X is
symmetric if tR(x, y) = tR(y, x) and fR(x, y) = fR(y, x), for all x, y ∈ X .

Definition 3.17 Let A = (tA, f A) be a vague set on X and let α, β ∈ [0, 1] be such
thatα ≤ β.Then, the set A(α,β) = {x | tA(x) ≥ α, 1 − f A(x) ≥ β} is called a (α, β)-
(weakly) cut set of A. A(α,β) is a crisp set.

Definition 3.18 The support of A is defined by supp(A) = {x ∈ X | (tA(x),
f A(x)) �= (0, 0)} and we say A is nontrivial if supp(A) is non-empty. The height
of a vague set A is defined as h(A) = supx∈X (A)(x).

Definition 3.19 A vague relation B on a set X is a vague relation from X to X . If
A is a vague set on a set X , then a vague relation B on A is a vague relation which
satisfies, tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max( f A(x), f A(y)), for all
xy ∈ E ⊆ X × X .

Definition 3.20 Let X be a non-empty set, members of X are called nodes. A vague
graph G = (A, B) with X as the set of nodes, is a pair of functions A, B, where A
is a vague set of X and B is a vague relation on X . We note that vague relation B in
vague digraph need not to be symmetric.

We now define vague hypergraph,

Definition 3.21 Let X be a finite set and letE = {E1,E2, . . . ,Em} be a finite family
of nontrivial vague subsets of X such that X = ⋃

j suppE j , j = 1, 2, . . . ,m. Then,
the pairH = (X,E) is a vague hypergraph on X, E is the family of vague edges of
H and X is the (crisp) vertex set of H.

Definition 3.22 Let A = (tA, f A) be a vague subset of X and letE be a collection of
vague subsets of X such that for each B = (tB, fB) ∈ E and x ∈ X , tA(x) ≤ tB(x),
fB(x) ≥ f A(x). Then, the pair (A, B) is a vague hypergraph on the vague set A. The
vague hypergraph (A, B) is also a vague hypergraph on X = supp(A), the vague set A
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defines a condition for interval-valued in the edge setE. This condition can be stated
separately, so without loss of generality we restrict attention to vague hypergraphs
on crisp vertex sets.

Definition 3.23 A vague set A is an elementary vague set if A is single valued on
supp(A). An elementary vague hypergraphH = (X,E) is a vague hypergraphwhose
edges are elementary.

Definition 3.24 A vague hypergraph H = (X,E) is simple if A = (tA, f A), B =
(tB, fB) ∈ E and tA ≤ tB , f A ≥ fB imply that tA = tB , f A = fB .

AvaguehypergraphH = (X,E) is support simple if A = (tA, f A), B = (tB, fB) ∈
E , supp(A) = supp(B), and tA ≤ tB , f A ≥ fB imply that tA = tB , f A = fB .

A vague hypergraphH = (X,E) is strongly support simple if A = (tA, f A), B =
(tB, fB) ∈ E , and supp(A) = supp(B) imply that A = B.

Example 3.4 Consider a vague hypergraph H = (X,E) as shown in Fig. 3.3 such
that X = {a, b, c, d} and E = {E1,E2,E3}, where

E1 =
{

a

(0.2, 0.3)
,

b

(0.4, 0.5)

}
, E2 =

{
b

(0.4, 0.5)
,

c

(0.2, 0.5)

}
, E3 =

{
a

(0.2, 0.3)
,

d

(0.2, 0.4)

}
.

The corresponding incidence matrix is given below in Table3.4.

Fig. 3.3 Vague hypergraph

Table 3.4 The incidence matrix of vague hypergraph

MH E1 E2 E3

a (0.2, 0.3) (0, 0) (0.2, 0.3)

b (0.4, 0.5) (0.4, 0.5) (0, 0)

c (0, 0) (0.2, 0.5) (0,0)

d (0,0) (0,0) (0.2, 0.4)
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Definition 3.25 LetH = (X,E) be a vague hypergraph. Suppose that α, β ∈ [0, 1].
Let

• E(α,β) = {A(α,β)| A ∈ E}, A(α,β) = {x | tA(x) ≥ α , 1 − f A(x) ≥ β}, and
• X(α,β) = ⋃

A∈E A(α,β).

If E(α,β) �= ∅, then the crisp hypergraph H(α,β) = (X(α,β),E(α,β)) is the (α, β)–
level hypergraph of H.

Clearly, it is possible that A(α,β) = B(α,β) for A �= B, by using distinct markers to
identity the variousmembers ofE a distinction between A(α,β) and B(α,β) to represent
multiple edges in H(α,β). However, we do not take this approach unless otherwise
stated, we will always regard H(α,β) as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the (α, β)-cuts of a vague
hypergraph share an important relationship with each other, as expressed below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set Y belonging to Y which contains X . In this case we say
that Y absorbs X and symbolically write X � Y to express this relationship between
X and Y. Since it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X �= Y, then we write
X � Y.

Definition 3.26 Let H = (X,E) be a vague hypergraph, and for (0, 0) < (s, t) ≤
h(H). LetH(s,t) be the (s, t)–level hypergraph ofH. The sequence of real numbers,

{(s1, r1), (s2, r2), . . . , (sn, rn)}, 0 < s1 < s2 < · · · < sn and 0 > r1 > r2 > · · · > rn,

where (sn, rn) = h(H),

which satisfies the properties

• if si < u ≤ si+1 and ri > v ≥ ri+1 , then E(u,v) = E(si+1,ri+1), and
• E(si ,ri ) � E(si+1,ri+1),

is called the fundamental sequence of H, and is denoted by F(H) and the set of
(si , ri )-level hypergraphs {H((s1,r1),H(s2,r2), . . . ,H(sn ,rn)} is called the set of core
hypergraphs ofH or, simply, the core set ofH, and is denoted by C(H).

Definition 3.27 Suppose H = (X,E) is vague hypergraph with F(H) = {(s1, r1),
(s2, r2), . . . , (sn, rn)}, and sn+1 = 0, rn+1 = 0,Then,H is called sectionally elemen-
tary if for each edge A = (tA, f A) ∈ E, each i = {1, 2, . . . , n}, and (si , ri ) ∈ F(H),
A(s,t) = A(si ,ri ) for all (s, t) ∈ ((si+1, ri+1), (si , ri )].
Clearly, H is sectionally elementary if and only if A(x) = (tA(x), f A(x)) ∈ F(H)

for each A ∈ E and each x ∈ X .

Definition 3.28 A sequence of crisp hypergraphsHi = (Xi , E∗
i ), 1 ≤ i ≤ n, is said

to be ordered if H1 ⊂ H2 ⊂ . . . ⊂ Hn . The sequence {Hi | 1 ≤ i ≤ n} is simply
ordered if it is ordered and if whenever E∗ ∈ E∗

i+1 − E∗
i , then E∗

� Xi .
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Definition 3.29 A vague hypergraph H is ordered if the H induced fundamental
sequence of hypergraphs is ordered. The vague hypergraph H is simply ordered if
theH induced fundamental sequence of hypergraphs is simply ordered.

We state the following Propositions without their proofs.

Proposition 3.10 LetH = (X,E) be an elementary vague hypergraph. Then,H is
support simple if and only if H is strongly support simple.

Proposition 3.11 Let H = (X,E) be a simple vague hypergraph of order n. Then,
there is no upper bound on |E|.
Proof Let X = {x, y}, and define EN = {Ai = (tAi , f Ai ) | i = 1, 2, . . . , N }, where

tAi (x) = 1

i + 1
, f Ai (x) = 1 − 1

i + 1
,

tAi (y) = 1

i + 1
, f Ai (y) = i

i + 1
.

Then HN = (X,EN ) is a simple vague hypergraph with N edges. This ends the
proof.

Proposition 3.12 Let H = (X,E) be a support simple vague hypergraph of order
n. Then, there is no upper bound on |E|.
Proposition 3.13 LetH = (X,E) be a strongly support simple vague hypergraph of
order n. Then, there is no upper bound on |E| ≤ 2n − 1 if and only if {supp(A) | A ∈
E} = P(X) − ∅.
Proposition 3.14 Let H = (X,E) be an elementary simple vague hypergraph of
order n. Then, there is no upper bound on |E| ≤ 2n − 1 if and only if {supp(A) | A ∈
E} = P(X) − ∅.
Proof SinceH is elementary and simple, each nontrivialW ⊆ X can be the support
of at most one A = (tA, f A) ∈ E. Therefore, |E| ≤ 2n − 1. To show there exists an
elementary, simple H with |E| = 2n − 1, let E = {A = (tA, f A) | W ⊆ X} be the
set of functions defined by

tA(x) = 1

|W | , if x ∈ W, tA(x) = 0, if x /∈ W,

f A(x) = 1 − 1

|W | , if x ∈ W, f A(x) = 1, if x /∈ W.

Then, each one element has height (1, 0), each two elements have height (0.5, 0.5)
and so on. Hence, H is an elementary and simple, and |E| = 2n − 1.
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Proposition 3.15 (a) IfH = (X,E) is an elementary vague hypergraph, thenH is
ordered.
(b) IfH is an ordered vague hypergraph with simple support hypergraph, thenH is
elementary.

Definition 3.30 The dual of a vague hypergraph H = (X,E) is a vague hyper-
graph HD = (ED, XD) whose vertex set is the edge set of H and with edges
XD : ED → [0, 1] × [0, 1] by XD(AD) = (t DA (x), f DA (x)). HD is a vague hyper-
graph whose incidence matrix is the transpose of the incidence matrix of H, thus
HDD = H.

Example 3.5 Consider a vague hypergraph H = (X,E) as shown in Fig. 3.4 such

that X = {x1, x2, x3, x4}, E = {E1,E2,E3,E4}, where E1 =
{

x1
(0.5,0.3) ,

x2
(0.4,0.2)

}
,

E2 =
{

x2
(0.4,0.2) ,

x3
(0.3,0.6)

}
, E3 =

{
x3

(0.3,0.6) ,
x4

(0.5,0.1)

}
, E4 =

{
x4

(0.5,0.1) ,
x1

(0.5,0.3)

}
.

The corresponding incidence matrix of H is given in Table3.5.
Consider the dual vague hypergraph HD = (ED, XD) of H such that ED =

{e1, e2, e3, e4}, XD = {A, B,C, D}, where A = { e1
(0.5,0.3) ,

e4
(0.5,0.3) }, B = { e1

(0.4,0.2) ,
e2

(0.4,0.2) }, C = { e2
(0.3,0.6) ,

e3
(0.3,0.6) }, D = { e3

(0.5,0.1) ,
e4

(0.5,0.1) }. The dual vague hypergraph
HD = (ED, XD) of H is shown in Fig. 3.5.

The corresponding incidence matrix of HD is given in Table3.6.

Definition 3.31 A vague hypergraph H = (X,E) is called A = (tA, f A)-tempered
vague hypergraph of H = (X,E) if there is a crisp hypergraph H∗ = (X, E∗) and
a vague set A = (tA, f A) : X → (0, 1] such that E = {BF = (tBF , fBF ) | F ∈ E∗},
where

Fig. 3.4 Vague hypergraph

Table 3.5 The corresponding incidence matrix of H

MH E1 E2 E3 E4

x1 (0.5, 0.3) (0, 0) (0, 0) (0.5, 0.3)

x2 (0.4, 0.2) (0.4, 0.2) (0, 0) (0, 0)

x3 (0, 0) (0.3, 0.6) (0.3, 0.6) (0, 0)

x4 (0, 0) (0, 0) (0.5, 0.1) (0.5, 0.1)



3.3 Vague Hypergraphs 141

Fig. 3.5 Dual vague
hypergraph

D

CA

e1

e4

B e2

e3

Table 3.6 The incidence matrix of HD

MHD A B C D

e1 (0.5, 0.3) (0.4, 0.2) (0, 0) (0, 0)

e2 (0, 0) (0.4, 0.2) (0.3, 0.6) (0, 0)

e3 (0, 0) (0, 0) (0.3, 0.6) (0.5, 0.1)

e4 (0.5, 0.3) (0, 0) (0, 0) (0.5, 0.1)

tBF (x) =
{
min(tA(y) | y ∈ F), if x ∈ F,

0, otherwise,
fBF (x) =

{
max( f A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let A ⊗ H denote the A-tempered vague hypergraph of H determined by the
crisp hypergraph H∗ = (X, E∗) and the vague set A.

Example 3.6 Consider the vague hypergraph H = (X,E), where X = {a, b, c, d}
and E = {E1,E2,E3,E4} which is represented by the following incidence matrix
Table3.7.

We define a vague set A = (tA, f A) by

tA(a) = 0.2, tA(b) = tA(c) = 0.0, tA(d) = 0.3, f A(a) = 0.7, f A(b) = f A(c) = 0.9, f A(d) = 0.4.

Note that

tB{a,b} (a) = min(tA(a), tA(b)) = 0.0, tB{a,b} (b) = min(tA(a), tA(b)) = 0.0, tB{a,b} (c) = 0.0, tB{a,b} (d) = 0.0,

fB{a,b} (a) = max( f A(a), f A(b)) = 0.9, fB{a,b} (b) = max( f A(a), f A(b)) = 0.9, fB{a,b} (c) = 1, fB{a,b} (d) = 1.

Thus,

E1 = (tB{a,b} , fB{a,b}), E2 = (tB{b,d} , fB{b,d} ), E3 = (tB{b,c} , fB{b,c}), E4 = (tB{a,c} , fB{a,c} ).

Hence, H is A-tempered hypergraph.

Theorem 3.1 A vague hypergraph H is an A-tempered vague hypergraph of some
crisp hypergraph H∗ if and only if H is elementary, support simple, and simply
ordered.
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Table 3.7 Incidence matrix of H

H E1 E2 E3 E4

a (0.2, 0.7) (0, 0) (0, 0) (0.2, 0.7)

b (0.2, 0.7) (0.3, 0.4) (0.0, 0.9) (0, 0)

c (0, 0) (0, 0) (0, 0.9) (0.2, 0.7)

d (0, 0) (0.3, 0.4) (0, 0) (0, 0)

Proof Suppose thatH = (X,E) is an A-tempered vague hypergraph of some crisp
hypergraph H∗. Clearly, H is elementary and support simple. We show that H is
simply ordered. Let

C(H) = {(H∗
1 )r1 = (X1, E

∗
1 ), (H∗

2 )r2 = (X2, E
∗
2 ), . . . , (H∗

n )rn = (Xn, E
∗
n )}.

Since, H is elementary, it follows from Proposition3.15 that H is ordered. To
show that H is simply ordered, suppose that there exists F ∈ E∗

i+1\E∗
i . Then, there

exists x∗ ∈ F such that tA(x∗) = ri+1, f A(x∗) = ŕi+1. Since, tA(x∗) = ri+1 < ri and
f A(x∗) = ŕi+1 < ŕi , it follows that x∗ /∈ XI and F � Xi , henceH is simply ordered.
Conversely, supposeH = (X,E) is elementary, support simple, and simply ordered.
Let

C(H) = {(H∗
1 )r1 = (X1, E

∗
1 ), (H∗

2 )r2 = (X2, E
∗
2 ), . . . , (H∗

n )rn = (Xn, E
∗
n ), }

where D(H) = {r1, r2, . . . , rn} with 0 < rn < · · · < r1. Since (H∗)rn = H∗
n =

(Xn, E∗
n ) and define A = (tA, f A) by,

tA(x) =
{
r1, if x ∈ X1,

ri , if x ∈ Xi\Xi−1, i = 1, 2, . . . , n.
f A(x) =

{
s1, if x ∈ X1,

si , if x ∈ Xi\Xi−1, i = 1, 2, . . . , n.

We show that E = {BF = (tBF , fBF ) | F ∈ E∗}, where

tBF (x) =
{
min(tA(y) | y ∈ F), if x ∈ F,

0, otherwise,
fBF (x) =

{
max( f A(y) | y ∈ F), if x ∈ F,

1, otherwise.

Let F ∈ E∗
n . Since, H is elementary and support simple, there is a unique vague

edge CF = (tCF , fCF ) in E having support E∗. Indeed, distinct edges in E must
have distinct supports that lie in E∗

n . Thus, to show that E = {BF = (tBF , fBF ) | F ∈
E∗
n }, it suffices to show that for each F ∈ E∗

n , tCF = tBF and fCF = fBF . As all
edges are elementary and different edges have different supports, it follows from
the definition of fundamental sequence that h(CF ) is equal to some number ri of
D(H). Consequently, E∗ ⊆ Xi . Moreover, if i > 1, then F ∈ E∗\E∗

i−1. Since F ⊆
Xi , it follows from the definition of A = (tA, f A) that for each x ∈ F , tA(x) ≥ ri
and f A(x) ≤ si . We claim that tA(x) = ri and f A(x) = si , for some x ∈ F . If not,
then by definition of A = (tA, f A), tA(x) ≥ ri and f A(x) ≤ si for all x ∈ F which
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implies that F ⊆ Xi−1 and so F ∈ E∗\E∗
i−1 and since H is simply ordered F �

Xi−1, a contradiction. Thus it follows from the definition of BF that BF = CF . This
completes the proof.

As a consequence of the above theorem we obtain.

Proposition 3.16 Suppose that H is a simply ordered vague hypergraph and
F(H) = {r1, r2, . . . , rn}. IfHrn is a simple hypergraph, then there is a vague subhy-
pergraph H́ of H such that the following assertions hold,

(i) H́ is an A-tempered vague hypergraph ofHn.
(ii) E � É.
(iii) F(H́) = F(H) and C(H́) = C(H).

3.4 Interval-Valued Intuitionistic Fuzzy Hypergraphs

Atanassov and Gargov [6] initiated the concept of interval-valued intuitionistic fuzzy
sets as a generalization of intuitionistic fuzzy sets. An interval-valued intuitionistic
fuzzy set is characterized by an interval-valued membership degree and an interval-
valued nonmembership degree.

Definition 3.32 An interval-valued intuitionistic fuzzy set V in X is an object of the
form,

V = {〈x, μV (x), νV (x)〉 | x ∈ X},

whereμV : X → Int([0, 1]) and νV : X → Int([0, 1]) such thatμ+
V (x) + ν+

V (x) ≤ 1
for all x ∈ X .

Definition 3.33 The support of an interval-valued intuitionistic fuzzy set V =
{〈x, μV (x), νV (x)〉 | x ∈ X} is defined as, supp(V ) = {x | μ−

V (x) �= 0, μ+
V (x) �=

0, ν−
V (x) �= 1 and ν+

V (x) �= 1}.
Definition 3.34 Theheight of an interval-valued intuitionistic fuzzy set V =
{〈x, μV (x), νV (x)〉 | x ∈ X} is defined as, h(V ) = 〈[supx∈X μ−

V (x), supx∈X μ+
V (x)],

[inf x∈X ν−
V (x), inf x∈X ν+

V (x)]〉.
Definition 3.35 For α, β, γ, δ ∈ [0, 1], the 〈[α, β], [γ, δ]〉-cut of interval-valued
intuitionistic fuzzy set V is

V〈[α,β],[γ,δ]〉 = {x | μ−
V (x) ≥ α,μ+

V (x) ≥ β, ν−
V (x) ≤ γ and ν−

V (x) ≤ δ}.

Definition 3.36 Let X = {x1, x2, ..., xn} be a finite set of vertices and let τ =
{τ1, τ2, ..., τm} be a finite family of nontrivial interval-valued intuitionistic fuzzy
sets on X such that
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x1, [0.2,0.4], [0.3,0.5]

x4, [0.3,0.5], [0.1,0.3]

τ1

τ3

τ2

x2, [0.1,0.2], [0.4,0.7]

x3, [0.4,0.5], [0.2,0.3]

Fig. 3.6 Interval-valued intuitionistic fuzzy hypergraph

X =
⋃

j

supp〈μ j , ν j 〉, j = 1, 2, ...,m,

where μ j , ν j are interval-valued membership and interval-valued nonmembership
functions defined on τ j ∈ τ . Then, the pair H = (X, τ ) denotes an interval-valued
intuitionistic fuzzy hypergraph on X , τ is the family of interval-valued intuitionistic
fuzzy hyperedges of H .

Example 3.7 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3} as shown in Fig. 3.6, where
τ1 = {x1|〈[0.2, 0.4], [0.3, 0.5]〉, x2|〈[0.1, 0.2], [0.4, 0.7]〉},
τ2 = {x2|〈[0.1, 0.2], [0.4, 0.7]〉, x3|〈[0.4, 0.5], [0.2, 0.3]〉, x4|〈[0.3, 0.5], [0.1, 0.3]〉},
τ3 = {x1|〈[0.2, 0.4], [0.3, 0.5]〉, x4|〈[0.3, 0.5], [0.1, 0.3]〉}.

The corresponding incidence matrix MH is as follows:

τ1 τ2 τ3

MH =
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.3, 0.5]〉
〈[0.1, 0.2], [0.4, 0.7]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0.4, 0.5], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉 〈[0.3, 0.5], [0.1, 0.3]〉 〈[0.3, 0.5], [0.1, 0.3]〉

⎞

⎟⎟⎠ .

Definition 3.37 The 〈[α, β], [γ, δ]〉-cut of an interval-valued intuitionistic fuzzy
hypergraphH , denoted by H〈[α,β],[γ,δ]〉 and is defined as H〈[α,β],[γ,δ]〉 = (X〈[α,β],[γ,δ]〉,
E〈[α,β],[γ,δ]〉), where

X〈[α,β],[γ,δ]〉 = X,

E j,〈[α,β],[γ,δ]〉 = {xi | μ−
j (xi ) ≥ α,μ+

j (xi ) ≥ β, ν−
j (xi ) ≤ γ and ν−

j (xi ) ≤ δ, j = 1, 2, . . . ,m},
Em+1,〈[α,β],[γ,δ]〉 = {xi | μ−

j (xi ) < α,μ+
j (xi ) < β, ν−

j (xi ) > γ and ν−
j (xi ) > δ, ∀ j}.

The hyperedge Em+1,〈[α,β],[γ,δ]〉 is added to group the elements which are not
contained in any hyperedge E j,〈[α,β],[γ,δ]〉 of H〈[α,β],[γ,δ]〉. The hyperedges in the
〈[α, β], [γ, δ]〉-cut hypergraph are now crisp sets.
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x2

x4 x3

x1

E4, [0.2,0.3],[0.3,0.5]

E1, [0.2,0.3],[0.3,0.5]

E3, [0.2,0.3],[0.3,0.5]

E2, [0.2,0.3],[0.3,0.5]

Fig. 3.7 〈[0.2, 0.3], [0.3, 0.5]〉-cut hypergraph

Example 3.8 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), where X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3}, given in Example3.7.

Incidence matrix of H〈[0.2,0.3],[0.3,0.5]〉
E1,〈[0.2,0.3],[0.3,0.5]〉 E2,〈[0.2,0.3],[0.3,0.5]〉 E3,〈[0.2,0.3],[0.3,0.5]〉 E4,〈[0.2,0.3],[0.3,0.5]〉

MH〈[0.2,0.3],[0.3,0.5]〉 =
x1
x2
x3
x4

⎛

⎜⎜⎝

1 0 1 0
0 0 0 1
0 1 0 0
0 1 1 0

⎞

⎟⎟⎠.

The new hyperedge E4,〈[0.2,0.3],[0.3,0.5]〉 is added to group the vertex x2 as shown
in Fig. 3.7.

Definition 3.38 The dual interval-valued intuitionistic fuzzy hypergraph of an
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is defined as H ∗ =
(X∗, τ ∗), where X∗ = {e′

1, e
′
2, ..., e

′
m} is the set of vertices corresponding to

τ1, τ2, ..., τm , respectively, and {X1, X2, ..., Xn} is the set of hyperedges corre-
sponding to x1, x2, ..., xn , respectively, where Xi (e

′
j ) = τ j (xi ), i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

Example 3.9 Consider the dual interval-valued intuitionistic fuzzy hypergraph
H ∗ = (X∗, τ ∗) (shown in Fig. 3.8) of an interval-valued intuitionistic fuzzy hyper-
graph H = (X, τ ) given in Example3.7, such that
X∗ = {e′

1, e
′
2, e

′
3} and E∗ = {X1, X2, X3, X4}, where

X1 = {e′
1|〈[0.2, 0.4], [0.3, 0.5]〉, e′

3|〈[0.2, 0.4], [0.3, 0.5]〉},
X2 = {e′

1|〈[0.1, 0.2], [0.4, 0.7]〉, e′
2|〈[0.1, 0.2], [0.4, 0.7]〉},

X3 = {e′
2|〈[0.4, 0.5], [0.2, 0.3]〉},

X4 = {e′
2|〈[0.3, 0.5], [0.1, 0.3]〉, e′

3|〈[0.3, 0.5], [0.1, 0.3]〉}.
The corresponding incidence matrix MH ∗ is as follows:

X1 X2 X3 X4 X5

MH ∗ =
e

′
1
e

′
2
e

′
3

⎛

⎝
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0.1, 0.2], [0.4, 0.7]〉 〈[0.4, 0.5], [0.2, 0.3]〉 〈[0.3, 0.5], [0.1, 0.3]〉
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.3, 0.5], [0.1, 0.3]〉

⎞

⎠ .
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Fig. 3.8 Dual
interval-valued intuitionistic
fuzzy hypergraph X3

X4

X2

X1

e3

e2e1

Definition 3.39 The strength ρ of a hyperedge τ j is defined as

ρ(τ j ) = {min(μ−
j (x) | μ−

j (x) > 0),min(μ+
j (x) | μ+

j (x) > 0),

max(ν−
j (x) | ν−

j (x) > 0),max(ν+
j (x) | ν+

j (x) > 0)}.

In other words, the minimum membership values μ−
j (x), μ

+
j (x) of vertices and

maximum nonmembership values ν−
j (x), ν+

j (x) of vertices in the hyperedge τ j . Its
interpretation is that the hyperedge τ j groups elements having participation degree
at least ρ(τ j ) in the hypergraph. The hyperedges with high strength are called the
strong hyperedges because the cohesion in them is strong.

Example 3.10 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), where X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4} as shown in Fig. 3.9.

Here, ρ(τ1) = 〈[0.5, 0.7], [0.1, 0.2]〉, ρ(τ2) = 〈[0.2, 0.4], [0.2, 0.3]〉, ρ(τ3) =
〈[0.1, 0.3], [0.5, 0.6]〉 and ρ(τ4) = 〈[0.1, 0.3], [0.5, 0.6]〉, respectively. Therefore,
the hyperedge τ1 is stronger than τ2, τ3 and τ4.

Definition 3.40 An interval-valued intuitionistic fuzzy hypergraph H
′ = (X

′
, τ

′
)

is a partial interval-valued intuitionistic fuzzy hypergraph ofH = (X, τ ) if τ
′ ⊆ τ

and is written as H
′ ⊆ H . IfH

′ ⊆ H and τ
′ ⊂ τ , we writeH

′ ⊂ H .

Definition 3.41 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is
simple if τ has no repeated interval-valued intuitionistic fuzzy hyperedges and

x1, [0.5,0.7], [0.1,0.2]

x3, [0.2,0.4], [0.2,0.3]

x2, [0.8,0.9], [0,0.1]

x4, [0.1,0.3], [0.5,0.6]

τ1

τ4

τ3

τ2

Fig. 3.9 Interval-valued intuitionistic fuzzy hypergraph
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whenever X = 〈μX , νX 〉,Y = 〈μY , νY 〉 ∈ τ and μ−
X (x) ≤ μ−

Y (x), μ+
X (x) ≤ μ+

Y (x),
ν−
X (x) ≥ ν−

Y (x), ν+
X (x) ≥ ν+

Y (x), for all x ∈ X, then μ−
X (x) = μ−

Y (x), μ+
X (x) =

μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x).

Definition 3.42 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ )

is support simple if X = 〈μX , νX 〉, Y = 〈μY , νY 〉 ∈ τ , μ−
X (x) ≤ μ−

Y (x), μ+
X (x) ≤

μ+
Y (x), ν−

X (x) ≥ ν−
Y (x), ν+

X (x) ≥ ν+
Y (x), for all x ∈ X, and supp(X) = supp(Y ),

then μ−
X (x) = μ−

Y (x), μ+
X (x) = μ+

Y (x), ν−
X (x) = ν−

Y (x), ν+
X (x) = ν+

Y (x). An
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is strongly support
simple if X = 〈μX , νX 〉,Y = 〈μY , νY 〉 ∈ τ and supp(X)=supp(Y ), then μ−

X (x) =
μ−
Y (x), μ+

X (x) = μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x).

Definition 3.43 An interval-valued intuitionistic fuzzy set X = {〈x, μX (x),
νX (x)〉 | x ∈ X} is an elementary interval-valued intuitionistic fuzzy set if X is single
valued on supp(X). An interval-valued intuitionistic fuzzy hypergraphH = (X, τ )

whose all interval-valued intuitionistic fuzzy hyperedges are elementary is called an
elementary interval-valued intuitionistic fuzzy hypergraph.

Example 3.11 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4}, represented by the fol-
lowing incidence matrix:

τ1 τ2 τ3 τ4 τ5

MH =
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.5, 0.7], [0.1, 0.2]〉 〈[0.8, 0.9], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.5, 0.7], [0.1, 0.2]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.8, 0.9], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉
〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉

⎞

⎟⎟⎠.

Clearly, H is simple, support simple, and strongly support simple. The partial
interval-valued intuitionistic fuzzy hypergraph τ

′ = {τ1, τ3} ofH is elementary.

Theorem 3.2 LetH = (X, τ ) be an elementary interval-valued intuitionistic fuzzy
hypergraph. Then,H is support simple if and only ifH is strongly support simple.

Proof Suppose thatH is elementary, support simple, and that supp(X) = supp(Y ).
Without loss of generality we may assume that h(X) ≤ h(Y ). Since, H is ele-
mentary, it follows thatμ−

X (x) ≤ μ−
Y (x),μ+

X (x) ≤ μ+
Y (x), ν−

X (x) ≥ ν−
Y (x), ν+

X (x) ≥
ν+
Y (x) for all x ∈ X, and sinceH is support simple that μ−

X (x) = μ−
Y (x), μ+

X (x) =
μ+
Y (x), ν−

X (x) = ν−
Y (x), ν+

X (x) = ν+
Y (x). Hence, H is strongly support simple.

Definition 3.44 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph. Let α, β, γ, δ ∈ [0, 1] and

E〈[α,β],[γ,δ]〉 = {X〈[α,β],[γ,δ]〉 �= ∅ | X ∈ τ }, X〈[α,β],[γ,δ]〉 =
⋃

X∈τ

X〈[α,β],[γ,δ]〉.

If E〈[α,β],[γ,δ]〉 �= ∅, then the crisp hypergraph H〈[α,β],[γ,δ]〉 = (X〈[α,β],[γ,δ]〉,
E〈[α,β],[γ,δ]〉) is the 〈[α, β], [γ, δ]〉-level hypergraph of H .
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The families of crisp sets (hypergraphs) produced by the 〈[α, β], [γ, δ]〉-cuts of an
interval-valued intuitionistic fuzzy hypergraph share an important relationship with
each other, as expressed below:

Suppose A and B are two families of sets such that for each set A ∈ A there is
at least one set B ∈ B which contains A. In this case we say that B absorbs A and
symbolically write A � B. Since it is possible for A � B while A ∩ B = ∅, we have
that A ⊆ B implies A � B, whereas the converse is generally false. If A � B and
A �= B, then we write A � B.

Definition 3.45 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph, and for 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H ), let H〈[α,β],[γ,δ]〉 =
(X〈[α,β],[γ,δ]〉, E〈[α,β],[γ,δ]〉) be the 〈[α, β], [γ, δ]〉-level hypergraph of H . The
sequence of real numbers {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n}, 0 < rn < . . . < r1, 0 <

sn < . . . < s1, 1 > tn > . . . > t1 and 1 > qn > . . . > q1, where h(H ) = 〈[r1, s1],
[t1, q1]〉, which satisfies the properties

(i) if ri+1 < u ≤ ri , si+1 < v ≤ si , ti+1 > l ≥ ti , and qi+1 > m ≥ qi , then
E〈[u,v],[l,m]〉 = E〈[ri ,si ],[ti ,qi ]〉, i = 1, 2, . . . , n,

(ii) E〈[ri ,si ],[ti ,qi ]〉 � E〈[ri+1,si+1],[ti+1,qi+1]〉, i = 1, 2, . . . , n − 1,

is called the fundamental sequence of H , denoted by F(H ). The set of 〈[ri , si ],
[ti , qi ]〉–level hypergraphs {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} is the set of core hypergraphs
of H or, the core set of H , denoted by C(H ).

Definition 3.46 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph and F(H ) = {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n}. Then, H is called section-
ally elementary if for each X , where X is an interval-valued intuitionistic fuzzy set
defined on τ j ∈ τ and each 〈[ri , si ], [ti , qi ]〉 ∈ F(H ), X〈[α,β],[γ,δ]〉 = X〈[ri ,si ],[ti ,qi ]〉
for all 〈[α, β], [γ, δ]〉 ∈ (〈[ri+1, si+1], [ti+1, qi+1]〉, 〈[ri , si ], [ti , qi ]〉]. (Take rn+1 =
0, sn+1 = 0, tn+1 = 0, qn+1 = 0.)

Definition 3.47 An interval-valued intuitionistic fuzzy hypergraphH is ordered if
C(H ) = {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} is ordered, and is simply ordered if C(H ) is
simply ordered.

Example 3.12 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ), represented by incidence matrix, as in Example3.11. Clearly, h(H ) =
〈[0.8, 0.9], [0, 0]〉. Now

E〈[0.8,0.9],[0,0]〉 = E〈[0.5,0.7],[0.1,0.2]〉 = {{x1, x2}, {x2, x3}},
E〈[0.2,0.4],[0.2,0.3]〉 = {{x1, x2}, {x1, x2, x4}, {x2, x3}, {x2, x3, x4}}.

Thus, for 0.2 < α ≤ 0.8, 0.4 < β ≤ 0.9, 0.2 > γ ≥ 0, 0.3 > δ ≥ 0,

E〈[α,β],[γ,δ]〉 = {{x1, x2}, {x2, x3}, }
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and for 0 < α ≤ 0.2, 0 < β ≤ 0.4, 1 > γ ≥ 0.2, 1 > δ ≥ 0.3,

E〈[α,β],[γ,δ]〉 = {{x1, x2}, {x1, x2, x4}, {x2, x3}, {x2, x3, x4}}.

It is easy to see that, E〈[0.8,0.9],[0,0]〉 � E〈[0.2,0.4],[0.2,0.3]〉. Therefore, the fundamental
sequence is F(H ) = {〈[r1, s1], [t1, q1]〉 = 〈[0.8, 0.9], [0, 0]〉, 〈[r2, s2], [t2, q2]〉 =
〈[0.2, 0.4], [0.2, 0.3]〉} and the set of core hypergraphs is C(H ) = {H〈[0.8,0.9],[0,0]〉,
H〈[0.2,0.4],[0.2,0.3]〉}.H is not sectionally elementary, as τ1,〈[α,β],[γ,δ]〉 �= τ1,〈[0.8,0.9],[0,0]〉
for 〈[α, β], [γ, δ]〉 = 〈[0.5, 0.7], [0.1, 0.2]〉. Clearly, H is simply ordered.

Proposition 3.17 (i) An elementary interval-valued intuitionistic fuzzy hypergraph
H (X, τ ) is ordered.

(ii) An ordered interval-valued intuitionistic fuzzy hypergraph H (X, τ ) with
C(H ) = {H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n} and simple H〈[rn ,sn ],[tn ,qn ]〉, is elementary.

The complexity of an interval-valued intuitionistic fuzzy hypergraph depends in part
on how many hyperedges it has. The natural question arises: is there an upper bound
on the number of hyperedges of an interval-valued intuitionistic fuzzy hypergraph
of order n?

Proposition 3.18 Let H = (X, τ ) be a simple interval-valued intuitionistic fuzzy
hypergraph of order n. Then, there is no upper bound on |τ |.
Proof Let X = {x, y}, and define τN = {Xi = 〈[μ−

Xi
, μ+

Xi
][ν−

Xi
, ν+

Xi
]〉 | i = 1, 2, . . . ,

N }, where

μ−
Xi

(x) = 1/1 + i, μ+
Xi

(x) = 1/1 + i, ν−
Xi

(x) = 1/1 + i, ν+
Xi

(x) = 1/1 + i,

μ−
Xi

(y) = i/1 + i, μ+
Xi

(y) = i/1 + i, ν−
Xi

(y) = i/1 + i, ν+
Xi

(y) = i/1 + i.

Then,HN = (X, τN ) is a simple interval-valued intuitionistic fuzzy hypergraphwith
N hyperedges.

Proposition 3.19 LetH = (X, τ ) be a support simple interval-valued intuitionistic
fuzzy hypergraph of order n. Then, there is no upper bound on |τ |.
Proof The proof follows at once fromProposition3.18, as the class of support simple
interval-valued intuitionistic fuzzy hypergraphs contains the class of simple interval-
valued intuitionistic fuzzy hypergraphs.

Proposition 3.20 Let H = (X, τ ) be a strongly support simple interval-valued
intuitionistic fuzzy hypergraph of order n. Then, |τ | ≤ 2n − 1, with equality if and
only if {supp(X) | X ∈ τ } = P(X) − ∅.

Proof Each nontrivial U ⊆ X can be the support of at most one X ∈ τ , therefore
|τ | ≤ 2n − 1. The second statement is obvious.
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Consider the situationwhere the node set of a (crisp) hypergraph is fuzzified. Suppose
that each hyperedge is given a uniform degree of interval-valued membership and
interval-valued nonmembership consistent with the weakest node of the hyperedge.
Such constructions describe the following subclass of interval-valued intuitionistic
fuzzy hypergraphs.

Definition 3.48 An interval-valued intuitionistic fuzzy hypergraph H = (X, τ ) is
said to be a V = 〈[μ−

V , μ
+
V ], [ν−

V , ν
+
V ]〉-tempered interval-valued intuitionistic fuzzy

hypergraph of H∗, if there is a crisp hypergraph H∗ = (X, E∗) and an interval-
valued intuitionistic fuzzy set X = 〈[μ−

X , μ+
X ], [ν−

X , ν+
X ]〉 : X → Int((0, 1]) such that

τ = {Ye = 〈[(μ−
Y )e, (μ

+
Y )e], [(ν−

Y )e, (ν
+
Y )e]〉 | e ∈ E}, where

(μ−
Y )e(x) =

{
min(μ−

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(μ+
Y )e(x) =

{
min(μ+

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(ν−
Y )e(x) =

{
max(ν−

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

(ν+
Y )e(x) =

{
max(ν+

X (y) | y ∈ e), if x ∈ e,
0, otherwise,

The V -tempered interval-valued intuitionistic fuzzy hypergraph of H∗ will be
denoted by V ⊗ H∗.

Example 3.13 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4} and τ = {τ1, τ2, τ3, τ4}, represented by the fol-
lowing incidence matrix:

τ1 τ2 τ3 τ4
x1
x2
x3
x4

⎛

⎜⎜⎝

〈[0.5, 0.7], [0.1, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.3]〉
〈[0.5, 0.7], [0.1, 0.3]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0, 0], [0, 0]〉

〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.5, 0.7], [0.1, 0.3]〉
〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.2, 0.3]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉

⎞

⎟⎟⎠ .

Define V = 〈[μ−
V , μ+

V ], [ν−
V , ν+

V ]〉 : X → Int((0, 1]) by,

μ−
V (x1) = 0.5, μ−

X (x2) = μ−
V (x3) = 0.6, μ−

V (x4) = 0.2,

μ+
V (x1) = 0.7, μ+

X (x2) = μ+
V (x3) = 0.8, μ+

V (x4) = 0.4,

ν−
V (x1) = 0.1, ν−

X (x2) = ν−
V (x3) = 0.1, ν−

V (x4) = 0.2,

ν+
V (x1) = 0.3, ν+

X (x2) = ν+
V (x3) = 0.2, ν+

V (x4) = 0.3.
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Now

(μ−
Y ){x1,x2}(x1) = (μ−

Y ){x1,x2}(x2) = min(μ−
V (x1), μ

−
V (x2)) = 0.5,

(μ−
Y ){x1,x2}(x3) = (μ−

Y ){x1,x2}(x4) = 0,

(μ+
Y ){x1,x2}(x1) = (μ+

Y ){x1,x2}(x2) = min(μ+
V (x1), μ

+
V (x2)) = 0.7,

(μ+
Y ){x1,x2}(x3) = (μ+

Y ){x1,x2}(x4) = 0,

(ν−
Y ){x1,x2}(x1) = (ν−

Y ){x1,x2}(x2) = max(ν−
V (x1), ν

−
V (x2)) = 0.1,

(ν−
Y ){x1,x2}(x3) = (ν−

Y ){x1,x2}(x4) = 0,

(ν+
Y ){x1,x2}(x1) = (ν+

Y ){x1,x2}(x2) = max(ν+
V (x1), ν

+
V (x2)) = 0.3,

(ν+
Y ){x1,x2}(x3) = (ν+

Y ){x1,x2}(x4) = 0.

Therefore, τ1 = 〈[(μ−
Y ){x1,x2}, (μ

+
Y ){x1,x2}], [(ν−

Y ){x1,x2}.(ν
+
Y ){x1,x2}]〉.

Also, it is easy to see that
τ2 = 〈[(μ−

Y ){x2,x4}, (μ
+
Y ){x2,x4}], [(ν−

Y ){x2,x4}, (ν
+
Y ){x2,x4}]〉,

τ3 = 〈[(μ−
Y ){x2,x3}, (μ

+
Y ){x2,x3}], [(ν−

Y ){x2,x3}, (ν
+
Y ){x2,x3}]〉,

τ4 = 〈[(μ−
Y ){x1,x3}, (μ

+
Y ){x1,x3}], [(ν−

Y ){x1,x3}, (ν
+
Y ){x1,x3}]〉.

Thus, H is X = 〈[μ−
V , μ+

V ], [ν−
V , ν+

V ]〉-tempered interval-valued intuitionistic
fuzzy hypergraph.

Theorem 3.3 An interval-valued intuitionistic fuzzy hypergraphH is a V -tempered
interval-valued intuitionistic fuzzy hypergraph of some crisp hypergraph H∗ if and
only ifH is elementary, support simple, and simply ordered.

Proof Suppose thatH = (X, τ ) is aV -tempered interval-valued intuitionistic fuzzy
hypergraph of H∗ = (X, E∗). Clearly,H is elementary, support simple and ordered
(being elementary). To show that H is simply ordered, let C(H ) = {H〈[ri ,si ],[ti ,qi ]〉
(Xi , Ei ) | 1 ≤ i ≤ n}. Suppose there exists e ∈ Ei+1\Ei , then there exists z ∈ e such
that μ−

X (z) = ri+1, μ
+
X (z) = si+1, ν

−
X (z) = ti+1 and ν+

X (z) = qi+1. Since μ−
X (z) =

ri+1 < ri , μ
+
X (z) = si+1 < si , ν

−
X (z) = ti+1 > ti and ν+

X (z) = qi+1 > qi , it follows
that z /∈ Xi and e � Xi , hence H is simply ordered.

Conversely, suppose thatH = (X, τ ) is elementary, support simple, and simply
ordered. Define V = 〈[μ−

V , μ
+
V ], [ν−

V , ν
+
V ]〉 : Xn → Int((0, 1]) by

μ−
Y (x) =

{
r1, if x ∈ X1,

ri , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,

μ+
Y (x) =

{
s1, if x ∈ X1,

si , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,

ν−
Y (x) =

{
t1, if x ∈ X1,

ti , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n,
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ν+
Y (x) =

{
q1, if x ∈ X1,

qi , if x ∈ Xi\Xi−1, i = 2, 3, . . . , n.

We show that τ = {Ye = 〈[(μ−
Y )e, (μ

+
Y )e], [(ν−

Y )e, (ν
+
Y )e]〉 | e ∈ En}. Since, H is

elementary and support simple, there is a unique interval-valued intuitionistic fuzzy
hyperedge Ze in τ having support e. Since distinct hyperedges in τ must have dis-
tinct supports that lie in En. Thus, to show that τ = {Ye = 〈[(μ−

Y )e, (μ
+
Y )e], [(ν−

Y )e,

(ν+
Y )e]〉 | e ∈ En}, it suffices to show that Ye = Ze, for each e ∈ En .
Since, all hyperedges are elementary and different hyperedges have different

supports, it follows from Definition3.45 that h(Ze) = 〈[ri , si ], [ti , qi ]〉 ∈ F(H ).

Consequently, e ⊆ Xi . Moreover, e ∈ Ei\Ei−1, i = 2, 3, . . . , n. As e ⊆ Xi , it fol-
lows from the definition of V = 〈[μ−

V , μ+
V ], [ν−

V , ν+
V ]〉 that μ−

V (x) ≥ ri , μ
+
V (x) ≥ si ,

ν−
V (x) ≤ ti and ν+

V (x) ≤ qi for each x ∈ e. We claim that μ−
V (x) = ri , μ

+
V (x) = si ,

ν−
V (x) = ti and ν+

V (x) = qi , for some x ∈ e. For if not, then, by definition of V ,
μ−

V (x) ≥ ri−1, μ+
V (x) ≥ si−1, ν−

V (x) ≤ ti−1 and ν+
V (x) ≤ qi−1 for all x ∈ e which

implies that e ⊆ Xi−1 and so e ∈ Ei\Ei−1 and sinceH is simply ordered e � Xi−1,

a contradiction. Hence, Ye = Ze, by definition of Ye.

Corollary 3.1 Suppose that H = (X, τ ) is a simply ordered interval-valued intu-
itionistic fuzzy hypergraphwith F(H ) = {〈[ri , si ], [ti , qi ]〉 |1 ≤ i ≤ n}. If H〈[rn ,sn ],[tn ,qn ]〉
is a simple hypergraph, then there is a partial interval-valued intuitionistic fuzzy
hypergraph H

′ = (X, τ
′
) of H such that the following assertions hold.

(i) H
′ = (X, τ

′
) is a V -tempered interval-valued intuitionistic fuzzy hypergraph

of Hn.
(ii) τ � τ

′
.

(iii) F(H
′
) = F(H ) and C(H

′
) = C(H ).

Definition 3.49 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy hyper-
graph. An interval-valued intuitionistic fuzzy transversal T of H = (X, τ ) is an
interval-valued intuitionistic fuzzy set defined on X such that Th(τ j ) ∩ (τ j )h(τ j ) �= ∅,
for each τ j ∈ τ, j = 1, 2, . . . ,m.

Definition 3.50 Aminimal interval-valued intuitionistic fuzzy transversalT ofH
is a transversal ofH such that ifT

′ ⊂ T , thenT
′
is not an interval-valued intuition-

istic fuzzy transversal of H . The class of all minimal interval-valued intuitionistic
fuzzy transversals of H will be denoted by Tr(H ).

Example 3.14 Consider an interval-valued intuitionistic fuzzy hypergraph H =
(X, τ ) such that X = {x1, x2, x3, x4, x5} and τ = {τ1, τ2, τ3, τ4}, represented by the
following incidence matrix:
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τ1 τ2 τ3 τ4

MH =

x1
x2
x3
x4
x5

⎛

⎜⎜⎜⎜⎝

〈[0.3, 0.5], [0.2, 0.4]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.3, 0.5], [0.2, 0.4]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0.4, 0.6], [0.2, 0.3]〉 〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉 〈[0.2, 0.4], [0.3, 0.5]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0, 0], [0, 0]〉 〈[0.5, 0.7], [0.1, 0.2]〉

⎞

⎟⎟⎟⎟⎠
.

T

Tr(H ) =

x1
x2
x3
x4
x5

⎛

⎜⎜⎜⎜⎝

〈[0, 0], [0, 0]〉
〈[0.6, 0.8], [0.1, 0.2]〉
〈[0.5, 0.7], [0.1, 0.2]〉

〈[0, 0], [0, 0]〉
〈[0, 0], [0, 0]〉

⎞

⎟⎟⎟⎟⎠
.

Theorem 3.4 If T is an interval-valued intuitionistic fuzzy transversal of an
interval-valued intuitionistic fuzzy hypergraph H = (X, τ ), then h(T ) ≥ h(τ j )

for each τ j ∈ τ. Moreover, if T is a minimal interval-valued intuitionistic fuzzy
transversal of H , then h(T ) = h(H ).

Proof The proof follows at once from above definitions.

Theorem 3.5 Let H = (X, τ ) be an interval-valued intuitionistic fuzzy
hypergraph. Then the following statements are equivalent:

(i) T is an interval-valued intuitionistic fuzzy transversal ofH ,
(ii) for each τ j ∈ τ and each 〈[α, β], [γ, δ]〉, 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤

h(τ j ), T〈[α,β],[γ,δ]〉 ∩ (τ j )〈[α,β],[γ,δ]〉 �= ∅,

(iii) for each 〈[α, β], [γ, δ]〉, 〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H ),T〈[α,β],[γ,δ]〉
is a transversal of H〈[α,β],[γ,δ]〉.

If T is a minimal interval-valued intuitionistic fuzzy transversal of H , then
T〈[α,β],[γ,δ]〉 need not be a minimal transversal of H〈[α,β],[γ,δ]〉 for each 〈[α, β], [γ, δ]〉,
〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H). However, interval-valued intuitionistic
fuzzy transversals satisfying this condition are of interest.

Definition 3.51 An interval-valued intuitionistic fuzzy set T with the property
that T〈[α,β],[γ,δ]〉 is a minimal transversal of H〈[α,β],[γ,δ]〉, for each 〈[α, β], [γ, δ]〉,
〈[0, 0], [0, 0]〉 < 〈[α, β], [γ, δ]〉 ≤ h(H) is called a locally minimal interval-valued
intuitionistic fuzzy transversal ofH . The class of all locally minimal interval-valued
intuitionistic fuzzy transversals of H will be denoted by Tr∗(H ). That is

Tr∗(H ) = {T | h(T ) = h(H ) & T〈[α,β],[γ,δ]〉 ∈ Tr(H〈[α,β],[γ,δ]〉)}.

Remark 3.3 For any interval-valued intuitionistic fuzzy hypergraphH , Tr∗(H ) ⊆
Tr(H ).

Theorem 3.6 Suppose H = (X, τ ) is an ordered interval-valued intuitionistic
fuzzy hypergraph with F(H ) = {〈[ri , si ], [ti , qi ]〉 | 1 ≤ i ≤ n} and C(H ) =
{H〈[ri ,si ],[ti ,qi ]〉 | 1 ≤ i ≤ n}. Then, T r∗(H ) �= ∅.
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Chapter 4
Bipolar Fuzzy (Directed) Hypergraphs

In this chapter, we present the concept of bipolar fuzzy hypergraphs and directed
hypergraphs. We describe certain operations on bipolar fuzzy directed hypergraphs,
which include addition, multiplication, vertex-wise multiplication, and structural
subtraction. We discuss the concept of B = (m+,m−)−tempered bipolar fuzzy
directed hypergraphs and investigate some of their basic properties. We present an
algorithm to compute the minimum arc length of a bipolar fuzzy directed hyperpath.
This chapter is due to [1, 3, 4, 10, 18].

4.1 Introduction

A wide variety of human decision-making is based on double-sided or bipolar judg-
mental thinking on a positive side and a negative side. For instances, cooperation
and competition, friendship and hostility, common interests and conflict interests,
effect and side effect, likelihood and unlikelihood, feedforward and feedback. In
Chinese medicine, Yin and Yang are the two sides. Yin is the negative side of a
system and Yang is the positive side of a system. The notion of bipolar fuzzy
sets (YinYang bipolar fuzzy sets) was introduced by Zhang [18, 19] in the space
{∀ (x, y) | (x, y) ∈ [−1, 0] × [0, 1]}. Although bipolar fuzzy sets and intuitionistic
fuzzy sets look similar to each other, they are essentially different sets [9, 10].

Hypergraphs have many applications in various fields, including biological sci-
ences, computer science, and natural sciences. To study the degree of dependence of
an object to the other, Kaufmann [8] applied the concept of fuzzy sets to hypergraphs.
Mordeson and Nair [12] presented fuzzy graphs and fuzzy hypergraphs. Generaliza-
tion and redefinition of fuzzy hypergraphs were discussed by Lee-Kwang and Lee
[11]. The concept of interval-valued fuzzy sets was applied to hypergraphs by Chen
[6]. Parvathi et al. [13] established the notion of intuitionistic fuzzy hypergraphs.

© Springer Nature Singapore Pte Ltd. 2020
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Definition 4.1 Let X be a non-empty set. A bipolar fuzzy set B in X is an object
having the form, B = (μ+

B , μ−
B ) = {(x, μ+

B (x), μ−
B (x)) | x ∈ X}, where μ+

B : X →
[0, 1] and μ−

B : X → [−1, 0] are mappings.

Positive membership degree μ+
B (x) denotes the satisfaction degree of an element

x to the property corresponding to a bipolar fuzzy set B and negative membership
degree μ−

B (x) denotes the satisfaction degree of x to some implicit counter-property
corresponding to B. If μ+

B (x) �= 0 and μ−
B (x) = 0, it is the state when x has only

positive satisfaction for B. If μ+
B (x) = 0 and μ−

B (x) �= 0, it is the state when x does
not satisfy the property of B but somewhat satisfies the counter property of B. It
is possible for an element x to be such that μ+

B (x) �= 0 and μ−
B (x) �= 0 when the

membership function of the property coincides with its counter property over x ∈ X .

Example 4.1 Suppose that there is a fuzzy set “young” defined on the age domain
[0, 100] like Fig. 4.1. In that fuzzy set, consider two ages 50 and 95 with membership
degree 0. Although both of them do not satisfy the property “young”, wemay say that
age 95 is more apart from the property rather than age 50. Only with the membership
degrees ranged on the interval [0, 1], it is difficult to express this kind of meaning.

We define a bipolar fuzzy set as in Fig. 4.2 for the same fuzzy set “young” of
Fig. 4.1. The negative membership degrees indicate the satisfaction range of ele-
ments to an implicit counter-property (e.g., old against the property young). This
kind of bipolar fuzzy set representation enables the elements with 0 degree of mem-
bership in traditional fuzzy sets, to be expressed into the elements with zero degree of
membership (when irrelevant elements) and negative degree of membership (when
contrary elements). The age elements 50 and 95, with membership degree 0 in the
fuzzy set of Fig. 4.1, have 0 and a negative membership degree in the bipolar fuzzy
set of Fig. 4.2, respectively. Now it is manifested that 50 is an irrelevant age to the
property young and 95 is more apart from the property young than 50 (i.e., 95 is a
contrary age to the property young).

Example 4.2 Let X = {P1, P2, P3, P4, P5, P6} be a set of products manufactured in
a company. The products can be categorized according to their profit and loss. The

age

1

0 50 100

Young

Fig. 4.1 A fuzzy set “young”
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age

1

0 50 100

Young

Old

−1

Fig. 4.2 A bipolar fuzzy set “young”

Table 4.1 Profit and loss of
products

Product Profit Loss

P1 0.6 0.4

P2 0.8 0.5

P3 0.9 0.1

P4 0.7 0.2

P5 0.5 0.6

P6 0.6 0.4

profit and loss of every product varies from time to time. The possibilities of profit
and loss of all the products are given in Table4.1.

Table4.1 shows that the product P1 has 60% profit and 40% loss on the average.
Profit is the positive and loss is the negative behavior of the product, that is, two-sided
behavior. It can be written in the form of a bipolar fuzzy set as, A = {(P1, 0.6,−0.4),
(P2, 0.8,−0.5), (P3, 0.9,−0.1), (P4, 0.7,−0.2), (P5, 0.5,−0.6), (P6, 0.6,−0.4)}.

Example 4.3 Consider a fuzzy set

frog’s prey = {(mosquito, 1.0), (dragon fly, 0.4), (turtle, 0.0), (snake, 0.0)}.

In this fuzzy set, both turtle and snake have the membership degree 0. It is known
that frog and turtle are indifferent from each other concerning the prey-hunting
relationship, but snake is a predator of frog. Turtle is an irrelevant animal and snake
is related to frog by a counter implicit property but they both seem irrelevant in fuzzy
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set. As we can see from this example, it is difficult to express the difference of the
irrelevant elements in fuzzy sets.

The same fuzzy set “frog’s prey” can be redefined in the form of a bipolar fuzzy
set, as follows:

frog’s prey = {(mosquito, 1, 0), (dragon fly, 0.4, 0), (turtle, 0, 0), (snake, 0, −1)}.

We can see that membership degree 0 and nonmembership degree 0 of turtle means
that frog never hunts turtle and turtle never hunts frog. While membership degree 0
and nonmembership degree−1 of snake means that frog never hunts snake but snake
always hunts frog. Here the counter implicit property is “predator of frog”, which
created the difference between fuzzy set and bipolar fuzzy set of frog’s prey.

Definition 4.2 For every two bipolar fuzzy sets A = (μ+
A, μ−

A) and B = (μ+
B , μ−

B )

in X , we define the intersection and union of A and B as follows:

• (A ∩ B)(x) = (min{μ+
A(x), μ+

B (x)},max{μ−
A(x), μ−

B (x)}),
• (A ∪ B)(x) = (max{μ+

A(x), μ+
B (x)},min{μ−

A(x), μ−
B (x)}).

Definition 4.3 Let X be a non-empty set. Then, we call a mapping A = (μ+
A, μ−

A) :
X × X → [−1, 0] × [0, 1] a bipolar fuzzy relation on X such thatμ+

A(x, y) ∈ [0, 1]
and μ−

A(x, y) ∈ [−1, 0].
Definition 4.4 Let A = (μ+

A , μ−
A) and B = (μ+

B , μ−
B ) be bipolar fuzzy sets on a set

X . If A = (μ+
A, μ−

A) is a bipolar fuzzy relation on a set X , then A = (μ+
A, μ−

A) is
called a bipolar fuzzy relation on B = (μ+

B , μ−
B ) if μ+

A(x, y) ≤ min(μ+
B (x), μ+

B (y))
and μ−

A(x, y) ≥ max(μ−
B (x), μ−

B (y)), for all x , y ∈ X .
A bipolar fuzzy relation A on X is called symmetric if μ+

A(x, y) = μ+
A(y, x) and

μ−
A(x, y) = μ−

A(y, x), for all x , y ∈ X .

Definition 4.5 The support of a bipolar fuzzy set A = (μ+
A, μ−

A), denoted by
supp(A), is defined as

supp(A) = supp+(A) ∪ supp−(A), supp+(A) = {x | μ+
A(x) > 0}, supp−(A)

= {x | μ−
A(x) < 0}.

We call supp+(A) as positive support and supp−(A) as negative support.

Definition 4.6 Let A = (μ+
A, μ−

A) be a bipolar fuzzy set on X . Let α ∈ [0, 1] and
β ∈ [−1, 0], then (α, β)−cut A(α,β) of A can be defined as, A(α,β) = {x | μ+

α (x) ≥
α, μ−

α (x) ≤ β}.
Definition 4.7 The height of a bipolar fuzzy set A = (μ+

A, μ−
A) is defined as h(A) =

max{μ+
A(x)|x ∈ X}.

The depth of a bipolar fuzzy set A = (μ+
A, μ−

A) is defined as d(A) = min{μ−
A(x)|

x ∈ X}.
We shall say that bipolar fuzzy set A is normal, if h(A) = 1 and d(A) = −1.
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Definition 4.8 A bipolar fuzzy graph on X is a pair G = (C ,D), where C =
(μ+

C , μ−
C ) is a bipolar fuzzy set on X and D = (μ+

D , μ−
D ) is a bipolar fuzzy relation

on X such that

μ+
D (xy) ≤ min{μ+

C (x), μ+
C (y)}, μ−

D (xy) ≥ max{μ−
C (x), μ−

C (y)}, for all x, y ∈ X.

Note that, D is a bipolar fuzzy relation on C , and μ+
D (xy) > 0, μ−

D (xy) < 0 for
xy ∈ X × X , μ+

D (xy) = μ−
D (xy) = 0, for xy ∈ X × X − E .

Definition 4.9 A bipolar fuzzy digraph on X is a pair 
G = (C , 
D), where C =
(μ+

C , μ−
C ) is a bipolar fuzzy set on X and 
D = (μ+


D , μ−

D ) is a bipolar fuzzy relation

on X such that

μ+

D (xy) ≤ min{μ+

C (x), μ+
C (y)}, μ−


D (xy) ≥ max{μ−
C (x), μ−

C (y)}, for all x, y ∈ X.

For further terminologies and studies on bipolar fuzzy hypergraphs, readers are
referred to [2, 5, 7, 14–17].

4.2 Bipolar Fuzzy Hypergraphs

Definition 4.10 A bipolar fuzzy hypergraph on a non-empty set X is a pair H =
(C, D), where C = {ξ1, ξ2, . . . , ξr } is family of bipolar fuzzy subsets on X and
D = (μ+

D, μ−
D) is a bipolar fuzzy relation on the bipolar fuzzy subsets ξi = (μ+

ξi
, μ−

ξi
)

such that

(i)
μ+

D(Ei ) = μ+
D({x1, x2, · · · , xs}) ≤ min{μ+

ξi
(x1), μ

+
ξi
(x2), . . . , μ

+
ξi
(xs)},

μ−
D(Ei ) = μ−

D({x1, x2, · · · , xs}) ≤ max{μ−
ξi
(x1), μ

−
ξi
(x2), . . . , μ

−
ξi
(xs)},

for all x1, x2, . . . , xs ∈ X .
(ii)

⋃
i supp(ξi ) = X, for all ξi ∈ C .

Example 4.4 Let C = {ξ1, ξ2, ξ3, ξ4} be a family of bipolar fuzzy subsets on X =
{a, b, c, d, e, f } as given in Table4.2. The bipolar fuzzy relation D on the bipolar
fuzzy subsets ξi ’s is defined as D({a, c, d, f }) = (0.1, −0.2), D({a, b, c}) = (0.2,
−0.4), D({d, e, f }) = (0.1, −0.2). Routine calculations show that H is a bipolar
fuzzy hypergraph as shown in Fig. 4.3.

Definition 4.11 A bipolar fuzzy set C = (μ+
C , μ−

C ) : X → [−1, 0] × [0, 1] is an
elementary bipolar fuzzy set if C is single valued on supp(C). A bipolar fuzzy
hypergraph H = (C, D) is elementary if each ξi ∈ C and D are elementary other-
wise, it is called non-elementary.
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Table 4.2 Family of bipolar fuzzy subsets on X

x ∈ X ξ1 ξ2 ξ3 ξ4

a (0.2,−0.5) (0.2,−0.6) (0, 0) (0, 0)

b (0, 0) (0.5,−0.7) (0, 0) (0, 0)

c (0.5,−0.4) (0.5 − 0.4) (0.5,−0.4) (0, 0)

d (0.8,−0.6) (0, 0) (0.8,−0.6) (0.8,−0.6)

e (0, 0) (0, 0) (0, 0) (0.5,−0.8)

f (0.1,−0.2) (0, 0) (0, 0) (0.1,−0.2)

a(0.2,−0.6)

b(
0.5
,−
0.7
)

(0.2,−0.4)(0.1,−0.2)

f (0.1,−0.2)

(0.1,−0.2)

d(
0.8
,−0

.6)

c(0.5,−0.4)

a(
0.2
,−
0.5
)

e(0.5,−0.8)

Fig. 4.3 Bipolar fuzzy hypergraph H

We now explore the concept in which a bipolar fuzzy graph is a bipolar fuzzy hyper-
graph.

Proposition 4.1 Bipolar fuzzy graphs are special cases of the bipolar fuzzy hyper-
graphs.

A bipolar fuzzy multigraph is a multivalued symmetric mapping D = (μ+
D, μ−

D) :
X × X → [0, 1] × [−1, 0]. A bipolar fuzzy multigraph can be considered to be the
“disjoint union” or “disjoint sum” of a collection of simple bipolar fuzzy graphs, as
is done with crisp multigraphs. The same holds for multidigraphs. Therefore, these
structures can be considered as “disjoint unions” or “disjoint sums” of bipolar fuzzy
hypergraphs.

Definition 4.12 A bipolar fuzzy hypergraph H = (C, D) is called simple if every
ξi , ξ j ∈ C , ξi ⊆ ξ j implies that ξi = ξ j .

A bipolar fuzzy hypergraph H = (C, D) is called support simple if every ξi , ξ j ∈
C , ξi ⊆ ξ j , and supp(ξi ) = supp(ξ j ) implies that ξi = ξ j .

A bipolar fuzzy hypergraph H = (C, D) is called strongly support simple if every
ξi , ξ j ∈ C , supp(ξi ) = supp(ξ j ) implies that ξi = ξ j .
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Remark 4.1 Definition4.12 reduces to familiar definitions in the special case where
H is a crisp hypergraph. The definition of simple bipolar fuzzy hypergraph is identical
to the definition of simple crisp hypergraph. A crisp hypergraph is support simple
and strongly support simple if and only if it has no multiple edges. For bipolar
fuzzy hypergraphs all three concepts imply no multiple edges. Any simple bipolar
fuzzy hypergraph is support simple and every strongly support simple bipolar fuzzy
hypergraph is support simple. Simple and strongly support simple are independent
concepts in bipolar fuzziness.

Definition 4.13 LetH = (C, D)be abipolar fuzzyhypergraph and (α, β) ∈ [−1, 0]
× [0, 1]. Define an (α, β)-cut level set of a bipolar fuzzy set ξi as, ξi(α,β) =
{x |μ+

ξi
(x) ≥ α and μ−

ξi
(x) ≤ β}.

H(α,β) = (C(α,β), D(α,β)) is called an (α, β)−level hypergraph of H , where
C(α,β) = ∪r

i=1ξi(α,β).

Clearly, it is possible that A(α,β) = B(α,β) for A �= B, by using distinct markers to
identity the variousmembers of E a distinction between A(α,β) and B(α,β) to represent
multiple edges in H(α,β). However, we do not take this approach unless otherwise
stated, we will always regard H(α,β) as having no repeated edges.

The families of crisp sets (hypergraphs) produced by the (α, β)-cuts of a bipo-
lar fuzzy hypergraph share an important relationship with each other, as expressed
below:

Suppose X and Y are two families of sets such that for each set X belonging to
X there is at least one set X belonging to Y which contains X . In this case, we say
that X absorbs Y and symbolically write X � Y to express this relationship between
X and Y. Since, it is possible for X � Y while X ∩ Y = ∅, we have that X ⊆ Y ⇒
X � Y, whereas the converse is generally false. If X � Y and X �= Y, then we write
X � Y.

Definition 4.14 Let H = (C, D) be a bipolar fuzzy hypergraph and for each
(α, β) ∈ [0, 1] × [−1, 0], H(α,β) = (C(α,β), D(α,β)) be an (α, β)−level hypergraph
of H . The sequence of ordered pairs (r+

1 , r−
1 ), (r+

2 , r−
2 ), …, (r+

n , r−
n ) with 1 ≥ r+

1 >

r+
2 > . . . > r+

n > 0 and −1 ≤ r−
1 < r−

2 < . . . < r−
n < 0 satisfying the properties,

(i) If 1 ≥ u+ ≥ r+
1 and −1 ≤ u− ≤ r−

1 then D(u+, u−) = ∅,
(ii) If r+

i ≥ u+ ≥ r+
i+1 and r

−
i ≤ u− ≤ r−

i+1 then D(u+, u−) = D(r+
i ,r−

i ),
(iii) D(r+

i ,r−
i ) � D(r+

i+1,r
−
i+1)

,

is called the fundamental sequenceof bipolar fuzzy hypergraph H , denoted by fs(H).
The corresponding sequence of (r+

i , r−
i )−level hypergraphs H(r+

1 ,r−
1 ), H(r+

2 ,r−
2 ), …,

H(r+
n ,r−

n ) is called the core setof H , denotedbyC(H). The (r+
n , r−

n )−level hypergraph,
H(r+

n ,r−
n ), is called the support level of H .

Definition 4.15 Let H = (C, D) be a bipolar fuzzy hypergraph with fundamental
sequence fs(H) = {(r+

1 , r−
1 ), (r+

2 , r−
2 ), . . . , (r+

n , r−
n )} and (r+

n+1, r
−
n+1) = (0, 0),

then H is called sectionally elementary if for each ξ ∈ C , (r+
i , r−

i ) ∈ fs(H), 1 ≤
i ≤ n ξ(s+,s−) = ξ(r+

i ,r−
i ), for all (s

+, s−) ∈ (r+
i , r+

i−1] × (r−
i−1, r

−
i ].
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x1(0.8,−0.5)

x2 (0.7,−0.4)

x3(0.6,−0.4)

x4(0.9,−0.7)

x5(0.3,−0.2)

x6(
0.3

,−0
.2)

(0.6,−
0.4) (0

.3
,−

0.
2)

(0.3,
−0.2)

(0
.8
,−

0.
5)

Fig. 4.4 Bipolar fuzzy hypergraph

x4

Fig. 4.5 H(r+
1 ,r−

1 )

Example 4.5 Let H = (C, D) be a bipolar fuzzy hypergraph as shown in Fig. 4.4.
Take (r+

1 , r−
1 ) = (0.9,−0.7), (r+

2 , r−
2 ) = (0.8,−0.5), (r+

3 , r−
3 ) = (0.6,−0.4), and

(r+
4 , r−

4 ) = (0.3,−0.2). Clearly, the sequence {(r+
1 , r−

1 ), (r+
2 , r−

2 ), (r+
3 , r−

3 ), (r+
4 ,

r−
4 )} satisfies all the conditions of Definition4.14 and hence it is a fundamental
sequence of H . The corresponding sequence of (r+

i , r−
i )−level hypergraphs are

shown in Figs. 4.5, 4.6, 4.7, 4.8.

Definition 4.16 Abipolar fuzzyhypergraph H = (C, D) is calledordered if the core
set C(H) = {H(r+

1 ,r−
1 ), H(r+

2 ,r−
2 ), …, H(r+

n ,r−
n )} is ordered, i.e., H(r+

1 ,r−
1 ) � H(r+

2 ,r−
2 ) �

…� H(r+
n ,r−

n ).
H is called simply ordered if H is ordered and whenever D′ � D(r+

i+1,r
−
i+1)

\ D(r+
i ,r−

i )

then, D′ �� C(r+
i ,r−

i ).

Example 4.6 Consider a bipolar fuzzy hypergraph H = (C, D) on the set X =
{a, b, c, d} and C = {ξ1, ξ2, ξ3, ξ4, ξ5} be the family of bipolar fuzzy sets as given in
Table4.3. The bipolar fuzzy relation D is given as D({a, b}) = (0.7, −0.2), D({a,

b, d}) = (0.4, −0.2), D({b, c}) = (0.9, −0.2), and D({a, c, d}) = (0.4, −0.3).
Note that,

D(0.9,−0.1) = {{b, c}}, D(0.7,−0.2) = {{a, b}, {b, c}},

D(0.4,−0.2) = {{a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, c, d}}.
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x1

x4

Fig. 4.6 H(r+
2 ,r−

2 )

Fig. 4.7 H(r+
3 ,r−

3 )

x1

x2

x3

x4

Thus, for 0.4 < s+ ≤ 0.9 and−0.1 > s− ≥ −0.3, D(s+,s−) = {{a, b}, {b, c}}, and for
0 < s+ ≤ 0.4 and −1 < s− ≥ −0.3, D(s+,s−) = {{a, b}, {a, b, d}, {b, c}, {b, c, d},
{a, c, d}}.

Note that, D(0.9,−0.1) ⊆ D(0.4,−0.3).
The fundamental sequence is fs(H)={(s1, r1) = (0.9,−0.1), (s2, r2) = (0.4,

−0.2)} and the set of core hypergraphs is C(H) = {H(0.9,−0.1), H(0.4,−0.2)}.

H is support simple, but not simple. H is not sectionally elementary. Clearly,
bipolar fuzzy hypergraph H is simply ordered.

Proposition 4.2 Let H = (C, D) be an elementary bipolar fuzzy hypergraph then
H is support simple if and only if H is strongly support simple.
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Fig. 4.8 H(r+
4 ,r−

4 )

x1

x2

x3

x4

x5

x 6

Table 4.3 Bipolar fuzzy subsets on X

C ξ1 ξ2 ξ3 ξ4 ξ5

a (0.7,−0.2) (0.9,−0.2) (0, 0) (0, 0) (0.4,−0.3)

b (0.7,−0.2) (0.9,−0.2) (0.9,−0.2) (0.7,−0.2) (0, 0)

c (0, 0) (0, 0) (0.9,−0.2) (0.7,−0.2) (0.4,−0.3)

d (0, 0) (0.4,−0.3) (0, 0) (0.4,−0.3) (0.4,−0.3)

Proof Suppose that H is elementary support simple bipolar fuzzy graph and that for
each ξi , ξ j ∈ C , ξi ⊆ ξ j , supp(ξi ) = supp(ξ j ). Since, H is elementary, therefore,
supp(ξi ) = supp(ξ j ) implies that ξi �⊂ ξ j and H is support simple implies that ξi =
ξ j . Hence, H is strongly support simple. The proof of converse part is obvious.

The complexity of a bipolar fuzzy hypergraph depends on how many hyperedges it
has. The natural question arises: is there an upper bound on the number of edges of
a bipolar fuzzy hypergraph of order n?

Proposition 4.3 Let H = (C, D) be a simple bipolar fuzzy hypergraph of order n.
Then, there is no upper bound on |D|.
The Proposition4.3 is explained in Example4.7.

Example 4.7 Let H = (C, D) be a bipolar fuzzy hypergraph on X = {x, y} such
that C = {ξi = (μ+

ξi
, μ−

ξi
) | i = 1, 2, . . . , n}, where

μ+
ξi
(x) = 1

i + 1
, μ−

ξi
(x) = −1 + 1

i + 1
,

μ+
ξi
(y) = 1

i + 1
, μ−

ξi
(y) = − i

i + 1
.

Then, H = (C, D) is a simple bipolar fuzzy hypergraph with n edges. Clearly there
is no upper bound for |D|.
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Proposition 4.4 Let H = (C, D) be a support simple bipolar fuzzy hypergraph of
order with n hyperedges. Then there is no upper bound on |D|.
Proof The class of support simple bipolar fuzzy hypergraphs contains the class of
simple bipolar fuzzy hypergraphs, thus the result follows from Proposition4.3.

Proposition 4.5 Let H be an elementary bipolar fuzzy hypergraph then H is
ordered. If H is an ordered bipolar fuzzy hypergraph and support level H(r+

n ,r−
n )

is simple then H is elementary.

Definition 4.17 A bipolar fuzzy hyperpath of length s in a bipolar fuzzy hypergraph
can be defined as an alternative sequence x1, E1, x2, E2, . . . , xs, Es, xs+1 of distinct
vertices and hyperedges such that

(i) μ+(Ei ) > 0 or μ−(Ei ) < 0, i = 1, 2, . . . , s,
(ii) xi , xi+1 ∈ Ei , i = 1, 2, . . . , s.

Definition 4.18 A bipolar fuzzy hypergraph H is said to connected if there exists a
bipolar fuzzy hyperpath between every pair of distinct vertices.

Definition 4.19 Letu and v be any twodistinct vertices of a bipolar fuzzy hypergraph
H which are connected by a bipolar fuzzy hyperpath of length l. The strength of a
bipolar fuzzy hyperpath u − v is defined as

Sl(u, v) = (Sl+, Sl−) = (min{μ+
D(E1), μ

+
D(E2), . . . , μ

+
D(Ek)},max{μ−

D(E1),

μ−
D(E2), . . . , μ

−
D(Ek)}), u ∈ E1, v ∈ Ek,

where E1, E2, . . . , Ek are the hyperedges.
The strength of connectedness between u and v is defined as

S∞(u, v) = {(max
l

Sl+(u, v),min
l

Sl−(u, v))|l = 1, 2, . . .}.

4.3 Bipolar Fuzzy Directed Hypergraphs

Definition 4.20 A directed hyperedge (or hyperarc) is defined as an ordered pair
Y = (u, v), where u and v are disjoint subsets of X . u is taken as the tail of Y and
v is called its head. t (Y ) and h(Y ) are used to denote the tail and head of directed
hyperarc, respectively.

Definition 4.21 A bipolar fuzzy directed hypergraph is a pair 
D = (T,U ), where
T is a finite family of bipolar fuzzy sets on X andU is a set of bipolar fuzzy directed
hyperarcs (hyperedges).

A bipolar fuzzy directed hyperarc (hyperedge) a ∈ U is a pair (t (a), h(a)), where
t (a) and h(a) are two distinct bipolar fuzzy subsets on X such that t (a) ⊂ U , t (a) �=
φ is its tail and h(a) ∈ U − t (a) is called its head. A source vertex s is defined as a
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vertex in 
D if h(a) �= s, for each a ∈ U . A destination vertex d is defined as a vertex
if t (a) �= d, for every a ∈ U .

Definition 4.22 A backward bipolar fuzzy directed hyperarc or b−arc is defined as
a bipolar fuzzy hyperarc U = (t (U ), h(U )), with |supp(h(U ))| = 1.

A forward bipolar fuzzy hyperarc or f −arc is a bipolar fuzzy hyperarc U =
(t (U ), h(U )), with |supp(t (U ))| = 1.

A bipolar fuzzy directed hypergraph is called a backward bipolar fuzzy directed
hypergraph, if its all hyperarcs are b−arcs. A bipolar fuzzy directed hypergraph is
said to be forward bipolar fuzzy directed hypergraph if its all hyperarcs are f−arcs.
A b f −graph (or b f−bipolar fuzzy directed hypergraph) is a bipolar fuzzy directed
hypergraph, whose hyperarcs are either b−arcs or f−arcs.

Definition 4.23 A directed hyperpath between nodes s and d in a bipolar fuzzy
directed hypergraph 
D is an alternating sequence of distinct vertices and bipolar
fuzzy directed hyperedges s = t0, e1, t1, e2, ..., ek = d, such that ti−1, ti ∈ ei , for all
i = 1, 2, 3, ..., k.

Example 4.8 A bipolar fuzzy directed hypergraph and a hyperpath between two
nodes s and d is shown in Fig. 4.9.

The path is drawn in thick line.

Definition 4.24 The incidence matrix representation of a crisp directed hypergraph
N = (X, A) is given as a matrix [bij] of order n × m, defined as follow:

bij =

⎧
⎪⎨

⎪⎩

−1, if ei ∈ t (Aj),

1, if ei ∈ h(Aj),

0, otherwise.

Definition 4.25 The incidence matrix of a bipolar fuzzy directed hypergraph 
D =
(T,U ) is characterized by an n × m matrix [ai j ] as follows:

s= t1(0.1,−0.2)

t2(0.7,−0.2)

t3(0.6,−0.2)

t4(0.4,−0.5)

t5(0.1,−0.2)

t6(0.2,−0.3) t7(0.3,−0.2)

t8(0.5,−0.4) = d

Fig. 4.9 A directed hyperpath in a bipolar fuzzy directed hypergraph
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ai j =
{

(m+
j (ni ),m

−
j (ni )), if ni ∈ Uj ,

0, otherwise.

Here, 0 = (0, 0).

Definition 4.26 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph. The height
h( 
D) of 
D is defined as

h( 
D) = {max(Ui ),min(Uj ) : Ui ,Uj ∈ U },

where Ui = max(m+
i j ) and Uj = min(m−

i j ), m
+
i j is taken as the positive membership

value and m−
i j indicates the negative membership value of vertex i to hyperedge j .

Definition 4.27 A bipolar fuzzy directed hypergraph 
D = (T,U ) is simple if there
are no repeated bipolar fuzzy hyperedges inU and ifUk,Uj ∈ U andUk ⊆ Uj then
Uk = Uj , for each k and j .

A bipolar fuzzy directed hypergraph 
D = (T,U ) is called support simple if when-
ever Ui ,Uj ∈ U , Ui ⊆ Uj and supp(Ui ) = supp(Uj ), then Ui = Uj , for all i and
j .

Then, the hyperedges Ui and Uj are called supporting edges.

Definition 4.28 A bipolar fuzzy directed hypergraph is called elementary ifm+
i j :→

[0, 1] and m−
i j :→ [−1, 0] are constant functions.

If |supp(m+
i j ,m

−
i j )| = 1, then it is characterized as a spike. That is, a bipolar fuzzy

subset with singleton support.

Theorem 4.1 The bipolar fuzzy directed hyperedges of a bipolar fuzzy directed
hypergraph are elementary.

Example 4.9 Consider a bipolar fuzzy directed hypergraph 
D = (T,U ), where T is
the family of bipolar fuzzy subsets on X and U is the set of bipolar fuzzy relations
on T . The corresponding incidence matrix is given in Table4.4.

The corresponding elementary bipolar fuzzy directed hypergraph is shown in
Fig. 4.10.

Definition 4.29 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph.
Suppose that μ ∈ [0, 1] and ν ∈ [−1, 0]. The (μ, ν)−level is defined as,

Table 4.4 Elementary bipolar fuzzy directed hypergraph

I U1 U2 U3 U4

t1 (0.2,−0.3) (0.5,−0.2) 0 (0.3,−0.4)

t2 0 (0.5,−0.2) (0.5,−0.2) 0

t3 (0.2,−0.3) 0 (0.5,−0.2) (0.3,−0.4)

t4 0 0 (0.5,−0.2) (0.3,−0.4)
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Fig. 4.10 Elementary
bipolar fuzzy directed
hypergraph

U1(0.2,−0.3)

U
2(
0.
5,
−0

.2
)

U3 (0.5,−0.2)

U
4 (0.3,−0.4)

t 1

t2

t3

t4

U(μ,ν) = {v ∈ X |T+(v) ≥ μ and T−(v) ≤ ν}. The crispdirectedhypergraph 
D(μ,ν) =
(T(μ,ν),U(μ,ν)) such that

• U(μ,ν) = {v ∈ X |U+
i (v) ≥ μ and U−

i (v) ≤ ν},
• T(μ,ν) = ⋃

Ui(μ,ν), for all Ui ∈ U ,

is called the (μ, ν)−level hypergraph of 
D.

Definition 4.30 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph and

D(μi ,νi ) = (T(μi ,νi ),U(μi ,νi )) be the (μi , νi )−level directed hypergraphs of 
D. The
sequence {(μ1, ν1), (μ2, ν2), ..., (μn, νn)} of real numbers, where 0 < μ1 < μ2 <

... < μn and 0 > ν1 > ν2 > ... > νn , (μn, νn) = h( 
D) such that the following prop-
erties:

(i) if (μi−1, νi−1) < (α, β) ≤ (μi , νi ), then U(α,β) = U(μi ,νi ),
(ii) U(μi ,νi ) � U(μi+1,νi+1),

are satisfied, is called the fundamental sequence of 
D. The sequence is denoted by
FS( 
D). The (μi , νi )−level hypergraphs { 
D(μ1,ν1),


D(μ2,ν2), . . . ,

D(μn ,νn)} are called

the core hypergraphs of 
D. It is also called core set of 
D and is denoted by c( 
D).

Definition 4.31 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph and
FS( 
D) = {(μ1, ν1), (μ2, ν2), . . ., (μn, νn)}. If for each E = (m+,m−) ∈ U and each
(μi , νi ) ∈ FS( 
D), E(μ,ν) = U(μi ,νi ), for all (μ, ν) ∈ ((μi−1,νi−1), (μi , νi )], then 
D is
sectionally elementary.

Definition 4.32 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph and c( 
D) =
{ 
D(μ1,ν1), 
D(μ2,ν2),. . ., 
D(μn ,νn)}. 
D is said to be ordered if c( 
D) is ordered. That is,

D(μ1,ν1) ⊂ 
D(μ2,ν2) ⊂ . . . ⊂ 
D(μn ,νn).
The bipolar fuzzy directed hypergraph is called simply ordered if the sequence

{ 
D(μ1,ν1), 
D(μ2,ν2), . . . ,

D(μn ,νn)} is simply ordered.

Example 4.10 Consider a bipolar fuzzy directed hypergraph 
D = (T,U ), where
X = {t1, t2, t3, t4, t5} and T is the family of bipolar fuzzy subsets on X . The corre-
sponding incidence matrix is given in Table4.5.
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Table 4.5 Bipolar fuzzy directed hypergraph

I U1 U2 U3

t1 (0.8,−0.2) (0.6,−0.1) (0.4,−0.3)

t2 0 0 (0.4,−0.3)

t3 (0.8,−0.1) 0 0

t4 (0.8,−0.2) (0.6,−0.1) (0.4,−0.3)

t5 0 (0.5,−0.1) (0.4,−0.3)

The corresponding hypergraph is shown in Fig. 4.11.
By computing the (μi , νi )−level bipolar fuzzydirected hypergraphs of 
D,wehave

U(0.8,−0.2) = {t1, t4}, U(0.6,−0.1) = {t1, t4} and U(0.4,−0.3) = {{t1, t2}, {t4, t5}}. Note
that, 
D(0.8,−0.2) = 
D(0.6,−0.1) and 
D(0.8,−0.2) ⊆ 
D(0.4,−0.3). The fundamental sequence
is FS( 
D) = {(0.8,−0.2), (0.4,−0.3)}. The (0.6,−0.1)−level is not in FS( 
D).
Also 
D(0.8,−0.2) �= 
D(0.4,−0.3).


D is not sectionally elementary sinceU2(μ,ν) �= U2(0.8,−0.2) forμ = 0.6,ν = −0.1.
The bipolar fuzzy directed hypergraph is ordered and the set of core hypergraphs is
c( 
D) = { 
D1 = 
D(0.8,−0.2), 
D2 = 
D(0.4,−0.3)}. Induced fundamental sequence of 
D is
given in Fig. 4.12.

Theorem 4.2 (i) If 
D = (T,U ) is an elementary bipolar fuzzy directed hyper-
graph, then 
D is ordered.

(ii) If 
D is an ordered bipolar fuzzy directed hypergraph with c( 
D) = { 
D(μ1,ν1),
D(μ2,ν2),..., 
D(μn ,νn )
} and if 
D(μn ,νn) is simple, then 
D is elementary.

We now define the index matrix representation and certain operations on bipolar
fuzzy directed hypergraphs.

Fig. 4.11 Bipolar fuzzy
directed hypergraph t1

t2

t3

t4

t5

U1 (0.8,−0.2)

U
2 (0.6,−0.1)

U3(0.4,−0.3)
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Fig. 4.12 
D induced fundamental sequence

Table 4.6 Index matrix of 
D
I t1 t2 · · · tk

t1 (m+
11,m

−
11) (m+

12,m
−
12) · · · (m+

1k ,m
−
1k)

t2 (m+
21,m

−
21) (m+

22,m
−
22) · · · (m+

2k ,m
−
2k)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

tk (m+
k1,m

−
k1) (m+

k2,m
−
k2) · · · (m+

kk ,m
−
kk)

Definition 4.33 Let 
D = (T,U ) be a bipolar fuzzy directed hypergraph. Then the
index matrix of 
D is of the form [T,U ⊂ T × T ], as given in Table4.6, where
X = {t1, t2, t3, · · · , tk}, T is the family of bipolar fuzzy sets on X andU = (m+

i j ,m
−
i j )

is the set of bipolar fuzzy relations on ti such that
Here, m+

i j ∈ [0, 1] and m−
i j ∈ [−1, 0], i, j = 1, 2, 3, ..., k. The edge between two

vertices vi and v j is indexed by (m+
i j ,m

−
i j ), whose values can be found out by using

the Cartesian products defined below.

Definition 4.34 Let X be a fixed set of points. The Cartesian product of two bipolar
fuzzy sets B1 and B2 over X is defined as

(i) B1×1B2 = {((v1, v2),min(m+(v1),m+(v2)),max(m−(v1),m−(v2)))|v1 ∈ B1,

v2 ∈ B2}.
(ii) B1×2B2 = {((v1, v2),max(m+(v1),m+(v2)),min(m−(v1),m−(v2)))|v1 ∈ B1,

v2 ∈ B2}.
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Note that, the Cartesian product B1×i B2 is a bipolar fuzzy set, where i = 1, 2.

We now define some operations on bipolar fuzzy directed hypergraphs.

Definition 4.35 The addition of bipolar fuzzy directed hypergraphs 
D1 = (T1,U1,

(m+
i ,m−

i ), (m+
i j ,m

−
i j )) and 
D2 = (T2,U2, (m+

p ,m−
p ), (m+

pq ,m
−
pq)), which is denoted

by 
D = 
D1 � 
D2, is defined as 
D1 � 
D2 = [T1 ∪ T2, (m+
r ,m−

r ), (m+
rs,m

−
rs)], where

(m+
r ,m−

r ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m+
i ,m−

i ), if vr ∈ T1 − T2,

(m+
p ,m−

p ), if vr ∈ T2 − T1,

(max(m+
i ,m+

p ),min(m−
i ,m−

p )), if vr ∈ T1 ∩ T2,

0, otherwise.

(4.1)

(m+
rs ,m

−
rs ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+
i j ,m

−
i j ), if vr = vi ∈ T1 and vs = v j ∈ T1 − T2,

or vr = vi ∈ T1 − T2 and vs = v j ∈ T1,

(m+
pq ,m−

pq ), if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

or vr = vp ∈ T2 − T1 and vs = vq ∈ T2,

(max(m+
i j ,m

+
pq ),min(m−

i j ,m
−
pq )), if vr = vi = vp ∈ T1 ∩ T2 and

vs = v j = vq ∈ T2 ∩ T1,

0, otherwise.

(4.2)

Example 4.11 Consider the bipolar fuzzy directed hypergraphs 
D1 = (T1,U1) and
D2 = (T2,U2), where X1 = {t1, t2, t3, . . . , t8}, U1 = {({t1}, t3), ({t1, t2}, t4),
({t3}, t5), ({t1, t5}, t6), ({t5, t7}, t8)} and X2 = {t1, t2, t3, t4, t5}, U2 = {({t1, t3}, t2),
({t2}, t2), ({t4}, t2), ({t3, t5}, t4), ({t3}, t5)} as shown in Figs. 4.13 and 4.14, respec-
tively.

The index matrix of 
D1 is given in Table4.7.
The index matrix of 
D2 is in Table4.8.
The index matrix of 
D1 � 
D2 is [T1 ∪ T2, (m+

r ,m−
r ), (m+

rs,m
−
rs)], where X1 ∪

X2 = {t1, t2, t3, t4, t5, t6, t7, t8}. The membership values (m+
r ,m−

r ) are calculated
using Eq.4.1 and (m+

rs,m
−
rs) are calculated using Eq.4.2. The corresponding matrix

is given in Table4.9.
The graph of 
D1 � 
D2 is shown in Fig. 4.15.

Definition 4.36 The vertexwise multiplication of two bipolar fuzzy directed hyper-
graphs 
D1 and 
D2, denoted by 
D1

⊗ 
D2, is defined as, [T1 ∩ T2, (m+
r ,m−

r ), (m+
rs,

m−
rs)], where
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t1(0.1,−0.2) t2(0.4,−0.5) t5(0.3,−0.3)

t3(0.6,−0.3) t4(0.7,−0.2) t6(0.5,−0.2)

(0
.6
,−

0.
3)

(0.7,−
0.5)

(0.
6,−

0.3
)

(0.5,−0.3)

t7(0.1,−0.5)

t8(0.6,−0.3)

(0.1,−
0.5)

Fig. 4.13 Bipolar fuzzy directed hypergraph 
D1

t1(0.6,−0.3)

t2(0.5,−0.2)

t4(0.6,−0.1)

t5(0.8,−0.1)t3(0.1,−0.7)

(0.6,−0
.7)

(0.6,−0.2)

(0.8
,−0.7

)

(0.8,−0.7)

(0.5,−0.2)

Fig. 4.14 Bipolar fuzzy directed hypergraph 
D2

Table 4.7 Index matrix of 
D1

I 
D1
t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0

t3 (0.6,−0.3) 0 0 0 0 0 0 0

t4 (0.7,−0.5) (0.7,−0.5) 0 0 0 0 0 0

t5 0 0 (0.6,−0.3) 0 0 0 0 0

t6 (0.5,−0.3) 0 0 0 (0.5,−0.3) 0 0 0

t7 0 0 0 0 0 0 0 0

t8 0 0 0 0 (0.1,−0.5) 0 (0.1,−0.5) 0
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Table 4.8 The index matrix of 
D2

I 
D2
t1 t2 t3 t4 t5

t1 0 0 0 0 0

t2 (0.6,−0.7) (0.5,−0.2) (0.6,−0.7) (0.6,−0.2) 0

t3 0 0 0 0 0

t4 0 0 (0.8,−0.7) 0 (0.8,−0.7)

t5 0 0 (0.8,−0.7) 0 0

Table 4.9 The index matrix of 
D1 � 
D2

I 
D1� 
D2
t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0

t2 (0.6,−0.7) (0.5,−0.2) (0.6,−0.7) (0.6,−0.2) 0 0 0 0

t3 (0.6,−0.3) 0 0 0 0 0 0 0

t4 (0.7,−0.5) (0.7,−0.5) (0.8,−0.7) 0 (0.8, −0.7) 0 0 0

t5 0 0 (0.8,−0.7) 0 0 0 0 0

t6 (0.5,−0.3) 0 0 0 (0.5,−0.3) 0 0 0

t7 0 0 0 0 0 0 0 0

t8 0 0 0 0 (0.1, −0.5) 0 (0.1,−0.5) 0

t1(0.6,−0.3)

t2(0.5,−0.5)

t3(0.6,−0.7)

t4(0.7,−0.2)

t6(0.5,−0.2)

t5(0.8,−0.3)

t7(0.1,−0.5)

t8(0.6,−0.3)

(0.
6,−

0.7
)

(0.5,−0.2)

(0.6,0.2)

(0.7
,−0

.5)

(0.6,−
0.3)

(0.
5,−

0.3
)

(0.8,−0.7)

(0.8,−
0.7) (0.1,−0.5)

Fig. 4.15 
D1 � 
D2

(m+
r ,m−

r ) = (min(m+
i ,m+

p ),max(m−
i ,m−

p )), if vr ∈ T1 ∩ T2, (4.3)

(m+
rs ,m

−
rs) = (min(m+

i j ,m
+
pq ),max(m−

i j ,m
−
pq )), if vr = vi = vp ∈ T1 ∩ T2 and vs = v j = vq ∈ T1 ∩ T2.

(4.4)

Example 4.12 Consider bipolar fuzzy directed hypergraphs 
D1 and 
D2 as shown in
Figs. 4.13 and4.14, respectively.The indexmatrix of 
D1

⊗ 
D2 is [T1 ∩ T2, (m+
r ,m−

r ),

(m+
rs,m

−
rs)], where X1 ∩ X2 = {t1, t2, t3, t4, t5}. The membership values (m+

r ,m−
r )
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Table 4.10 Index matrix of 
D1
⊗ 
D2

I 
D1
⊗ 
D2

t1 t2 t3 t4 t5

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

t4 0 0 0 0 0

t5 0 0 (0.6,−0.3) 0 0

Fig. 4.16 
D1
⊗ 
D2 t1(0.1,−0.2) t2(0.4,−0.2) t3(0.1,−0.3)

t4(0.6,−0.1)t5(0.3,−0.1)

(0.6
,−0

.3)

are calculated using Eq.4.3 and (m+
rs,m

−
rs) are calculated using Eq.4.4. Index matrix

of 
D1
⊗ 
D2 is given in Table4.10.

The graph of 
D1
⊗ 
D2 is given in Fig. 4.16.

Definition 4.37 The multiplication of two bipolar fuzzy directed hypergraphs 
D1

and 
D2, denoted by 
D1
⊙ 
D2, is defined as [T1 ∪ (T2 − T1), T2 ∪ (T1 − T2), (m+

r ,

m−
r ), (m+

rs,m
−
rs)], where

(m+
r ,m−

r ) =

⎧
⎪⎨

⎪⎩

(m+
i ,m−

i ), if vr ∈ T1,

(m+
p ,m−

p ), if vr ∈ T2,

(min(m+
i ,m+

p ),max(m−
i ,m−

p )), if vr ∈ T1 ∩ T2.

(4.5)

(m+
rs ,m

−
rs ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m+
i j ,m

−
i j ), if vr = vi ∈ T1 and vs = v j ∈ T1 − T2,

(m+
pq ,m−

pq ), if vr = vp ∈ T2 and vs = vq ∈ T2 − T1,

(max(min(m+
i j ,m

+
pq )),min(max(m−

i j ,m
−
pq ))), if vr = vi ∈ T1 ∩ T2 and vs = vq ∈ T1 ∩ T2,

0, otherwise.

(4.6)

Remark 4.2 The positive membership and negative membership values of the loops
(m+

r ,m−
r ) in the resultant graph (if present) can be calculated as m+

r ≤ m+
i or m+

r ≤
m+

p and m−
r ≥ m−

i or m−
r ≥ m−

p .

Example 4.13 The index matrix of graph 
D1
⊙ 
D2 is [T1 ∪ (T2 − T1), T2 ∪

(T1 − T2), (m+
r ,m−

r ), (m+
rs,m

−
rs)], where X2 ∪ (X1 − X2) = {t1, t2, t3, ..., t8}. The
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t1(0.1,−0.2)

t2(0.4,−0.2)

t3(0.1,−0.3)

t4(0.6,−0.1)

t6(0.5,−0.2)

t5(0.3,−0.1)

t8(0.6,−0.3)

t7(0.1,−0.5)

(0.6,−0.5)

(0.5,−0.2)

(0.5,−0.3)

(0.
5,−

0.3
)

(0.1,−
0.5)

(0.6
,−0.

2)

Fig. 4.17 
D1
⊙ 
D2

Table 4.11 Index matrix of graph 
D1
⊙ 
D2

I 
D1
⊙ 
D2 t1 t2 t3 t4 t5 t6 t7 t8

t1 0 0 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0

t3 0 0 0 0 0 0 0 0

t4 (0.6,−0.5) (0.5,−0.2) (0.6, −0.5) (0.6, −0.2) 0 0 0 0

t5 0 0 0 0 0 0 0 0

t6 (0.5,−0.3) 0 0 0 (0.5, −0.3) 0 0 0

t7 0 0 0 0 0 0 0 0

t8 0 0 0 0 (0.1, −0.5) 0 (0.1, −0.5) 0

membership values (m+
r ,m−

r ) are calculated using Eq.4.5 and (m+
rs,m

−
rs) are calcu-

lated using Eq.4.6 as given in Table4.11.
The graph of 
D1

⊙ 
D2 is shown in Fig. 4.17.

Definition 4.38 The structural subtraction of 
D1 and 
D2, denoted by 
D1 � 
D2, is
defined as [T1 − T2, (m+

r ,m−
r ), (m+

rs,m
−
rs)], where ‘−’ is the set theoretic difference

operation and

(m+
r ,m−

r ) =

⎧
⎪⎨

⎪⎩

(m+
i ,m−

i ), if vr ∈ T1,

(m+
p ,m−

p ), if vr ∈ T2,

0, otherwise.

(4.7)

(m+
rs,m

−
rs) = (m+

i j ,m
−
i j ), if vr = vs ∈ T1 − T2 and vs = v j ∈ T1 − T2. (4.8)

If T1 − T2 = ∅, then graph of 
D1 � 
D2 is also empty.

Example 4.14 Consider bipolar fuzzy directed hypergraphs 
D1 and 
D2 as shown in
Figs. 4.13 and4.14.The indexmatrix of 
D1 � 
D2 is [T1 − T2, (m+

r ,m−
r ), (m+

rs,m
−
rs)],
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Fig. 4.18 
D1 � 
D2 t6(0.5,−0.2) t7(0.1,−0.5)

t8(0.6,−0.3)

(0
.1,
−0

.5)

Table 4.12 Index matrix of 
D1 � 
D2

I 
D1� 
D2
t6 t7 t8

t6 0 0 0

t7 0 0 0

t8 0 (0.1,−0.5) 0

where X1 − X2 = {t6, t7, t8}. The membership values (m+
r ,m−

r ) of T1 − T2 are cal-
culated using Eq.4.7 and (m+

rs,m
−
rs) are calculated using Eq.4.8. The corresponding

matrix is given in Table4.12.
The following Fig. 4.18 shows their structural subtraction.

Definition 4.39 A bipolar fuzzy directed hypergraph 
D = (T,U ) is called B =
(m+,m−)− tempered bipolar fuzzy directed hypergraph of 
D = (T,U ), if there
exists a crisp hypergraph 
D∗ = (X,U ∗) and a bipolar fuzzy set B = (m+,m−) :
X −→ [0, 1] × [−1, 0] such that U = {FY = (m+,m−)|Y ∈ U ∗}, where

m+(x) =
{
min(m+(t)|t ∈ Y ), if x ∈ Y,

0, otherwise.
m−(x) =

{
max(m−(t)|t ∈ Y ), if x ∈ Y,

0, otherwise.

Let B ⊗ 
D denotes the B−tempered hypergraph of 
D, which is formed by the crisp
hypergraph 
D∗ = (X,U ∗) and the bipolar fuzzy set B : X −→ [0, 1] × [−1, 0].
Example 4.15 Consider the bipolar fuzzy directed hypergraph 
D = (T,U ), where
X = {t1, t2, t3, t4} and U = {U1,U2,U3}, the corresponding incidence matrix is
given in Table4.13.

The corresponding hypergraph is shown in Fig. 4.19.
Then, U(0.5,−0.2) = {{t1, {t2, t3}}, {t2, t3}}, U(0.4,−0.3) = {{t1, t4}}.

Define B = (m+,m−) : X −→ [0, 1] × [−1, 0] by m+(t1) = 0.6, m+(t2) = 0.5,
m+(t3) = 0.5, m+(t4) = 0.4, m−(t1) = −0.3, m−(t2) = −0.2, m−(t3) = −0.4,
m−(t4) = −0.3.
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Table 4.13 Incidence matrix of 
D
I 
D U1 U2 U3

t1 (0.5,−0.2) (0.4,−0.3) 0

t2 (0.5,−0.2) 0 (0.5,−0.2)

t3 (0.5,−0.2) 0 (0.5,−0.2)

t4 0 (0.4,−0.3) 0

Fig. 4.19 B−tempered
bipolar fuzzy directed
hypergraph

t1

t4

t3

t2

U2(0
.4,−0

.3)

U
1 (0.5,−0.2)

U 3
(0
.5
,−

0.
2)

Note that

m+
F{t1,t2,t3} = min(m+(t1),m

+(t2),m
+(t3)) = 0.5,

m−
F{t1,t2,t3} = max(m−(t1),m

−(t2),m
−(t3)) = −0.2,

m+
F{t1,t4} = min(m+(t1),m

+(t4)) = 0.4,

m−
F{t1,t4} = max(m+(t1),m

+(t4)) = −0.3,

m+
F{t2,t3} = min(m+(t2),m

+(t3)) = 0.5,

m−
F{t2,t3} = max(m+(t2),m

+(t3)) = −0.2.

Thus, we have U1 = (m+
F{t1,t2,t3},m

−
F{t1,t2,t3}), U2 = (m+

F{t1,t4},m
−
F{t1,t4}),

U3 = (m+
F{t2,t3},m

−
F{t2,t3}).

Hence, 
D is B−tempered bipolar fuzzy directed hypergraph.

Theorem 4.3 A bipolar fuzzy directed hypergraph 
D = (T,U ) is B = (m+,m−)−
tempered bipolar fuzzy directed hypergraphdetermined by some crisp directed hyper-
graph 
D∗ if and only if 
D is elementary, simply ordered, and support simple.

Proof Suppose that 
D = (T,U ) is a B−tempered bipolar fuzzy directed hyper-
graph, which is formed by some crisp hypergraph 
D∗. Since 
D is B-tempered, then
the positive membership values and negative membership values of bipolar fuzzy
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directed hyperedges are same. Hence, 
D is elementary. If support of two bipolar
fuzzy directed hyperedges of the B−tempered bipolar fuzzy directed hypergraph is
same then the bipolar fuzzy hyperedges are equal. Hence, 
D is support simple. Let
c( 
D) = { 
D(μ1,ν1),


D(μ2,ν2), . . . ,

D(μn ,νn)}. Since, 
D is elementary, it will be ordered.

Claim: 
D is simply ordered.
Let U ∈ 
Dμi+1,νi+1 − 
Dμi ,νi then there exists vi ∈ U such that m+

i j (vi ) = μi+1 and

m−
i j (vi ) = νi+1. Since, μi+1 < μi and νi+1 < νi , it follows that vi /∈ 
Dμi ,νi andU �


Dμi ,νi . Hence, 
D is simply ordered.
Conversely, suppose 
D = (T,U ) is elementary, simply ordered, and support sim-

ple.Asweknow that 
Dμi ,νi = 
Di = (Ti ,Ui ) andm
+
i j : T −→ [0, 1] andm−

i j : T −→
[−1, 0] are defined by,

m+
i j =

{
μ1, if vi ∈ T1,
μi , if vi ∈ Ti − Ti−1, i = 1, 2, 3, · · · ,m.

m−
i j =

{
ν1, if vi ∈ T1,
νi , if vi ∈ Ti − Ti−1, i = 1, 2, 3, · · · ,m.

To prove U = {m+
i j (vi ),m

−
i j (vi )|vi ∈ Ui }, where

m+
i j (vi ) =

{
minm+

i (y)|y ∈ U, if vi ∈ Ui ,

0, otherwise.
m−

i j (vi ) =
{
maxm−

i (y)|y ∈ U, if vi ∈ Ui ,

0, otherwise.

Let U ′ ∈ Ui .
There is a unique bipolar fuzzy hyperedge (ai j , bi j ) in U having support U ′

because 
D is elementary and support simple. Clearly, different edges in U having
distinct supports lie in Ui . We have to prove that for each U ′ ∈ Ui , m

+
i j (vi ) = ai j ,

m−
i j (vi ) = bi j . Since, distinct edges have different supports and all edges are elemen-

tary, then the definition of the fundamental sequence implies that h(ai j , bi j ) is same
as an arbitrary element of (μi , νi ) of FS( 
D). Therefore, U ′ ⊆ Ti . Further, if i > 1,
then U ′ ∈ Ui −Ui−1. Since U ⊆ Ui , the definition of B-tempered indicates that for
each vi ∈ Ui , m

+
i j (vi ) ≥ μi and m−

i j (vi ) ≤ νi .
To prove m+

i j (vi ) = μi and m−
i j (vi ) = νi for some Xi ∈ Ui . It follows from the

definition of B−tempered m+
i j (vi ) ≥ μi−1 and m−

i j (vi ) ≤ νi−1 for all vi ∈ Ui =⇒
U ⊆ Ui−1 and so U ∈ Ui −Ui−1. Since, 
D is simply ordered, therefore U � Ui−1,
which is a contradiction to the definition of B−tempered bipolar fuzzy directed
hypergraphs. Thus, from the definition of m+

i j (vi ) and m−
i j (vi ), we have m+

i j = ai j ,
m−

i j = bi j .

Theorem 4.4 Let 
D = (T,U ) be a simply ordered bipolar fuzzy directed hyper-
graph and FS( 
D) = {μn, μn−1,μn−2, · · · ,μ1 ν1, ν2, · · · , νn}. If 
D(μn ,νn) is sim-
ple hypergraph. Then, there exists a partial bipolar fuzzy directed hypergraph
D′ = (T,U ′) of 
D such that the conditions given below are satisfied
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(i) D′ is a B−tempered bipolar fuzzy directed hypergraph of 
D.
(ii) U � U ′, that is, for all (m+,m−) ∈ U there exist (m+,m−) ∈ U ′ such that

(m+(U ) ⊆ m+(U ′)) and (m−(U ) ⊆ m−(U ′)).
(iii) FS( 
D) = FS(D′) and c( 
D) = c(D′).

Proof By above Theorem4.3, we have 
D is an elementary bipolar fuzzy directed
hypergraph. By the removal of all those edges of 
D, which lie in another edge of

D properly, we attain the partial bipolar fuzzy directed hypergraph D′ = (T,U ′),
where U ′ = {Ui ∈ U |Ui ⊆ Uj and Uj ∈ U , then Ui = Uj }. Since, 
Dμn ,νn is simple
and all its edges are elementary, no edges can properly contained in other edges of

D if they have different support. Hence, (i i i) holds. We know that D′ is support
simple. Thus, all above conditions are satisfied by D′. From the definition of U ′, D′
is elementary and support simple. Thus, D′ is B−tempered.

4.4 Algorithm for Computing Minimum Arc Length
and Shortest Hyperpath

This section investigates the definition of triangular bipolar fuzzy number. The score
and ranking of a bipolar fuzzy numbers are also defined. A triangular bipolar fuzzy
number is used to represent the arc length in a hypernetwork. Let L j denotes arc
length of the j−th hyperpath.

Definition 4.40 Let X be a finite set, which is non-empty and B = (m+,m−) be a
bipolar fuzzy set. Then, the pair (m+

( a),m−(a)) is called a bipolar fuzzy number,
denoted by ((l,m, n), (c, d, e)), where (l,m, n) ∈ F(I+), (c, d, e) ∈ F(I−), I+ =
[0, 1], I− = [−1, 0].
Definition 4.41 A triangular bipolar fuzzy number B is denoted by B =
{(m+(a),m−(a))|a ∈ X}, where m+(a) and m−(a) are bipolar fuzzy numbers. So,
a triangular bipolar fuzzy number is given by B̃ = ((l,m, n), (c, d, e)). The dia-
grammatic representation of bipolar fuzzy number ((l,m, n), (c, d, e)) is shown in
Fig. 4.20.

Definition 4.42 Let B̃ = ((l,m, n), (c, d, e)) be a triangular bipolar fuzzy number,
then the scoreof B̃ is a bipolar fuzzy setwhose positivemembership value is S+(B̃) =
l+2m+n

4 and negative membership value is S−(B̃) = c+2d+e
4 .

Definition 4.43 The accuracy of a triangular bipolar fuzzy number is defined as
Acc(B̃) = 1

2 (S
+(B̃) + S−(B̃)).

The minimum arc length of bipolar fuzzy directed hypernetwork is calculated by
following the procedure given in Algorithm 4.4.1.
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Algorithm 4.4.1

Finding the minimum arc length of bipolar fuzzy directed hypernetwork

Input. Enter the number of hyperpaths and their membership values, which are taken as

triangular bipolar fuzzy number.

Output.Minimum arc length of bipolar fuzzy directed hypernetwork.

1. Calculate the lengths of all possible hyperpaths L j for j = 1, 2, 3, ..., k, where

L j = (( ¯l j , m̄ j , n̄ j )(c̄ j , d̄ j , ē j )).

2. Initialize Lmin = ((l,m, n)(c, d, e)) = L1 = ((l̄1, m̄1, n̄1)(c̄1, d̄1, ē1)).

3. Set j = 2.

4. The positive membership values (l,m, n) are computed as,

l = min(l, ¯l j ),

m =
⎧
⎨

⎩

m, if m ≤ ¯l j ,
mm̄ j−l ¯l j

(m+m̄ j )−(l+ ¯l j ) , if m > ¯l j ,
n = min(n, m̄ j ).

5. The negative membership values (c, d, e) are computed as,

c = min(c, c̄ j ),

d =
⎧
⎨

⎩

d, if d ≤ c̄ j ,
dd̄ j−cc̄ j

(d+d̄ j )−(c+c̄ j )
, if d > c̄ j ,

e = min(e, d̄ j ).

6. Set Lmin = ((l,m, n)(c, d, e)), as calculated in Step 4.

7. j = j + 1.

8. If j = k, then stop the procedure.

9. If j < k + 1, then go to Step 3.

Example 4.16 Consider a hypernetwork with a triangular bipolar fuzzy arc lengths
shown in Fig. 4.21.

1. Fromsource vertex1 to destinationvertex8, there are four possible paths (k = 4),
given as follows:
Path(1) : 1 → 2 → 6 → 8, L1 = ((10, 14, 18)(−13,−20,−25)),
Path(2) : 1 → 3 → 6 → 8, L2 = ((12, 16, 20)(−18,−22,−23)),
Path(3) : 1 → 5 → 8, L3 = ((13, 17, 21)(−19,−20,−21)),
Path(4) : 1 → 4 → 7 → 8, L4 = ((6, 11, 16)(−12,−16,−23)).

2. Initialize Lmin = ((l,m, n)(c, d, e)) = L1 = ((l̄1, m̄1, n̄1)(c̄1, d̄1, ē1))
= ((10, 14, 18)(−13,−20,−25)).
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(d,−1) (c,−1)(e,−1)

Fig. 4.20 Triangular bipolar fuzzy number

3. Initialize j = 2.
4. Let Lmin = (10, 14, 18)(−13,−20,−25) and L2 = ((l̄2, m̄2, n̄2)(c̄2, d̄2, ē2)) =

(12, 16, 20)(−18,−22,−23). Compute the positive membership values
(l,m, n) as

l = min(l, l̄2) = min(10, 12) = 10,

m =
{

(14 × 16) − (10 × 12)

(14 + 16) − (10 + 12)
= 13, since m > l̄2,

n = min(n, m̄2) = min(18, 16) = 16.

The negative membership values (c, d, e) as,

c = min(c, c̄2) = min(−13,−18) = −18,

d = d̄2 = −22 since d < d̄2,

e = min(e, d̄2) = min(−25,−22) = −25.

5. Set Lmin = ((10, 13, 16)(−18,−22,−25)).
6. j = j + 1 = 3.
7. If j < k + 1, go to Step 4.
8. Let Lmin = (10, 13, 16)(−18,−22,−25) and L3 = ((l̄3, m̄3, n̄3)(c̄3, d̄3, ē3)) =

(13, 17, 21)(−19,−20,−21). Calculate the positive membership values as,

l = min(l, l̄3) = min(10, 13) = 10,

m = 13 since m = l̄3,

n = min(n, m̄3) = min(16, 17) = 16.
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Fig. 4.21 Bipolar fuzzy hypernetwork

The negative membership values (c, d, e) as,

c = min(c, c̄3) = min(−18,−19) = −19,

d = −22 since d < c̄3,

e = min(e, d̄3) = min(−25,−20) = −25.

9. Set Lmin = ((10, 13, 16)(−19,−22,−25)). Repeat the procedure until j = 4.
Finally, we get theminimumarc length of bipolar fuzzy hypernetwork as, Lmin =
((6, 10.38, 11)(−19,−22,−25)).

We now write steps of score-based method to determine a bipolar fuzzy shortest
hyperpath.
1. All possible hyperpaths are considered from source point to destination.
2. Compute the scores of the hyperpaths.
3. Find the accuracy of all paths.
4. The shortest hyperpath is obtained with the lowest accuracy.

Example 4.17 Consider the bipolar fuzzy hypernetwork as shown in Fig. 4.21. The
bipolar fuzzy shortest hyperpath in this hypernetwork is recognized using score-
based method. The scores of hyperpaths can be calculated as

S(P1) = ( l+2m+n
4 , c+2d+e

4 ) = ( 10+2(14)+18
4 , −13+2(−20)−25

4 ) = (14,−19.5).
S(P2) = ( 12+2(16)+20

4 , −18+2(−22)−23
4 ) = (16,−21.25).

Similarly, S(P3) = (17,−20), and S(P4) = (11,−16.75).
Accuracy of hyperpaths can be computed as
Acc(P1) = 1

2 (14 + (−19.5)) = −2.75, Acc(P2) = 1
2 (16 + (−21.25)) =

−2.625, Acc(P3) = 1
2 (17 + (−20)), and Acc(P4) = 1

2 (11 + (−16.75)) = −2.875
From the Table4.14, the path P4 : 1 → 4 → 7 → 8 with minimum accuracy is

identified as bipolar fuzzy shortest hyperpath.
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Table 4.14 Accuracy of hyperpaths

Path Score Accuracy Rank

P1 (14,−19.5) −2.75 2

P2 (16,−21.25) −2.625 3

P3 (17,−20) −1.50 4

P4 (11,−16.75) −2.875 1

4.5 Application

A hypernetwork M is a network whose underlying structure is a hypergraph H∗, in
which each vertex vi corresponds to a unique processor Pi of M , and each hyper-
edge e∗

j corresponds to a connector that connects processors represented by the
vertices in e∗

j . A connector is loosely defined as an electronic or a photonic com-
ponent through which messages are transmitted between connected processors, not
necessarily simultaneously. We call a connector a hyperlink. Unlike a point-to-point
network, in which a link is dedicated to a pair of processors, a hyperlink in a hyper-
network is shared by a set of processors. A hyperlink can be implemented by a bus or
a crossbar switch. Current optical technologies allow a hyperlink to be implemented
by optical wave guides in a folded bus using time-division multiplexing (TDM). Free
space optical or optoelectronic switching devices such as bulk lens, microlens array,
and spatial light modulator (SLM) can also be used to implement hyperlinks. A star
coupler, which uses wavelength-division multiplexing (WDM), can be considered
either as a generalized bus structure or as a photonic switch, is another implemen-
tation of a hyperlink. Similarly, an ATM switch, which uses a variant TDM, is a
hyperlink.

Definition 4.44 Let X be a reference set. Then, a family of nontrivial bipolar fuzzy
sets {A1, A2, A3, . . . , Am}, where Ai = (μ+

i , μ−
i ) is a bipolar fuzzy partition if

1.
⋃

i supp(Ai ) = X , i = 1, 2, . . . ,m,
2.

∑m
i=1 μ+

i (x) = 1, for all x ∈ X,

3.
∑m

i=1 μ−
i (x) = −1, for all x ∈ X.

Note that this definition generalizes fuzzy partitions because the definition is equiva-
lent to a fuzzypartitionwhen for all x ,νi (x)=0.Wecall a family {A1, A2, A3, . . . , Am}
a bipolar fuzzy covering of X if it satisfies above conditions (1)−(3).

A bipolar fuzzy partition can be represented by a bipolar fuzzymatrix [ai j ], where
ai j is the positive membership degree and negative membership degree of element
xi in class j. We see that the matrix is the same as the incidence matrix in bipolar
fuzzy hypergraph. Then, we can represent a bipolar fuzzy partition by a bipolar fuzzy
hypergraph H = (C, D) such that

(i) X is a non-empty set of points,
(ii) C = {C1,C2, . . . ,Cm} is a set of nontrivial bipolar fuzzy classes,
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Table 4.15 Bipolar fuzzy partition matrix

H At Bh

x1 (0.96,−0.04) (0.04,−0.96)

x2 (0.95,−0.5) (0.5,−0.95)

x3 (0.61,−0.39) (0.39,−0.61)

x4 (0.05,−0.95) (0.95,−0.05)

x5 (0.03,−0.97) (0.97,−0.03)

Table 4.16 Hypergraph H(0.61,−0.03)

H(0.61,−0.03) At (0.61,−0.03) Bh(0.61,−0.03)

x1 1 0

x2 1 0

x3 1 0

x4 0 1

x5 0 1

(iii) X = ⋃
j supp(C j ), j = 1, 2, . . . ,m,

(iv)
∑m

i=1 μ+
i (x) = 1, for all x ∈ Ci ,

(v)
∑m

i=1 μ−
i (x) = −1, for all x ∈ Ci .

Note that, conditions (iv)–(v) are added to the bipolar fuzzy hypergraph for bipolar
fuzzy partition. If these conditions are added, the bipolar fuzzy hypergraph can
represent a bipolar fuzzy covering. Naturally, we can apply the (α, β)-cut to the
bipolar fuzzy partition.

ClusteringProblem:We consider the clustering problem,which is a typical example
of a bipolar fuzzy partition on the visual image processing. There are five objects
and they are classified into two classes: tank and house. To cluster the elements x1,
x2, x3, x4, x5 into At (tank) and Bh (house), a bipolar fuzzy partition matrix is given
as the form of incidence matrix of bipolar fuzzy hypergraph as given in Table4.15.

We can apply the (α, β)-cut to the hypergraph and obtain a hypergraph H(α,β)

which is not bipolar fuzzy hypergraph. We denote the edge (class) in (α, β)-cut
hypergraph H(α,β) as X j (α,β). This hypergraph H represents generally the covering
because the conditions: (iv)

∑m
i=1 μ+

i (x) = 1 for all x ∈ X , (v)
∑m

i=1 μ−
i (x) = −1

for all x ∈ X , is not always guaranteed. The hypergraph H(0.61,−0.03) is shown in
Table4.16.

We obtain dual bipolar fuzzy hypergraph HD
(0.61,−0.03) of H(0.61,−0.03) which is

given in Table4.17.
We consider the strength of edge (class) X j (α,β), or in the (α, β)-cut hypergraph

H(α,β). It is necessary to apply Definition to obtain the strength of edge X j (α,β) in
H(α,β). The possible interpretations of η(X j (α,β)) are
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Table 4.17 Dual bipolar fuzzy hypergraph

HD(0.61,−0.03) X1 X2 X3 X4 X5

At 1 1 1 0 0

Bh 0 0 0 1 1

• the edge (class) in the hypergraph (partition) H(α,β), groups elements having at
least η positive membership and negative membership,

• the strength (cohesion) of edge (class) X j (α,β) in H(α,β) is η.

Thus, we can use the strength as a measure of the cohesion or strength of a
class in a partition. For example, the strengths of classes At (0.61,−0.03) and
Bh(0.61,−0.03) at s = 0.61, t = −0.03 are η(At (0.61,−0.03)) = (0.96,−0.04),
η(Bh(0.61,−0.03)) = (0.97,−0.03).Thus,we say that the classη(Bh(0.61,−0.03))
is stronger thanη(At (0.61,−0.03))becauseη(Bh(0.61,−0.03)) > η(At (0.61,−0.03)).

From the above discussion on the hypergraph H(0.61,−0.03) and HD
(0.61,−0.03), we

can state that

• Thebipolar fuzzy hypergraph can represent the fuzzy partition visually. The (α, β)-
cut hypergraph also represents the (α, β)-cut partition.

• The dual hypergraph HD
(0.61,−0.03) can represent elements Xi , which can be grouped

into a class X j (α,β). For example, the edges X1, X2, X3 of the dual hypergraph in
Table4.17 represents that the elements x1, x2, x3 can be grouped into At at level
(0.61,−0.03).

• At (α, β) = (0.61,−0.03) level, the strength of class Bh(0.61,−0.03) is the high-
est (0.95,−0.05), so it is the strongest class. It means that this class can be grouped
independently from the other parts. Thus, we can eliminate the class Bh from the
others and continue clustering. Therefore, the discrimination of strong classes from
the others can allow us to decompose a clustering problem into smaller ones.

This strategy allows us to work with the reduced data in a clustering problem.
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Chapter 5
Extended Bipolar Fuzzy (Directed)
Hypergraphs to m-Polar Information

Anm-polar fuzzy set is a useful tool to solve real-world problems that involve multi-
agents, multi-attributes, multi-objects, multi-indexes, and multipolar information.
In this chapter, we present the notions of regular m-polar fuzzy hypergraphs and
totally regularm-polar fuzzy hypergraphs. We discuss applications ofm-polar fuzzy
hypergraphs in decision-making problems. Furthermore, we discuss the notion of
m-polar fuzzy directed hypergraphs and depict certain operations on them. We also
describe an application of m-polar fuzzy directed hypergraphs in business strategy.
This chapter is based on [7–9, 12].

5.1 Introduction

Fuzzy set theory deals with real-life data incorporating vagueness. Zhang [20]
extended the theory of fuzzy sets to bipolar fuzzy sets, which register the bipolar
behavior of objects. Nowadays, analysts believe that the world is moving toward
multipolarity. Therefore, it comes as no surprise that multipolarity in data and infor-
mation plays a vital role in various fields of science and technology. In neurobiology,
multipolar neurons in brain gather a great deal of information from other neurons.
In information technology, multipolar technology can be exploited to operate large-
scale systems. Based on this motivation, Chen et al. [12] introduced the concept of
m-polar fuzzy set as a generalization of a bipolar fuzzy set and shown that 2-polar
and bipolar fuzzy sets are cryptomorphic mathematical notions. The framework of
this theory is that “multipolar information” (not like the bipolar information which
gives two-valued logic) arises because information for a natural world is frequently
from n factors (n ≥ 2). For example, “Pakistan is a good country”. The truth value
of this statement may not be a real number in [0, 1]. Being good country may have
several properties: good in agriculture, good in political awareness, good in regaining
macroeconomic stability, etc. The each component may be a real number in [0, 1].
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If n is the number of such components under consideration, then the truth value of
fuzzy statement is a n-tuple of real numbers in [0, 1], that is, an element of [0, 1]n .

Hypergraphs have many applications in various fields, including biological sci-
ences, computer science, and natural sciences. To study the degree of dependence of
anobject to the other,Kaufamnn [14] applied the concept of fuzzy sets to hypergraphs.
Mordeson and Nair [16] presented fuzzy graphs and fuzzy hypergraphs. Generaliza-
tion and redefinition of fuzzy hypergraphs were discussed by Lee-Kwang and Lee
[15]. The concept of interval-valued fuzzy sets was applied to hypergraphs by Chen
[11]. Parvathi et al. [17] established the notion of intuitionistic fuzzy hypergraphs.

Definition 5.1 An m-polar fuzzy set C on a non-empty set X is a mapping C :
X → [0, 1]m . The membership value of every element x ∈ X is denoted by C(x) =
(P1 ◦ C(x), P2 ◦ C(x), . . . , Pm ◦ C(x)), where Pi ◦ C : [0, 1]m → [0, 1] is defined
as the i−th projection mapping.

Note that, [0, 1]m (mth-power of [0, 1]) is considered as a partially ordered setwith the
point-wise order≤, wherem is an arbitrary ordinal number (wemake an appointment
thatm = {n|n < m}whenm > 0),≤ is defined by x ≤ y ⇔ Pi (x) ≤ Pi (y) for each
i ∈ m (x, y ∈ [0, 1]m), and Pi : [0, 1]m → [0, 1] is the i−th projection mapping
(i ∈ m). 1 = (1, 1, . . . , 1) is the greatest value and 0 = (0, 0, . . . , 0) is the smallest
value in [0, 1]m . mF (X) is the power set of all m-polar fuzzy subsets on X .

1. Whenm = 2, [0, 1]2 is the ordinary closed unit square inR
2, the Euclidean plane.

The righter (resp., the upper), the point in this square, the larger it is. Let x =
(0, 0) = 0 (the smallest element of [0, 1]2), a = (0.35, 0.85), b = (0.85, 0.35),
and y = (1, 1) = 1 (the largest element of [0, 1]2). Then x ≤ c ≤ y, ∀ c ∈
[0, 1]2, (especially, x ≤ a ≤ y and x ≤ b ≤ y hold). It is easy to note that a �

b � a because P0(a) = 0.35 < 0.85 = P0(b) and P1(a) = 0.85 > 0.35 = P1(b)
hold. The “order relation ≤” on [0, 1]2 can be described in at least two ways. It
can be seen in Fig. 5.1.

2. When m = 4, the order relation can be seen in Fig. 5.2.

Example 5.1 Suppose that a democratic country wants to elect its leader. Let
C = {Irtiza, Moeed, Ramish, Ahad} be the set of four candidates and X = {a, b,
c, . . . , s, t} be the set of voters. We assume that the voting is weighted. A voter in
{a, b, c} can send a value in [0, 1] to each candidate but a voter in X − {a, b, c} can

Fig. 5.1 Order relation
when m = 2
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Fig. 5.2 Order relation
when m = 4
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only send a value in [0.2, 0.7] to each candidate. Let A(a) = (0.8, 0.6, 0.5, 0.1)
(which shows that the preference degrees of a corresponding to Irtiza, Moeed,
Ramish, and Ahad are 0.8, 0.6, 0.5, and 0.1, respectively.), A(b) = (0.9, 0.7,
0.5, 0.8), A(c) = (0.9, 0.9, 0.8, 0.4), . . . , A(s) = (0.6, 0.7, 0.5, 0.3), and A(t) =
(0.5, 0.7, 0.2, 0.5). Thus, we obtain a 4-polar fuzzy set A : X → [0, 1]4 which can
also be written as

A = {(a, (0.8, 0.6, 0.5, 0.1)), (b, (0.9, 0.7, 0.5, 0.8)), (c, (0.9, 0.9, 0.8, 0.4)), . . . ,

(s, (0.6, 0.7, 0.5, 0.3)), (t, (0.5, 0.7, 0.2, 0.5))}.

Definition 5.2 Let C and D be two m-polar fuzzy sets on X . Then, the operations
C ∪ D, C ∩ D, C ⊆ D, and C = D are defined as

1. Pi ◦ (C ∪ D)(x) = sup{Pi ◦ C(x), Pi ◦ D(x)} = Pi ◦ C(x) ∨ Pi ◦ D(x),
2. Pi ◦ (C ∩ D)(x) = inf{Pi ◦ C(x), Pi ◦ D(x)} = Pi ◦ C(x) ∧ Pi ◦ D(x),
3. C ⊆ D if and only if Pi ◦ C(x) ≤ Pi ◦ D(x),
4. C = D if and only if Pi ◦ C(x) = Pi ◦ D(x),

for all x ∈ X , for each 1 ≤ i ≤ m.

Definition 5.3 LetC be anm-polar fuzzy set on a non-empty crisp set X . Anm-polar
fuzzy relation onC is a mapping (P1 ◦ D, P2 ◦ D, . . . , Pm ◦ D) = D : C → C such
that

D(xy) ≤ inf{C(x),C(y)}, for all x, y ∈ X

that is, for each 1 ≤ i ≤ m,

Pi ◦ D(xy) ≤ inf{Pi ◦ C(x), Pi ◦ C(y)}, for all x, y ∈ X

where Pi ◦ C(x) denotes the i−th degree of membership of the vertex x and Pi ◦
D(xy) denotes the i−th degree of membership of the edge xy. D is also an m-polar
fuzzy relation in X defined by the mapping D : X × X → [0, 1]m .
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Definition 5.4 Anm-polar fuzzy graph on a non-empty set X is a pair G = (C, D),
where C : X → [0, 1]m is an m-polar fuzzy set on the set of vertices X and D :
X × X → [0, 1]m is an m-polar fuzzy relation in X such that

D(xy) ≤ inf{C(x),C(y)}, for all x, y ∈ X.

Note that, D(xy) = 0, for all xy ∈ X × X − E , where 0 = (0, 0, . . . , 0) and E ⊆
X × X is the set of edges. C is called an m-polar fuzzy vertex set of G and D is
an m-polar fuzzy edge set of G. An m-polar fuzzy relation D on X is symmetric
if Pi ◦ D(xy) = Pi ◦ D(yx), for all x, y ∈ X .

For further terminologies and studies on m-polar fuzzy hypergraphs, readers are
referred to [1–6, 10, 13, 18, 19].

5.2 m-Polar Fuzzy Hypergraphs

Definition 5.5 An m-polar fuzzy hypergraph on a non-empty set X is a pair H =
(A, B), where A = {ζ1, ζ2, . . . , ζr } is a family of m-polar fuzzy subsets on X and B
is an m-polar fuzzy relation on the m-polar fuzzy subsets ζi ’s such that

1. B(Ei ) = B({x1, x2, . . . , xs}) ≤ inf{ζi (x1), ζi (x2), . . . , ζi (xs)}, for all
x1, x2, . . . , xs ∈ X.

2.
⋃

k supp(ζk) = X, for all ξk ∈ A.

Example 5.2 Let A = {ζ1, ζ2, ζ3, ζ4, ζ5} be a family of 4-polar fuzzy sub-
sets on X = {a, b, c, d, e, f, g} given in Table5.1. Let B be a 4-polar
fuzzy relation on ζ j ’s, 1 ≤ j ≤ 5, given as, B({a, c, e}) = (0.2, 0.4, 0.1, 0.3),
B({b, d, f }) = (0.2, 0.1, 0.1, 0.1), B({a, b}) = (0.3, 0.1, 0.1, 0.6), B({e, f }) =
(0.2, 0.4, 0.3, 0.2), B({b, e, g}) = (0.2, 0.1, 0.2, 0.4). Thus, the 4-polar fuzzy
hypergraph is shown in Fig. 5.3.

Example 5.3 Consider a 5-polar fuzzy hypergraph with vertex set X = {a, b, c, d,

e, f, g} whose degrees of membership are given in Table5.2 and three hyperedges
{a, b, c}, {b, d, e}, {b, f, g} such that B({a, b, c}) = (0.2, 0.1, 0.3, 0.1, 0.2),

Table 5.1 4-polar fuzzy subsets on X = {a, b, c, d, e, f, g}
x ∈ X ζ1 ζ2 ζ3 ζ4 ζ5

a (0.3, 0.4, 0.5, 0.6) (0, 0, 0, 0) (0.3, 0.4, 0.5, 0.6) (0, 0, 0, 0) (0, 0, 0, 0)

b (0, 0, 0, 0) (0.4, 0.1, 0.1, 0.6) (0.4, 0.1, 0.1, 0.6) (0, 0, 0, 0) (0.4, 0.1, 0.1, 0.6)

c (0.3, 0.5, 0.1, 0.3) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

d (0, 0, 0, 0) (0.4, 0.2, 0.5, 0.1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e (0.2, 0.4, 0.6, 0.8) (0, 0, 0, 0) (0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8) (0.2, 0.4, 0.6, 0.8)

f (0, 0, 0, 0) (0.2, 0.5, 0.3, 0.2) (0, 0, 0, 0) (0.2, 0.5, 0.3, 0.2) (0, 0, 0, 0)

g (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.3, 0.5, 0.1, 0.4)
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a(0.3,0.4,0.5,0.6) b(0.4,0.1,0.1,0.6)
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f (0.2,0.5,0.3,0.2)

d(0.4,0.2,0.5,0.1)

e(0.2,0.4,0.6,0.8)

g(0
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.4)
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.4
,0
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.3
)

(0
.2
,0
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)
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)

Fig. 5.3 4-polar fuzzy hypergraph

Table 5.2 5-polar fuzzy subsets on X

x ∈ X ζ1 ζ2 ζ3

a (0.2, 0.1, 0.3, 0.1, 0.3) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

b (0.2, 0.3, 0.5, 0.6, 0.2) (0.2, 0.3, 0.5, 0.6, 0.2) (0.2, 0.3, 0.5, 0.6, 0.2)

c (0.3, 0.2, 0.4, 0.5, 0.2) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

d (0, 0, 0, 0, 0) (0.6, 0.2, 0.2, 0.3, 0.3) (0, 0, 0, 0, 0)

e (0, 0, 0, 0, 0) (0.4, 0.5, 0.6, 0.7, 0.3) (0, 0, 0, 0, 0)

f (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0.1, 0.2, 0.3, 0.4, 0.4)

g (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8, 0.4)

B({b, d, e}) = (0.1, 0.2, 0.3, 0.4, 0.2), B({b, f, g}) = (0.2, 0.2, 0.3, 0.3, 0.2).
Hence, the 5-polar fuzzy hypergraph is shown in Fig. 5.4.

Example 5.4 Let A = {ζ1, ζ2, ζ3, ζ4, ζ5} be a family of 4-polar fuzzy subsets on
X = {a, b, c, d, e, f, g} as given in Table5.3. Let B be a 4-polar fuzzy relation on
ζ

′
i s, 1 ≤ i ≤ 5, which is given as follows.

B({a, c, e}) = (0.2, 0.4, 0.1, 0.3), B({b, d, f }) = (0.2, 0.1, 0.1, 0.1),

B({a, b}) = (0.3, 0.1, 0.1, 0.6), B({e, f }) = (0.2, 0.4, 0.3, 0.2),

B({b, e, g}) = (0.2, 0.1, 0.2, 0.4).

By routine computations, it is easy to see that H = (A, B) is a 4-polar fuzzy hyper-
graph as shown in Fig. 5.5.

Definition 5.6 An m-polar fuzzy hypergraph H = (A, B) is called m-polar fuzzy
r-uniform hypergraph if |supp(Bi )| = r for each ζi ∈ B, 1 ≤ i ≤ r .

Example 5.5 Consider H = (A, B) is a 3-polar fuzzy hypergraph as shown
in Fig. 5.6, where A = {(v1, 0.1, 0.3, 0.2), (v2, 0.1, 0.1, 0.3), (v3, 0.2, 0.1, 0.1),
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a(0.2,0.1,0.3,0.1,0.3)

b(0
.2,0

.3,0
.5,0

.6,0
.2)
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d(0
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e(0
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)

f (0.1,0.2,0.3,0.4,0.4)

g(0.2,0.4,0.6,0.8,0.4)

(0.2,0.1,0.3,0.1,0.2)

(0.2
,0.2
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,0.3
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(0.1,0.2,0.3,0.4,0.2)

Fig. 5.4 5-polar fuzzy hypergraph

Table 5.3 4-polar fuzzy subsets on X = {a, b, c, d, e, f, g}
x ∈ X ζ1 ζ2 ζ3 ζ4 ζ5

a (0.4, 0.5, 0.6, 0.7) (0, 0, 0, 0) (0.4, 0.5, 0.6, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

b (0, 0, 0, 0) (0.3, 0.2, 0.2, 0.7) (0.3, 0.2, 0.2, 0.7) (0, 0, 0, 0) (0.3, 0.2, 0.2, 0.7)

c (0.4, 0.6, 0.1, 0.4) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

d (0, 0, 0, 0) (0.5, 0.3, 0.6, 0.1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e (0.2, 0.4, 0.6, 0.8) (0, 0, 0, 0) (0, 0, 0, 0) (0.2, 0.4, 0.6, 0.8) (0.2, 0.4, 0.6, 0.8)

g (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.4, 0.6, 0.5, 0.5)

a(0.4,0.5,0.6,0.7) b(0.3,0.2,0.2,0.7)

c(0.4,0.6,0.1,0.4)

f (0.2,0.5,0.3,0.2)

d(0.5,0.3,0.6,0.1)

e(0.2,0.4,0.6,0.8)

g(0
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.5,0

.5)
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,0
.4
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)
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)
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0.4

)

Fig. 5.5 4-polar fuzzy hypergraph

(v4, 0.1, 0.1, 0.2)} is a 3-polar fuzzy set of vertices on X = {v1, v2, v3, v4} and the B is
defined as B({v1, v2}) = (0.1, 0.1, 0.2), B({v2, v3}) = (0.1, 0.1, 0.1), B({v3, v4}) =
(0.1, 0.1, 0.2). Clearly, |supp(ζi )| = 2, for each i = 1, 2, 3. Thus, H = (A, B) is a
3-polar fuzzy 2-uniform hypergraph, as shown in Fig. 5.6.
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)(v 2
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(0
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(0.1,0.1,0.2)

Fig. 5.6 3-polar fuzzy 2-uniform hypergraph

(a,0.1,0.2,0.3)

(b,0.3,0.4,0.6)

(c,0.2,0.1,0.2)

(d,0.1,0.2,0.2)

(e,0.2,0.4,0.3)

( f ,0.1,0.2,0.4)

H1

H2

(0.1
,0.1

,0.2
)

(0.1,0.2,0.2)

Fig. 5.7 3-polar fuzzy hypergraphs H1 and H2

Definition 5.7 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively. TheCartesian product of H1 and H2 is an ordered
pair H = H1�H2 = (A1�A2, B1�B2) such that

1. Pi ◦ (A1�A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1�B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1�B2)(e1 × {v2} = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2, ∀ e1 ∈
E1.

Example 5.6 Let H1 = (A1, B1) and H2 = (A2, B2) be two 3-polar fuzzy hyper-
graphs on X1 = {a, b, c} and X2 = {d, e, f }, respectively, as shown in Fig. 5.7.

The Cartesian product H1�H2 is shown in Fig. 5.8.

Theorem 5.1 If H1 and H2 are the m-polar fuzzy hypergraphs then H1�H2 is as
m-polar fuzzy hypergraph.
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Fig. 5.8 Cartesian product
H1�H2
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Proof Case (i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1�B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)},
. . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1�A2)(v1, v21), Pi ◦ (A1�A2)(v1, v22), . . . , Pi ◦ (A1�A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1�A2)(v1, v2).

Case (ii): Let v2 ∈ X2, e1 = {v11, v12, . . . , v1p} ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1�B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)},
. . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
= inf{Pi ◦ (A1�A2)(v11, v2), Pi ◦ (A1�A2)(v12, v2), . . . , Pi ◦ (A1�A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1�A2)(v1, v2).
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Definition 5.8 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively. Then, the direct product of H1 and H2 is an
ordered pair H = H1 × H2 = (A1 × A2, B1 × B2) such that

1. Pi ◦ (A1 × A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 ×
X2,

2. Pi ◦ (B1 × B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}, ∀ e1 ∈ E1, e2 ∈ E2.

Definition 5.9 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hyper-
graphs on X1 and X2, respectively, then the strong product of H1 and H2 is an ordered
pair H = H1 � H2 = (A1 � A, B1 � B2) such that

1. Pi ◦ (A1 � A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 � B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1 � B2)(e1 × {v2}) = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2, ∀ e1 ∈
E1,

4. Pi ◦ (B1 � B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}, ∀ e1 ∈ E1, e2 ∈ E2.

Theorem 5.2 If H1 and H2 are two m-polar fuzzy r-uniform hypergraphs, then
H1 � H2 is a m-polar fuzzy hypergraph.

Proof Case (i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)},
. . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 � A2)(v1, v21), Pi ◦ (A1 � A2)(v1, v22),

. . . , Pi ◦ (A1 � A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case (ii): Let v2 ∈ X2, e1 = {v11, v12, . . . , v1p} ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)},
. . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
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= inf{Pi ◦ (A1 � A2)(v11, v2), Pi ◦ (A1 � A2)(v12, v2),

. . . , Pi ◦ (A1 � A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case (iii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1 and e2 = {v21, v22, . . . , v2q} ⊆ X2 then
for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × e2)

= inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q )}}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}
, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q )}}

= inf{Pi ◦ (A1 � A2)(v11, v21), Pi ◦ (A1 � A2)(v12, v22), . . . , Pi ◦ (A1 � A2)(v1p, v2q )}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Definition 5.10 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then composition of H1 and H2 is an ordered
pair H = H1 � H2 = (A1 � A2, B1 � B2) such that,

1. Pi ◦ (A1 � A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 � B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1,

∀ e2 ∈ E2,

3. Pi ◦ (B1 � B2)(e1 × {v2} = inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}, ∀ v2 ∈ X2,

∀ e1 ∈ E1,

4. Pi ◦ (B1 � B2)((v11, v21)(v12, v22) · · · (v1p, v2q)) = inf{Pi ◦ B1(e1),
Pi ◦ A2(v21), Pi ◦ A2(v22), . . . ,
Pi ◦ A2(v2q)}, ∀ e1 ∈ E1, v21, v22, . . . , v2q ∈ X2.

Theorem 5.3 If H1 and H2 are two m-polar fuzzy hypergraphs, then H1 � H2 is a
m-polar fuzzy hypergraph.

Proof Case(i): Let v1 ∈ X1, e2 ⊆ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 � A2)(v1, v21), Pi ◦ (A1 � A2)(v1, v22)
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, . . . , Pi ◦ (A1 � A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case(ii): Let v2 ∈ X2, e1 ⊆ X1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)(e1 × {v1})
= inf{Pi ◦ B1(e1), Pi ◦ A2(v2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}, Pi ◦ A2(v2)}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v2)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v2)}

, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2)}}
= inf{Pi ◦ (A1 � A2)(v11, v2), Pi ◦ (A1 � A2)(v12, v2)

, . . . , Pi ◦ (A1 � A2)(v1p, v2)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Case(iii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1, v21, v22, . . . , v2q ∈ X2 then for
each 1 ≤ i ≤ m,

Pi ◦ (B1 � B2)((v11, v21)(v12, v22) · · · (v1p, v2q))
= inf{Pi ◦ B1(e1), Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}
, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q)}}

= inf{Pi ◦ (A1 � A2)(v11, v21), Pi ◦ (A1 � A2)(v12, v22)

, . . . , Pi ◦ (A1 � A2)(v1p, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 � A2)(v1, v2).

Definition 5.11 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the union of H1 and H2 is an ordered
pair H = H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) such that

1. Pi ◦ (A1 ∪ A2)(v) =
⎧
⎨

⎩

Pi ◦ A1(v), if v ∈ X1 − X2,

Pi ◦ A2(v), if v ∈ X2 − X1,

sup{Pi ◦ A1(v), Pi ◦ A2(v)}, if v ∈ X1 ∩ X2.

2. Pi ◦ (B1 ∪ B2)(e) =
⎧
⎨

⎩

Pi ◦ B1(e), if e ∈ E1 − E2,

Pi ◦ B2(e), if e ∈ E2 − E1,

sup{Pi ◦ B1(e), Pi ◦ B2(e)}, if e ∈ E1 ∩ E2.
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Fig. 5.9 3-polar fuzzy hypergraphs H1 and H2

Fig. 5.10 H1 ∪ H2
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where E1 = supp(B1) and E2 = supp(B2).

Example 5.7 Consider 3-polar fuzzy hypergraphs H1 = (A1, B1) and H2 =
(A2, B2) as shown in Fig. 5.9.

The union of H1 and H2 is given in Fig. 5.10.

Theorem 5.4 The union H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) of two m-polar fuzzy
hypergraphs H1 = (A1, B1) and H2 = (A2, B2) is an m-polar fuzzy hypergraph.

Proof Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy hypergraphs
on X1 and X2, respectively, such that E1 = supp(B1) and E2 = supp(B2). It is to
be shown that that H1 ∪ H2 = (A1 ∪ A2, B1 ∪ B2) is an m-polar fuzzy hypergraph.
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Since, all conditions for A1 ∪ A2 are satisfied automatically, therefore, it is enough
to show that B1 ∪ B2 is an m-polar fuzzy relation on A1 ∪ A2.
Case(i): If e ∈ E1 − E2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = Pi ◦ B1(e1)

≤ inf
v1∈e1

PioA1(v1)

= inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
= inf{Pi ◦ (A1 ∪ A2)(v11), Pi ◦ (A1 ∪ A2)(v12), . . . , Pi ◦ (A1 ∪ A2)(v1p)}.

Case(ii): If e ∈ E2 − E1 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = Pi ◦ B2(e2)

≤ inf
v2∈e2

PioA2(v2)

= inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q )}
= inf{Pi ◦ (A1 ∪ A2)(v21), Pi ◦ (A1 ∪ A2)(v22), . . . , Pi ◦ (A1 ∪ A2)(v2q )}.

Case(iii): If e ∈ E1 ∩ E2 or v j1, v j2, . . . , v jp ∈ X1 ∩ X2 then for each 1 ≤ i ≤ m,

Pi ◦ (B1 ∪ B2)(e) = sup{Pi ◦ B1(e), Pi ◦ B2(e)}
≤ sup{inf{Pi ◦ A1(v j1), Pi ◦ A1(v j2), . . . , Pi ◦ A1(v jp)}

, inf{Pi ◦ A2(v j1), Pi ◦ A2(v j2), . . . , Pi ◦ A2(v jp)}}
= inf{sup{Pi ◦ A1(v j1), Pi ◦ A2(v j1)}, sup{Pi ◦ A1(v j2), Pi ◦ A2(v j2)}

, . . . , sup{Pi ◦ A1(v jp), Pi ◦ A2(v jp)}
= inf{Pi ◦ (A1 ∪ A2)(v11), Pi ◦ (A1 ∪ A2)(v12), . . . , Pi ◦ (A1 ∪ A2)(v1p)}.

Definition 5.12 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the join H = H1 + H2 of twom-polar
fuzzy hypergraphs H1 and H2 is defined as follows:

1. Pi ◦ (A1 + A2)(v) = Pi ◦ (A1 ∪ A2)(v), if v ∈ X1 ∪ X2,
2. Pi ◦ (B1 + B2)(e) = Pi ◦ (B1 ∪ B2)(e), if e ∈ E1 ∪ E2,
3. Pi ◦ (B1 + B2)(e) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, if e ∈ E ′,

where E ′ is the set of all the edges joining the vertices of X1 and X2 and X1 ∩ X2 = ∅.
Example 5.8 Consider H1 = (A1, B1) and H2 = (A2, B2) be two 3-polar fuzzy
hypergraphs as shown in Fig. 5.11 then their join is given in Fig. 5.12.
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Fig. 5.12 H1 + H2
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Definition 5.13 Let H1 = (A1, B1) and H2 = (A2, B2) be two m-polar fuzzy
hypergraphs on X1 and X2, respectively, then the lexicographic product of H1 and
H2 is defined by the ordered pair H = H1 • H2 = (A1 • A2, B1 • B2) such that

1. Pi ◦ (A1 • A2)(v1, v2) = inf{Pi ◦ A1(v1), Pi ◦ A2(v2)}, ∀ (v1, v2) ∈ X1 × X2,

2. Pi ◦ (B1 • B2)({v1} × e2) = inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}, ∀ v1 ∈ X1, ∀ e2 ∈
E2,

3. Pi ◦ (B1 • B2)(e1 × e2) = inf{Pi ◦ B1(e1), Pi ◦ B2(v2)}, ∀ e1 ∈ E1, ∀ e2 ∈
E2.

Theorem 5.5 If H1 and H2 are m-polar fuzzy hypergraphs then H1 • H2 is an m-
polar fuzzy hypergraph.

Proof Case(i): Let v1 ∈ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for each 1 ≤ i ≤ m,
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Pi ◦ (B1 • B2)({v1} × e2)

= inf{Pi ◦ A1(v1), Pi ◦ B2(e2)}
≤ inf{Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{Pi ◦ A1(v1), inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v1), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v1), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 • A2)(v1, v21), Pi ◦ (A1 • A2)(v1, v22), . . . , Pi ◦ (A1 • A2)(v1, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 • A2)(v1, v2).

Case(ii): Let e1 = {v11, v12, . . . , v1p} ⊆ X1, e2 = {v21, v22, . . . , v2q} ⊆ X2 then for
each 1 ≤ i ≤ m,

Pi ◦ (B1 • B2)(e1 × e2)

= inf{Pi ◦ B1(e1), Pi ◦ B2(e2)}
≤ inf{ inf

v1∈e1
Pi ◦ A1(v1), inf

v2∈e2
Pi ◦ A2(v2)}

= inf{inf{Pi ◦ A1(v11), Pi ◦ A1(v12), . . . , Pi ◦ A1(v1p)}
, inf{Pi ◦ A2(v21), Pi ◦ A2(v22), . . . , Pi ◦ A2(v2q)}}
= inf{inf{Pi ◦ A1(v11), Pi ◦ A2(v21)}, inf{Pi ◦ A1(v12), Pi ◦ A2(v22)}

, . . . , inf{Pi ◦ A1(v1p), Pi ◦ A2(v2q)}}
= inf{Pi ◦ (A1 • A2)(v11, v21), Pi ◦ (A1 • A2)(v12, v22)

, . . . , Pi ◦ (A1 • A2)(v1p, v2q)}
= inf

v1∈e1,v2∈e2
Pi ◦ (A1 • A2)(v1, v2).

Definition 5.14 Let H = (A, B) be an m-polar fuzzy hypergraph on a non-empty
set X . The dual m-polar fuzzy hypergraph of H , denoted by HD = (A∗, B∗), is
defined as

1. A∗ = B is the m-polar fuzzy set of vertices of HD .
2. If |X | = n then, B∗ is an m-polar fuzzy set on the family of hyperedges {X1, X2,

..., Xn} such that, Xi={E j | x j ∈ E j , E j is a hyperedge of H}, i.e., Xi is the
m-polar fuzzy set of those hyperedges which share the common vertex xi and
B∗(Xi ) = inf{E j | x j ∈ E j }.

Example 5.9 Consider the example of a 3-polar fuzzy hypergraph H = (A, B) given
in Fig. 5.13, where X = {x1, x2, x3, x4, x5, x6} and E = {E1, E2, E3, E4}. The dual
3-polar fuzzy hypergraph is shown in Fig. 5.14 with dashed lines with vertex set E =
{E1, E2, E3, E4} and set of hyperedges {X1, X2, X3, X4, X5, X6} such that X1 = X3.

Definition 5.15 The open neighborhood of a vertex x in an m-polar fuzzy hyper-
graph is the set of adjacent vertices of x excluding that vertex and it is denoted by
N (x).
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Fig. 5.14 Dual 3-polar fuzzy hypergraph

Example 5.10 Consider the 3-polar fuzzy hypergraph H = (A, B), where A =
{ζ1, ζ2, ζ3, ζ4} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a
3polar fuzzy relation on the 3-polar fuzzy subsets ζi ’s such that ζ1 = {(a, 0.3, 0.4,
0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4,
0.4)}. In this example, the open neighborhood of the vertex a is {b, d} as shown
in Fig. 5.15.
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Fig. 5.15 3-polar fuzzy hypergraph

Definition 5.16 The closed neighborhood of a vertex x in an m-polar fuzzy hyper-
graph is the set of adjacent vertices of x including x and it is denoted by N [x].
Example 5.11 Consider a 3-polar fuzzy hypergraph H = (A, B) as shown in
Fig. 5.15. In this example, closed neighborhood of the vertex a is {a, b, d}.
Definition 5.17 The open neighborhood degree of a vertex x in H is denoted by
deg(x) and defined as an m-tuple deg(x) = (deg(1)(x), deg(2)(x), deg(3)(x), . . . ,

deg(m)(x)), such that
deg(1)(x) = Σx∈N (x)P1 ◦ ζ j (x),

deg(2)(x) = Σx∈N (x)P2 ◦ ζ j (x),

deg(3)(x) = Σx∈N (x)P3 ◦ ζ j (x),

...

deg(m)(x) = Σx∈N (x)Pm ◦ ζ j (x).

Definition 5.18 Let H = (A, B) be an m-polar fuzzy hypergraph on a non-empty
set X . If all vertices in A have the same open neighborhood degree n, then H is
called n-regular m-polar fuzzy hypergraph.

Definition 5.19 The closed neighborhood degree of a vertex x in H is denoted
by deg[x] and defined as an m-tuple such that deg[x] = (deg(1)[x], deg(2)[x],
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Fig. 5.16 Regular and
totally regular 4-polar fuzzy
hypergraph
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deg(3)[x], . . . , deg(m)[x]), where

deg(1)[x] = deg(1)(x) + ∧ j P1 ◦ ζ j (x),

deg(2)[x] = deg(2)(x) + ∧ j P2 ◦ ζ j (x),

deg(3)[x] = deg(3)(x) + ∧ j P3 ◦ ζ j (x),

...

deg(m)[x] = d(m)
G (x) + ∧ j Pm ◦ ζ j (x).

Example 5.12 Consider the example of a 3-polar fuzzy hypergraph H = (A, B),
where A = {ζ1, ζ2, ζ3, ζ4} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e}
and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζ j , where ζ1 =
{(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1),
(e, 0.2, 0.3, 0.1)}, ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 ={(a, 0.1, 0.3, 0.2),
(d, 0.3, 0.4, 0.4)}. Then, deg(a) = (0.5, 0.8, 1) and deg[a] = (0.6, 1.1, 1.2).

Definition 5.20 Let H = (A, B) be an m-polar fuzzy hypergraph on X . If all ver-
tices in A have the same closed neighborhood degree m, then H is called m-totally
regular m-polar fuzzy hypergraph.

Example 5.13 Consider the 3-polar fuzzy hypergraph H = (A, B), where A =
{ζ1, ζ2, ζ3} is a family of 3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a
3-polar fuzzy relation on the 3-polar fuzzy subsets ζ j such

ζ1 = {(a, 0.5, 0.4, 0.1), (b, 0.3, 0.4, 0.1), (c, 0.4, 0.4, 0.3)},
ζ2 = {(a, 0.3, 0.1, 0.1), (d, 0.2, 0.3, 0.2), (e, 0.4, 0.6, 0.1)},
ζ3 = {(b, 0.3, 0.4, 0.3), (d, 0.4, 0.3, 0.4), (e, 0.4, 0.3, 0.1)}.
By routine calculations, it easy to see that the H is neither regular nor totally

regular 3-polar fuzzy graph.

Example 5.14 The 4-polar fuzzy hypergraph shown in Fig. 5.16 is both regular and
totally regular.
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Remark 5.1 (a) For anm-polar fuzzy hypergraph H = (A, B) to be both regular and
totally regular, the number of vertices in each hyperedge E j must be same. Suppose
that |E j | = k for every j , then H is said to be k-uniform.

(b) Each vertex lies in exactly same number of hyperedges.

Definition 5.21 Let H = (A, B) be a regular m-polar fuzzy hypergraph. The order
of a regular m-polar fuzzy hypergraph H is an m-tuple of the form,

O(H) = (Σx∈X ∧ P1 ◦ ζ j (x),Σx∈X ∧ P2 ◦ ζ j (x), . . . , Σx∈X ∧ Pm ◦ ζ j (x)).

The size of a regular m-polar fuzzy hypergraph is S(H) = ∑
E j⊆X B(E j ).

Example 5.15 Consider the 4-polar fuzzy hypergraph H = (A, B) on X = {a, b, c,
d, e, f, g, h, i} and A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where

ζ1 = {(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},
ζ2 = {(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), ( f, 0.4, 0.4, 0.4, 0.4)},
ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},
ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},
ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},
ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), ( f, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.
Clearly, O(H) = (3.6, 3.6, 3.6, 3.6) and S(H) = (7.2, 7.2, 7.2, 7.2).

Theorem 5.6 Let H = (A, B) be an m-polar fuzzy hypergraph on X. Then, A :
X −→ [0, 1]m is a constant function if and only if the following statements are
equivalent,

(a) H is a regular m-polar fuzzy hypergraph,
(b) H is a totally regular m-polar fuzzy hypergraph.

Proof Suppose that A : X −→ [0, 1]m , where A = {ζ1, ζ2, ..., ζr } is a constant func-
tion. That is, Pi ◦ ζ j (x) = ci , for all x ∈ ζ j , 1 ≤ i ≤ m, 1 ≤ j ≤ r .

(a) ⇒ (b) Suppose that H is n-regular m-polar fuzzy hypergraph. Then
deg(i)(x) = ni , for all x ∈ X , 1 ≤ i ≤ m. By using Definition5.19, deg(i)[x] =
ni + ki , for all x ∈ X , 1 ≤ i ≤ m. Hence, H is a totally regularm-polar fuzzy hyper-
graph.

(b) ⇒ (a) Suppose that H is a k-totally regularm-polar fuzzy hypergraph. Then,
deg(i)[x] = ki , for all x ∈ X , 1 ≤ i ≤ m.

⇒ deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ki for all x ∈ ζ j ,
⇒ deg(i)(x) + ci = ki , for all x ∈ ζ j ,
⇒ deg(i)(x) = ki − ci , for all x ∈ ζ j . Thus, H is a regular m-polar fuzzy hyper-

graph. Hence, (a) and (b) are equivalent.
Conversely, suppose that (a) and (b) are equivalent, i.e., H is regular if and only if

H is a totally regular. On contrary suppose that A is not constant, that is, Pi ◦ ζ j (x) �=
Pi ◦ ζ j (y) for some x and y in A. Let H = (A, B) be a n-regular m-polar fuzzy
hypergraph then, deg(i)(x) = ni for all x ∈ ζ j (x). Consider,

deg(i)[x] = deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ni + ∧ j Pi ◦ ζ j (x),

deg(i)[y] = deg(i)(y) + ∧ j Pi ◦ ζ j (y) = ni + ∧ j Pi ◦ ζ j (y).
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Since, Pi ◦ ζ j (x) and Pi ◦ ζ j (y) are not equal for some x and y in X , hence deg[x]
and deg[y] are not equals, thus H is not a totally regular m-poalr fuzzy hypergraph,
which is a contradiction to our assumption. Next, let H be a totally regular m-polar
fuzzy hypergraph, then deg[x] = deg[y], that is,

deg(i)(x) + ∧ j Pi ◦ ζ j (x) = deg(i)(y) + ∧ j Pi ◦ ζ j (y),

deg(i)(x) − deg(i)(y) = ∧ j Pi ◦ ζ j (y) − ∧ j Pi ◦ ζ j (x).

It follows that deg(x) and deg(y) are not equal, so H is not a regular m-polar fuzzy
hypergraph, which is again a contradiction to our assumption. Hence, A must be
constant and it completes the proof.

Theorem 5.7 If an m-polar fuzzy hypergraph is both regular and totally regular
then A : X −→ [0, 1]m is constant function.

Proof Let H be a regular and totally regular m-polar fuzzy hypergraph then,

deg(i)(x) = ni for all x ∈ X, 1 ≤ i ≤ m.

deg(i)[x] = ki for all x ∈ ζ j (x),

⇔ deg(i)(x) + ∧ j Pi ◦ ζ j (x) = ki , for all x ∈ ζ j (x),

⇔ n1 + ∧ j Pi ◦ ζ j (x) = ki , for all x ∈ ζ j (x),

⇔ ∧ j Pi ◦ ζ j (x) = ki − ni , for all x ∈ ζ j (x),

⇔ Pi ◦ ζ j (x) = ki − ni , for all x ∈ X, 1 ≤ i ≤ m.

Hence, A : X −→ [0, 1]m is a constant function.

Remark 5.2 The converse of Theorem5.7 may not be true, in general as it can be
seen in the following example.

Consider a 3-polar fuzzy hypergraph H = (A, B) on X = {a, b, c, d, e},
ζ1 = {(a, 0.2, 0, 2, 0.2), (b, 0.2, 0.2, 0.2), (c, 0.2, 0.2, 0.2)},
ζ2 = {(a, 0.2, 0, 2, 0.2), (d, 0.2, 0.2, 0.2)},
ζ3 = {(b, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)},
ζ4 = {(c, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)}. Then, A : X −→ [0, 1]m , where A =

{ζ1, ζ2, ..., ζr } is a constant function. But deg(a) = (0.6, 0.6, 0.6) �= (0.4, 0.4,
0.4) = deg(e). Also (deg[a] = (0.8, 0.8, 0.8) �= (0.6, 0.6, 0.6) = deg[e]). So H is
neither regular nor totally regular m-polar fuzzy hypergraph.

Definition 5.22 An m-polar fuzzy hypergraph H = (A, B) is called complete if
for every x ∈ X, N (x) = {xy| y ∈ X − x}, that is, N (x) contains all the remaining
vertices of X except x .

Example 5.16 Consider a 3-polar fuzzy hypergraph H = (A, B)on X = {a, b, c, d}
as shown in Fig. 5.17 then N (a) = {b, c, d}, N (b) = {a, c, d}, and N (c) = {a, b, d}.
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Fig. 5.17 Complete 3-polar
fuzzy hypergraph
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Remark 5.3 For a complete m-polar fuzzy hypergraph, the cardinality of N (x) is
same for every vertex.

Theorem 5.8 Every complete m-polar fuzzy hypergraph is a totally regular
m-polar fuzzy hypergraph.

Proof Since given m-polar fuzzy hypergraph H is complete, each vertex lies in
exactly same number of hyperedges and each vertex have same closed neighbor-
hood degreem. That is, deg[x1] = deg[x2] for all x1, x2 ∈ X. Hence, H ism-totally
regular.

5.3 Applications of m-Polar Fuzzy Hypergraphs

Analysis of human nature and their culture has been tangledwith assessment of social
networks from many years. Such networks are refined by designating one or more
relations on the set of individuals and the relations can be taken from efficacious
relationships, facets of some management and from a large range of others means.
For super-dyadic relationships between the nodes, network models represented by
simple graph are not sufficient. Natural presence of hyperedges can be found in co-
citation, e-mail networks, co-authorship, web log networks, and social networks, etc.
Representation of these models as hypergraphs maintain the dyadic relationships.

5.3.1 Super-Dyadic Managements in Marketing Channels

In marketing channels, dyadic correspondence organization has been a basic imple-
mentation. Marketing researchers and managers are realized that their common
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engagement in marketing channels is a central key for successful marketing and
to yield benefits for company. m-polar fuzzy hypergraphs consist of marketing man-
agers as vertices and hyperedges show their dyadic communication involving their
parallel thoughts, objectives, plans, and proposals. The more powerful close relation
in the researchers is more beneficial for the marketing strategies and the production
of an organization. A 3-polar fuzzy network model showing the dyadic communi-
cations among the marketing managers of an organization is given in Fig. 5.18. The
membership degrees of each person symbolize the percentage of its dyadic behavior
toward the other persons of the same dyad group. Adjacent level between any pair
of vertices illustrates that how much their dyadic relationship is proficient. The adja-
cent levels are given in Table5.4. It can be seen that the most capable dyadic pair is
(Kashif, Kaamil). 3-polar fuzzy hyperedges are taken as the different digital market-
ing strategies adopted by the different dyadic groups of the same organization. The
vital goal of this model is to figure out the most potent dyad of digital marketing tech-
niques. The six different groups are made by the marketing managers and the digital
marketing strategies adopted by these six groups are represented by hyperedges, i.e.,
the 3-polar fuzzy hyperedges {T1, T2, T3, T4, T5, T6} show the following strategies
{Product pricing, Product planning, Environment analysis and marketing research,
Brand name, Build the relationships, Promotions}, respectively. The exclusive effects

kaab(0.1,0.2,0.3)

kabeer(0.1,0.1,0.3)

kaamil(0.2,0.3,0.5)

kaarim(0.2,0.4,0.3)
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kaazhim(0.3,0.3,0.4)

kabaark(0.1,0.3,0.2)
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Fig. 5.18 Super-dyadic managements in marketing channels
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Table 5.4 Adjacent levels of 3-polar fuzzy hypergraph

Dyad pairs Adjacent level Dyad pairs Adjacent level

γ (Kadeen, Kashif) (0.2, 0.3, 0.3) γ (Kaarim, Kaazhim) (0.2, 0.3, 0.3)

γ (Kadeen, Kaamil) (0.2, 0.3, 0.3) γ (Kaarim, Kaab) (0.1, 0.2, 0.3)

γ (Kadeen, Kaarim) (0.2, 0.3, 0.3) γ (Kaarim, Kadar) (0.2, 0.3, 0.3)

γ (Kadeen, Kaazhim) (0.2, 0.3, 0.3) γ (Kaab, Kadar) (0.1, 0.2, 0.3)

γ (Kashif, Kaamil) (0.2, 0.3, 0.4) γ (Kaab, Kabeer) (0.1, 0.1, 0.3)

γ (Kashif, Kaab) (0.1, 0.2, 0.3) γ (Kadar, Kabaark) (0.1, 0.3, 0.2)

γ (Kashif, Kabeer) (0.1, 0.1, 0.3) γ (Kaazhim, Kabeer) (0.1, 0.1, 0.3)

γ (Kaamil, Kadar)) (0.2, 0.2, 0.3) γ (Kaazhim, Kabaark) (0.1, 0.3, 0.2)

γ (Kaamil, Kabaark) (0.1, 0.3, 0.2) γ (Kabeer, Kabaark) (0.1, 0.1, 0.2)

Table 5.5 Effects of marketing strategies

Marketing strategy Profitable growth Instruction manual for
company success

Create longevity of the
business

Product pricing 0.1 0.2 0.3

Product planning 0.2 0.3 0.3

Environment analysis
and marketing
research

0.1 0.2 0.2

Brand name 0.1 0.3 0.3

Build the relationships 0.1 0.3 0.2

Promotions 0.2 0.3 0.3

of membership degrees of each marketing strategy toward the achievements of an
organization are given in Table5.5. Effective dyads of market strategies enhance the
performance of an organization and discover the better techniques to be adopted. The
adjacency of all dyadic communication managements is given in Table5.6. The most
dominant and capable marketing strategies adopted mutually are Product planning
and Promotions. Thus to increase the efficiency of an organization, dyadic man-
agements should make the powerful planning for products and use the promotions
skill to attract customers to purchase their products. The membership degrees of this
dyad is (0.2, 0.3, 0.3) which shows that the amalgamated effect of this dyad will
increase the profitable growth of an organization up to 20%, instruction manual for
company success up to 30%, create longevity of the business up to 30% . Thus, to
promote the performance of an organization, super dyad marketing communications
are more energetic. The method of finding out the most effective dyads is explained
in Algorithm 5.3.1.
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Table 5.6 Adjacency of all dyadic communication managements

Dyadic strategies Effects

σ (Product pricing, Product planning) (0.1, 0.2, 0.3)

σ (Product pricing, Environment analysis and marketing research) (0.1, 0.2, 0.2)

σ (Product pricing, Brand name) (0.1, 0.2, 0.3)

σ (Product pricing, Build the relationships) (0.1, 0.2, 0.2)

σ (Product pricing, Promotions) (0.1, 0.2, 0.3)

σ (Product planning, Environment analysis and marketing research) (0.1, 0.2, 0.2)

σ (Product planning, Brand name) (0.1, 0.3, 0.3)

σ (Product planning, Build the relationships) (0.1, 0.3, 0.2)

σ (Product planning, Promotions) (0.2, 0.3, 0.3)

σ (Environment analysis and marketing research, Brand name) (0.1, 0.2, 0.2)

σ (Environment analysis and marketing research, Build the relationships) (0.1, 0.2, 0.2)

σ (Environment analysis and marketing research, Promotions) (0.1, 0.2, 0.2)

σ (Brand name, Build the relationships) (0.1, 0.3, 0.2)

σ (Brand name, Promotions) (0.1, 0.3, 0.3)

σ (Build the relationships, Promotions) (0.1, 0.3, 0.2)

Algorithm 5.3.1 Finding the most effective dyads

1. Input the membership values A(xi ) of all nodes (marketing managers) x1, x2, ..., xn .
2. Input the membership values B(Ti ) of all hyperedges T1, T2, ..., Tr .
3. Find the adjacent level between nodes xi and x j as,
4. do i from 1 → n − 1
5. do j from i + 1 → n
6. do k from 1 → r
7. if xi , x j ∈ Ek then
8. γ (xi , x j ) = supk inf{A(xi ), A(x j )}.
9. end if
10. end do
11. end do
12. end do
13. Find the best capable dyadic pair as supi, j γ (xi , x j ).
14. do i from 1 → r − 1
15. do j from i + 1 → r
16. do k from 1 → r
17. if xk ∈ Ti ∩ Tj then
18. σ(Ti , Tj ) = supk inf{B(Ti ), B(Tj )}.
19. end if
20. end do
21. end do
22. end do
23. Find the best effective super dyad management as supi, j σ(Ti , Tj ).



5.3 Applications of m-Polar Fuzzy Hypergraphs 211

Description of Algorithm 5.3.1: Lines 1 and 2 passes the input ofm-polar fuzzy set
A on n vertices x1, x2, . . . , xn andm-polar fuzzy relation B on r edges T1, T2, ..., Tr .
Lines 3–12 calculate the adjacent level between each pair of nodes. Line 14 calculates
the best capable dyadic pair. The loop initializes by taking the value i = 1 of do loop
which is always true, i.e., the loop runs for the first iteration. For any i th iteration
of do loop on line 3, the do loop on line 4 runs n − i times and, the do loop on line
5 runs r times. If there exists a hyperedge Ek containing xi and x j then, line 7 is
executed otherwise the if conditional terminates. For every i th iteration of the loop
on line 3, this process continues n times and then increments i for the next iteration
maintaining the loop throughout the algorithm. For i = n − 1, the loop calculates the
adjacent level for every pair of distinct vertices and terminates successfully at line
12. Similarly, the loops on lines 13, 14 , and 15 maintain and terminate successfully.

5.3.2 m-Polar Fuzzy Hypergraphs in Work Allotment
Problem

In customer care centers, availability of employees plays a vital to solve people’s
problems. Such a department should ensure that the system has been managed care-
fully to overcome practical difficulties. A lot of customers visit such centers to find
a solution of their problems. In this part, focus is given to alteration of duties for
the employees taking leave. The problem is that employees are taking leave without
proper intimation and alteration. We now show the importance of m-polar fuzzy
hypergraphs for the allocation of duties to avoid any difficulties.

Consider the example of a customer care center consisting of 30 employees.
Assuming that six workers are necessary to be available at their duties. We present
the employees as vertices and degree of membership of each employee represents
the workload, percentage of available time and number of workers who are also
aware of the employee’s work type. The range of values for present time and the
workers knowing the type of work is given in Tables5.7 and 5.8, respectively. The
degree of membership of each edge represents the common work load, percentage
of available time and number of workers who are also aware of the employee’s work
type. This phenomenon can be represented by a 3-polar fuzzy graph as shown in
Fig. 5.19. Using Algorithm 5.3.2, the strength of allocation and alteration of duties
among employees is given in Table5.9. Column 3 in Table5.9 shows the percentage
of alteration of duties. For example, in case of leave, duties of a1 can be given to a3
and similarly for other employees. The method for the calculation of alteration of
duties is given in Algorithm 5.3.2.
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Table 5.7 Range of
membership values of table
time

Time Membership value

5 h 0.40

6 h 0.50

8 h 0.70

10 h 0.90

Table 5.8 Workers knowing
the work type

Workers Membership value

3 0.40

4 0.60

5 0.80

6 0.90

Fig. 5.19 3-polar fuzzy
hypergraph
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Table 5.9 Alteration of duties

Workers A(ai , a j ) S(ai , a j )

a1, a2 (0.7, 0.8, 0.8) 0.77

a1, a3 (0.7, 0.9, 0.8) 0.80

a2, a3 (0.5, 0.7, 0.7) 0.63

a3, a4 (0.7, 0.6, 0.8) 0.70

a3, a5 (0.7, 0.9, 0.8) 0.80

a4, a5 (0.9, 0.9, 0.9) 0.90

a5, a6 (0.7, 0.8, 0.8) 0.77

a5, a1 (0.5, 0.6, 0.7) 0.60

a1, a6 (0.6, 0.8, 0.5) 0.63
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Algorithm 5.3.2 Calculation of alteration of duties

1. Input the n number of employees a1, a2, . . . , an .
2. Input the number of edges E1, E2, . . . , Er .
3. Input the incident matrix Bi j where, 1 ≤ i ≤ n, 1 ≤ j ≤ r .
4. Input the membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1 → n
6. do j from 1 → n
7. do k from 1 → r
8. if ai , a j ∈ Ek then
9. do t from 1 → m
10. Pt ◦ A(ai , a j ) = |Pt ◦ Bik − Pt ◦ Bjk | + Pt ◦ ξk
11. end do
12. end if
13. end do
14. end do
15. end do
16. do i from 1 → n
17. do j from 1 → n
18. if A(ai , a j ) > 0 then

19. S(ai , a j ) = P1 ◦ A(ai , a j ) + P2 ◦ A(ai , a j ) + . . . + Pm ◦ A(ai , a j )

m
20. end if
21. end do
22. end do

Description of Algorithm 5.3.2: Lines 1, 2, 3 and 4 passes the input of member-
ship values of vertices, hyperedges and an m-polar fuzzy adjacency matrix Bi j . The
nested loops on lines 5 to 15 calculate the r th, 1 ≤ r ≤ m, strength of allocation and
alteration of duties between each pair of employees. The nested loops on lines 16 to
22 calculate the strength of allocation and alteration of duties between each pair of
employees. The net time complexity of the algorithm is O(n2rm).

5.3.3 Availability of Books in Library

A library in college is a collection of sources of information and similar resources,
made accessible to student community for reference and examination preparation.
A student preparing for some examination will use the knowledge sources such as
1. Prescribed textbooks (A)
2. Reference books in syllabus (B)
3. Other books from library (C)
4. Knowledgeable study materials (D)
5. E-gadgets and internet (E)
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Fig. 5.20 3-polar fuzzy
hypergraph
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Table 5.10 Library sources

Sources si T (si ) S(ai , a j )

A (1.7, 1.7, 1.4) 1.60

B (1.6, 1.6, 1.1) 1.43

E (1.6, 1.6, 1.0) 1.40

C (0.9, 1.2, 1.0) 1.03

D (0.8, 1.2, 1.0) 1.0

The important thing is to consider the maximum availability of the sources which
students mostly use. This phenomenon can be discussed using m-polar fuzzy hyper-
graphs. We now calculate the importance of each source in student community.

Consider the example of five library resources {A, B,C, D, E} in a college. We
represent these sources as vertices in a 3-polar fuzzy hypergraph. The degree of
membership of each vertex represents the percentage of students using a particular
source for exam preparation, percentage of faculty of members using the sources
and number of sources available. The degree of membership of each edge represents
the common percentage. The 3-polar fuzzy hypergraph is shown in Fig. 5.20. Using
Algorithm 5.3.3, the strength of each library source is given in Table5.10.

Column 3 in Table5.10 shows that sources A and B are mostly used by students
and faculty. Therefore, these should be available in maximum number. There is also
a need to confirm the availability of source E to students and faculty. The method for
the calculation of percentage importance of the sources is given in Algorithm 5.3.3
whose net time complexity is O(nrm).
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Algorithm 5.3.3 Calculation of percentage importance of the sources

1. Input the n number of sources s1, s2, . . . , sn .
2. Input the number of edges E1, E2, . . . , Er .
3. Input the incident matrix Bi j , where 1 ≤ i ≤ n, 1 ≤ j ≤ r .
4. Input the membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1 → n
6. A(si ) = 1
7. C(si ) = 1
8. do k from 1 → r
9. if si ∈ Ek then
10. A(si ) = sup{A(si ), ξk}
11. C(si ) = inf{C(si ), Bik}
12. end if
13. end do
14. T (si ) = C(si ) + A(si )
15. end do
16. do i from 1 → n
17. if T (si ) > 0 then

18. S(si ) = P1 ◦ T (si ) + P2 ◦ T (si ) + . . . + Pm ◦ T (si )

m
19. end if
20. end do

Description of Algorithm 5.3.3: Lines 1, 2, 3, and 4 passes the input of membership
values of vertices, hyperedges and anm-polar fuzzy adjacencymatrix Bi j . The nested
loops on lines 5 to 15 calculate the degree of usage and availability of library sources.
The nested loops on lines 16–20 calculate the strength of each library source.

5.3.4 Selection of a Pair of Good Team for Competition

Competition grants the inspiration to achieve a goal; to demonstrate determination,
creativity, and perseverance to overcomechallenges; and to understand that hardwork
and commitment leads to a greater chance of success. It is inarguably accepted that a
bit of healthy competition in any field is known to enhance motivation and generate
increased effort from those competing. The sporting field is no exception to this rule.
While there will always be varying levels of sporting talent and interest across any
group of people, the benefits that competitive sport provides are still accessible to
all. There is a role for both competitive and noncompetitive sporting pursuits. To get
success in any competition, a strong team can be held largely accountable for the
success.

The purpose of this application is to select a pair of good player team for com-
petition with other country. For example, we have three teams of players (three
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Table 5.11 3-polar subsets of teams

Players Self confidence Strong sense of
motivation

Adaptability

Adnan 0.5 0.6 0.5

Usman 0.6 0.4 0.8

Awais 0.5 0.8 0.9

Hamza 0.7 0.7 0.6

Waseem 0.3 0.7 0.4

Usama 0.4 0.2 0.3

Iqbal 0.5 0.5 0.5

Noman 0.3 0.6 0.6

Arshad 0.4 0.3 0.7

Saeed 0.4 0.2 0.9

Nawab 0.7 0.5 0.6

Haris 0.6 0.6 0.5

3-polar fuzzy hypergraphs) and we have to select only one pair of team for com-
petition with other country. Then to select it, we use union operation of m-polar
fuzzy hypergraphs. Hypergraph is used because there is a link in one teammore than
two players and m-polar represents different qualities of players and teams. Con-
sider three teams, team 1 consists of players {Adnan,Usman, Hamza, Awais}.
Team 2 consists of players {Waseem,Usama, I qbal, Noman}. Team 3 consists of
players {Arshad, Saeed, Nawab, Haris}. The 3-polar fuzzy set of players repre-
sent the three different qualities of each player, i.e., self confidence, strong sense of
motivation, adaptability. 3-polar fuzzy hyperedges represent the three characteristics
of a good team. First membership degree of 3-polar fuzzy hyperedges represents
the focus of team on goals, second represents the communication with each other,
third represents how much team is organized. We want to select a pair of good team
which qualify these three properties with maximum membership degrees values
(Tables5.11 and 5.12).

Let A = {(Adnan, 0.5, 0.6, 0.5), (Usman, 0.6, 0.4, 0.8), (Awais, 0.5, 0.8, 0.9),
(Hamza, 0.7, 0.7, 0.6),

(Waseem, 0.3, 0.7, 0.4), (Usama, 0.4, 0.2, 0.3), (I qbal, 0.5, 0.5, 0.5),
(Noman, 0.3, 0.6, 0.6),

(Arshad, 0.4, 0.3, 0.7), (Saeed, 0.4, 0.2, 0.9), (Nawab, 0.7, 0.5, 0.6), (Haris,
0.6, 0.6, 0.5)} be a 3-polar fuzzy set of players and B = {(T eam 1, 0.5, 0.4, 0.5),
(T eam 2, 0.3, 0.2, 0.3), (T eam 3, 0.4, 0.2, 0.6)} is a set of 3-polar fuzzy hyper-
edges.

We select that pair of team whose union is strong, i.e., we select that union
whose edges have maximum membership degrees. It represents the focus of teams
on goals, second represents the communication with each other of both teams, and
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Table 5.12 3-polar fuzzy qualities of teams

Teams Focus on goals Communication skills Organization

1 0.5 0.4 0.5

2 0.3 0.2 0.3

3 0.4 0.2 0.6

Fig. 5.21 3-polar fuzzy
hypergraph H1
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Fig. 5.24 H1 ∪ H2
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third represents how much team is organized. So, we select the pair of team 1 and
team 3 (Figs. 5.21, 5.22, 5.23, 5.24, 5.25 and 5.26).

We present our proposed method in Algorithm 5.3.4.

Algorithm 5.3.4 Selection of team for competition

Step 1: Input
The set of players.
Assign the membership values to each player.
Select the players of each team.

Step 2: Compute the membership values of each team(edges) by using the relation
B(Ei ) = B({x1, x2, . . . , xr }) ≤ inf{ζi (x1), ζi (x2), . . . , ζi (xs)}, for all x1,
x2, . . . , xs ∈ X .

Step 3: Compute union of teams.
Compute their union by using the relation

(i) Pi ◦ (A1 ∪ A2)(v) =
⎧
⎨

⎩

Pi ◦ A1(v) i f v ∈ X1 − X2,

Pi ◦ A2(v) i f v ∈ X2 − X1,

sup{Pi ◦ A1(v), Pi ◦ A2(v)} i f v ∈ X1 ∩ X2.

(ii) Pi ◦ (B1 ∪ B2)(e) =
⎧
⎨

⎩

Pi ◦ B1(e) i f e ∈ E1 − E2,

Pi ◦ B2(e) i f e ∈ E2 − E1,

sup{Pi ◦ B1(e), Pi ◦ B2(e)} i f e ∈ E1 ∩ E2.

Step 4: Output
Select that pair of team for competition for which edges of union have maximum
membership degree.

5.4 m-Polar Fuzzy Directed Hypergraphs

Definition 5.23 A directed hypergraph is a hypergraph with directed hyperedges. A
directed hyperedge or hyperarc is an ordered pair E = (X,Y ) of (possibly empty)
disjoint subsets of vertices. X is the tail of E , while Y is its head. A sequence of
crisp hypergraphs Hi = (Vi , Ei ), 1 ≤ i ≤ n, is said to ordered if H1 ⊂ H2 ⊂ ..., Hn .
The sequence {Hi | 1 ≤ i ≤ n} is said to be simply ordered if it is ordered, and if
whenever E ⊂ Ei+1\Ei , then E � Vi .

We now define an m-polar fuzzy directed hypergraph.

Definition 5.24 An m-polar fuzzy directed hypergraph with underlying set X is an
ordered pair H = (σ, ε), where σ is non-empty set of vertices and ε is a family of
m-polar fuzzy (m-polar fuzzy) directed hyperarcs (or hyperedges). Anm-polar fuzzy
directed hyperarc (or hyperedge) ei ∈ ε is an ordered pair (t (ei ), h(ei )), such that,
t (ei ) �= ∅, is called its tail andh(ei ) �= t (ei ) is its head, such that Pkoεi ({v1, v2, ..., vs})
≤ inf{Pkoσi (v1), Pkoσi (v2), ..., Pkoσi (vs)}, for all v1, v2, ..., vs ∈ V, 1 ≤ k ≤ m.
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v1(o.1,0.2,0.3)
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(0.1,0.1,0.2)

Fig. 5.27 3-polar fuzzy directed hypergraph

Definition 5.25 Let H = (σ, ε) be anm-polar fuzzy directed hypergraph. The order
of H , denoted by O(H), is defined as O(H) = ∑

x∈V ∧σi (x).The size of H , denoted
by S(H), is defined by S(H) = ∑

ek⊂V ε(ek).
In anm-polar fuzzydirected hypergraph, the vertices vi and v j are adjacent vertices

if they both belong to the samem-polar fuzzy directed hyperedge. Twom-polar fuzzy
directed hyperedges ei and e j are called adjacent if they have non-empty intersection.
That is, supp(ei ) ∩ supp(e j ) �= ∅, i �= j .

Definition 5.26 An m-polar fuzzy directed hypergraph H = (σ, ε) is simple if it
contains no repeated directed hyperedges, i.e., if e j , ek ∈ ε and e j ⊆ ek then e j =
ek . An m-polar fuzzy directed hypergraph H = (σ, ε) is called support simple if
e j , ek ∈ ε and supp(e j ) = supp(ek) and e j ⊆ ek , then e j = ek . An m-polar fuzzy
directed hypergraph, H = (σ, ε) is called strongly support simple if e j , ek ∈ ε and
supp(e j ) = supp(ek), then e j = ek .

Example 5.17 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε), such that
σ = {σ1, σ2, σ3, σ4, σ5} is the family of 3-polar fuzzy subsets on X = {v1, v2, v3,
v4, v5, v6}, as shown in Fig. 5.27, such that

σ1 = {(v1, 0.1, 0.2, 0.3), (v2, 0.3., 0.4, 0.4), (v3, 0.1, 0.3, 0.4)},
σ2 = {(v5, 0.4, 0.3, 0.3), (v6, 0.2, 0.2, 0.3), (v7, 0.1, 0.1, 0.4)},
σ3 = {(v3, 0.1, 0.3, 0.4), (v4, 0.4, 0.3, 0.2), (v7, 0.1, 0.1, 0.4)}.
3-polar fuzzy relation ε is defined as, ε(v1, v2, v7) = (0.1, 0.1, 0.3), ε(v5, v6, v7)

= (0.1, 0.1, 0.3), ε(v3, v4, v7) = (0.1, 0.1, 0.2).
Clearly, H is simple, strongly support simple, and support simple, that is, it con-

tains no repeated directed hyperedges and if whenever e j , ek ∈ ε and supp(e j ) =
supp(ek), then e j = ek . Further,O(H) = (1.6, 1.8, 2.3) and S(H) = (0.3, 0.3, 0.8).
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Fig. 5.28 Regular 3-polar
fuzzy hypergraph

v1(
0.2

,0.3
,0.5

)

v2(0.3,0.3,0.5)

v3 (0.2,0.3,0.5)

v 4
(0
.2
,0
.3
,0
.5
)

v5(0.2,0.3,0.5)

v6 (0.2,0.3,0.5)

(0.2,0.3,0.5)

(0
.2
,0
.3
,0
.5
)(0.2,0.3,0.5)

(0.2,0.3,0.5)

Definition 5.27 Let ε = (ε−, ε+) be a directed m-polar fuzzy hyperedge in an m-
polar fuzzy directed hypergraph. Then, the vertex set ε− is called them-polar fuzzy in-
set and the vertex set ε+ is called them-polar fuzzy out-set of the directed hyperedge
ε. It is not necessary that the sets ε−, ε+ will be disjoint. The hyperedge ε is called
the join of the vertices of ε− and ε+.

Definition 5.28 The in-degree D−
H (v) of a vertex v in an m-polar fuzzy directed

hypergraph is defined as the sum of membership degrees of all those directed hyper-
edges such that v is contained in their out-set, that is,

D−
H (v) =

∑

v∈h(ei )

ε(ei ), 1 ≤ k ≤ m.

The out-degree D+
H (v) of a vertex v in an m-polar fuzzy directed hypergraph is

defined as the sum of membership degrees of all those directed hyperedges such that
v is contained in their in-set, that is,

D+
H (v) =

∑

v∈t (ei )
ε(ei ), 1 ≤ k ≤ m.

Definition 5.29 An m-polar fuzzy directed hypergraph H = (σ, ε) is said to be k-
regular if in-degrees and out-degrees of all vertices in H are same.

Example 5.18 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε) as shown
in Fig. 5.28, where σ = {σ1, σ2, σ3, σ4} is the family of 3-polar fuzzy subsets on
V = {v1, v2, v3, v4, v5, v6} and

σ1 = {(v1, 0.2, 0.3, 0.5),(v2, 0.2, 0.3, 0.5),(v4, 0.2, 0.3, 0.5)},
σ2 = {(v4, 0.2, 0.3, 0.5),(v5, 0.2, 0.3, 0.5),(v6, 0.2, 0.3, 0.5)},
σ3 = {(v3, 0.2, 0.3, 0.5),(v5, 0.2, 0.3, 0.5),(v6, 0.2, 0.3, 0.5)},
σ4 = {(v1, 0.2, 0.3, 0.5),(v2, 0.2, 0.3, 0.5),(v3, 0.2, 0.3, 0.5)}. By routine calcu-

lations, we see that the 3-polar fuzzy directed hypergraph is regular.
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Fig. 5.29 Directed
hyperpath (denoted by a
thick line)

v1

v2

v3
v4

v5

v6

v8

v7

v9

Note that, D−
H (v1) = (0.2, 0.3, 0.5) = D+

H (v1) and D−
H (v2) = (0.2, 0.3, 0.5) =

D+
H (v2). Similarly, D−

H (v3) = D+
H (v3), D−

H (v4) = D+
H (v4), D−

H (v5) = D+
H (v5).

Hence, H is regular 3-polar fuzzy directed hypergraph.

Definition 5.30 Anm-polar fuzzy directed hyperpath of length k in anm-polar fuzzy
directed hypergraph is defined as a sequence v1, e1, v2, e2, . . . , ek, vk+1 of distinct
vertices and directed hyperedges such that

1. ε(ei ) > 0, i = 1, 2, ..., k,
2. vi , vi+1 ∈ ei .

The consecutive pairs (vi , vi+1) are called the directed arcs of the directed hyperpath.
The path is shown by a thick line in Fig. 5.29.

Definition 5.31 The incidencematrix of anm-polar fuzzy directed hypergraph H =
(σ, ε) is characterized by an n × m matrix [ai j ] as follows:

ai j =
{
Pkoε j (vi ), if vi ∈ ε j ,

0, otherwise.

Definition 5.32 Anm-polar fuzzydirectedhypergraph is called elementary if Pkoεi j :
V −→ [0, 1]m are constant functions, Pkoεi j is taken as the membership degree of
vertex i to hyperedge j .

Proposition 5.1 In an m-polar fuzzy directed hypergraph, when m-polar fuzzy ver-
tices have constant membership degrees, then m-polar fuzzy directed hyperedges are
elementary.

Example 5.19 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε), where σ =
{σ1, σ2, σ3} be the family of 3-polar fuzzy subsets on V = {v1, v2, v3, v4, v5}. The
corresponding incidence matrix is given in Table5.13.

The corresponding elementary 3-polar fuzzy directed hypergraph is shown in
Fig. 5.30.
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Table 5.13 Elementary 3-polar fuzzy directed hypergraph

I ε1 ε2 ε3

v1 (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3)

v2 (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3)

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0

v4 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)

v5 0 (0.1, 0.2, 0.3) 0

v5(0.1,0.2,0.3)

v2(0.1,0.2,0.3)

v3(0.1,0.2,0.3)

v4 (0.1,0.2,0.3)

v1(0.1,0.2,0.3)

(0.1,0.2,0.3)

(0.1,0.2,0.3)

(0.1,0.2,0.3)

Fig. 5.30 Elementary 3-polar fuzzy directed hypergraph

Definition 5.33 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph. Suppose
μ = (μ1, μ2, ..., μm) ∈ [0, 1]m . The μ-level is defined as εμ = {v ∈ σ | Pkoσ(v) ≥
μk}. The crisp directed hypergraph Hμ = (σμ, εμ), such that

• εμ = {v ∈ σ | Pkoσ(v) ≥ μk}, 1 ≤ k ≤ m.

• σμ = ⋃
εμ,

is called the μ-level directed hypergraph of H .

Definition 5.34 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
Hμi = (σμi , εμi ) be the μi -level directed hypergraphs of H . The sequence {μ1,μ2,

μ3, ...,μn} of m-tuples, where μ1 > μ2 > ...μn > 0 and μn = h(H)(height of m-
polar fuzzy directed hypergraph), such that the following properties,

1. if μi+1 < α ≤ μi , then εα = εμi ,
2. εμi � εμi+1 ,

are satisfied, is called a fundamental sequence of H . The sequence is denoted by
FS(H). The μi -level hypergraphs {Hμ1, Hμ2 , ..., Hμn} are called the core hyper-
graphs of H . This is also called core set of H and is denoted by c(H).
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Table 5.14 3-polar fuzzy directed hypergraph

I ε1 ε2 ε3

v1 (0.8, 0.6, 0.1) 0 0

v2 (0.8, 0.6, 0.5) (0.6, 0.4, 0.3) (0.5, 0.3, 0.2)

v3 (0.8, 0.6, 0.5) (0.6, 0.4, 0.3) (0.5, 0.3, 0.2)

v4 0 (0.6, 0.4, 0.1) 0

v5 0 0 (0.5, 0.3, 0.2)

v6 0 0 (0.5, 0.3, 0.2)

Fig. 5.31 3-polar fuzzy
directed hypergraph
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Definition 5.35 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
FS(H) = {μ1, μ2, μ3, ..., μn}. If for each e ∈ ε and each μi ∈ FS(H), eμ = εμi ,
for all μ ∈ (μi+1, μi ], then H is called sectionally elementary.

Definition 5.36 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph and
c(H) = {Hμ1, Hμ2 , ..., Hμn}. H is said to be ordered if c(H) is ordered. That is,
Hμ1 ⊂ Hμ2 ⊂ ... ⊂ Hμn . The m-polar fuzzy directed hypergraph is called simply
ordered if the sequence {Hμ1 , Hμ2 , ..., Hμn} is simply ordered.

Example 5.20 Consider a 3-polar fuzzy directed hypergraph H = (σ, ε) as shown
in Fig. 5.31 and given by incidence matrix in Table5.14.

By computing the μi -level 3-polar fuzzy directed hypergraphs of H , we have
ε(0.8,0.6,0.5) = {v2, v3}, ε(0.6,0.4,0.3) = {v2, v3} and ε(0.5,0.3,0.2) = {v2, v3, v5, v6}. Note
that, H(0.8,0.6,0.5) = H(0.6,0.4,0.3) and H(0.8,0.6,0.5) ⊆ H(0.5,0.3,0.2). The fundamental
sequence is FS(H) = {(0.8, 0.6, 0.5), (0.5, 0.3, 0.2)}. Furthermore, H(0.8,0.6,0.5) �=
H(0.6,0.4,0.3). H is not sectionally elementary since ε2(μ) �= ε2(0.8,0.6,0.5) for μ =
(0.6, 0.4, 0.3). The 3-polar fuzzy directed hypergraph is ordered, and the set of core
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Fig. 5.32 H induced fundamental sequence

Table 5.15 Index matrix of an m-polar fuzzy hypergraph

I t1 t2 . . . tn

t1 ε(t1t1) ε(t1t2) . . . ε(t1tn)

t2 ε(t2t1) ε(t2t2) . . . ε(t2tn)

. . . . .

. . . . .

. . . . .

tn ε(tn t1) ε(tn t2) . . . ε(tn tn)

hypergraphs is c(H) = {H1 = H(0.8,0.6,0.5), H2 = H(0.5,0.3,0.2)}. The induced funda-
mental sequence of H is given in Fig. 5.32 (Table5.15).

Proposition 5.2 Let H = (σ, ε) be an m-polar fuzzy directed hypergraph, the fol-
lowing conditions hold

(a) If H = (σ, ε) is an elementary m-polar fuzzy directed hypergraph, then H is
ordered.

(b) If H is an ordered m-polar fuzzy directed hypergraph with c(H) = {Hμ1 ,

Hμ2 , ..., Hμn} and if Hμn is simple, then H is elementary.

Definition 5.37 Let H = (σ, ε) be anm-polar fuzzy directed hypergraph. The index
matrix of H is defined by

Now we present certain operations on m-polar fuzzy directed hypergraphs.
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Fig. 5.33 3-polar fuzzy
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Fig. 5.34 3-polar fuzzy
directed hypergraph H2
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Definition 5.38 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The addition of two m-polar fuzzy directed hypergraphs over a fixed
set X is denoted by H1 � H2 = (σ1 ∪ σ2, ε1 ∪ ε2) and defined as

Pko(σ1 ∪ σ2)(vr ) =

⎧
⎪⎪⎨

⎪⎪⎩

Pkoσ1(vr ), if vr ∈ σ1 \ σ2,

Pkoσ2(vr ), if vr ∈ σ2 \ σ1,

sup{Pkoσ1(vr ), Pkoσ2(vr )}, if vr ∈ σ1 ∩ σ2,

0, otherwise.

(5.1)

Pko(ε1 ∪ ε2)(ers)=

⎧
⎪⎪⎨

⎪⎪⎩

Pkoε1(ei j ), if vr = vi ∈ σ1 and vs = v j ∈ σ1 \ σ2,

Pkoε2(epq), if vr = vp ∈ σ2 and vs = vq ∈ σ2 \ σ1,

sup{Pkoε1(ei j ), Pkoε2(epq )}, if vr = vi = vp ∈ σ1 ∩ σ2, vs = v j = vq ∈ σ1 ∩ σ2,

0, otherwise.
(5.2)

Example 5.21 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs, where σ1 = {v1, v2, ..., v5}, ε1 = {({v1, v2}, v3), ({v1, v4}, v5), {{v2},
v5} and σ2 = {v1, v2, ..., v6}, ε2 = {({v1, v2}, v5), ({v4, v6}, v3), {{v1, v4}, v6} as
shown in Figs. 5.33 and 5.34, respectively.

The index matrix of H1 is given in Table5.16, where σ1 = {v1, v2, ..., v5}.
The index matrix of H2 is given in Table5.17, where σ2 = {v1, v2, ..., v6}.
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Table 5.16 Index matrix of H1

I v1 v2 v3 v4 v5

v1 0 0 0 0 0

v2 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 0 0

v4 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.2, 0.3, 0.2) 0 (0.1, 0.2, 0.2) 0

Table 5.17 Index matrix of H2

I v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) 0 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0

Table 5.18 Index matrix of H1 � H2

H1 � H2 v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) 0 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0

The index matrix of H1 � H2 is given in Table5.18, where σ1 ∪ σ2 = {v1, v2, ...,
v6}. The corresponding hypergraph is shown in Fig. 5.35.

Definition 5.39 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The vertex-wise multiplication of two m-polar fuzzy directed hyper-
graphs over a fixed set V is denoted by H1 ⊗ H2 = (σ1 ⊗ σ2, ε1 ⊗ ε2) and defined
as

Pko(σ1 ⊗ σ2) = inf{Pkoσ1(vr ), Pkoσ2(vr )} if vr ∈ σ1 ∩ σ2, (5.3)

Pko(ε1 ⊗ ε2)(ers)

= inf{Pkoε1(ei j ), Pkoσ2(epq )} if vr = vi = vp ∈ σ1 ∩ σ2, vs = v j = vq ∈ σ1 ∩ σ2. (5.4)
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Fig. 5.35 H1 � H2
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Table 5.19 Index matrix of H1 ⊗ H2

H1 ⊗ H2 v1 v2 v3 v4 v5

v1 0 0 0 0 0

v2 0 0 0 0 0

v3 0 0 0 0 0

v4 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.1, 0.2, 0.3) 0 0 0

Fig. 5.36 H1 ⊗ H2
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Example 5.22 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs as shown in Figs. 5.33 and 5.34, respectively. The index matrix of H1 ⊗
H2 is shown in Table5.19, where σ1 ∩ σ2 = {v1, v2, ..., v5}.

The graph of H1 ⊗ H2 is shown in the Fig. 5.36.

Definition 5.40 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The structural subtraction of two m-polar fuzzy directed hypergraphs
over a fixed set V is denoted by H1 � H2 = (σ2 − σ1, ε2 − ε1) and defined as
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Table 5.20 Index matrix of
H1 � H2

H1 � H2 v6

v6 0

Fig. 5.37 H1 � H2 v6(0.1,0.3,0.3)

Pko(σ2 − σ1)(vr ) =
⎧
⎨

⎩

Pkoσ1(vr ), if vr ∈ σ1,

Pkoσ2(vr ), if vr ∈ σ2,

0, otherwise.
(5.5)

Pko(ε2 − ε1)(ers) = Pkoε1(ei j ) if vr = vi ∈ σ2 − σ1 and vs = v j ∈ σ2 − σ1. (5.6)

The graph H1 � H2 is empty when σ2 − σ1 = ∅.
Example 5.23 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be two 3-polar fuzzy directed
hypergraphs as shown in Figs. 5.33 and 5.34, respectively. The index matrix of H1 �
H2 is shown in Table5.20, where σ2 − σ1 = {v6}.

The graph H1 � H2 is shown in the following Fig. 5.37

Definition 5.41 Let H1 = (σ1, ε1) and H2 = (σ2, ε2) be twom-polar fuzzy directed
hypergraphs. The multiplication of two m-polar fuzzy directed hypergraphs H1 and
H2, denoted by H1 � H2 = (σ1 � σ2, ε1 � ε2) is defined as

Pko(σ1 � σ2)(vr ) =
⎧
⎨

⎩

Pkoσ1(vr ), if vr ∈ σ1,

Pkoσ2(vr ), if vr ∈ σ2,

inf{Pkoσ1(vr ), Pkoσ2(vr )}, if vr ∈ σ1 ∩ σ2.

(5.7)

Pko(ε1 � ε2)(ers)

=

⎧
⎪⎨

⎪⎩

Pkoε1(ei j ), if vr = vi ∈ σ1 and vs = v j ∈ σ1 \ σ2,

Pkoε2(epq ), if vr = vp ∈ σ2 and vs = vq ∈ σ2 \ σ1,

sup
i,q

{inf
j,p

{Pkoε1(ei j ), Pkoε2(epq )}}, if vr = vi ∈ σ1 ∩ σ2 and vs = vq ∈ σ1 ∩ σ2.
(5.8)

Table 5.21 Index matrix of H1 � H2

H1 � H2 v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0

v2 0 0 0 0 0 0

v3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0 (0.1, 0.2, 0.3) 0 (0.1, 0.1, 0.3)

v4 0 0 0 0 0 0

v5 (0.1, 0.2, 0.2) (0.1, 0.2, 0.2) 0 (0.1, 0.2, 0.2) 0 0

v6 (0.1, 0.3, 0.3) 0 0 (0.1, 0.3, 0.3) 0 0
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v 1
(0.
1,0

.2,
0.4
)

v2(0.1,0.2,0.3)

v3(0.2,0.1,0.3)

v4(0.2,0.3,0.3)

v5(0.3,0.3,0.2)

v6(0.1,0.3,0.3)

(0.1,0.3,0.3)

(0.1,0.1,0.3)

(0.1,0.2,0.3)

(0.1,0.2,0.2)

Fig. 5.38 H1 � H2

Example 5.24 The index matrix of graph H1 � H2 is shown in Table5.21, where
σ2 ∪ (σ1 − σ2) = {v1, v2, v3, ..., v6} is given in Table5.20.

The corresponding hypergraph is shown in Fig. 5.38.

5.5 Application of m-Polar Fuzzy Directed Hypergraphs

Decision-making is regarded as the intellectual process resulting in the selection of
a belief or a course of action among several alternative possibilities. Every decision-
making process produces a final choice, which may or may not prompt action.
Decision-making is the process of identifying and choosing alternatives based on the
values, preferences, and beliefs of the decision-maker. Problems in almost every cred-
ible discipline, including decision-making can be handled using graphical
models.

5.5.1 Business Strategy Company

A business strategy is a registered plan on how an organization is setting out to fulfill
their ambitions. A business strategy has a variety of successful key of principles that
sketch how a company will go about achieving their dreams in business. It deals with
competitors, look at their needs and expectations of customers and will examine the
long-term growth and sustainability of their organization.
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Investor 1

Investor 2

Investor 3

Investor 4

Investor 5

Investor 6

Company A
Company B

Company C

Company D

Company E

(0.3,0.4,0.3)

(0.2,0.3,0.2)

(0.5,0.5,0.5)

(0.5,0.4,0.6)

(0.6,0.5,0.6)

(0.5,0.5,0.6)

(0.5,0.4,0.4)

(0.4,0.5,0.4)

(0.5,0.6,0.5)

(0.
3,0
.4,
0.2
)

(0.3,0.2,0.3)

Fig. 5.39 3-polar fuzzy directed hypergraph model

Table 5.22 Collective interest of investors toward companies

Business strategy company Positive effects of investors

Company A (0.5, 0.4, 0.6)

Company B (0.5, 0.4, 0.5)

Company C (0.5, 0.5, 0.6)

Company D (0.2, 0.3, 0.2)

Company E (0.3, 0.4, 0.3)

In this fast running world where every investor is searching out a best business
strategy company so that they invest their money on the company to promote the
business and to compete their competitors. Then to select a good marketing business
companywhichwill achieve its goals,meet the expectations and sustain a competitive
advantage in the marketplace, we develop a 3-polar fuzzy directed hypergraphical
model that how an investor can choice the greatest salubrious company to promote
the business by following a step by step procedure. A 3-polar fuzzy directed hyper-
graph demonstrating a group of investors as members of different business strategy
companies is shown in Fig. 5.39.

If an investor wants to adopt the most suitable and powerful business company to
which he works and get the progress in business, the following procedure can help
the investors. Firstly, one should think about the cooperative contribution of investors
toward the company, which can be found out by means of membership values of 3-
polar fuzzy directed hypergraphs. The membership values given in Table5.22 shows
the collective interest of investors toward the company.
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Table 5.23 Benefits of company on the investors

Business strategy company Effects of company on investors

Company A (0.5, 0.4, 0.4)

Company B (0.4, 0.5, 0.4)

Company C (0.5, 0.6, 0.5)

Company D (0.3, 0.4, 0.2)

Company E (0.3, 0.2, 0.3)

Table 5.24 In-degrees and out-degrees of companies

Business strategy company In-degrees out-degrees

Company A (0.5, 0.4, 0.4) (0.5, 0.7, 0.5)

Company B (0.4, 0.4, 0.4) (0.2, 0.3, 0.2)

Company C (0.5, 0.5, 0.5) (0, 0, 0)

Company D (0.2, 0.3, 0.2) (0.3, 0.4, 0.3)

Company E (0.3, 0.2, 0.3) (0.6, 0.4, 0.6)

The first membership value showing how much investors invest money on com-
pany, second showing the sharp-minded quality of investors to run the business and
third showing how can strongly they make production by working with company. It
can be noticed that the company C has strong collective interest in investors which
is maximum among all other companies. Secondly, one should do his research on
the powerful impacts of all under consideration companies on their investors. The
membership degrees of all company nodes show their effects on their investors as
given in Table5.23.

The membership values showing three different positive effects of company on
investor, first one shows how much a company is financially strong already, sec-
ond showing its business growth in the market, and third one showing the strong
competitive position of company. Note that, company C has the most benefits for
investors. Thirdly, an investor can observe the influence of a company by calculating
its in-degrees and out-degrees. In-degrees show the percentage of investors joining
the company and out-degrees show the percentage of investors leaving that com-
pany. The in-degrees and out-degrees of all business strategy companies are given in
Table5.24.

Hence, a best business strategy company has maximum in-degrees and minimum
out-degrees.However, in casewhen twocompanies have sameminimumout-degrees,
then we compare their in-degrees. Similarly, when in-degrees same, we compare
out-degrees. From all the above discussion, we conclude that company C is the most
appropriate company to fulfill the requirements of the investors because it is more
financially strong, best in competitive position and business growth of this company
is more suitable to run the business and compete with the competitors. Themethod of
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searching out the constructive and profitable business strategy company is explained
in the following Algorithm 5.5.1.

Algorithm 5.5.1 To find out the constructive and profitable business strategy com-
pany
1. Input the membership values of all nodes(investors) v1, v2, ..., vn .
2. Determine the augmentation of investors toward companies by calculating the
membership values of all directed hyperedges as

Pkoεr ≤ inf{Pkov1, Pkov2, ..., Pkovn}, 1 ≤ k ≤ m.

3. Obtain the most suitable company as

sup Pkoεr .

4. Find the company having strong and more benefits for investors as,

sup Pkovr ,

where all vr here are vertices represent the different business strategy company.
5. Find the profitable influence of companies vr on the investors by calculating the
in-degrees D−(vr ) as ∑

vr∈h(εr )

Pkoεr .

6. Find the profitless impact of companies vk on the investors by calculating the
out-degrees D+(vr ) as, ∑

vr∈t (εr )
Pkoεr .

7. Obtain the most advantageous business strategy company as

(sup D−(vr ), inf D
+(vr )).

The algorithm runs linearly and its net time complexity is ©(n), where n is the
number of membership values of all nodes(investors).
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Chapter 6
(Directed) Hypergraphs: q-Rung
Orthopair Fuzzy Models and Beyond

A q-rung orthopair fuzzy set is a powerful tool for depicting fuzziness and uncer-
tainty, as compared to the Pythagorean fuzzy model. In this chapter, we present
concepts including q-rung orthopair fuzzy hypergraphs, (α, β)-level hypergraphs,
and transversals and minimal transversals of q-rung orthopair fuzzy hypergraphs.
We implement some interesting notions of q-rung orthopair fuzzy hypergraphs into
decision-making. We describe additional concepts like q-rung orthopair fuzzy
directed hypergraphs, dual directed hypergraphs, line graphs, and coloring of
q-rung orthopair fuzzy directed hypergraphs. We also apply other interesting notions
of q-rung orthopair fuzzy directed hypergraphs to real life problems. We introduce
complex q-rung orthopair fuzzy graphs, complex Pythagorean fuzzy hypergraphs,
and complex q-rung orthopair fuzzy hypergraphs.We study the transversals andmin-
imal transversals of complex q-rung orthopair fuzzy hypergraphs. We present some
algorithms to construct theminimal transversals and certain related concepts. Finally,
we illustrate a collaboration network model through complex q-rung orthopair fuzzy
hypergraphs to find the author having powerful collaboration skills using score and
choice values. This chapter is basically due to [22–24, 35].

6.1 Introduction

Zadeh [37] proposed the notion of fuzzy sets in his monumental paper in 1965, to
model uncertainty or vague ideas by nominating a degree of membership to each
entity, ranging between 0 and 1. In 1983, intuitionistic fuzzy sets, primarily pro-
posed byAtanassov [14], offeredmany significant advantages in representing human
knowledge by denoting fuzzy membership not only with a single value but pairs of
mutually orthogonal fuzzy sets called orthopairs, which allow the incorporation of
uncertainty. Since intuitionistic fuzzy sets confine the selection of orthopairs to come
only from a triangular region, as shown in Fig. 6.1, Pythagorean fuzzy sets, proposed

© Springer Nature Singapore Pte Ltd. 2020
M. Akram and A. Luqman, Fuzzy Hypergraphs and Related Extensions,
Studies in Fuzziness and Soft Computing 390,
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Fig. 6.1 Spaces of acceptable q-rung orthopairs

by Yager [32], as a new extension of intuitionistic fuzzy sets have emerged as an
efficient tool for conducting uncertainty more properly in human analysis. Although
both intuitionistic fuzzy sets and Pythagorean fuzzy sets make use of orthopairs to
narrate assessment objects, they still have visible differences. The truth-membership
function T : X → [0, 1] and falsity-membership function F : X → [0, 1] of intu-
itionistic fuzzy sets are required to satisfy the constraint condition T (x) + F(x) ≤ 1.
However, these two functions in Pythagorean fuzzy sets are needed to satisfy the con-
dition T (x)2 + F(x)2 ≤ 1,which shows that Pythagorean fuzzy sets have expanded
space to assign orthopairs, as compared to intuitionistic fuzzy sets, displayed in
Fig. 6.1.

A q-rung orthopair fuzzy set, originally proposed by Yager [35] in 2017, is a new
generalization of orthopair fuzzy sets, which further relax the constraint of orthopair
membership grades with T (x)q + F(x)q ≤ 1 (q ≥ 1) [21]. As q increases, it is
easy to see that the representation space of allowable orthopair membership grade
increases. Figure6.1 displays spaces of the most widely acceptable orthopairs for
different q rungs. Ali [12] calculated the area of spaces with admissible orthopairs
up to 10-rungs. Consider an example in the field of economics: in a market structure,
a huge number of firms compete against each other with differentiated products with
respect to branding or quality, which in nature are vague words. Since intuitionistic
fuzzy sets have the capability to explore both aspects of ambiguous words, for exam-
ple, it assigns an orthopair membership grade to “quality”, i.e., support for quality
and support for not-quality of an object with the condition that their sum is bounded
by 1. This constraint clearly limits the selection of orthopairs.

The innovative concept of complex fuzzy sets was initiated by Ramot et al. [28] as
an extension of fuzzy sets. Opposing to a fuzzy characteristic function, the range of
complex fuzzy set’s membership degrees is not restricted to [0, 1], but extends to the
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complex plane with the unit circle. Ramot et al. [29] discussed the union, intersec-
tion, and compliment of complex fuzzy sets with the help of illustrative examples.
To generalize the concepts of intuitionistic fuzzy sets, complex intuitionistic fuzzy
sets were introduced by Alkouri and Salleh [13]. As an extension of Pythagorean
fuzzy sets and complex intuitionistic fuzzy sets, Ullah et al. [31] proposed complex
Pythagorean fuzzy sets and discussed some applications. In complex Pythagorean
fuzzy sets, membership μ = ueiα and nonmembership ν = veiβ can take values in
the unit circle subjected to the constraint μ2 + ν2 ≤ 1. Complex Pythagorean fuzzy
model, containing the phase term, is a more effective tool to capture the vague and
uncertain data of periodic nature than the Pythagorean fuzzy model.

Definition 6.1 A q-rung orthopair fuzzy set Q in the universe X is an object having
the representation

Q = (x, TQ(x), FQ(x)|x ∈ X),

where the function TQ : X → [0, 1] defines the truth-membership and FQ : X →
[0, 1] defines the falsity-membership of the element x ∈ X and for every x ∈ X ,
0 ≤ T q

Q(x) + Fq
Q(x) ≤ 1, q ≥ 1.

Furthermore, πQ(x) = q

√
1 − T q

Q(x) − Fq
Q(x) is called a q-rung orthopair fuzzy

index or indeterminacy degree of x to the set Q.
For convenience, Liu and Wang [21] called the pair (T q

Q(x), Fq
Q(x)) as a q-rung

orthopair fuzzy number, which is denoted as (T q
Q, Fq

Q).

Definition 6.2 A q-rung orthopair fuzzy relation R in X is defined as
R = {x1x2, TR (x1x2), FR (x1x2)|x1, x2 ∈ X × X}, where TR : X × X → [0, 1]
and FR : X × X → [0, 1] represent the truth-membership and falsity-membership
function ofR, respectively, such that 0 ≤ T q

R (x1x2) + Fq
R (x1x2) ≤ 1, for all x1x2 ∈

X × X .

Example 6.1 Let X = {x1, x2, x3} be a non-empty set and R be a subset of
X × X such thatR = {(x1x2, 0.9, 0.7),(x1x3, 0.7, 0.9), (x2x3, 0.6, 0.8)}. Note that,
0 ≤ T 5

R (x1x2) + F5
R (x1x2) ≤ 1, for all x1x2 ∈ X × X . Hence, R is a 5-rung

orthopair fuzzy relation on X .

For further terminologies and studies on Pythagorean fuzzy graphs and q-rung
orthopair fuzzy graphs, readers are referred to [1–11, 15–20, 25–27, 30, 33, 34, 36].

6.2 q-Rung Orthopair Fuzzy Hypergraphs

Definition 6.3 A q-rung orthopair fuzzy graph on a non-empty set X is defined as
an ordered pair G = (V ,E ), where V is a q-rung orthopair fuzzy set on X and E is
a q-rung orthopair fuzzy relation on X such that

TE (x1x2) ≤ min{TV (x1), TV (x2)}, FE (x1x2) ≤ max{FV (x1), FV (x2)},
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and 0 ≤ T q
E (x1x2) + Fq

E (x1x2) ≤ 1, q ≥ 1, for all x1, x2 ∈ X, where TE : X ×
X → [0, 1] and FE : X × X → [0, 1] represent the truth-membership and falsity-
membership degrees of E , respectively.

Remark 6.1

• When q = 1, 1-rung orthopair fuzzy graph is called an intuitionistic fuzzy graph.
• When q = 2, 2-rung orthopair fuzzy graph is called Pythagorean fuzzy graph.

Definition 6.4 The support of a q-rung orthopair fuzzy set Q = (x, TQ(x), FQ(x)|
x ∈ X) is defined as supp(Q) = {x|TQ(x) �= 0, FQ(x) �= 1}.
The height of a q-rung orthopair fuzzy set Q = (x, TQ(x), FQ(x)|x ∈ X) is defined
as h(Q) = (max

x∈X TQ(x),min
x∈X FQ(x)).

If h(Q) = (1, 0), then q-rung orthopair fuzzy set Q is called normal.

Example 6.2 Let Q = {(q1, 1, 0), (q2, 0, 1), (q3, 0.5, 0.6), (q4, 0.6, 0.7), (q5, 0.9,
0.3)} be a 4-rung orthopair fuzzy set on X . Then, the support and height of Q are
given as, supp(Q) = {q1, q3, q4, q5}, h(Q) = (1, 0), respectively. Note that Q is
normal.

Definition 6.5 Let X be a non-empty set. A q-rung orthopair fuzzy hypergraph
H on X is defined in the form of an ordered pair H = (Q, ζ ), where Q =
{Q1,Q2,Q3, . . .Qn} is a finite collection of nontrivial q-rung orthopair fuzzy sub-
sets on X and ζ is a q-rung orthopair fuzzy relation on q-rung orthopair fuzzy sets
Qi ’s such that

1. Tζ (Ek) = Tζ (x1, x2, x3, . . . , xm) ≤ min{Qi (x1),Qi (x2),Qi (x3), . . . ,Qi (xm)},
Fζ (Ek)=Fζ (x1, x2, x3, . . . , xm) ≤ max{Qi (x1),Qi (x2),Qi (x3), . . . ,Qi (xm)},
for all x1, x2, x3, . . ., xm ∈ X ,

2.
⋃
i
supp(Qi ) = X , for allQi ∈ Q.

Definition 6.6 The height of a q-rung orthopair fuzzy hypergraph H = (Q, ζ )

is defined as h(H ) = {max(ζl),min(ζm)}, where ζl = max Tζ j (xi ) and ζm = min
Fζ j (xi ). Here, Tζ j (xi ) and Fζ j (xi ) denote the truth-membership degree and falsity-
membership degree of vertex xi to the hyperedge ζ j , respectively.

Definition 6.7 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. The order
of H , which is denoted by O(H ), and is defined as O(H ) = ∑

x∈X
∧Qi (x). The

size of H , which is denoted by S(H ), and is defined as S(H ) = ∑
x∈X

∨Qi (x).

In a q-rung orthopair fuzzy hypergraph, adjacent vertices xi and x j are the ver-
tices which are the part of the same q-rung orthopair fuzzy hyperedge. Two q-rung
orthopair fuzzy hyperedges ζi and ζ j are said to be adjacent hyperedges if they
possess the non-empty intersection, i.e., supp(ζi ) ∩ supp(ζi ) �= ∅.

We now define the adjacent level between two q-rung orthopair fuzzy vertices
and q-rung orthopair fuzzy hyperedges.
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Definition 6.8 The adjacent level between two vertices xi and x j is denoted by
γ (xi , x j ) and is defined as γ (xi , x j ) = (maxk min[Tk(xi ), Tk(x j )],mink
max[Fk(xi ), Fk(x j )]).

The adjacent level between two hyperedges ζi and ζ j is denoted by σ(ζi , ζ j ) and
is defined as σ(ζi , ζ j ) = (max j min[Tj (x), Tk(x)],min j max[Fj (x), Fk(x)]).
Definition 6.9 A simple q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is defined
as a hypergraph, which has no repeated hyperedges contained in it, i.e., if ζi , ζ j ∈ ζ

and ζi ⊆ ζ j , then ζi = ζ j .
A q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is support simple if ζi , ζ j ∈ ζ ,

supp(ζi ) = supp(ζ j ), and ζi ⊆ ζ j , then ζi = ζ j .
A q-rung orthopair fuzzy hypergraph H = (Q, ζ ) is strongly support simple if

ζi , ζ j ∈ ζ and supp(ζi ) = supp(ζ j ), then ζi = ζ j .

Definition 6.10 Aq-rungorthopair fuzzy setQ : X → [0, 1] is called an elementary
set if TQ and FQ are single-valued on the support of Q.
Aq-rungorthopair fuzzyhypergraphH = (Q, ζ ) is elementary if all it’s hyperedges
are elementary.

Proposition 6.1 A q-rung orthopair fuzzy hypergraphH = (Q, ζ ) is the general-
ization of fuzzy hypergraph and intuitionistic fuzzy hypergraph.

An upper bound on the cardinality of hyperedges of a q-rung orthopair fuzzy hyper-
graph of order n can be achieved by using the following result.

Theorem 6.1 Let H = (Q, ζ ) be a simple q-rung orthopair fuzzy hypergraph of
order n. Then, |ζ | acquires no upper bound.

Proof Let X = {x1, x2}. Define ζN = {Q j , j = 1, 2, 3, . . . , N }, where

TQ j (x1) = 1

1 + j
, FQ j (x1) = 1 − 1

1 + j

and

TQ j (x2) = 1

1 + j
, FQ j (x2) = 1 − 1

1 + j
.

Then,HN = (Q, ζN ) is a simple q-rung orthopair fuzzy hypergraph having N hyper-
edges.

Theorem 6.2 LetH = (Q, ζ ) be an elementary and simple q-rung orthopair fuzzy
hypergraph on a non-empty set X having n elements. Then |ζ | ≤ 2n − 1. The equality
holds if and only if {supp(ζ j )|ζ j ∈ ζ , ζ �= 0} = P(X)\∅.
Proof Since H is elementary and simple then at most one ζi ∈ ζ can have each
nontrivial subset of X as its support, therefore, we have |ζ | ≤ 2n − 1.

To prove that the relation satisfies the equality, consider a set of mappings ζ =
{(TA, FA)|A ⊆ X} such that,
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TA(x) =
{

1
|A| , if x ∈ A,

0, otherwise.
, FA(x) =

{
1

|A| , if x ∈ A,

0, otherwise.

Then each set containing single element has height (1, 1) and the height of the set
having two elements is (0.5, 0.5) and so on. Hence, H is simple and elementary
with |ζ | = 2n − 1.

Definition 6.11 The cut level set of a q-rung orthopair fuzzy set Q is defined to be
a crisp set of the following form, Q(α,β) = {x ∈ X |TQ(x) ≥ α, FQ(x) ≤ β}, where
α, β ∈ [0, 1].
Definition 6.12 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. The
(α, β)-level hypergraph of H is defined as H (α,β) = (Q(α,β), ζ (α,β)), where

1. ζ (α,β) = {ζ (α,β)

i : ζi ∈ ζ } and ζ
(α,β)

i = {x ∈ X |Tζi (x) ≥ α, Fζi (x) ≤ β},
2. Q(α,β) = ⋃

ζi∈ζ

ζ
(α,β)

i .

Example 6.3 LetH = (Q, ζ ) be a 4-rung orthopair fuzzy hypergraph as shown in
Fig. 6.2, where ζ = {ζ1, ζ2, ζ3, ζ4, ζ5}. Incidence matrix of H is given in Table6.1.

By direct calculations, it can be seen that it is a 4-rung orthopair fuzzy hyper-
graph. All the above mentioned concepts can be well explained by considering
this example. Here, h(H ) = {max(ζl),min(ζm)} = (0.6, 0.2). Since, H does not
contain repeated hyperedges, it is simple 4-rung orthopair fuzzy hypergraph. Also,
H is support simple and strongly support simple, i.e., whenever ζi , ζ j ∈ ζ and
supp(ζi ) = supp(ζ j ), then ζi = ζ j . Adjacency level between x1, x2 and between
two hyperedges ζ1, ζ2 is given as follows:

Table 6.1 Incidence matrix of H

I ζ1 ζ2 ζ3 ζ4 ζ5

x1 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0, 1) (0, 1)

x2 (0.2, 0.3) (0, 1) (0, 1) (0, 1) (0, 1)

x3 (0.3, 0.4) (0, 1) (0, 1) (0, 1) (0.3, 0.4)

x4 (0, 1) (0, 1) (0.4, 0.5) (0, 1) (0, 1)

x5 (0, 1) (0.5, 0.6) (0, 1) (0, 1) (0, 1)

x6 (0, 1) (0, 1) (0, 1) (0, 1) (0.5, 0.4)

x7 (0, 1) (0, 1) (0.4, 0.3) (0.4, 0.3) (0, 1)

x8 (0, 1) (0, 1) (0, 1) (0.6, 0.5) (0, 1)

x9 (0, 1) (0, 1) (0, 1) (0.6, 0.7) (0.6, 0.7)
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x1(0
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x5 (0.5,0.6)

x6 (0.5,0.4)

x7(0.4,0.3)
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x 9(
0.6
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ζ1(0.1,0.4)ζ2 (0.1,0.7)ζ
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ζ
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Fig. 6.2 4-rung orthopair fuzzy hypergraph

Fig. 6.3 (0.1, 0.4)-level
hypergraph of H

x1 x2 x3

x4

x5 x6

x7 x8 x9

ζ
(0.1,0.4)
5

ζ (0.1,0.4)
2

ζ(
0.
1,
0.
4)

3

ζ (0.1,0.4)
4

ζ (0.1,0.4)
1

γ (x1, x2) = (max
k

min[Tk(x1), Tk(x2)],min
k

max[Fk(x1), Fk(x2)]), k = 1, 2, 3, 4, 5.

= (0.1, 0.3),

σ (ζ1, ζ2) = (maxmin[T1(x), T2(x)],minmax[F1(x), F2(x)])
= (0.2, 0.6).

For α = 0.1, β = 0.4 ∈ [0, 1], (0.1, 0.4)-level hypergraph of H is H (0.1,0.4) =
(Q(0.1,0.4), ζ (0.1,0.4)), where

ζ (0.1,0.4) = {ζ (0.1,0.4)
1 , ζ

(0.1,0.4)
2 , ζ

(0.1,0.4)
3 , ζ

(0.1,0.4)
4 , ζ

(0.1,0.4)
5 }

= {{x1, x2, x3}, {x5}, {x4}, {x8, x9}, {x3, x6, x9}},
Q(0.1,0.4) = {x1, x2, x3} ∪ {x5} ∪ {x4} ∪ {x8, x9} ∪ {x3, x6, x9}

= {x1, x2, x3, x4, x5, x6, x8, x9}.

Note that, (0.1, 0.4)-level hypergraph ofH is a crisp hypergraph as shown inFig. 6.3.
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Remark 6.2 If α ≥ μ and β ≤ ν and Q is a q-rung orthopair fuzzy set on X , then
Q(α,β) ⊆ Q(μ,ν). Thus, we can have ζ (α,β) ⊆ ζ (μ,ν), for level hypergraphs of H ,
i.e., if a q-rung orthopair fuzzy hypergraph has distinct hyperedges, its (α, β)-level
hyperedges may be same and hence (α, β)-level hypergraphs of a simple q-rung
orthopair fuzzy hypergraphs may have repeated edges.

Definition 6.13 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph and
H (α,β) be the (α, β)-level hypergraph of H . The sequence of real numbers ρ1 =
(Tρ1 , Fρ1), ρ2 = (Tρ2 , Fρ2), ρ3 = (Tρ3 , Fρ3), . . ., ρn = (Tρn , Fρn ), 0 < Tρ1 < Tρ2 <

Tρ3 < · · · < Tρn , Fρ1 > Fρ2 > Fρ3 > · · · > Fρn > 0,where (Tρn , Fρn ) = h(H ) such
that

(i) if ρi−1 = (Tρi−1 , Fρi−1) < ρ = (Tρ, Fρ) ≤ ρi =(Tρi , Fρi ), then ζ ρ = ζ ρi ,

(ii) ζ ρi ⊆ ζ ρi+1 ,

is called the fundamental sequence of H , denoted by fS(H). The set of ρi -level
hypergraphs {H ρ1 ,H ρ2 ,H ρ3 , . . . ,H ρn } is called the core hypergraphs of H or
simply the core set ofH and is denoted by c(H ).

Definition 6.14 A q-rung orthopair fuzzy hypergraphH1 = (Q1, ζ1) is called par-
tial hypergraph of H2 = (Q2, ζ2) if ζ1 ⊆ ζ2 and is denoted as H1 ⊆ H2.

Definition 6.15 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph having
fundamental sequence fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and let ρn+1 = 0, if for all
hyperedges ζk ∈ ζ , k = 1, 2, 3, . . . , n, and for all ρ ∈ (ρi+1, ρi ], we have ζ

ρ

i = ζ
ρi
i

then H is called sectionally elementary.

Theorem 6.3 Let H = (Q, ζ ) be an elementary q-rung orthopair fuzzy hyper-
graph. Then the necessary and sufficient condition for H = (Q, ζ ) to be strongly
support simple is that H is support simple.

Proof Suppose thatH is support simple, elementary and supp(ζi ) = supp(ζ j ), for
ζi , ζ j ∈ ζ . Let h(ζi ) ≤ h(ζ j ). SinceH is elementary, we have ζi ≤ ζ j and sinceH
is support simple, we have ζi = ζ j . Hence, H is strongly support simple. On the
same lines, the converse part may be proved.

Definition 6.16 A q-rung orthopair fuzzy hypergraph H = (Q, ζ ) is said to be a
B = (TB , FB ) tempered q-rung orthopair fuzzy hypergraph if for H = (X, ξ), a
crisp hypergraph, and a q-rung orthopair fuzzy setB = (TB , FB ):X → [0, 1] such
that, ζ = {DA = (TDA , FDA)|A ⊂ X}, where

TDA(x) =
{
min(TB (y)) : y ∈ A, if x ∈ A,

0, otherwise.
,

FDA(x) =
{
max(FB (y)) : y ∈ A, if x ∈ A,

0, otherwise.
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Table 6.2 Incidence matrix of H

I ζ1 ζ2 ζ3 ζ4

x1 (0.6, 0.7) (0, 1) (0.6, 0.7) (0, 1)

x2 (0, 1) (0.7, 0.6) (0, 1) (0.7, 0.6)

x3 (0.8, 0.7) (0.8, 0.7) (0, 1) (0, 1)

x4 (0, 1) (0.6, 0.5) (0.6, 0.7) (0, 1)

x5 (0.7, 0.8) (0, 1) (0, 1) (0.7, 0.8)

Fig. 6.4 B-tempered 3-rung
orthopair fuzzy hypergraph
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x4(0.6,0.5) x5(0.7,0.8)

ζ1 (0.6,0.8)
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ζ 3
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,0

.7
)

ζ 4
(0

.7
,0

.8
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Example 6.4 Consider a 3-rung orthopair fuzzy hypergraphH = (Q, ζ ) as shown
in Fig. 6.4. Incidence matrix of H = (Q, ζ ) is given in Table6.2.

Define a 3-rung orthopair fuzzy set B = {(x1, 0.6, 0.7), (x2, 0.7, 0.6), (x3, 0.8,
0.7), (x4, 0.6, 0.5), (x5, 0.7, 0.8)}. By direct calculations, we have

TD{x1,x3,x5}(x1) = min{0.6, 0.8, 0.7} = 0.6, FD{x1,x3,x5}(x1) = max{0.7, 0.8, 0.7} = 0.8,

TD{x2,x3,x4}(x2) = min{0.7, 0.8, 0.6} = 0.6, FD{x2,x3,x4}(x2) = max{0.6, 0.5, 0.7} = 0.7,

TD{x1,x4}(x4) = min{0.6, 0.6} = 0.6, FD{x1,x4}(x4) = max{0.7, 0.7} = 0.7,

TD{x2,x5}(x5) = min{0.7, 0.7} = 0.7, FD{x2,x5}(x5) = max{0.6, 0.8} = 0.8.

Similarly, all other values can be calculated by using the samemethod. Thus, we have
ζ1 = (TD{x1,x3 ,x5} , FD{x1 ,x3 ,x5}), ζ2 = (TD{x2 ,x3 ,x4} , FD{x2 ,x3 ,x4}), ζ3 = (TD{x1,x4} , FD{x1 ,x4}), ζ4 =
(TD{x2 ,x5} , FD{x2 ,x5}).

Hence, H isB-tempered 3-rung orthopair fuzzy hypergraph.
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6.3 Transversals of q-Rung Orthopair Fuzzy Hypergraphs

Definition 6.17 LetH = (Q, ζ )be aq-rungorthopair fuzzy hypergraphon X . Aq-
rung orthopair fuzzy subset τ of X , which satisfies the condition τ h(ζi ) ∩ ζ

h(ζi )

i �= ∅,
for all ζi ∈ ζ , is called a q-rung orthopair fuzzy transversal of H .
τ is called minimal transversal of H if τ1 ⊂ τ , τ1 is not a q-rung orthopair fuzzy
transversal. tr (H ) denotes the collection of minimal transversals of H .

We now discuss some results on q-rung orthopair fuzzy transversals.

Remark 6.3 Although τ can be regarded as a minimal transversal of H , it is not
necessary for τ (α,β) to be theminimal transversal ofH (α,β), for allα, β ∈ [0, 1].Also,
it is not necessary for the family of minimal q-rung orthopair fuzzy hypergraphs to
form a hypergraph on X . For those q-rung orthopair fuzzy transversals that satisfy
the above property, we have the following definition.

Definition 6.18 A q-rung orthopair fuzzy transversal τ with the property that τ (α,β)

is a minimal transversal ofH (α,β), for α, β ∈ [0, 1], is called locally minimal q-rung
orthopair fuzzy transversal ofH . The collection of locallyminimal q-rung orthopair
fuzzy transversals of H is denoted by t∗r (H ).

Lemma 6.1 Let fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} be the fundamental sequence of
a q-rung orthopair fuzzy hypergraph H and τ be the q-rung orthopair fuzzy
transversal of H . Then, h(τ ) ≥ h(ζi ), for each ζi ∈ ζ and if τ is minimal, then
h(τ ) = max{h(ζi )|ζi ∈ ζ } = ρ1.

Proof Since τ is a q-rung orthopair fuzzy transversal ofH then τ h(ζi ) ∩ ζ
h(ζi )

i �= ∅.
Consider an arbitrary element of supp(τ ), then ζi (x) > h(ζi ) and we have h(τ ) ≥
h(ζi ). If τ is minimal transversal then h(ζi ) = {max Tζi (x),min Fζi (x)|x ∈ X and
ζi ∈ ζ } = ρ1. Hence, h(τ ) = max{h(ζi )|ζi ∈ ζ } = ρ1.

Theorem 6.4 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph then the
statements,

(i) τ is a q-rung orthopair fuzzy transversal of H ,
(ii) For all ζi ∈ ζ and for each ρ = {Tρ, Fρ} ∈ [0, 1] satisfying 0 < (Tρ, Fρ) <

h(ζi ), τρ ∩ ζ ρ �= ∅,
(iii) τρ is a transversal of H ρ , for all ρ ∈ [0, 1], 0 < ρ < ρ1,

are equivalent.

Proof (i) ⇒ (i i). Suppose τ is a q-rung orthopair fuzzy transversal ofH . For any
ρ ∈ [0, 1], which satisfies 0 < (Tρ, Fρ) < h(ζi ), τρ ⊇ τ h(ζi ) and ζ

ρ

i ⊇ ζ
h(ζi )

i . Hence,
τρ ∩ ζ ρ ⊇ τ h(ζi ) ∩ ζ

h(ζi )

i �= ∅, because τ is a transversal.
(i i) ⇒ (i i i). Let τρ ∩ ζ

ρ

i �= ∅, for all ζi ∈ ζ and0 < Tρ < Tρ1 , 0 > Fρ < Fρ1 ,which
implies that τρ is a transversal of H ρ .
(i i i) ⇒ (i). This part can be proved trivially.
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Theorem 6.5 Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. For each
x ∈ X such that τ(x) ∈ fS(H ) and for all τ ∈ tr (H ), the fundamental sequence
of tr (H ) ⊂ fS(H ).

Proof Let the fundamental sequence of H be fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and
τ ∈ tr (H ), for τ(x) ∈ (ρi+1, ρi ]. Consider a mapping ψ defined by

ψ(u) =
{

ρi , if x = u,

τ (u), otherwise.

Thus, from the definition ofψ , we haveψρi = τρi and theDefinition6.13 implies that
H ρ = H ρi , for all ρ ∈ (ρi+1, ρi ]. Since τ is a q-rung orthopair fuzzy transversal
ofH and ψρ = τρ , for all ρ /∈ (ρi+1, ρi ], ψ is a q-rung orthopair fuzzy transversal.
Nowψ ≤ τ andminimality of τ both implies thatψ = τ . Hence, τ(x) = ψ(x) = ρ1.
Thus, τ(x) ∈ fS(H ), therefore we have fS(tr (H )) ⊆ fS(H ).

Theorem 6.6 The collection of all minimal transversals tr (H ) is sectionally
elementary.

Proof Let the fundamental sequence of tr (H )be fs(tr (H )) = {ρ1, ρ2, ρ3, . . . , ρn}.
Consider an element τ of tr (H ) and some ρ ∈ (ρi+1, ρi ] such that τρi ⊂ τρ . In
consideration of [tr (H )]ρ = [tr (H )]ρi , we have ψ ∈ tr (H ) satisfying ψρ = τρi .
Then, the condition ψρ ⊃ τρi implies the existence of a q-rung orthopair fuzzy set
R such that,

R(x) =
{

ρ, if x ∈ ψρi \τρi ,

ψ(x), otherwise,

is the q-rung orthopair fuzzy transversal of H . Now, ρ < ψ yields a contradiction
to the minimality of ψ .

Lemma 6.2 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph. Consider an
element x of supp(τ ), where τ ∈ tr (H ), then there exists a q-rung orthopair fuzzy
hyperedge ζ of H such that,

(i) τ(x) = h(ζ ) = ζ(x) > 0,
(ii) τ h(ζ ) ∩ ζ h(ζ ) = {x}.
Proof (i) Let τ(x) > 0 and Q denotes the set of all q-rung orthopair fuzzy hyper-

edges of H such that for each element ζ of Q, ζ(x) ≥ τ(x). Then this set is
non-empty because τ τ(x) is a transversal of H τ(x) and x ∈ τ τ(x). Additionally,
each element ζ of Q satisfies the inequality h(ζ ) ≥ ζ(x) ≥ τ(x). Suppose on
contrary, (i) is false then for each ζ ∈ Q, h(ζ ) > τ(x) and we have an element
xζ �= x , where xζ ∈ ζ h(ζ ) ∩ τ h(ζ ). Here, we define a q-rung orthopair fuzzy set
Q′ as
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Q′(v) =
{

τ(v), if x �= v,

max{h(ζ )|h(ζ ) < τ(x)}, if x = v.

Note that, Q′ is a q-rung orthopair fuzzy transversal of H and Q′ < τ , which
is contradiction to the fact that τ is minimal. Hence, (i) holds for some ζ .

(ii) Suppose each element of Q satisfies (i) and also have an element xζ �= x , where
xζ ∈ ζ h(ζ ) ∩ τ h(ζ ). The same arguments as given above completes the proof.

Theorem 6.7 Let H = (Q, ζ ) be an ordered q-rung orthopair fuzzy hypergraph
with fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} and c(H ) = {H ρ1 ,H ρ2 ,H ρ3 ,. . .,H ρn }. Then,
tr (H ) is non-empty. Further, if τn is a minimal transversal ofH ρn then there exists
T ∈ tr (H ) such that supp(T ) = τn.

Proof Let τn be aminimal transversal ofH ρn ,H ρn−1 is a partial hypergraph ofH ρn

because H is ordered and consequently τn−1 is minimal transversal of H ρn−1 such
that τn−1 ⊆ τn . By continuing the same argument, we establish a nested sequence of
minimal transversals τ1 ⊆ τ2 ⊆ τ3 ⊆ · · · ⊆ τn , where every τi is minimal transver-
sal of H ρi . Let η j = η j (τ j , ρ j ) is an elementary q-rung orthopair fuzzy set having
height ρ j and support τ j . Then, T = max{η j |1 ≤ j ≤ n} is locallyminimal transver-
sal of H having support τn .

We now give an Algorithm 6.3.1 for finding tr (H ).

Algorithm 6.3.1 Algorithm for finding tr (H )

Let H = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph having the set of core
hypergraphs c(H ) = {H ρ1 ,H ρ2 ,H ρ3 , . . . ,H ρn }. An iterative procedure to find
the minimal transversal τ of H is as follows,

1. Find a crisp minimal transversal τ1 ofH ρ1 .
2. Find a minimal transversal τ2 of H ρ2 , which satisfies τ1 ⊆ τ2, i.e., formulate a

new hypergraph H2 having hyperedges ζ ρ2 which is augmented having a loop
at each x ∈ τ1. In accordance with, we can say that ζ(H2) = ζ ρ2 ∪ {{x}|x ∈ τ1}.
Let τ2 be an arbitrary minimal transversal of H2.

3. By continuing the same procedure repeatedly, we have a sequence of minimal
transversals τ1 ⊆ τ2 ⊆ τ3 ⊆ · · · ⊆ τ j such that τ j be the minimal transversal of
H ρ j with the property τ j−1 ⊆ τ j .

4. Consider an elementary q-rung orthopair fuzzy set μ j having the support τ j

and h(μ j ) = ρ j , 1 ≤ j ≤ n. Then, τ =
n⋃
j=1

{μ j |1 ≤ j ≤ n} is a minimal q-rung

orthopair fuzzy transversal of H .

Example 6.5 Consider a 5-rung orthopair fuzzy hypergraphH = (Q, ζ ), as shown
in Fig. 6.5, where ζ = {ζ1, ζ2, ζ3}. Incidence matrix of H = (Q, ζ ) is given in
Table6.3.

By routine calculations, we have h(ζ1) = (0.8, 0.6), h(ζ2) = (0.8, 0.5), and
h(ζ3) = (0.8, 0.5). Consider a 5-rung orthopair fuzzy subset τ1 of X such that
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Fig. 6.5 5-rung orthopair
fuzzy hypergraph
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Table 6.3 Incidence matrix of H

I ζ1 ζ2 ζ3

x1 (0.8, 0.6) (0.8, 0.6) (0, 1)

x2 (0.7, 0.9) (0, 1) (0.7, 0.9)

x3 (0, 1) (0.8, 0.5) (0.8, 0.5)

x4 (0.6, 0.8) (0.6, 0.8) (0, 1)

x5 (0, 1) (0, 1) (0.7, 0.5)

τ1 = {(x1, 0.8, 0.6), (x2, 0.7, 0.9), (x3, 0.8, 0.5)}. Note that, ζ
h(ζ1)
1 = {x1}, ζ

h(ζ2)
2 =

{x3} and ζ
h(ζ3)
3 = {x3}. Also τ

(0.8,0.6)
1 = {x1}, τ (0.8,0.5)

2 = {x3} and τ
(0.8,0.5)
3 = {x3}. It

can be seen that τ h(ζi )
1 ∩ ζ

h(ζi )

i �= ∅, for all ζi ∈ ζ . Thus, τ1 is a 5-rung orthopair fuzzy
transversal ofH . Similarly, τ2 = {(x1, 0.8, 0.6), (x3, 0.8, 0.5)}, τ3 = {(x1, 0.8, 0.6),
(x3, 0.8, 0.5),(x4, 0.6, 0.8)}, τ4 = {(x1, 0.8, 0.6), (x3, 0.8, 0.5), (x5, 0.7, 0.5), } are
other transversals of H . The minimal transversal is τ2, i.e., whenever τ ⊆ τ2, τ is
not a 5-rung orthopair fuzzy transversal.

Letα = 0.8,β = 0.5, then ζ
(0.8,0.5)
1 = {∅}, ζ (0.8,0.5)

2 = {x3}, ζ (0.8,0.5)
3 = {x3} shows

that τ (0.8,0.5)
2 is not a minimal transversal of H (0.8,0.5).

Theorem 6.8 LetH = (Q, ζ ) be a q-rung orthopair fuzzy hypergraph and x ∈ X.
Then, there exists an element τ of tr (H ) such that x ∈ supp(τ ) if and only if there
is an hyperedge ζ1 ∈ ζ which satisfies,

• ζ1(x) = h(ζ ′),
• For every ξ ∈ ζ with h(ξ) > h(ζ1), ξ h(ζi ) �⊂ ζ

h(ζ1)
1 ,

• h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge of H h(ζ1).



248 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Proof Let us suppose that τ(x) > 0 and τ is an element of tr (H ), then first condition
directly follows from Lemma6.2.

To prove the second condition, suppose that for every ζ1 which satisfies the first
condition, there is ξ ∈ ζ such that h(ξ) > h(ζ1) and ξ h(ξ) ⊆ ζ

h(ζ1)
1 . Then there exists

an element v �= x , where v ∈ ξ h(ξ) ∩ τ h(ξ) ⊆ ζ
h(ζ1)
1 ∩ τ h(ζ1), which is a contradiction.

To prove that h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge
ofH h(ζ1), suppose that for every ζ1, which satisfies the above two conditions, there
is ξ ∈ ζ with ∅ ⊂ ξ h(ξ) ⊂ ζ

h(ζ1)
1 , as ξ h(ξ) �= ∅ and from second condition, we have

h(ξ) = ζ1(x) = τ(x). If h(ξ) = ζ1(x), our supposition accommodates ξ ′ ∈ ζ such
that ∅ ⊂ ξ ′h(ζ1) ⊂ ξ h(ζ1) ⊂ ζ

h(ζ1)
1 . This recursive procedure must end after a finite

number of steps, so assume that ξ(x) < h(ξ), which implies the existence of an
element v �= x , where v ∈ ξ h(ζ1) ∩ τ h(ζ1) ⊆ ζ

h(ζ1)
1 ∩ τ h(ζ1), which is again a contra-

diction.
The sufficient condition is proved by using the construction given in

Algorithm6.3.1. By using first condition, we have h(ζ1) = ρ1,ρ1 ∈ fS(H ) and from
other two conditions, we have yξ ∈ ξ h(ξ)\ζ h(ζ1)

1 such that ξ �= ζ1 and h(ξ) ≥ h(ζ1).
Then Q ∩ ζ

h(ζ1)
1 , where Q is the collection of all such vertices. An initial sequence of

transversals of is constructed in a way that τ j ⊆ Q, for 1 ≤ j ≤ n and τi ⊆ Q ∪ {x}.
Continuing the construction given in Algorithm6.3.1 will give a minimal q-rung
orthopair fuzzy transversal with τ(x) = ζ1(x) = h(ζ1).

Definition 6.19 Let Q be a q-rung orthopair fuzzy set and α, β ∈ [0, 1]. The lower
truncation of Q at level α, β is a q-rung orthopair fuzzy set Q〈α,β〉 given by

Q〈α,β〉(x) =
{
Q(x), if x ∈ Q(α,β),

(0, 1), otherwise.

The upper truncation of Q at level α, β is a q-rung orthopair fuzzy set Q〈α,β〉 given
by

Q〈α,β〉(x) =
{

(α, β), if x ∈ Q(α,β),

Q(x), otherwise.

Definition 6.20 Let E be a collection of q-rung orthopair fuzzy sets of X and
E 〈α,β〉 = {q〈α,β〉|q ∈ E },E〈α,β〉 = {q〈α,β〉|q ∈ E }. Then, the upper and lower trun-
cations of a q-rung orthopair fuzzy hypergraph H = (Q, ζ ) at α, β level are
a pair of q-rung orthopair fuzzy hypergraphs, H 〈α,β〉 and H〈α,β〉, defined by
H 〈α,β〉 = (X,E 〈α,β〉) and H〈α,β〉 = (X,E〈α,β〉).

Definition 6.21 Let Q be a q-rung orthopair fuzzy set on X , then each (μ, ν) ∈
(0, h(Q)) for which Q(α,β) � Q(μ,ν), (μ, ν) < (α, β) ≤ h(Q), is called the transi-
tion level of Q.



6.3 Transversals of q-Rung Orthopair Fuzzy Hypergraphs 249

Definition 6.22 Let Q be a nontrivial q-rung orthopair fuzzy set of X . Then,

(i) the sequenceS (Q) = {t Q1 , t Q2 , t Q3 , . . . , t Qn } is called the basic sequence deter-
mined by Q, where

• t Q1 > t Q2 > t Q3 > · · · > t Qn > 0,
• t Q1 = h(Q),
• {t Q2 , t Q3 , . . . , t Qn } is the set of transition levels of Q.

(ii) The set of cuts of Q, C (Q), is defined as C (Q) = {Qt |t ∈ S (Q)}.
(iii) The join max{η(Qt , t)|t ∈ S (Q)} of basic elementary q-rung orthopair fuzzy

sets E(Q) = {η(Qt , t)|t ∈ S (Q)} is called the basic elementary join of Q.

Lemma 6.3 Let H be a q-rung orthopair fuzzy hypergraph with fS(H ) =
{ρ1, ρ2, ρ3, . . . , ρn}. Then,
(i) If t = (μ, ν) is a transition level of τ ∈ tr (H ), then there is an ε > 0 such that,

∀ (α, β) ∈ (t, t + ε], τ (μ,ν) is a minimalH (μ,ν)-transversal extension of τ (α,β),
i.e., if τ (α,β) ⊆ τ ′ ⊆ τ (μ,ν) then τ ′ is not a transversal of H (μ,ν).

(ii) tr (H ) is sectionally elementary.
(iii) fS(tr (H )) is properly contained in fS(H ).
(iv) τ (α,β) is a minimal transversal of H (α,β), for each τ ∈ tr (H ) and ρ2 <

(α, β) ≤ ρ1.

Proof (i) Let t̃ = (μ, ν) be a transition level of τ ∈ tr (H ). Then by definition, we
have τ (α,β) � τ (μ,ν), (μ, ν) < (α, β) ≤ h(H ), for all α, β. Since, τ possesses
a finite support, this implies the existence of an ε > 0 such that τ (α,β) is constant
on (t̃, t̃ + ε]. Assume that there is a transversal T ofH (μ,ν) such that τ (α′,β ′) ⊆
T ⊆ τ (μ,ν), for α′, β ′ ∈ (t̃, t̃ + ε]. We claim that this supposition is false. To
demonstrate the existence of this claim, we suppose that assumption is true
and consider the collection of basic elementary q-rung orthopair fuzzy sets
E(τ ) = {η(τ t , t)|t ∈ S(τ )} of τ . Note that a nested sequence of X is formed by
c(τ ) ∪ T , where c(τ ) is used to denote the basic cuts of τ . SinceH = (Q, ζ )

is defined on a finite set X andQ is a finite collection of q-rung orthopair fuzzy
sets of X , then each ρ ∈ (0, h(H )) corresponds a number ερ > 0 such that

• H (α,β) is constant on (ρ, ρ + ερ],
• H (α,β) is constant on (ρ − ερ, ρ].
It follows from these considerations that level cuts of τ (α,β) of the join τ  =
max{max{E(τ )\η(τ t̃ , t̃), η(τ t̃ , t̃ − εt̃ ), η(T, t̃)}} persuade

τ̃ (α,β) =
{
T, if (α, β) ∈ (t̃ − εt̃ , t̃),

τ (α,β), if (α, β) ∈ (0, h(H ))\(t̃, t̃ − εt̃ )].

This relation is derived because of supposition that εt̃ is so small that the open
interval (t̃ − εt̃ , t̃) does not contain any other transition level of τ .
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Since, it is assumed that T is a transversal ofH t̃ , T is a transversal ofH (α,β), for
all (α, β) ∈ (t̃ − εt̃ , t̃) andH

(α,β) is constant on (t̃ − εt̃ , t̃). Note that, τ
(α,β) is a

transversal ofH (α,β), for all (α, β) ∈ (0, h(H )], therefore, it follows that τ̃ is
a q-rung orthopair fuzzy transversal of H , as τ̃ < τ , implies that τ /∈ tr (H ),
which leads to a contradiction. Hence, the supposition is false and claim is
satisfied.

(ii) Let τ ∈ tr (H ), then τ (α,β) is a transversal of H (α,β) for 0 < (α, β) < h(H ).
Suppose that a transition level t of τ corresponds an interval (t, t + ε], ε > 0, on
which τ (α,β) is constant. Then for (α′, β ′) ∈ (t, t + ε], τ (α′,β ′) is not a transversal
ofH t , which implies that τ (α′,β ′) /∈ (tr (H ))t , where tr (H ))t denotes the t-cut
of tr (H ). However, the definition of fundamental sequence of tr (H ) implies
that t ∈ fS(tr (H )).

(iii) To prove (i i i), we suppose that if t = (μ, ν) is a transition level of some
τ ∈ tr (H ), then t belongs to fS(H ). On contrary, suppose that the transi-
tion level t of some τ ∈ tr (H ) does not belong to fS(H ). Then for some
ρ j ∈ fS(H ), we have ρ j+1 < t < ρ j , where ρn+1 = 0, asH (α,β) = H ρ j , for
all (α, β) ∈ (ρ j+1, ρ j ], follows that τ t is a transversal ofH t = H ρ j . Further-
more, there exists an ε > 0, such that τ (α,β) is constant on (t, t + ε]. Without
loss of generality, we assume that t + ε ≤ ρ j and (α′, β ′) ∈ (t, t + ε]. Since
t is a transition level of τ then τ (α′,β ′) � τ t and τ (α′,β ′) is not a transversal of
H t (from i), which is not possible, asH (α′,β ′) = H ρ j = H t , this proves our
claim. Along with this result and the fact that h(τ ) = ρ1 ∈ fS(H ), it follows
that fS(tr (H )) ⊆ fS(H ), for all τ ∈ tr (H ).

(iv) First, we will show that τρ1 is a minimal transversal of H ρ1 . Suppose on con-
trary that there is a minimal transversal T of H ρ1 such that T ⊆ τρ1 . Let
τ̃ = max{τρ2 , η1}, where η1 is the basic elementary q-rung orthopair fuzzy set
having support T and height ρ1. τρ2 is considered as the upper truncation of τ

at level ρ2. It is obvious that τ̃ is a transversal ofH with τ̃ < τ , which is con-
tradiction to the fact that τ is minimal. From (i i) and (i i i) parts, it is followed
that τ (α,β) ∈ tr (H )(α,β), for ρ2 < (α, β) < ρ1.

Theorem 6.9 At least one minimal q-rung orthopair fuzzy transversal is contained
in every q-rung orthopair fuzzy transversal of a q-rung orthopair fuzzy hyper-
graph H .

Proof Let fS(H ) = {ρ1, ρ2, ρ3, . . . , ρn} be the fundamental sequence of H and
suppose that ξ be a transversal of H , which is not minimal. Let τ be a mini-
mal transversal of H , τ ≤ ξ , which is constructed in such a way, {qi ∈ Q(X)|i =
0, 1, 2, . . . , n} satisfying τ = qn ≤ · · · ≤ q1 ≤ q0 ≤ ξ , where Q(X) is the collection
of q-rung orthopair fuzzy sets on X . It can be noted that h(ξ) ≥ h(H ) = ρ1 and
ξ (α,β) is a transversal of H (α,β), for 0 < (α, β) ≤ ρ1. Therefore, the reduction pro-
cess is started asq0 = ξ 〈ρ1〉,where ξ 〈ρ1〉 represents the upper truncation level of ξ atρ1.
Since the top level cut ξρ1 of ρ0 comprises a crisp minimal transversal T1 ofH ρ1 , we
have q1 = max{ξ 〈ρ2〉, λT1}, where λT1 is elementary q-rung orthopair fuzzy set having
height ρ1 and support T1. Note that, q1 ≤ q2 ≤ ξ . The same procedure will determine
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the all other remaining members. For instance, we have q2 = max{ξ 〈ρ3〉, λT1 , λT2},
where λT2 is an elementary q-rung orthopair fuzzy set having height ρ2 and support
T2, such that

T2 =
{
T1, ifT1 is a transversal of H ρ2 ,

B2, otherwise,

where B2 is the minimal transversal extension of T1, i.e., if T1 ⊆ B ⊆ B2, then B2 is
not considered as a transversal of H ρ2 and B2 is contained in ρ-level of ξ because
ξρ2 contains a transversal of H ρ2 . Further, as T2 ⊆ ξρ2 , it is obvious that q2 ≤ q1.
When this process is finished, we certainly have qn = τ a q-rung orthopair fuzzy
transversal ofH and is included in ξ . We now claim that τ is a minimal transversal
ofH , i.e., τ ∈ tr (H ). On contrary, suppose that τ1 is a transversal ofH such that
τ1 < τ . Then, we have

(i) τ
(α,β)

1 ⊆ τ (α,β) for all α, β ∈ (0, h(H )],
(ii) τ

(α′,β ′)
1 ⊆ τ (α′,β ′) for some α′, β ′ ∈ (0, h(H )].

However, no such α′, β ′ exist. To prove this, let α, β ∈ (ρ2, ρ1], then as τ
(α,β)

1 ⊆
τ (α,β), τ (α,β)

1 is a transversal ofH (α,β) = H ρ1 and τ (α,β) ∈ tr (H ρ1), which implies
that τ

(α,β)

1 = τ (α,β) on (ρ2, ρ1]. Moreover, suppose that α, β ∈ (ρ3, ρ2] then by
using τ

(α,β)

1 = τ (α,β), we have τ
(α,β)

1 ⊇ τρ1 on (ρ3, ρ2] and if T2 = T1 = τρ1 , then
by previous arguments τ

(α,β)

1 = τ (α,β) on (ρ3, ρ2]. Furthermore, if T1 ⊆ T2 and
T1 ⊆ τ

(α,β)

1 � T2 then τ
(α,β)

1 is not a transversal of H (α,β) = H ρ2 , which is con-
tradiction to the fact that τ1 is a transversal of H . Hence, we have τ

(α,β)

1 = τ (α,β)

on (ρ3, ρ2]. In general, we have τ
(α,β)

1 = τ (α,β) on (0, h(H )], which completes the
proof.

6.4 Applications to Decision-Making

Decision-making is considered as the abstract technique, which results in the selec-
tion of an opinion or a strategy among a couple of elective potential results. Every
decision-making procedure delivers a final decision, whichmay ormay not be appro-
priate for our problem. We have to make hundreds of decisions everyday, some are
easy but others may be complicated, confused and miscellaneous. That is the rea-
son which leads to the process of decision-making. Decision-making is the foremost
way to choose themost desirable alternative. It is essential in real-life problemswhen
there are many possible choices. Thus, decision makers evaluate numerous merits
and demerits of every choice and try to select the most fitting alternative.
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6.4.1 Selection of Most Desirable Appliance

Here, we consider a decision-making problem of selecting themost appropriate prod-
uct from different brands or organizations. Suppose that a person wants to purchase
a product, which is available in many brands. Let he/she considers the following
nine organizations or brands O = {O1, O2, O3, . . . , O9}, of which product can be
chosen to purchase. We will discuss that how the (α, β)-level cuts can be applied
to q-rung orthopair fuzzy hypergraph to make a good decision. A 6-rung orthopair
fuzzy hypergraph model depicting the problem is shown in Fig. 6.6.

The truth-membership degrees and falsity-membership degrees of vertices (which
represent the organizations) depicts that how much that organization fulfills the cos-
tumer’s requirements and up to which percentage the product is not suitable. The
hyperedges of our graph represent the characteristics of those organizations which
are (as vertices) contained in that hyperedge. It can be shown from Table6.4.

The attributes, which we have considered as hyperedges {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}
to describe the characteristics of different organizations are {Delivery and service,
Durability, Affordability, Quality, Functionality, Marketability}. Note that, if ζ2 is
considered as durability, then the membership degrees (0.9, 0.5) of O3 describes
that the product manufactured by organization O3 is 90% durable and 50% lacks
the requirements of the customer. Similarly, O4 is 60% durable and 40% lacks the
condition. In the same way, we can describe the characteristics of all products man-
ufactured by different organizations. Now to select the most appropriate product, we
will find out the (α, β)-level cuts of all hyperedges. We choose the values of α and β

in such manner that they will be fixed according to customer’s demand. Let α = 0.7
and β = 0.4, it means that customer will consider that product, which will satisfy

O1(0.8,0.2)

O2(0.7,0.3)

O3(0.9,0.5)

O
4(
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6,
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4)

O
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Fig. 6.6 6-rung orthopair fuzzy model for most appropriate appliance
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Table 6.4 Incidence matrix

I ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

O1 (0.8, 0.2) (0, 1) (0.8, 0.2) (0, 1) (0, 1) (0, 1)

O2 (0.7, 0.3) (0, 1) (0, 1) (0.7, 0.3) (0, 1) (0, 1)

O3 (0.9, 0.5) (0.9, 0.5) (0, 1) (0, 1) (0.9, 0.5) (0, 1)

O4 (0.6, 0.4) (0.6, 0.4) (0, 1) (0, 1) (0, 1) (0, 1)

O5 (0, 1) (0.7, 0.5) (0.7, 0.5) (0.7, 0.5) (0.7, 0.5) (0, 1)

O6 (0, 1) (0.8, 0.4) (0, 1) (0, 1) (0, 1) (0.8, 0.4)

O7 (0.6, 0.5) (0, 1) (0, 1) (0, 1) (0.6, 0.5) (0.6, 0.5)

O8 (0, 1) (0, 1) (0, 1) (0.8, 0.3) (0, 1) (0.8, 0.3)

O9 (0, 1) (0, 1) (0.8, 0.2) (0, 1) (0, 1) (0.8, 0.2)

70% or more of the the characteristics mentioned above and will have deficiency less
than or equal to 40%. The (α, β)-levels of all hyperedges are given as follows:

ζ
(0.7,0.4)
1 = {O1, O2}, ζ

(0.7,0.4)
2 = {O6}, ζ

(0.7,0.4)
3 = {O1, O5, O9},

ζ
(0.7,0.4)
4 = {O2, O8}, ζ

(0.7,0.4)
5 = {∅}, ζ

(0.7,0.4)
6 = {O6, O8, O9}.

Note that, ζ
(0.7,0.4)
1 level set represents that O1 and O2 are the organizations that

provide the best delivery services among all other organizations, ζ
(0.7,0.4)
2 level set

represents that O6 is the organization, whose products are more durable as compared
to all other organizations. Similarly, ζ (0.7,0.4)

4 indicates that the products proposed by
O2 and O8 organizations, are more cheap and affordable in comparison to others.
Thus, if a customer wants some specific speciality of product, for example he she
wants to purchase a product with good marketablity, then the organizations O6, O8

and O9 are more suitable. Similarly, if the satisfaction and dissatisfaction level of a
customer are taken as α = 0.8 and β = 0.3, respectively. Then, (0.8, 0.3)-level cuts
are given as,

ζ
(0.8,0.3)
1 = {O1}, ζ

(0.8,0.3)
2 = {∅}, ζ

(0.8,0.3)
3 = {O1, O9},

ζ
(0.8,0.3)
4 = {O8}, ζ

(0.8,0.3)
5 = {∅}, ζ

(0.8,0.3)
6 = {O8, O9}.

Here, ζ (0.8,0.3)
4 = {O8} indicates that the products proposed by organization O8 satisfy

the customer’s requirement 80%, which is affordability and so on. For α = 0.7 and
β = 0.3, we have,

ζ
(0.7,0.3)
1 = {O1, O2}, ζ

(0.7,0.3)
2 = {∅}, ζ

(0.7,0.3)
3 = {O1, O9},

ζ
(0.7,0.3)
4 = {O2, O8}, ζ

(0.7,0.3)
5 = {∅}, ζ

(0.7,0.3)
6 = {O8, O9}.

Hence, by considering different (α, β)-levels corresponding to the satisfaction and
dissatisfaction levels of customers, we can conclude that which organization fulfill
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the actual demands of a customer. The method adopted in this application is given
in the following Algorithm 6.4.1.

Algorithm 6.4.1

Finding the most suitable organization
1. Input the degree of membership of all q−rung orthopair fuzzy vertices O1, O2, O3,· · · ,Om .
2. Calculate the membership degrees of q−rung orthopair fuzzy hyperedges using the formula,

Tζ (Ek ) = Tζ (O1, O2, O3, . . . , Om ) ≤ min{Qi (O1),Qi (O2),Qi (O3), . . . ,Qi (Om )},
Fζ (Ek ) = Fζ (O1, O2, O3, . . . , Om ) ≤ max{Qi (O1),Qi (O2),Qi (O3), . . . ,Qi (Om )},

for all O1, O2, O3, · · · , Om representing the organizations as vertices of hyperedge.
3. Calculate the (α, β)−levels of q−rung orthopair fuzzy hyperedges by using,

ζ
(α,β)
i = {O j ∈ O|Tζi (O j ) ≥ α , Fζi (O j ) ≤ β},

for i = 1, 2, 3, · · · , k, j = 1, 2, 3 · · · ,m and α, β ∈ [0, 1].
4. Crisp sets describe the most suitable organization according to the customer’s satisfaction levels.

6.4.2 Adaptation of Most Alluring Residential Scheme

The essential factor for any purchase of property is the budget and location for a
purchaser, particularly. However, it is a complicated procedure to select a residential
area for buying a house. In addition to scrutinizing the further details such as the
pricing, loan options, payments, and developer’s credentials a customer must exam-
ine closely some other facilities which should be possessed by every housing colony.
Now, to adopt a favorable housing scheme, an obvious initial step is to compare
the differen societies. After analyzing the characteristics of different societies, one
will be able to make a wise decision. We will investigate the problem of adopting
the most alluring residential scheme using 7-rung orthopair fuzzy hypergraph. Let
the set of vertices of 7-rung orthopair fuzzy hypergraph is taken as the represen-
tative of those attributes characteristics, which one has been considered to make a
comparison between different housing societies. The hyperedges of 7-rung orthopair
fuzzy hypergraph represents some housing schemes, which will be compared. The
portrayal of our problem is illustrated in Fig. 6.7.

The description of hyperedges {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7} and vertices {x1, x2, x3, x4,
x5, x6, x7, x8, x9, x10} of above hypergraph is given in Tables6.5 and 6.6, respectively.

Note that, each hyperedge represents a distinct housing scheme and the vertices
contained in hyperedges are those attributes, which will be provided by the soci-
eties represented through hyperedges. It means that Senate Avenue housing society
provides 80% the basic facilities of life such as water, gas, and electricity and 20%
deprives these facilities. Similarly, the same society 90% accommodates its residents
being easy assessable and only 10% lacks the facility. In the same way, taking into
account the truth-membership and falsity-membership degrees of all other attributes,
we can identify the characteristics of all societies.

Now, to determine the overall comforts of each society, we will calculate the
heights of all hyperedges and the society having the maximum truth-membership
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Fig. 6.7 7-rung orthopair
fuzzy hypergraph model
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Table 6.5 Description of hyperedges

Set of hyperedges Corresponding
housing scheme

Provision of facilities
(%)

Deprival of facilities
(%)

ζ1 Senate avenue 70 20

ζ2 Soan gardens 50 50

ζ3 CBR town 60 70

ζ4 OPF housing scheme 80 50

ζ5 Paradise city 60 70

ζ6 RP corporation 80 50

ζ7 Tele gardens housing
scheme

70 50

Table 6.6 Description of attributes

Set of attributes Depicting facility Provision level of
corresponding facility

Deprival of
corresponding facility

x1 Basic amenities of life 0.8 0.2

x2 Easily assessable 0.9 0.1

x3 Land ownership 0.7 0.2

x4 The power back-up 0.6 0.3

x5 Eco-friendly
construction

0.9 0.4

x6 Social infrastructure 0.8 0.5

x7 Drainage system 0.5 0.6

x8 Security 0.6 0.7

x9 Regular sanitation 0.8 0.5

x10 The parking area 0.9 0.3
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Table 6.7 Heights of
hyperedges

Heights of hyperedges (max(ζl ),min(ζm))

h (Senate Avenue) (0.9, 0.1)

h (Soan Gardens) (0.9, 0.3)

h (CBR Town) (0.9, 0.3)

h (OPF Housing Scheme) (0.9, 0.2)

h (Paradise City) (0.9, 0.1)

h (RP Corporation) (0.9, 0.1)

h (Tele Gardens Housing
Scheme)

(0.8, 0.2)

and minimum falsity-membership will be considered as a most comfortable society
to be live in. The calculated heights of all schemes are given in Table6.7.

It can be noted from Table6.7 that there are three societies which have the maxi-
mum membership and minimum nonmembership degrees, i.e., Senate Avenue, Par-
adise City, and RP Corporation are those housing societies which will provide 90%
facilities to their habitants and only 10% amenities will be dispersed. Thus, it is more
beneficial and substantial to select one of these three housing schemes.

The same problem can be speculated to a more extended idea that if some one
wants to built a new housing scheme, which will carry out the facilities of all above
societies. The concept of 7-rung orthopair fuzzy hypergraphs can be utilized to
speculate such housing scheme. Consider a 7-rung orthopair fuzzy set of vertices
given as follows,

τ1 = {(x1, 0.8, 0.2), (x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)}.

By applying the definition of 7-rung orthopair fuzzy transversal, it can be seen that

ζ
(0.9,0.1)
1 ∩ τ

(0.9,0.1)
1 = {x2}, ζ

(0.9,0.3)
2 ∩ τ

(0.9,0.3)
1 = {x5},

ζ
(0.9,0.3)
3 ∩ τ

(0.9,0.3)
1 = {x10}, ζ

(0.9,0.2)
4 ∩ τ

(0.9,0.2)
1 = {x5},

ζ
(0.9,0.1)
5 ∩ τ

(0.9,0.1)
1 = {x2}, ζ

(0.9,0.1)
6 ∩ τ

(0.9,0.1)
1 = {x2},

ζ
(0.8,0.2)
7 ∩ τ

(0.8,0.2)
1 = {x6},

that is, the q-rung orthopair fuzzy subset τ1 satisfies the condition of transversal and
the housing society that will be represented through this hyperedge will contain at
least one attribute of each scheme mentioned above. Similarly, some other societies
can be figured out by following the samemethod. Hence, some other 7-rung orthopair
fuzzy subsets are given as

τ2 = {(x1, 0.8, 0.2), (x2, 0.9, 0.1), (x3, 0.7, 0.2), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ3 = {(x2, 0.9, 0.1), (x4, 0.6, 0.3), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ4 = {(x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x10, 0.9, 0.3)},
τ5 = {(x2, 0.9, 0.1), (x5, 0.9, 0.3), (x6, 0.8, 0.2), (x7, 0.5, 0.5), (x8, 0.6, 0.7), (x10, 0.9, 0.3)}.
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Fig. 6.8 7-rung orthopair fuzzy transversals

The graphical description of these schemes is displayed in Fig. 6.8 through dashed
lines.

Thus, the schemes shown through dashed lines will contain the attributes of all
other societies andmay bemore advantageous to their dwellers. The method adopted
in our application is explained through the Algorithm 6.4.2.

Algorithm 6.4.2

Finding the more advantageous schemes
1. Input the degree of membership of all q−rung orthopair fuzzy vertices x1, x2, x3,· · · ,xm .
2. Calculate the membership degrees of q−rung orthopair fuzzy hyperedges using the formula,

Tζ (Ek) ≤ min{Qi (x1),Qi (x2), . . . ,Qi (xm)},
Fζ (Ek) ≤ max{Qi (x1),Qi (x2), . . . ,Qi (xm)},

for all x1, x2, x3, · · · , xm representing the attributes of housing societies.
3. Calculate the heights of all q−rung orthopair fuzzy hyperedges using,

h(ζ j ) = (max Tζ j (xi ),min Fζ j (xi )),
j = 1, 2, 3, · · · , k and i = 1, 2, 3, · · · ,m.

4. Maximum truth-membership and minimum falsity-membership will denote the most alluring
residential area.

5. Input the different q−rung orthopair fuzzy subsets.
6. Determine the q−rung orthopair fuzzy transversals using the formula,
7. Find the more advantageous schemes, which will contain the attributes of all other societies.
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6.5 q-Rung Orthopair Fuzzy Directed Hypergraphs

In this section, we define q-rung orthopair fuzzy digraphs and q-rung orthopair fuzzy
directed hypergraphs. A q-rung orthopair fuzzy directed hypergraph generalizes the
concept of an intuitionistic fuzzy directed hypergraph and broaden the space of
orthopairs. We also define and construct the dual and line graphs of q-rung orthopair
fuzzy directed hypergraphs. All these concepts are explained and justified through
concrete examples.

Definition 6.23 A q-rung orthopair fuzzy digraph on a non-empty set X is a pair−→
D = (A ,

−→
B ), where A is a q-rung orthopair fuzzy set on X and

−→
B is a q-rung

orthopair fuzzy relation on X such that

T−→
B

(x1x2) ≤ min{TA (x1), TA (x2)}, F−→
B

(x1x2) ≤ max{FA (x1), FA (x2)},

and 0 ≤ T q−→
B

(x1x2) + Fq−→
B

(x1x2) ≤ 1, q ≥ 1, for all x1, x2 ∈ X.

Remark 6.4 • When q = 1, 1-rung orthopair fuzzy digraph is called an intuitionistic
fuzzy digraph.

• When q = 2, 2-rung orthopair fuzzy digraph is called Pythagorean fuzzy digraph.

Example 6.6 Let X = {x1, x2, x3, x4} be the set of universe, A = {(x1, 0.7, 0.8),
(x2, 0.6, 0.9), (x3, 0.5, 0.8), (x4, 0.7, 0.8)} be a 5-rung orthopair fuzzy set and

−→
B

be a 5-rung orthopair fuzzy relation on X such that, 0 ≤ T 5−→
B

(xi x j ) + F5−→
B

(xi x j ) ≤ 1,

for all xi , x j ∈ X. The corresponding 5-rung orthopair fuzzy digraph
−→
D = (A ,

−→
B )

is shown in Fig. 6.9.

Definition 6.24 A q-rung orthopair fuzzy directed hypergraph D on X is defined
as an ordered pair D = (Q, ξ), where Q is the collection of q-rung orthopair fuzzy
subsets of X and ξ is a family of q-rung orthopair fuzzy directed hyperedges (or
hyperarcs) such that,

Fig. 6.9 5-rung orthopair

fuzzy digraph
−→
D

(x1,0.7,0.8) (x2,0.6,0.9)

(x3,0.5,0.8) (x4,0.7,0.8)

(x1x2,0.5,0.8)

(x2 x4 ,0.5,0.9)

(x1 x3 ,0.4,0.7)

(x4 x1 ,0.6,0.7)

(x2
x3,
0.5

,0.8
)
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1.
Tξ (Ek) = Tξ (x1, . . . , xm) ≤ min{TQi (x1), . . . , TQi (xm)},

Fξ (Ek) = Fξ (x1, . . . , xm) ≤ max{FQi (x1), . . . , FQi (xm)},

for all x1, x2, . . ., xm ∈ X .
2.

⋃
i
supp(Qi ) = X , for all Qi ∈ Q.

A q-rung orthopair fuzzy directed hyperedge ξi ∈ ξ is defined as an ordered pair
(h(ξi ), t (ξi )), where h(ξi ) and t (ξi ) ∈ X − h(ξi ), nontrivial subsets of X , are called
the head of ξi and tail of ξi , respectively.
A source vertex v in ξi is defined as h(ξi ) �= v, for all ξi ∈ ξ and a destination vertex
v′ in ξi is defined as t (ξi ) �= v′, for all ξi ∈ ξ .

Definition 6.25 A q-rung orthopair fuzzy directed hypergraph is called a backward
q-rung orthopair fuzzy directed hypergraph if all of its hyperarcs are B-arcs, i.e.,
ξi = (h(ξi ), t (ξi )) with |h(ξi )| = 1, for all ξi ∈ ξ .
A q-rung orthopair fuzzy directed hypergraph is called a forward q-rung orthopair
fuzzy directed hypergraph if all of its hyperarcs are F-arcs, i.e., ξi = (h(ξi ), t (ξi ))
with |t (ξi )| = 1, for all ξi ∈ ξ .

Definition 6.26 The height of a q-rung orthopair fuzzy directed hypergraph
D = (Q, ξ) is defined as h(D) = {max(ξl),min(ξm)}, where ξl = max Tξ j (xi ) and
ξm = min Fξ j (xi ). Here, Tξ j (xi ) and Fξ j (xi ) denote the truth-membership and falsity-
membership of vertex xi to the directed hyperedge ξ j , respectively.

Definition 6.27 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The order of D , which is denoted by O(D), and is defined as O(D) = ∑

x∈X
∧ξi (x).

The size of D , which is denoted by S(D), and is defined as S(D) = ∑
x∈X

∨ξi (x).

Definition 6.28 A repeatedly occurring sequence v1, ξ1, v2, ξ2, . . ., vn−1, ξn−1, vn of
definite vertices and directed hyperarcs such that,

• 0 < Tξ (ξi ) ≤ 1 and 0 ≤ Fξ (ξi ) < 1,
• vi−1, vi ∈ ξi , i = 1, 2, 3, . . . , n,

is called a q-rung orthopair fuzzy directed hyperpath of length n − 1 from v1 to vn .
If v1 = vn , then this q-rung orthopair fuzzy directed hyperpath is called a q-rung
orthopair fuzzy directed hypercycle.

Definition 6.29 The strength of q-rung orthopair fuzzy directed hyperpath of length
k, which connects the two vertices v1 and v2, is defined as λk(v1, v2) = {min{Tξ (ξ1),
Tξ (ξ2),Tξ (ξ3), . . .,Tξ (ξk)},max{Fξ (ξ1), Fξ (ξ2), Fξ (ξ3), . . ., Fξ (ξk)}}, v1 ∈ ξ1, v2 ∈ ξk
and ξ1, ξ2, ξ3, . . ., ξk are q-rung orthopair fuzzy directed hyperedges.

The strength of connectedness between v1 and v2 is given as, λ∞(v1, v2) =
{max

k
T (λk(v1, v2)),min

k
F(λk(v1, v2))}.



260 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Fig. 6.10 A 5-rung
orthopair fuzzy directed
hypergraph
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A connected q-rung orthopair fuzzy directed hypergraph is one in which we have
at least one q-rung orthopair fuzzy directed hyperpath between each pair of vertices
of D .

We now illustrate the Definitions6.24, 6.25, 6.26, 6.27, 6.28 and 6.29 through an
example of 5-rung orthopair fuzzy directed hypergraph.

Example 6.7 Consider a 5-rung orthopair fuzzy directed hypergraph D = (Q, ξ),
as shown in Fig. 6.10.

In this 5-rung orthopair fuzzy directed hypergraph, we have

ξ1 = {{(v1, 0.8, 0.6), (v3, 0.8, 0.5)}, {(v5, 0.7, 0.8)}} = {t (ξ1), h(ξ1)},
ξ2 = {{(v1, 0.8, 0.6), (v2, 0.7, 0.9)}, {(v3, 0.8, 0.5), (v4, 0.6, 0.8)}}={t (ξ2), h(ξ2)},
ξ3 = {{(v3, 0.8, 0.5), (v6, 0.7, 0.6)}, {(v4, 0.6, 0.8)}} = {t (ξ3), h(ξ3)},
ξ4 = {{(v4, 0.6, 0.8), (v6, 0.7, 0.6)}, {(v7, 0.8, 0.7)}} = {t (ξ4), h(ξ4)}.

A 5-rung orthopair fuzzy directed hyperpath from v1 to v7 of length 3 is shown
through dashed lines and is given by an alternating sequence v1, ξ2, v3, ξ3, v4, ξ4, v7
of distinct vertices and directed hyperarcs. The strength of this hyperpath is

λ3(v1, v7) = {min{Tξ (ξ2), Tξ (ξ3), Tξ (ξ4)},max{Fξ (ξ2), Fξ (ξ3), Fξ (ξ4)}}
= (0.6, 0.9),

λ∞(v1, v7) = (0.6, 0.9).

Note that, D = (Q, ξ) is not connected because we don’t have a directed hyperpath
between each pair of vertices, i.e., v1 is not connected to v6. A backward and forward
5-rung orthopair fuzzy directed hypergraph is shown in Fig. 6.11a, b, respectively.
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(v1,0.5,0.6) (v2,0.3,0.8) (v3,0.2,0.9)
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Fig. 6.11 Backward and forward 5-rung orthopair fuzzy directed hypergraphs

Definition 6.30 A q-rung orthopair fuzzy directed hypergraphD = (Q, ξ) is linear
if every pair of q-rung orthopair fuzzy directed hyperedges ξi , ξ j ∈ ξ satisfies

• supp(ξi ) ⊆ supp(ξ j ) ⇒ i = j ,
• |supp(ξi ) ∩ supp(ξ j )| ≤ 1.

Example 6.8 Consider a 5-rung orthopair fuzzy directed hypergraph D = (Q, ξ),
as shown in Fig. 6.10. In this 5-rung orthopair fuzzy directed hypergraph, we
have supp(ξ1) = {v1, v3, v5}, supp(ξ2) = {v1, v2, v3, v4}, supp(ξ3) = {v3, v6, v4},
supp(ξ4) = {v4, v6, v7}. Note that, supp(ξi ) ⊆ supp(ξ j ) ⇒ i = j and

|supp(ξ1) ∩ supp(ξ2)| = |{v1, v3}| = 2,

|supp(ξ1) ∩ supp(ξ3)| = |{v3}| = 1,

|supp(ξ1) ∩ supp(ξ4)| = |{∅}| = 0,

|supp(ξ2) ∩ supp(ξ3)| = |{v4, v3}| = 2,

|supp(ξ2) ∩ supp(ξ4)| = |{v4}| = 1,

|supp(ξ3) ∩ supp(ξ4)| = |{v4, v6}| = 2.

That is, |supp(ξi ) ∩ supp(ξ j )| � 1, for all ξi , ξ j ∈ ξ . Hence, D = (Q, ξ) is not
linear.

Definition 6.31 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The q-rung orthopair fuzzy line graph of D is the graph l(D) = (Xl , ξl) such that,

1. Xl = ξ ,
2. {ξi , ξ j } ∈ ξl ⇔ |supp(ξi ) ∩ supp(ξ j )| �= ∅, for i �= j .

The truth-membership and falsity-membership of vertices and edges of l(D) are
determined as follows:

• Xl(ξi ) = ξ(ξi ),
• Tξl ({ξi , ξ j }) = min{Tξ (ξi ), Tξ (ξ j )|ξi , ξ j ∈ ξ}, Fξl ({ξi , ξ j }) = max{Fξ (ξi ),

Fξ (ξ j )|ξi , ξ j ∈ ξ}.
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Theorem 6.10 Let G = (U, ε) be a simple q-rung orthopair fuzzy directed graph.
Then G is the q-rung orthopair fuzzy line graph of a linear q-rung orthopair fuzzy
directed hypergraph.

Proof LetG = (U, ε)be a simpleq-rungorthopair fuzzydirectedgraph.We suppose
that G = (U, ε) is connected, with no loss of generality. A q-rung orthopair fuzzy
directed hypergraph D = (Q, ξ) can be formulated from G as follows:

(i) The set of directed edges of G will be taken as vertices of D , i.e., ε =
{ε1, ε2, ε3, . . . , εn} be the directed edges of G and hence the set of vertices of
D . Let X = {q1, q2, q3, . . . , qk} be the set of nontrivial q-rung orthopair fuzzy
sets on U such that qi (ε j ) = (1, 0), i = 1, 2, 3, . . . , k, j = 1, 2, 3, . . . , n.

(ii) Let U = {u1, u2, u3, . . . , u j } then the directed hyperedges of D are
ξ = {ξ1, ξ2, ξ3, . . . , ξn}, where ξi are those directed edges of G , which contain
the vertex ui as their incidence vertex, i.e., ξi = {ε j |ui ∈ ε j , j = 1, 2, 3, . . . , n}.
Moreover, ξ(ξi ) = U (ui ), i = 1, 2, 3, . . . , k.

We now claim thatD = (Q, ξ) is linear q-rung orthopair fuzzy directed hypergraph.
Consider an arbitrary directed hyperedge ξ j = {ε1, ε2, ε3, . . ., εr } and from the
defining relation of q-rung orthopair fuzzy directed hypergraph, we have

Tξ (ξ j ) = min{Tqj (ε1), Tqj (ε2), . . . , Tqj (εr )} = TU (ui ) ≤ 1,

Fξ (ξ j ) = max{Fqj (ε1), Fqj (ε2), . . . , Fqj (εr )} = FU (ui ) ≥ 0,

i = 1, 2, 3, . . . , k and
⋃
k
supp(qk) = X , for all qk .

We now prove that D = (Q, ξ) is linear.

1. By our supposition, membership degree of each vertex εi ofD is (1, 0). Thus, we
have supp(ξi ) ⊆ supp(ξ j ) implies i = j .

2. Suppose on contrary that |supp(ξi ) ∩ supp(ξ j )| = {εl ,εm}, i.e., these edges have
two incidence vertices in common, which is contradiction to the fact that G is
simple. Hence, |supp(ξi ) ∩ supp(ξ j )| ≤ 1, for 1 ≤ i, j ≤ r .

Theorem 6.11 A necessary and sufficient condition for l(D) to be connected is that
D is connected.

Proof Let D = (Q, ξ) be a connected q-rung orthopair fuzzy directed hypergraph
and l(D) = (Xl , ξl) be the line graph of D . Suppose that ξi and ξ j be two vertices
of l(D) and vi ∈ ξi , v j ∈ ξ j , for vi �= v j . Since D is connected then there exists an
alternating sequence vi , ξi , vi+1, ξi+1, . . ., ξ j , v j , which connects vi and v j . From the
definition of strength of connectedness between vi and v j , we have
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λ∞(ξi , ξ j ) = max
k

T (λk(ξi , ξ j )),min
k

F(λk(ξi , ξ j ))

= {max
k

(Tξl (ξi , ξi+1) ∧ Tξl (ξi+1, ξi+2) ∧ · · · ∧ Tξl (ξ j−1, ξ j )),

min
k

(Fξl (ξi , ξi+1) ∨ Fξl (ξi+1, ξi+2) ∨ · · · ∨ Fξl (ξ j−1, ξ j ))}, k = 1, 2, . . .

= {max
k

(Tξl (ξi ) ∧ Tξl (ξi+1) ∧ Tξl (ξi+2) ∧ · · · ∧ Tξl (ξ j−1) ∧ Tξl (ξ j )),

min
k

(Fξl (ξi ) ∨ Fξl (ξi+1) ∨ Fξl (ξi+2) ∨ · · · ∨ Fξl (ξ j−1) ∨ Fξl (ξ j ))},
= max T (λk(vi , v j )),min F(λk(vi , v j ))

= λ∞(vi , v j ) > 0.

Hence, l(D) is connected. By reversing the same procedure, we can easily prove that
if l(D) is connected then D is connected.

Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph. The construction
of a q-rung orthopair fuzzy directed line graph from a q-rung orthopair fuzzy directed
hypergraph is illustrated in Algorithm 6.5.1.

Algorithm 6.5.1

Finding the q−rung orthopair fuzzy directed line graph
1. Input the number of directed hyperedges r of q−rung orthopair fuzzy directed hypergraph D = (Q, ξ).
2. Input the truth-membership and falsity membership of directed hyperedges ξ1, ξ2, ξ3, · · · , ξr .
3. Construct a q−rung orthopair fuzzy line graph l(D) = (Xl , ξl ), whose vertices are taken as the directed

hyperedges ξ1, ξ2, ξ3, · · · , ξr .
4. Calculate the degrees of membership of vertices l(D) = (Xl , ξl ) as Xl (ξ j ) = ξ(ξ j ).
5. Draw an edge between ξi and ξ j in l(D) if |supp(ξi ) ∩ supp(ξ j )| ≥ 1.
6. Calculate the degrees of membership of edges in l(D) as,

ξl (ξi ξ j ) = (min{Tξ (ξi ), Tξ (ξ j )}, max{Fξ (ξi ), Fξ (ξ j )}).

Definition 6.32 The 2-section graph of a q-rung orthopair fuzzy directed hyper-
graph D = (Q, ξ) is a q-rung orthopair fuzzy graph [D]2 = (X ′,E ) such that

(i) X = X ′, i.e., the set of vertices of both graphs is same.
(ii) E = {vi v j |vi �= v j , vi v j ∈ ξk ,k =1,2,3, . . .}, i.e., vi and v j are adjacent in D .

We now justify the Definitions6.31 and 6.32 through Example6.9.

Example 6.9 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown in Fig. 6.12. By following the above Algorithm 6.5.1, it’s line graph is con-
structed and shown by dashed lines.

The 2-section graph of 7-rung orthopair fuzzy directed hypergraph given in
Fig. 6.12 is shown in Fig. 6.13.

Definition 6.33 Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The dual q–rung orthopair fuzzy directed hypergraphDd = (Xd , ξ d) ofD = (Q, ξ)

is defined as,
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Fig. 6.12 A 7-rung orthopair fuzzy directed hypergraph and its line graph
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Fig. 6.13 The 2-section graph of 7-rung orthopair fuzzy directed hypergraph

(i) Xd = ξ is the q-rung orthopair fuzzy set of vertices of Dd .
(ii) If |X | = n, then ξ d isq-rung orthopair fuzzy set on the set of directed hyperedges

{X1, X2, X3, . . ., Xn} such that Xi = {ξ j |vi ∈ ξ j , ξ j ∈ ξ}, i.e., Xi is the set of
those directed hyperedges in which vi is a common vertex.
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Fig. 6.14 Dual directed hypergraph of 7-rung orthopair fuzzy directed hypergraph

The membership degrees of Xi are defined as

Tξ d (Xi ) = min{Tξ (ξ j )|vi ∈ ξ j }, Fξ d (Xi ) = max{Fξ (ξ j )|vi ∈ ξ j }.

The method of forming the dual of q-rung orthopair fuzzy directed hypergraph is
described in Algorithm 6.5.2. We also explain this concept through an example.

Algorithm 6.5.2

The dual of q−rung orthopair fuzzy directed hypergraph
1. Input {v1, v2, v3, · · · , vn} the set of vertices and {ξ1, ξ2, ξ3, · · · , ξm} the set of directed hyperedges of D .
2. Formulate a q−rung orthopair fuzzy set of vertices of Dd as Xd = ξ .
3. Define a mapping ψ : X → ξ , which maps the set of vertices to the directed hyperedges of D , i.e.,

if vertex vi is contained in ξl , ξl+1, ξl+2, · · · , ξm then vi is mapped onto ξl , ξl+1, ξl+2, · · · , ξm .
4. Construct the directed hyperedges {X1, X2, X3, · · · , Xn} of Dd such that Xi = {ξ j |ψ(vi ) = ξ j }.
5. Draw the q−rung orthopair fuzzy directed hyperedge, the vertex ξ j of Dd is associated to h(Xi ) if

and only if vi ∈ t (ξ j ) in D and viceversa.
6. Formulate the truth-membership and falsity-membership of directed hyperedges of Dd as,

Tξd (Xi ) = min{Tξ (ξ j )|vi ∈ ξ j }, Fξd (Xi ) = max{Fξ (ξ j )|vi ∈ ξ j }.

Example 6.10 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown in Fig. 6.12. The dual 7-rung orthopair fuzzy directed hypergraph Dd =
(Xd , ξ d) of D = (Q, ξ) is shown in Fig. 6.14, which is constructed by following
the Algorithm6.5.2.

Theorem 6.12 The 2-section of dual of q-rung orthopair fuzzy directed hypergraph
[Dd ]2 is same as the line graph of D , i.e., [Dd ]2 = l(D).
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Fig. 6.15 l(D)

Proof Let D = (Q, ξ) be a q-rung orthopair fuzzy directed hypergraph having {v1,
v2, v3, . . ., vn} the set of vertices and {ξ1, ξ2, ξ3, . . ., ξm} the set of directed hyper-
edges. Suppose that l(D) = (Xl , ξl), Dd = (Xd , ξ d) and [Dd ]2 = (Xd ,E ) be the
line graph, dual directed hypergraph, and 2-section of dual ofD , respectively. The 2-
section [Dd ]2 has the same vertex set as that of l(D). Assume that the set of directed
hyperedges ofDd be {X1, X2, X3, . . ., Xn}. Obviously {ξiξ j |ξi , ξ j ∈ Xi } are the edges
of [Dd ]2 and also the set of edges of l(D). We now show that ξl(ξiξ j ) = E (ξiξ j ).

ξl(ξiξ j ) = (max{Tξ (ξi ), Tξ (ξi )},min{Fξ (ξi ), Fξ (ξi )}),
= (max{Tξ d (ξi ), Tξ d (ξi )},min{Fξ d (ξi ), Fξ d (ξi )}),
= E (ξiξ j ),

which completes the proof.

We now justify the result of Theorem6.12 through a concrete example.

Example 6.11 Let D = (Q, ξ) be a 7-rung orthopair fuzzy directed hypergraph as
shown inFig. 6.12. Its line graph is constructed and shownbydashed lines inFig. 6.15.

The dual ofD is shown in Fig. 6.14.We now determine the 2-section ofDd , which
is given in Fig. 6.16.

Thus, Figs. 6.15 and 6.16 show that [Dd ]2 = l(D).
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6.6 Coloring of q-Rung Orthopair Fuzzy Directed
Hypergraphs

In this section, we define the (α, β)-level hypergraph ofD , which is a useful concept
in the coloring of q-rung orthopair fuzzy directed hypergraphs. A sequence of real
numbers, called the fundamental sequence of D , is also defined using the (α, β)-
level sets. The concept of the fundamental sequence is used to prove various results
related to the coloring of q-rung orthopair fuzzy directed hypergraphs. Moreover,
we defineL -coloring, chromatic number, and p-coloring ofD . We also prove some
useful results, which simplify the complicated procedure of coloring and finding the
chromatic number of q-rung orthopair fuzzy directed hypergraphs.

Definition 6.34 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph.
The (α, β)-level hypergraph of D is defined as D (α,β) = (X (α,β),ξ (α,β)), where

1. ξ (α,β) = {ξ (α,β)

i : ξi ∈ ξ} and ξ
(α,β)

i = {x ∈ X |Tξi (x) ≥ α, Fξi (x) ≤ β},
2. X (α,β) = ⋃

ξi∈ξ

ξ
(α,β)

i .

Definition 6.35 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
andD (α,β) be the (α, β)-level hypergraph of D . The sequence of real numbers ρ1 =
(Tρ1 , Fρ1), ρ2 = (Tρ2 , Fρ2), ρ3 = (Tρ3 , Fρ3),. . .,ρn = (Tρn , Fρn ), 0 < Tρ1 < Tρ2 <

Tρ3 < · · · < Tρn , Fρ1 > Fρ2 > Fρ3 > · · · > Fρn > 0,where (Tρn , Fρn ) = h(H ) such
that,

(i) if ρi−1 = (Tρi−1 , Fρi−1) < ρ = (Tρ , Fρ) ≤ ρi = (Tρi , Fρi ) then ξρ = ξρi ,

(ii) ξρi ⊆ ξρi+1 ,

is called the fundamental sequence of D , denoted by fS(D). The set of ρi -level
hypergraphs {Dρ1 ,Dρ2 ,Dρ3 , . . . ,Dρn } is called the core hypergraphs ofD or simply
the core set of D and is denoted by c(D).
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Fig. 6.17 Fundamental sequence of D

Definition 6.36 A q-rung orthopair fuzzy directed hypergraph D = (X, ξ) is
ordered if c(D) = {Dρ1 , Dρ2 , Dρ3 , . . ., Dρn } is ordered, i.e., Dρ1 < Dρ2 < Dρ3 <

· · · < Dρn and is simply ordered if c(D) is simply ordered.

Example 6.12 Consider a 2-rung orthopair fuzzy directed hypergraph D = (X, ξ),
where X = {x1, x2, x3, x4} and ξ = {ξ1, ξ2, ξ3} such that ξ1 = {(x1, 0.8, 0.1),
(x2, 0.8, 0.1)}, ξ2 = {(x1, 0.6, 0.2), (x2, 0.6, 0.2), (x3, 0.4, 0.3)}, ξ3 = {(x1, 0.4,0.3),
(x2, 0.4, 0.3), (x4, 0.4, 0.3)}. By determining the (α, β)-level hypergraphs of D , we
haveD (0.8,0.1) = D (0.6,0.2) and fS(D) = {(0.6, 0.2), (0.8, 0.1)}. Further,D (0.4,0.3) =
D (0.6,0.2). The corresponding sequence of level hypergraphs is shown in Fig. 6.17.

We now define the primitive k-coloring (or simply a p-coloring), L -coloring, and
chromatic number of q-rung orthopair fuzzy directed hypergraphs and illustrate these
concepts by considering a concrete example.

Definition 6.37 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph.
A primitive k-coloring C (or simply a p-coloring) is defined as a partition of X in
k subgroups, called colors, such that the elements from at least two colors of C are
contained in the support of every q-rung orthopair fuzzy directed hyperedge of D .

Definition 6.38 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and c(D) = {Dρ1 , Dρ2 , Dρ3 , . . ., Dρn } be the set of core hypergraphs of D . An L -
coloring is defined as a partition of X , with k components, into k subgroups {s1, s2, s3,
. . ., sk} such that C persuades a coloring for each core hypergraphDρi = (Xρi , ξρi ).
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Remark 6.5 Note that, an L -coloring of D is a p-coloring, but in general, the
converse does not hold. The preceding theorem states the condition under which an
L -coloring and p-coloring of D coincides.

Theorem 6.13 LetD = (X, ξ)beanorderedq-rungorthopair fuzzy directed hyper-
graph and C is a p-coloring of D then L -coloring of D is also C.

Definition 6.39 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and let k ≥ 2 be an integer then the k-coloring of vertex set is defined as a function
κ:X → {1, 2, 3, . . . , k} such that for allρ ∈ fS(D) and for each hyperedge ξρ , which
is not a loop, κ is not a constant on ξρ .
The minimum integer k, for which there exists a k-coloring ofD is called chromatic
number of D , denoted by χ(D).

Example 6.13 Let D = (X, ξ) be a 1-rung orthopair fuzzy directed hypergraph,
where X = {t1, t2, t3, t4, t5, t6, t7} and ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} such that

ξ1 = {(t1, 0.6, 0.3), (t2, 0.6, 0.3), (t4, 0.5, 0.2)},
ξ2 = {(t1, 0.6, 0.3), (t3, 0.6, 0.3), (t5, 0.3, 0.1), (t7, 0.5, 0.2)},
ξ3 = {(t1, 0.6, 0.3), (t3, 0.6, 0.3), (t6, 0.2, 0.1), (t7, 0.5, 0.2)},
ξ4 = {(t2, 0.6, 0.3), (t3, 0.6, 0.3), (t4, 0.5, 0.2)},
ξ5 = {(t2, 0.6, 0.3), (t4, 0.5, 0.2), (t5, 0.3, 0.1), (t7, 0.5, 0.2)},
ξ6 = {(t2, 0.6, 0.3), (t4, 0.5, 0.2), (t6, 0.2, 0.1)},
ξ7 = {(t4, 0.5, 0.2), (t5, 0.3, 0.1), (t6, 0.2, 0.1)},

Let ρ1 = (0.6, 0.3), ρ2 = (0.5, 0.2), ρ3 = (0.30.1) and ρ4 = (0.2, 0.1). The corre-
sponding ρi -level hyperedges are given as follows:

ξρ1 = {{t1, t2}, {t1, t3}, {t2, t3}},
ξρ2 = {{t1, t2, t4}, {t1, t3, t7}, {t2, t3, t4}, {t2, t7, t4}},
ξρ3 = {{t1, t2, t4}, {t1, t3, t5, t7}, {t1, t3, t7}, {t2, t3, t4}, {t2, t4, t5}, {t2, t4}, {t4, t5}},
ξρ3 = {{t1, t2, t4}, {t1, t3, t5, t7}, {t1, t3, t6, t7}, {t2, t3, t4}, {t2, t4, t5, t7}, {t2, t4, t6}, {t4, t5, t6}}.

Suppose {C1,C2} is a coloring of Dρ1 . Then, {t1, t2} ∩ {C1,C2} �= ∅, {t1, t3} ∩
{C1,C2} �= ∅ and {t2, t3} ∩ {C1,C2} �= ∅. Thus, C1 ∩ C2 �= ∅, which is a contra-
diction. Hence, χ(Dρ1) = 3. {{t1, t2, t3}, {t4, t5, t6, t7}} is the coloring ofDρ2 . Hence,
χ(Dρ2) = 2. Similarly, χ(Dρ3) = 3 and χ(Dρ4) = 3.

Definition 6.40 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
and Q = {q1, q2, q3, . . ., qk} be the collection of non trivial q-rung orthopair fuzzy
sets on X then Q is a q-rung orthopair fuzzy k-coloring if Q satisfies the following:

• min{qi , q j } = (0, 1), if i �= j ,
• for every (α, β) ∈ (0, 1], ⋃

i
q(α,β)

i = X ,
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• for every (α, β) ∈ (0, 1], each hyperedge ξ
(α,β)

j possesses non-empty intersection

with at least two color classes q(α,β)

i .

Observation 6.14 LetD = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn}. Then, the coloring
of core hypergraphDρi can be enlarged to the coloring ofDρi+1 if and only if a single
color class of κ does not contain any hyperedge ofDρi+1 . Particularly, ifD is simply
ordered then any coloring κ of Dρi maybe elongated to the coloring of D .

Theorem 6.14 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn}. Let D̃ρn be the core
coloring ofDρn then every coloring ofDρn is a coloring ofD if and only if for every
ρ ∈ fS(D) there exists A ∈ D̃ρn such that A ⊆ ξ

ρ

i , for each ξi ∈ ξ for which ξ
ρ

i is a
non loop edge.

Proof Suppose the existance of some ρ ∈ fS(D) and ξi ∈ ξ such that |ξρ

i | ≥ 2 and
A � ξ

ρ

i , for every A ∈ D̃ρn . Let a color class is defined for the vertex set of ξ
ρ

i .
Construct a sub-hypergraphD ′ ofD , which is constructed by removing ξ

ρ

i from the
vertices of D̃ρn . Thus, {A\ξρ

i |A ∈ D̃ρn } is the set of hyperedges of D ′. Since every
ξ

ρn
j ∈ Dρn , which is not a loop and also including ξ

ρn
i , contains some A ∈ D̃ρn and

this non loop edge ξ
ρn
j has non empty intersection with the vertices ofD ′. Let {q2, q3,

. . ., qk} be the coloring of D ′ then the coloring of Dρn is {ξρ , q2, q3, . . ., qk}, where
ξρ is contained in single color class. Hence, there exists a coloring of Dρn which is
not a coloring of D .
Conversely, assume that there exists some ρ ∈ fS(D) and ξi ∈ ξ such that |ξρ

i | ≥ 2
and A ⊆ ξ

ρ

i , for every A ∈ D̃ρn . Suppose that ρ and ξi are taken as arbitrary but fixed
and κ be the coloring of Dρn . Since κ is not a constant on A, it is also non constant
on ξ

ρ

i , hence κ is a coloring of D .

The coloring problem ofD can be reduced to the correlated crisp coloring. It can be
done by replacingD with a more simpler frameworkD�, it will be noted thatD� is
ordered, simpler to color and every p-coloring of D� will generate the L -coloring
of D .

Definition 6.41 A spike reduction of ξi ∈ P(X), which is denoted by ξ̃i , is defined
as

ξ̃i
(α,β) =

{
ξ

(α,β)

i , if |ξ (α,β)

i | ≥ 2,
∅, if |ξ (α,β)

i | ≤ 1,

for 0 < α, β ≤ 1. Particularly, if ξi is a loop then ξ̃i = ∅.
Definition 6.42 Given D = (Q, ξ) then D̃ = (X̃ , ξ̃ ), where ξ̃ = {ξ̃i |ξi ∈ ξ}.
Construction 6.2 LetD = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn} and c(D) = {Dρ1 ,
Dρ2 , Dρ3 , . . ., Dρn }. Then, the conversion of D into D s is given in the following
construction.
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1. Obtain a partial hypergraph D
ρ1 of Dρ1 by abolishing all those directed hyper-

edges of Dρ1 that properly accommodate any other hyperedge of Dρ1 .
2. Subsequently, obtain a partial hypergraph D

ρ2 of Dρ2 by abolishing all those
directed hyperedges of Dρ2 that properly accommodate any other hyperedge of
Dρ2 or (properly or improperly) contain a hyperedge of partial hypergraph D

ρ1 .
(It may be possible that D

ρ2 possesses no hyperedges, in such case existance of
D

ρ2 is ignored.)
3. By following the same procedure, obtain a partial hypergraph D

ρ3 of Dρ3 by
abolishing all those directed hyperedges of Dρ3 that properly accommodate any
other hyperedge ofDρ3 or (properly or improperly) contain a hyperedge of partial
hypergraph either D

ρ1 or D
ρ2 .

4. Following this iterative procedure, we obtain a subsequence of fS(D), ρs
m · · · <

ρs
1 = ρ1 and the set of partial hypergraphs corresponding to this subsequence is

c(D) = {Dρs
1 , D

ρs
2 , D

ρs
3 , . . ., D

ρs
m } from the c(D). It is obvious from above pro-

cedure that each D
ρs
i , 1 ≤ i ≤ m, contain non-empty set of hyperedges because

all those hypergraphs having empty set of hyperedges have been eliminated from
the consideration.

5. Construct the elementary q-rung orthopair fuzzy directed hypergraph D s =
(Xs, ξ s) satisfying the following conditions

• fS(D s) = {ρs
1, ρ

s
2, ρ

s
3, . . . , ρ

s
m},

• if ξ j ∈ ξ s then h(ξ j ) ∈ {ρs
1, ρ

s
2, ρ

s
3, . . . , ρ

s
m},

• the family of hyperedges in ξ s having heights ρs
k is the collection of elementary

q-rung orthopair fuzzy sets {η(Q, ρs
k )|Q ∈ D

ρs
k }, for all k, 1 ≤ k ≤ m.

Definition 6.43 Let D� be a q-rung orthopair fuzzy directed hypergraph obtained
from D̃ by the procedure described above, i.e., D� = (D̃)s .

Definition 6.44 Let D = (X, ξ) be a q-rung orthopair fuzzy directed hypergraph
having the fundamental sequence fS(D) = {ρ1, ρ2, ρ3, . . ., ρn} and c(D) = {Dρ1 ,
Dρ2 , Dρ3 , . . ., Dρn } with Dρi = (Xi ,Ei ) and the elements of fS(D) are ordered
then D is called sequentially simple if whenever E ∈ Ei\Ei−1 then E � Xi−1,
i = 1, 2, 3, . . . , n.

Theorem 6.15 Let D = (X, ξ) be a sequentially simple q-rung orthopair fuzzy
directed hypergraph having core set c(D) = {Dρi = (Xi ,Ei )|i = 1, 2, 3, . . . , n}
and the elements of fS(D) are ordered. Suppose that E ∈ E j+k\E j , j < n and
k ∈ {1, 2, 3, . . . , n − j} then E � X j .

Proof The general proof of this theorem is illustrated by considering an example.
Assume that E ∈ E j+3\E j , then

(i) either E ∈ E j+2 or E /∈ E j+2. In the succeeding condition E ∈ E j+3\E j+2,
which indicates that E � X j+2, thus E � X j because X j ⊆ X j+2. Now sup-
pose that E ∈ E j+2. Then
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(ii) either E ∈ E j+1 or E /∈ E j+1. In the succeeding condition E ∈ E j+2\E j+1,
which indicates that E � X j+1, thus E � X j because X j ⊆ X j+1. Now sup-
pose that E ∈ E j+1. Then

(iii) since E /∈ E j , this implies that E ∈ E j+1\E j . Thus, E � X j . Hence it is clear
that E � X j .

Theorem 6.16 Let D = (X, ξ) be a sequentially simple q-rung orthopair fuzzy
directed hypergraph the D̃ ,D s andD� are also sequentially simple q-rung orthopair
fuzzy directed hypergraphs.

Proof Since D = (X, ξ) is a sequentially simple q-rung orthopair fuzzy directed
hypergraph. Since D̃ is obtained by removing all those hyperedges of D , which are
spikes(loops) and also by eliminating all terminal spikes from the directed hyper-
edges of D . Certainly D̃ is a sequentially simple q-rung orthopair fuzzy directed
hypergraph. Also the skeleton of D , denoted by D s , is a sequentially simple q-rung
orthopair fuzzy directed hypergraph. Therefore,D� = (D̃)s is also sequentially sim-
ple q-rung orthopair fuzzy directed hypergraph.

6.7 Applications

6.7.1 The Most Proficient Arrangement for Hazardous
Chemicals

Hazardous waste is a type of waste that is considered to have potential and substan-
tial threats to the environment and human health. There are many human activities,
including medical practice, industrial manufacturing procedures, and batteries that
generate the hazardous waste in various categories, including solids, gases, liquids,
and sludges. The improper arrangement of these hazardous wastes results in many
serious tragedies. Serious health issues, including cancer, birth defects, and nerve
damage may occur due to improper handling for those who ingest the contaminated
air, water or food. Remediation and cleanup cost of these hazardous substances may
amount to millions and billions of dollars. To ensure the well being of the population,
protection of the surrounding environment, and to avoid any type of threat or haz-
ard proper management of hazardous chemicals is extremely important. A q-rung
orthopair fuzzy directed hypergraph can be used to well demonstrate the manage-
ment system of hazardous elements. The 5-rung orthopair fuzzy directed hypergraph
model of some compatible and incompatible elements is shown in Fig. 6.18.

The set of oval vertices G = {G1, G2, G3, G4, G5} of this directed hypergraph
represents the types of those elements, which are adjacent to them. The description
of these vertices is given in Table6.8.

For the cost efficient and secure management of hazardous elements, it is imper-
ative to fill the containers up to 75% and also the container’s material should be
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Fig. 6.18 5-rung orthopair fuzzy directed hypergraph model

Table 6.8 Description of oval vertices

Category Membership
values

Proficiency (%) Ineptness (%)

GROUP1 Inorganic acids (0.7, 0.3) 70 30

GROUP2 Organic acids (0.72, 0.28) 72 28

GROUP3 Caustics (0.71, 0.29) 71 29

GROUP4 Amines and
alkanolamines

(0.75, 0.25) 75 25

GROUP5 Halogenated
compounds

(0.73, 0.27) 73 27

compatible to the elements stored in it. Only those chemical substances are con-
nected through the same directed hyperedges, which are compatible to each other
and are not dangerous when stored together. For a proficient management of such
elements, one should know the characteristics of hazardous elements such as cor-
rosivity, reactivity or toxicity of these elements. A 5-rung orthopair fuzzy set Q
describes the corrosivity of these chemical substances.

Q = {(w1, 0.81, 0.23), (w2, 0.81, 0.23), (w3, 0.81, 0.23), (w4, 0.90, 0.17),

(w5, 0.90, 0.17), (w6, 0.90, 0.17), (w7, 0.87, 0.13), (w8, 0.87, 0.13),

(w9, 0.87, 0.13), (w10, 0.75, 0.30), (w11, 0.70, 0.20), (w12, 0.85, 0.20),

(w13, 0.70, 0.10), (w14, 0.70, 0.10), (w15, 0.90, 0.20)}.

Table6.9 describes the importance of defining this 5-rung orthopair fuzzy set.
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Table 6.9 Corrosivity and fortifying level of square vertices

Square vertices Corrosivity
(%)

Vitriolicity
(%)

Square vertices Corrosivity
(%)

Vitriolicity
(%)

Nitric acid 81 23 Triethylamine 75 30

Sulfuric acid 81 23 Diethanolamine 70 20

Hydrochloric
acid

81 23 Ethylenediamine 85 20

Acetic acid 90 17 Chlorobenzene 70 10

Butyric acid 90 17 Trichloroethylene 70 10

Formic acid 90 17 Trichlorofluoromethane 90 20

Sodium
hydroxide

87 13 Solutions 87 13

Ammonium
hydroxide

87 13

Table 6.10 Compatibility and incompatibility levels of containers to chemicals

C Inorganic Organic Caustics Alkanolamines Compounds

C1 (0.81, 0.23) (0.001, 0.980) (0.10, 0.75) (0.001, 0.980) (0.010, 0.908)

C2 (0.10, 0.83) (0.90, 0.17) (0.75, 0.10) (0.010, 0.908) (0.75, 0.10)

C3 (0.001, 0.980) (0.81, 0.23) (0.10, 0.83) (0.10, 0.83) (0.91, 0.23)

C4 (0.10, 0.83) (0.81, 0.23) (0.90, 0.17) (0.81, 0.23) (0.81, 0.23)

C5 (0.001, 0.980) (0.71, 0.23) (0.930, 0.200) (0.001, 0.980) (0.870, 0.210)

The containers which are holding these chemicals should be in good condition,
non-leaking and compatible and these wastes should not be kept in a container that
is made of an incompatible material. For example, acids must not be stored in metal
material, hydrofluoric acid should not be stored in glass and lightweight polyethy-
lene containers should not be used to store or transfer solvents. Thus, one should
make sure that containers possess a high-level of compatibility with chemicals. We
now consider a set of containers/cabinets C = {C1, C2, C3, C4, C5} and define five
5-rung orthopair fuzzy sets on C according to their compatibility with these ele-
ments. For example, the membership degrees C1(G1) = (0.001, 0.980) implies that
C1 container is made up of such material which is incompatible to store inorganic
acids and suitable to store organic acids asC1(G2) = (0.81, 0.23). Similarly, by tak-
ing the same assumptions, we define other 5-rung orthopair fuzzy sets as given in
Table6.10.

It can be noted from Table6.10 that inorganic acids should be stored in C1 con-
tainer as this is highly compatible to inorganic acids, so this storage will be most
secure and risk less. Note that, the material of C2 is compatible with organic acids,
caustics, and halogenated compounds but we will use this container to store organic
acids because the truth-membership degree is greatest in this case. In the same way,
we find that C3 is good for halogenated compounds, C4 is used to store amines and
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Fig. 6.19 Graphical representations of storages of chemical substances

alkanolamines and C5 is suitable for storing caustics. The graphical representations
of these storages are shown in Fig. 6.19.

Thus, by taking the above model under consideration, hazardous chemicals can
be systemized in a more appropriate and acceptable manner to reduce the precarious
risks to human health and environment.

6.7.2 Assessment of Collaborative Enterprise to Achieve a
Particular Objective

Collaboration is the demonstration of working as a team of members to achieve
some piece of work, including research projects. Many organizations are realizing
the significance of collaboration as a key factor in innovations. The collaborativework
provides more opportunities for studying team-work skills and improves personal
and professional relationships. Here, we consider a few projects in chemical industry,
which are assigned to different groups of trainees. A 7-rung orthopair fuzzy directed
hypergraph model is used to well demonstrate this collaborative activity of different
teams/groups.

6.7.2.1 The Project Possessesing the Powerful Collaboration

Consider the peculiar projects in the field of chemical industry, includingZeroEnergy
Homes,Heat Exchanger Network Retrofit,Genetic Algorithms for Process Optimiza-
tion, Progressive Crude Distillation, Water Management (for pollution prevention)
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Fig. 6.20 7-rung orthopair fuzzy directed hypergraph model

Table 6.11 Collaboration capabilities of groups to projects

Assigned projects Collaboration
team

Collaborative
competency (%)

Collaborative
incompetency (%)

Zero energy homes {t1, t2, t4, t7} 65 11

Heat exchanger network retrofit {t7, t9, t12} 79 23

Genetic algorithms for process
optimization

{t10, t12} 70 25

Progressive crude distillation {t9, t11} 79 34

Water management {t5, t7, t8} 65 23

Design of LNG facilities {t3, t4, t5, t6} 70 23

and Design of LNG Facilities. The assignment of these projects to different groups
is well explained through a 7-rung orthopair fuzzy directed hypergraph model as
shown in Fig. 6.20.

Note that, the set of triangular vertices {p1, p2, p3, p4, p5, p6} represents the
projects that are considered to be worked on and the set of circular vertices {t1, t2,
t3, t4, t5, t6, t7, t8, t9, t10, t11, t12} represents the trainees, to whom these projects
are assigned. Each directed hyperedge connects the corresponding project to it’s
allocated trainees. The projects assigned to different groups are illustrated through
Table6.11.

Note that, collaborative competency levels of different teams narrate that how
much mutual understanding is there between the members of corresponding teams
towards their projects. For example, the trainees of “Zero Energy Homes” project
have 65% collaborative competency, i.e., they give respect to each other’s ideas,
contribution, and acknowledge the opinions of other trainees and their collective
strength to achieve the goal is 65%. Incompetency degree shows that they have 11%
conflicts of ideas and opinions. Similarly, the collaborative competency of all other
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Table 6.12 Heights of all directed hyperedges

h(ξ1) (0.90, 0.11) h(ξ2) (0.83, 0.23)

h(ξ3) (0.91, 0.20) h(ξ4) (0.91, 0.23)

h(ξ5) (0.97, 0.03) h(ξ6) (0.97, 0.03)

h(ξ7) (0.93, 0.12)

teams can be studied through the table. Now, to evaluate the strength of determination
and competent behavior of all teams towards their collaborative project, we calculate
the heights of all directed hyperedges, which are given in Table6.12.

The directed hyperedge having a maximum height, i.e., maximum
truth-membership and minimum falsity-membership will correspond to the most
efficient team working in collaboration. Note that, ξ5 and ξ6 have maximum heights
showing that {t7, t9, t12} and {t10, t12} share the most powerful collaborative charac-
teristics. The method adopted in this part can be explained by a simple algorithm
given in Table6.13.

6.7.2.2 The Enduring Connection Between Projects:

Now, the line graph of the above 7-rung orthopair fuzzy directed hypergraph model
can be used to determine the common trainees of distinct projects. The corresponding
line graph is shown in Fig. 6.21.

The dashed lines between the projects demonstrate that they share some common
trainees. The truth-membership and falsity-membership of these edges are given
here.

(Tp1 p2 , Fp1 p2) = (0.80, 0.11),

(Tp1 p5 , Fp1 p5) = (0.80, 0.11),

(Tp1 p6 , Fp1 p6) = (0.80, 0.11),

(Tp2 p5 , Fp2 p5) = (0.79, 0.23),

(Tp2 p3 , Fp2 p3) = (0.79, 0.23),

(Tp3 p4 , Fp3 p4) = (0.79, 0.25).

Themaximum truth-membership andminimum falsity-membership reveal the robust
connection among the distinct projects. For instance, projects p1 and p5 are 80%
connected to each other, i.e., the trainees of these projects can share their ideas,
creative thinkings and motives among themselves to enhance the output of their
projects. The method adopted in this section can be explained by a simple algorithm
given in Table6.14.
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Table 6.13 Algorithm

Algorithm for powerful collaboration

1. m =input(‘enter the number of trainees’);

2. T =input(‘enter the degrees of membership of vertices(trainees) as m × 2’);

3. r =input(‘enter the number of directed hyperedges’);

4. Xi =input(‘enter the degrees of membership of directed hyperedges r × 2’);

5. Y =input(‘enter the set valued function that tells us how many vertices are

contained in a hyperedge as r × m’);

6. J=[zeros(r,1) ones(r,1)];

7. for i = 1 : r
8. for k = 1 : m
9. if Y (i, k) == 1;

10. J (i, 1) = max(J (i, 1), T (k, 1));

11. T (i, 2) = min(J (i, 2), T (k, 2));

12. end
13. end
14. end
15. H = max(J (:, 1));j=0;v=zeros(r,2); b=1;
16. for l = 1 : r
17. if J(l,1)==H
18. j=j+1;v(l,1)=l;b=min(b,J(l,2));

19. end
20. end
21. if j>1

22. for l = 1 : r
23. if J(l,2)==b
24. k=k+1;v(l,2)=l;

25. fprintf(‘you can choice (any of these) hyperedge(s) %d’,l)

26. end
27. end
28. else
29. for l = 1 : r
30. if J(l,1)==H
31. fprintf(‘you can choice edge %d’,l)

32. end
33. end
34. end
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Fig. 6.21 Line graph of 7-rung orthopair fuzzy directed hypergraph

Table 6.14 Algorithm for the enduring connection between projects

1. m =input(‘enter the number of vertices’);

2. T =input(‘enter the degrees of membership of vertices as m × 2’);

3. r =input(‘enter the number of directed hyperedges’);

4. Xi =input(‘enter the degrees of membership of directed hyperedges r × 2’);

5. s =input(‘enter the number of edges in line graph’);

6. P =input(‘enter the degrees of membership of edges s × 2’);

7. H = max(P(:, 1));j=0;v=zeros(s,2); b=1;
8. for n=1:s
9. if P(n,1)==H
10. j=j+1;v(n,1)=l;b=min(b,P(n,2));

11. end
12. end
13. if j>1

14. for n=1:s
15. if P(n,2)==b
16. k=k+1;v(n,2)=n;

17. fprintf(‘you can choice (any of these) hyperedge(s) %d’,n)

18. end
19. end
20. else
21. for n=1:s
22. if P(n,1)==H
23. fprintf(‘you can choice edge %d’,n)

24. end
25. end
26. end
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6.8 Comparative Analysis

Orthopair fuzzy sets are defined as those fuzzy sets in which the membership degrees
of an element is taken as the pair of values in the unit interval [0, 1], given as
(T (x), F(x), T (x)) indicates support formembership (truth-membership), and F(x)
indicates support against membership (falsity-membership) to the fuzzy set. Intu-
itionistic fuzzy sets and Pythagorean fuzzy sets are examples of orthopair fuzzy
sets. Atanassov’s [14] intuitionistic fuzzy set has been studied widely by various
researchers, but the range of applicability of intuitionistic fuzzy set is limited because
of its constraint that the sum of truth-membership and falsity-membership must
be equal to or less than one. Under this condition, intuitionistic fuzzy sets cannot
express some decision evaluation information effectively, because a decision maker
may provide information for a particular attribute such that the sum of the degrees
of truth-membership and the degrees of falsity-membership becomes greater than
one. In order to solve such types of problems, Pythagorean fuzzy sets were defined
by Yager [32], whose prominent characteristic is that the square sum of the truth-
membership degree and the falsity-membership degree is less than or equal to one.
Thus, a Pythagorean fuzzy set can solve a number of practical problems that can-
not be handled using intuitionistic fuzzy set and is a generalization of intuitionistic
fuzzy set. Due to the more complicated information in society and the development
of theories, q-rung orthopair fuzzy sets were proposed by Yager [35]. A q-rung
orthopair fuzzy set is characterized in such a way that the sum of the q th power of
the truth-membership degree and the q th power of the degrees of falsity-membership
is restricted to less than or equal to one. Note that, intuitionistic fuzzy sets and
Pythagorean fuzzy sets are particular cases of q-rung orthopair fuzzy sets. The flexi-
bility and effectiveness of a q-rung orthopair fuzzy model can be proven as follows:
Suppose that (x, y) is an intuitionistic fuzzy grade, where x ∈ [0, 1], y ∈ [0, 1],
and 0 ≤ x + y ≤ 1, since xq ≤ x , yq ≤ y, q ≥ 1, so we have 0 ≤ xq + yq ≤ 1.
Thus, every intuitionistic fuzzy grade is also a Pythagorean fuzzy grade, as well as a
q-rung orthopair fuzzy grade. However, there are q-rung orthopair fuzzy grades that
are not intuitionistic fuzzy nor Pythagorean fuzzy grades. For example, (0.9, 0.8),
here (0.9)5 + (0.8)5 ≤ 1, but 0.9 + 0.8 = 1.7 > 1 and (0.9)2 + (0.8)2 = 1.45 > 1.
This implies that the class of q-rung orthopair fuzzy sets extend the classes of intu-
itionistic fuzzy sets and Pythagorean fuzzy sets. It is worth noting that as the param-
eter q increases, the space of acceptable orthopairs also increases, and thus, the
bounding constraint is satisfied by more orthopairs. Thus, a wider range of uncertain
information can be expressed by using q-rung orthopair fuzzy sets. We can adjust
the value of the parameter q to determine the expressed information range; thus,
q-rung orthopair fuzzy sets are more effective and more practical for the uncertain
environment. Based on these advantages of q-rung orthopair fuzzy sets, we proposed
q-rung orthopair fuzzy hypergraphs and q-rung orthopair fuzzy directed hypergraphs
to combine the benefits of both theories. A wider range of uncertain information
can be expressed using the methods proposed in this paper, and they are closer
to real decision-making. Our proposed models are more general as compared to the
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intuitionistic fuzzy and Pythagorean fuzzymodels, aswhen q = 1, themodel reduces
to the intuitionistic fuzzymodel, andwhen q = 2, it reduces to the Pythagorean fuzzy
model. Hence, our approach is more flexible and generalized, and different values
of q can be chosen by decision makers according to the different attitudes.

6.9 Complex Pythagorean Fuzzy Hypergraphs

A complex Pythagorean fuzzy set is an extension of a Pythagorean fuzzy set that is
used to handle the vagueness with the degrees whose ranges are enlarged from real to
complex subset with unit disc. For example, a clothing brand considers five locations
to open new outlet regarding some particular criteria. If an expert assign membership
0.8 and nonmembership 0.6 to a location with respect to a criterion then intuitionistic
fuzzy set fails to deal with this problem because 0.8 + 0.6 ≥ 1, but this problem can
be effectively handled by Pythagorean fuzzy set as 0.82 + 0.62 ≤ 1. On the other
hand, if we consider the maximum number of people visiting the outlet at a partic-
ular time then Pythagorean fuzzy set also fails because to handle time we have to
introduce the periodic term. Now expert assign membership 0.8eι(1.4π) and nonmem-
bership 0.6eι(1.1π) which satisfy the conditions of complex Pythagorean fuzzy set as
0.82 + 0.62 ≤ 1. Therefore, complex Pythagorean fuzzy set is proficient in dealing
with data involving time period (periodic nature) due to complex membership and
nonmembership grades along with the constraints.

Definition 6.45 A complex Pythagorean fuzzy set P on the universal set X is defined
as, P = {(u, TP(u)eiφP (u), FP(u)eiψP (u))|u ∈ X}, where i = √−1, TP(u), FP(u) ∈
[0, 1],φP(u), ψP(u) ∈ [0, 2π ], and for every u ∈ X, 0 ≤ T 2

P(u) + F2
P(u) ≤ 1.Here,

TP(u), FP(u) and φP(u), ψP(u) are called the amplitude terms and phase terms for
truth membership and falsity membership grades, respectively.

Definition 6.46 A complex Pythagorean fuzzy graph on X is an ordered pair
G∗ = (C, D), where C is a complex Pythagorean fuzzy set on X and D is com-
plex Pythagorean fuzzy relation on X such that,

TD(ab) ≤ min{TC(a), TC (b)},
FD(ab) ≤ max{FC(a), FC(b)}, (for amplitude terms)

φD(ab) ≤ min{φC(a), φC (b)},
ψD(ab) ≤ max{ψC(a), ψC(b)}, (for phase terms)

0 ≤ T 2
D(ab) + F2

D(ab) ≤ 1, for all a, b ∈ X .

Definition 6.47 A complex Pythagorean fuzzy hypergraph on X is defined as an
ordered pair H∗ = (C ∗,D∗), whereC ∗ = {β1, β2, . . . , βk} is a finite family of com-
plex Pythagorean fuzzy sets on X and D∗ is a complex Pythagorean fuzzy relation
on complex Pythagorean fuzzy sets β j ’s such that
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(i)

TD∗({s1, s2, . . . , sl }) ≤ min{Tβ j (s1), Tβ j (s2), . . . , Tβ j (sl )},
FD∗({s1, s2, . . . , sl }) ≤ max{Fβ j (s1), Fβ j (s2), . . . , Fβ j (sl )}, (for amplitude terms)

φD∗({s1, s2, . . . , sl }) ≤ min{φβ j (s1), φβ j (s2), . . . , φβ j (sl )},
ψD∗({s1, s2, . . . , sl }) ≤ max{ψβ j (s1), ψβ j (s2), . . . , ψβ j (sl )}, (for phase terms)

0 ≤ T 2
D ∗ + F2

D ∗ ≤ 1, for all s1, s2, . . . , sl ∈ X.

(ii)
⋃
j
supp(β j ) = X, for all β j ∈ C ∗.

Note that, Ek = {s1, s2, . . . , sl} is the crisp hyperedge of H∗ = (C ∗,D∗).

Example 6.15 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
on X = {s1, s2, s3, s4, s5, s6}. The complex Pythagorean fuzzy relation is defined
as, D∗(s1, s2, s3) = ((0.6ei(0.2)2π , 0.5ei(0.9)2π )), D∗(s4, s5, s6) = (0.6ei(0.4)2π ,

0.4ei(0.6)2π ), D∗(s3, s6) = (0.6ei(0.6)2π , 0.5ei(0.6)2π ), D∗(s2, s5) = (0.6ei(0.4)2π ,

0.5ei(0.6)2π ), and D∗(s1, s4) = (0.6ei(0.2)2π , 0.9ei(0.9)2π ). The corresponding com-
plex Pythagorean fuzzy hypergraph is shown in Fig. 6.22.

Definition 6.48 A complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is sim-
ple if whenever D∗

j ,D
∗
k ∈ D∗ and D∗

j ⊆ D∗
k , then D∗

j = D∗
k .

A complexPythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is support simple ifwhen-
ever D∗

j ,D
∗
k ∈ D∗, D∗

j ⊆ D∗
k , and supp(D∗

j ) = supp(D∗
k ), then D∗

j = D∗
k .

Definition 6.49 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
Suppose that α1, β1 ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ α2

1 + β2
1 ≤ 1. The
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Fig. 6.22 Complex Pythagorean fuzzy hypergraph
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Fig. 6.23 (α1eiθ , β1eiϕ)-
level hypergraph
of H∗

s1
s2 s3

s4 s5

(α1eiθ , β1eiϕ)-level hypergraph of H∗ is defined as an ordered pair H∗(α1eiθ ,β1eiϕ) =
(C ∗(α1eiθ ,β1eiϕ),D∗(α1eiθ ,β1eiϕ)), where

(i) D∗(α1eiθ ,β1eiϕ) = {D∗(α1eiθ ,β1eiϕ)

j : D∗
j ∈ D∗} andD∗(α1eiθ ,β1eiϕ)

j = {y ∈ X : TD∗
j
(y)

≥ α1, φD∗
j
(y) ≥ θ, and FD∗

j
(y) ≤ β1, ψD∗

j
(y) ≤ ϕ},

(ii) C ∗(α1eiθ ,β1eiϕ) = ⋃
D∗

j∈D ∗
D∗(α1eiθ ,β1eiϕ)

j .

Note that, (α1eiθ , β1eiϕ)-level hypergraph of H∗ is a crisp hypergraph.

Example 6.16 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
as shown in Fig. 6.22. Let α1 = 0.5, β1 = 0.6, θ = 0.3π , and ϕ = 0.7π . Then,
(α1eiθ , β1eiϕ)-level hypergraph of H∗ is shown in Fig. 6.23.

Definition 6.50 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
The complex Pythagorean fuzzy line graph of H∗ is defined as an ordered pair
l(H∗) = (C ∗

l ,D∗
l ), where C ∗

l = D∗ and there exists an edge between two vertices
in l(H∗) if |supp(Dj ) ∩ supp(Dk)| ≥ 1, for all Dj , Dk ∈ D∗. The membership
degrees of l(H∗) are given as

(i) C ∗
l (Ek) = D∗(Ek),

(ii) D∗
l (E j Ek) = (min{TD ∗(E j ), TD ∗(Ek)}ei min{φD ∗ (E j ),φD ∗ (Ek )},max{FD ∗(E j ),

FD ∗(Ek)}ei max{ψD ∗ (E j ),ψD ∗ (Ek )}).

Definition 6.51 A complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is said
to be linear if for every Dj , Dk ∈ D∗,

(i) supp(Dj ) ⊆ supp(Dk) ⇒ j = k,
(ii) |supp(Dj ) ∩ supp(Dk)| ≤ 1.
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Fig. 6.24 Line graph of complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)

Example 6.17 Consider a complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗)
as shown in Fig. 6.22. By direct calculations, we have

supp(D1) = {s1, s2, s3}, supp(D2) = {s4, s5, s6}, supp(D3) = {s1, s4},
supp(D4) = {s2, s5}, supp(D5) = {s3, s6}.

Note that, supp(Dj ) ⊆ supp(Dk) ⇒ j = k and |supp(Dj ) ∩ supp(Dk)| ≤ 1.
Hence, complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) is linear. The corre-
sponding complex Pythagorean fuzzy hypergraph H∗ = (C ∗,D∗) and its line graph
is shown in Fig. 6.24.

Theorem 6.17 A simple strong complex Pythagorean fuzzy hypergraph is the com-
plexPythagorean fuzzy line graph of a linear complexPythagorean fuzzy hypergraph.

Definition 6.52 The 2-section H∗
2 = (C ∗

2 ,D∗
2 ) of a complex Pythagorean fuzzy

hypergraph H∗ = (C ∗,D∗) is a complex Pythagorean fuzzy graph having same
set of vertices as that of H∗, D∗

2 is a complex Pythagorean fuzzy set on {e =
u juk |u j , uk ∈ El , l = 1, 2, 3, . . .}, andD∗

2 (u juk) = (min{min Tβl (u j ),min Tβl (uk)}
ei min{min φβl (u j ),min φβl (uk )}, max{max Fβl (u j ),max Fβl (uk)}ei max{maxψβl (u j ),maxψβl (uk )})
such that 0 ≤ T 2

D ∗
2
(u juk) + F2

D ∗
2
(u juk) ≤ 1.

Example 6.18 An example of a complex Pythagorean fuzzy hypergraph is given in
Fig. 6.25. The 2-section of H∗ is presented with dashed lines.

Definition 6.53 Let H∗ = (C ∗,D∗) be a complex Pythagorean fuzzy hypergraph.
A complex Pythagorean fuzzy transversal τ is a complex Pythagorean fuzzy set of X
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(s1,0.7ei(0.8)2π ,0.4ei(0.6)2π) (s2,0.6ei(0.4)2π ,0.4ei(0.6)2π)
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Fig. 6.25 2-section of complex Pythagorean fuzzy hypergraph H∗

satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ D∗, where h(ρ) is the height
of ρ.

A minimal complex Pythagorean fuzzy transversal t is the complex Pythagorean
fuzzy transversal of H∗ having the property that if τ ⊂ t , then τ is not a complex
Pythagorean fuzzy transversal of H∗.

6.10 Complex q-Rung Orthopair Fuzzy Hypergraphs

A complex q-rung orthopair fuzzy model provides more flexibility due to its most
prominent feature that is the sum of the qth powers of the truth-membership, falsity-
membership must be less than or equal to one, and the sum of qth powers of the
corresponding phase angles should lie between 0 and2π . A complexq-rung orthopair
fuzzy hypergraph model proves to be more generalized framework to deal with
vagueness in complex hypernetworks when the relationships are more generalized
rather than the pairwise interactions. The generalization of our proposedmodel can be
observed from the reduction of complex q-rung orthopair fuzzy model to complex
intuitionistic fuzzy and complex Pythagorean fuzzy models for q = 1 and q = 2,
respectively.

Definition 6.54 A complex q-rung orthopair fuzzy set S in the universal set X is
given as

S = {(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ X},
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where i = √−1, TS(u), FS(u) ∈ [0, 1] are named as amplitude terms, φS(u), ψS(u)

∈ [0, 2π ] are named as phase terms, and for every u ∈ X, 0 ≤ T q
S (u) + Fq

S (u) ≤ 1,
q ≥ 1.

Remark 6.6 • When q = 1, complex 1-rung orthopair fuzzy set is called a complex
intuitionistic fuzzy set.

• When q = 2, complex 1-rung orthopair fuzzy set is called a complex Pythagorean
fuzzy set.

Definition 6.55 Let S1 = {(u, TS1(u)eiφS1 (u), FS1(u)eiψS1 (u))|u ∈ X} and S2 =
{(u, TS2(u)eiφS2 (u), FS2(u)eiψS2 (u))|u ∈ X} be two complex q-rung orthopair fuzzy
sets in X , then

(i) S1 ⊆ S2 ⇔ TS1 ≤ TS2(u), FS1(u) ≥ FS2(u), and φS1(u) ≤ φS2(u), ψS1(u) ≥
ψS2(u) for amplitudes and phase terms, respectively, for all u ∈ X .

(ii) S1 = S2 ⇔ TS1 = TS2(u), FS1(u) = FS2(u), and φS1(u) = φS2(u), ψS1(u) =
ψS2(u) for amplitudes and phase terms, respectively, for all u ∈ X .

Definition 6.56 Let S1 = {(u, TS1(u)eiφS1 (u), FS1(u)eiψS1 (u))|u ∈ X} and S2 =
{(u, TS2(u)eiφS2 (u), FS2(u)eiψS2 (u))|u ∈ X} be two complex q-rung orthopair fuzzy
sets in X , then

(i) S1 ∪ S2 = {(u,max{TS1(u), TS2(u)}ei max{φS1 (u),φS2 (u)},min{FS1(u), FS2(u)}
ei min{ψS1 (u),ψS2 (u)})|u ∈ X}.

(ii) S1 ∩ S2 = {(u,min{TS1(u), TS2(u)}ei min{φS1 (u),φS2 (u)},max{FS1(u), FS2(u)}
ei max{ψS1 (u),ψS2 (u)})|u ∈ X}.

Definition 6.57 A complex q-rung orthopair fuzzy relation is a complex q-rung
orthopair fuzzy set on X × X given as

R = {(rs, TR(rs)eiφR(rs), FR(rs)eiψR(rs))|rs ∈ X × X},

where i = √−1, TR : X × X → [0, 1], FR : X × X → [0, 1] characterize the
amplitudes of truth and falsity degrees of R, and φR(rs), ψR(rs) ∈ [0, 2π ] are called
the phase terms such that for all rs ∈ X × X, 0 ≤ T q

R (rs) + Fq
R(rs) ≤ 1, q ≥ 1.

Example 6.19 Let X = {b1, b2, b3} be the universal set and {b1b2, b2b3, b1b3} be the
subset of X × X . Then, the complex 5-rung orthopair fuzzy relation R is given as

R = {(b1b2, 0.9ei(0.7)π , 0.7ei(0.9)π ), (b2b3, 0.6e
i(0.7)π , 0.8ei(0.9)π ), (b1b3, 0.7e

i(0.8)π , 0.5ei(0.6)π )}.

Note that, 0 ≤ T 5
R(xy) + F5

R(xy) ≤ 1, for all xy ∈ X × X. Hence, R is a complex
5-rung orthopair fuzzy relation on X .

Definition 6.58 A complex q-rung orthopair fuzzy graph on X is an ordered pair
G = (A ,B), where A is a complex q-rung orthopair fuzzy set on X and B is
complex q-rung orthopair fuzzy relation on X such that
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TB (ab) ≤ min{TA (a), TA (b)},
FB (ab) ≤ max{FA (a), FA (b)}, (for amplitude terms)

φB (ab) ≤ min{φA (a), φA (b)},
ψB (ab) ≤ max{ψA (a), ψA (b)}, (for phase terms)

0 ≤ T q
B (ab) + Fq

B (ab) ≤ 1, q ≥ 1, for all a, b ∈ X .

Remark 6.7 Note that,

• When q = 1, complex 1-rung orthopair fuzzy graph is called a complex intuition-
istic fuzzy graph.

• When q = 2, complex 2-rung orthopair fuzzy graph is called a complex
Pythagorean fuzzy graph.

Example 6.20 Let G = (A ,B) be a complex 6-rung orthopair fuzzy graph on X =
{s1, s2, s3, s4}, where A = {(s1, 0.7ei(0.9)π , 0.9ei(0.7)π ), (s2, 0.5ei(0.6)π , 0.6ei(0.5)π ),
(s3, 0.7ei(0.4)π , 0.4ei(0.7)π ), (s4, 0.8ei(0.5)π , 0.5ei(0.8)π )} and B = {(s1s4, 0.7ei(0.7)π ,
0.8ei(0.8)π ), (s2s4, 0.5ei(0.5)π , 0.6ei(0.8)π ), (s3s4, 0.7ei(0.4)π , 0.5ei(0.8)π )} are complex
6-rung orthopair fuzzy set and complex 6-rung orthopair fuzzy relation on X , respec-
tively. The corresponding complex 6-rung orthopair fuzzy graph G is shown in
Fig. 6.26.

We now define the more extended concept of complex q-rung orthopair fuzzy
hypergraphs.

Definition 6.59 The support of a complex q-rung orthopair fuzzy set S =
{(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ X} is defined as supp(S) = {u|TS(u) �= 0,
FS(u) �= 1, 0 < φS(u), ψS(u) < 2π}.

Fig. 6.26 Complex 6-rung
orthopair fuzzy graph
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The height of a complex q-rung orthopair fuzzy set S = {(u, TS(u)eiφS(u),

FS(u)eiψS(u))|u ∈ X} is defined as

h(S) = {max
u∈X TS(u)e

i max
u∈X φS(u)

,min
u∈X FS(u)e

i min
u∈X ψS(u)}.

If h(S) = (1ei2π , 0ei0), then S is called normal.

Definition 6.60 Let X be a nontrivial set of universe. A complex q-rung orthopair
fuzzy hypergraph is defined as an ordered pair H = (Q, η), where Q = {Q1,

Q2, . . . , Qk} is a finite family of complex q-rung orthopair fuzzy sets on X and
η is a complex q-rung orthopair fuzzy relation on complex q-rung orthopair fuzzy
sets Q j ’s such that

(i)

Tη({a1, a2, . . . , al }) ≤ min{TQ j (a1), TQ j (a2), . . . , TQ j (al )},
Fη({a1, a2, . . . , al }) ≤ max{FQ j (a1), FQ j (a2), . . . , FQ j (al )}, (for amplitude terms)

φη({a1, a2, . . . , al }) ≤ min{φQ j (a1), φQ j (a2), . . . , φQ j (al )},
ψη({a1, a2, . . . , al }) ≤ max{ψQ j (a1), ψQ j (a2), . . . , ψQ j (al )}, (for phase terms)

0 ≤ T q
η + Fq

η ≤ 1, q ≥ 1, for all a1, a2, . . . , al ∈ X.

(ii)
⋃
j
supp(Q j ) = X, for all Q j ∈ Q.

Note that, Ek = {a1, a2, . . . , al} is the crisp hyperedge of H = (Q, η).

Remark 6.8 Note that,

• When q = 1, complex 1-rung orthopair fuzzy hypergraph is a complex intuition-
istic fuzzy hypergraph.

• When q = 2, complex 2-rung orthopair fuzzy hypergraph is a complex
Pythagorean fuzzy hypergraph.

Definition 6.61 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph.
The height of H , given as h(H ), is defined as h(H ) = (max ηl ei max φ,min ηm
ei minψ), where ηl = max Tρ j (xk), φ = max φρ j (xk), ηm = min Fρ j (xk), ψ =
minψρ j (xk). Here, Tρ j (xk) and Fρ j (xk) denote the truth and falsity degrees of vertex
xk to hyperedge ρ j , respectively.

Definition 6.62 Let H = (Q, η) be a complex q-rung orthopair fuzzy hyper-
graph. Suppose that μ, ν ∈ [0, 1] and θ, ϕ ∈ [0, 2π ] such that 0 ≤ μq + νq ≤ 1.
The (μeiθ , νeiϕ)-level hypergraph ofH is defined as an ordered pairH (μeiθ ,νeiϕ) =
(Q(μeiθ ,νeiϕ), η(μeiθ ,νeiϕ)), where

(i) η(μeiθ ,νeiϕ) = {ρ(μeiθ ,νeiϕ)

j : ρ j ∈ η} and ρ
(μeiθ ,νeiϕ)

j = {u ∈ X : Tρ j (u) ≥ μ, φρ j

(u) ≥ θ, and Fρ j (u) ≤ ν, ψρ j (u) ≤ ϕ},
(ii) Q(μeiθ ,νeiϕ) = ⋃

ρ j∈η

ρ
(μeiθ ,νeiϕ)

j .
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Table 6.15 Incidence matrix of complex 6-rung orthopair fuzzy hypergraph H

u ∈ X η1 η2 η3 η4

u1 (0.8ei(0.8)π ,

0.6ei(0.6)π )

(0, 0) (0, 0) (0.8ei(0.8)π ,

0.6ei(0.6)π )

u2 (0.7ei(0.7)π ,

0.6ei(0.6)π )

(0, 0) (0, 0) (0, 0)

u3 (0.7ei(0.7)π ,

0.8ei(0.8)π )

(0.7ei(0.7)π ,

0.8ei(0.8)π )

(0, 0) (0, 0)

u4 (0, 0) (0.7ei(0.7)π ,

0.8ei(0.8)π )

(0.7ei(0.7)π ,

0.8ei(0.8)π )

(0, 0)

u5 (0, 0) (0.6ei(0.6)π ,

0.8ei(0.8)π )

(0, 0) (0, 0)

u6 (0, 0) (0, 0) (0.9ei(0.9)π ,

0.8ei(0.8)π )

(0.9ei(0.9)π ,

0.8ei(0.8)π )

Fig. 6.27 Complex 6-rung
orthopair fuzzy hypergraph
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Note that, (μeiθ , νeiϕ)-level hypergraph of H is a crisp hypergraph.

Example 6.21 Consider a complex 6-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {u1, u2, u3, u4, u5, u6}. The complex 6-rung orthopair fuzzy relation η is
given as, η(u1, u2, u3) = (0.7ei(0.7)π , 0.8ei(0.8)π ), η(u3, u4, u5) = (0.6ei(0.6)π ,

0.8ei(0.8)π ), η(u1, u6) = (0.8ei(0.8)π , 0.8ei(0.8)π ) and η(u4, u6) = (0.7ei(0.7)π ,

0.8ei(0.8)π ). The incidence matrix of H is given in Table6.15.
The corresponding complex 6-rung orthopair fuzzy hypergraph H = (Q, η) is

shown in Fig. 6.27.
Let μ = 0.7, ν = 0.6, θ = 0.7π , and ϕ = 0.6π , then (0.7ei(0.7)π , 0.6ei(0.6)π )-

level hypergraph ofH is shown in Fig. 6.28.
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Fig. 6.28 (0.7ei(0.7)π , 0.6ei(0.6)π )-
level hypergraph of H

u1 u3u2

u4

u5

u6

η (0.7ei(0.7)π ,0.6ei(0.6)π )
1

η (0.7ei(0.7)π ,0.6ei(0.6)π )
4

Note that,

η
(0.7ei(0.7)π ,0.6ei(0.6)π )
1 = {u1, u2}, η

(0.7ei(0.7)π ,0.6ei(0.6)π )
2 = {∅},

η
(0.7ei(0.7)π ,0.6ei(0.6)π )
3 = {∅}, η

(0.7ei(0.7)π ,0.6ei(0.6)π )
4 = {u1}.

6.11 Transversals of Complex q-Rung Orthopair Fuzzy
Hypergraphs

Definition 6.63 Let H = (Q, η) be a complex q-rung orthopair fuzzy hyper-
graph and for 0 < μ ≤ T (h(H )), ν ≥ F(h(H )) > 0, 0 < θ ≤ φ(h(H )), and ϕ ≥
ψ(h(H )) > 0 let H (μeiθ ,νeiϕ) = (Q(μeiθ ,νeiϕ), η(μeiθ ,νeiϕ)) be the level hypergraph
of H . The sequence of complex numbers {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . ,

(μneiθn , νneiϕn )} such that 0 < μ1 < μ2 < · · · < μn = T (h(H )), ν1 > ν2 > · · · >

νn = F(h(H )) > 0, 0 < θ1 < θ2 < · · · < θn = φ(h(H )), and ϕ1 > ϕ2 > · · · >

ϕn = ψ(h(H )) > 0 satisfying the conditions

(i) if μk+1 < α ≤ μk , νk+1 > β ≥ νk , θk+1 < φ ≤ θk , ϕk+1 > ψ ≥ ϕk , then
η(αeiφ,βeiψ ) = η(μkeiθk ,νk eiϕk ), and

(ii) η(μkeiθk ,νkeiϕk ) ⊂ η(μk+1eiθk+1 ,νk+1eiϕk+1 ),

is called the fundamental sequence of H = (Q, η), denoted by Fs(H ). The
set of (μ j eiθ j , ν j eiϕ j )-level hypergraphs {H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,

H (μneiθn ,νneiϕn )} is called the set of core hypergraphs or the core set of H , denoted
by cor(H ).

Definition 6.64 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph.
A complex q-rung orthopair fuzzy transversal τ is a complex q-rung orthopair fuzzy
set of X satisfying the condition ρh(ρ) ∩ τ h(ρ) �= ∅, for all ρ ∈ η, where h(ρ) is the
height of ρ.
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Table 6.16 Incidence matrix of complex 5-rung orthopair fuzzy hypergraph H

a ∈ X η1 η2 η3

a1 (0.8ei(0.8)π , 0.6ei(0.6)π ) (0.8ei(0.8)π , 0.6ei(0.6)π ) (0, 0)

a2 (0.7ei(0.7)π , 0.9ei(0.9)π ) (0, 0) (0.7ei(0.7)π , 0.9ei(0.9)π )

a3 (0, 0) (0.8ei(0.8)π , 0.5ei(0.5)π ) (0.8ei(0.8)π , 0.5ei(0.5)π )

a4 (0.6ei(0.6)π , 0.8ei(0.8)π ) (0.6ei(0.6)π , 0.8ei(0.8)π ) (0, 0)

a5 (0, 0) (0, 0) (0.7ei(0.7)π , 0.5ei(0.5)π )

Fig. 6.29 Complex 5-rung
orthopair fuzzy hypergraph
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A minimal complex q-rung orthopair fuzzy transversal t is the complex q-rung
orthopair fuzzy transversal of H having the property that if τ ⊂ t , then τ is not a
complex q-rung orthopair fuzzy transversal of H .

Let us denote the family of minimal complex q-rung orthopair fuzzy transversals
of H by tr (H ).

Example 6.22 Consider a complex 5-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {a1, a2, a3, a4, a5}. The complex 5-rungorthopair fuzzy relationη is given as,
η({a1a3, a4}) = (0.6ei(0.6)π , 0.9ei(0.9)π ), η({a2, a3, a5}) = (0.7ei(0.7)π , 0.9ei(0.9)π ),
and η({a1, a2, a4}) = (0.6ei(0.6)π , 0.9ei(0.9)π ). The incidence matrix of H is given
in Table6.16.

The corresponding complex 5-rung orthopair fuzzy hypergraph is shown in
Fig. 6.29.

By routine calculations, we have h(η1) = (0.8ei(0.8)π , 0.6ei(0.6)π ), h(η2) =
(0.8ei(0.8)π , 0.5ei(0.5)π ), and h(η3) = (0.8ei(0.8)π , 0.5ei(0.5)π ). Consider a complex
5-rung orthopair fuzzy set τ1 of X such that

τ1 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a2, 0.7e
i(0.7)π , 0.9ei(0.9)π ), (a3, 0.8e

i(0.8)π , 0.5ei(0.5)π )}.



292 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Note that,

η
(0.8ei(0.8)π ,0.6ei(0.6)π )
1 = {a1}, η

(0.8ei(0.8)π ,0.5ei(0.5)π )
2 = {a3}, η

(0.8ei(0.8)π ,0.5ei(0.5)π )
3 = {a3},

τ
(0.8ei(0.8)π ,0.6ei(0.6)π )
1 = {a1, a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π )
1 = {a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π )
1 = {a3}.

Thus, we have η
h(η j )

j ∩ τ
h(η j )

1 �= ∅, for all η j ∈ η. Hence, τ1 is a complex 5-rung
orthopair fuzzy transversal of H . Similarly,

τ2 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e
i(0.8)π , 0.5ei(0.5)π )},

τ3 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e
i(0.8)π , 0.5ei(0.5)π ), (a4, 0.6e

i(0.6)π , 0.8ei(0.8)π )},
τ4 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π ), (a3, 0.8e

i(0.8)π , 0.5ei(0.5)π ), (a5, 0.7e
i(0.7)π , 0.5ei(0.5)π )},

are complex 5-rung orthopair fuzzy transversals ofH .

Definition 6.65 A complex q-rung orthopair fuzzy hypergraphH1 = (Q1, η1) is a
partial complex q-rung orthopair fuzzy hypergraph of H2 = (Q2, η2) if η1 ⊆ η2,
denoted by H1 ⊆ H2.
A complex q-rung orthopair fuzzy hypergraphH1 = (Q1, η1) is ordered if the core
set cor(H ) = {H (μ1eiθ1 ,ν1eiϕ1 ), H (μ2eiθ2 ,ν2eiϕ2 ), . . ., H (μneiθn ,νneiϕn )} is ordered, i.e.,
H (μ1eiθ1 ,ν1eiϕ1 ) ⊆ H (μ2eiθ2 ,ν2eiϕ2 ) ⊆ · · · ⊆ H (μneiθn ,νneiϕn ).H is simply ordered ifH
is ordered and η′ ⊂ η(μl+1eiθl+1 ,νl+1eiϕl+1 )\η(μl eiθl ,νl eiϕl ) ⇒ η′ � Q(μl eiθl ,νl eiϕl ).

Definition 6.66 A complex q-rung orthopair fuzzy set S on X is elementary if S
is single-valued on supp(S). A complex q-rung orthopair fuzzy hypergraph H =
(Q, η) is elementary if every Q j ∈ Q and η are elementary.

Proposition 6.2 If τ is a complex q-rung orthopair fuzzy transversal of H =
(Q, η), then h(τ ) ≥ h(ρ), for all ρ ∈ η. Furthermore, if τ is minimal complex q-
rung orthopair fuzzy transversal of H = (Q, η), then h(τ ) = max{h(ρ)|ρ ∈ η} =
h(H ).

Lemma 6.4 LetH1 = (Q1, η1) be a partial complex q-rung orthopair fuzzy hyper-
graph ofH2 = (Q2, η2). If τ2 is minimal complex q-rung orthopair fuzzy transversal
of H2, then there is a minimal complex q-rung orthopair fuzzy transversal of H1

such that τ1 ⊆ τ2.

Proof Let S1 be a complex q-rung orthopair fuzzy set on X , which is defined as
S1 = τ2 ∩ (∪Q1 j∈Q 1

Q1 j ). Then, S1 is a complex q-rung orthopair fuzzy transversal
of H1 = (Q1, η1). Thus, there exists a minimal complex q-rung orthopair fuzzy
transversal of H1 such that τ1 ⊆ S1 ⊆ τ2.

Lemma 6.5 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph then
fs(tr (H )) ⊆ fs(H ).

Proof Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )} and
τ ∈ tr (H ). Suppose that for u ∈ supp(τ ), (Tτ (u), Fτ (u)) ∈ (μ j+1, μ j ] × (ν j+1,

ν j ], φτ (u) ∈ (θ j+1, θ j ], and ψτ (u) ∈ (ϕ j+1, ϕ j ]. Define a function λ by
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Tλ(v)e
iφ =

{
μ j eiθ j , if u = v,

Tτ (u)eiφτ (u), otherwise.
, Fλ(v)e

iψ =
{

μ j eiϕ j , if u = v,

Fτ (u)eiψτ (u), otherwise.

From definition of λ, we have λ(μ j e
iθ j ,ν j e

iϕ j ) = τ (μ j e
iθ j ,ν j e

iϕ j ). Definition6.63 implies
that for every t ∈ (μ j+1eiθ j+1 , μ j eθ j ] × (ν j+1eiϕ j+1 , ν j eiϕ j ], H t = H (μ1eiθ1 ,ν1eiϕ1 ).

Thus, λ(μ j e
iθ j ,ν j e

iϕ j ) is a complex q-rung orthopair fuzzy transversal of H t . Since,
τ is minimal complex q-rung orthopair fuzzy transversal and λt = τ t , for all t /∈
(μ j+1eiθ j+1 , μ j eθ j ] × (ν j+1eiϕ j+1 , ν j eiϕ j ]. This implies that λ is also a complex q-
rung orthopair fuzzy transversal andλ ≤ τ but theminimality of τ implies thatλ = τ .
Hence, τ(u) = λ(u) = (μ j eiθ j , ν j eiϕ j ),which implies that for every complex q-rung
orthopair fuzzy transversal τ ∈ tr (H ) and for each u ∈ X , τ(u) ∈ fs(H ) and so
we have fs(tr (H )) ⊆ fs(H ).

We now illustrate a recursive procedure to find tr (H ) in Algorithm 6.11.1.

Algorithm 6.11.1 To find the family of minimal complex q-rung orthopair fuzzy
transversals tr (H )

LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph having the funda-
mental sequence fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . ., (μneiθn , νneiϕn )}
and core set cor(H ) = {H (μ1eiθ1 ,ν1eiϕ1 ), H (μ2eiθ2 ,ν2eiϕ2 ), . . ., H (μneiθn ,νneiϕn )}. The
minimal transversal ofH = (Q, η) is determined as follows:

1. Determine a crisp minimal transversal t1 of H (μ1eiθ1 ,ν1eiϕ1 ).
2. Determine a crispminimal transversal t2 ofH (μ2eiθ2 ,ν2eiϕ2 ) satisfying the condition

t1 ⊆ t2, i.e., obtain an hypergraph H2 having the hyperedges η(μ2eiθ2 ,ν2eiϕ2 ) and a
loop at every vertexu ∈ t1. Thus,wehaveη(H2) = η(μ2eiθ2 , ν2eiϕ2) ∪ {{u ∈ t1}}.

3. Let t2 be the minimal transversal of H2.

4. Obtain a sequence of minimal transversals t1 ⊆ t2 ⊆ · · · ⊆ t j such that t j is the

minimal transversal of H (μ j e
iθ j ,ν j e

iϕ j ) satisfying the condition t j−1 ⊆ t j .
5. Define an elementary complex q-rung orthopair fuzzy set Sj having the support

t j and h(Sj ) = (μ j eiθ j , ν j eiϕ j ), 1 ≤ j ≤ n.
6. Determine a minimal complex q-rung orthopair fuzzy transversal of H as τ =

n⋃
j=1

{Sj |1 ≤ j ≤ n}.

Example 6.23 Consider a complex 5-rung orthopair fuzzy hypergraphH = (Q, η)

on X = {v1, v2, v3, v4, v5, v6} as shown in Fig. 6.30. Let (μ1eiθ1 , ν1eiϕ1) =
(0.9ei(0.9)2π , 0.7ei(0.7)2π ), (μ2eiθ2 , ν2eiϕ2) = (0.8ei(0.8)2π , 0.5ei(0.5)2π ), (μ3eiθ3 ,
ν3eiϕ3) = (0.6ei(0.6)2π , 0.4ei(0.4)2π ), and (μ4eiθ4 , ν4eiϕ4) = (0.3ei(0.3)2π , 0.2ei(0.2)2π ).
Clearly, the sequence {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), (μ3eiθ3 , ν3eiϕ3), (μ4eiθ4 ,
ν4eiϕ4)} satisfies all the conditions of Definition6.63. Hence, it is the fundamen-
tal sequence of H .



294 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

Fig. 6.30 Complex 5-rung
orthopair fuzzy hypergraph
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Note that, t1 = t2 = {v4} is the minimal transversal of H (μ1eiθ1 ,ν1eiϕ1 ) and
H (μ2eiθ2 ,ν2eiϕ2 ), t3 = {v1} is the minimal transversal of H (μ3eiθ3 ,ν3eiϕ3 ), and t4 =
{v1, v4} is the minimal transversal of H (μ4eiθ4 ,ν4eiϕ4 ). Consider

S1 = {(v4, 0.9ei(0.9)2π , 0.7ei(0.7)2π )} = S2,

S3 = {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π )},
S4 = {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π ), (v4, 0.9e

i(0.9)2π , 0.7ei(0.7)2π )}.

Hence,
4⋃
j=1

= {(v1, 0.8ei(0.8)2π , 0.5ei(0.5)2π ), (v4, 0.9ei(0.9)2π , 0.7ei(0.7)2π )} is a com-

plex 5-rung orthopair fuzzy transversal of H .

Lemma 6.6 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph with
fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}. If τ is a complex
q-rung orthopair fuzzy transversal ofH , then h(τ ) ≥ h(Q j ), for every Q j ∈ Q. If
τ ∈ tr (H ) then h(τ ) = max{h(Q j )|Q j ∈ Q} = (μ1eiθ1 , ν1eiϕ1).

Proof Since τ is a complex q-rung orthopair fuzzy transversal of H , implies that
τ h(Q j ) ∩ Q

h(Q j )

j �=∅.Let a ∈ supp(τ ), then Tτ (a) ≥ T (h(Q j )), Fτ (a) ≤ F(h(Q j )),
φτ (a) ≥ φ(h(Q j )), and ψτ (a) ≤ ψ(h(Q j )). This shows that h(τ ) ≥ h(Q j ). If τ ∈
tr (H ), i.e., τ is minimal complex q-rung orthopair fuzzy transversal then h(Q j ) =
(max TQ j (a)ei max φQ j (a)

,min FQ j (a)ei minψQ j (a)
) = (μ1eiθ1 , ν1eiϕ1). Thus, we have

h(τ ) = max{h(Q j )|Q j ∈ Q} = (μ1eiθ1 , ν1eiϕ1).

Lemma 6.7 Let β be a complex q-rung orthopair fuzzy transversal of a complex q-
rung orthopair fuzzy hypergraphH . Then, there exists γ ∈ tr (H ) such that γ ≤ β.

Proof Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}. Sup-
pose that λ(μkeiθk ,νk eiϕk ) is a transversal of H (μkeiθk ,νkeiϕk ) and τ (μkeiθk ,νkeiϕk ) ∈
tr (H (μkeiθk ,νk eiϕk )), for 1 ≤ k ≤ n such that τ (μkeiθk ,νkeiϕk ) ⊆ λ(μkeiθk ,νkeiϕk ). Let βk be
an elementary complex q-rung orthopair fuzzy set having support λk and γk be an
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elementary complex q-rung orthopair fuzzy set having support τk , for 1 ≤ k ≤ n.

Then, Algorithm 6.11.1 implies that β =
n⋃

k=1
βk is a complex q-rung orthopair

fuzzy transversal of H and γ =
n⋃

k=1
γk is minimal complex q-rung orthopair fuzzy

transversal of H such that γ ≤ β.

Theorem 6.18 LetH1 = (Q1, η1)andH2 = (Q2, η2)be complexq-rungorthopair
fuzzy hypergraphs. Then,Q2 = tr (H1) ⇔ H2 is simple,Q2 ⊆ Q1, h(ηk) = h(H1),
for every ρk ∈ η2, and for every complex q-rung orthopair fuzzy set ξ ∈ P(X),
exactly one of the conditions must satisfy,

(i) ρ ≤ ξ , for some ρ ∈ Q2 or
(ii) there is Q j ∈ Q1 and (μeiθ , νeiϕ), where (μ, ν) ∈ [0, Th(Q j )] × [0, Fh(Q j )], θ ∈

[0, φh(Q j )], ϕ ∈ [0, ψh(Q j )] such that Q(μeiθ ,νeiϕ)

j ∩ ξ (μeiθ ,νeiϕ) = ∅, i.e., ξ is not a
complex q-rung orthopair fuzzy transversal ofH1.

Proof LetQ2 = tr (H1). Since, the family of all minimal complex q-rung orthopair
fuzzy transversals form a simple complex q-rung orthopair fuzzy hypergraph on
X1 ⊆ X2. Lemma6.6 implies that every edge of tr (H1) has height (μ1eiθ1 , ν1eiϕ1) =
h(H1). Let ξ be an arbitrary complex q-rung orthopair fuzzy set.

Case (i) If ξ is a complex q-rung orthopair fuzzy transversal of H1), then
Lemma6.7 implies the existence of a minimal complex q-rung orthopair fuzzy
transversal ρ such that ρ ≤ ξ . Thus, the condition (i) holds and (ii) violates.

Case (ii) If ξ is not a complex q-rung orthopair fuzzy transversal ofH1), then there

is an edge Q j ∈ Q1 such that Q
(μeiθ ,νeiϕ)

j ∩ ξ (μeiθ ,νeiϕ) = ∅. If condition (i) holds,
ρ ≤ ξ implies that Q(μeiθ ,νeiϕ)

j ∩ ρ(μeiθ ,νeiϕ) = ∅, which is the contradiction against
the fact that ρ is complex q-rung orthopair fuzzy transversal. Hence, condition
(i) does not hold and (ii) is satisfied.

Conversely, suppose thatQ2 satisfies all properties as mentioned above and ρ ∈ Q2.
Let ρ = ξ , then we obtain ρ ≤ ρ and conditions (ii) is not satisfied, so ρ is complex
q-rung orthopair fuzzy transversal of H1. If t is minimal complex q-rung orthopair
fuzzy transversal ofH1 and t ≤ ρ, t does not satisfy (ii), this implies the existence of
ρ2 ∈ Q2 such that ρ2 ≤ t , henceQ2 ⊆ tr (H1). Since, t is minimal complex q-rung
orthopair fuzzy which implies that ρ = t , ρ and t were chosen arbitrarily therefore,
we have Q2 = tr (H1).

The construction of fundamental subsequence and subcore of complex q-rung
orthopair fuzzy hypergraph H = (Q, η) is discussed in Algorithm 6.11.2.

Algorithm 6.11.2 Construction of fundamental subsequence and subcore
Let H = (Q, η) be a complex q-rung orthopair fuzzy hypergraph and H1 =
(Q1, η1) be a partial complex q-rung orthopair fuzzy hypergraph ofH . The funda-
mental subsequence fss(H ) is constructed as follows:
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Let fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )} and cor(H )

= {H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,H (μneiθn ,νneiϕn )}.
1. Construct H̃ (μ1eiθ1 ,ν1eiϕ1 ), a partial hypergraph of H (μ1eiθ1 ,ν1eiϕ1 ), by removing

all hyperedges ofH (μ1eiθ1 ,ν1eiϕ1 ), which contain properly any other hyperedge of
H (μ1eiθ1 ,ν1eiϕ1 ).

2. In the same way, a partial hypergraph H̃ (μ2eiθ2 ,ν2eiϕ2 ) of H (μ2eiθ2 ,ν2eiϕ2 ) is con-
structed by removing all hyperedges of H (μ2eiθ2 ,ν2eiϕ2 ), which contain properly
any other hyperedge ofH (μ2eiθ2 ,ν2eiϕ2 ) or any other hyperedge of H (μ1eiθ1 ,ν1eiϕ1 ).
H̃ (μ2eiθ2 ,ν2eiϕ2 ) is nontrivial iff there exists a complex q-rung orthopair fuzzy
transversal τ ∈ tr (H ) and a vertex u ∈ Q(μ2eiθ2 ,ν2eiϕ2 ) such that (Tτ (u)eiφτ (u),

Fτ (u)eiψτ (u)) = (μ2eiθ2 , ν2eiϕ2).
3. Continuing the same procedure, construct H̃ (μkeiθk ,νk eiϕk ), a partial hypergraph

of H (μkeiθk ,νk eiϕk ), by removing all hyperedges of H (μkeiθk ,νkeiϕk ), which contain
properly any other hyperedge ofH (μkeiθk ,νkeiϕk ) or contain any other hyperedge of
H (μ1eiθ1 ,ν1eiϕ1 ),H (μ2eiθ2 ,ν2eiϕ2 ), . . . ,H (μk−1eiθk−1 ,νk−1eiϕk−1 ). H̃ (μkeiθk ,νk eiϕk ) is non-
trivial if and only if there exists a complex q-rung orthopair fuzzy transversal τ ∈
tr (H ) and an element u ∈ Q(μkeiθk ,νkeiϕk ) such that (Tτ (u)eiφτ (u), Fτ (u)eiψτ (u)) =
(μkeiθk , νkeiϕk ).

4. Let {(μ̃1ei θ̃1 , ν̃1ei ϕ̃1), (μ̃2ei θ̃2 , ν̃2ei ϕ̃2), . . . , (μ̃l ei θ̃l , ν̃l ei ϕ̃l )} be the set of complex

numbers such that the corresponding partial hypergraphs H̃ (μ̃1ei θ̃1 ,ν̃1ei ϕ̃1 ),

H̃ (μ̃2ei θ̃2 ,ν̃2ei ϕ̃2 ), . . . , H̃ (μ̃l ei θ̃l ,ν̃l ei ϕ̃l ) are non-empty.
5. Then, fss(H ) = {(μ̃1ei θ̃1 , ν̃1ei ϕ̃1), (μ̃2ei θ̃2 , ν̃2ei ϕ̃2), . . . , (μ̃l ei θ̃l , ν̃l ei ϕ̃l )} and

c̃or(H ) = {H̃ (μ̃1ei θ̃1 ,ν̃1ei ϕ̃1 ), H̃ (μ̃2ei θ̃2 ,ν̃2ei ϕ̃2 ), . . . , H̃ (μ̃l ei θ̃l ,ν̃l ei ϕ̃l )} are subsequence
and subcore set of H , respectively.

Definition 6.67 LetH = (Q, η) be a complex q-rung orthopair fuzzy hypergraph
having fundamental subsequence fss(H ) and subcore c̃or(H ) ofH . The complex
q-rung orthopair fuzzy transversal core of H is defined as an elementary complex
q-rung orthopair fuzzy hypergraph Ĥ = (Q̂, η̂) such that,

(i) fss(H ) = fss(Ĥ ), i.e., fss(H ) is also a fundamental subsequence of Ĥ ,
(ii) height of every Q̂ j ∈ Q̂ is (μ̃ j ei θ̃ j , ν̃ j ei ϕ̃ j ) ∈ fss(H ) iff supp(Q̂ j ) is an hyper-

edge of Ĥ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ).

Theorem 6.19 For every complex q-rung orthopair fuzzy hypergraph, we have
tr (H ) = tr (Ĥ ).

Proof Let t ∈ tr (H ) and Q̂ j ∈ Q̂. Definition6.67 implies that h(Q̂ j ) = (μ̃ j ei θ̃ j ,

ν̃ j ei ϕ̃ j ) and Q̂
(μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j )

j is an hyperedge of H̃ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ). Since H̃ (μ̃ j e
i θ̃ j ,ν̃ j e

i ϕ̃ j ) ⊆
H (μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j ) and τ (μ j e

iθ j ,ν j e
iϕ j ) is a transversal of H (μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j ) therefore

Q̂
(μ̃ j e

i θ̃ j ,ν̃ j e
i ϕ̃ j )

j ∩ τ (μ j e
iθ j ,ν j e

iϕ j ) �= ∅. Thus, τ is acomplex q-rung orthopair fuzzy

transversal of Ĥ .
Let τ̂ ∈ tr (Ĥ ) andQ j ∈ Q.Definition6.63 implies thatQ

h(Q j )

j ∈ H (μ j e
iθ j ,ν j e

iϕ j ),
for h(Q j ) ≤ (μ j eiθ j , ν j eiϕ j ) ∈ fs(H ). Definition of subcore c̃or(H ) implies the
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Fig. 6.31 Complex 6-rung
orthopair fuzzy hypergraph
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existence of an hyperedge Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j of H̃ (μ j e
iθ j ,ν j e

iϕ j ) such that Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j ⊆
Q

h(Q j )

j and (μkeiθk , νkeiϕk ) ≥ (μ j eiθ j , ν j eiϕ j ) ≥ h(Q j ). For τ̂ ∈ tr (Ĥ ), we have

u ∈ Q̂
(μ j e

iθ j ,ν j e
iϕ j )

j ∩ τ̂ (μ j e
iθ j ,ν j e

iϕ j ) ⊆ Q̂
h(Q j )

j ∩ τ̂ (μ j e
iθ j ,ν j e

iϕ j ). Hence, τ̂ is a complex
q-rung orthopair fuzzy transversal of H .

Let τ ∈ tr (H ) ⇒ τ is a complex q-rung orthopair fuzzy transversal of Ĥ . This
implies that there is τ̂ such that τ̂ ⊆ τ . But τ̂ is a complex q-rung orthopair fuzzy
transversal of H and τ ∈ tr (H ) implies that τ̂ = τ . Thus, tr (H ) ⊆ tr (Ĥ ). Also
tr (Ĥ ) ⊆ tr (H ) implies that tr (H ) = tr (Ĥ ).

Although τ can be taken as a minimal transversal of H , it is not necessary for
τ (μeiθ ,νeiϕ) to be the minimal transversal of H (μeiθ ,νeiϕ), for all μ, ν ∈ [0, 1], and
θ, ϕ ∈ [0, 2π ]. Furthermore, it is not necessary for the family of minimal complex
q-rung orthopair fuzzy transversals to form a hypergraph on X . For those complex
q-rung orthopair fuzzy transversals that satisfy the above property, we have

Definition 6.68 Acomplex q-rung orthopair fuzzy transversal τ having the property
that τ (μeiθ ,νeiϕ) ∈ tr (H (μeiθ ,νeiϕ)), for allμ, ν ∈ [0, 1], and θ, ϕ ∈ [0, 2π ] is called the
locally minimal complex q-rung orthopair fuzzy transversal ofH . The collection of
all locally minimal complex q-rung orthopair fuzzy transversals ofH is represented
by t∗r (H ).

Note that, t∗r (H ) ⊆ tr (H ), but the converse is not generally true.

Example 6.24 Consider a complex 6-rung orthopair fuzzy hypergraphH = (Q, η)

as shown in Fig. 6.31. The complex 6-rung orthopair fuzzy set

{(x1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (x5, 0.4e
i(0.4)2π , 0.7ei(0.7)2π ), (x6, 0.4e

i(0.4)2π , 0.7ei(0.7)2π )}

is a locally minimal complex 6-rung orthopair fuzzy transversal ofH .

Theorem 6.20 Let H = (Q, η) be an ordered complex q-rung orthopair fuzzy
hypergraph with fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn , νneiϕn )}.
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If λk is a minimal transversal ofH (μkeiθk ,νkeiϕk ), then there exists α ∈ tr (H ) such that
α(μkeiθk ,νk eiϕk ) = λk and α(μl eiθl ,νl eiϕl ) is a minimal transversal ofH (μl eiθl ,νl eiϕl ), for all
l < k. In particular, if λ j ∈ tr (H (μ j e

iθ j ,ν j e
iϕ j )), then there exists a locally minimal

complex q-rung orthopair fuzzy transversal α(μ j e
iθ j ,ν j e

iϕ j ) = λ j and t∗r (H ) �= ∅.

Proof Let λk ∈ tr (H (μkeiθk ,νkeiϕk )). Since, H = (Q, η) is an ordered complex q-
rung orthopair fuzzy hypergraph, therefore, H (μk−1eiθk−1 ,νk−1eiϕk−1 ) ⊆ H (μkeiθk ,νkeiϕk ).
Also, there exists λk−1 ∈ tr (H (μk−1eiθk−1 ,νk−1eiϕk−1 )) such that λk−1 ⊆ λk . Following
this iterative procedure, we have a nested sequence λ1 ⊆ λ2 ⊆ · · · ⊆ λk−1 ⊆ λk of
minimal transversals, where every λl ∈ tr (H (μl eiθl ,νl eiϕl )). Let αl be an elementary
complex q-rung orthopair fuzzy set having height (μl eiθl , νl eiϕl ) and support αl . Let
us define α(x) such that α(x) = {(max Tαl (x)e

i max φαl (x),min Fαl (x)e
i minψαl (x))|1 ≤

l ≤ n}, that generates the requiredminimal complex q-rung orthopair fuzzy transver-
sal ofH . If k = n, α is locally minimal complex q-rung orthopair fuzzy transversal
of H . Hence, t∗r (H ) �= ∅.

Theorem 6.21 Let H = (Q, η) be a simply ordered complex q-rung orthopair
fuzzy hypergraph with fs(H ) = {(μ1eiθ1 , ν1eiϕ1), (μ2eiθ2 , ν2eiϕ2), . . . , (μneiθn ,
νneiϕn )}. If λk ∈ tr (H (μkeiθk ,νk eiϕk )), then there exists α ∈ t∗r (H ) such that
α(μkeiθk ,νk eiϕk ) = λk .

Proof Let λk ∈ tr (H (μkeiθk ,νk eiϕk )) and H = (Q, η) is a simply ordered complex
q-rung orthopair fuzzy hypergraph. Theorem6.20 implies that a nested sequence
λ1 ⊆ λ2 ⊆ · · · ⊆ λk−1 ⊆ λk of minimal transversals can be constructed. Let αl be
an elementary complex q-rung orthopair fuzzy set having height (μl eiθl , νl eiϕl ) and
support αl such that α(x) = {(max Tαl (x)e

i max φαl (x),min Fαl (x)e
i minψαl (x))|1 ≤ l ≤

n} generates the locally minimal complex q-rung orthopair fuzzy transversal of H
with α(μkeiθk ,νk eiϕk ) = λk .

6.12 Application of Complex q-Rung Orthopair Fuzzy
Hypergraphs

Definition 6.69 Let Q = (T eiφ, Feiψ) be a complex q-rung orthopair fuzzy num-
ber. Then, score function of Q is defined as

s(Q) = (T q − Fq) + 1

2qπq
(φq − ψq).

The accuracy of Q is defined as

a(Q) = (T q + Fq) + 1

2qπq
(φq + ψq).

For two complex q-rung orthopair fuzzy numbers Q1 and Q2
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1. if s(Q1) > s(Q2), then Q1 � Q2,
2. if s(Q1) = s(Q2), then

• if a(Q1) > a(Q2), then Q1 � Q2,
• if a(Q1) = a(Q2), then Q1 ∼ Q2.

A complex 6-rung orthopair fuzzy hypergraph model of research collaboration
network A collaboration network is a group of independent organizations or people
that interact to complete a particular goal for achieving better collective results by
the means of joint execution of task. The entities of a collaborative network may
be geographically distributed and heterogenous in terms of their culture, goals, and
operating environment but they collaborate to achieve compatible or common goals.
For decades, science academies have been interested in research collaboration. The
most common reasons of research collaboration are funding, more experts working
on the same project imply the more chances for effectiveness, productivity, and
innovativeness. Nowadays, most of the public research is based on collaboration of
different types of expertise from different disciples and different economic sectors.
In this section, we study a research collaboration network model through complex
6-rung orthopair fuzzy hypergraph. Consider a science academy wants to select an
author among a group of researchers which has best collaborative skills. For this
purpose, following are the characteristics that can be considered,

• Cooperative spirit
• Mutual respect
• Critical thinking
• Innovations
• Creativity
• Embrace diversity.

Consider a complex 6-rung orthopair fuzzy hypergraph H = (Q, η) on X =
{A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}. The set of universe X represents the
group of authors as the vertices ofH and these authors are grouped through hyper-
edges if they have worked together on some projects. The truth-membership of each
author represents the collaboration strength and falsity-membership describes the
opposite behavior of corresponding author. Suppose that a team of experts assigns
that the collaboration power of A1 is 60%and non-collaborative behavior is 50%after
carefully observing the different attributes. The corresponding phase terms illustrate
the specific period of time in which the collaborative behavior of an author varies.We
model this data as (A1, 0.6ei(0.5)2π , 0.5ei(0.5)2π ). The complex 6-rung orthopair fuzzy
hypergraph H = (Q, η) model of collaboration network is shown in Fig. 6.32.

The membership degrees of hyperedges represent the collective degrees of col-
laboration and non-collaboration of the corresponding authors combined through
an hyperedge. The adjacency matrix of this network is given in Tables6.17, 6.18,
and 6.19.
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Fig. 6.32 Complex 6-rung orthopair fuzzy hypergraph model of collaboration network

Table 6.17 Adjacency matrix of collaboration network

η A1 A2 A3 A4

A1 (0, 0) (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

A2 (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0) (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0)

A3 (0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0.6ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0) (0, 0)

A4 (0.6ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0, 0)

A5 (0, 0) (0, 0) (0, 0) (0, 0)

A6 (0, 0) (0, 0) (0, 0) (0, 0)

A7 (0, 0) (0, 0) (0, 0) (0, 0)

A8 (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.6ei(0.5)2π )

(0, 0)

A9 (0, 0) (0, 0) (0, 0) (0, 0)

A10 (0, 0) (0, 0) (0, 0) (0, 0)
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Table 6.18 Adjacency matrix of collaboration network

η A5 A6 A7 A8

A1 (0, 0) (0, 0) (0, 0) (0, 0)

A2 (0, 0) (0, 0) (0, 0) (0, 0)

A3 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.6ei(0.5)2π )

A4 (0, 0) (0, 0) (0, 0) (0, 0)

A5 (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.6ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A6 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A7 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0) (0, 0)

A8 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0, 0)

A9 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

A10 (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0, 0) (0.4ei(0.5)2π ,

0.7ei(0.5)2π )

(0.4ei(0.5)2π ,

0.7ei(0.5)2π )

Table 6.19 Adjacency matrix of collaboration network

η A9 A10

A1 (0, 0) (0, 0)

A2 (0, 0) (0, 0)

A3 (0, 0) (0, 0)

A4 (0, 0) (0, 0)

A5 (0, 0) (0.6ei(0.5)2π , 0.7ei(0.5)2π )

A6 (0, 0) (0, 0)

A7 (0, 0) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A8 (0.4ei(0.5)2π , 0.7ei(0.5)2π ) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A9 (0, 0) (0.4ei(0.5)2π , 0.7ei(0.5)2π )

A10 (0.4ei(0.5)2π , 0.7ei(0.5)2π ) (0, 0)

The score values and choice values of a complex 6-rung orthopair fuzzy hyper-
graph H = (Q, η) are calculated as follows:

s jk = (Tq
jk + Fq

jk) + 1

2qπq (φ
q
jk + ψ

q
jk), c j =

∑
k

s jk + (Tq
j + Fq

j ) + 1

2qπq (φ
q
j + ψ

q
j ),

respectively. These values are given in Table6.20.
The choice values of Table6.20 show that A5 is the author having maximum

strength of collaboration and good collective skills among all the authors. Similarly,
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Table 6.20 Score and choice values

s jk A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 c j

A1 0 0.1245 0.1245 0.1245 0 0 0 0 0 0 0.88690

A2 0.1245 0 0.1245 0 0 0 0 0 0 0 0.41377

A3 0.1245 0.1245 0 0 0 0 0 0.0820 0 0 0.67105

A4 0.1955 0 0 0 0 0 0 0 0 0 0.60654

A5 0 0 0 0 0 0.1529 0.1955 0.1529 0 0.1955 1.37714

A6 0 0 0 0 0.1529 0 0 0.1529 0 0 0.53480

A7 0 0 0 0 0.1955 0 0 0 0 0.1529 0.50139

A8 0 0 0.0820 0 0.1529 0.1529 0 0 0.1529 0.1529 0.74457

A9 0 0 0 0 0 0 0 0.1529 0 0.1529 0.38780

A10 0 0 0 0 0.1529 0 0.1529 0.1529 0.1529 0 0.76459

the choice values of all authors represent the strength of their respective collaboration
skills in a specific period of time. The method adopted in our model to select the
author having best collaboration skills is given in Algorithm 6.12.1.

Algorithm 6.12.1 Selection of author having maximum collaboration skills

1. Input the set of vertices (authors) A1, A2, . . . , A j .

2. Input the complex q-rung orthopair fuzzy set Q of vertices such that Q(Ak) =
(Tkeiφk , Fkeiψk ), 1 ≤ k ≤ j , 0 ≤ T q

k + Fq
k ≤ 1, q ≥ 1.

3. Input the adjacency matrix η = [(Tkleiφkl , Fkleiψkl )] j× j of vertices.
4. do k from 1 → j
5. ck = 0
6. do l from 1 → j
7. s jk = (T q

kl + Fq
kl) + 1

2qπq (φ
q
kl + ψ

q
kl)

8. ck = ck + s jk
9. end do
10. ck = ck + (T q

k + Fq
k ) + 1

2qπq (φ
q
k + ψ

q
k )

11. do
12. Select a vertex of H = (Q, η) having maximum choice value as the author

possessing strong collaboration powers.

6.13 Comparative Analysis

The proposed complex q-rung orthopair fuzzymodel is more flexible and compatible
to the systemwhen the given data ranges over complex subset with a unit disk instead
of the real subset with [0, 1]. We illustrate the flexibility of our proposed model by
taking an example. Consider an educational institute that wants to establish its min-
imum branches in a particular city in order to facilitate the maximum number of
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Table 6.21 Comparative analysis of three models

Methods Score values Ranking

Complex intuitionistic fuzzy
model

0.4 1.0 0.6 p2 > p3 > p1

Complex Pythagorean fuzzy
model

0.4 0.9 0.42 p2 > p3 > p1

Complex 3-rung orthopair
fuzzy model

0.104 0.67 0.234 p2 > p3 > p1

students according to some parameters such as transportation, suitable place, con-
nectivity with the main branch, and expenditures. Suppose a team of three decision
makers selects the different places. Let X = {p1, p2, p3} be the set of places where
the team is interested to establish the new branches. After carefully observing the
different attributes, the first decision makers assign the membership and nonmem-
bership degrees to support the place p1 as 60% and 40%, respectively. The phase
terms represent the period of time for which the place p1 can attract maximum num-
ber of students. This information is modeled using a complex intuitionistic fuzzy set
as (p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ). Note that, 0 ≤ 0.6 + 0.4 ≤ 1. Similarly, he models
the other places as, (p2, 0.7ei(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.5ei(0.5)2π , 0.2ei(0.2)2π ). We
denote this complex intuitionistic fuzzy model as

I = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7e
i(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.5e

i(0.5)2π , 0.2ei(0.2)2π )}.

Since, all complex intuitionistic fuzzy grades are complex Pythagorean fuzzy
as well as complex q-rung orthopair fuzzy grades. We find the score functions
of the above values using the formulas s(p j ) = (T − F) + 1

2π (φ − ψ), s(p j ) =
(T 2 − F2) + 1

22π2 (φ
2 − ψ2), and s(p j ) = (T 3 − F3) + 1

23π3 (φ
3 − ψ3). The results

corresponding to these three approaches are given in Table6.21.
Suppose that the second decision-maker assigns the membership values to

these places as, (p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7ei(0.7)2π , 0.2ei(0.2)2π ), (p3,
0.7ei(0.7)2π , 0.5ei(0.5)2π ). This information can not be modeled using complex intu-
itionistic fuzzy set as 0.7 + 0.5 = 1.2 > 1. We model this information using a com-
plex Pythagorean fuzzy set and the corresponding model is given as

P = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.7e
i(0.7)2π , 0.2ei(0.2)2π ), (p3, 0.7e

i(0.7)2π , 0.5ei(0.5)2π )}.

Since, all complexPythagorean fuzzy grades are also complexq-rung orthopair fuzzy
grades. We find the score functions of the above values using the formulas s(p j ) =
(T 2 − F2) + 1

22π2 (φ
2 − ψ2) and s(p j ) = (T 3 − F3) + 1

23π3 (φ
3 − ψ3). The results

corresponding to these two approaches are given in Table6.22.
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Table 6.22 Comparative analysis of two models

Methods Score values Ranking

Complex Pythagorean fuzzy
model

0.4 0.9 0.48 p2 > p3 > p1

Complex 3-rung orthopair
fuzzy model

0.104 0.67 0.436 p2 > p3 > p1

We now suppose that the third decision maker assigns the membership values to
these places as

(p1, 0.6e
i(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.8e

i(0.8)2π , 0.7ei(0.7)2π ), (p3, 0.7e
i(0.7)2π , 0.5ei(0.5)2π ).

This information cannot be modeled using complex intuitionistic fuzzy set and com-
plex Pythagorean fuzzy set as 0.7 + 0.8 = 1.5 > 1, 0.72 + 0.82 = 1.13 > 1. We
model this information using a complex 3-rung orthopair fuzzy set and the corre-
sponding model is given as

Q = {(p1, 0.6ei(0.6)2π , 0.4ei(0.4)2π ), (p2, 0.8e
i(0.8)2π , 0.7ei(0.7)2π ), (p3, 0.7e

i(0.7)2π , 0.5ei(0.5)2π )}.

We find the score functions of the above values using the formula s(p j ) = (T 3 −
F3) + 1

23π3 (φ
3 − ψ3). The score values of complex 3-rung orthopair fuzzy informa-

tion are given as

s(p1) = 0.304, s(p2) = 0.438, s(p3) = 0.436.

Note that, p2 is the best optimal choice to establish a new branch according to the
given parameters. We see that every complex intuitionistic fuzzy grade is a complex
Pythagorean fuzzy grade, aswell as a complex q-rung orthopair fuzzy grade, however
there are complex q-rung orthopair fuzzy grades that are not complex intuitionistic
fuzzy nor complex Pythagorean fuzzy grades. This implies the generalization of
complexq-rung orthopair fuzzy values. Thus, the proposed complexq-rung orthopair
fuzzy model provides more flexibility due to its most prominent feature that is the
adjustment of the range of demonstration of given information by changing the
value of parameter q, q ≥ 1. The generalization of our proposed model can also be
observed from the reduction of complex q-rung orthopair fuzzy model to complex
intuitionistic fuzzy and complex Pythagorean fuzzy models for q = 1 and q = 2,
respectively.



References 305

References

1. Akram, A., Dar, J.M., Naz, S.: Certain graphs under Pythagorean fuzzy environment. Complex
Intell. Syst. 5(2), 127–144 (2019)

2. Akram, M., Ilyasa, F., Garg, H.: Multi-criteria group decision making based on ELECTRE
I method in Pythagorean fuzzy information. Soft Comput. (2019). https://doi.org/10.1007/
s00500-019-04105-0

3. Akram,M., Dar, J.M., Naz, S.: Pythagorean Dombi fuzzy graphs. Complex Intell. Syst. (2019).
https://doi.org/10.1007/s40747-019-0109-0

4. Akram, M., Habib, A., Davvaz, B.: Direct sum of n Pythagorean fuzzy graphs with application
to group decision-making. J. Mult.-Valued Log. Soft Comput. 1–41 (2019)

5. Akram, M., Naz, S.: A novel decision-making approach under complex Pythagorean fuzzy
environment. Math. Comput. Appl. 24(3), 73 (2019)

6. Akram, M., Naz, S., Davvaz, B.: Simplified interval-valued Pythagorean fuzzy graphs with
application. Complex Intell. Syst. 5(2), 229–253 (2019)

7. Akram, M., Ilyas, F., Saeid, A.B.: Certain notions of Pythagorean fuzzy graphs. J. Intell. Fuzzy
Syst. 36(6), 5857–5874 (2019)

8. Akram, M., Dudek, W.A., Ilyas, F.: Group decision making based on Pythagorean fuzzy TOP-
SIS method. Int. J. Intell. Syst. 34(7), 1455–1475 (2019)

9. Akram, M, Habib , A., Koam , A.N.: A novel description on edge-regular q-rung picture fuzzy
graphs with application. Symmetry 11(4), 489 (2019). https://doi.org/10.3390/sym110

10. Akram, M., Habib, A., Ilyas, F., Dar, J.M.: Specific types of Pythagorean fuzzy graphs and
application to decision-making. Math. Comput. Appl. 23, 42 (2018)

11. Akram, M., Naz, S.: Energy of Pythagorean fuzzy graphs with applications. Mathematics 6,
560 (2018). https://doi.org/10.3390/math6080136

12. Ali, M.I.: Another view on q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 33, 2139–2153
(2018)

13. Alkouri, A., Salleh, A.: Complex intuitionistic fuzzy sets. AIP Conf. Proc. 14, 464–470 (2012)
14. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
15. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)
16. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Discret. Appl.

Math. 42, 177–201 (1993)
17. Goetschel Jr., R.H., Craine,W.L., Voxman,W.: Fuzzy transversals of fuzzy hypergraphs. Fuzzy

Sets Syst. 84, 235–254 (1996)
18. Habib, A., Akram, M.M.: Farooq, q-rung orthopair fuzzy competition graphs with application

in the soil ecosystem. Mathematics 7(1), 91 (2019). https://doi.org/10.3390/math70100
19. Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous, vol. 1.Masson, Paris (1977)
20. Li, L., Zhang, R., Wang, J., Shang, X., Bai, K.: A novel approach to multi-attribute group

decision-making with q-rung picture linguistic information. Symmetry 10(5), 172 (2018)
21. Liu, P.D., Wang, P.: Some q-rung orthopair fuzzy aggregation operators and their applications

to multi-attribute decision making. Int. J. Intell. Syst. 33, 259–280 (2018)
22. Luqman, A., Akram, M., Al-Kenani, A.N.: q-rung orthopair fuzzy hypergraphs with applica-

tions. Mathematics 7, 260 (2019)
23. Luqman, A., Akram, M., Al-Kenani, A.N., Alcantud, J.C.R.: A study on hypergraph represen-

tations of complex fuzzy information. Symmetry 11(11), 1381 (2019)
24. Luqman, A., Akram, M., Davvaz, B.: q-rung orthopair fuzzy directed hypergraphs: a new

model with applications. J. Intell. Fuzzy Syst. 37, 3777–3794 (2019)
25. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, 2nd edn. Physica Verlag,

Heidelberg (2001)
26. Myithili, K.K., Parvathi, R.: Transversals of intuitionistic fuzzy directed hypergraphs. Notes

Intuit. Fuzzy Sets 21(3), 66–79 (2015)
27. Naz, S., Ashraf, S., Akram, M.: A novel approach to decision-making with Pythagorean fuzzy

information. Mathematics 6(6), 95 (2018). https://doi.org/10.3390/math6060095

https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s40747-019-0109-0
https://doi.org/10.3390/sym110
https://doi.org/10.3390/math6080136
https://doi.org/10.3390/math70100
https://doi.org/10.3390/math6060095


306 6 (Directed) Hypergraphs: q-Rung Orthopair Fuzzy Models and Beyond

28. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst.
10(2), 171–186 (2002)

29. Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Trans. Fuzzy
Syst. 11(4), 450–461 (2003)

30. Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J.
Math. Sci. Eng. Appl. 10, 243–248 (2016)

31. Ullah, K., Mahmood, T., Ali, Z., Jan, N.: On some distance measures of complex Pythagorean
fuzzy sets and their applications in pattern recognition. Complex Intell. Syst. 1–13 (2019)

32. Yager, R.R.: Pythagorean fuzzy subsets. In: Proceedings of the Joint IFSA World Congress
and NAIFPS Annual Meeting, Edmonton, Canada, pp. 57–61 (2013)

33. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision
making. Int. J. Intell. Syst. 28(5), 436–452 (2013)

34. Yager, R.R.: Pythagorean membership grades in multi-criteria decision making. IEEE Trans.
Fuzzy Syst. 22(4), 958–965 (2014)

35. Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25, 1222–1230 (2017)
36. Yaqoob, N., Gulistan, M., Kadry, S., Wahab, H.: Complex intuitionistic fuzzy graphs with

application in cellular network provider companies. Mathematics 7(1), 35 (2019)
37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)



Chapter 7
Granular Computing Based on q-Rung
Picture Fuzzy Hypergraphs

In this chapter, we present q-rung picture fuzzy hypergraphs and illustrate the forma-
tion of granular structures using q-rung picture fuzzy hypergraphs and level hyper-
graphs.Moreover, we define q-rung picture fuzzy equivalence relations and its’ asso-
ciated q-rung picture fuzzy hierarchical quotient space structures. We also present
an arithmetic example in order to demonstrate the benefits and validity of this model.
This chapter is due to [19, 24].

7.1 Introduction

Granular computing is defined as an identification of techniques, methodologies,
tools, and theories that yields the advantages of clusters, groups or classes, i.e.,
the granules. The terminology was first introduced by Lin [20]. The fundamental
concepts of granular computing are utilized in various fields, including rough set
theory, cluster analysis,machine learning, and artificial intelligence.Differentmodels
have been proposed to study the numerous issues occurring in granular computing,
including classification of the universe, illustration of granules, and the identification
of relations among granules. For example, the procedure of problem-solving through
granular computing can be considered as distinct descriptions of the problem at
multilevels and these levels are linked together to construct a hierarchical space
structure. Thus, this is a way of dealing with the formation of granules and the
switching between different granularities. Here, the word “hierarchy” implies the
methodology of hierarchical analysis in problem-solving and human activities. To
understand thismethodology, let us consider an example of national administration in
which the complete nation is subdivided into various provinces. Further, divide every
province into various divisions and similarly. The human activities and problem-
solving involve the simplification of original complicated problem by ignoring some
details rather than thinking about all points of the problem. This rationalize model is
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M. Akram and A. Luqman, Fuzzy Hypergraphs and Related Extensions,
Studies in Fuzziness and Soft Computing 390,
https://doi.org/10.1007/978-981-15-2403-5_7

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2403-5_7&domain=pdf
https://doi.org/10.1007/978-981-15-2403-5_7


308 7 Granular Computing Based on q-Rung Picture Fuzzy Hypergraphs

Fig. 7.1 Comparison of
spaces of q-rung picture
fuzzy set

then further refined till the issue is completely solved. Thus, we resolve and interpret
the complex problems from weaker grain to stronger one or from highest rank to
lowest or from universal to particular, increasingly. This technique is called the
hierarchical problem-solving. This is further acknowledged that hierarchical strategy
is the only technique which is used by humans to deal with complicated problems
and it enhances the competence and efficiency. This strategy is also known as the
multi-granular computing.

Definition 7.1 A picture fuzzy set P is an object having the form, P = {(x, TP(x),
NP(x), FP(x))|x ∈ X}, where the function TP : X → [0, 1] represents the positive
degree, NP : X → [0, 1] represents the neutral degree, and FP : X → [0, 1] repre-
sents the negative degree of the element x ∈ X such that, 0 ≤ TP(x) + NP(x) +
FP(x) ≤ 1, for all x ∈ X .

The refusal degree of x in P is defined as (1 − TP(x) − NP(x) − FP(x)).

Definition 7.2 A q-rung picture fuzzy set R is an object having the form, R =
{(x, TR(x), NR(x), FR(x))|x ∈ X}, where the function TR : X → [0, 1] represents
the positive degree, NR : X → [0, 1] represents the neutral degree, and FR : X →
[0, 1] represents the negative degree of the element x ∈ X such that, 0 ≤ T q

R (x) +
Nq

R(x) + Fq
R(x) ≤ 1, q ≥ 1, for all x ∈ X .

The refusal degree of x in R is defined as q

√
(1 − T q

P (x) − Nq
P(x) − Fq

P(x))
(Fig. 7.1).

Picture fuzzy set proposed by Cuong and Kreinovich [16] in 2013 as an extension
of intuitionistic fuzzy set, consists of four terms, degree of positive membership
(T ), degree of neutral membership (N ), degree of negative membership (F), and
degree of refusal membership in order to deal with real-life context more adequately,
where degree of refusal membership (π) fully depends on preceding three terms
as it is defined as π = 1 − T − N − F . The geometrical representation of picture
fuzzy set in comparison with intuitionistic fuzzy set is first presented by Singh [26]
in 2015. In 2017, Yager introduced a new generalization of intuitionistic fuzzy sets
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Fig. 7.2 Spaces of acceptable triplets upto 4-rungs

(orthopair fuzzy sets), called q-rung orthopair fuzzy sets which relax the constraint of
orthopairmembership gradeswith T (x)q + N (x)q ≤ 1, (q ≥ 1).As q increases, the
representation space of allowable orthopair membership grades increases. Motivated
by the ideas of q-rung orthopair fuzzy sets and picture fuzzy sets, recently in 2018,
Li et al. [19] proposed q-rung picture fuzzy set model which inherits the virtues of
both q-rung orthopair fuzzy sets and picture fuzzy sets.

1. For q = 1, the q-rung picture fuzzy set reduces to picture fuzzy set (1-rung
picture fuzzy set). The space I1 in Fig. 7.2 bounded by surface x + y + z = 1 in
first octant is equivalent to the volume occupied by a tetrahedron ABCD. Thus,
any element belongs to 1-rung picture fuzzy set must lie within tetrahedron
ABCD.

2. For q = 2, the q-rung picture fuzzy set reduces to spherical fuzzy set (2-rung
picture fuzzy set) which covers more space of acceptable triplets than picture
fuzzy set. The space I2 in Fig. 7.2 bounded by surface x2 + y2 + z2 = 1 in first
octant is equivalent to the volume occupied by unit sphere in the first octant.
Thus, any element belongs to 2-rung picture fuzzy set must lie within the unit
sphere in the first octant.

3. Any element satisfying the constraint x3 + y3 + z3 ≤ 1 lies in the space I3,
representing a 3-rung picture fuzzy set.

4. The space I4 of admissible triplets of 4-rung picture fuzzy set, displayed in
Fig. 7.2, is vast than all preceding spaces.
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The generalized structure of picture fuzzy set, called q-rung picture fuzzy set pro-
vides gradual increase in spaces bounded by surfaces T (x)q + N (x)q + F(x)q = 1,
obtained by varying q in first octant. Figure7.2 displays spaces of most widely
acceptable triplets for increasing q rungs.

Moreover, it is clear from the graphical structure of q-rung picture fuzzy sets that
any object lying in tetrahedron, must lie not only within the unit sphere but also in all
other spaces covered by surfaces T q + Nq + Fq = 1 for q > 2. Since the volume
occupied by a surface covers the volume occupied by all preceding surfaces (see in
Fig. 7.2), therefore, it can be deduced that any element belongs to a particular q-rung
picture fuzzy set, must qualify for all picture fuzzy sets of higher rungs (i.e., greater
than q).

Definition 7.3 The support of a q-rung picture fuzzy set R = {(x, TR(x), NR(x),
FR(x))|x ∈ X} is defined as

supp(R) = {x |TR(x) �= 0, NR(x) �= 0, FR(x) �= 1}.

The height of a q-rung picture fuzzy set R = {(x, TR(x), NR(x), FR(x))|x ∈ X} is
defined as

h(R) = {(max{TR(x)},min{NR(x)},min{FR(x)})|x ∈ X}.

Definition 7.4 Let A and B be two q-rung picture fuzzy sets on X . The union and
intersection of A and B are defined as

• A ⊆ B ⇔ TA(x) ≤ TB(x), NA(x) ≥ NB(x), FA(x) ≥ FB(x).
• A ∪ B={(x,max(TA(x), TB(x)),min(NA(x), NB(x)),min(FA(x), FB(x)))|
x ∈ X}.

• A ∩ B={(x,min(TA(x), TB(x)),min(NA(x), NB(x)),max(FA(x), FB(x)))|
x ∈ X}.

Definition 7.5 A q-rung picture fuzzy graph on X is defined as an ordered pair
G = (P, Q), where P is a q-rung picture fuzzy set on X and Q is a q-rung picture
fuzzy relation on X such that

TQ(x1x2) ≤ min{TP(x1), TP(x2)},

NQ(x1x2) ≤ min{NP(x1), NP(x2)},

FQ(x1x2) ≤ max{FP(x1), FP(x2)},

and 0 ≤ T q
Q(x1x2) + Nq

Q(x1x2) + Fq
Q(x1x2) ≤ 1 , q ≥ 1, for all x1, x2 ∈ X, where

TQ : X × X → [0, 1], NQ : X × X → [0, 1] and FQ : X × X → [0, 1] represent
the positive, neutral, and negative degrees of Q, respectively.

Definition 7.6 Let X be a set of universe. A q-rung picture fuzzy hypergraph on
X is defined as an ordered pair H = (R, S), where R = {R1, R2, R3, . . . , Rk} is
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a collection of nontrivial q-rung picture fuzzy sets on X and S is a q-rung picture
fuzzy relation on Ri such that

1. TS(Ei ) = TS({x1, x2, x3, . . . , xr }) ≤ min{TRi (x1), TRi (x2), TRi (x3), . . . ,
TRi (xr )},

NS(Ei ) = NS({x1, x2, x3, . . . , xr }) ≤ min{NRi (x1), NRi (x2), NRi (x3), . . . ,
NRi (xr )},

FS(Ei ) = FS({x1, x2, x3, . . . , xr }) ≤ max{FRi (x1), FRi (x2), FRi (x3), . . . ,
FRi (xr )},

for all x1, x2, x3, . . . , xr ∈ X .
2. X = ⋃

k
supp(Rk), for all Rk ∈ R.

Here, E = {E1, E2, E3, . . . , El} is the family of crisp hyperedges.

Definition 7.7 A q-rung picture fuzzy hypergraph H = (R, S) is simple if H does
not contain repeated q-rung picture fuzzy hyperedges and whenever Ei , E j ∈ E and
Ei ⊆ E j then Ei = E j .

Definition 7.8 Let H = (R, S) be a q-rung picture fuzzy hypergraph and Ei ∈ E .
Suppose α, β, γ ∈ [0, 1], the (α, β, γ )-cut of Ei , E

(α,β,γ )

i , is defined as, E (α,β,γ )

i =
{x ∈ X |TEi (x) ≥ α , NEi (x) ≥ β , FEi (x) ≤ γ }. Let
• E (α,β,γ ) = {E (α,β,γ )

i |Ei ∈ E},
• X (α,β,γ ) = ∪{E (α,β,γ )

i |Ei ∈ E}.
If E (α,β,γ ) is non-empty, then the (α, β, γ )-level hypergraph of H is defined as a
crisp hypergraph H (α,β,γ ) = (X (α,β,γ ), E (α,β,γ )).

For further terminologies and studies on q-rung orthopair fuzzy sets and graphs,
readers are referred to [1–13, 15, 17, 21–23, 25, 28–30, 33, 34, 36].

7.2 q-Rung Picture Fuzzy Hierarchical Quotient Space
Structure

Different techniques have been proposed to deal with granular computing. Quotient
space, fuzzy sets, and rough sets are three basic computing tools dealing with uncer-
tainty. Based on fuzzy sets, fuzzy equivalence relation, as an extension of equivalence
relation, was proposed by Zadeh [32]. The question of distinct membership degrees
of same object from different scholars is arisen because of various ways of thinking
about the interpretation of different functions dealing with the same problem. To
resolve this issue, fuzzy set was structurally defined by Zhang and Zhang [37] which
was based on quotient space theory and fuzzy equivalence relation. This definition
provides some new intuitiveness regarding membership degree, called a hierarchi-
cal quotient space structure of a fuzzy equivalence relation. By following the same
concept, we develop a hierarchical quotient space structure of a q-rung picture fuzzy
equivalence relation.
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Definition 7.9 Let X and Y be two finite non-empty sets then the Cartesian product
between X and Y is X × Y . Every q-rung picture fuzzy subset R of X × Y is defined
as a q-rung picture fuzzy binary relation from X to Y . Let X = {x1, x2, x3, . . . , xl}
and Y = {y1, y2, y3, . . . , ym}, a q-rung picture fuzzy binary relation matrix M̃R is
given as follows:

M̃R =

⎡
⎢⎢⎢⎣

dR(x1, y1) dR(x1, y2) · · · dR(x1, ym)

dR(x2, y1) dR(x2, y2) · · · dR(x2, ym)
...

...
...

...

dR(xl , y1) dR(xl , y2) · · · dR(xl , ym)

⎤
⎥⎥⎥⎦ .

In general, M̃R is called q-rung picture fuzzy relation matrix of R, where dR(x, y) =
(TR(x, y), NR(x, y), FR(x, y)) and TR : X × Y → [0, 1], NR : X × Y → [0, 1],
FR : X × Y → [0, 1] represent the positive degree, neutral degree and negative
degree of objects x and y satisfying the relation R, respectively, such that

0 ≤ T q
R (x, y) + Nq

R(x, y) + Fq
R(x, y) ≤ 1, q ≥ 1,

for all (x, y) ∈ X × Y.

Definition 7.10 A q-rung picture fuzzy relation on a non-empty finite set X is called
q-rung picture fuzzy similarity relation if it satisfies

1. dR(x, x) = (1, 0, 0), for all x ∈ X ,
2. dR(x, y) = dR(y, x), for all x, y ∈ X.

Definition 7.11 A q-rung picture fuzzy relation on a non-empty finite set X is called
q-rung picture fuzzy equivalence relation if it satisfies the conditions

1. dR(x, x) = (1, 0, 0), for all x ∈ X ,
2. dR(x, y) = dR(y, x), for all x, y ∈ X,

3. for all x, y, z ∈ X

• TR(x, z) = sup
y∈X

{min(TR(x, y), TR(y, z))},
• NR(x, z) = sup

y∈X
{min(NR(x, y), NR(y, z))},

• FR(x, z) = inf
y∈X{max(FR(x, y), FR(y, z))}.

A q-rung picture fuzzy quotient space is denoted by a triplet (X, Ã, R), where X is
a finite domain, Ã represents the attributes of X and R represents the q-rung picture
fuzzy relationship between the objects of universe X , which is called the structure
of the domain.
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Definition 7.12 Let xi and x j be two objects in the universe X . The similarity
between xi , x j ∈ X having the attribute ãk is defined as

TR(xi , x j ) = |ãik ∩ ã jk |
|ãik ∪ ã jk | , NR(xi , x j ) = |ãik ∩ ã jk |

|ãik ∪ ã jk | , FR(xi , x j ) = |ãik ∪ ã jk |
|ãik ∩ ã jk | ,

where ãik represents that object xi possesses the attribute ãk and ã jk represents that
object x j possesses the attribute ãk .

It is noted that q-rung picture fuzzy relation matrix M̃R is symmetric and reflexive q-
rung picture fuzzy relation but, in general, it does not satisfy the transitivity condition.
In such cases, transitive closure is used to make a q-rung picture fuzzy equivalence
relation from the given relation. The transitive closure R� of a q-rung picture fuzzy
relation R is defined as R�=R ∪ R2 ∪ R3 · · · Rn−1.

Proposition 7.1 Let R be a q-rung picture fuzzy relation on a finite domain
X and R(α,β,γ ) = {(x, y)|TR(x, y) ≥ α, NR(x, y) ≥ β, FR(x, y) ≤ γ }, (α, β, γ ) ∈
[0, 1]. Then, R(α,β,γ ) is an equivalence relation on X and is said to be cut-equivalence
relation of R.

Proposition7.1 depicts that R(α,β,γ ) is a crisp relation, which is equivalence on X
and it’s knowledge space is given as, τR(α,β,γ ) (X) = X/R(α,β,γ ). The value domain of
an equivalence relation R on X is defined as D = {dR(x, y)|x, y ∈ X} such that

• TX (x) ∧ TX (y) ∧ TR(x, y) > 0,
• NX (x) ∧ NX (y) ∧ NR(x, y) > 0,
• FX (x) ∨ FX (y) ∨ FR(x, y) > 0.

Definition 7.13 Let R be a q-rung picture fuzzy equivalence relation on a finite set X
and D be the value domain of R. The set given by τX (R) = {X/R(α,β,γ )|(α, β, γ ) ∈
D} is called q-rung picture fuzzy hierarchical quotient space structure of R.

Example 7.1 Let X = {x1, x2, x3, x4, x5} and R be a 5-rung picture fuzzy equivalence
relation on X , the corresponding relation matrix M̃R is given as follows:

M̃R =

⎡
⎢⎢⎢⎢⎣

(1, 0, 0) (0.3, 0.4, 0.3) (0.7, 0.5, 0.1) (0.5, 0.5, 0.2) (0.5, 0.5, 0.2)
(0.3, 0.4, 0.3) (1, 0, 0) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3)
(0.7, 0.5, 0.1) (0.3, 0.4, 0.3) (1, 0, 0) (0.5, 0.5, 0.2) (0.5, 0.5, 0.2)
(0.5, 0.5, 0.2) (0.3, 0.4, 0.3) (0.5, 0.5, 0.2) (1, 0, 0) (0.9, 0.5, 0.1)
(0.5, 0.5, 0.2) (0.3, 0.4, 0.3) (0.5, 0.5, 0.2) (0.9, 0.5, 0.1) (1, 0, 0)

⎤
⎥⎥⎥⎥⎦

.

It’s corresponding hierarchical quotient space structure is given as

X/R(α1,β1,γ1) = {{x1, x2, x3, x4, x5}} , 0 < α1 ≤ 0.3, 0 < β1 ≤ 0.4, 0.3 > γ1 ≥ 0,

X/R(α2,β2,γ2) = {{x2}, {x1, x3, x4, x5}} , 0.3 < α2 ≤ 0.5, 0.4 < β2 ≤ 0.5, 0.3 > γ2 ≥ 0.2,

X/R(α3,β3,γ3) = {{x1, x3}, {x2}, {x4, x5}} , 0.5 < α3 ≤ 0.7, 0.5 < β3 ≤ 0.5, 0.2 > γ3 ≥ 0.1,

X/R(α4,β4,γ4) = {{x1}, {x2}, {x3}, {x4, x5}} , 0.7 < α4 ≤ 0.9, 0.5 < β4 ≤ 0.5, 0.1 > γ4 ≥ 0.1,

X/R(α5,β5,γ5) = {{x1}, {x2}, {x3}, {x4}, {x5}} , 0.9 < α5 ≤ 1, 0.5 < β5 ≤ 1, 0.1 > γ4 ≥ 0.
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Fig. 7.3 The hierarchical quotient space structure of R

α = 0, β = 0, γ = 0Layer 1

α = αk−1, β = βk−1, γ = γk−1Layer k−1

α = αk, β = βk, γ = γk

α = αi, β = βi, γ = γi

Layer k

Layer i

Fig. 7.4 The pyramid model of a hierarchical quotient space structure

Hence, a hierarchical quotient space structure induced by 5-rung picture fuzzy equiv-
alence relation R is given as τX (R) = {X/R(α1,β1,γ1),X/R(α2,β2,γ2), X/R(α3,β3,γ3),
X/R(α4,β4,γ4), X/R(α5,β5,γ5)} and is shown in Fig. 7.3.

Furthermore, assuming the number of blocks in every distinct layer of this hier-
archical quotient space structure, a pyramid model can also be constructed as shown
in Fig. 7.4.

It is worth to note that the same hierarchical quotient space structure can be
formed by different 5-rung picture fuzzy equivalence relations. For instance, the
relation matrix M̃R1 of 5-rung picture fuzzy equivalence relation generates the same
hierarchical quotient space structure as given by M̃R . The relation matrix M̃R1 is
given as
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M̃R1 =

⎡
⎢⎢⎢⎢⎣

(1, 0, 0) (0.2, 0.3, 0.2) (0.9, 0.5, 0.1) (0.6, 0.6, 0.3) (0.6, 0.6, 0.3)
(0.2, 0.3, 0.2) (1, 0, 0) (0.2, 0.3, 0.2) (0.2, 0.3, 0.2) (0.2, 0.3, 0.2)
(0.9, 0.5, 0.1) (0.2, 0.3, 0.2) (1, 0, 0) (0.6, 0.6, 0.3) (0.6, 0.6, 0.3)
(0.6, 0.6, 0.3) (0.2, 0.3, 0.2) (0.6, 0.6, 0.3) (1, 0, 0) (0.7, 0.5, 0.1)
(0.6, 0.6, 0.3) (0.2, 0.3, 0.2) (0.6, 0.6, 0.3) (0.7, 0.5, 0.1) (1, 0, 0)

⎤
⎥⎥⎥⎥⎦

.

Definition 7.14 Let R be a q-rung picture fuzzy equivalence relation on X . Let
τX (R) = {X (ρ1), X (ρ2), X (ρ3), . . ., X (ρ j )} be its corresponding hierarchical quo-
tient space structure, whereρi = (αi , βi , γi ), i = 1, 2,. . ., j and X (ρ j ) < X (ρ j−1) <

· · · < X (ρ1). Then, the partition sequence of τX (R) is given as P(τX (R)) = {P1,
P2, P3, . . ., Pj }, where Pi = |X (ρi )|, i = 1, 2, . . . , j and |.| denotes the number of
elements in a set.

Definition 7.15 Let R be a q-rung picture fuzzy equivalence relation on X . Let
τX (R) = {X (ρ1), X (ρ2), X (ρ3), . . ., X (ρ j )} be its corresponding hierarchical quo-
tient space structure, whereρi = (αi , βi , γi ), i = 1, 2,. . ., j and X (ρ j ) < X (ρ j−1) <

· · · < X (ρ1), P(τX (R)) = {P1, P2, P3, . . ., Pj } be the partition sequence of τX (R).
Assume that X (ρi )={Xi1, Xi2, . . . , Xi Pi }. The information entropy IX (ρi ) is defined

as IX (ρi ) = −
Pi∑
t=1

|Xit |
|X | ln(

|Xit |
|X | ).

Theorem 7.1 Let R be a q-rung picture fuzzy equivalence relation on X. Let
τX (R) = {X (ρ1), X (ρ2), X (ρ3), . . ., X (ρ j )} be its corresponding hierarchical
quotient space structure, where ρi = (αi , βi , γi ), i = 1, 2,. . ., j , then the entropy
sequence I (τX (R)) = {IX (ρ1), IX (ρ2), . . ., IX (ρ j )} increases monotonically and
strictly.

Proof The terminology of hierarchical quotient space structure implies that X (ρ j ) <

X (ρ j−1) < · · · < X (ρ1), i.e., X (ρ j−1) is a quotient subspace of X (ρ j ). Suppose that
X (ρi ) = {Xi1, Xi2, . . . , Xi Pi } and X (ρi−1) = {X(i−1)1, X(i−1)2, . . .,X(i−1)P(i−1)}, then
every subblock of X (ρi−1) is an amalgam of sub blocks of X (ρi ). Without loss of
generality, it is assumed that only one subblock Xi−1, j in X (ρi−1) is formed by the
combination of two subblocks Xir , Xis in X (ρi ) and all other remaining blocks are
equal in both sequences. Thus,

IX (ρ j−1) = −
Pi−1∑
t=1

|Xi−1,t |
|X | ln(

|Xi−1,t |
|X | )

= −
Pj−1∑
t=1

|Xi−1,t |
|X | ln(

|Xi−1,t |
|X | ) −

Pi−1∑
t= j+1

|Xi−1,t |
|X | ln(

|Xi−1,t |
|X | ) − |Xi−1, j |

|X | ln(
|Xi−1, j |

|X | )

= −
Pj−1∑
t=1

|Xi,t |
|X | ln(

|Xi,t |
|X | ) −

Pi∑
t= j+1

|Xi,t |
|X | ln(

|Xi,t |
|X | ) − |Xi,r | + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | )
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Since,

|Xi,r | + |Xi,s |
|X | ln(

|Xi,r | + |Xi,s |
|X | ) = |Xi,r |

|X | ln(
|Xi,r | + |Xi,s |

|X | ) + |Xi,s |
|X | ln(

|Xi,r | + |Xi,s |
|X | )

>
|Xi,r |
|X | ln(

|Xi,r |
|X | ) + |Xi,s |

|X | ln(
|Xi,s |
|X | )

Therefore, we have

IX (ρ j−1) < −
Pj−1∑
t=1

|Xi,t |
|X | ln(

|Xi,t |
|X | ) −

Pi∑
t= j+1

|Xi,t |
|X | ln(

|Xi,t |
|X | ) − |Xi,r |

|X | ln(
|Xi,r |
|X | ) − |Xi,s |

|X | ln(
|Xi,s |
|X | )

= IX (ρ j ), (2 ≤ j ≤ n).

Hence, IX (ρ1) < IX (ρ2) < IX (ρ2) < · · · < IX (ρ j ).

Definition 7.16 Let X = {x1, x2, x3, . . . , xn} be a non-empty set of universe and let
Pt (X) = {X1, X2, X3, . . . , Xt } be a partition space of X , where |Pt (X)| = t then
Pt (X) is called t-order partition space on X .

Definition 7.17 Let X be a finite non-empty universe and let Pt (X) = {X1, X2,

X3, . . . , Xt } be a t-order partition space on X . Let |X1| = b1, |X2| = b2, . . ., |Xt | =
bt and the sequence {b1, b2, . . . , bt } is arranged in increasing order then we got a
new sequence H(t) = {b′

1, b
′
2, . . . , b

′
t }which is also increasing and called a subblock

sequence ofPt (X).

Note that, two different t-order partition spaces on X may possess the similar sub-
block sequence H(t).

Definition 7.18 Let X be a finite non-empty universe and let Pt (X) = {X1, X2,

X3, . . . , Xt } be a partition space of X . Suppose that H1(t) = {b′
1, b

′
2, . . . , b

′
t } be

a subblock sequence of Pt (X), then the ω-displacement of H1(t) is defined as
increasing sequence H2(t) = {b′

1, b
′
2, . . . , b

′
r + 1, . . . , b′

s − 1, . . . , b′
t }, where r < s,

b′
r + 1 < b′

s − 1.
Anω-displacement is obtained by subtracting 1 from some bigger term and adding

1 to some smaller element such that the sequence keeps its increasing property.

Theorem 7.2 A single time ω-displacement H2(t) which is derived from H1(t)
satisfies I (H1(t)) < I (H2(t)).

Proof Let H1(t) = {b′
1, b

′
2, . . . , b

′
t } and H2(t) = {b′

1, b
′
2, . . . , b

′
r + 1, . . . , b′

s − 1,
. . . , b′

t }, b′
1 + b′

2 + · · · + b′
t = k then we have

I (H2(t)) = −
t∑

j=1

b′
l
k
ln
b′
l
k

+ b′
r
k
ln
b′
r
k

+ b′
s
k
ln
b′
s
k

− b′
r + 1

k
ln
b′
r + 1

k
− b′

s − 1

k
ln
b′
s − 1

k
.

Let ϕ(x) = − x
k ln

x
k − l−x

k ln l−x
k , where l = b′

r + b′
s and ϕ′(x) = 1

k ln
l−x
x . Suppose

that ϕ′(x) = 0 then we obtain a solution, i.e., x = l
2 . Furthermore,
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ϕ′′(x) = −l
k(l−x)x < 0, 0 ≤ x ≤ l

2 and ϕ(x) is increasing monotonically. Let x1 = b′
r

and x2 = b′
r + 1, b′

r + 1 < b′
s − 1, i.e., x1 < x2 ≤ l

2 = b′
r+b′

s
2 . Since, ϕ(x) is mono-

tone then ϕ(x2) − ϕ(x1) > 0. Thus,

b′
r

k
ln
b′
r

k
+ b′

s

k
ln
b′
s

k
− b′

r + 1

k
ln
b′
r + 1

k
− b′

s − 1

k
ln
b′
s − 1

k
> 0.

Therefore, we have

I (H2(t)) = −
t∑

j=1

b′
l

k
ln
b′
l

k
+ b′

r

k
ln
b′
r

k
+ b′

s

k
ln
b′
s

k
− b′

r + 1

k
ln
b′
r + 1

k
− b′

s − 1

k
ln
b′
s − 1

k

> −(
b′
r + 1

k
ln
b′
r + 1

k
+ b′

s − 1

k
ln
b′
s − 1

k
)

> −
t∑

j=1

b′
l

k
ln
b′
l

k

= I (H1(t)).

7.3 A q-Rung Picture Fuzzy Hypergraph Model
of Granular Computing

In the following section, we construct a q-rung picture fuzzy hypergraph model of
granular computing.

7.3.1 Model Construction

Granular computing may utilize frameworks in terms of levels, granules, and hierar-
chies which are based on multiple representations and multilevel [14, 27]. A granule
is defined as a collection of objects or elements having same attributes or character-
istics and can be treated as a single unit.

Definition 7.19 An object space is defined as a system (X, R), where X is a universe
of objects or elements and R = {r1, r2, r3, . . . , rk}, k = |X | is a family of relations
between the elements of X . For n ≤ k, rn ∈ R, rn ⊆ X × X × X · · · × X , if (x1, x2,
. . ., xn) ⊆ rn , then there exists an n-array relation rn on (x1, x2, . . ., xn).

The set of those objects which have some relation ri ∈ R in an object space can be
assumed as a granule. A single object is considered as a smallest granule and the set
of all elements is said to be the largest granule in an object space.

We consider one vertex of a q-rung picture fuzzy hypergraph as a representation
of an object in the object space and the set of objects having some relationship si
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is represented by q-rung picture fuzzy hyperedge. The positive membership T of
an element xi refers to the belonging, neutral membership N refers to the unbiased
behavior and negativemembership F refers to the disconnection to the granule,where
T (xi ), N (xi ), F(xi ) ∈ [0, 1], satisfying the condition T q(xi ) + Nq(xi ) + Fq(xi )
≤ 1, q ≥ 1. Thus, we can establish a q-rung picture fuzzy hypergraph model of
granular computing. An example of constructing such a model is given in Exam-
ple7.2.

Example 7.2 Let X = {x1, x2, x3, x4, x5}be the set of objects and R = {r1, r2, r3, r4,
r5, r6} be the set of relations. A hypergraph H = (R, S) representing the objects and
the relations ri ∈ R(1 ≤ i ≤ 6) between them is shown in Fig. 7.5. By assigning
the positive membership T ∈ [0, 1], neutral membership N ∈ [0, 1], and negative
membership F ∈ [0, 1] to each element xi , we form a 7-rung picture fuzzy hyper-
graph. Let X = {x1, x2, x3, x4, x5} and S = {E1,E2,E3,E4} and the corresponding
incidence matrix is given in Table7.1.

Let α = 0.5, β = 0.3, γ = 0.5, then we have r1 = {(x3), (x4)}, r2 = {(x2, x4)},
r3, r4, r5 = {∅}. Hypergraph representation of granular in a level is given in Fig. 7.6.

The relationships between the vertices can be obtained by following the present
situation, through computing the mathematical function or by figuring out the inter-
nal, external, and contextual properties of the granule [14]. After the relationship
is being computed, the set of vertices possessing the relationship among them can
be combined into one module. By taking in to account the actual condition, we

Fig. 7.5 Hypergraph
representation of granules

x1
x2

x3

x4

x5

E1

E 2

E3
E4

Table 7.1 Incidence matrix of H

I E1 E2 E3 E4

x1 (0.7, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x2 (0.8, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x3 (0.5, 0.3, 0.4) (0.5, 0.3, 0.1) (0, 0, 1) (0, 0, 1)

x4 (0, 0, 1) (0.6, 0.2, 0.1) (0.5, 0.3, 0.1) (0, 0, 1)

x5 (0, 0, 1) (0, 0, 1) (0.6, 0.2, 0.1) (0.5, 0.3, 0.1)
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Fig. 7.6 Representation of
granular in a level through
hypergraph x2

x4

x3

x5

E 1

E
2

E3

E4

can calculate or assign positive, neutral, and negative degrees through the member-
ship functions T (x), N (x), and F(x), respectively. As a result, we have formed a
granule which is also called the q-rung picture fuzzy hyperedge. The (α, β, γ )-cut
are computed for this q-rung picture fuzzy hyperedge. When all under considera-
tion vertices are to be integrated into a single unit and the membership degrees are
assignedor computedof the unit,wehave constructed a single-levelmodel of granular
computing.

The amalgamation of the elements or objects which are processed at the same
time while resolving a problem is called a granule. It reflects the representation of
the perceptions and the attributes of the integration. A granule may be a small part
of another granule and can also be considered as the block to form larger granules.
It can also be a collection of granules or may be thought as a whole unit. Thus, a
granule may play two distinct roles.

A granule affiliates to a particular level. The whole view of granules at every
level can be taken as a complete description of a particular problem at that level of
granularity [14]. A q-rung picture fuzzy hypergraph formed by the set of relations R
and membership functions T (x), N (x), F(x) of objects in the space is considered as
a specific level of granular computing model. All q-rung picture fuzzy hyperedges
in that q-rung picture fuzzy hypergraph can be regarded as the complete granule in
that particular level.

Definition 7.20 A partition of a set X established on the basis of relations between
objects is defined as a collection of non-empty subsets which are pair-wise disjoint
and whose union is whole of X . These subsets which form the partition of X are
called blocks. Every partition of a finite set X contains the finite number of blocks.
Corresponding to the q-rung picture fuzzy hypergraph, the constraints of partition
ψ = {Ei |1 ≤ i ≤ n} can be stated as follows:

• each Ei is non-empty,
• for i �= j , Ei ∩ E j = ∅,
• ∪{supp(Ei )|1 ≤ i ≤ n} = X .
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Definition 7.21 A covering of a set X is defined as a collection of non-empty subsets
whose union is whole of X . The conditions for the covering c = {Ei |1 ≤ i ≤ n} of
X are stated as

• each Ei is non-empty,
• ∪{supp(Ei )|1 ≤ i ≤ n} = X .

The corresponding definitions in classical hypergraph theory are completely analo-
gous to the above Definitions7.20 and 7.21. In a crisp hypergraph, if the hyperedges
Ei and E j do not intersect each other, i.e., Ei , E j ∈ E and Ei ∩ E j = ∅ then these
hyperedges form a partition of granules in this level. Furthermore, if Ei , E j ∈ E
and Ei ∩ E j �= ∅, i.e., the hyperedges Ei and E j intersect each other, then these
hyperedges form a covering in this level.

In a q-rung picture fuzzy hypergraph, if Ei , E j ∈ S and Ei ∩ E j = ∅, i.e., the
hyperedges Ei and E j do not intersect each other, then these hyperedges form a
partition of granules. Furthermore, ifEi ,E j ∈ S andEi ∩ E j �= ∅, i.e., the hyperedges
Ei and E j intersect each other, then these hyperedges form a covering of granules
in this level. Note that, the definition of q-rung picture fuzzy hypergraph concludes
that the q-rung picture fuzzy hypergraph forms a covering of set of universe X .

Example 7.3 Let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}. The partition and cov-
ering of X are given in Figs. 7.7 and 7.8, respectively.

The fundamental properties which are possessed by granules are internal property,
external property, and contextual property. The elements belonging to the granule
determine the internal property and studies the relationships between objects. The
internal property in this model incorporates the interaction of vertices. The external
property reflects the relationships between granules. This property incorporates those
vertices which belong to a q-rung picture fuzzy hyperedge under the membership
functions T , N , and F . The existence of a granule is indicated by contextual property
in an environment.

A set-theoretic way to study the granular computing model uses the following
operators in a q-rung picture fuzzy hypergraph model.

Fig. 7.7 A partition of
granules in a level x1
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x5 x6
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Fig. 7.8 A covering of
granules in a level
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Definition 7.22 Let G1 and G2 be two granules in our model and the q-rung picture
fuzzy hyperedgesE1,E2 represent their external properties. The union of two granules
G1 ∪ G2 is defined as a largerq-rungpicture fuzzy hyperedge that contains the vertices
of bothE1 andE2. If xi ∈ G1 ∪ G2, then themembership degrees of xi in larger granule
G1 ∪ G2 are defined as follows:

TG 1∪G 2(xi ) =

⎧
⎪⎨
⎪⎩

max{TE1(xi ), TE2(xi )}, if xi ∈ E1 and xi ∈ E2,

TE1(xi ), if xi ∈ E1 and xi /∈ E2,

TE2(xi ), if xi ∈ E2 and xi /∈ E1.

NG 1∪G 2(xi ) =

⎧
⎪⎨
⎪⎩

max{NE1(xi ), NE2(xi )}, if xi ∈ E1 and xi ∈ E2,

NE1(xi ), if xi ∈ E1 and xi /∈ E2,

NE2(xi ), if xi ∈ E2 and xi /∈ E1.

FG 1∪G 2(xi ) =

⎧
⎪⎨
⎪⎩

min{FE1(xi ), FE2(xi )}, if xi ∈ E1 and xi ∈ E2,

FE1(xi ), if xi ∈ E1 and xi /∈ E2,

FE2(xi ), if xi ∈ E2 and xi /∈ E1.

Definition 7.23 Let G1 and G2 be two granules in our model and the q-rung picture
fuzzy hyperedges E1, E2 represent their external properties. The intersection of two
granules G1 ∩ G2 is defined as a smaller q-rung picture fuzzy hyperedge that contains
those vertices belonging to both E1 and E2. If xi ∈ G1 ∩ G2, then the membership
degrees of xi in smaller granule G1 ∩ G2 are defined as follows:

TG 1∩G 2(xi ) =

⎧
⎪⎨
⎪⎩

min{TE1(xi ), TE2(xi )}, if xi ∈ E1 and xi ∈ E2,

TE1(xi ), if xi ∈ E1 and xi /∈ E2,

TE2(xi ), if xi ∈ E2 and xi /∈ E1.
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NG 1∩G 2(xi ) =

⎧
⎪⎨
⎪⎩

min{NE1(xi ), NE2(xi )}, if xi ∈ E1 and xi ∈ E2,

NE1(xi ), if xi ∈ E1 and xi /∈ E2,

NE2(xi ), if xi ∈ E2 and xi /∈ E1.

FG 1∩G 2(xi ) =

⎧
⎪⎨
⎪⎩

max{FE1(xi ), FE2(xi )}, if xi ∈ E1 and xi ∈ E2,

FE1(xi ), if xi ∈ E1 and xi /∈ E2,

FE2(xi ), if xi ∈ E2 and xi /∈ E1.

Definition 7.24 Let G1 and G2 be two granules in our model and the q-rung picture
fuzzy hyperedges E1, E2 represent their external properties. The difference between
two granules G1 − G2 is defined as a smaller q-rung picture fuzzy hyperedge that
contains those vertices belonging to E1 but not to E2.
Note that, if a vertex xi ∈ E1 and xi /∈ E2, then TE1(xi ) > 0, NE1(xi ) > 0, FE1(xi ) <

1 and TE2(xi ) = 0, NE2(xi ) = 0, FE2(xi ) = 1.

Definition 7.25 A granule G1 is said to be the sub-granule of G2, if each vertex xi
of E1 also belongs to E2, i.e., E1 ⊆ E2. In such case, G2 is called the super-granule
of G1.

Note that, if E (xi ) = {0, 1}, then all the above-described operators are reduced to
classical hypergraphs theory of granular computing.

7.3.2 The Construction of Hierarchical Structures

As earlier, we have constructed a granular structure of a specific level as a q-rung
picture fuzzy hypergraph. In this way, we can interpret a problem in distinct levels
of granularities. Hence, these granular structures at different levels produce a set
of q-rung picture fuzzy hypergraphs. The upper set of these hypergraphs constructs
a hierarchical structure in distinct levels. The relationships between granules are
expressed by lower level, which represents the problem as a concrete example of
granularity. The relationships between granule sets are expressed by higher level,
which represents the problem as an abstract example of granularity. Thus, the single-
level structures can be constructed and then can be subdivided into hierarchical
structures using the relational mappings between different levels.

Definition 7.26 Let H1 = (R1, S1) and H2 = (R2, S2) be two q-rung picture fuzzy
hypergraphs. In a hierarchy structure, their level cuts are H (α,β,γ )

1 and H (α,β,γ )

2 ,
respectively. Let (α, β, γ ) ∈ [0, 1] and TE 1

i
≥ α, NE 1

i
≥ β, FE 1

i
≤ γ , whereE 1

i ∈ S1,

then a mapping φ : H (α,β,γ )

1 → H (α,β,γ )

2 from H (α,β,γ )

1 to H (α,β,γ )

2 maps the E 1(α,β,γ )

i

in H (α,β,γ )

1 to a vertex x2i in H (α,β,γ )

2 . Furthermore, the mapping φ−1 : H (α,β,γ )

2 →
H (α,β,γ )

1 maps a vertex x2i in H (α,β,γ )

2 to (α, β, γ )-cut of q-rung picture fuzzy hyper-
edge E 1(α,β,γ )

i in H (α,β,γ )

1 . It can be denoted as φ(E 1(α,β,γ )

i ) = x2i or φ−1(x2i ) =
E 1(α,β,γ )

i , for 1 ≤ i ≤ n.
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The q-rung picture fuzzy hypergraph H1 possesses the finer granularity than H2, so
H1 is referred to as the finer granularity and H2 as the coarser granularity.

In a q-rung picture fuzzy hypergraphmodel, themappings are used to describe the
relations among different levels of granularities. At each distinct level, the problem is
interpreted w.r.t the q-rung picture fuzzy granularity of that level. The mapping asso-
ciates the different descriptions of the same problem at distinct levels of granularities.
There are two fundamental types to construct the method of hierarchical structures,
the top-down construction procedure and the bottom-up construction procedure [31].
The possible method for the bottom-up construction is described in Algorithm 7.3.1.

Algorithm 7.3.1

The bottom-up construction
Input: An undirected q−rung picture fuzzy hypergraph H .
Output: The bottom-up construction of granular structures.
1. Combine the vertices having some relationship r ∈ R into a unit Uj , according to the set

of relations R={r1, r2, r3,· · · , rn}.
2. Compute the membership degrees through the functions T (x), N (x) and F(x) of each unit Uj ,

which are q−rung picture fuzzy hyperedges and regarded as granules.
3. Now formulate the i-level of the model using the following steps.
4. Input the number of q−RPF hyperedges or granules k.
5. Fix parameters α, β and γ .
6. for α, β, γ ∈ [0, 1]
7. do s from 1 to k
8. if (TUs (a) ≥ α, NUs (a) ≥ β, FUs (a) ≤ γ ) then

9. a ∈ U (α,β,γ )
s

10. end if

11. if (U (α,β,γ )
s �= ∅) then

12. U (α,β,γ )
s ∈ H (α,β,γ )

i
13. end if

14. print*, H (α,β,γ )
i is the i-level of H .

15. end do
16. end for
17. A single level of bottom-up construction is constructed.
18. Perform the steps form 1 to 16 repeatedly to construct the i + 1-level of granularity.
19. Except the last level, each level is mapped to the next level using some operators.
20. Step 1− Step 16 are performed repeatedly until the complete set is formulated to a single granule.

The method of bottom-up construction is explained by the following example.

Example 7.4 Let H = (R, S) be a 7-rung picture fuzzy hypergraph as shown in
Fig. 7.9. Let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} and S = {E1, E2, E3,
E4, E5}.

For α = 0.5, β=0.5 and γ = 0.6, the (0.5, 0.5, 0.6)-level hypergraph of H is
given in Fig. 7.10.

By considering the fixed α, β, γ and following the Algorithm 7.3.1, the bottom-up
construction of this model is given in Fig. 7.11.

In granular computing,more than one hierarchical structure are considered to empha-
size the multiple approaches. These different hierarchical structures can be formed
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Fig. 7.9 A 7-rung picture
fuzzy hypergraph
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by considering the different interpretations of relations set R. Every hierarchical
structure is a distinct aspect of the problem. A multiple or a multilevel model of
granular computing based on hypergraph is formed by combining these different
hierarchical structures. In a hypergraph model, a series of correlated hypergraphs is
used to present every hierarchical structure. The mapping relates the distinct levels in
a hierarchical structure and each hypergraph denotes a particular level in that struc-
ture. Each specific level has multiple hyperedges and each hyperedge contains the
set of objects having similar attributes. An example to construct a model of granular
computing based on fuzzy hypergraph is illustrated in [27]. We now extend the same
example to construct a q-rung picture fuzzy hypergraphmodel of granular computing
to illustrate the validity and flexibility of our model.

Example 7.5 Consider an express hyper network, where the vertices represent the
express corporations. These vertices are combined together in one unit U according
to the relation set R and possessing some type of relation among them. To form a 6-
rung picture fuzzy hyperedge, which is also called a granule, we calculate and assign
the membership degrees to each unit. Each 6-rung picture fuzzy hyperedge denotes
a shop demanding express services and the vertices containing in that hyperedge are
the express corporations serving that shop. There are ten {x1, x2, x3, x4, x5, x6, x7, x8,
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Fig. 7.11 The bottom-up
construction procedure
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Table 7.2 Incidence matrix of express hypernetwork

Shop1 Shop2 Shop3 Shop4 Shop5

x1 (0.8, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x2 (0.9, 0.3, 0.5) (0, 0, 1) (1, 0, 0) (0, 0, 1) (0, 0, 1)

x3 (0.3, 0.5, 0.9) (0.6, 0.5, 0.2) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x4 (0.8, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x5 (0, 0, 1) (0.3, 0.5, 0.9) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x6 (0, 0, 1) (0.7, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (0, 0, 1)

x7 (0, 0, 1) (0.5, 0.3, 0.6) (0, 0, 1) (0.1, 0.2, 0.8) (0, 0, 1)

x8 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.6, 0.5, 0.2) (0, 0, 1)

x9 (0, 0, 1) (0, 0, 1) (0.6, 0.5, 0.2) (0.7, 0.2, 0.3) (0.4, 0.7, 0.5)

x10 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.5, 0.2, 0.7)

x2

x3

x4

x5 x6 x7

x 8

x 9
x10

x1

Shop1(0.3,0.2,0.9)

Shop2(0.3,0.
2,0.9)

Shop3(0.6,0,0.2)

Shop4(0.1,0.2,0.8)

Sh
op
5(
0.
4,
0.
2,
0.
7)

Fig. 7.12 A 6-rung picture fuzzy hypergraph model of express corporations

x9, x10} express corporations and the corresponding incidence matrix of this model
is given in Table7.2.

The corresponding 6-rung picture fuzzy hypergraph is shown in Fig. 7.12.
A 6-rung picture fuzzy hypergraph model of granular computing illustrates an

uncertain set of objects with specific positive, neutral, and negative degrees, which
incorporate the undetermined behavior of an element to its granule. In this example,
there are five shops requiring the services of express corporation. The membership
degrees of each corporation to distinct shops are different because every shop selects
a corporation by considering different factors, including consignment, life span,
limited liability, scale of that express corporation, the distance of receiving and
mailing parcels, and so on. Note that, using a q-rung picture fuzzy hypergraph in
granular computing ismeaningful andmore flexible as compared to fuzzy hypergraph
because it also dealswith negativemembership andneutral behavior of objects toward
their granules.
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7.3.3 Zooming-In and Zooming-Out Operators

A formal discussion is provided to interpret a q-rung picture fuzzy hypergraphmodel
in granular computing, which is more compatible to human thinking. Zhang and
Zhang [35] highlighted that one of the most important and acceptable characteristics
of human intelligence is that the same problem can be viewed and analyzed in
different granularities. Their claim is that the problem cannot only be solved using
various world of granularities but also can be switched easily and quickly. Hence,
the procedure of solving a problem can be considered as the calculations in different
hierarchies within that model.

A multilevel granularity of the problem is represented by a q-rung picture fuzzy
hypergraph model, which allows the problem solvers to decompose it into various
minor problems and transform it in other granularities. The transformation of prob-
lem in other granularities is performed by using two operators, i.e, zooming-in and
zooming-out operators. The transformation from weaker level to finer level of gran-
ularity is done by zoom-in operator and the zoom-out operator deals with the shifting
of problem from coarser to finer granularity.

Definition 7.27 Let H1 = (R1, S1) and H2 = (R2, S2) be two q-rung picture fuzzy
hypergraphs, which are considered as two levels of hierarchical structures and
H2 owns the coarser granularity than H1. Suppose H (α,β,γ )

1 = (X1, E
(α,β,γ )

1 ) and
H (α,β,γ )

2 = (X2, E
(α,β,γ )

2 ) are the corresponding (α, β, γ )-level hypergraphs of H1

and H2, respectively. Let e1i ∈ E (α,β,γ )

1 , x1j ∈ X1, e2j ∈ E (α,β,γ )

2 , x2l , x
2
m ∈ X2, and

x2l , x
2
m ∈ e2j . If φ(e1i ) = x2l , then r(x

1
j , x

2
m) is the relationship between x1j and x

2
m and

is obtained by the characteristics of granules.

Definition 7.28 Let the hyperedge φ−1(xl) be a vertex in a new level and the relation
between hyperedges in this level is same as that of relationship between vertices in
previous level. This is called the zoom-in operator and transforms a weaker level
to a stronger level. The function r(x1j , x

2
m) defines the relation between vertices of

original level as well as new level.
Let the vertex φ(ei ) be a hyperedge in a new level and the relation between vertices
in this level is same as that of relationship between hyperedges in corresponding
level. This is called the zoom-out operator and transforms a finer level to a coarser
level.

By using these zoom-in and zoom-out operators, a problem can be viewed at multi-
levels of granularities. These operations allow us to solve the problem more appro-
priately and granularity can be switched easily at any level of problem-solving.

In a q-rung picture fuzzy hypergraph model of granular computing, the member-
ship degrees of elements reflect the actual situationmore efficiently and awide variety
of complicated problems in uncertain and vague environments can be presented by
means of q-rung picture fuzzy hypergraphs. The previous analysis concludes that
this model of granular computing generalizes the classical hypergraph model and
fuzzy hypergraph model.
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We nowconstruct a hypergraphmodel of granular computing based on q-rung picture
fuzzy equivalence relation.

7.4 A Level Hypergraph Partition Model

A fuzzy (or crisp) partition of universe set X is determined by fuzzy equivalence
relation (or crisp equivalence relation) and generates a family of fuzzy equivalence
classes (or crisp equivalence classes) [27, 31]. A partition model of granular com-
puting using level hypergraph which is based on [27] is proposed. In this partition
model, the blocks/subsets in a partition are represented by hyperedges and the objects
having q-rung picture fuzzy equivalence relation R are contained in the same block.
Let πR be the partition of X induced by R then the q-rung picture fuzzy equiva-
lence relation Rπ is defined as, x Rπ y if and only if they are contained in the similar
block/subset of partition π .

Definition 7.29 A system (X, Rρ), ρ = (α, β, γ ) is called an object space, where
Rρ is a non-empty collection of equivalence relations between the elements of X .
Rρ = {rρ

1 , r
ρ
2 , r

ρ
3 ,. . ., r

ρ
n }, n = |X |. For i ≤ n, rρ

i ∈ Rρ , rρ

i ⊆ X × X × X · · · × X ,
if (x1, x2, . . ., xi ) ⊆ rρ

i , then there exists an i-array relation rρ

i on (x1, x2, . . ., xi ).

Example 7.6 Let X = {x1, x2, x3, x4, x5} and Rρ = {rρ
1 , r

ρ
2 , r

ρ
3 ,r

ρ
4 , r

ρ

5 }, for 0.7 <

α ≤ 0.9, 0.5 < β ≤ 0.5, 0.1 > γ ≥ 0.1, as shown in Example7.2, rρ
1 = {(x1), (x2),

(x3)}, rρ
2 = {(x4, x5)}, rρ

3 ,r
ρ
4 , r

ρ

5 = {∅}.
The q-rung picture fuzzy equivalence relations between the vertices are obtained
from the actual situation and then the vertices having some relation are combined
to a hyperedge. After the integration of all vertices to hyperedges is done, a single-
level hypergraph model is formed. The construction of level hypergraph model is
illustrated through the following example, which is the extension of example given
in [27].

Example 7.7 Consider an express hypernetwork, as discussed in Example7.5, we
consider the same hypernetwork to illustrate the construction of level hypergraph
model. Ten express corporations are considered and suppose that each corporation
experiences six attributes. These attributes are transit time, freight, tracking and
circulation information, time window service, the distance of taking and mailing
parcels and scale of the corresponding corporation and are denoted by A1, A2, A3,
A4, A5, and A6, respectively. To indicate the values of attributes, 0 and 1 are used,
as shown in Table7.3.

The information about express corporations having these attributes is given in
Table7.4.
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Table 7.3 Description of attributes

Attributes

Transit time Short 1 Long 0

Freight Low 1 High 0

Tracking and circulation information Existence 1 Non existence 0

Time window service Existence 1 Non existence 0

The distance of mailing and taking parcels Close 1 Away 0

Scale of the express corporation Large 1 Small 0

Table 7.4 Corporations having attributes

X Corporations A1 A2 A3 A4 A5 A6

x1 Express1 1 0 0 1 0 0

x2 Express2 1 0 0 1 0 0

x3 Express3 1 1 0 1 0 0

x4 Express4 1 1 0 1 1 0

x5 Express5 1 1 0 0 0 1

x6 Express6 1 1 0 0 0 0

x7 Express7 1 1 1 0 0 0

x8 Express8 1 0 1 0 0 0

x9 Express9 1 0 1 0 1 0

x10 Express10 0 0 1 0 1 0

The positive membership function T (xi ) ∈ [0, 1] represents the beneficial and
helpful relationships between these corporations and this affirmative relationship is
described through the following matrix.

TM̃R
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0.67 0.55 0.25 0.33 0.25 0.33 0.25 0
1 1 0.67 0.55 0.25 0.33 0.25 0.33 0.25 0

0.67 0.67 1 0.75 0.55 0.66 0.55 0.25 0.20 0
0.55 0.55 0.75 1 0.40 0.40 0.40 0.20 0.40 0.20
0.25 0.25 0.55 0.40 1 0.67 0.55 0.25 0.20 0
0.33 0.33 0.67 0.40 0.67 1 0.67 0.33 0.25 0
0.25 0.25 0.55 0.40 0.55 0.67 1 0.67 0.55 0.25
0.33 0.33 0.25 0.20 0.25 0.33 0.67 1 0.67 0.33
0.25 0.25 0.20 0.40 0.20 0.25 0.55 0.67 1 0.67
0 0 0 0.20 0 0 0.25 0.33 0.67 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The neutral membership function N (xi ) ∈ [0, 1] represents the unbiased and vague
relationships between these corporations and this undeterminate behavior is described
through the following matrix.
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NM̃R
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.23 0.31 0.31 0.12 0.31 0.12 0.31 0
0 0 0.23 0.31 0.31 0.12 0.31 0.12 0.31 0

0.23 0.23 0 0.23 0.31 0.33 0.31 0.31 0.12 0
0.31 0.31 0.23 0 0.20 0.20 0.20 0.12 0.20 0.12
0.31 0.31 0.31 0.20 0 0.23 0.31 0.31 0.12 0
0.12 0.12 0.23 0.20 0.23 0 0.23 0.12 0.31 0
0.31 0.31 0.31 0.20 0.31 0.23 0 0.23 0.31 0.31
0.12 0.12 0.31 0.12 0.31 0.12 0.23 0 0.23 0.12
0.31 0.31 0.12 0.20 0.12 0.31 0.31 0.23 0 0.23
0 0 0 0.12 0 0 0.31 0.12 0.23 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The negative membership function F(xi ) ∈ [0, 1] represents the contrary and com-
petent relationships between these corporations and this opposing relationship is
described through the following matrix.

FM̃R
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.32 0.45 0.65 0.65 0.65 0.65 0.65 1
0 0 0.32 0.45 0.65 0.65 0.65 0.65 0.65 1

0.32 0.32 0 0.25 0.45 0.23 0.45 0.65 0.76 1
0.45 0.45 0.25 0 0.50 0.50 0.50 0.76 0.50 0.76
0.65 0.65 0.45 0.50 0 0.32 0.45 0.65 0.76 1
0.65 0.65 0.32 0.50 0.32 0 0.32 0.65 0.65 1
0.65 0.65 0.45 0.50 0.45 0.32 0 0.32 0.45 0.65
0.65 0.65 0.65 0.76 0.65 0.65 0.32 0 0.32 0.65
0.65 0.65 0.76 0.50 0.76 0.65 0.45 0.32 0 0.32
1 1 1 0.76 1 1 0.65 0.65 0.32 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A 5-rung picture fuzzy relation matrix can be obtained by combining positive mem-
bership, neutral membership, and negative membership degrees as shown in the
following matrix.

M̃R =

⎛
⎜⎜⎜⎜⎜⎝

(1,0,0) (1,0,0) … (0,0,1)
(1,0,0) (1,0,0) … (0,0,1)

(0.67,0.23,0.32) (0.67,0.23,0.32) … (0,0,1)
...

...
...

...

(0,0,1) (0,0,1) … (1,0,0)

⎞
⎟⎟⎟⎟⎟⎠

.

The positive T (mi j ), neutral N (mi j ), and negative F(mi j ) degrees of each mi j entry
of the above matrix describe the healthy, neutral, and rival relationships among the
xi and x j corporations, respectively. The transitive closure of the above matrix is
computed using the method described in [18] as shown in the matrix below. The
transitive closure of 5-rung fuzzy equivalence relation is also an equivalence relation.
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Fig. 7.13 A single level of
hypergraph model

x1

x3

x 4 x5

E1

E2

E3

E
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (0.40,0.20,0.50) (0.67,0.23,0.32) (0.55,0.31,0.45) (0.55,0.31,0.45) 0 0 0 0 0
(0.40,0.20,0.50) 1 (0.40,0.20,0.50) (0.40,0.20,0.50) (0.40,0.20,0.50) 0 0 0 0 0
(0.67,0,23,0.32) (0.40,0.20,0.50) 1 (0.55,0.31,0.45) (0.55,0.31,0.45) 0 0 0 0 0
(0.55,0.31,0.45) (0.40,0.20,0.50) (0.55,0.31,0.45) 1 (0.75,0.23,0.32) 0 0 0 0 0
(0.55,0.31,0.45) (0.40,0.20,0.50) (0.55,0.31,0.45) (0.75,0.23,0.32) 1 0 0 0 0 0

0 0 0 0 0 1 0 (0.33,0.12,0.65) (0.20,0.12,0.76) (0.20,0.12,0.76)

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 (0.33,0.12,0.65) 0 1 (0.20,0.12,0.76) (0.20,0.12,0.76)

0 0 0 0 0 (0.20,0.12,0.76) 0 (0.20,0.12,0.76) 1 (0.25, 0.31,0.65)

0 0 0 0 0 (0.20,0.12,0.76) 0 (0.20,0.12,0.76) (0.25, 0.31,0.65) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that, here 0 = (0, 0, 1) and 1 = (1, 0, 0). The positive, neutral, and negative
value domains are given as follows, TD = {0.75, 0.67, 0.55, 0.40, 0.33, 0.25, 0.20},
ND = {0.31, 0.23, 0.20, 0.12}, FD = {0.76, 0.65, 0.50, 0.45, 0.32}.Let 0.20 < α ≤
0.25, 0.12 < β ≤ 0.20 and 0.32 < γ ≤ 0.45 and their corresponding hierarchical
quotient space is given as follows, X/R(α,β,γ ) = {(x4, x5), (x1, x4, x5), (x1, x3, x5),
(x1, x3, x4)}.

Thus, we can conclude that r1 = {∅}, r2 = {(x4, x5)}, r3 = {(x1, x4, x5), (x1, x3,
x5), (x1, x3, x4)}, r4 = r5 = r6 = r7 = r8 = r9 = r10 = {∅}. We obtain four hyper-
edges E1 = {x4, x5}, E2 = {x1, x4, x5}, E3 = {x1, x3, x5}, E4 = {x1, x3, x4}. Thus,
we have constructed a single level of hypergraph model as shown in Fig. 7.13.

It is noted that a q-rung picture fuzzy equivalence relation determines the partition
of domain set into different layers. All q-rung fuzzy equivalence relations, which are
isomorphic, can also determine the same classification.

Definition 7.30 [14] Let H1 and H2 be two crisp hypergraphs. Suppose that H1

owns the finer q-rung picture fuzzy granularity than H2. A mapping from H1 to
H2 ψ : H1 → H2 maps a hyperedge of H1 to the vertex of H2 and the mapping
ψ−1 : H2 → H1 maps a vertex of H2 to the hyperedge of H1.

The procedure of bottom-up construction for level hypergraphmodel is illustrated
in Algorithm 7.4.1.
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Algorithm 7.4.1

The bottom-up construction for level hypergraphs
1. Input the number of vertices m of universal set X .
2. Input a q−rung picture fuzzy equivalence relation matrix R=[ri j ]m×m of membership degrees.
3. Determine the value domain D of R as follows:
4. do i from 1 to m
5. do j from 1 to m
6. xi , y j ∈ X
7. if (TX (xi ) ∧ TX (y j ) ∧ TR(xi , y j ) > 0, NX (xi ) ∧ NX (y j ) ∧ NR(xi , y j ) > 0,
8. FX (xi ) ∨ FX (y j ) ∨ FR(xi , y j ) > 0) then
9. (xi , y j ) ∈ D
10. end if
11. print*, D is the value domain of R.
12. Fix the parameters α, β, γ ∈ [0, 1], where α, β, γ ∈ D.
13. if (TR(xi , y j ) ≥ α, NR(xi , y j ) ≥ β, FR(xi , y j ) ≤ γ ) then
14. (xi , y j ) ∈ R(α,β,γ )

15. end if
16. print*, {X/R(α,β,γ )|(α, β, γ ) ∈ D} is q−rung picture fuzzy hierarchical quotient

space structure of R.
17. end do
18. end do
19. end for
20. The subsets {X/R(α,β,γ )|(α, β, γ ) ∈ D} of q−rung picture fuzzy hierarchical quotient space structure

corresponds to the hyperedges or granules of level hypergraph.
21. The k−level of granularity is constructed.
22. These hyperedges or granules in k-level are mapped to (k + 1)-level.
23. Step 1 - Step 22 are repeated until the whole universe is formulated to a single granule.
24. Except the last level, each level is mapped to the next level of granularity through

different operators.

Definition 7.31 Let R be a q-rung picture fuzzy equivalence relation on X . A coarse
gained universe X/R(α,β,γ ) can be obtained by using q-rung picture fuzzy equiva-
lence relation, where [xi ]Rα,β,γ ={x j ∈ X |xi Rx j }. This equivalence class [xi ]R(α,β,γ ) is
considered as an hyperedge in the level hypergraph.

Definition 7.32 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of
q-rung picture fuzzy hypergraphs and H2 has weaker granularity than H1. Sup-
pose that e1i , e

2
j ∈ E1 and x2i , x

2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-in operator

κ : H2 → H1 is defined as κ(x2i ) = e1i , e
1
i ∈ E1. The relations between the vertices

of H2 define the relationships among the hyperedges in new level. The zoom-in
operator of two levels is shown in Fig. 7.14.

Remark 7.1 For all X ′
2, X ′′

2 ⊆ X2, we have κ(X ′
2) = ⋃

x2i ∈X ′
2

κ(x2i ) and κ(X ′′
2) =

⋃
x2j ∈X ′′

2

κ(x2j ).

Theorem 7.3 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels and κ : H2 →
H1 be the zoom-in operator. Then, for all X ′

2, X
′′
2 ⊆ X2, the zoom-in operator satisfies
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x21

x22

x 23

H2

e11

e1 2

e 1
3

κ(x21)

κ(x22)

κ(x23)

H1

Fig. 7.14 The zoom-in operator

(i) κ maps the empty set to an empty set, i.e., κ(∅) = ∅.
(ii) κ(X2) = E1.
(iii) κ([X ′

2]c) = [κ(X ′
2)]c.

(iv) κ(X ′
2 ∩ X ′′

2) = κ(X ′
2) ∩ κ(X ′′

2).
(v) κ(X ′

2 ∪ X ′′
2) = κ(X ′

2) ∪ κ(X ′′
2).

(vi) X ′
2 ⊆ X ′′

2 if and only if κ(X ′
2) ⊆ κ(X ′′

2).

Proof (i) It is trivially satisfied that κ(∅) = ∅.
(ii) As we know that for all x2i ∈ X2, we have κ(X ′

2) = ⋃
x2i ∈X ′

2

κ(x2i ). Since κ(x2i ) =
e1i , thus we have κ(X ′

2) = ⋃
x2i ∈X ′

2

κ(x2i ) = ⋃
e1i ∈E1

e1i = E1.

(iii) Let [X ′
2]c = Z ′

2 and [X ′′
2 ]c = Z ′′

2 , then it is obvious that Z ′
2 ∩ X ′

2 = ∅ and
Z ′
2 ∪ X ′

2 = X2. It follows from (ii) that κ(X2) = E1 and we denote by W ′
1

that edge set of H1 on which the vertex set Z ′
2 of H2 is mapped under κ ,

i.e., κ(Z ′
2) = W ′

1. Then κ([X ′
2]c) = κ(Z ′

2) = ⋃
x2i ∈Z ′

2

κ(x2i ) = ⋃
e1i ∈W ′

1

e1i = Z ′
1 and

[κ(X ′
2)]c = [ ⋃

x2j ∈X ′
2

κ(x2j )]c = [ ⋃
e1j∈E ′

1

e1j ]c=(E ′
1)

c. Since, the relationship between

hyperedges in new level is same as that of relations among vertices in original
level so we have (E ′

1)
c = Z ′

1. Hence, we conclude that κ([X ′
2]c) = [κ(X ′

2)]c.
(iv) Assume that X ′

2 ∩ X ′′
2 = X̃2 then for all x2i ∈ X̃2 implies that x2i ∈ X ′

2 and x
2
i ∈

X ′′
2 . Further, we have κ(X ′

2 ∩ X ′′
2)=κ(X̃2) = ⋃

x2i ∈X̃2

κ(x2i ) = ⋃
e1i ∈Ẽ1

κ(e1i ) = Ẽ1.

κ(X ′
2) ∩ κ(X ′′

2) = { ⋃
x2i ∈X ′

2

κ(x2i )} ∩ { ⋃
x2j ∈X ′′

2

κ(x2j )} = ⋃
e1i ∈E ′

1

e1i ∩ ⋃
e1j∈E ′′

1

e1j=E
′
1 ∩ E ′′

1 .

Since, the relationship between hyperedges in new level is same as that of rela-
tions among vertices in original level so we have E ′

1 ∩ E ′′
1 = Ẽ1. Hence, we

conclude that κ(X ′
2 ∩ X ′′

2) = κ(X ′
2) ∩ κ(X ′′

2).
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(v) Assume that X ′
2 ∪ X ′′

2 = X̄2. Then, we have κ(X ′
2 ∪ X ′′

2)=κ(X̄2) = ⋃
x2i ∈X̄2

κ(x2i )

= ⋃
e1i ∈Ē1

κ(e1i ) = Ē1.

κ(X ′
2) ∪ κ(X ′′

2) = { ⋃
x2i ∈X ′

2

κ(x2i )} ∪ { ⋃
x2j ∈X ′′

2

κ(x2j )} = ⋃
e1i ∈E ′

1

e1i ∪ ⋃
e1j∈E ′′

1

e1j = E ′
1 ∪

E ′′
1 . Since the relationship between hyperedges in new level is same as that

of relations among vertices in original level so we have E ′
1 ∪ E ′′

1 = Ē1. Hence,
we conclude that κ(X ′

2 ∪ X ′′
2) = κ(X ′

2) ∪ κ(X ′′
2).

(vi) First we show that X ′
2 ⊆ X ′′

2 implies that κ(X ′
2) ⊆ κ(X ′′

2). Since X ′
2 ⊆ X ′′

2 ,
which implies that X ′

2 ∩ X ′′
2 = X ′

2 and κ(X ′
2) = ⋃

x2i ∈X ′
2

κ(x2i ) = ⋃
e1i ∈E ′

1

e1i = E ′
1.

Also κ(X ′′
2) = ⋃

x2j ∈X ′′
2

κ(x2j ) = ⋃
e1j∈E ′′

1

e1j=E
′′
1 . Since, the relationship between

hyperedges in new level is same as that of relations among vertices in orig-
inal level so we have E ′

1 ⊆ E ′′
1 , i.e., κ(X ′

2) ⊆ κ(X ′′
2). Hence, X

′
2 ⊆ X ′′

2 implies
that κ(X ′

2) ⊆ κ(X ′′
2).

We now prove that κ(X ′
2) ⊆ κ(X ′′

2) implies that X ′
2 ⊆ X ′′

2 . Suppose on con-
trary that whenever κ(X ′

2) ⊆ κ(X ′′
2) then there is at least one vertex x2i ∈ X ′

2
but x2i /∈ X ′′

2 , i.e., X
′
2 � X ′′

2 . Since, κ(x2i ) = e1i and the relationship between
hyperedges in new level is same as that of relations among vertices in original
level so we have e1i ∈ E ′

1 but e
1
i /∈ E ′′

1 , i.e., E
′
1 � E ′′

1 , which is contradiction to
the supposition. Thus, we have κ(X ′

2) ⊆ κ(X ′′
2) implies that X ′

2 ⊆ X ′′
2 . Hence,

X ′
2 ⊆ X ′′

2 if and only if κ(X ′
2) ⊆ κ(X ′′

2).

Definition 7.33 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of q-
rung picture fuzzy hypergraphs and H2 has weaker granularity than H1. Suppose that
e1i , e

2
j ∈ E1 and x2i , x

2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-out operator σ : H1 →

H2 is defined as σ(e1i ) = x2i , x
2
i ∈ X2. The zoom-out operator of two levels is shown

in Fig. 7.15.

Theorem 7.4 Let σ : H1 → H2 be the zoom-out operator from H1=(X1, E1) to
H2=(X2, E2) and let E ′

1 ⊆ E1. Then, the zoom-out operator σ satisfies,

(i) σ(∅) = ∅.
(ii) σ maps the set of hyperedges of H1 onto the set of vertices of H2, i.e., σ(E1) =

X2.
(iii) σ([E ′

1]c) = [σ(E ′
1)]c.

Proof (i) This part is trivially satisfied.
(ii) By applying the definition of σ , we have σ(e1i ) = x2i . Since, the hyperedges

define a partition of hypergraph so we have E1 = {e11, e12, e13, . . ., e1n} = ⋃
e1i ∈E1

e1i .

Then, σ(E1) = σ(
⋃

e1i ∈E1

e1i ) = ⋃
e1i ∈E1

σ(e1i ) = ⋃
x2i ∈X2

x2i = X2.

(iii) Assume that [E ′
1]c = V ′

1 then it is obvious that E
′
1 ∩ V ′

1 = ∅ and E ′
1 ∪ V ′

1 = E1.
Suppose on contrary that there exists at least one vertex x2i ∈ σ([E ′

1]c) but x2i /∈
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[σ(E ′
1)]c. x2i ∈ σ([E ′

1]c) implies that x2i ∈ σ(V ′
1) ⇒ x2i ∈ ⋃

e1i ∈V ′
1

σ(e1i ) ⇒ x2i ∈
⋃

e1i ∈E1\E ′
1

σ(e1i ). Since x
2
i /∈ [σ(E ′

1)]c ⇒ x2i ∈ σ(E ′
1) ⇒ x2i ∈ ⋃

e1i ∈E ′
1

σ(e1i ), which

is contradiction to our assumption. Hence, σ([E ′
1]c) = [σ(E ′

1)]c.
Definition 7.34 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of q-rung
picture fuzzy hypergraphs and H1 possesses the stronger granularity than H2. Let
E ′
1 ⊆ E1 then σ̂ (E ′

1) = {e2i |e2i ∈ E2, κ(e2i ) ⊆ E ′
1} is called internal zoom-out oper-

ator.
The operator σ̌ (E ′

1)={e2i |e2i ∈ E2, κ(e2i ) ∩ E ′
1 �= ∅} is called external zoom-out

operator.

Example 7.8 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of q-rung pic-
ture fuzzy hypergraphs and H1 possesses the stronger granularity than H2, where

Fig. 7.15 The zoom-out
operator x21

x22
x23

H2

e1 1

e12

e
1 3

H1

σ
(e

1 1
)

σ
(e
1 3)

σ (
e
1 2
)

Fig. 7.16 The internal and
external zoom-out operators
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e
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x21
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e21
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e
2
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E1 = {e11, e12, e13, e14, e15, e16} and E2={e21, e22, e23}. Furthermore, e21 = {x21 , x23 }, e22 = {x22 ,
x24 }, e23 = {x25 , x26 } as shown in Fig. 7.16.

Let E ′
1 = {e12, e13, e14, e15} be the subset of hyperedges of H1 then we can not zoom-

out to H2 directly, thus by using the internal and external zoom-out operators we
have the following relations.
σ̂ ({e12, e13, e14, e15}) = {e22},
σ̌ ({e12, e13, e14, e15}) = {e21, e22, e23}.
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Chapter 8
Granular Computing Based on m-Polar
Fuzzy Hypergraphs

An m-polar fuzzy model, as an extension of fuzzy and bipolar fuzzy models, plays a
vital role in modeling of real-world problems that involve multi-attribute, multipolar
information, and uncertainty. The m-polar fuzzy models give increasing precision
and flexibility to the system as compared to the fuzzy and bipolar fuzzy models. An
m-polar fuzzy set assigns the membership degree to an object belonging to [0, 1]m
describing the m distinct attributes of that element. Granular computing deals with
representing and processing information in the form of information granules. These
information granules are collections of elements combined together due to their sim-
ilarity and functional/physical adjacency. In this chapter, we illustrate the formation
of granular structures using m-polar fuzzy hypergraphs and level hypergraphs. Fur-
ther, we define m-polar fuzzy hierarchical quotient space structures. The mappings
between them-polar fuzzy hypergraphs depict the relationships among granules that
occurred in different levels. The consequences reveal that the representation of parti-
tion of universal set ismore efficient throughm-polar fuzzy hypergraphs as compared
to crisp hypergraphs. We also present some examples and a real-world problem to
signify the validity of our proposed model. This chapter is due to [11, 12, 18].

8.1 Introduction

Granular computing is defined as an identification of techniques, methodologies,
tools, and theories that yields the advantages of clusters, groups or classes, i.e., the
granules. The terminology was first introduced by Lin [15]. The fundamental con-
cepts of granular computing are utilized in various disciplines, including machine
learning, rough set theory, cluster analysis, and artificial intelligence. Different mod-
els have been proposed to study the various issues occurring in granular computing,
including classification of the universe, illustration of granules, and the identification
of relations among granules. For example, the procedure of problem-solving through

© Springer Nature Singapore Pte Ltd. 2020
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granular computing can be considered as subdivisions of the problem at multilevels
and these levels are linked together to construct a hierarchical space structure. Thus,
this is a way of dealing with the formation of granules and the switching between
different granularities. Here, the word “hierarchy” implies the methodology of hier-
archical analysis in solving a problem and human activities [32]. To understand this
methodology, let us consider an example of national administration inwhich the com-
plete nation is subdivided into various provinces. Further, we divide every province
into various divisions and so on. The human activities and problem-solving involve
the simplification of original complicated problem by ignoring some details rather
than thinking about all points of the problem. This rationalize model is then further
refined till the issue is completely solved. Thus, we resolve and interpret the complex
problems from weaker grain to stronger one or from highest rank to lowest or from
universal to particular, etc. This technique is called the hierarchical problem-solving.
This is further acknowledged that hierarchical strategy is the only technique which is
used by humans to deal with complicated problems and it enhances the competence
and efficiency. This strategy is also known as the multi-granular computing.

Hypergraphs, as an extension of classical graphs, experience various properties
which appear very effective and useful as the basis of different techniques in many
fields, including problem-solving, declustering, and databases [10]. The real-world
problems which are represented and solved using hypergraphs have been achieved
very good impacts. The formation of hypergraphs is same as that of granule structures
and the relations between the vertices and hyperedges of hypergraphs can depict the
relationships of granules and objects. A hyperedge can contain n vertices represent-
ing n-ary relations and hence can provide more effective analysis and description of
granules. Many researchers have used hypergraph methods to study the clustering
of complex documentation by means of granular computing and investigated the
database techniques [16, 22]. Chen et al. [11] proposed a model of granular comput-
ing based on crisp hypergraph. They related a crisp hypergraph to a set of granules
and represented the hierarchical structures using series of hypergraphs. They proved
a hypergraph model as a visual description of granular computing.

Zadeh’s [25] fuzzy set has been acquired greater attention by researchers in a
wide range of scientific areas, including management sciences, robotics, decision
theory, and many other disciplines. Zhang [29] generalized the idea of fuzzy sets to
the concept of bipolar fuzzy sets whose membership degrees range over the interval
[−1, 1]. Anm-polar fuzzy set, as an extension of fuzzy set and bipolar fuzzy set, was
proposed by Chen et al. [12] and it proved that 2-polar fuzzy sets and bipolar fuzzy
sets are equivalent concepts in mathematics. Anm-polar fuzzy set corresponds to the
existence of “multipolar information” because there are many real-world problems
which take data or information from n agents (n ≥ 2). For example, in the case of
telecommunication safety, the exact membership degree lies in the interval [0, 1]n
(n ≈ 7 × 109) as the distinct members are monitored at different times. Similarly,
there are many problems which are based on n logic implication operators (n ≥ 2),
including rough measures, ordering results of magazines and fuzziness measures,
etc. To handle uncertainty in the representation of different objects or in the relation-
ships between them, fuzzy graphs were defined by Rosenfeld [20]. m-polar fuzzy
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graphs and their interesting properties were discussed by Akram et al. [1] to deal
with the networkmodels possessingmulti-attribute andmultipolar data. As an exten-
sion of fuzzy graphs, Kaufmann [13] defined fuzzy hypergraphs. Although, many
researchers have been explored the construction of granular structures using hyper-
graphs in various fields. However, there are many graph theoretic problems which
may contain uncertainty and vagueness. To overcome the problems of uncertainty
in models of granular computing, Wang and Gong [21] studied the construction of
granular structures by means of fuzzy hypergraphs. They concluded that the repre-
sentation of granules and partition is much efficient through the fuzzy hypergraphs.
Novel applications and transversals of m-polar fuzzy hypergraphs were defined by
AkramandSarwar [5, 6]. Further,AkramandShahzadi [7] studied various operations
on m-polar fuzzy hypergraphs. Akram and Luqman [3, 4] introduced intuitionistic
single-valued and bipolar neutrosophic hypergraphs. The basic purpose of this work
is to develop an interpretation of granular structures using m-polar fuzzy hyper-
graphs. In the proposed model, the vertex of m-polar fuzzy hypergraph denotes an
object and an m-polar fuzzy hyperedge represents a granule. The “refinement” and
“coarsening” operators are defined to switch the different granularities from coarser
to finer and vice versa, respectively.

For further terminologies and studies on m-polar fuzzy hypergraphs, readers are
referred to [2, 8, 9, 14, 17, 19, 23, 26–28].

8.2 Fundamental Features of m-Polar Fuzzy Hypergraphs

Definition 8.1 Anm-polar fuzzy set M on a universal set X is defined as a mapping
M :X → [0, 1]m . The membership degree of each element z ∈ X is represented by
M(z)=(P1 ◦ M(z), P2 ◦ M(z), P3 ◦ M(z),. . ., Pm ◦ M(z)), where P j ◦ M(z) :
[0, 1]m → [0, 1] is defined as j-th projection mapping.

Note that, the m-th power of [0, 1] (i.e., [0, 1]m) is regarded as a partially ordered
set with the point-wise order ≤, where m is considered as an ordinal number (m =
n|n < m when m > 0), ≤ is defined as z1 ≤ z2 if and only if P j (z1) ≤ P j (z2),
for every 1 ≤ j ≤ m. 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1) are the smallest and
largest values in [0, 1]m , respectively.
Definition 8.2 Let M be an m-polar fuzzy set on X . An m-polar fuzzy relation
N = (P1 ◦ N , P2 ◦ N , P3 ◦ N ,. . ., Pm ◦ N ) on M is a mapping N : M → M
such that N (z1z2) ≤ inf{M(z1), M(z2)}, for all z1, z2 ∈ X , i.e., for each 1 ≤ j ≤
m, P j ◦ N (z1z2) ≤ inf{P j ◦ M(z1),P j ◦ M(z2)}, where P j ◦ M(z) and P j ◦
N (z1z2) denote the j-th membership degree of an element z ∈ X and the pair z1z2,
respectively.

Definition 8.3 An m-polar fuzzy graph on X is defined as an ordered pair of
functions G = (C, D), where C : X → [0, 1]m is an m-polar vertex set and D :
X × X → [0, 1]m is an m-polar edge set of G such that D(wz) ≤ inf{C(w),C(z)},
i.e.,P j ◦ D(wz) ≤ inf{P j ◦ C(w),P j ◦ C(z)}, for all w, z ∈ X and 1 ≤ j ≤ m.
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Definition 8.4 An m-polar fuzzy hypergraph on a non-empty set X is a pair H =
(A, B), where A = {M1, M2, . . . , Mr } is a finite family of m-polar fuzzy sets on X
and B is an m-polar fuzzy relation on m-polar fuzzy sets Mk such that

• B(Ek) = B({z1, z2, . . . , zl}) ≤ inf{Mk(z1),Mk(z2), . . ., Mk(zl)},
•

r⋃

k=1
supp(Mk) = X , for all Mk ∈ A and for all z1, z2, . . . , zl ∈ X .

Definition 8.5 Let H = (A, B) be an m-polar fuzzy hypergraph and τ ∈ [0, 1]m .
Then the τ -cut level set of an m-polar fuzzy set M is defined as Mτ = {z|P j ◦
M(z) ≥ t j , 1 ≤ j ≤ m}, τ = (t1, t2, . . . , tm).

Hτ = (Aτ , Bτ ) is called a τ -cut level hypergraph of H , where Aτ =
r⋃

i=1
Miτ .

8.2.1 Uncertainty Measures of m-Polar Fuzzy Hierarchical
Quotient Space Structure

The question of distinct membership degrees of same object from different scholars
is arisen because of various ways of thinking about the interpretation of different
functions dealing with the same problem. To resolve this issue, fuzzy set was struc-
turally defined by Zhang and Zhang [31] which was based on quotient space theory
and fuzzy equivalence relation [30]. This definition provides some new initiatives
regarding to membership degree, called a hierarchical quotient space structure of a
fuzzy equivalence relation. By following the same concept, we develop a hierarchical
quotient space structure of an m-polar fuzzy equivalence relation.

Definition 8.6 An m-polar fuzzy equivalence relation on a non-empty finite set X
is called an m-polar fuzzy similarity relation if it satisfies,

1. N (z, z) = (P1 ◦ N (z, z), P2 ◦ N (z, z),. . ., Pm ◦ N (z, z)) = (1, 1, . . . , 1), for
all z ∈ X ,

2. N (u,w) = (P1 ◦ N (u,w), P2 ◦ N (u,w),. . ., Pm ◦ N (u,w)) = (P1 ◦ N (w,

u),P2 ◦ N (w, u),. . ., Pm ◦ N (w, u)) = N (w, u), for all u,w ∈ X.

Definition 8.7 An m-polar fuzzy equivalence relation on a non-empty finite set X
is called an m-polar fuzzy equivalence relation if it satisfies the conditions,

1. N (z, z) = (P1 ◦ N (z, z), P2 ◦ N (z, z),. . ., Pm ◦ N (z, z)) = (1, 1, . . . , 1), for
all z ∈ X ,

2. N (u,w) = (P1 ◦ N (u,w), P2 ◦ N (u,w),. . ., Pm ◦ N (u,w)) = (P1 ◦ N (w,

u),P2 ◦ N (w, u),. . ., Pm ◦ N (w, u)) = N (w, u), for all u,w ∈ X,

3. for all u, v,w ∈ X , N (u,w) = sup
v∈X

{min(N (u, v), N (v,w))}, i.e., P j ◦
N (u,w) = sup

v∈X
{min(P j ◦ N (u, v),P j ◦ N (v,w))}, 1 ≤ j ≤ m.
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Definition 8.8 An m-polar fuzzy quotient space is denoted by a triplet (X, C̃, N ),
where X is a finite domain, C̃ represents the attributes of X and N represents the
m-polar fuzzy relationship between the objects of universe X , which is called the
structure of the domain.

Definition 8.9 Let zi and z j be two objects in the universe X . The similarity between
zi , z j ∈ X having the attribute c̃k is defined as,

N (zi , z j ) = |c̃ik ∩ c̃ jk |
|c̃ik ∪ c̃ jk | ,

where c̃ik represents that object zi possesses the attribute c̃k and c̃ jk represents that
object z j possesses the attribute c̃k .

Proposition 8.1 Let N be an m-polar fuzzy relation on a finite domain X and Nτ =
{(x,w)|P j ◦ N (x,w) ≥ t j , 1 ≤ j ≤ m}, τ = (t1, t2, . . . , t j ) ∈ [0, 1]. Then, Nτ is
an equivalence relation on X and is said to be cut-equivalence relation of N .

Proposition8.1 represents that Nτ is a crisp relation, which is equivalence on X and
its knowledge space is given as ξNτ

(X) = X/Nτ .

The value domain of an equivalence relation N on X is defined as
D = {N (w, y)|w, y ∈ X} such that, P j ◦ X (w) ∧ P j ◦ X (y) ∧ P j ◦ N (x, y) >

0, 1 ≤ j ≤ m.

Definition 8.10 Let N be an m-polar fuzzy equivalence relation on a finite set X
and D be the value domain of N . The set given by ξX (N ) = {X/Nτ |τ ∈ D} is called
m-polar fuzzy hierarchical quotient space structure of N .

Example 8.1 Let X = {w1, w2, w3, w4, w5, w6} be a finite set of elements and N1 be
a 4-polar fuzzy equivalence relation on X , the relation matrix M̃N1 corresponding to
N1 is given as follows:

M̃N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1) (0.4, 0.4, 0.5, 0.5) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4)
(0.4, 0.4, 0.5, 0.5) (1, 1, 1, 1) (0.8, 0.8, 0.9, 0.9) (0.8, 0.8, 0.6, 0.6) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.9, 0.9) (1, 1, 1, 1) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (1, 1, 1, 1) (0.7, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (0.7, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its corresponding m-polar fuzzy hierarchical quotient space structure is given as

X/N1τ1 = X/N1(t1,t2,t3,t4) = {{w1,w2,w3,w4,w5,w6}},
X/N1τ2 = X/N1(t ′1,t ′2,t ′3,t ′4) = {{w1}, {w2,w3,w4,w5,w6}},
X/N1τ3 = X/N1(t ′′1 ,t ′′2 ,t ′′3 ,t ′′4 ) = {{w1}, {w2,w3,w4,w5}, {w6}},

X/N1τ4 = X/N1(t ′′′1 ,t ′′′2 ,t ′′′3 ,t ′′′4 ) = {{w1}, {w2,w3}, {w4,w5}, {w6}},
X/N1τ5 = X/N1(t ′′′′1 ,t ′′′′2 ,t ′′′′3 ,t ′′′′4 ) = {{w1}, {w2,w3}, {w4}, {w5}, {w6}},

X/N1τ6 = X/N1(t ′′′′′1 ,t ′′′′′2 ,t ′′′′′3 ,t ′′′′′4 ) = {{w1}, {w2}, {w3}, {w4}, {w5}, {w6}},
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where

0 < τ1 = (t1, t2, t3, t4) ≤ 0.4,

0.4 < τ2 = (t ′1, t
′
2, t

′
3, t

′
4) ≤ 0.5,

0.5 < τ3 = (t ′′1 , t ′′2 , t ′′3 , t ′′4 ) ≤ 0.6,

0.6 < τ4 = (t ′′′1 , t ′′′2 , t ′′′3 , t ′′′4 ) ≤ 0.7,

0.7 < τ5 = (t ′′′′1 , t ′′′′2 , t ′′′′3 , t ′′′′4 ) ≤ 0.8,

0.8 < τ6 = (t ′′′′′1 , t ′′′′′2 , t ′′′′′3 , t ′′′′′4 ) ≤ 1.

Hence, a 4-polar fuzzy hierarchical quotient space structure is given as ξX (N1) =
{X/Nτ1 , X/Nτ2 , X/Nτ3 , X/Nτ4 , X/Nτ5 , X/Nτ6} and is shown in Fig. 8.1.

It is worth to note that the same hierarchical quotient space structure can be formed
by different 4-polar fuzzy equivalence relations. For instance, the relationmatrix M̃N2

of 4-polar fuzzy equivalence relation generates the same hierarchical quotient space
structure as given by M̃N1 . The relation matrix M̃N2 is given as

M̃N2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4)
(0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (1, 1, 1, 1) (0.8, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.8, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

w1 w2 w3 w4 w5 w6

w1w2 w3 w4 w5 w6

w1w6 w2 w3 w4 w5

w6 w1w2 w3 w4 w5

w6 w1w2 w3 w4 w5

Fig. 8.1 A 4-polar fuzzy hierarchical quotient space structure
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Layer 1

Layer k−1

Layer k

Layer i

τ1 = (t11, t21, · · · , tm1) = 0

τk−1 = (t1k−1, t2k−1, · · · , tmk−1)

τk = (t1k, t2k, · · · , tmk)

τi = (t1i, t2i, · · · , tmi)

Fig. 8.2 Pyramid model of m-polar fuzzy hierarchical quotient space structure

Furthermore, assuming the number of blocks in every distinct layer of this hierar-
chical quotient space structure, a pyramid model can also be constructed as shown
in Fig. 8.2.

8.2.2 Information Entropy of m-Polar Fuzzy Hierarchical
Quotient Space Structure

Definition 8.11 Let N be anm-polar fuzzy equivalence relation on X . Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure,where τi = (t1i , t2i , . . . , tmi ), i = 1, 2,. . ., j and X (τ j ) < X (τ j−1) < · · · <

X (τ1). Then, the partition sequence of ξX (N ) is given as P(ξX (N )) = {P1, P2, P3,
. . ., Pj }, where Pi = |X (τi )|, i = 1, 2, . . . , j and |.| denotes the number of elements
in a set.

Definition 8.12 Let N be anm-polar fuzzy equivalence relation on X . Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure, where τi = (t1i , t2i , . . . , tmi ), i = 1, 2, . . ., j and X (τ j ) < X (τ j−1) <

· · · < X (τ1), P(ξX (N )) = {P1, P2, . . ., Pj } be the partition sequence of ξX (N ).
Assume that X (τi ) = {Xi1, Xi2, . . ., Xi Pi }. The information entropy EX (τi ) is defined

as EX (τi ) = −
P i∑

r=1

|Xir |
|X | ln(

|Xir |
|X | ).

Theorem 8.1 Let N be an m-polar fuzzy equivalence relation on X. Let ξX (N ) =
{X (τ1), X (τ2), X (τ3), . . ., X (τ j )} be its corresponding hierarchical quotient space
structure, where τi = (t1i ,t2i , . . ., tmi ), i = 1, 2, . . ., j , then the entropy sequence
E(ξX (N )) = {EX (τ1), EX (τ2), . . ., EX (τ j )} increases monotonically and strictly.

Proof The terminology of hierarchical quotient space structure implies that X (τ j ) <

X (τ j−1) < · · · < X (τ1), i.e., X (τ j−1) is a quotient subspace of X (τ j ). Suppose that
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X (τi ) = {Xi1, Xi2, . . . , Xi Pi } and X (τi−1) = {X(i−1)1, X(i−1)2, . . .,X(i−1)P(i−1)}, then
every subblock of X (τi−1) is an amalgam of subblocks of X (τi ). Without loss of
generality, it is assumed that only one subblock Xi−1, j in X (τi−1) is formed by the
combination of two subblocks Xir , Xis in X (τi ) and all other remaining blocks are
equal in both sequences. Thus,

EX (τ j−1) = −
Pi−1∑

r=1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | )

= −
Pj−1∑

r=1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | ) −

Pi−1∑

r= j+1

|Xi−1,r |
|X | ln(

|Xi−1,r |
|X | ) − |Xi−1, j |

|X | ln(
|Xi−1, j |

|X | )

= −
Pj−1∑

r=1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) −

Pi∑

r= j+1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) − |Xi,r | + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | ).

Since,
|Xi,r | + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | ) = |Xi,r |
|X | ln(

|Xi,r | + |Xi,s |
|X | ) + |Xi,s |

|X | ln(
|Xi,r | + |Xi,s |

|X | )

>
|Xi,r |
|X | ln(

|Xi,r |
|X | ) + |Xi,s |

|X | ln(
|Xi,s |
|X | ).

Therefore, we have

EX (τ j−1) < −
Pj−1∑

r=1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) −

Pi∑

r= j+1

|Xi,r |
|X | ln(

|Xi,r |
|X | ) − |Xi,r |

|X | ln(
|Xi,r |
|X | ) − |Xi,s |

|X | ln(
|Xi,s |
|X | ),

= EX (τ j ), (2 ≤ j ≤ n).

Hence, EX (τ1) < EX (τ2) < EX (τ2) < · · · < EX (τ j ).

Definition 8.13 Let X = {s1, s2, s3, . . ., sn} be a non-empty set of universe and let
Pd(X) = {X1, X2, X3, . . ., Xd} be a partition space of X , where |Pd(X)| = d then
Pd(X) is called d-order partition space on X .

Definition 8.14 Let X be a finite non-empty universe and let Pd(X) = {X1, X2,

X3, . . . , Xd} be a d-order partition space on X . Let |X1| = l1, |X2| = l2, . . ., |Xd | =
ld and the sequence {l1, l2, . . . , ld} is arranged in increasing order then we got a
new sequence χ(d) = {l ′1, l ′2, . . . , l ′d} which is also increasing and called a subblock
sequence of Pd(X).

Note that, two different d-order partition spaces on X may possess the similar sub-
block sequence χ(d).

Definition 8.15 Let X be a finite non-empty universe and let Pd(X) = {X1, X2,

X3, . . . , Xd} be a partition space of X . Suppose that χ1(d) = {l ′1, l ′2, . . . , l ′d} be a
subblock sequence of Pd(X), then the ω-displacement of χ1(d) is defined as an
increasing sequence χ2(d) = {l ′1, l ′2, . . . , l ′r + 1, . . . , l ′s − 1, . . . , l ′d}, where r < s,
l ′r + 1 < l ′s − 1.
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An ω-displacement is obtained by subtracting 1 from some bigger term and adding
1 to some smaller element such that the sequence keeps its increasing property.

Theorem 8.2 A single time ω-displacement χ2(d) which is derived from χ1(d) sat-
isfies E(χ1(d)) < E(χ2(d)).

Proof Let χ1(d) = {l ′1, l ′2, . . ., l ′d} and χ2(d) = {l ′1, l ′2, . . ., l ′r + 1, . . ., l ′s − 1, . . ., l ′d},
l ′1 + l ′2 + · · · + l ′d = k then we have

E(χ2(t)) = −
d∑

j=1

l ′l
k
ln
l ′l
k

+ l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k
.

Let g(z) = − z
k ln

z
k − l−z

k ln l−z
k , where l = l ′r + l ′s and g′(z) = 1

k ln
l−z
z . Suppose that

g′(z) = 0, then we obtain a solution, i.e., z = l
2 . Furthermore, g′′(z) = −l

k(l−z)z < 0,

0 ≤ z ≤ l
2 and g(z) is increasing monotonically. Let z1 = l ′r and z2 = l ′r + 1, l ′r +

1 < l ′s − 1, i.e., z1 < z2 ≤ l
2 = l ′r+l ′s

2 . Since, g(z) is monotone, then g(z2) − g(z1) >

0. Thus,
l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k
> 0.

Hence,

E(χ2(d)) = −
d∑

j=1

l ′l
k
ln
l ′l
k

+ l ′r
k
ln
l ′r
k

+ l ′s
k
ln
l ′s
k

− l ′r + 1

k
ln
l ′r + 1

k
− l ′s − 1

k
ln
l ′s − 1

k

> −(
l ′r + 1

k
ln
l ′r + 1

k
+ l ′s − 1

k
ln
l ′s − 1

k
)

> −
t∑

j=1

l ′l
k
ln
l ′l
k

= E(χ1(d)).

This completes the proof.

8.3 An m-Polar Fuzzy Hypergraph Model of Granular
Computing

Definition 8.16 An object space is defined as a system (X, N ), where X is a uni-
verse of objects or elements and N = {n1, n2, n3, . . . , nk}, k = |X | is a family of
relations between the elements of X . For r ≤ k, nr ∈ N , nr ⊆ X × X × · · · × X , if
(z1, z2, . . . , zr ) ⊆ nr , then there exists an r -array relation nr on (z1, z2, . . . , zn).
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A granule affiliates to a particular level. Thewhole view of granules at every level can
be taken as a complete description of a particular problem at that level of granularity
[11]. Anm-polar fuzzy hypergraph formed by the set of relations N and membership
degrees X (w) = P j ◦ X (w), 1 ≤ j ≤ m of objects in the space is considered as a
specific level of granular computing model. All m-polar fuzzy hyperedges in that
m-polar fuzzy hypergraph can be regarded as the complete granule in that particular
level.

Definition 8.17 A partition of a set X established on the basis of relations between
objects is defined as a collection of non-empty subsets which are pair-wise disjoint
and whose union is whole of X . These subsets which form the partition of X are
called blocks. Every partition of a finite set X contains the finite number of blocks.
Corresponding to the m-polar fuzzy hypergraph, the constraints of partition ψ =
{Ei |1 ≤ i ≤ n}.
(i) each Ei is non-empty,
(ii) for i �= j , Ei ∩ E j = ∅,
(iii) ∪{supp(Ei )|1 ≤ i ≤ n} = X .

Definition 8.18 A covering of a set X is defined as a collection of non-empty subsets
whose union is whole of X . The conditions for the covering c = {Ei |1 ≤ i ≤ n} of
X are stated as

(i) each Ei is non-empty,
(ii) ∪{supp(Ei )|1 ≤ i ≤ n} = X .

The corresponding definitions in classical hypergraph theory are completely analo-
gous to the above Definitions8.17 and 8.18. In a crisp hypergraph, if the hyperedges
Ei and E j do not intersect each other, i.e., Ei , E j ∈ E and Ei ∩ E j = ∅ then these
hyperedges form a partition of granules in this level. Furthermore, if Ei , E j ∈ E
and Ei ∩ E j �= ∅, i.e., the hyperedges Ei and E j intersect each other, then these
hyperedges form a covering in this level.

Example 8.2 Let X = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}. The partition and
covering of X are given in Figs. 8.3 and 8.4, respectively.

Fig. 8.3 A partition of
granules in a level w1

w2

w3

w4
x5 w6

w 7

w 8

w 9

w 1
0

E
1

E2

E
3
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Fig. 8.4 A covering of
granules in a level

w1

w2

w3

w4 w5 w6

w7

w 8

w 9

w 1
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E
1

E2

E
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A set-theoretic way to study the granular computing model uses the following oper-
ators in an m-polar fuzzy hypergraph model.

Definition 8.19 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedges E1, E2 represent their external properties. The union of two granules
G1 ∪ G2 is defined as a larger m-polar fuzzy hyperedge that contains the vertices of
both E1 and E2. If wi ∈ G1 ∪ G2, then the membership degree (G1 ∪ G2)(wi ) of wi in
larger granule G1 ∪ G2 is defined as follows:

P j ◦ (G1 ∪ G2)(wi ) =

⎧
⎪⎨

⎪⎩

max{P j ◦ (E1)(wi ),P j ◦ (E2)(wi )}, if wi ∈ E1 and wi ∈ E2,

P j ◦ (E1)(wi ), if wi ∈ E1 and wi /∈ E2,

P j ◦ (E2)(wi ), if wi ∈ E2 and wi /∈ E1,

1 ≤ j ≤ m.

Definition 8.20 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedgesE1,E2 represent their external properties. The intersectionof twogranules
G1 ∩ G2 is defined as a larger m-polar fuzzy hyperedge that contains the vertices of
both E1 and E2. If wi ∈ G1 ∩ G2, then the membership degree (G1 ∩ G2)(wi ) of wi in
smaller granule G1 ∩ G2 is defined as follows,

P j ◦ (G1 ∩ G2)(wi ) =

⎧
⎪⎨

⎪⎩

min{P j ◦ (E1)(wi ),P j ◦ (E2)(wi )}, if wi ∈ E1 and wi ∈ E2,

P j ◦ (E1)(wi ), if wi ∈ E1 and wi /∈ E2,

P j ◦ (E2)(wi ), if wi ∈ E2 and wi /∈ E1,

1 ≤ j ≤ m.

Definition 8.21 Let G1 and G2 be two granules in our model and the m-polar fuzzy
hyperedges E1, E2 represent their external properties. The difference between two
granules G1 − G2 is defined as a smallerm-polar fuzzy hyperedge that contains those
vertices belonging to E1 but not to E2.

Note that, if a vertex wi ∈ E1 and wi /∈ E2, then P j ◦ (E1)(wi ) > 0 and P j ◦
(E2)(wi ) = 0, 1 ≤ j ≤ m.
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Definition 8.22 A granule G1 is said to be the sub-granule of G2, if each vertex wi

of E1 also belongs to E2, i.e., E1 ⊆ E2. In such case, G2 is called the super-granule
of G1.

Note that, if E (wi ) = {0, 1}, then the all above described operators are reduced to
classical hypergraphs theory of granular computing.

8.4 Formation of Hierarchical Structures

Wecan interpret a problem indistinct levels of granularities. These granular structures
at different levels produce a set ofm-polar fuzzy hypergraphs. The upper set of these
hypergraphs constructs a hierarchical structure in distinct levels. The relationships
between granules are expressed by lower level, which represents the problem as a
concrete example of granularity. The relationships between granule sets are expressed
by higher level, which represents the problem as an abstract example of granularity.
Thus, the single-level structures can be constructed and then can be subdivided into
hierarchical structures using the relational mappings between different levels.

Definition 8.23 Let H 1 = (A1, B1) and H 2 = (A2, B2) be two m-polar fuzzy
hypergraphs. In an hierarchy structure, their level cuts are H 1

τ and H 2
τ , respectively,

where τ = (t1, t2, . . . , tm). Let τ ∈ [0, 1] andP j ◦ E 1
i ≥ t j ,1 ≤ j ≤ m, where E 1

i ∈
B1, then a mapping φ : H 1

τ → H 2
τ from H 1

τ to H 2
τ maps the E 1

τi
in H 1

τ to a vertex
w2
i in H 2

τ . Furthermore, the mapping φ−1 : H 2
τ → H 1

τ maps a vertex w2
i in H 2

τ to
τ -cut of m-polar fuzzy hyperedge E 1

τ i in H 1
τi
. It can be denoted as φ(E 1

τi
) = w2

i or
φ−1(w2

i ) = E 1
τi
, for 1 ≤ i ≤ n.

In an m-polar fuzzy hypergraph model, the mappings are used to describe the rela-
tions among different levels of granularities. At each distinct level, the problem is
interpreted w.r.t them-PF granularity of that level. Themapping associates the differ-
ent descriptions of the same problem at distinct levels of granularities. There are two
fundamental types to construct the method of hierarchical structures, the top-down
construction procedure and the bottom-up construction procedure [24].

A formal discussion is provided to interpret an m-polar fuzzy hypergraph model
ingranular computing, which is more compatible to human thinking. Zhang and
Zhang [30] highlighted that one of the most important and acceptable characteristic
of human intelligence is that the same problem can be viewed and analyzed in
different granularities. Their claim is that the problem can not only be solved using
various world of granularities but also can be switched easily and quickly. Hence,
the procedure of solving a problem can be considered as the calculations in different
hierarchies within that model.
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Amultilevel granularity of the problem is represented by anm-polar fuzzy hyper-
graph model, which allows the problem solvers to decompose it into various minor
problems and transform it in other granularities. The transformation of problem
in other granularities is performed by using two operators, i.e., zooming-in and
zooming-out operators. The transformation from weaker level to finer level of gran-
ularity is done by zoom-in operator and the zoom-out operator deals with the shifting
of problem from coarser to finer granularity.

Definition 8.24 Let H 1 = (A1, B1) and H 2 = (A2, B2) be two m-polar fuzzy
hypergraphs, which are considered as two levels of hierarchical structures and H 2

owns the coarser granularity than H 1. Suppose H 1
τ = (X1, E1

τ ) and H 2
τ = (X2, E2

τ )

are the corresponding τ -level hypergraphs of H 1 and H 2, respectively. Let e1i ∈ E1
τ ,

z1j ∈ X1, e2j ∈ E2
τ , z

2
l , z

2
m ∈ X2 and z2l , z

2
m ∈ e2j . If φ(e1i ) = z2l , then n(z1j , z

2
m) is the

relationship between z1j and z2m and is obtained by the characteristics of granules.

Definition 8.25 Let the hyperedge φ−1(zl) be a vertex in a new level and the relation
between hyperedges in this level is same as that of relationship between vertices in
previous level. This is called the zoom-in operator and transforms a weaker level
to a stronger level. The function r(z1j , z

2
m) defines the relation between vertices of

original level as well as new level.
Let the vertexφ(ei ) be a hyperedge in a new level and the relation between vertices

in this level is same as that of relationship between hyperedges in corresponding level.
This is called the zoom-out operator and transforms a finer level to a coarser level.

By using these zoom-in and zoom-out operators, a problem can be viewed at multi-
levels of granularities. These operations allow us to solve the problem more appro-
priately and granularity can be switched easily at any level of problem-solving.

In an m-polar fuzzy hypergraph model of granular computing, the membership
degrees of elements reflect the actual situation more efficiently and a wide variety
of complicated problems in uncertain and vague environments can be presented
by means of m-polar fuzzy hypergraphs. The previous analysis conclude that this
model of granular computing generalizes the classical hypergraph model and fuzzy
hypergraph model.

Definition 8.26 Let H 1 and H 2 be two crisp hypergraphs. Suppose that H 1 owns the
finer m-polar fuzzy granularity than H 2. A mapping from H 1 to H 2 ψ : H 1 → H 2

maps a hyperedge of H 1 to the vertex of H 2 and the mappingψ−1 : H 2 → H 1 maps
a vertex of H 2 to the hyperedge of H 1.

The procedure of bottom-up construction for level hypergraph model is illustrated
in Algorithm 8.4.1.
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Algorithm 8.4.1
The procedure of bottom-up construction for level hypergraph
1. Determine an m−polar fuzzy equivalence relation matrix according to the actual circumstances.
2. For fixed τ ∈ [0, 1], obtain the corresponding hierarchical quotient space structure.
3. Obtain the hyperedges through the hierarchical quotient space structure.
4. Granules in i-level are mapped to (i + 1)−level.
5. Calculate the m−polar fuzzy relationships between the vertices of (i + 1)−level and determine

the m−polar fuzzy equivalence relation matrix.
6. Determine the corresponding hierarchical quotient space structure according to τ , which is fixed in Step 2.
7. Get the hyperedges in (i + 1)−level and (i + 1)−level of the model is constructed.
8. Step 1 - Step 5 are repeated until the whole universe is formulated to a single granule.

Definition 8.27 Let N be an m-polar fuzzy equivalence relation on X . A coarse
gained universe X/Nτ can be obtained by using m-polar fuzzy equivalence relation,
where [wi ]Nτ

= {wj ∈ X |wi Nwj }. This equivalence class [wi ]Nτ
is considered as an

hyperedge in the level hypergraph.

Definition 8.28 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of m-
polar fuzzy hypergraphs and H2 has weaker granularity than H1. Suppose that e1i ,
e2j ∈ E1 and w2

i , w
2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-in operator ω : H2 → H1

is defined as ω(w2
i ) = e1i , e

1
i ∈ E1. The relations between the vertices of H 2 define

the relationships among the hyperedges in new level. The zoom-in operator of two
levels is shown in Fig. 8.5.

Remark 1 For all X ′
2, X ′′

2 ⊆ X2, we have ω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) and ω(X ′′

2) =
⋃

w2
j∈X ′′

2

ω(w2
j ).

w
2
1

w22

w 23

H2

e11

e1 2

e 1
3

ω(w2
1)

ω(w2
2)

ω(w2
3)

H1

Fig. 8.5 Zoom-in operator
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Theorem 8.3 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels and ω : H2 →
H1 be the zoom-in operator. Then for all X ′

2, X
′′
2 ⊆ X2, the zoom-in operator satisfies

(i) ω maps the empty set to an empty set, i.e., ω(∅) = ∅,
(ii) ω(X2) = E1,
(iii) ω([X ′

2]c) = [ω(X ′
2)]c,

(iv) ω(X ′
2 ∩ X ′′

2)= ω(X ′
2) ∩ ω(X ′′

2),
(v) ω(X ′

2 ∪ X ′′
2)= ω(X ′

2) ∪ ω(X ′′
2),

(vi) X ′
2 ⊆ X ′′

2 if and only if ω(X ′
2) ⊆ ω(X ′′

2).

Proof (i) It is trivially satisfied that ω(∅) = ∅.
(ii) Asweknow that for allw2

i ∈ X2,wehaveω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ). Sinceω(w2

i ) =
e1i , we have ω(X ′

2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈E1

e1i = E1.

(iii) Let [X ′
2]c = X ′

2 and [X ′′
2 ]c = X ′′

2 , then it is obvious that X ′
2 ∩ X ′

2 = ∅ and
X ′
2 ∪ X ′

2 = X2. It follows from (ii) that ω(X2) = E1 and we denote by W ′
1

that edge set of H1 on which the vertex set X ′
2 of H2 is mapped under

ω, i.e.,ω(X ′
2) = W ′

1. Thenω([X ′
2]c) = ω(X ′

2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈W ′
1

e1i = X ′
1

and [ω(X ′
2)]c = [ ⋃

w2
j∈X ′

2

ω(w2
j )]c = [ ⋃

e1j∈E ′
1

e1j ]c = (E ′
1)

c. Since, the relationship

between hyperedges in new level is same as that of relations among vertices
in original level so we have (E ′

1)
c = X ′

1. Hence, we conclude that ω([X ′
2]c) =

[ω(X ′
2)]c.

(iv) Assume that X ′
2 ∩ X ′′

2 = X̃2 then for allw2
i ∈ X̃2 implies thatw2

i ∈ X ′
2 andw

2
i ∈

X ′′
2 . Further, we haveω(X ′

2 ∩ X ′′
2) = ω(X̃2) = ⋃

w2
i ∈X̃2

ω(w2
i )=

⋃

e1i ∈Ẽ1

ω(e1i ) = Ẽ1.

ω(X ′
2) ∩ ω(X ′′

2)={ ⋃

w2
i ∈X ′

2

ω(w2
i )} ∩ { ⋃

w2
j∈X ′′

2

ω(w2
j )} = ⋃

e1i ∈E ′
1

e1i ∩ ⋃

e1j∈E ′′
1

e1j = E ′
1 ∩

E ′′
1 . Since, the relationship between hyperedges in new level is same as that of

relations among vertices in original level so we have E ′
1 ∩ E ′′

1 = Ẽ1. Hence, we
conclude that ω(X ′

2 ∩ X ′′
2)= ω(X ′

2) ∩ ω(X ′′
2).

(v) Assume that X ′
2 ∪ X ′′

2 = X̄2. Then we have ω(X ′
2 ∪ X ′′

2) = ω(X̄2) =⋃

w2
i ∈X̄2

ω(w2
i )=

⋃

e1i ∈Ē1

ω(e1i ) = Ē1.

ω(X ′
2) ∪ ω(X ′′

2)={ ⋃

w2
i ∈X ′

2

ω(w2
i )} ∪ { ⋃

w2
j∈X ′′

2

ω(w2
j )} = ⋃

e1i ∈E ′
1

e1i ∪ ⋃

e1j∈E ′′
1

e1j = E ′
1 ∪

E ′′
1 . Since, the relationship between hyperedges in new level is same as that of

relations among vertices in original level so we have E ′
1 ∪ E ′′

1 = Ē1. Hence, we
conclude that ω(X ′

2 ∪ X ′′
2)= ω(X ′

2) ∪ ω(X ′′
2).

(vi) First we show that X ′
2 ⊆ X ′′

2 implies that ω(X ′
2) ⊆ ω(X ′′

2). Since, X
′
2 ⊆ X ′′

2 ,
which implies that X ′

2 ∩ X ′′
2 = X ′

2 and ω(X ′
2) = ⋃

w2
i ∈X ′

2

ω(w2
i ) = ⋃

e1i ∈E ′
1

e1i = E ′
1.

Also ω(X ′′
2) = ⋃

w2
j∈X ′′

2

ω(w2
j ) = ⋃

e1j∈E ′′
1

e1j = E ′′
1 . Since, the relationship between
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Fig. 8.6 Zoom-out operator
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hyperedges in new level is same as that of relations among vertices in original
level so we have E ′

1 ⊆ E ′′
1 , i.e., ω(X ′

2) ⊆ ω(X ′′
2). Hence, X

′
2 ⊆ X ′′

2 implies that
ω(X ′

2) ⊆ ω(X ′′
2).

We now prove thatω(X ′
2) ⊆ ω(X ′′

2) implies that X ′
2 ⊆ X ′′

2 . Suppose on contrary
thatwheneverω(X ′

2) ⊆ ω(X ′′
2) then there is at least onevertexw

2
i ∈ X ′

2 butw
2
i /∈

X ′′
2 , i.e., X

′
2 � X ′′

2 . Since, ω(w2
i ) = e1i and the relationship between hyperedges

in new level is same as that of relations among vertices in original level so we
have e1i ∈ E ′

1 but e1i /∈ E ′′
1 , i.e., E ′

1 � E ′′
1 ,

which is contradiction to the supposition. Thus, we have ω(X ′
2) ⊆ ω(X ′′

2)

implies that X ′
2 ⊆ X ′′

2 . Hence, X
′
2 ⊆ X ′′

2 if and only if ω(X ′
2) ⊆ ω(X ′′

2).

Definition 8.29 Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of m-
polar fuzzy hypergraphs and H2 has weaker granularity than H1. Suppose that e1i ,
e2j ∈ E1 and w2

i , w
2
j ∈ X2, i, j = 1, 2, . . . , n. The zoom-out operator σ : H1 → H2

is defined as σ(e1i ) = w2
i , w

2
i ∈ X2. The zoom-out operator of two levels is shown in

Fig. 8.6.

Theorem 8.4 Let σ : H1 → H2 be the zoom-out operator from H1 = (X1, E1) to
H2 = (X2, E2) and let E ′

1 ⊆ E1. Then, the zoom-out operator σ satisfies the follow-
ing properties:

(i) σ(∅) = ∅,
(ii) σ maps the set of hyperedges of H1 onto the set of vertices of H2, i.e., σ(E1) =

X2,
(iii) σ([E ′

1]c) = [σ(E ′
1)]c.
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Fig. 8.7 Internal and
external zoom-out operators
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Proof (i) This part is trivially satisfied.
(ii) According to the definition of σ , we have σ(e1i ) = w2

i . Since, the hyperedges
define a partition of hypergraph so we have E1 = {e11, e12, e13, . . ., e1n} = ⋃

e1i ∈E1

e1i .

Then
σ(E1) = σ(

⋃

e1i ∈E1

e1i ) = ⋃

e1i ∈E1

σ(e1i ) = ⋃

w2
i ∈X2

w2
i = X2.

(iii) Assume that [E ′
1]c = V ′

1 then it is obvious that E
′
1 ∩ V ′

1 = ∅ and E ′
1 ∪ V ′

1 = E1.
Suppose on contrary that there exists at least one vertexw2

i ∈ σ([E ′
1]c) butw2

i /∈
[σ(E ′

1)]c.w2
i ∈ σ([E ′

1]c) implies thatw2
i ∈ σ(V ′

1) ⇒ w2
i ∈ ⋃

e1i ∈V ′
1

σ(e1i ) ⇒ w2
i ∈

⋃

e1i ∈E1\E ′
1

σ(e1i ). Since, w2
i /∈ [σ(E ′

1)]c ⇒ w2
i ∈ σ(E ′

1) ⇒ w2
i ∈ ⋃

e1i ∈E ′
1

σ(e1i ),

which is contradiction to our assumption. Hence, σ([E ′
1]c) = [σ(E ′

1)]c.
Definition 8.30 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of m-polar
fuzzy hypergraphs and H1 possesses the stronger granularity than H2. Let E ′

1 ⊆ E1

then σ̂ (E ′
1) = {e2i |e2i ∈ E2, κ(e2i ) ⊆ E ′

1} is called internal zoom-out operator.
The operator σ̌ (E ′

1) = {e2i |e2i ∈ E2, κ(e2i ) ∩ E ′
1 �= ∅} is called external zoom-out

operator.

Example 8.3 Let H1 = (X1, E1) and H2 = (X2, E2) be two levels ofm-polar fuzzy
hypergraphs and H1 possesses the stronger granularity than H2, where E1 = {e11,
e12, e

1
3, e

1
4, e

1
5, e

1
6} and E2 = {e21, e22, e23}. Furthermore, e21 = {w2

1, w
2
3}, e22 = {w2

2, w
2
4},

e23 = {w2
5, w

2
6} as shown in Fig. 8.7.

Let E ′
1 = {e12, e13, e14, e15} be the subset of hyperedges of H1 then we can not zoom-

out to H2 directly, thus by using the internal and external zoom-out operators we
have the following relations.
σ̂ ({e12, e13, e14, e15}) = {e22},
σ̌ ({e12, e13, e14, e15}) = {e21, e22, e23}.
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8.5 A Granular Computing Model of Web Searching
Engines

The most fertile way to direct a search on the Internet is through a search engine.
A web search engine is defined as a system software which is designed to search
for queries on World Wide Web. A user may utilize a number of search engines
to gather information and similarly various searchers may make an effective use of
same engine to fulfill their queries. In this section, we construct a granular comput-
ing model of web searching engines based on 4-polar fuzzy hypergraph. In a web
searching hypernetwork, the vertices denote the various search engines. According
to the relation set N , the vertices having some relationship are united together as
an hyperedge, in which the search engines serve only one user. After assigning the
membership degrees to that unit, a 4-polar fuzzy hyperedge is constructed, which is
also considered as a granule. A 4-polar fuzzy hyperedge indicates a user who wants
to gather some information and the vertices in that hyperedge represent those search
engines which provide relevant data to the user. Let us consider there are ten search
engines and the corresponding 4-polar fuzzy hypergraph H = (A, B) is shown in
Fig. 8.8. Note that, A = {e1, e2, e3, . . ., e10} and B = {U1, U2, U3, U4, U5}.

The incidence matrix of 4-polar fuzzy hypergraph is given in Table8.1.

Fig. 8.8 A 4-polar fuzzy
hypergraph representation of
web searching
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Table 8.1 Incidence matrix
X U1 U2 U3 U4 U5

e1 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e2 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e3 (0.2, 0.3, 0.3, 0.2) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e4 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)

e5 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e6 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

e7 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)

e8 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)

e9 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)

e10 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)
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Table 8.2 The information table

X Core technology Scalability Content processing Query functionality

e1 0.7 0.6 0.5 0.7

e2 0.6 0.5 0.5 0.6

e3 0.7 0.8 0.8 0.7

e4 0.8 0.6 0.6 0.8

e5 0.7 0.5 0.5 0.7

e6 0.7 0.6 0.5 0.7

e7 0.6 0.5 0.5 0.6

e8 0.7 0.8 0.8 0.7

e9 0.8 0.6 0.6 0.8

e10 0.7 0.8 0.8 0.7

An m-polar fuzzy hypergraph model of granular computing illustrates a vague
set having some membership degrees. In this model, there are five users need the
search engines to gather information. Note that, the membership degrees of these
engines are different to the users because whenever a user selects a search engine,
he/she considers various factors or attributes. Hence, an m-polar fuzzy hypergraph
in granular computing is more meaning full and effective.

Let us suppose that each search engine possesses four attributes which are Core
Technology, Scalability, Content Processing, Query Functionality. The information
table for various search engines having these attributes is given in Table8.2.

The membership degrees of search engines reveal the percentage of attributes
possessed by them, e.g., e1 own 70% of core technology, 60% scalability, 50%
provide content processing and query functionality of this engine is 70%. The 4-polar
fuzzy equivalence relation matrix describes the similarities between these search
engines and is given as follows:

P̃N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0
1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0
0.6 0.7 1 0.8 0.8 0.8 0.8 0.8 0.8 0
0.6 0.7 0.8 1 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.7 0.8 0.6 1 0.5 0.5 0.5 0.5 0
0.6 0.7 0.8 0.6 0.5 1 0.6 0.6 0.6 0
0.6 0.7 0.8 0.6 0.5 0.6 1 0.7 0.7 0.7
0.6 0.7 0.8 0.6 0.5 0.6 0.7 1 0.8 0.8
0.6 0.7 0.8 0.6 0.5 0.6 0.7 0.8 1 0.8
0 0 0 0.6 0 0 0.7 0.8 0.8 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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e1 e2
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e4

e5
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e7 e9 e10e8

n2,n4,n6,
n3,n8,n9 =

Fig. 8.9 A single-level model of 4-polar fuzzy hypergraph

where 1 = (1, 1, 1, 1), 0 = (0, 0, 0, 0), 0.5 = (0.5, 0.5, 0.5, 0.5), 0.6 = (0.6, 0.6,
0.6, 0.6), 0.7 = (0.7, 0.7, 0.7, 0.7) and 0.8 = (0.8,0.8,0.8,0.8). Let τ = (t1, t2,
t3, t4) = (0.7, 0.7, 0.7, 0.7), then its corresponding hierarchical quotient space struc-
ture is given as follows:

X/Nτ = X/N(0.7,0.7,0.7,0.7) = {{e1, e2}, {e1, e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e5},
{e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e4}, {e2, e3, e6},
{e2, e3, e7, e8, e9, e10}, {e7, e8, e9, e10}}.

Note that,n1 = n5 = n7 = n10 = {∅},n2 = {(e1, e2)},n3 = {(e2, e3, e4), (e2, e3, e5),
(e2, e3, e6)}, n4 = {(e7, e8, e9, e10)}, n6 = {(e2, e3, e7, e8, e9, e10)}, n8 = {(e2, e3, e4,
e5, e6, e7, e8, e9)}, n9 = {(e1, e2, e3, e4, e5, e6, e7, e8, e9)}. Hence, a single level of
4-polar fuzzy hypergraph model is constructed and is shown in Fig. 8.9.

Thus, we can obtain eight hyperedges E1 = {e1, e2}, E2 = {e2, e3, e4}, E3 =
{e2, e3, e5}, E4 = {e2, e3, e6}, E5 = {e7, e8, e9, e10}, E6 = {e2, e3, e7, e8, e9, e10},
E7 = {e2, e3, e4, e5, e6, e7, e8, e9}, E8 = {e1, e2, e3, e4, e5, e6, e7, e8, e9}. The proce-
dure of constructing this single-level model is explained in the following flow chart
Fig. 8.10.
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Fig. 8.10 Flow chart of single-level model of m-polar fuzzy hypergraph
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Fig. 8.12 (0.5, 0.5, 0.6)-
level hypergraph of H
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Example 8.4 Let H = (A, B) be a 3-polar fuzzy hypergraph as shown in Fig. 8.11.
Let X = {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12} and B = {E1, E2, E3, E4, E5}.

For t1 = 0.5, t2 = 0.5 and t3 = 0.6, the (0.5, 0.5, 0.6)-level hypergraph of H is
given in Fig. 8.12.

By considering the fixed t1, t2, t3 and following the Algorithm 8.4.1, the
bottom-up construction of this model is given in Fig. 8.13.

The possible method for the bottom-up construction is described in Algorithm 8.5.1.
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Algorithm 8.5.1
Algorithm for the method of the bottom-up construction
1. clc
2. P j ◦ zi=input(‘P j ◦ zi=’); T=input(‘τ=’); q=1;
3. while q==1
4. [r, m]=size(P j ◦ zi );N=zeros(r, r);N=input(‘N=’); [r1, r]=size(N); D=ones(r1, m)+1;
5. for l=1:r1
6. if N(l,:)==zeros(1, r)
7. D(l,:)=zeros(1, m);
8. else
9. for k=1:r
10. if N(l, k)==1
11. for j=1:m
12. D(l, j)=min(D(l, j),P j ◦ zi (k, j));
13. end
14. else
15. s=0;
16. end
17. end
18. end
19. end
20. D
21. P j ◦ E i=input(‘P j ◦ E i=’);
22. if size(P j ◦ E i )==[r1, m]
23. if P j ◦ E i <=D
24. if size(T)==[1, m]
25. S=zeros(r1, r);s=zeros(r1, 1);
26. for l=1:r1
27. for k=1:r
28. if N(l, k)==1
29. if P j ◦ zi (k,:)>=T(1,:)
30. S(l, k)=1;
31. s(l, 1)=s(l, 1)+1;
32. else
33. S(l, k)=0;
34. end
35. end
36. end
37. end
38. S
39. if s==ones(r1, 1)
40. q=2;
41. else
42. P j ◦ zi = P j ◦ E i ;
43. end
44. else
45. fprintf(‘error’)
46. end
47. else
48. fprintf(‘error’)
49. end
50. else
51. fprintf(‘error’)
52. end
53. end
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Fig. 8.13 Bottom-up
construction procedure
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Chapter 9
Some Types of Hypergraphs for
Single-Valued Neutrosophic Structures

In this chapter, we present concepts including single-valued neutrosophic hyper-
graphs, dual single-valued neutrosophic hypergraphs, and transversal single-valued
neutrosophic hypergraphs. Additionally, we discuss the notions of intuitionistic
single-valued neutrosophic hypergraphs and dual intuitionistic single-valued neu-
trosophic hypergraphs. We describe an application of intuitionistic single-valued
neutrosophic hypergraphs in a clustering problem. Then, we present other related
concepts like single-valued neutrosophic directed hypergraphs, single-valued neu-
trosophic line directed graphs, and dual single-valued neutrosophic directed hyper-
graphs. Finally, we describe applications of single-valued neutrosophic directed
hypergraphs. We define complex neutrosophic hypergraphs and discuss their cer-
tain properties including, lower truncation, upper truncation, and transition levels.
Further, we define T -related complex neutrosophic hypergraphs and properties of
minimal transversals of complex neutrosophic hypergraphs. We represent the mod-
eling of certain social networks having intersecting communities through the score
functions and choice values of complex neutrosophic hypergraphs. This chapter is
mainly due to [3–5, 14, 20, 22–24].

9.1 Introduction

Zadeh [28] introduced the degree of membership/truth (T ) in 1965 and defined the
fuzzy set. Atanassov [8] introduced the degree of nonmembership/falsehood (F) in
1983 and defined the intuitionistic fuzzy set. Smarandache [20] introduced the degree
of indeterminacy/neutrality (I) as independent component in 1995 and defined the
neutrosophic set on three components (T , I ,F) = (Truth, Indeterminacy, Falsity).
Fuzzy set theory and intuitionistic fuzzy set theory are useful models for dealing with
uncertainty and incomplete information. But they may not be sufficient in the mod-
eling of indeterminate and inconsistent information encountered in the real world.

© Springer Nature Singapore Pte Ltd. 2020
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In order to cope with this issue, (The words “neutrosophy” and “neutrosophic” were
invented by Smarandache in 1995. Neutrosophy is a new branch of philosophy that
studies the origin, nature, and scope of neutralities, as well as their interactions with
different ideational spectra. It is the base of neutrosophic logic, a multiple value logic
that generalizes the fuzzy logic and deals with paradoxes, contradictions, antithe-
ses, antinomies) neutrosophic set theory was proposed by Smarandache. However,
since neutrosophic sets are identified by three functions called truth-membership
(T ), indeterminacy-membership (I), and falsity-membership (F), whose values are
real standard or nonstandard subset of unit interval ]−0, 1+[, where −0 = 0 − ε,
1+ = 1 + ε, ε is an infinitesimal number. To apply neutrosophic set in real-life prob-
lems more conveniently, Smarandache [20] and Wang et al. [23] defined single-
valued neutrosophic set, which takes the value from the subset of [0, 1]. Thus, a
single-valued neutrosophic set is an instance of neutrosophic set, and can be used
expediently to deal with real-world problems, especially in decision support. The
innovative concept of complex fuzzy sets was initiated by Ramot et al. [17] as an
extension of fuzzy sets. A complex fuzzy set is characterized by a membership
function μ(x), whose range is not limited to [0, 1] but extends to the unit circle in
the complex plane. Hence, μ(x) is a complex-valued function that assigns a grade
of membership of the form r(x)eiα(x), i = √−1 to any element x in the universe
of discourse. Thus, the membership function μ(x) of complex fuzzy set consists of
two terms, i.e., amplitude term r(x) which lies in the unit interval [0, 1] and phase
term (periodic term) w(x) which lies in the interval [0, 2π ]. This phase term distin-
guishes a complex fuzzy set model from all other models available in the literature.
The potential of a complex fuzzy set for representing two-dimensional phenomena
makes it superior to handle ambiguous and intuitive information that are prevalent in
time-periodic phenomena. A systematic review of complex fuzzy sets was proposed
by Yazdanbakhsh and Dick [27]. To generalize the concepts of intuitionistic fuzzy
sets, complex intuitionistic fuzzy sets were introduced by Alkouri and Salleh [7]
by adding nonmembership ν(x) = s(x)eiβ(x) to the complex fuzzy sets subjected to
the constraint r + s ≤ 1. To handle imprecise information having a periodic nature,
complex neutrosophic sets were proposed by Ali and Smarandache [6]. As we see
that uncertainty, indeterminacy, incompleteness, inconsistency, and falsity in data are
periodic in nature, to handle these types of problems, the complex neutrosophic set
plays an important role. A complex neutrosophic set is characterized by a complex-
valued truth-membership function T (x), complex-valued indeterminate membership
function I(x), and complex-valued false membership function F(x), whose range is
extended from [0, 1] to the unit disk in the complex plane.

Graphs are used to represent the pair-wise relationships between objects. How-
ever, in many real-world phenomena, sometimes relationships are much problematic
that they cannot be perceived through simple graphs. By handling such complex
relationships by pair-wise connections naively, one can face the loss of data which
is considered to be worthwhile for learning errands. To overcome these difficulties,
we take into account the generalization of simple graphs, named as hypergraphs,
to personify the complex relationships. A hypergraph is an extension of a classical
graph in this way that a hyperedge can combine two or more than two vertices.
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Fig. 9.1 A geometric interpretation of the neutrosophic set

Hypergraphs have many applications in various fields, including biological sciences,
computer science, and natural sciences. To study the degree of dependence of an
object to the other, Kaufmann [13] applied the concept of fuzzy sets to hypergraphs.
Mordeson and Nair [15] presented fuzzy graphs and fuzzy hypergraphs. Parvathi et
al. [16] established the notion of intuitionistic fuzzy hypergraph.

A Geometric Interpretation of the Neutrosophic Set

We describe a geometric interpretation of the neutrosophic set using the neutro-
sophic cube A′B′C ′D′E′F ′G ′H ′ as shown in Fig. 9.1. In technical applications, only
the classical interval [0, 1] is used as range for the neutrosophic parameters T , I , and
F , we call the cube ABCDEFGH the technical neutrosophic cube and its extension
A′B′C ′D′E′F ′G ′H ′ the neutrosophic cube, used in the field where we need to dif-
ferentiate between absolute and relative notions. Consider a 3-D Cartesian system
of coordinates, where T is the truth axis with value range in ]−0, 1+[, F is the false
axis with value range in ]−0, 1+[, and I is the indeterminate axis with value range in
]−0, 1+[.

We now divide the technical neutrosophic cube ABCDEFGH into three disjoint
regions:
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1. The equilateral triangle BDE, whose sides are equal to
√
2, which represents the

geometrical locus of the points whose sum of the coordinates is 1. If a point Q is
situated on the sides of the triangle BDE or inside of it, then TQ + IQ + FQ = 1.

2. The pyramid EABD situated in the right side of the ΔEBD, including its faces
ΔABD (base),ΔEBA, andΔEDA (lateral faces), but excluding its facesΔBDE is
the locus of the points whose sum of their coordinates is less than 1. If P ∈ EABD,
then TP + IP + FP < 1.

3. In the left side of ΔBDE in the cube, there is the solid EFGCDEBD (excluding
ΔBDE) which is the locus of points whose sum of their coordinates is greater
than 1. If a point R ∈ EFGCDEBD, then TR + IR + FR > 1.

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than
1. For example,

(1) We have a source which is capable to find only the degree of membership of
an element; but it is unable to find the degree of nonmembership.

(2) Another source which is capable to find only the degree of nonmembership
of an element.

(3) Or a source which only computes the indeterminacy.
Thus, when we put the results together of these sources, it is possible that their

sum is not 1, but smaller or greater.
On the other hand, in information fusion, when dealing with indeterminate mod-

els (i.e., elements of the fusion space which are indeterminate/unknown, such as
intersections we do not know if they are empty or not since we do not have enough
information, similarly for complements of indeterminate elements, etc.), if we com-
pute the believe in that element (truth), the disbelieve in that element (falsehood),
and the indeterminacy part of that element, then the sum of these three components
is strictly less than 1 (the difference to 1 is the missing information).

Definition 9.1 Let X be a space of points (objects). A single-valued neutrosophic
set A on a non-empty set X is characterized by a truth-membership function
TA : X → [0, 1], indeterminacy-membership function IA : X → [0, 1], and a falsity-
membership function FA : X → [0, 1]. Thus, A = {< x,TA(x), IA(x),FA(x) > |x ∈
X }. There is no restriction on the sum of TA(x), IA(x) and FA(x) for all x ∈ X .

When X is continuous, a single-valued neutrosophic set A can be written as

A =
∫
X
〈(T (x), I(x),F(x))/x, x ∈ X 〉.

When X is discrete, a single-valued neutrosophic set A can be written as

A =
n∑

i=1

〈(T (xi), I(xi),F(xi))/xi, xi ∈ X 〉.

Example 9.1 Assume that the universe of discourse X = {x1, x2, x3}, where x1
describes the capability, x2 describes the trustworthiness, and x3 describes the prices



9.1 Introduction 369

of the objects. It may be further assumed that the values of x1, x2, and x3 are in
[0, 1] and they are obtained from some questionnaires of some experts. The experts
may impose their opinion in three components, namely, the degree of goodness, the
degree of indeterminacy, and that of poorness to explain the characteristics of the
objects. Suppose A is a single-valued neutrosophic set of X such that

A = {< x1, 0.3, 0.5, 0.6 >,< x2, 0.3, 0.2, 0.3 >,< x3, 0.3, 0.5, 0.6 >},

where < x1, 0.3, 0.5, 0.6 > represents the degree of goodness of capability is 0.3,
degree of indeterminacy of capability is 0.5, and degree of falsity of capability is 0.6.

Remark 9.1 When we consider that there are three different experts that are inde-
pendent (i.e., they do not communicate with each other), so each one focuses on one
attribute only (because each one is the best specialist in evaluating a single attribute).
Therefore, each expert can assign 1 to his attribute value [for (1,1,1)], or each expert
can assign 0 to his attribute value [for (0,0,0)], respectively.

When we consider a single expert for evaluating all three attributes, then he eval-
uates each attribute from a different point of view (using a different parameter) and
arrives to (1,1,1) or (0,0,0), respectively.

For example, we examine a student “Muhammad” for his research in neutrosophic
graphs he deserves 1, for his research in analytical mathematics he also deserves 1,
and for his research in physics he deserves 1.

Yang et al. [24] introduced the concept of single-valued neutrosophic relations.

Definition 9.2 A single-valued neutrosophic relation on a non-empty set X is a
single-valued neutrosophic subset of X × X of the form, B = {(yz,TB(yz), IB(yz),
FB(yz)) : yz ∈ X × X },whereTB : X × X → [0, 1], IB : X × X → [0, 1],FB : X ×
X → [0, 1] denote the truth-membership, indeterminacy-membership, and
falsity-membership functions of B, respectively.

Definition 9.3 A single-valued neutrosophic graph on a non-empty X is a pair
G = (A,B), where A is single-valued neutrosophic set in X and B single-valued
neutrosophic relation on X such that

TB(xy) ≤ min{TA(x),TA(y)},

IB(xy) ≤ min{IA(x), IA(y)},

FB(xy) ≤ max{FA(x),FA(y)},

for all x, y ∈ X . A is called single-valued neutrosophic vertex set ofG and B is called
single-valued neutrosophic edge set of G, respectively.
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Remark 9.2 1. B is called symmetric single-valued neutrosophic relation on A.
2. If B is not a symmetric single-valued neutrosophic relation on A, thenG = (A,B)

is called a single-valued neutrosophic directed graph (digraph).
3. X and E are underlying vertex set and underlying edge set of G, respectively.

Definition 9.4 The support of a single-valued neutrosophic set A = {(x, TA(x),
IA(x), FA(x)): x ∈ X } is denoted by supp(A), defined as supp(A) = {x | TA(x) 	=
0, IA(x) 	= 0,FA(x) 	= 0}. The support of a single-valued neutrosophic set is a crisp
set.

Definition 9.5 The height of a single-valued neutrosophic set A = {(x,TA(x), IA(x),
FA(x)) : x ∈ X } is defined ash(A) = (sup

x∈X
TA(x), sup

x∈X
IA(x), inf

x∈X FA(x)).Wecall single-

valued neutrosophic set A is normal if there exists at least one element x ∈ X such
that TA(x) = 1, IA(x) = 1, FA(x) = 0.

Definition 9.6 Let A = {(x,TA(x), IA(x), FA(x)) : x ∈ X } be a single-valued neu-
trosophic set on X and let α, β, γ ∈ [0, 1] such that α + β + γ ≤ 3. Then, the set
A(α,β,γ ) = {x | TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ } is called (α, β, γ )-level subset of
A. (α, β, γ )-level set is a crisp set.

For further terminologies and studies on single-valued neutrosophic theory, read-
ers are referred to [1, 2, 9, 11, 12, 18, 19, 21, 25, 26].

9.2 Single-Valued Neutrosophic Hypergraphs

Definition 9.7 A single-valued neutrosophic hypergraph on a non-empty set X is a
pair H = (X , ε), where X is a crisp set of vertices and ε = {E1, E2, · · · , Em} be a
finite family of nontrivial single-valued neutrosophic subsets of X such that

(i)
Tε({x1, x2, . . . , xs}) ≤ min{TEi (x1),TEi (x2), . . . ,TEi (xs)},

Iε({x1, x2, . . . , xs}) ≤ min{IEi (x1), IEi (x2), . . . , IEi (xs)},

Fε({x1, x2, . . . , xs}) ≤ max{FEi (x1),FEi (x2), . . . ,FEi (xs)},

for all x1, x2, . . . , xs ∈ X .
(ii)

⋃
i supp(Ei) = X , for all Ei ∈ ε.

In single-valued neutrosophic hypergraph, two vertices u and v are adjacent if there
exists an edge Ei ∈ ε which contains the two vertices v and u, i.e., u, v ∈ supp(Ei).
In single-valued neutrosophic hypergraphH , if two vertices u and v are connected,
then there exists a sequence u = u0, u1, u2, . . . , un = v of vertices of H such that
ui−1 is adjacent ui for i = 1, 2, . . . , n. A connected single-valued neutrosophic hyper-
graph is a single-valued neutrosophic hypergraph in which every pair of vertices is
connected.
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In a single-valued neutrosophic hypergraph, two edges Ei and Ej are said to be
adjacent if their intersection is non-empty, i.e., supp(Ei) ∩ supp(Ej) 	= ∅, i 	= j. The
order of a single-valued neutrosophic hypergraph is denoted by |X | and size (number
of edges) is denoted by |ε|. If supp(Ei) = k for each Ei ∈ ε, then single-valued neu-
trosophic hypergraph H = (X , ε) is k-uniform single-valued neutrosophic hyper-
graph. The element aij of the single-valued neutrosophic matrix represents the truth-
membership (participation) degree, indeterminacy-membership degree, and falsity-
membership of vi toEj (that is (TEj (vi), IEj (vi),FEj (vi))). Since, the diagramof single-
valued neutrosophic hypergraph does not imply sufficiently the truth-membership
degree, indeterminacy-membership degree, and falsity-membership degree of vertex
to edges, we use incidence matrix MH for the description of single-valued neutro-
sophic hyperedges.

Definition 9.8 The height of a single-valued neutrosophic hypergraphH = (X , ε),
denoted by h(H ), is defined by h(H ) = max

i
{h(Ei)| Ei ∈ ε}.

Definition 9.9 Let H = (X , ε) be a single-valued neutrosophic hypergraph, the
cardinalityof a single-valuedneutrosophic hyperedge is the sumof truth-membership,
indeterminacy-membership, and falsity-membership values of the vertices connected
to an hyperedge, it is denoted by |Ei|. The degree of a single-valued neutrosophic
hyperedge, Ei ∈ ε is its cardinality, that is dH (Ei) = |Ei|. The rank of a single-
valued neutrosophic hypergraph is the maximum cardinality of any hyperedge in
H , i.e., max

Ei∈ε
dH (Ei) and anti rank of a single-valued neutrosophic is the minimum

cardinality of any hyperedge in H , i.e., min
Ei∈ε

dH (Ei).

Definition 9.10 A single-valued neutrosophic hypergraph is said to be linear single-
valued neutrosophic hypergraph if every pair of distinct vertices of H = (X , ε)

is in at most one edge of H , i.e., |supp(Ei) ∩ supp(Ej)| ≤ 1 for all Ei,Ej ∈ ε. A
2-uniform linear single-valued neutrosophic hypergraph is a single-valued neutro-
sophic graph.

Example 9.2 Consider a single-valued neutrosophic hypergraph H = (X , ε) such
that X = {v1, v2, v3, v4, v5, v6}, ε = {E1, E2, E3, E4, E5, E6}, where

E1 = {(v1, 0.3, 0.4, 0.6), (v3, 0.7, 0.4, 0.4)},
E2 = {(v1, 0.3, 0.4, 0.6), (v2, 0.5, 0.7, 0.6)},
E3 = {(v2, 0.5, 0.7, 0.6), (v4, 0.6, 0.4, 0.8)},
E4 = {(v3, 0.7, 0.4, 0.4), (v6, 0.4, 0.2, 0.7)},
E5 = {(v3, 0.7, 0.4, 0.4), (v5, 0.6, 0.7, 0.5)},
E6 = {(v5, 0.6, 0.7, 0.5), (v6, 0.4, 0.2, 0.7)},
E7 = {(v4, 0.6, 0.4, 0.8), (v6, 0.4, 0.2, 0.7)}.

The corresponding single-valued neutrosophic hypergraph is shown in Fig. 9.2.
Its incidence matrixMH is given in Table9.1.
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Fig. 9.2 Single-valued
neutrosophic hypergraph
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Table 9.1 Incidence matrixMH of H
MH E1 E2 E3 E4 E5 E6 E7

v1 (0.3, 0.4, 0.6) (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

v2 (0, 0, 0) (0.5, 0.7, 0.6) (0.5, 0.7, 0.6) (0, 0., 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

v3 (0.7, 0.4, 0.4) (0, 0, 0) (0, 0, 0) (0.7, 0.4, 0.4) (0.7, 0.4, 0.4) (0, 0, 0) (0, 0, 0)

v4 (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.8)

v5 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.7, 0.5) (0.6, 0.7, 0.5) (0, 0, 0)

v6 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0, 0, 0) (0.4, 0.2, 0.7) (0.4, 0.2, 0.7)

Definition 9.11 Let H = (X , ε) be a single-valued neutrosophic hypergraph, the
degree dH (v) of a vertex v in H is dH (v) = ∑

v∈Ei

(TEi (v), IEi (v),FEi (v)), where

Ei are the edges that contain the vertex v. The maximum degree of a single-valued
neutrosophic hypergraph is (H ) = max

v∈X (dH (v)). A single-valued neutrosophic

hypergraph is said to be regular single-valued neutrosophic hypergraph in which all
the vertices have the same degree.

Proposition 9.1 LetH = (X , ε) be a single-valued neutrosophic hypergraph, then∑
v∈X

dH (v) = ∑
Ei∈ε

dH (Ei).

Proof Let MH be the incidence matrix of single-valued neutrosophic hypergraph
H , then the sum of the degrees of each vertex vi ∈ X and the sum of degrees of each
edge Ei ∈ ε are equal. We obtain

∑
v∈X

dH (v) = ∑
Ei∈ε

dH (Ei).

Definition 9.12 The strength η of a single-valued neutrosophic hyperedge Ei is the
minimum of truth-membership, indeterminacy-membership, and maximum falsity-
membership values in the edges Ei, i.e.,

η(Ei) = {min
vj∈Ei

(TEi (vj) | TEi (vj) > 0), min
vj∈Ei

(IEi (vj) | IEi (vj) > 0), max
vj∈Ei

(FEi (vj) | FEi (vj) > 0)}.

The strength of an edge in single-valued neutrosophic hypergraph interprets that the
edge Ei group elements are having participation degree at least η(Ei).
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Table 9.2 Incidence matrixMH

MH E1 E2 E3 E4 E5 E6 E7

v1 (0.3, 0.4, 0.6) (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

v2 (0, 0, 0) (0.3, 0.4, 0.6) (0.5, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

v3 (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0.6, 0.4, 0.5) (0, 0, 0) (0, 0, 0)

v4 (0, 0, 0) (0, 0, 0) (0.5, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.8)

v5 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.5) (0.4, 0.2, 0.7) (0, 0, 0)

v6 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0, 0, 0) (0.4, 0.2, 0.7) (0.4, 0.2, 0.8)

Fig. 9.3 Single-valued
neutrosophic graph
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Example 9.3 Consider a single-valuedneutrosophic hypergraph as shown inFig. 9.2,
the height ofH is h(H ) = (0.7, 0.7, 0.4), the strength of each edge is η(E1) = (0.3,
0.4, 0.6), η(E2) = (0.3, 0.4, 0.6), η(E3) = (0.5, 0.4, 0.8), η(E4) = (0.4, 0.2, 0.7),
η(E5) = (0.6, 0.4, 0.5), η(E6) = (0.4, 0.2, 0.7), and η(E7) = (0.4, 0.2, 0.8), respec-
tively. The edges with high strength are called the strong edges because the inter-
relation (cohesion) in them is strong. Therefore, E5 is stronger than each Ei, for
i = 1, 2, 3, 4, 6, 7.

If we assign η(Ei) = (Tη(Ei), Iη(Ei),Fη(Ei)) to each clique in single-valued neutro-
sophic graph mapped to an edge Ei in single-valued neutrosophic hypergraph, we
obtain a single-valued neutrosophic graph which represents subset with grouping
strength(interrelationship). Consider the incidence matrix as shown in Table9.2. We
see that a single-valued neutrosophic graph can be associated with a single-valued
neutrosophic hypergraph, a hyperedge with its strength η in the single-valued neutro-
sophic hypergraph is mapped to a clique in the single-valued neutrosophic graph, all
edges in the clique have the same strength. Figure9.3 shows corresponding single-
valued neutrosophic graph to the single-valued neutrosophic hypergraph H shown
in Fig. 9.2. In the corresponding single-valued neutrosophic graph, the numbers
attached to the edges represent the truth-membership, indeterminacy-membership,
and falsity-membership of the edges.

Proposition 9.2 Single-valued neutrosophic graphs and single-valued neutrosophic
digraphs are special cases of the single-valued neutrosophic hypergraphs.

Definition 9.13 A single-valued neutrosophic set A = {(x,TA(x)), IA(x),FA(x) |
x ∈ X } is an elementary single-valued neutrosophic set if A is single valued on
supp(A). An elementary single-valued neutrosophic hypergraph H = (X , ε) is a
single-valued neutrosophic hypergraph in which each element of ε is elementary.
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Definition 9.14 A single-valued neutrosophic hypergraph H = (X , ε) is called
simple if ε has no repeated single-valued neutrosophic hyperedges and whenever
Ei,Ej ∈ ε and TEi ≤ TEj , IEi ≤ IEj ,FEi ≥ FEj , then TEi = TEj , IEi = IEj ,FEi = FEj .

A single-valued neutrosophic hypergraph is called support simple, if whenever
Ei,Ej ∈ ε,Ei ⊂ Ej and supp(Ei) = supp(Ej), then Ei = Ej.

A single-valued neutrosophic hypergraph is called strongly support simple if
whenever Ei,Ej ∈ ε, and supp(Ei) = supp(Ej), then Ei = Ej.

Definition 9.15 Let H = (X , ε) be a single-valued neutrosophic hypergraph.
Suppose that α, β, γ ∈ [0, 1]. Let E(α,β,γ ) = {E(α,β,γ )

i | Ei ∈ ε} and X (α,β,γ ) =⋃
Ei∈ε

E(α,β,γ )

i . H (α,β,γ ) = (X (α,β,γ ),E(α,β,γ )) is the (α, β, γ )-level hypergraph of

H = (X , ε), where E(α,β,γ ) 	= ∅. H (α,β,γ ) is a crisp hypergraph.

Remark 9.3 1. A single-valued neutrosophic hypergraph H = (X , ε) is a single-
valued neutrosophic graph (with loops) if and only if H is elementary, support
simple, and each edge has two (or one) element support.

2. For a simple single-valued neutrosophic hypergraphH = (X , ε), (α, β, γ )-level
hypergraphH (α,β,γ ) mayormay not be simple single-valued neutrosophic hyper-
graph. Clearly, it is possible that E(α,β,γ )

i = E(α,β,γ )

j for Ei 	= Ej.

3. H and H ′ are two families of crisp sets (hypergraphs) produced by the (α,
β, γ )-cuts of a single-valued neutrosophic hypergraph which share an important
relationship with each other such that for each setH ∈ H there is at least one set
H ′ ∈ H ′ which containsH .We say thatH ′ absorbsH , i.e.,H ⊆ H ′. Since,
it is possibleH ′ absorbsH whileH ′ ∩ H = ∅,wehave thatH ⊆ H ′ implies
H ⊆ H ′, but the converse is generally false, If H ⊆ H ′ and H 	= H ′, then
H ⊂ H ′.

Definition 9.16 Let H = (X , ε) be a single-valued neutrosophic hypergraph, and
let h(H ) = (r, s, t), H (ri,si,ti) = (X (ri,si,ti), E(ri,si,ti)) be the (ri, si, ti)-level hyper-
graphs ofH . The sequence of real numbers {(r1, s1, t1), (r2, s2, t2), · · · , (rn, sn, tn)},
such that 0 < rn < rn−1 < · · · < r1 = r, 0 < sn < sn−1 < · · · < s1 = s, and tn >

tn−1 > · · · > t1 = t > 0, which satisfies the properties,

(i) if ri+1 < r′ < ri, si+1 < s′ < si, ti+1 > t′ > ti(ti < t′ < ti+1), then E(r′,s′,t′) =
E(ri,si,ti),

(ii) E(ri,si,ti) ⊂ E(ri+1,si+1,ti+1),

is called the fundamental sequence of H , and is denoted by F(H ) and the set of
(ri, si, ti)-level hypergraphs {H (r1,s1,t1),H (r2,s2,t2), . . . ,H (rn,sn,tn)} is called the set
of core hypergraphs of H , and is denoted by C(H ).

If r1 < r ≤ 1, s1 < s ≤ 1, 0 ≤ t < t1, then E(r,s,t) = {∅} andH (r,s,t) does not exist.

Definition 9.17 Suppose H = (X , ε) is a single-valued neutrosophic hypergraph
with F(H ) = {(r1, s1, t1), (r2, s2, t2), · · · , (rn, sn, tn)} and rn+1 = 0, sn+1 = 0, tn+1 =
0. Then,H is called sectionally elementary if for each Ei ∈ E and each (ri, si, ti) ∈
F(H ), E(ri,si,ti)

i = E(r,s,t)
i for all (r, s, t) ∈ (

(ri+1, si+1, ti+1), (ri, si, ti)
)
.
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Table 9.3 Incidence matrix

MH E1 E2 E3 E4 E5

v1 (0.7, 0.6, 0.5) (0.9, 0.8, 0.1) (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.3)

v2 (0.7, 0.6, 0.5) (0.9, 0.8, 0.1) (0.9, 0.8, 0.1) (0.7, 0.6, 0.5) (0, 0, 0)

v3 (0, 0, 0) (0, 0, 0) (0.9, 0.8, 0.1) (0.7, 0.6, 0.5) (0.4, 0.3, 0.3)

v4 (0, 0, 0) (0.4, 0.3, 0.3) (0, 0, 0) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)

Definition 9.18 Suppose that H = (X , ε) and H ′ = (X ′, ε′) are single-valued
neutrosophic hypergraphs. H is called a partial single-valued neutrosophic hyper-
graph of H ′ if ε ⊆ ε′. If H is partial single-valued neutrosophic hypergraph of
H ′, we write H ⊆ H ′. If H is partial single-valued neutrosophic hypergraph of
H ′ and ε ⊂ ε′, then we denote as H ⊂ H ′.

Example 9.4 Consider the single-valued neutrosophic hypergraph H = (X , ε),
where X = {v1, v2, v3, v4} and ε = {E1,E2,E3,E4,E5}, which is represented by the
following incidence matrix given in Table9.3.

Clearly, h(H ) = (0.9, 0.8, 0.1), E∗
1 =E(0.9,0.8,0.1) ={{v2, v3}}, E∗

2 =E(0.7,0.6,0.5)

= {{v1, v2}}, and E∗
3 = E(0.4,0.3,0.3) = {{v1, v2, v4}, {v2, v3}, {v2, v3, v4}}. Therefore,

fundamental sequence is F(H ) = {(r1, s1, t1) = (0.9, 0.8, 0.1), (r2, s2, t2) = (0.7,
0.6, 0.5), (r3, s3, t3) = (0.4, 0.3, 0.3)}, and the set of core hypergraph is C(H ) =
{H (0.9,0.8,0.1) = (X1,E∗

1 ),H
(0.7,0.6,0.5) = (X2,E∗

2 ),H
(0.4,0.3,0.3) = (X3,E∗

3 )}. Note
that E(0.9,0.8,0.1) � E(0.4,0.3,0.3) and E(0.9,0.8,0.1) 	= E(0.4,0.3,0.3). As E5 ⊆ E2,H is not
simple single-valued neutrosophic hypergraph but H is support simple. In single-
valued neutrosophic graph H = (X , ε), E(r,s,t) 	= E(0.9,0.8,0.1) for (r, s, t) = (0.7,
0.6, 0.5), H is not sectionally elementary.

The partial single-valued neutrosophic hypergraphs,H ′ = (X ′,E′), where E′ =
{E2,E3,E4,E1} is simple, H ′′ = (X ′′,E′′), where E′′ = {E2,E3,E5} is sectionally
elementary, and H ′′′ = (X ′′′,E′′′), where E′′′ = {E1,E3,E5} is elementary.

Definition 9.19 A single-valued neutrosophic hypergraphH is said to be ordered if
C(H ) is ordered. That is, if C(H ) = {H (r1,s1,t1),H (r2,s2,t2), . . . ,H (rn,sn,tn)}, then
H (r1,s1,t1) ⊆ H (r2,s2,t2) ⊆ · · · ⊆ H (rn,sn,tn).

Proposition 9.3 IfH = (X , ε) is an elementary single-valued neutrosophic hyper-
graph, then H is ordered. Also, if H = (X , ε) is an ordered single-valued neu-
trosophic hypergraph with C(H ) = {H (r1,s1,t1), H (r2,s2,t2), · · · , H (rn,sn,tn)} and if
H (rn,sn,tn) is simple, then H is elementary.

Definition 9.20 A single-valued neutrosophic hypergraph H = (X , ε) is called a
Et tempered single-valued neutrosophic hypergraph of H = (X ,E) if there is a
crisp hypergraph H = (X ,E) and a single-valued neutrosophic set Et is defined on
X , where TEt : X → (0, 1], IEt : X → (0, 1], and FEt : X → (0, 1] such that ε =
{CE | E ∈ E∗}, where
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Table 9.4 Incidence matrix of Et tempered hypergraph

MH E1 E2 E3 E4

v1 (0.3, 0.4, 0.6) (0, 0, 0) (0.1, 0.4, 0.5) (0.3, 0.4, 0.5)

v2 (0, 0, 0) (0.1, 0.4, 0.3) (0, 0, 0) (0.3, 0.4, 0.5)

v3 (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0)

v4 (0, 0, 0) (0.1, 0.4, 0.3) (0.1, 0.4, 0.5) (0, 0, 0)

TCE (x) =
{
min{TEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

ICE (x) =
{
min{IEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

FCE (x) =
{
max{FEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

We letEt ⊗ H denote theEt tempered single-valued neutrosophic hypergraph ofH
determined by the crisp hypergraph H = (X ,E) and the single-valued neutrosophic
set Et .

Example 9.5 Consider the single-valued neutrosophic hypergraph H = (X , ε),
where X = {v1, v2, v3, v4} and ε = {E1, E2, E3, E4}, which is represented by the
following incidence matrix in Table9.4.

Define Et = {(v1, 0.3, 0.4, 0.5), (v2, 0.6, 0.5, 0.2), (v3, 0.5, 0.4, 0.6), (v4, 0.1,
0.4, 0.3)}. Note that

T{v1,v3}(v1) = min{TET (v1), TET (v3)} = 0.3, I{v1,v3}(v1) = min{IEt (v1), IEt (v3)} = 0.4,

F{v1,v3}(v1) = max{FET (v1),FET (v3)} = 0.6, T{v1,v3}(v3) = min{TET (v3), TET (v1)} = 0.3,

I{v1,v3}(v3) = min{IEt (v3), IEt (v1)} = 0.4, F{v1,v3}(v3) = max{FET (v3),FET (v1)} = 0.6.

Then, C{v1,v3} = E1, C{v2,v4} = E2, C{v1,v4} = E3, and C{v1,v2} = E4. Thus, H is Et

tempered.

Theorem 9.1 A single-valued neutrosophic hypergraph H = (X , ε) is a Et tem-
pered single-valued neutrosophic hypergraph of some crisp hypergraph H if and
only ifH is elementary, support simple, and simple ordered.

Proof SupposeH = (X , ε) is aEt tempered single-valuedneutrosophic hypergraph
of some crisp hypergraphH . Clearly,H is elementary and support simple.We show
that H is simply ordered.



9.2 Single-Valued Neutrosophic Hypergraphs 377

Let C(H ) = {H (r1,s1,t1) = (X1,E∗
1 ), H (r2,s2,t2) = (X2,E∗

2 ), . . . ,H
(rn,sn,tn) =

(Xn,E∗
n )}. Since, H is elementary, it follows that H is ordered. To show that H

is simply ordered, suppose there exists E ∈ E∗
i+1 \ E∗

i . Then, there exist v ∈ E such
that TE(v) = ri+1, IE(v) = si+1, FE(v) = ti+1. Since, TE(v) = ri+1 < ri, IE(v) =
si+1 < si, FE(v) = ti+1 > ti, it follows that v /∈ Xi and E � Xi, henceH is simply
ordered.

Conversely, suppose H = (X , ε) is elementary, support simple, and simply
ordered. For C(H ) = {H (r1,s1,t1) = (X1,E∗

1 ), H
(r2,s2,t2) =(X2,E∗

2 ), . . . ,H
(rn,sn,tn)

=(Xn,E∗
n )}, fundamental sequence is F(H )={(r1, s1, t1),(r2, s2, t2), · · · , (rn, sn,

tn)} with 0 < rn < rn−1 < · · · < r1, 0 < sn < sn−1 < · · · < s1, and 0 < t1 < t2 <

· · · < tn. H (rn,sn,tn) = (Xn,E∗
n ) and single-valued neutrosophic set Et on Xn defined

by

TEt (v) =
{
r1, if v ∈ X1;
ri, if v ∈ Xi \ Xi−1, i = 2, 3, . . . , n.

IEt (v) =
{
s1, if v ∈ X1;
si, if v ∈ Xi \ Xi−1, i = 2, 3, . . . , n.

FEt (v) =
{
t1, if v ∈ X1;
ti, if v ∈ Xi \ Xi−1, i = 2, 3, . . . , n.

We show that ε = {CE | E ∈ E∗
n }, where

TCE (x) =
{
min{TEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

ICE (x) =
{
min{IEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

FCE (x) =
{
max{FEt (y) | y ∈ E}, if x ∈ E;
0, otherwise.

Let E ∈ E∗
n . Since H is elementary and support simple, there is a unique single-

valued neutrosophic hyperedge Ej in ε having support E ∈ E∗
n . We have to show

that Et tempered single-valued neutrosophic hypergraph H = (X , ε) is deter-
mined by the crisp graph Hn = (Xn,E∗

n ), i.e., CE∈E∗
n

= Ei, i = 1, 2, . . . ,m. As all
single-valued neutrosophic hyperedges are elementary and H is support simple,
then different edges have different supports, that is h(Ej) is equal to some mem-
ber (ri, si, ti) of F(H ). Consequently, E ⊆ Xi and if i > 1, then E ∈ E∗

i \ E∗
i−1,

TE(v) ≥ ri, IE(v) ≥ si, FE(v) ≤ ti, for some v ∈ E. Since, E ⊆ Xi, we claim
that TEt (v) = ri, IEt (v) = si, FEt (v) = ti, for some v ∈ E, if not then TEt (v) ≥
ri−1, IEt (v) ≥ si−1, FEt (v) ≤ ti−1, for all v ∈ E, which implies E ⊆ Xi−1 and
since H is simply ordered, E ∈ E∗

i \ E∗
i−1, then E � Xi−1, a contradiction. Thus,

CE = Ei, i = 1, 2, . . . ,m, by the definition of CE . �

Corollary 9.1 SupposeH = (X , ε) is a simply ordered single-valued neutrosophic
hypergraph and F(H ) = {(r1, s1, t1), (r2, s2, t2), . . . , (rn, sn, tn)}. If H (rn,sn,tn) is a
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simple hypergraph, then there is a partial single-valued neutrosophic hypergraph
H ′ = (X , ε′) of H such that following statements hold.

(i) H ′ is a Et tempered single-valued neutrosophic hypergraph of H (rn,sn,tn).

(ii) F(H ′) = (H ) and C(H ′) = C(H ).

Proof Since H is simple ordered, then H is an elementary single-valued neu-
trosophic hypergraph. We obtain the partial fuzzy hypergraph H ′ = (X , ε′) of
H = (X , ε) by removing all edges from ε that are properly contained in another
edge of H , where ε′ = {Ei ∈ E | if Ei ⊆ Ej and Ej ∈ E, then Ei = Ej}. Since,
H (rn,sn,tn) is simple and all edges are elementary, any edge in H contain another
edge, then both have the same support. Hence, F(H ′) = H and C(H ′) = C(H ).
By the definition of ε′,H ′ is elementary, support simple. Thus, by the Theorem9.1
H ′ is a Et tempered single-valued neutrosophic graph. �

Definition 9.21 Let L(G∗) = (C,D) be a line graph of a crisp graph G∗ = (X ,E),
whereC = {{x} ∪ {ux, vx} | x ∈ E, ux, vx ∈ X , x = uxvx}, andD = {SxSy | Sx ∩ Sy 	=
∅, x, y ∈ E, x 	= y}, and Sx = {{x} ∪ {ux, vx}}, x ∈ E.

Let G = (A1,B1) be a single-valued neutrosophic graph with underlying set X .
The single-valued neutrosophic line graph ofG is a single-valued neutrosophic graph
L(G) = (A2,B2) such that

(i)
TA2(Sx) = TB1(x) = TB1(uxvx),

IA2(Sx) = IB1(x) = IB1(uxvx),

FA2(Sx) = FB1(x) = FB1(uxvx),

(ii)
TB2(SxSy) = min{TB1(x),TB1(y)},

IB2(SxSy) = min{IB1(x), IB1(y)},

FB2(SxSy) = max{FB1(x),FB1(y)},

for all SxSy ∈ D.

Proposition 9.4 L(G) = (A2,B2) is a single-valued neutrosophic line graph of
some single-valued neutrosophic graph G = (A1,B1) if and only if

TB2(SxSy) = min{TA2(Sx),TA2(Sy)},
IB2(SxSy) = min{IA2(Sx),TA2(Sy)},
FB2(SxSy) = max{FA2(Sx),FA2(Sy)},

for all SxSy ∈ D.
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Definition 9.22 Let H = (X , ε) be a single-valued neutrosophic hypergraph of a
simple graph H = (X ,E), and L(H ) = (X , ε) be a line graph of H . The single-
valued neutrosophic line graph L(H ) of a single-valued neutrosophic hypergraph
H is defined to be a pair L(H ) = (A,B), where A is the vertex set of L(H ) and B
is the edge set of L(H ) defined as follows:

(i) A is a single-valued neutrosophic set of X such that TA(Ei) = max
v∈Ei

(TEi (v)),

IA(Ei) = max
v∈Ei

(IEi (v)), and FA(Ei) = min
v∈Ei

(FEi (v)), for all Ei ∈ ε.

(ii) B is a single-valued neutrosophic set of ε such that TB(EjEk)=min
i

{min(TEj (vi),

TEk (vi))}, TB(EjEk) = min
i

{min(TEj (vi),TEk (vi))}, and TB(EjEk) = max
i{max(TEj (vi),TEk (vi))}, where vi ∈ Ei ∩ Ej, j, k = 1, 2, 3, . . . , n.

Example 9.6 Consider a crisp hypergraph H = (X ,E), where X = {v1, v2, v3, v4,
v5, v6} and E = {E1, E2, E3, E4, E5, E6} such that E1 = {v1, v3},E2 = {v1, v2},E3 =
{v2, v4},E4 = {v3, v6},E5 = {v3, v5},E6 = {v5, v6},E7 = {(v4, v6}.LetH = (X , ε)

be a single-valued neutrosophic hypergraph, where ε = {E1,E2,E3,E4,E5,E6}, such
that

E1 = {(v1, 0.3, 0.4, 0.6), (v3, 0.7, 0.4, 0.4)},
E2 = {(v1, 0.3, 0.4, 0.6), (v2, 0.5, 0.7, 0.6)},
E3 = {(v2, 0.5, 0.7, 0.6), (v4, 0.6, 0.4, 0.8)},
E4 = {(v3, 0.7, 0.4, 0.4), (v6, 0.4, 0.2, 0.7)},
E5 = {(v3, 0.7, 0.4, 0.4), (v5, 0.6, 0.7, 0.5)},
E6 = {(v5, 0.6, 0.7, 0.5), (v6, 0.4, 0.2, 0.7)},
E7 = {(v4, 0.6, 0.4, 0.8), (v6, 0.4, 0.2, 0.7)}.

The single-valued neutrosophic line graph of H is shown in Fig. 9.4.
The line graph L(H ) of single-valued neutrosophic hypergraph H is L(H ) =

(A,B), where A = {(E1, 0.7, 0.4, 0.4), (E2, 0.5, 0.7, 0.6), (E3, 0.6, 0.7, 0.6), (E4,

0.7, 0.4, 0.4), (E5, 0.7, 0.7, 0.4), (E6, 0.6, 0.7, 0.5), (E7, 0.6, 0.4, 0.7)} is the ver-
tex set and B = {(E1E2, 0.3, 0.4, 0.6), (E1E5, 0.7, 0.4, 0.4), (E1E4, 0.7, 0.4, 0.4),
(E2E3, 0.5, 0.7, 0.6), (E3E7, 0.6, 0.4, 0.8), (E4E5, 0.7, 0.4, 0.4), (E4E6, 0.4, 0.2,
0.7), (E4E7, 0.4, 0.2, 0.7), (E5E6, 0.6, 0.7, 0.5), (E6E7, 0.4, 0.2, 0.7)} is the edge
set of the single-valued neutrosophic line graph ofH .

Proposition 9.5 A single-valued neutrosophic hypergraph is connected if and only
if line graph of a single-valued neutrosophic hypergraph is connected.

Definition 9.23 The 2-section of a single-valued neutrosophic hypergraph H =
(X , ε), denoted by [H ]2, is a single-valued neutrosophic graph [H ]2 = (A∗,B∗),
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Fig. 9.4 Single-valued neutrosophic line graph L(H ) of H

Fig. 9.5 Single-valued
neutrosophic hypergraph
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where A∗ is the single-valued neutrosophic vertex of [H ]2 and B∗ is the single-
valued neutrosophic edge set in which any two vertices form an edge if they are in
the same single-valued neutrosophic hyperedge such that

TB∗(e) = min{TEk (vi),TEk (vj)},
IB∗(e) = min{IEk (vi),TEk (vj)},
FB∗(e) = max{FEk (vi),FEk (vj)},

for all Ek ∈ ε, i 	= j, k = 1, 2, . . . ,m.

We now introduce the concept of dual single-valued neutrosophic hypergraph for a
single-valued neutrosophic hypergraph.

Definition 9.24 The dual of a single-valued neutrosophic hypergraphH = (X , ε)

is a single-valued neutrosophic hypergraph H d = (E,X), E = {e1, e2, . . . , en} set
of vertices corresponding to E1,E2, . . . ,En, respectively, and X={X1,X2, . . . ,Xn}
set of hyperedges corresponding to v1, v2, . . . , vn, respectively.

Example 9.7 Consider a single-valued neutrosophic hypergraph H = (X , ε) as
shown in Fig. 9.5 such that X = {v1, v2, v3, v4, v5} and ε = {E1, E2, E3}, where

E1 = {(v1, 0.5, 0.4, 0.6), (v2, 0.4, 0.3, 0.8)},
E2 = {(v2, 0.4, 0.3, 0.8), (v3, 0.6, 0.4, 0.8), (v4, 0.7, 0.4, 0.5)},
E3 = {(v4, 0.7, 0.4, 0.5), (v5, 0.4, 0.2, 0.9)}.
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Table 9.5 The incidence matrix of single-valued neutrosophic hypergraph

MH E1 E2 E3

v1 (0.5, 0.4, 0.6) (0, 0, 0) (0, 0, 0)

v2 (0.4, 0.3, 0.8) (0.4, 0.3, 0.8) (0, 0, 0)

v3 (0, 0, 0) (0.6, 0.4, 0.8) (0, 0, 0)

v4 (0, 0, 0) (0.7, 0.4, 0.5) (0.7, 0.4, 0.5)

v5 (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.9)

Fig. 9.6 Dual single-valued
neutrosophic hypergraph H

e1 e2
e3

X1

X3
X5

X2 X4

Table 9.6 Incidence matrix of H d

MH X1 X2 X3 X4 X5

e1 (0.5, 0.4, 0.6) (0.4, 0.3, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0)

e2 (0, 0, 0) (0.4, 0.3, 0.8) (0.6, 0.4, 0.8) (0.7, 0.4, 0.5) (0, 0, 0)

e3 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.7, 0.4, 0.5) (0.4, 0.2, 0.9)

The single-valued neutrosophic hypergraph can be represented by the following
incidence matrix in Table9.5.

Consider the dual single-valued neutrosophic hypergraph H d = (E,X) of H
such that E = {e1, e2, e3}, X = {X1, X2, X3, X4, X5}, where

X1 = {(e1, 0.5, 0.4, 0.6), (e2, 0, 0, 0), (e3, 0, 0, 0)},
X2 = {(e1, 0.4, 0.3, 0.8), (e2, 0.4, 0.3, 0.8), (e3, 0, 0, 0)},
X3 = {(e1, 0, 0, 0), (e2, 0.6, 0.4, 0.8), (e3, 0, 0, 0)},
X4 = {(e1, 0, 0, 0), (e2, 0.7, 0.4, 0.5), (e3, 0.7, 0.4, 0.5)},
X5 = {(e1, 0, 0, 0), (e2, 0, 0, 0), (e3, 0.4, 0.2, 0.9)}.

The dual single-valued neutrosophic hypergraph is shown in Fig. 9.6 and its incidence
matrixMH is defined as in Table9.6.

Remark 9.4 H d is a single-valued neutrosophic hypergraphwhose incidencematrix
is the transpose of the incidence matrix of H and (H d ) = rank(H ). The dual
single-valued neutrosophic hypergraph H d of a simple single-valued neutrosophic
hypergraph H may or may not be simple.

Proposition 9.6 The dual H d of a linear single-valued neutrosophic hypergraph
without isolated vertex is also a linear single-valued neutrosophic hypergraph.
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Proof LetH be a linear hypergraph. Assume thatH d is not linear. There are two
distinct hyperedges Xi and Xj of H d which intersect with at least two vertices e1
and e2. The definition of duality implies that vi and vj belong to E1 and E2 (the
single-valued neutrosophic hyperedges ofH standing for the vertices e1, e2 ofH d ,
respectively) soH is not linear. Contradiction sinceH is linear. Hence, dualH d of
a linear single-valued neutrosophic hypergraph without isolated vertex is also linear
single-valued neutrosophic hypergraph. �

Definition 9.25 Let H = (X , ε) be a single-valued neutrosophic hypergraph. A
single-valuedneutrosophic transversal τ ofH is a single-valuedneutrosophic subset
of X with the property that τ h(E) ∩ Eh(E) 	= ∅ for each E ∈ ε, where h(E) is the
height of hyperedge E. A minimal single-valued neutrosophic transversal τ for H
is a transversal of H with the property that if τ ′ ⊂ τ, then τ ′ is not a single-valued
neutrosophic transversal ofH .

Proposition 9.7 If τ is a single-valued neutrosophic transversal of a single-valued
neutrosophic hypergraph H = (X , ε), then h(τ ) > h(E) for each E ∈ ε. More-
over, if τ is a minimal single-valued neutrosophic transversal of H , then h(τ ) =
max{h(E) | E ∈ ε} = h(H ).

Theorem 9.2 For a single-valued neutrosophic hypergraphH , Tr(H ) 	= ∅,where
Tr(H ) is the family of minimal single-valued neutrosophic transversal of H .

Proposition 9.8 LetH = (X ,E) be a single-valued neutrosophic hypergraph. The
following statements are equivalent:

(i) τ is a single-valued neutrosophic transversal of H .
(ii) For each E ∈ ε, h(E) = (r′, s′, t′), and each 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′,

τ (r,s,t) ∩ E(r,s,t) 	= ∅.
If the (r, s, t)-cut τ (r,s,t) is a subset of the vertex set of H (r,s,t) for each (r, s, t),
0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, then

(iii) For each (r, s, t), 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, τ (r,s,t) is a transversal of
H (r,s,t).

(iv) Every single-valued neutrosophic transversal τ ofH contains a single-valued
neutrosophic transversal τ ′ for each (r, s, t), 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′,
τ ′(r,s,t) is a transversal of H (r,s,t).

Observation: If τ is a minimal transversal of single-valued neutrosophic graph
H , then τ (r,s,t) not necessarily belongs to Tr(H t) for each (r, s, t), satisfying
0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′. Let Tr∗(H ) represents the collection of those min-
imal single-valued neutrosophic transversal, τ of H , where τ (r,s,t) is a mini-
mal transversal of H (r,s,t), for each (r, s, t), 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, i.e.,
Tr∗ = {τ ∈ Tr(H ) | h(τ ) = h(H ) and τ (r,s,t) ∈ Tr(H (r,s,t))}.
Example 9.8 Consider the single-valued neutrosophic hypergraph H = (X , ε),
where X = {v1, v2, v3} and ε = {E1,E2,E3}, which is represented by the following
incidence matrix given in Table9.7.
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Table 9.7 Incidence matrix

MH E1 E2 E3

v1 (0.9, 0.6, 0.1) (0, 0, 0) (0.4, 0.3, 0.2)

v2 (0.4, 0.3, 0.2) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2)

v3 (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.2)

Clearly, h(H ) = (0.9, 0.6, 0.1), the only minimal transversal τ of single-valued
neutrosophic hypergraphH is τ(H ) = {(v1, 0.9, 0.6, 0.1), (v2, 0.4, 0.3, 0.2)}.The
fundamental sequence ofH is F(H ) = {(0.9, 0.6, 0.1), (0.4, 0.3, 0.2)}, τ (0.9,0.6,0.1)

= {v1}, τ (0.4,0.3,0.2) = {v1, v2}. Since, {v2} is the only minimal transversal of the
H (0.4,0.3,0.2), E(0.4,0.3,0.2) = {{v1, v2}, {v2}, {v1, v2, v3}}, it follows that the only min-
imal transversal τ of H is not a member of Tr∗(H ). Hence, Tr∗(H ) = ∅.

9.3 Intuitionistic Single-Valued Neutrosophic Hypergraphs

Definition 9.26 LetX be a fixed set. A generalized intuitionistic fuzzy set I ofX is an
object having the form I = {(u,TI (u),FI (u))|u ∈ X }, where the functions TI (u) :→
[0, 1] and FI (u) :→ [0, 1] define the truth-membership and falsity-membership of
an element u ∈ X , respectively, such that

min{TI (u),FI (u)} ≤ 0.5, for all u ∈ X .

This condition is called the generalized intuitionistic condition.

Being motivated from this definition, Bhowmik and Pal [10] gave the idea of an
intuitionistic single-valued neutrosophic set and discussed its certain properties.

Definition 9.27 An intuitionistic single-valued neutrosophic set on a universal set
X can be stated as a set having the form A = {TA(u), IA(u),FA(u) : u ∈ X }, where

min{TA(u), IA(u)} ≤ 0.5,

min{FA(u), IA(u)} ≤ 0.5,

min{TA(u),FA(u)} ≤ 0.5,

and 0 ≤ TA(u) + IA(u) + FA(u) ≤ 2.

Definition 9.28 The support set of an intuitionistic single-valued neutrosophic set
A = {(v,TA(v), IA(v),FA(v)) : v ∈ X } is defined as supp(A) = {v|TA(v) 	= 0, IA(v) 	=
0, FA(v) 	= 0}. The support set of an intuitionistic single-valued neutrosophic set is
a crisp set.
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Definition 9.29 The height of an intuitionistic single-valued neutrosophic set A =
{(v,TA(v), IA(v),FA(v)) : v ∈ X } is defined as h(A) = (max

v∈X TA(v),max
v∈X IA(v),

min
v∈X FA(v)).

An intuitionistic single-valued neutrosophic set A is called normal if h(A) =
(1, 1, 0).

Definition 9.30 Let A={(v,TA(v), IA(v),FA(v)) : v ∈ X } be an intuitionistic
single-valued neutrosophic set on X . Let η, φ,ψ ∈ [0, 1] such that η + φ + ψ ≤ 2,
then the (η, φ,ψ)-level set of A is defined as A(η,φ,ψ) = {v : TA(v) ≥ η, IA(v) ≥
φ,FA(v) ≤ ψ}. Note that (η, φ,ψ)-level set is a crisp set.

We first define intuitionistic single-valued neutrosophic graph.

Definition 9.31 An intuitionistic single-valued neutrosophic graphwith underlying
set X is a pair G = (C,D), such that

(i) the degrees of truth-membership, indeterminacy-membership, and falsity-
membership of the element xi ∈ X are defined by TC : X → [0, 1], IC : X →
[0, 1], FC : X → [0, 1], respectively, where

min{TC(xi),FC(xi)} ≤ 0.5,

min{TC(xi), IC(xi)} ≤ 0.5,

min{FC(xi), IC(xi)} ≤ 0.5,

for all xi ∈ X , i = 1, 2, 3, . . . ,m, with the condition 0 ≤ TC(xi) + FC(xi) +
IC(xi) ≤ 2.

(ii) The mappings TD : D ⊆ X × X → [0, 1], ID : D ⊆ X × X → [0, 1], FD : D
⊆ X × X → [0, 1] defined by

TD(xixj) ≤ min{TC(xi),TC(xj)},
ID(xixj) ≤ min{IC(xi), IC(xj)},
FD(xixj) ≤ max{FC(xi),FC(xj)},

denote the degree of truth-membership, indeterminacy-membership, and falsity-
membership of the edge xixj ∈ D, respectively, where

min{TD(xixj), ID(xixj)} ≤ 0.5,

min{TD(xixj),FD(xixj)} ≤ 0.5,

min{FD(xixj), ID(xixj)} ≤ 0.5,

for all xixj ∈ D, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, ...,m, with the condition 0 ≤
TD(xixj) + FD(xixj) + ID(xixj) ≤ 2.
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Fig. 9.7 Intuitionistic single-valued neutrosophic graph

Fig. 9.8 Intuitionistic
single-valued neutrosophic
hypergraph
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Example 9.9 An Intuitionistic single-valued neutrosophic graph is shown in Fig. 9.7.

We now define an intuitionistic single-valued neutrosophic hypergraph.

Definition 9.32 An intuitionistic single-valued neutrosophic hypergraph on a non-
empty set X is a pairH ∗ = (X ,B), where X is a crisp set of vertices andB = {B1,
B2, · · · , Bm} be a finite family of nontrivial intuitionistic single-valued neutrosophic
subsets of X such that

(i)
min{TBi (vj), IBi (vj)} ≤ 0.5,

min{FBi (vj), IBi (vj)} ≤ 0.5,

min{TBi (vj),FBi (vj)} ≤ 0.5,

with the condition 0 ≤ TBi (vj) + FBi (vj) + IBj (vj) ≤ 2.
(ii)

⋃
i supp(Bi) = X , for all Bi ∈ B.
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Table 9.8 Incidence matrix of H ∗

IH ∗ B1 B2 B3

x1 (0.5, 0.4, 0.3) (0.5, 0.4, 0.3) (0, 0, 0)

x2 (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

x3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5)

x4 (0, 0, 0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)

Example 9.10 Consider an intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B) as shown in Fig. 9.8, such that X = {x1, x2, x3, x4} and B =
{B1,B2,B3}, which is represented by the following incidence matrix in Table9.8.

Definition 9.33 In an intuitionistic single-valued neutrosophic hypergraph, two ver-
tices x1 and x2 are said to be adjacent if there is a hyperedge Bi ∈ B which contains
both x1 and x2, i.e., x1, x2 ∈ supp(Bi).

Two hyperedges Bi and Bj are called adjacent edges if they have non-empty
intersection, i.e., supp(Bi)

⋂
supp(Bj) 	= ∅, i 	= j. The number of elements in X ,

i.e., |X | is called the order and |B| is called the size of an intuitionistic single-valued
neutrosophic hypergraph.

An intuitionistic single-valued neutrosophic hypergraph is said to be n-uniform if
supp(Bi) = n, for each Bi ∈ B.

Definition 9.34 The height of an intuitionistic single-valued neutrosophic hyper-
graph H ∗ = (X ,B) is defined as h(H ) = max{h(Bi)|Bi ∈ B}.
Definition 9.35 Consider an intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B), the cardinality of an intuitionistic single-valued neutrosophic hyper-
edge is the sum of truth-membership, indeterminacy-membership, and falsity-
membership values of the vertices connected to a hyperedge, it is denoted by |Bi|.

The degree of an intuitionistic single-valued neutrosophic hyperedge, Bi ∈ B is
its cardinality, i.e., dH (Bi) = |Bi|.

The rank of an intuitionistic single-valued neutrosophic hypergraph is the max-
imum cardinality of any hyperedge in H , i.e., max

Bi∈B
dH (Bi) and anti rank is the

minimum cardinality of any hyperedge in H , i.e., min
Bi∈B

dH (Bi).

Remark 9.5 (i) If an intuitionistic single-valued neutrosophic hypergraph H ∗ =
(X ,B) is simple, then (η, φ,ψ)-level hypergraph H ∗

(η,φ,ψ) may or may not be
simple. Also, it is possible Bi(η,φ,ψ) = Bj(η,φ,ψ) for Bi 	= Bj, where Bi,Bj ∈ B
are any two intuitionistic single-valued neutrosophic hyperedges.

(ii) An intuitionistic single-valued neutrosophic hypergraph H ∗ = (X ,B) is an
intuitionistic single-valued neutrosophic graph (with loops) if and only if H
is elementary, support simple, and every hyperedge has two (or one) element
support.
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Definition 9.36 Let H ∗ = (X ,B) be an intuitionistic single-valued neutrosophic
hypergraph such that h(H ∗) = (u, v,w). Let H ∗

(ui,vi,wi)
be the (ui, vi,wi)-level

hypergraphs of H ∗. The sequence of real numbers {(u1, v1,w1), (u2, v2,w2), . . .,
(rn, vn,wn)}, such that 0 < un < un+1 <, . . . , < u1 = u, 0 < vn < vn+1 <, . . . , <

v1 = v, and wn > wn+1 >, . . . , >,w1 = w > 0, which satisfies the properties,

(i) if ui+1 < u′ < ui, vi+1 < v′ < vi, wi+1 > w′ > wi(wi < w′ < wi+1), then
Bj(u′,v′,w′) = Bj(ui,vi,wi),

(ii) Bj(ui,vi,wi) � Bj(ui+1,vi+1,wi+1),

is called the fundamental sequenceof intuitionistic single-valued neutrosophic hyper-
graphH ∗, denoted by FS(H ∗), the set of (ui, vi,wi)-level hypergraphs {H ∗

(u1,v1,w1)
,

H ∗
(u2,v2,w2)

, . . ., H ∗
(un,vn,wn)

} is known as core hypergraphs of intuitionistic single-
valued neutrosophic hypergraph H , and is denoted by C(H ∗).

Definition 9.37 An intuitionistic single-valued neutrosophic hypergraph H ∗ =
(X ,B) is simple if B1, B2 ∈ B and TB1(vj) ≤ TB2(vj), FB1(vj) ≥ FB2(vj), IB1(vj) ≤
IB2(vj) imply TB1(vj) = TB2(vj), FB1(vj) = FB2(vj), IB1(vj) = IB2(vj), j = 1, 2, 3,
. . . ,m.

Definition 9.38 Let H ∗ = (X ,B) be an intuitionistic single-valued neutrosophic
hypergraph with FS(H ∗) = {(u1, v1,w1), (u2, v2,w2), · · · , (um, vm,wm)}, um+1 =
0, vm+1 = 0, wm+1 = 0. Then, H ∗ is sectionally elementary if for every hyper-
edgeBi ∈ B and each (ui, vi,wi) ∈ FS(H ∗),Bi(ui,vi,wi) = Bi(u,v,w), for all (u, v,w) ∈
((ui+1, vi+1, wi+1), (ui, vi, wi)).

Definition 9.39 Let H ∗
1 = (X1,B1) and H ∗

2 = (X2,B2) be intuitionistic single-
valued neutrosophic hypergraph and B2 ⊆ B1, then H ∗

2 is called a partial intu-
itionistic single-valued neutrosophic hypergraph of H ∗

1 , denoted by, H ∗
2 ⊆ H ∗

1 .
If H ∗

2 is a partial intuitionistic single-valued neutrosophic hypergraph of H ∗
1 and

B2 ⊂ B1, then we writeH ∗
2 ⊂ H ∗

1 .

Definition 9.40 An intuitionistic single-valued neutrosophic hypergraph H ∗ =
(X ,B) is elementary, whose hyperedges are elementary. An intuitionistic single-
valued neutrosophic set I = (TI , II ,FI ) is elementary if I is single-valued on supp(I).

Example 9.11 Consider the intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B), where X = {x1, x2, x3, x4} and B = {B1,B2,B3,B4,B5}. Then, the
corresponding incidence matrix is given in Table9.9.

Here, h(H ∗) = (0.9, 0.5, 0.1). By calculating the (ui, vi,wi)-level hypergraphs
of H ∗, we have B(0.9,0.5,0.1) = {{x1, x2}, {x2, x3}} = B(0.7,0.5,0.5), B(0.4,0.3,0.3) =
{{x1, x2, x4}, {x2, x3}, {x3, x4}}.
Note that H ∗ is not simple intuitionistic single-valued neutrosophic hypergraph
and not support simple.

Further,B(0.9,0.5,0.1) 	= B(0.4,0.3,0.3) andB(0.9,0.5,0.1) � B(0.4,0.3,0.3). So, the funda-
mental sequence is FS(H ∗) = {(u1, v1,w1) = (0.9, 0.5, 0.1), (u2, v2,w2) = (0.4,
0.3, 0.3)} and the set of core hypergraphs is C(H ∗)={H ∗

(0.9,0.5,0.1), H
∗

(0.4,0.3,0.3).

H ∗ is not sectionally elementary as B1(u,v,w) 	= B1(0.9,0.5,0.1) for (u, v,w) = (0.7,
0.5, 0.5).
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Table 9.9 Incidence matrix of H ∗

IH ∗ B1 B2 B3 B4 B5

x1 (0.7, 0.5, 0.5) (0.9, 0.5, 0.1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

x2 (0.7, 0.5, 0.5) (0.9, 0.5, 0.1) (0.9, 0.5, 0.1) (0.7, 0.5, 0.5) (0, 0, 0)

x3 (0, 0, 0) (0, 0, 0) (0.9, 0.5, 0.1)) (0.7, 0.5, 0.5) (0.4, 0.3, 0.3)

x4 (0, 0, 0) (0.4, 0.3, 0.3) (0, 0, 0) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)

Definition 9.41 An ordered intuitionistic single-valued neutrosophic hypergraph
is an intuitionistic single-valued neutrosophic hypergraph in which C(H ∗) is
ordered, i.e., if C(H ∗) = {H ∗

(l1,m1,n1)
, H ∗

(l2,m2,n2)
,. . ., H ∗

(ln,mn,nn)
}, then H ∗

(l1,m1,n1)
⊆

H ∗
(l2,m2,n2)

⊆, . . . ,⊆ H ∗
(ln,mn,nn)

.

Definition 9.42 The strength of a hyperedge Bj, denoted by η(Bj), is defined as
η(Bj) = (min(TBj (v)), min(IBj (v)), max(FBj (v))), for every TBj (v) > 0, FBj (v) >

0, IBj (v) > 0.

Example 9.12 In Example9.11, the strength of each hyperedge is given as η(B1) =
(0.7, 0.5, 0.5), η(B2) = (0.4, 0.3, 0.3), η(B3) = (0.9, 0.5, 0.1), η(B4) = (0.4, 0.3,
0.5), η(B5) = (0.4, 0.3, 0.3). Thus, B3 is the stronger edge than B1,B2,B4,B5.

We now define theDt tempered intuitionistic single-valued neutrosophic hypergraph.

Definition 9.43 An intuitionistic single-valued neutrosophic hypergraph H ∗ =
(X ,B) is called a Dt tempered intuitionistic single-valued neutrosophic hypergraph
if there is a crisp hypergraph H ′ = (X ,D′) and intuitionistic single-valued neutro-
sophic set Dt defined on X , such that B = {CD|D ∈ D′}, where

TCD(x) =
{
min{TDT (y)|y ∈ D}, if x ∈ D,

0, otherwise.

ICD(x) =
{
min{IDT (y)|y ∈ D}, if x ∈ D,

0, otherwise.

FCD(x) =
{
max{FDT (y)|y ∈ D}, if x ∈ D,

0, otherwise.

Theorem 9.3 An intuitionistic single-valued neutrosophic hypergraph H ∗ =
(X ,B) is a Dt tempered intuitionistic single-valued neutrosophic hypergraph of
G ′ if and only ifH ∗ is elementary, support simple, and simply ordered.
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Proof Consider H ∗ = (X ,B) is a Dt tempered intuitionistic single-valued neu-
trosophic hypergraph of G ′. Clearly, H ∗ is elementary and support simple. We
will prove that H ∗ is simply ordered. Let C(H ∗) = {H ∗

(l1,m1,n1)
, H ∗

(l2,m2,n2)
, . . .,

H ∗
(ln,mn,nn)

}. Since, H ∗ is elementary, then H ∗ is ordered. Suppose, there is D ∈
D′

j+1 \ D′
j and d ∈ B such that TB (d) = lj+1, IB (d) = mj+1, and FB (d) = nj+1.

Since, TB (d) = lj+1 < lj, IB (d) = mj+1 < mj, FB (d) = nj+1 > ni, it follows that
d /∈ Xj and B � Xj, hence H ∗ is simply ordered.

Conversely, suppose thatH ∗ is elementary, support simple, and simply ordered.
For C(H ∗) = {H ∗

(l1,m1,n1)
, H ∗

(l2,m2,n2)
,. . ., H ∗

(ln,mn,mn)
}, the fundamental sequence is

FS(H ∗) = {(l1,m1, n1), (l2,m2, n2), · · · ,(ln,mn, nn)}with 0 < ln < ln−1 <, . . . , <

l1, 0 < mn < mn−1 <, . . . , < m1, nn > nn−1 >, . . . , > n1 > 0. H ∗
(ln,mn,nn)

and intu-
itionistic single-valued neutrosophic set Dt on Xn is defined as

TDt (d) =
{
l1, if d ∈ X1,

lj, if d ∈ Xj \ Xj−1, j = 2, 3, . . . , n.

IDt (d) =
{
m1, if d ∈ X1,

mj, if d ∈ Xj \ Xj−1, j = 2, 3, . . . , n.

FDt (d) =
{
n1, if d ∈ X1,

nj, if d ∈ Xj \ Xj−1, j = 2, 3, . . . , n.

Now we prove that D = {XD|D ∈ D′
n}, where

TXD(a) =
{
min{TDt (y|y ∈ D)}, if a ∈ D,

0, otherwise.

IXD(a) =
{
min{IDt (y|y ∈ D)}, if a ∈ D,

0, otherwise.

FXD(a) =
{
min{FDT (y|y ∈ D)}, if a ∈ D,

0, otherwise.

Let D ∈ D′
n. As H

∗ is elementary and support simple, then there is a unique intu-
itionistic single-valued neutrosophic hyperedge Bi inB having support D ∈ D′

n.
We will show that Dt tempered intuitionistic single-valued neutrosophic hyper-

graph is determined by the crisp graph G′
n = (X ,D′

n), i.e., XD∈D′
n
= Bi, i = 1, 2, 3,

. . . , n. Since, all intuitionistic single-valued neutrosophic hyperedges are ele-
mentary and H ∗ is support simple, then distinct edges have different supports,
i.e., h(Bi) is equal to some member (li,mi, ni) of FS(H ∗). As a consequence,
B ⊆ Xj and if j > 1, then D ∈ D′

j \ D′
j−1,TD(d) ≥ li, ID(d) ≥ mi, FD(d) ≤ ni, for

some d ∈ D. Since, B ⊆ Cj, we claim that TDt (d) = li, IDt (d) = mi, FDt (d) = ni,
for some d ∈ D, if not then TDt (d) ≥ li−1, IDt (d) ≥ mi−1, FDT (d) ≤ ni−1, for all
d ∈ D implies B ⊆ Ci−1 and because H ∗ is simply ordered, D ∈ D′

i \ D′
i−1, then

D � Xi−1, which is a contradiction. Thus,CD = Bi, i = 1, 2, . . . ,m, by the definition
of CD. �
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Proposition 9.9 Let H ∗ = (X ,B) be a simply ordered intuitionistic
single-valued neutrosophic hypergraph and FS(H ∗) = {(l1,m1, n1), (l2,m2, n2),
· · · , (ln,mn, nn)}. For a crisp hypergraph G(ln,mn,nn), there is a partial intuitionistic
single-valued neutrosophic hypergraph G∗ = (X ,D∗) of H ∗ = (X ,B) such that
the following conditions hold:

(i) G∗ is a Dt tempered intuitionistic single-valued neutrosophic hypergraph of
G(ln,mn,nn),

(ii) FS(G∗) = FS(H ∗) and C(G∗) = C(H ∗).

Proof Since, H ∗ is simply ordered, H ∗ is an elementary intuitionistic single-
valued neutrosophic hypergraph. We take the partial intuitionistic single-valued neu-
trosophic hypergraph G∗ = (X ,D∗) of H ∗ = (X ,B) by removing all those edges
ofBwhich are properly contained in another edge, whereD∗ = {Bi ∈ D|, ifBi ⊆ Bj,
andBj ∈ D, thenBi = Bj}. Since, G(ln,mn,nn) is simple and its all edges are elementary,
if any hyperedge in H ∗ is subset of another hyperedge, then both edges have the
same support. So FS(G∗) = H ∗ and C(G∗) = CH ∗). From the definition of D∗,
G∗ is elementary and support simple. Thus, by Theorem9.3, G∗ is a Dt tempered
intuitionistic single-valued neutrosophic hypergraph. �

Example 9.13 Consider an intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B), where X = {x1, x2, x3, x4} and B = {B1, B2, B3} and the incidence
matrix of H ∗ is given in Table9.10.

Let Dt = {(x1, 0.3, 0.4, 0.5), (x2, 0.1, 0.2, 0.3), (x3, 0.5, 0.4, 0.6), (x4, 0.4, 0.3,
0.3)} be an intuitionistic single-valued neutrosophic subset defined on X . Then, it
can be seen that

T{x1,x2,x3}(x1) = min{TDt (x1),TDt (x2),TDt (x3)} = 0.1,

I{x1,x2,x3}(x1) = min{IDt (x1), IDt (x2), IDt (x3)} = 0.2,

F{x1,x2,x3}(x1) = max{FDt (x1),FDt (x2),FDt (x3)} = 0.6,

T{x1,x2,x3}(x2) = min{TDt (x1),TDt (x2),TDt (x3)} = 0.1,

I{x1,x2,x3}(x2) = min{IDt (x1), IDt (x2), IDt (x3)} = 0.2,

F{x1,x2,x3}(x2) = max{FDt (x1),FDt (x2),FDt (x3)} = 0.2,

T{x1,x2,x3}(x3) = min{TDt (x1),TDt (x2),TDt (x3)} = 0.1,

I{x1,x2,x3}(x3) = min{IDt (x1), IDt (x2), IDt (x3)} = 0.2,

F{x1,x2,x3}(x3) = max{FDt (x1),FDt (x2),FDt (x3)} = 0.6.

That is, C{x1,x2,x3} = B1. Also C{x2,x4} = B2, C{x1,x3} = B3. Thus,H ∗ is Dt tempered.

Definition 9.44 The dual of an intuitionistic single-valued neutrosophic hyper-
graph H ∗ = (X ,B) is an intuitionistic single-valued neutrosophic hypergraph
G  = (D,X ), where D = {e1, e2, . . . , en} is a set of vertices corresponding to
B1,B2, . . . ,Bn, respectively, and X = {C1,C2, . . . ,Cn} a set of hyperedges corre-
sponding to x1, x2, ..., xn, respectively.
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Table 9.10 Incidence matrix of H ∗

IH ∗ B1 B2 B3

x1 (0.1, 0.2, 0.6) (0, 0, 0) (0.3, 0.4, 0.6)

x2 (0.1, 0.2, 0.6) (0.1, 0.2, 0.3) (0, 0, 0)

x3 (0.1, 0.2, 0.6) (0, 0, 0) (0.3, 0.4, 0.6)

x4 (0, 0, 0) (0.1, 0.2, 0.3) (0, 0, 0)

Table 9.11 Incidence matrix of H ∗

MD B1 B2 B3

x1 (0.5, 0.4, 0.3) (0.5, 0.4, 0.3) (0, 0, 0)

x2 (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

x3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5)

x4 (0, 0, 0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)

Fig. 9.9 Intuitionistic
single-valued neutrosophic
hypergraph

x1(0.5,0.4,0.3)

x2(0.2,0.3,0.4)x3(0.3,0.4,0.5)

x4(0.5,0.5,0.5)

B1

B2

B3

Example 9.14 Consider an intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B), where X = {x1, x2, x3, x4} and B = {B1, B2, B3} is represented
by the incidence matrix in Table9.11. The intuitionistic single-valued neutrosophic
hypergraph and its dual are shown in Figs. 9.9 and 9.10, respectively.

The dual of intuitionistic single-valued neutrosophic hypergraphH ∗ isD = (D,
X ) such that D = {x1, x2, x3}, X = {B1, B2, B3, B4}, where

B1 = {(x1, 0.5, 0.4, 0.3), (x2, 0.5, 0.4, 0.3), (x3, 0, 0, 0)},
B2 = {(x1, 0.2, 0.3, 0.4), (x2, 0, 0, 0), (x3, 0, 0, 0)},
B3 = {(x1, 0, 0, 0), (x2, 0, 0, 0), (x3, 0.3, 0.4, 0.5)},
B4 = {(x1, 0, 0, 0), (x2, 0.5, 0.5, 0.5), (x3, 0.5, 0.5, 0.5)}.

The incidence matrix of dual intuitionistic single-valued neutrosophic hypergraph is
given in Table9.12.
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Fig. 9.10 Dual intuitionistic
single-valued neutrosophic
hypergraph D x1 x2

x3

B1

B2

B3

B4

Table 9.12 Incidence matrix of dual intuitionistic single-valued neutrosophic hypergraph

ID  B1 B2 B3 B4

x1 (0.5, 0.4, 0.3) (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

x2 (0.5, 0.4, 0.3) (0, 0, 0) (0, 0, 0) (0.5, 0.5, 0.5)

x3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5) (0.5, 0.5, 0.5)

Theorem 9.4 IfH ∗ is linear intuitionistic single-valued neutrosophic hypergraph,
then its dual intuitionistic single-valued neutrosophic hypergraph D∗ without iso-
lated vertex is linear intuitionistic single-valued neutrosophic hypergraph.

Proof LetH ∗ be a linear intuitionistic single-valued neutrosophic hypergraph. Sup-
pose that D∗ is not linear intuitionistic single-valued neutrosophic hypergraph, then
there must be two distinct intuitionistic single-valued neutrosophic hyperedges Xi

and Xj of D∗ having at least two vertices e1 and e2 in common. By Definition9.10
of dual intuitionistic single-valued neutrosophic hypergraph, vi and vj belongs to
B1 and B2 (the intuitionistic single-valued neutrosophic hyperedges of H ∗ corre-
sponds to the vertices e1, e2 of D∗, respectively) so H ∗ is not linear intuitionistic
single-valued neutrosophic hypergraph. A contradiction to the statement that H ∗
is linear intuitionistic single-valued neutrosophic hypergraph. Hence, dual D∗ of a
linear intuitionistic single-valued neutrosophic hypergraph without isolated vertex
is also linear intuitionistic single-valued neutrosophic hypergraph. �

Remark 9.6 D∗ = (H ∗)t , that is, incidence matrix of D∗ is the transpose of the
incidence matrix ofH ∗. Also, the dual of a simple intuitionistic single-valued neu-
trosophic hypergraph may or may not be simple.

Now, we define the intuitionistic single-valued neutrosophic transversal of an intu-
itionistic single-valued neutrosophic hypergraph.

Definition 9.45 Let H ∗ = (X ,B) be an intuitionistic single-valued neutrosophic
hypergraph and h(Bi) the height of intuitionistic single-valued neutrosophic hyper-
edge Bi. Then, the intuitionistic single-valued neutrosophic transversal τ of H ∗ is
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Table 9.13 Incidence matrix of H ∗

IH ∗ B1 B2 B3

u1 (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.2)

u2 (0.9, 0.3, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2)

u3 (0.4, 0.3, 0.2) (0, 0, 0) (0.4, 0.3, 0.2)

defined as an intuitionistic single-valued neutrosophic subset defined on X such that
τh(Bi) ∩ Bh(Bi) 	= ∅ for all Bi ∈ B.

If τ ′ ⊂ τ and τ ′ is not an intuitionistic single-valued neutrosophic transversal of
H ∗, then τ is called the minimal transversal.

Here, we state the following propositions without proof.

Proposition 9.10 For an intuitionistic single-valued neutrosophic transversal of
H ∗ = (X ,B), we have h(τ ) ≥ h(Bi), for all Bi ∈ B, and for a minimal transversal
of H ∗, we have h(τ ) = max{Bi|Bi ∈ B} = h(H ∗).

Theorem 9.5 Let H ∗ be an intuitionistic single-valued neutrosophic hypergraph
and Tr(H ∗) be the family of minimal intuitionistic single-valued neutrosophic
transversals of H ∗, then Tr(H ∗) 	= ∅.

Example 9.15 Consider the intuitionistic single-valued neutrosophic hypergraph
H ∗ = (X ,B), where X = {u1, u2, u3} and B = {B1,B2,B3}, which is represented
by the following incidence matrix in Table9.13.

Clearly, h(H ∗) = (0.9, 0.3, 0.1), the intuitionistic single-valued neutrosophic
transversals of H ∗ are τ1(H ∗) = {(u2, 0.9, 0.3, 0.1), (u3, 0.4, 0.3, 0.2)},
τ2(H ∗) = {(u2, 0.9, 0.3, 0.1)}. Fundamental sequence ofH ∗ is FS(H ∗) = {(0.9,
0.3, 0.1), (0.4, 0.3, 0.2)}. τ1(0.9,0.3,0.1) = {u2} and τ1(0.4,0.3,0.2) = {u2, u3}. τ2(0.9,0.3,0.1)
= {u2} and τ2(0.4,0.3,0.2) = {u2}. B(0.9,0.3,0.1) = {u2}, B(0.4,0.3,0.2) = {{u2, u3}, {u2}, {u1,
u2, u3}}. The minimal transversal of H ∗ is τ2(G ) = {(u2, 0.9, 0.3, 0.1)}.

9.4 Clustering Problem

Clustering (or cluster analysis) involves the taskof classifyingdata points into clusters
or classes in such a way that the objects in the same class or cluster are similar and
the objects belonging to different clusters are not much similar. The identification of
clusters can be done by means of similarity measures. The connectivity and distance
can be taken as the similarity measures. Similarity measures are chosen according to
the choice of data or the application. The purpose of graph clustering is to group the
vertices into classes according to the properties of the graph. So that the edges having
high similarity are in the same group. In statistical data analysis, clustering analysis
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serves as a strong and significant tool, which can be widely used in various fields, like
pattern recognition, banking sector, microbiology, document classification, and data
mining, etc. In a computer cluster, a set of more than one connected computers work
together. The benefit of such clustering of computers is that if any one computer of
the cluster fails, another computer can manage the workload of failed computer.

Definition 9.46 Let X be a universal set. A collection of intuitionistic single-valued
neutrosophic sets {A1, A2, A3, · · · , Am} is an intuitionistic single-valued neutrosophic
partition if

(i)
⋃
j
supp(Aj) = X , j = 1, 2, 3, ...,m,

(ii)
m∑
j=1

TAj (x) = 1, for all x ∈ X ,

(iii)
m∑
j=1

IAj (x) = 1, for all x ∈ X ,

(iv) there is at most one j for which FAj (x) = 0, for all x ∈ X (there is at most
one intuitionistic single-valued neutrosophic set for which TAj (x) + IAj (x) +
FAj (x) = 2, for all x ∈ X ).

A family of intuitionistic single-valued neutrosophic subsets {A1,A2,A3, . . . ,Am} is
said to be an intuitionistic single-valued neutrosophic partition if it captivates the
above conditions.

An intuitionistic single-valued neutrosophic matrix (aij) can be used to interpret
an intuitionistic single-valued neutrosophic partition, where aij indicates the truth
value, indeterminacy value, and falsity value of element xi in class j. We see that the
incidence matrix in intuitionistic single-valued neutrosophic hypergraph is as similar
as this matrix. So that we can express an intuitionistic single-valued neutrosophic
partition by an intuitionistic single-valued neutrosophic hypergraph H ∗ = (X ,B)

such that

(i) X = {x1, x2, x3, . . . , xn} is a set of elements i = 1, 2, 3, . . . , n,
(ii) B = {B1,B2,B3, . . . ,Bm} be a finite class of nontrivial intuitionistic single-

valued neutrosophic sets,
(iii)

⋃
k
supp(Bk) = X , k = 1, 2, 3, ..., n,

(iv)
m∑

k=1
TAj (x) = 1, for all x ∈ X ,

(v)
m∑

k=1
IAj (x) = 1, for all x ∈ X ,

(vi) there is atmost one j forwhichFAj (x) = 0, for all x ∈ X (there is atmost one intu-
itionistic single-valued neutrosophic set such that TAj (x) + IAj (x) + FAj (x) = 2
for all x).

It should be noted that the conditions (iv)−(vi) are combined with the intuitionistic
single-valued neutrosophic hypergraph for intuitionistic single-valued neutrosophic
partition. Along with these three conditions, an intuitionistic single-valued neutro-
sophic covering can be represented as an intuitionistic single-valued neutrosophic
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Table 9.14 Intuitionistic single-valued neutrosophic partition matrix

H ∗ At Bh

a1 (0.96, 0.50, 0.04) (0.04, 0.50, 0.96)

a2 (1, 0.50, 0) (0, 0.50, 1)

a3 (0.05, 0.50, 0.05) (0.95, 0.50, 0.03)

a4 (0.30, 0.50, 0.61) (0.70, 0.50, 0.04)

a5 (0.61, 0.50, 0.04) (0.39, 0.50, 0.05)

hypergraph. Naturally, (η, φ,ψ)-level cut can be applied to intuitionistic single-
valued neutrosophic partition (Table9.14).

Example 9.16 Let us suppose the clustering problem as an illustrative example of
an intuitionistic single-valued neutrosophic partition on the visual image processing.
We take the five objects which are restricted into two classes:tank and house. To
cluster these five objects a1, a2, a3, a3, a4, a5 into At (tank) and Bh (house), an intu-
itionistic single-valued neutrosophic partition matrix is given in table below in the
form of incidence matrix of an intuitionistic single-valued neutrosophic hypergraph.
By applying (η, φ,ψ)-cut to the hypergraph, we attain a hypergraphH ∗

(η,φ,ψ) which
is not an intuitionistic single-valued neutrosophic hypergraph. We denote the edge
inH ∗

(η,φ,ψ)-cut hypergraphH
∗

(η,φ,ψ) as Bj(η,φ,ψ). This hypergraphH ∗ represents the
covering because of conditions,

(iv)
m∑
j=1

TAj (x) = 1, for all x ∈ X ,

(v)
m∑
j=1

IAj (x) = 1, for all x ∈ X ,

(vi) there is at most one j, for which FAj (x) = 0, is not always guaranteed.

Incidence matrix of corresponding hypergraph is given in Table9.15.
Incidence matrix of dual of the above hypergraph is given in Table9.16. The

clarifications for η̃(Bj(η,φ,ψ)) are given as follows:

• The elements having at least η̃ truth value, indeterminacy value, and most falsity
value are grouped as an edge in the partition hypergraph H ∗

(η,φ,ψ).

Table 9.15 Hypergraph H ∗
(0.60,0.50,0.04)

H ∗
(0.60,0.50,0.04) At(0.60,0.50,0.04) Bh(0.60,0.50,0.04)

a1 1 0

a2 1 0

a3 0 1

a4 0 1

a5 1 0
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Table 9.16 Dual of hypergraph

G ∗
(0.60,0.50,0.04) X1 X2 X3 X4 X5

At 1 1 0 0 1

Bh 0 0 1 1 0

• The strength of edge η̃(Bj(η,φ,ψ)) in H ∗
(η,φ,ψ) is η̃. Thus, cohesion or strength

of a class in a partition can be measured by the strength of edge. As an
example, the strength of classes At(0.60,0.50,0.04) and Bh(0.60,0.50,0.04) at η = 0.60,
φ = 0.50, ψ = 0.04 are given as η̃(At(0.56,0.50,0.40)) = (0.96, 0.50, 0.04) and
η̃(Bh(0.60,0.50,0.04)) = (0.70, 0.50, 0.04), respectively. Thus, we see that the class
η̃(At(0.60,0.50,0.04)) is stronger than η̃(Bh(0.60,0.50,0.04)) because η̃T (At(0.60,0.50,0.04))

> η̃T (Bh(0.60,0.50,0.04)). Taking into account the above analysis on the hypergraph
H ∗

(0.60,0.50,0.04) and H ∗
(0.60,0.50,0.04), we have,

(i) An intuitionistic single-valued neutrosophic partition can be represented by
intuitionistic single-valued neutrosophic hypergraph, visually. The
(η, φ,ψ)-cut hypergraph also represents the (η, φ,ψ)-cut partition.

(ii) The dual hypergraphH ∗
(0.60,0.50,0.04) represents those elements Xi, which can

be classified into same class Bj(η,φ,ψ). For example, the edges X1,X2,X5 of
the dual hypergraph represent that the elements a1, a2, a5 can be grouped
into At at level (0.60, 0.50, 0.04).

(iii) In an intuitionistic single-valued neutrosophic partition, we have
m∑
j=1

TAj (x)

= 1,
m∑
j=1

IAj (x) = 1, for all x ∈ X and for all x ∈ X , there is at most one j

such that FAj (x) = 0. If we take (η, φ,ψ)-cut at level (η ≥ 0.5 or φ ≥ 0.5
or ψ ≤ 0.5), no element can be grouped into two classes at the same time.
That is, if η ≥ 0.5 or φ ≥ 0.5 or ψ ≤ 0.5, distinct elements are contained
in distinct classes inH ∗

(η,φ,ψ).
(iv) At the (η, φ,ψ) = (0.60, 0.50, 0.04) level, η(At(0.60,0.50,0.04)) is strongest

class as its strength is highest, i.e., (0.96, 0.50, 0.04). It means that this
class can be grouped independently from other parts. Thus, the class Bh

can be removed from other classes and continue the clustering process. In
this way, the elimination of weak classes from the others can allow us to
decompose a clustering problem into smaller ones.

Following this strategy, we can reduce data in clustering problem.
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9.5 Single-Valued Neutrosophic Directed Hypergraphs

Definition 9.47 A single-valued neutrosophic directed hypergraph on a non-empty
set X is defined as an ordered pairD = (V,H ), where V = {A1,A2,A3, . . . ,Ak} is a
family of nontrivial single-valued neutrosophic subsets onX andH is a single-valued
neutrosophic relation on single-valued neutrosophic sets Ai such that

(i)
TH (Bi) = TH ({v1, v2, v3, . . . , vr}) ≤ min{TAi (v1),TAi (v2),TAi (v3), . . . ,TAi (vr)},
IH (Bi) = IH ({v1, v2, v3, . . . , vr}) ≤ min{IAi (v1), IAi (v2), IAi (v3), . . . , IAi (vr)},

FH (Bi) = FH ({v1, v2, v3, . . . , vr}) ≤ max{FAi (v1),FAi (v2),FAi (v3), . . . ,FAi (vr)},

for all v1, v2, v3, . . . , vr ∈ X .

(ii) X = ⋃
k
supp(Ak), for all Ak ∈ V .

Here {B1,B2,B3, . . . ,Br} is the family of directed crisp hyperedges.

Definition 9.48 A single-valued neutrosophic directed hyperedge (or hyperarc) is
defined as an ordered pair A = (u, v), where u and v are disjoint subsets of nodes. u
is taken as the tail of A and v is called its head. t(A) and h(A) are used to denote the
tail and head of single-valued neutrosophic directed hyperarc, respectively.

In single-valued neutrosophic directed hypergraph D = (V,H ), any two vertices
s and t are adjacent vertices if they both belong to the same directed hyperedge. A
source vertex s is defined as a vertex in D if h(x) 	= s, for each x ∈ H . A destination
vertex d is defined as a vertex if t(x) 	= d , for every x ∈ H .

Definition 9.49 A single-valued neutrosophic directed hypergraphD = (V,H ) can
be represented by an incidence matrix. The incidence matrix of a single-valued
neutrosophic directed hypergraph is defined by an n × m matrix [bij] as

bij =
{

(TAj (ai), IAj (ai),FAj (ai)), if ai ∈ Aj,

0, otherwise.

Note that 0 = (0, 0, 0).

We illustrate the concept of a single-valued neutrosophic directed hypergraph with
an example.

Example 9.17 Consider a single-valued neutrosophic directed hypergraph D = (V ,
H ), such that X = {v1, v2, v3, v4, v5, v6, v7} and H = {H1, H2, H3, H4}, where
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Table 9.17 Incidence matrix of single-valued neutrosophic directed hypergraph

ID H1 H2 H3 H4

v1 (0.2, 0.3, 0.4) (0.2, 0.3, 0.4) 0 0

v2 0 (0.1, 0.3, 0.5) 0 0

v3 (0.2, 0.4, 0.2) (0.2, 0.4, 0.2) (0.2, 0.4, 0.2) 0

v4 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0

v5 (0.5, 0.5, 0.3) 0 0 (0.5, 0.5, 0.3)

v6 0 0 0 (0.4, 0.5, 0.6)

v7 0 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)

Fig. 9.11 Single-valued
neutrosophic directed
hypergraph

v1
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(0.1,0.2,0.3)

v6
(0.4,0.5,0.6)
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H 2
(0.
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.2,
0.3
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H
3 (0.1,0.2,0.3)

H
4 (0.2,0.5,0.6)

H1 = {(v1, 0.2, 0.3, 0.4), (v3, 0.2, 0.4, 0.2), (v5, 0.5, 0.5, 0.3)},
H2 = {(v1, 0.2, 0.3, 0.4), (v2, 0.1, 0.3, 0.5), (v3, 0.2, 0.4, 0.2), (v4, 0.1, 0.2, 0.3)},
H3 = {(v3, 0.2, 0.4, 0.2), (v4, 0.1, 0.2, 0.3), (v7, 0.1, 0.2, 0.3)},
H4 = {(v5, 0.5, 0.5, 0.3), (v6, 0.4, 0.5, 0.6), (v7, 0.1, 0.2, 0.3)}.

The incidence matrix of D = (V , H ) is given in Table9.17.
The single-valued neutrosophic directed hypergraph is shown in Fig. 9.11.

Definition 9.50 The height of a single-valued neutrosophic directed hypergraph
D = (V ,H ) is defined as h(D) = {max(Hk),max(Hl),min(Hm) |Hk ,Hl,Hm ∈ H },
where Hk = max(THj (vi)), Hl = max(IHj (vi)), Hm = min(FHj (vi)). Here, THj (vi),
IHj (vi), andFHj (vi)denote the truth-membership, indeterminacy, and falsity-membership
values of vertex vi to directed hyperedge Hj, respectively.

Definition 9.51 A single-valued neutrosophic set S = {(x,TS(x), IS(x),FS(x)) :
x ∈ X } is called an elementary single-valued neutrosophic set if TS , IS , and FS are
single valued on the support of S.
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A single-valued neutrosophic directed hypergraph D = (V,H ) is an elementary
single-valued neutrosophic directed hypergraph if its all directed hyperedges are
elementary.

Definition 9.52 The strength of a single-valued neutrosophic directed hyperedge is
defined as

η(Hi) = {min
vj

∈ Hi(THi (vj) : THi (vj) > 0), min
vj

∈ Hi(IHi (vj) : IHi (vj) > 0),

max
vj

∈ Hi(FHi (vj) : FHi (vj) > 0)}.

The strength of directed hyperedge describes that the objects having the participation
degree at least η(Hi) are grouped in the hyperedge Hi.

Definition 9.53 A single-valued neutrosophic directed hypergraph D = (V,H ) is
simple if Aj, Ak ∈ H ,Aj ≤ Ak imply Aj = Ak .

A single-valued neutrosophic directed hypergraph D = (V,H ) is called support
simple if Aj, Ak ∈ H , supp(Aj) = supp(Ak), and Aj ≤ Ak , then Aj = Ak .

A single-valued neutrosophic directed hypergraph D = (V,H ) is called strongly
support simple if Aj, Ak ∈ H , and supp(Aj) = supp(Ak) imply that Aj = Ak .

Theorem 9.6 A single-valued neutrosophic directed hypergraph D = (V,H ) is
single-valued neutrosophic directed graph (possibly with loops) if and only if D
is support simple, elementary, and all the hyperedges have two(or one) element
supports.

Theorem 9.7 LetD = (V,H )beanelementary single-valuedneutrosophic directed
hypergraph. Then, D is support simple if and only if D is strongly support simple.

Proof Suppose that D = (V,H ) is elementary, support simple, and supp(Aj) =
supp(Ak) for Aj,Ak ∈ H . We assume that h(Aj) ≤ h(Ak). Since, D is elementary,
we have Aj ≤ Ak , and since D is support simple we have Aj = Ak . Hence, D is
strongly support simple. The converse part of the theorem can be proved trivially by
using the definitions. �

Theorem 9.8 Let D = (V,H ) be a strongly support simple single-valued neutro-
sophic directed hypergraph of order n. Then, |H | ≤ 2n − 1. The equality holds if and
only if {supp(Aj)|Aj ∈ H } = P(V ) \ ∅.
Proof Since every nontrivial subset ofX can be the support set of at most oneAj ∈ H
so |H | ≤ 2n − 1. The second part is trivial. �

Theorem 9.9 Let D = (V,H ) be a simple, elementary single-valued neutrosophic
directed hypergraph of order n. Then, |H | ≤ 2n − 1. The equality holds if and only
if {supp(Aj)|Aj ∈ H } = P(V ) \ ∅.
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Proof Since D is simple and elementary, each nontrivial subset of X can be the
support set of at most one Aj ∈ H . Hence, |H | ≤ 2n − 1.

We now prove that there exists an elementary, simpleD having |H | = 2n − 1. Let
A = {(TB(v), IB(v),FB(v))|B ⊆ V } be the set of mappings such that

TB(v) =
{ 1

|B| , ifv ∈ B,

0, otherwise.

IB(v) =
{ 1

|B| , ifv ∈ B,

0, otherwise.

FB(v) =
{ 1

|B| , ifv ∈ B,

0, otherwise.

Then, every set containing single element has height (1, 1, 1), height of every set
containing two elements is (0.5, 0.5, 0.5), and so on. Hence,D is elementary, simple,
and |H | = 2n − 1. �

Definition 9.54 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph. Consider λ ∈ [0, 1], μ ∈ [0, 1], and ν ∈ [0, 1] such that 0 ≤ λ + μ + ν ≤ 3.
Then, the (λ, μ, ν)-level directed hypergraph of D is defined as an ordered pair,
D(λ,μ,ν) = (V (λ,μ,ν), H (λ,μ,ν)), where

(i) H (λ,μ,ν) = {H (λ,μ,ν)
i |Hi ∈ H }, V (λ,μ,ν) = ⋃

Hi∈H
H (λ,μ,ν)

i ,

(ii) H (λ,μ,ν)
i = {vj ∈ X |THi (vj) ≥ λ, IHi (vj) ≥ μ,FHi (vj) ≤ ν}.

Definition 9.55 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph such thath(D) = (u, v,w). LetD(ui,vi,wi) = (V (ui,vi,wi),H (ui,vi,wi))be the (ui, vi,wi)-
level hypergraphs of D. The sequence of real numbers {(u1, v1,w1), (u2, v2,w2),
. . ., (un, vn,wn)}, 0 < un < un+1 <, . . . , < u1 = u, 0 < vn < vn+1 <, . . . , < v1 =
v, wn > wn+1 >, . . . , > w1 = w > 0, which satisfies the properties,

(i) if ui+1 < u′ < ui, vi+1 < v′ < vi, wi+1 > w′ > wi(wi < w′ < wi+1), then
H (u′,v′,w′) = H (ui,vi,wi),

(ii) H (ui,vi,wi) � H (ui+1,vi+1,wi+1),

is called the fundamental sequence of single-valued neutrosophic directed hyper-
graph D, denoted by FS(D). The set of (ui, vi,wi)-level hypergraphs
{D(u1,v1,w1), D(u2,v2,w2),. . ., D(un,vn,wn)} is known as core hypergraphs of single-valued
neutrosophic directed hypergraph D and is denoted by c(D).

The corresponding sequence of (ui, vi,wi)-level directed hypergraphs {D(u1,v1,w1)

⊆ D(u2,v2,w2) ⊆ . . . ⊆ D(un,vn,wn)} is called the D induced fundamental sequence.

Example 9.18 Consider a single-valued neutrosophic directed hypergraph D =
(V,H ), where X = {v1, v2, v3, v4, v5} and H = {H1,H2,H3,H4}. Incidence matrix
of D is given in Table9.18.

The corresponding graph is shown in Fig. 9.12.
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Table 9.18 Incidence matrix of D

ID H1 H2 H3 H4

v1 (0.8, 0.7, 0.1) (0.9, 0.8, 0.1) 0 (0.5, 0.4, 0.3)

v2 (0.8, 0.7, 0.1) (0.9, 0.8, 0.1) (0.5, 0.4, 0.3) (0.5, 0.4, 0.3)

v3 0 0 (0.3, 0.3, 0.4) 0

v4 (0.5, 0.4, 0.3) 0 (0.5, 0.4, 0.3) 0

v5 0 0 0 (0.5, 0.4, 0.3)

Fig. 9.12 Single-valued
neutrosophic directed
hypergraph

v1

v3

v2

v4

v5

H
2 (0.8,0.7,0.3)

H1(0.8,0.7,0.3)

H3(
0.5

,0.
4,0

.3)

H4(0.5,0.4,0.1)

By routine calculations, we have h(D) = (0.9, 0.8, 0.1),H (0.9,0.8,0.1) = {{v1, v2}},
H (0.8,0.7,0.1) = {{v1, v2}}, H (0.5,0.4,0.3) = {{v1, v2}, {v1, v2, v5}, {v1, v2, v4}, {v2, v4}}.
Therefore, the FS(D) is {(0.9, 0.8, 0.1), (0.5, 0.4, 0.3)}. The set of core hypergraphs
is c(D) = {D(0.9,0.8,0.1) = (V1,H1), D(0.5,0.4,0.3) = (V2,H2)}. Note that H (0.9,0.8,0.1)

⊆ H (0.5,0.4,0.3), H (0.9,0.8,0.1) 	= H (0.5,0.4,0.3), Hi � Hj, for all Hi,Hj ∈ H . Hence, D is
simple. Further, it can be seen that supp(Hi) = supp(Hj), for all Hi,Hj ∈ H implies
Hi = Hj. Thus, D is strongly support simple and support simple. The induced fun-
damental sequence of D is given in Fig. 9.13.

Definition 9.56 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph and FS(D) = {(u1, v1, w1), (u2, v2, w2),· · · , (un, vn, wn)} be the fundamental
sequence ofD. If for eachHi ∈ H and each (l,m, n) ∈ ((ui+1, vi+1,wi+1), (ui, vi,wi)),
we haveH (l,m,n)

i = H (ui,vi,wi)
i for all (ui, vi,wi) ∈ FS(D), thenD is called sectionally

elementary .
It can be noted that D is sectionally elementary if and only if THi (x), IHi (x),

FHi (x) ∈ FS(D), for all Hi ∈ H and for every x ∈ V .

Definition 9.57 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph. The partial single-valued neutrosophic directed hypergraph of D is defined
as an ordered pair D′ = (V ′,H ′), where H ′ ⊆ H and V ′ = ⋃

i
{supp(H ′

i )|H ′
i ∈ H }.

Then,D′ is called partial single-valued neutrosophic directed hypergraph generated
by H ′.

Definition 9.58 A single-valued neutrosophic directed hypergraph D = (V,H ) is
said to be ordered if c(D) is ordered. That is, if c(D) = {D(u1,v1,w1), D(u2,v2,w2), · · · ,
D(un,vn,wn)}, then D(u1,v1,w1) ⊆ D(u2,v2,w2) ⊆ · · · ⊆ D(un,vn,wn).
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v4 v1

v2

v3 v5

v4

v1
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H
1
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D(0.9,0.8,0.1)−level single-valued neutrosophic directed hypergraph. D(0.8,0.7,0.1)−level single-valued neutrosophic directed hypergraph.

D(0.5,0.4,0.3)−level single-valued neutrosophic directed hypergraph.

Fig. 9.13 Induced fundamental sequence of D

Table 9.19 Incidence matrix of D

I H1 H2 H3

v1 (0.7, 0.5, 0.1) 0 (0.5, 0.3, 0.1)

v2 (0.7, 0.5, 0.1) (0.5, 0.3, 0.1) 0

v3 0 (0.5, 0.3, 0.1) (0.5, 0.3, 0.1)

v4 0 0 (0.5, 0.3, 0.1)

The sequence is called simply ordered if it is ordered and if whenever H ∗ ∈
H ∗

j+1 \ H ∗
j , then H

∗ � Vj. Thus, the single-valued neutrosophic directed hypergraph
is also simply ordered.

Proposition 9.11 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph. If D is elementary, then it is ordered. Further, if D is an ordered single-valued
neutrosophic directed hypergraph with simple support, then D is elementary.

Example 9.19 Consider a single-valued neutrosophic directed hypergraph D =
(V,H ), where X = {v1, v2, v3, v4} and H = {H1,H2,H3}, which is represented by
the incidence matrix given in Table9.19.

Here, FS(D) = {(0.7, 0.5, 0.1), (0.5, 0.3, 0.1)}. The single-valued neutrosophic
directed hypergraph D is sectionally elementary. As for each Hi ∈ H and for all
(l,m, n) ∈ ((0.5, 0.3, 0.1), (0.7, 0.5, 0.1), we have H (l,m,n)

i = H (0.7,0.5,0.1)
i . It can be

seen thatH (0.6,0.35,0.1)
1 = {v1, v2} = H (0.7,0.5,0.1)

1 and so on. The corresponding single-
valued neutrosophic directed hypergraph is shown in Fig. 9.14.
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Fig. 9.14 Sectionally
elementary single-valued
neutrosophic directed
hypergraph
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9.6 Single-Valued Neutrosophic Line Directed
Hypergraphs

Definition 9.59 A single-valued neutrosophic directed hyperpath of length k in a
single-valued neutrosophic directed hypergraphD = (V,H ) is defined as an alternat-
ing sequence v1,H1, v2,H2, . . . , vk ,Hk , vk+1 of distinct points and directed hyper-
edges such that

(i) TH (Hi) > 0, IH (Hi) > 0, and FH (Hi) > 0,
(ii) vi, vi+1 ∈ Hi, i = 1, 2, 3, . . . , k.

A single-valued neutrosophic directed hyperpath is called a single-valued neutro-
sophic directed hypercycle if v1 = vk+1.

Definition 9.60 A single-valued neutrosophic directed hypergraph D = (V,H ) is
connected if a single-valued neutrosophic directed hyperpath exists between each
pair of distinct nodes.

Definition 9.61 Let any two vertices, say s and t, be connected through a single-
valued neutrosophic directed hyperpath of length k in a single-valued neutrosophic
directed hypergraph. Then, the strength of the single-valued neutrosophic directed
hyperpath is defined as

χk (s, t) = {min(TH (H1),TH (H2), . . . , TH (Hk )), min(IH (H1), IH (H2), . . . , IH (Hk )),

max(FH (H1),FH (H2), . . . ,FH (Hk ))}.

s ∈ H1, t ∈ Hk . H1,H2, . . . ,Hk are directed hyperedges. The strength of connect-
edness between s and t is defined as χ∞(s, t) = {sup

k
T (χ k(s, t)), sup

k
I(χ k(s, t)),

inf
k
F(χ k(s, t))}.

Theorem 9.10 A single-valued neutrosophic directed hypergraph D = (V,H ) is
connected if and only if χ∞(s, t) > 0, for all s, t ∈ V .
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Proof Suppose that D = (V,H ) is connected single-valued neutrosophic directed
hypergraph. Then, between each pair of distinct vertices there exists a single-
valued neutrosophic directed hyperpath such that χ k(s, t) > 0 ⇒ {sup

k
T (χ k(s, t)),

sup
k

{I(χ k(s, t)), inf
k

{F(χ k(s, t))|k = 1, 2, · · · } > 0 ⇒ χ∞(s, t) > 0, for all

s, t ∈ V .
Conversely, suppose that χ∞(s, t) > 0 ⇒ {sup

k
T (χ k(s, t)), sup

k
{I(χ k(s, t)),

inf
k

{F(χ k(s, t))|k = 1, 2, · · · } > 0. This shows that there exists at least one directed

hyperpath between each pair of vertices. Hence, D is connected. �

Definition 9.62 A single-valued neutrosophic directed hypergraph D = (V,H ) is
called linear if for every single-valued neutrosophic directed hyperedgeHi,Hj ∈ H ,

(i) supp(Hi) ⊆ supp(Hj) implies i = j,
(ii) |supp(Hi)

⋂
supp(Hj)| ≤ 1.

We now define the dual single-valued neutrosophic directed hypergraphs.

Definition 9.63 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph on a universal set V . The dual single-valued neutrosophic directed hypergraph
of D is defined as an ordered pair D∗ = (V ∗,H ∗), where

(i) V ∗ = H is single-valued neutrosophic set of vertices of D∗.
(ii) If |V | = n, then H ∗ is the single-valued neutrosophic set on the set of directed

hyperedges {V1, V2, V3, · · · , Vn} such that Vi = {Hj|vi ∈ Hj,Hj is the directed
hyperedge in D}. This means that Vi is the set of those directed hyperedges
which contain the vertex vi as a common vertex.

The truth-membership, indeterminacy, and falsity-membership values of Vi are
defined as

T ∗
H (Vi) = inf{TH (Hj) : vi ∈ Hj},
I∗
H (Vi) = inf{IH (Hj) : vi ∈ Hj},

F∗
H (Vi) = sup{FH (Hj) : vi ∈ Hj}.

We now describe the method of construction of dual single-valued neutrosophic
directed hypergraph D∗ of a single-valued neutrosophic directed hypergraph D as a
simple procedure as given in Construction9.3. We also describe an example.

Construction 9.3 The construction of dual single-valued neutrosophic directed
hypergraph D∗

LetD = (V,H ) be a single-valued neutrosophic directed hypergraph. The procedure
of constructing the dual single-valued neutrosophic directed hypergraph contains the
following steps:
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Fig. 9.15 Single-valued neutrosophic directed hypergraph and its D∗

1. Make the single-valued neutrosophic set of vertices of D∗ as V ∗ = H .
2. Define a one to one function f : V → H from the set of vertices to the set of

directed hyperedges of D in the way that if the directed hyperedges Hs, Hs+1,
Hs+2, · · · , Hj contain the vertex vi, then vi is mapped onto Hs, Hs+1, Hs+2, · · · ,
Hj as shown in Fig. 9.15.

3. Draw the directed hyperedges {V1, V2, · · · , Vn} of D∗ such that Vi = {Hj|f (vi) =
Hj}.

4. Make the directed hyperedges as the vertex Hj of D∗ belongs to h(Vi) if and only
if vi ∈ t(Hj) in D and similarly Hj is in t(Vi) if and only if vi ∈ h(Hj).

5. Calculate the truth-membership, indeterminacy, and falsity-membership values
of directed hyperedges in D∗ as

TH ∗(Vi) = inf {TH (Hj) : vi ∈ Hj},
IH ∗(Vi) = inf {IH (Hj) : vi ∈ Hj},
FH ∗(Vi) = sup {FH (Hj) : vi ∈ Hj}.

Example 9.20 Consider a single-valued neutrosophic directed hypergraph D =
(V,H ),whereX = {v1, v2, v3, v4, v5, v6} andH = {H1,H2,H3} as shown inFig. 9.15.
The dual single-valued neutrosophic directed hypergraph D∗ = (V ∗,H ∗) is shown
with dashed lines such that V ∗ = {h1, h2, h3}, H ∗ = {V1, V2, V3, V4,

V5, V6}. The incidence matrix of D∗ is given in Table9.20.

Theorem 9.11 Let D be a single-valued neutrosophic directed hypergraph. Then,
D∗∗ = D.

Theorem 9.12 The dual single-valued neutrosophic directed hypergraph of a linear
single-valued neutrosophic hypergraph is also linear, that is, if D is linear, then D∗
is also linear.
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Table 9.20 Incidence matrix of dual single-valued neutrosophic directed hypergraph

ID∗ V1 V2 V3 V4 V5 V6

h1 (0.2, 0.1, 0.1) (0.2, 0.1, 0.1) 0 0 (0.2, 0.1, 0.1) 0

h2 0 (0.2, 0.1, 0.1) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3) 0 0

h3 0 (0.2, 0.1, 0.1) 0 (0.4, 0.3, 0.3) 0 (0.4, 0.3, 0.3)

Proof Let D = (V,H ) be a linear single-valued neutrosophic directed hypergraph
and D∗ = (V ∗,H ∗). Suppose on contrary that D∗ is not linear, then there exists Vi

and Vj such that |supp(Vi)
⋂

supp(Vj)| = 2. Let |supp(Vi)
⋂

supp(Vj)| = {Hl,Hm}.
Then, the duality ofD∗ implies that vi, vj ∈ Hl and vi, vj ∈ Hm, which is a contradic-
tion to the statement that D is linear. Hence, D∗ is linear. �

Definition 9.64 Let D = (V,H ) be a single-valued neutrosophic directed hyper-
graph. The single-valued line directed graph of D is the directed graph L(D) =
(VL,HL), such that

(i) VL = H ,
(ii) {Ai,Aj} ∈ HL if and only if |supp(Ai)

⋂
supp(Aj)| 	= ∅ for i 	= j.

The truth-membership, indeterminacy and falsity-membership values of vertices and
hyperedges of L(D) are defined as

(i) VL(Ai) = H (Ai),

(ii) THL{Ai,Aj} = min{TH (Ai),TH (Aj)|Ai,Aj ∈ H }, IHL{Ai,Aj}=min{IH (Ai),

IH (Aj)|Ai,Aj ∈ H }, FHL{Ai, Aj} = max{FH (Ai), FH (Aj)|Ai,Aj ∈ H },
respectively.

Example 9.21 Consider a single-valued neutrosophic directed hypergraph D =
(V,H ) as given in Fig. 9.16. The single-valued neutrosophic line directed hyper-
graph L(D) = (VL,HL) of D is shown with dashed hyperedges.

Theorem 9.13 Let G = (U,W ) be a simple single-valued neutrosophic digraph.
Then, G is the single-valued neutrosophic line graph of a linear single-valued neu-
trosophic directed hypergraph.

Proof Let G = (U,W ) be a simple single-valued neutrosophic digraph on a set of
universe Z . With no loss of generality, suppose that G is connected. A single-valued
neutrosophic directed hypergraph D = (V,H ) can be formed from G as

1. Take the set of edges ofG as the vertices ofD. LetW = {w1,w2,w3, . . . ,wn} be
the directed edges ofG and ZD be the set of vertices ofD, then ZD = W . Let V =
{ρ1, ρ2, ρ3, . . . , ρr} be the collection of nontrivial single-valued neutrosophic
sets on Z , such that ρk(wi) = 1, i = 1, 2, 3, . . . , n.
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Fig. 9.16 Single-valued
neutrosophic directed
hypergraph and its L(D)
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2. Let Z = {z1, z2, z3, . . . , zm}, then the set of directed hyperedges of D is HD =
{H1,H2,H3, . . . ,Hn},whereHj are those edges ofG in which zi is the incidence
vertex, that is,Hi = {wj|zi ∈ wj, j = 1, 2, 3, . . . , n.}. Further,H (Hi) = U (zi),
i = 1, 2, 3, . . . , n.

We claim that D is a linear single-valued neutrosophic directed hypergraph.
Consider the directed hyperedge Hj = {w1,w2,w3, . . . ,wk}. From the definition

of single-valued neutrosophic directed hypergraph, we have

TH (Hi) = inf{∧jTρj (w1), ∧jTρj (w2), . . . , ∧jTρj (wk)} = TU (zi) ≤ 1,

IH (Hi) = inf{∧jIρj (w1), ∧jIρj (w2), . . . , ∧jIρj (wk)} = IU (zi) ≤ 1,

FH (Hi) = sup{∨jFρj (w1), ∨jFρj (w2), . . . , ∨jFρj (wk)} = FU (zi) ≤ 1,

1 ≤ i ≤ n, and
⋃
r
(ρr) = ZD, for all ρr ∈ V .

Thus, D is single-valued neutrosophic directed hypergraph. We now prove that D
is linear.

(i) Since, the truth-membership, indeterminacy, and falsity-membership values of
all the vertices of D are same. Therefore, supp(ρi) ⊆ supp(ρj) implies i = j, for
each 1 ≤ i, j ≤ r.

(ii) Oncontrary, suppose that supp(ρi)
⋂

supp(ρj) = {wl,wm}, that is, the both edges
wl,wm have two incident vertices in G, which is a contradiction to the statement
that G is simple. Hence, |supp(ρi)

⋂
supp(ρj)| ≤ 1, 1 ≤ i, j ≤ r.

�

Theorem 9.14 A single-valued neutrosophic directed hypergraph D = (V,H ) is
connected if and only if its line directed graph L(D) is connected.



408 9 Some Types of Hypergraphs for Single-Valued Neutrosophic Structures

Proof Suppose that D = (V,H ) is a connected single-valued neutrosophic directed
hypergraph. Let L(D) = (A,B) be the single-valued neutrosophic line directed graph
of D and Hi,Hj be any two distinct vertices of L(D). Consider vi ∈ Hi and vj ∈ Hj.
Since D is connected, there exists a single-valued neutrosophic directed hyperpath
vi,Hi, vi+1,Hi+1, . . . , vj,Hj between vi and vj. By definition of strength of connect-
edness, we have

χ∞(Hi,Hj) = {sup
k

T (χ k(Hi,Hj))}, sup
k

{I(χ k(Hi,Hj))}, inf
k

{F(χ k(Hi,Hj))},
k = 1, 2, · · ·

= sup
k

{TB(Hi,Hi+1) ∧ TB(Hi+1,Hi+2) ∧ · · · ∧ TB(Hj−1,Hj)},
sup
k

{IB(Hi,Hi+1) ∧ IB(Hi+1,Hi+2) ∧ · · · ∧ IB(Hj−1,Hj)},
inf
k

{FB(Hi,Hi+1) ∨ FB(Hi+1,Hi+2) ∨ · · · ∨ IB(Hj−1,Hj)},
= sup{TH (Hi) ∧ TH (Hi+1) ∧ · · · ∧ TH (Hj−1) ∧ TH (Hj)},

sup{IH (Hi) ∧ IH (Hi+1) ∧ · · · ∧ TH (Hj−1) ∧ IH (Hj)},
inf{FH (Hi) ∨ FH (Hi+1) ∨ · · · ∨ FH (Hj−1) ∨ FH (Hj)}, k = 1, 2, . . .

= sup{T (χ k(vi, vj))}, sup{I(χ k(vi, vj))}, inf{F(χ k(vi, vj))},
k = 1, 2, · · ·

= χ∞(vi, vj) > 0.

Since, Hi and Hj were chosen arbitrarily. Hence, L(D) is connected. The converse
part of the theorem can be proved on the same lines. �

Definition 9.65 The 2-section [D]2 of a single-valued neutrosophic directed hyper-
graph D = (V,H ) is the single-valued neutrosophic graph (V,E), where

(i) V = V , i.e., [D]2 has the same set of vertices as D.
(ii) E = {h = vivj|vi 	= vj, vivj ∈ Hk , k = 1, 2, 3, · · · }, i.e., two vertices vi and vj are

adjacent in [D]2 if they belong to the same directed hyperedge Hk in D and

TE(vivj) = inf{∧kTHk (vi),∧kTHk (vj)},
IE(vivj) = inf{∧k IHk (vi),∧k IHk (vj)},
FE(vivj) = sup{∨kFHk (vi),∨kFHk (vj)}.

Example 9.22 A single-valued neutrosophic directed hypergraph D = (V,H ) and
its 2-section [D]2 is shown in Fig. 9.17.
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Fig. 9.17 A single-valued
neutrosophic directed
hypergraph and its 2-section
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9.7 Applications of Neutrosophic Directed Hypergraphs

Graphs and hypergraphs can be used to describe the complex network systems.
The complex network systems, including social networks, World Wide Web, neural
networks are investigated by means of simple graphs and digraphs. The graphs take
the nodes as a set of objects or people and the edges define the relations between them.
In many cases, it is not possible to give full description of real-world systems using
the simple graphs or digraphs. For example, if a collaboration network is represented
through a simple graph. We only know that whether the two researchers are working
together or not. We cannot know if three or more researchers, which are connected in
the network, are coauthors of the same article or not. Further, in various situations, the
given data contains the information of existence, indeterminacy, and nonexistence.
To overcome such types of difficulties in complex networks, we use single-valued
neutrosophic directed hypergraphs to describe the relationships between three or
more elements and the networks are then called the hypernetworks.

9.7.1 Production and Manufacturing Networks

In a production system, there is a set of goods which can be produced using different
technologies or devices. A single-valued neutrosophic directed hypergraph can be
utilizedmore precisely to illustrate a production andmanufacturing system. Consider
a production system as given in Fig. 9.18, where the set of square vertices represents
the products which are taken as input to produce the other products as given in
elliptical vertices.

The set of directed hyperedges {d1, d2, d3, d4, d5, d6} contains the devices or tech-
nologies which are used in our production system to design new products. Here, we
use the devices Silicon photovoltaic system, Electric hob, Ultrasonic shower, Elec-
tric heater shower, Harvesting system, Washing machine, which are represented by
directed hyperedges. A directed hyperarc (t(d), h(d)) represents that the goods in
set t(d) are required to manufacture the products in the set h(d). The product nodes
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Fig. 9.18 Production system using a single-valued neutrosophic directed hypergraph

are taken as storage. The truth-membership and falsity-membership values of each
product node interpret that how much of the product is available to supply and
unavailable to fulfill the demand, respectively. The indeterminacy value contains the
imprecise or inexact information about the product. The truth-membership degree
of each directed hyperedge(or device) describes that how much this technology is
appropriate to manufacture the product. For example, the directed hyperedge d2 =
({Electricity, Food}, {Nutrition}) interprets that the electric hob uses electricity and
food to produce nutrition. It is noted that more than one technology can be adapted to
manufacture the same product using different or same inputs. The truth-membership
degrees of each hyperedge evaluates the suitability of that device. For example, elec-
tric heater shower having membership degrees (0.6, 0.1, 0.2) is a more useful device
than an electric shower (0.6, 0.1, 0.4) to a body cleaner, as its falsity-membership
value is less than an electric shower.

9.7.2 Collaboration Network

We use a single-valued neutrosophic directed hypergraph as a directed hypernet-
work to discuss the teamwork or joint efforts of researchers from different fields.
Consider a single-valued neutrosophic directed hypergraph D = (V,H ) as a collab-
oration network. The vertices or nodes of the hypergraph are taken as the researchers.
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Fig. 9.19 Single-valued neutrosophic directed hypergraph for collaboration network

The set of vertices X is {M1,M2,M3,P1,P2,P3,C1,C2,C3,C4,B1,B2,B3,B4},
where the subset of vertices {M1,M2,M3} represents the group of researchers in
field of Mathematics, {P1,P2,P3} represents the group of researchers in field of
Physics, {C1,C2,C3,C4} represents the group of researchers in field of Chemistry,
and {B1,B2,B3,B4} represents the group of researchers in field of Biology. The
directed hyperedges of single-valued neutrosophic directed hypergraph interpret the
group of members who are working together at the same project. The corresponding
single-valued neutrosophic directed hypergraph is given in Fig. 9.19.

The truth-membership value of each researcher represents their published articles,
indeterminacy shows their submitted articles that may be accepted or rejected and the
falsity-membership value describes the rejected articles. For example, (0.7, 0.6, 0.5)
shows that the researcher M1 has 70% publications, 60% submitted papers, and
50% of his research work is rejected. The value of a single-valued neutrosophic
directed hyperedge depicts the joint work of the researchers which are connected
through the hyperedge. For example, truth-membership, indeterminacy, and falsity-
membership values (0.5, 0.1, 0.3) of H2 describe that the researchers M2,M3,P2

from the field of Mathematics and Physics have 50% publications, 10% submitted
papers, and 30% rejected papers, respectively,whileworking together. By calculating
the strength of each single-valued neutrosophic directed hyperedge, we can conclude
that which group of researchers has better work done as compared to others. By
routine calculations, we have
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Table 9.21 Algorithm for collaboration network

1. Input the degree of membership of all nodes(researchers) v1, v2, . . . , vn.

2. Input the number of directed hyperedges r.

3. Calculate the strength of single-valued neutrosophic directed hyperedge

Hi = {vk , vk+1, . . . , vl}, 1 ≤ k ≤ n − 1, 2 ≤ l ≤ n as,

Si = {min
vj∈Hi

THi (vj)|THi (vj) > 0, min
vj∈Hi

IHi (vj)|IHi (vj) > 0,max
vj∈Hi

FHi (vj)|FHi (vj) > 0},
1 ≤ i ≤ r.

4. Find the strongest directed hyperedge using steps 5 − 14.

5. do p from 1 → r

6. J = (0, 0, 1)

7. do q from 1 → r

8. if(p 	= q) then
8. J = (max{T (J ),T (Sq)},max{I(J ), I(Sq)},min{F(J ),F(Sq)})
9. end if
10. end do
11. if(T (J ) = T (Sp), I(J ) = I(Sp)F(J ) = F(Sp)) then
12. print*, Hp is a strongest single-valued neutrosophic directed hyperedge.

13. end if
14. end do

η(H1) = (0.5, 0.3, 0.7), η(H2) = (0.5, 0.1, 0.7),

η(H3) = (0.5, 0.3, 0.6), η(H4) = (0.4, 0.2, 0.6),

η(H5) = (0.4, 0.3, 0.3), η(H6) = (0.4, 0.2, 0.3),

η(H7) = (0.4, 0.3, 0.3), η(H8) = (0.5, 0.3, 0.3),

η(H9) = (0.5, 0.1, 0.3), η(H10) = (0.5, 0.1, 0.3).

Thus, we have H8 is the strongest edge among the all. So we conclude that the
researchers P1, P3 from the field of Physics and C1 from the field of Chemistry have
donemore joint work as compared to others, i.e., they have 50% publications, 30% of
their research work is submitted, and 30% papers are rejected. The method adopted
in our example can be explained by a simple algorithm given in Table9.21.

9.7.3 Social Networking

A single-valued neutrosophic directed hypergraph can also be used to study and
understand the social networks, using people as nodes (or vertices) and relationships
between two or more than two people as single-valued neutrosophic directed hyper-
edges. Consider the representation of social clubs and its members as a single-valued
neutrosophic directed hypergraph D = (V,C), where V = {Alen, Alex, Andy, Ben,
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Fig. 9.20 Social network using single-valued neutrosophic directed hypergraph

Ava, Anna, Amy, Alice, Chris, Clay, Dave, Pal} interpret the members of differ-
ent social clubs and the set of single-valued neutrosophic directed hyperedges C =
{C1,C2,C3,C4,C5,C6,C7,C8,C9,C10} represents the social clubs. Each directed
hyperedge(or social club) connects the people having some common characteristics
to each other. The social hypernetwork is shown in Fig. 9.20.

All the members of a social club connected through a single-valued neutrosophic
directed hyperedge share some common characteristics, including emotional intelli-
gence, good behavior, communication skills, and social sensitivity. For example, if
the hyperedge C1 describes the relation of social sensitivity (the capability to realize
the emotions and thoughts of others) among the members of this club. Then, the
truth-membership, indeterminacy, and falsity-membership values of each member
indicate their sensitivity, unpredictable behavior, and insensitivity toward the other
members of the club. The truth-membership, indeterminacy, and falsity-membership
values (0.6, 0.1, 0.3) of a single-valued neutrosophic directed hyperedgeC6 interpret
that 60%members have same characteristics, 30% have different, and 10%members
of this club have unpredictable behavior. We use the concept of line directed graph
to find out the common characteristics of different members of distinct clubs. By
routine calculations, we have
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Table 9.22 Algorithm for social networking

1. Input the number of directed hyperedges m of single-valued neutrosophic directed
hypergraph D = (V,H ).

2. Input the degree of membership of all directed hyperedges C1, C2, . . ., Cm.
3. Construct the single-valued neutrosophic line directed graph L(D) = (VL, HL) by taking

{C1, C2, C3, . . ., Cm} as set of vertices such that VL(Ci) = D(Ci), 1 ≤ i ≤ m.
4. Draw an edge between Ci and Cj if |Ci ∩ Cj| 	= ∅ and

HL(CiCj) = (min{TH (Ci),TH (Cj)},min{IH (Ci), IH (Cj)},max{FH (Ci),FH (Cj)}).
5.The edge CiCj describes the common characteristics of members of various clubs.

|supp(C1)
⋂

supp(C2)| = {Alex,Andy}, |supp(C3)
⋂

supp(C4)| = {∅},
|supp(C1)

⋂
supp(C3)| = {Andy}, |supp(C3)

⋂
supp(C5)| = {∅},

|supp(C1)
⋂

supp(C4)| = {Alex}, |supp(C3)
⋂

supp(C6)| = {Anna},
|supp(C1)

⋂
supp(C5)| = {Alen}, |supp(C3)

⋂
supp(C7)| = {Pal},

|supp(C1)
⋂

supp(C6)| = {∅}, |supp(C4)
⋂

supp(C5)| = {Ben},
|supp(C1)

⋂
supp(C7)| = {Dave}, |supp(C4)

⋂
supp(C6)| = {Alice,Clay},

|supp(C2)
⋂

supp(C3)| = {Andy}, |supp(C4)
⋂

supp(C7)| = {∅},
|supp(C2)

⋂
supp(C4)| = {Alex,Alice}, |supp(C5)

⋂
supp(C6)| = {∅},

|supp(C2)
⋂

supp(C5)| = {∅}, |supp(C5)
⋂

supp(C7)| = {∅},
|supp(C2)

⋂
supp(C6)| = {Alice,Anna}, |supp(C6)

⋂
supp(C7)| = {∅}.

|supp(C2)
⋂

supp(C7)| = {∅},

The line directed graph of social network single-valued neutrosophic directed hyper-
graph is given in Fig. 9.20 with dashed lines. Each common edge between two social
clubs describes the common characteristics of members of different clubs. For exam-
ple, the edge C1C2 shows that the members of C1 and C2 have 50% common charac-
teristics, 40% different to each other, and 20% they have unpredictable behavior. The
procedure followed in our example can be explained by means of simple algorithm
as given in Table9.22.

9.8 Complex Neutrosophic Hypergraphs

The motivation behind this work is the existence of indeterminate information of
periodic nature in hypernetwork models. A complex neutrosophic hypergraph model
plays an important role in handling complicated behavior of indeterminacy and incon-
sistency with periodic nature. The proposed model generalizes the complex fuzzy
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model as well as complex intuitionistic fuzzy model. To prove the applicability of
our proposed model, we consider two voting procedures. Suppose that 0.6 voters say
“yes”, 0.2 say “no”, and 0.2 are “undecided” in the first voting procedure and 0.3 vot-
ers say “yes”, 0.3 say “no”, and 0.4 are “undecided” in the second voting procedure.
We assume that these two procedures held at different days. It is clear that a complex
fuzzy set cannot handle this situation as it only depicts the truth-membership 0.6 of
voters but fails to represent the falsity and indeterminate degrees. Similarly, a com-
plex intuitionistic fuzzy set represents the truth 0.6 and falsity 0.2 degrees of voters
but it does not illustrate the 0.2 undecided voters. Now, if we set the amplitude terms
as the membership degrees of first voting procedure and phase terms as the mem-
bership degrees of second voting procedure, then we can illustrate this information
using a complex neutrosophic model as {0.6eι(0.3)2π , 0.2eι(0.3)2π , 0.2eι(0.4)2π }. Thus,
we apply the most generalized concept of complex neutrosophic sets to hypergraphs
to deal periodic nature of inconsistent information existing in hypernetworks.

Complex neutrosophic sets are defined using single-valued neutrosophic sets.

Definition 9.66 A complex neutrosophic setN on the universal set X is defined as

N = {(u,TN (u)eiφN (u), IN (u)eiϕN (u),FN (u)eiψN (u))|u ∈ X },

where i = √−1, TN (u), IN (u),FN (u) ∈ [0, 1] are amplitude terms, φN (u),
ϕN (u), ψN (u) ∈ [0, 2π ] are phase terms for truth, indeterminacy, and falsity
degrees, respectively, and for every u ∈ X , 0 ≤ TN (u) + IN (u) + FN (u) ≤ 3.

Definition 9.67 A complex neutrosophic relation is a complex neutrosophic set on
X × X given as

R = {(rs,TR(rs)eiφR(rs), IR(rs)e
iϕR(rs),FR(rs)e

iψR(rs))|rs ∈ X × X },

where i = √−1, TR : X × X → [0, 1], IR : X × X → [0, 1], FR : X × X → [0, 1]
characterize the amplitudes, and φR(rs), ϕR(rs), ψR(rs) ∈ [0, 2π ] characterize the
phase terms of truth, indeterminacy, and falsity degrees of R such that for all rs ∈
X × X , 0 ≤ TR(rs) + IR(rs) + FR(rs) ≤ 3.

Definition 9.68 A complex neutrosophic graph on X is an ordered pair G = (A,B),
where A is a complex neutrosophic set on X and B is complex neutrosophic relation
on X such that

TB(ab) ≤ min{TA(a),TA(b)},
IB(ab) ≤ min{IA(a), IA(b)},
FB(ab) ≤ max{FA(a),FA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)},
ϕB(ab) ≤ min{ϕA(a), ϕA(b)},
ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ TB(ab) + IB(ab) + FB(ab) ≤ 3, for all a, b ∈ X .



416 9 Some Types of Hypergraphs for Single-Valued Neutrosophic Structures

Fig. 9.21 Complex
neutrosophic graph

(c1,0.7ei(0.9)π ,0.6ei(0.8)π ,0.9ei(0.7)π )

(c2,0.5ei(0.5)π ,0.7ei(0.9)π ,0.9ei(0.7)π ) (c3,0.8ei(0.8)π ,0.6ei(0.9)π ,0.5ei(0.7)π)

(c
1c

2,
0.
5e

i(
0.
5)

π
,0
.6
ei
(0
.8
)π
,0
.6
ei
(0
.6
)π
)

(c2c3,0.5ei(0.5)π ,0.6ei(0.8)π ,0.4ei(0.6)π )

(c1 c3 ,0.7e i(0.8)π
,0.5e i(0.8)π

,0.4e i(0.6)π
)

Example 9.23 Consider a complex neutrosophic graph G = (A,B) on X = {c1, c2,
c3}, where A = {(c1, 0.7ei(0.9)π , 0.6ei(0.8)π , 0.9ei(0.7)π ), (c2, 0.5ei(0.5)π , 0.7ei(0.9)π ,
0.9ei(0.7)π ), (c3, 0.8ei(0.8)π , 0.6ei(0.9)π , 0.5ei(0.7)π )} and B = {(c1c2, 0.5ei(0.5)π ,
0.6ei(0.8)π , 0.6ei(0.6)π ), (c2c3, 0.5ei(0.5)π , 0.6ei(0.8)π , 0.4ei(0.6)π ), (c1c3, 0.7ei(0.8)π ,
0.5ei(0.8)π , 0.4ei(0.6)π )} are complex neutrosophic set and complex neutrosophic rela-
tion on X , respectively. The corresponding graph is shown in Fig. 9.21.

Definition 9.69 LetN1={(u,TN1(u)e
iφN1 (u), IN1(u)e

iϕN1 (u),FN1(u)e
iψN1 (u))|u ∈ X } and

N2 = {(u,TN2(u)e
iφN2 (u), IN2(u)e

iϕN2 (u),FN2(u)e
iψN2 (u))|u ∈ X } be two complex neu-

trosophic sets in X , then

(i) N1 ⊆ N2 ⇔ TN1(u) ≤ TN2(u), IN1(u) ≤ IN2(u), FN1(u) ≥ FN2(u), and φN1(u)
≤ φN2(u), ϕN1(u) ≤ ϕN2(u), ψN1(u) ≥ ψN2(u) for amplitudes and phase terms,
respectively, for all u ∈ X .

(ii) N1 = N2 ⇔ TN1(u) = TN2(u), IN1(u) = IN2(u), FN1(u) = FN2(u), and
φN1(u)=φN2(u), ϕN1(u) = ϕN2(u), ψN1(u) = ψN2(u) for amplitudes and phase
terms, respectively, for all u ∈ X .

(iii) N1 ∪ N2 = {(u,max{TN1(u),TN2(u)}eimax{φN1 (u),φN2 (u)},min{IN1(u), IN2(u)}
eimin{ϕN1 (u),ϕN2 (u)},min{FN1(u),FN2(u)}eimin{ψN1 (u),ψN2 (u)})|u ∈ N1 ∪ N2}.

(iv) N1 ∩ N2 = {(u,min{TN1(u),TN2(u)}eimin{φN1 (u),φN2 (u)},max{IN1(u), IN2(u)}
eimax{ϕN1 (u),ϕN2 (u)},max{FN1(u),FN2(u)}eimax{ψN1 (u),ψN2 (u)})|u ∈ N1 ∩ N2}.

Definition 9.70 The support of a complex neutrosophic set N = {(u,TN (u)eiφN (u),

IN (u)eiϕN (u)FN (u)eiψS (u))|u ∈ X } is defined as supp(N ) = {u|TN (u) 	= 0, IN (u) 	=
0,FN (u) 	= 1, 0 < φN (u), ϕN (u), ψN (u) < 2π}. The height of a complex neutro-
sophic set N = {(u,TN (u)eiφN (u), IN (u)eiϕN (u)FN (u)eiψS (u))|u ∈ X } is defined as

h(N ) = {max
u∈X TN (u)e

imax
u∈X φN (u)

,max
u∈X IN (u)e

imax
u∈X ϕN (u)

,min
u∈X FN (u)e

imin
u∈X ψN (u)}.

Definition 9.71 A complex neutrosophic hypergraph on X is defined as an ordered
pairH = (N , λ), whereN = {N1,N2, . . . ,Nk} is a finite family of complex neu-
trosophic sets onX andλ is a complex neutrosophic relation on complex neutrosophic
sets Nj’s such that
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(i)

Tλ({r1, r2, . . . , rl}) ≤ min{TNj (r1),TNj (r2), . . . , TNj (rl)},
Iλ({r1, r2, . . . , rl}) ≤ min{INj (r1), INj (r2), . . . , INj (rl)},
Fλ({r1, r2, . . . , rl}) ≤ max{FNj (r1),FNj (r2), . . . ,FNj (rl)}, (for amplitude terms)

φλ({r1, r2, . . . , rl}) ≤ min{φNj (r1), φNj (r2), . . . , φNj (rl)},
ϕλ({r1, r2, . . . , rl}) ≤ min{ϕNj (r1), ϕNj (r2), . . . , ϕNj (rl)},
ψλ({r1, r2, . . . , rl}) ≤ max{ψNj (r1), ψNj (r2), . . . , ψNj (rl)}, (for phase terms)

0 ≤ Tλ + Iλ + Fλ ≤ 3, for all r1, r2, . . . , rl ∈ X .

(ii)
⋃
j
supp(Nj) = X , for all Nj ∈ N .

Note that Ek = {r1, r2, . . . , rl} is the crisp hyperedge of H = (N , λ).

Definition 9.72 Let H = (N , λ) be a complex neutrosophic hypergraph. The
height ofH , denoted by h(H ), is defined as h(H )=(max λleimax φ,max λmeimax ϕ,

min λneiminψ), where λl = max Tξj (vk), φ = max φξj (vk), λm = max Iξj (vk), ϕ =
max ϕξj (vk),λn = minFξj (vk),ψ = minψξj (vk). Here,Tξj (vk), Iξj (vk),Fξj (vk) denote
the truth, indeterminacy, and falsity degrees of vertex vk to hyperedge ξj, respectively.

Definition 9.73 Let H = (N , λ) be a complex neutrosophic hypergraph. Sup-
pose that α, β, γ ∈ [0, 1] and Θ,Φ,Ψ ∈ [0, 2π ] such that 0 ≤ α + β + γ ≤ 3.
The (αeiΘ, βeiΦ, γ eiΨ )-level hypergraph of H is defined as an ordered pair
H (αeiΘ,βeiΦ,γ eiΨ ) = (N (αeiΘ,βeiΦ,γ eiΨ ), λ(αeiΘ,βeiΦ,γ eiΨ )), where

(i) λ(αeiΘ,βeiΦ,γ eiΨ ) = {λ(αeiΘ,βeiΦ,γ eiΨ )

j : λj ∈ λ} and λ
(αeiΘ,βeiΦ,γ eiΨ )

j = {u ∈ X : Tλj

(u) ≥ α, φλj (u) ≥ Θ, Iλj (u) ≥ β, ϕλj (u) ≥ Φ, and Fλj (u) ≤ γ,ψλj (u) ≤ Ψ },
(ii) N (αeiΘ,βeiΦ,γ eiΨ ) = ⋃

λj∈λ

λ
(αeiΘ,βeiΦ,γ eiΨ )

j .

Note that (αeiΘ, βeiΦ, γ eiΨ )-level hypergraph of H is a crisp hypergraph.

Definition 9.74 Let H = (N , λ) be a complex neutrosophic hypergraph and for
0 < α ≤ T (h(H )), 0 < β ≤ I(h(H )), γ ≥ F(h(H )) > 0, 0 < Θ ≤ φ(h(H )),
0 < Φ ≤ ϕ(h(H )), andΨ ≥ ψ(h(H )) > 0, letH (αeiΘ,βeiΦ,γ eiΨ ) = (N (αeiΘ,βeiΦ,γ eiΨ ),

λ(αeiΘ,βeiΦ,γ eiΨ )) be the level hypergraph of H . The sequence of complex numbers
{(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1), (α2eiΘ2 , β2eiΦ2 , γ2eiΨ2), . . . , (αneiΘn , βneiΦn , γneiΨn)} such
that 0 < α1 < α2 < · · · < αn = T (h(H )), 0 < β1 < β2 < · · · < βn = I(h(H )),γ1 >

γ2 > · · · > γn = F(h(H )) > 0, 0 < Θ1 < Θ2 < · · · < Θn = φ(h(H )), 0 < Φ1 <

Φ2

< · · · < Φn = ϕ(h(H )), and Ψ1 > Ψ2 > · · · > Ψn = ψ(h(H )) > 0 satisfying the
conditions,

(i) if αk+1 < α′ ≤ αk , βk+1 < β ′ ≤ βk , γk+1 > γ ′ ≥ γk , Θk+1 < φ ≤ Θk , Φk+1 <

ϕ ≤ Φk , Ψk+1 > ψ ≥ Ψk , then λ(α′eiφ,β ′eiϕ,γ ′eiψ ) = λ(αk eiΘk ,βk eiΦk ,γk eiΨk ), and
(ii) λ(αk eiΘk ,βk eiΦk ,γk eiΨk ) ⊂ λ(αk+1e

iΘk+1 ,βk+1e
iΦk+1 ,γk+1e

iΨk+1 ),
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Fig. 9.22 Complex
neutrosophic hypergraph H

(r1,0.8ei(0.8
)2π ,0.5ei(0.5)2π ,0.4ei(0.4)2π ) (r2 ,0.7ei(0.7)2π,0.4ei(0.4)2π,0.3ei(0.3)2π)

(r3,0.6e
i(0.6)2π,0.4e

i(0.4)2π,0.3e
i(0.3)2π)

(r4 ,0.9e i(0.9)2π
,0.7e i(0.7)2π

,0.6e i(0.6)2π
)

(r5,0.3ei(0.3)2π ,0.2ei(0.2)2π ,0.1ei(0.1)2π )

(r 6
,0.
3e
i(0
.3)
2π ,
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e
i(0
.2)
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0.1
e
i(0
.1)
2π )

(0.8e
i(0.8)2π

,0.5e
i(0.5)2π

,0.4e
i(0.4)2π)

(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π)

(0.3e i(0.3)2π
,0.2e i(0.2)2π

,0.1e i(0.1)2π
) (0

.3e
i(0
.3)
2π ,
0.2
e
i(0
.2)
2π ,
0.1
e
i(0
.1)
2π )

is called the fundamental sequence of H = (N , λ), denoted by Fs(H ). The
set of (αjeiΘj , βjeiΦj , γjeiΨj )-level hypergraphs {H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ),

H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 ), . . . ,H (αneiΘn ,βneiΦn ,γneiΨn )} is called the set of core hypergraphs
or the core set of H , denoted by c(H ).

Example 9.24 Consider a complex neutrosophic hypergraphH = (N , λ) on X =
{r1, r2, r3, r4, r5, r6}. The complexneutrosophic relationλ is given asλ({r1, r2, r3}) =
(0.6ei(0.6)2π , 0.4ei(0.4)2π , 0.3ei(0.3)2π ), λ({r1, r4}) = (0.8ei(0.8)2π , 0.5ei(0.5)2π ,

0.4ei(0.4)2π ), λ({r3, r4, r5}) = (0.3ei(0.3)2π , 0.2ei(0.2)2π , 0.1ei(0.1)2π ), and λ({r1, r5,
r6}) = (0.3ei(0.3)2π , 0.2ei(0.2)2π , 0.1ei(0.1)2π ). The corresponding complex neutro-
sophic hypergraph is shown in Fig. 9.22. Let

(α1e
iΘ1 , β1e

iΦ1 , γ1e
iΨ1) = (0.9ei(0.9)2π , 0.7ei(0.7)2π , 0.6ei(0.6)2π ),

(α2e
iΘ2 , β2e

iΦ2 , γ2e
iΨ2) = (0.8ei(0.8)2π , 0.5ei(0.5)2π , 0.4ei(0.4)2π ),

(α3e
iΘ3 , β3e

iΦ3 , γ3e
iΨ3) = (0.6ei(0.6)2π , 0.4ei(0.4)2π , 0.3ei(0.3)2π ),

(α4e
iΘ4 , β4e

iΦ4 , γ4e
iΨ4) = (0.3ei(0.3)2π , 0.2ei(0.2)2π , 0.1ei(0.1)2π ).

Note that the sequence {(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1), (α2eiΘ2 , β2eiΦ2 , γ2eiΨ2),
(α3eiΘ3 , β3eiΦ3 , γ3eiΨ3), (α4eiΘ4 , β4eiΦ4 , γ4eiΨ4)} satisfies all the conditions of
Definition9.74. Thus, it is a fundamental sequence of H . The corresponding
(αjeiΘj , βjeiΦj , γjeiΨj )-level hypergraphs are shown in Figs. 9.23, 9.24, and 9.25.

Definition 9.75 A complex neutrosophic hypergraph H = (N , λ) is ordered if
c(H ) is ordered, i.e., if c(H ) = {H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ),H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 ), . . . ,

H (αneiΘn ,βneiΦn ,γneiΨn )}, then {H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ) ⊂ H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 ) ⊂ · · · ⊂
H (αneiΘn ,βneiΦn ,γneiΨn )}.
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Fig. 9.23 H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ),
H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 )-level
hypergraphs

r1

r4

r4

H (α1e
iΘ1 ,β1eiΦ1 ,γ1eiΨ1 )

H (α2e
iΘ2 ,β2eiΦ2 ,γ2eiΨ2 )

Fig. 9.24 H (α3eiΘ3 ,β3eiΦ3 ,γ3eiΨ3 )-
level hypergraph

r1
r2 r3

r4

Fig. 9.25 H (α4eiΘ4 ,β4eiΦ4 ,γ4eiΨ4 )-
level hypergraph

r1 r2
r3

r4 r5 r6

A complex neutrosophic hypergraphH = (N , λ) is simply ordered if c(H ) is
simply ordered, i.e., if e ∈ Ej+1 \ Ej, then e � Xj.

Example 9.25 Consider a complexneutrosophic hypergraphH = (N , λ) as shown
in Fig. 9.22. The set of core hypergraphs is given as

c(H ) = {H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ),H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 ),

H (α3eiΘ3 ,β3eiΦ3 ,γ3eiΨ3 ),H (α4eiΘ4 ,β4eiΦ4 ,γneiΨ4 )},
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where

H (α1e
iΘ1 ,β1e

iΦ1 ,γ1e
iΨ1 ) = (X1,E1), X1 = {r4}, E1 = {},

H (α2e
iΘ2 ,β2e

iΦ2 ,γ2e
iΨ2 ) = (X2,E2), X2 = {r1, r4}, E2 = {{r1, r4}},

H (α3e
iΘ3 ,β3e

iΦ3 ,γ3e
iΨ3 ) = (X3,E3), X3 = {r1, r2, r3, r4}, E3 = {{r1, r4}, {r1, r2, r3}},

H (α4e
iΘ4 ,β4e

iΦ4 ,γ4e
iΨ4 ) = (X4,E4), X4 = {r1, r2, r3, r4, r5, r6}, E4 = {{r1, r4}, {r1, r2, r3},

{r1, r5, r6}, {r3, r4, r5}}.

Note that

H (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ) ⊆ H (α2eiΘ2 ,β2eiΦ2 ,γ2eiΨ2 ) ⊆ H (α3eiΘ3 ,β3eiΦ3 ,γ3eiΨ3 ) ⊆ H (α4eiΘ4 ,β4eiΦ4 ,γ4eiΨ4 ).

Hence, H = (N , λ) is an ordered complex neutrosophic hypergraph. Also, H =
(N , λ) is simply ordered.

Definition 9.76 Acomplex neutrosophic hypergraphH = (N , λ)withFs(H ) =
{(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1), (α2eiΘ2 , β2eiΦ2 , γ2eiΨ2), . . . , (αneiΘn , βneiΦn , γneiΨn)} is called
sectionally elementary if for every λj ∈ λ and for k ∈ {1, 2, . . . , n},
λ

(αeiΘ,βeiΦ,γ eiΨ )

j = λ
(αk eiΘk ,βk eiΦk ,γk eiΨk )

j , for allα ∈ (αk+1, αk ],β ∈ (βk+1, βk ],γ ∈ (γk+1, γk ],
Θ ∈ (Θk+1,Θk ], Φ ∈ (Φk+1, Φk ], and Ψ ∈ (Ψk+1, Ψk ].
Definition 9.77 LetN be a complex neutrosophic set on X . The lower truncation of
N at level (αeiΘ, βeiΦ, γ eiΨ ), 0 < α, β, γ ≤ 1, 0 < Θ,Φ,Ψ ≤ 2π is the complex
neutrosophic set N[(αeiΘ,βeiΦ,γ eiΨ )] defined by

TN[(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iφN[(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =

{
TN (x)eiφN (x), if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

0, otherwise.

IN[(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iϕN[(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =

{
IN (x)eiϕN (x), if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

0, otherwise.

FN[(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iψN[(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =

{
FN (x)eiψN (x), if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

0, otherwise.

Definition 9.78 LetN be a complex neutrosophic set on X . The upper truncation of
N at level (αeiΘ, βeiΦ, γ eiΨ ), 0 < α, β, γ ≤ 1, 0 < Θ,Φ,Ψ ≤ 2π is the complex
neutrosophic set N [(αeiΘ,βeiΦ,γ eiΨ )] defined by

TN [(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iφ

N [(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =
{

αeiΘ, if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

TN (x)eiφN (x), otherwise.
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(r1,0.8ei(0.8)2
π ,0.5ei(0.5)2π ,0.4ei(0.4)2π) (r2,0.7ei(0.7)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )

(r3,0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π)

(r4 ,0.9e i(0.9)2π
,0.7e i(0.7)2π

,0.6e i(0.6)2π
)

(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )

(0.8e i(0.8)2π
,0.5e i(0.5)2π

,0.4e i(0.4)2π
)

Fig. 9.26 Lower truncation of H

IN [(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iϕ

N [(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =
{

βeiΦ, if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

IN (x)eiϕN (x), otherwise.

FN [(αeiΘ ,βeiΦ ,γ eiΨ )](x)e
iψ

N [(αeiΘ ,βeiΦ ,γ eiΨ )] (x) =
{

γ eiΨ , if x ∈ N (αeiΘ,βeiΦ,γ eiΨ ),

FN (x)eiψN (x), otherwise.

Definition 9.79 Let H = (N , λ) be a complex neutrosophic hypergraph. The
lower truncation H[(αeiΘ,βeiΦ,γ eiΨ )] of H at level (αeiΘ, βeiΦ, γ eiΨ ) is defined as
H[(αeiΘ,βeiΦ,γ eiΨ )] = (N[(αeiΘ,βeiΦ,γ eiΨ )], λ[(αeiΘ,βeiΦ,γ eiΨ )])), where N[(αeiΘ,βeiΦ,γ eiΨ )] =
{N[(αeiΘ,βeiΦ,γ eiΨ )]|N ∈ N }.

The upper truncation H [(αeiΘ,βeiΦ,γ eiΨ )] of H at level (αeiΘ, βeiΦ, γ eiΨ ) is
defined as H [(αeiΘ,βeiΦ,γ eiΨ )] = (N [(αeiΘ,βeiΦ,γ eiΨ )], λ[(αeiΘ,βeiΦ,γ eiΨ )])), where
N [(αeiΘ,βeiΦ,γ eiΨ )] = {N [(αeiΘ,βeiΦ,γ eiΨ )]|N ∈ N }.
Definition 9.80 LetN be a complex neutrosophic set onX . Then, each (αeiΘ, βeiΦ,

γ eiΨ ), such that α ∈ (0, t(h(N ))), β ∈ (0, i(h(N ))), γ ∈ (0, f (h(N ))), Θ ∈
(0, φ(h(N ))), Ψ ∈ (0, ϕ(h(N ))), and Ψ ∈ (0, ψ(h(N ))), for which N (αeiθ ,βeiφ,γ eiψ )

⊂ N (αeiΘ,βeiΦ,γ eiΨ ), is called a transition level of N .

Example 9.26 Consider a complexneutrosophic hypergraphH = (N , λ) as shown
in Fig. 9.22. The (0.6ei(0.6)2π , 0.4ei(0.4)2π , 0.3ei(0.3)2π )-level hypergraph of H is
shown in Fig. 9.24. Then, the lower truncation H[(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )] =
(N[(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )], λ[(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )]) ofH is a complex neu-
trosophic hypergraph on X1 = {r1, r2, r3, r4} as given in Fig. 9.26. Note that
X1 = ⋃

N∈N
N[(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )]. The upper truncation H [(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )] =

(N [(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )], λ[(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )]) of H is a complex neutrosophic
hypergraph on X = {r1, r2, r3, r4, r5, r6} as given in Fig. 9.27.
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(r1,0.6ei(0.6)2
π ,0.4ei(0.4)2π ,0.3ei(0.3)2π ) (r2,0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )

(r3,0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π)

(r4 ,0.6e i(0.6)2π
,0.4e i(0.4)2π

,0.3e i(0.3)2π
)

(0.6ei(0.6)2π ,0.4ei(0.4)2π ,0.3ei(0.3)2π )

(0.8e i(0.8)2π
,0.5e i(0.5)2π

,0.4e i(0.4)2π
)

(r5 ,0.3ei(0.3)2π ,0.2ei(0.2)2π ,0.1ei(0.1)2π)

(r6,0.3ei(0.3)2π ,0.2ei(0.2)2π ,0.1ei(0.1)2π)

Fig. 9.27 Upper truncation of H

Definition 9.81 Let H = (N , λ) be a complex neutrosophic hypergraph. A com-
plex neutrosophic transversal τ is a complex neutrosophic set of X satisfying the
condition ξ h(ξ) ∩ τ h(ξ) 	= ∅, for all ξ ∈ λ, where h(ξ) is the height of ξ .

A minimal complex neutrosophic transversal τ1 is the complex neutrosophic
transversal ofH having the property that if τ ⊂ τ1, then τ is not a complex neutro-
sophic transversal of H .

Let us denote the family of minimal complex neutrosophic transversals of H by
Tr(H ).

Definition 9.82 A complex neutrosophic transversal τ having the property that
τ (αeiΘ,βeiΦ,γ eiΨ ) ∈Tr(H (αeiΘ,βeiΦ,γ eiΨ )), for allα, β, γ ∈ [0, 1], andΘ,Φ,Ψ ∈ [0, 2π ]
is called the locally minimal complex neutrosophic transversal ofH . The collection
of all locally minimal complex neutrosophic transversals of H is represented by
T ∗
r (H ).
Note that T ∗

r (H ) ⊆ Tr(H ), but the converse is not generally true.

Definition 9.83 LetN be a complex neutrosophic set onX . Then, the basic sequence
of N determined by N , denoted by Bs(N ), is defined as {(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1)N ,

(α2eiΘ2 , β2eiΦ2 , γ2eiΨ2)N , . . . , (αneiΘn , βneiΦn , γneiΨn)N }, where
(i) α1 > α2 > · · · > αn, β1 > β2 > · · · > βn, γ1 < γ2 < · · · < γn, Θ1 > Θ2 >

· · · > Θn, Φ1 > Φ2 > · · · > Φn, Ψ1 < Ψ2 < · · · < Ψn,
(ii) (α1eiΘ1 , β1eiΦ1 , γ1eiΨ1) = h(N ),
(iii) {(α2eiΘ2 , β2eiΦ2 , γ2eiΨ2)N , . . . , (αneiΘn , βneiΦn , γneiΨn)N } are the transition lev-

els of N .

Definition 9.84 Let Bs(N ) = {(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1)N , (α2eiΘ2 , β2eiΦ2 , γ2eiΨ2)N ,

. . . , (αneiΘn , βneiΦn , γneiΨn)N } be the basic sequence of N . Then, the set of basic
cuts Bc(N ) is defined as Bc(N ) = {N (αeiΘ,βeiΦ,γ eiΨ )|(αeiΘ, βeiΦ, γ eiΨ ) ∈ Bs(N )}.
Lemma 9.1 Let H = (N , λ) be a complex neutrosophic hypergraph with
Fs(H ) = {(α1eiΘ1 , β1eiΦ1 , γ1eiΨ1), (α2eiΘ2 , β2eiΦ2 , γ2eiΨ2), . . . , (αneiΘn , βneiΦn ,

γneiΨn)}. Then,
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(i) If (αeiΘ, βeiΦ, γ eiΨ ) is a transition level of τ ∈ Tr(H ), then there exists
an ε > 0 such that for all α1 ∈ (α, α + ε], β1 ∈ (β, β + ε], γ1 ∈ (γ, γ +
ε], Θ1 ∈ (Θ,Θ + ε], Φ1 ∈ (Φ,Φ + ε], Ψ1 ∈ (Ψ,Ψ + ε], τ (αeiΘ,βeiΦ,γ eiΨ ) is a
minimal H (αeiΘ,βeiΦ,γ eiΨ ) transversal extension of τ (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ), i.e., if
τ (α1eiΘ1 ,β1eiΦ1 ,γ1eiΨ1 ) ⊆ C ⊂ τ (αeiΘ,βeiΦ,γ eiΨ ), then C is not a transversal of
H (αeiΘ,βeiΦ,γ eiΨ ).

(ii) Tr(H ), i.e., the collection of minimal transversals ofH is sectionally elemen-
tary.

(iii) Fs(Tr(H )) is properly contained inFs(H ).
(iv) τ (αeiΘ,βeiΦ,γ eiΨ ) ∈ Tr(H (αeiΘ,βeiΦ,γ eiΨ )), for all τ ∈ Tr(H ) and for every α2 <

α ≤ α1,β2 < β ≤ β1,γ2 > γ ≥ γ1,Θ2 < Θ ≤ Θ1,Φ2 < Φ ≤ Φ1,Ψ2 > Ψ ≥
Ψ1.

Definition 9.85 Let H = (N , λ) be a complex neutrosophic hypergraph. The
complex neutrosophic line graph of H is defined as an ordered pair l(H ) =
(Nl, λl), where Nl = λ and there exists an edge between two vertices in l(H )

if |supp(λj) ∩ supp(λk)| ≥ 1, for all λj, λk ∈ λ. The membership degrees of l(H )

are given as

(i) Nl(Ek) = λ(Ek),
(ii) λl(EjEk) = (min{Tλ(Ej),Tλ(Ek)}eimin{φλ(Ej),φλ(Ek )},min{Iλ(Ej), Iλ(Ek)}

eimin{ϕλ(Ej),ϕλ(Ek )},max{Fλ(Ej), Fλ(Ek)}eimax{ψλ(Ej),ψλ(Ek )}).

9.9 T-Related Complex Neutrosophic Hypergraphs

Definition 9.86 A complex neutrosophic hypergraph H = (N , λ) is N -tempered
complex neutrosophic hypergraph ofH = (X ,E) if there existsH = (X ,E), a crisp
hypergraph, and a complex neutrosophic set N such that λ = {δe|e ∈ E}, where

Tδ(u)e
ιφδ(u) =

{
min{TN (x)eιmin{φN (x)}|x ∈ e}, if u ∈ e,

0, otherwise.

Iδ(u)e
ιϕδ(u) =

{
min{IN (x)eιmin{ϕN (x)}|x ∈ e}, if u ∈ e,

0, otherwise.

Fδ(u)e
ιψδ(u) =

{
max{FN (x)eιmax{ψN (x)}|x ∈ e}, if u ∈ e,

0, otherwise

An N -tempered complex neutrosophic hypergraph H = (N , λ) determined by H
and complex neutrosophic set N is denoted by N ⊗ H .

Definition 9.87 A pair (G, J ) of crisp hypergraphs is T -related if whenever g is a
minimal transversal of G, k is any transversal of J , and g ⊆ k, then there exists a
minimal transversal t of J such that g ⊆ t ⊆ k.
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Definition 9.88 Let H = (N , λ) be a complex neutrosophic hypergraph with
Fs(H ) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), . . . , (αneιΘn , βneιΦn ,

γneιΨn)}. Then, H is T -related if from the core set

c(H ) = {H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), . . . ,H (αneιΘn ,βneιΦn ,γneιΨn )}

ofH , every successive ordered pair (H
(αj e

ιΘj,βj e
ιΦj,γj e

ιΨj )
,H

(αj−1e
ιΘj−1,βj−1e

ιΦj−1,γj−1e
ιΨj−1 )

)

is T -related.
IfFs(H ) contains only one element, H is considered to be trivially T -related.

Theorem 9.15 LetH = (N , λ) be a T-related complex neutrosophic hypergraph,
then Tr(H ) = T ∗

r (H ).

Proof Let H = (N , λ) be a T -related complex neutrosophic hypergraph with
Fs(H ) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), . . . , (α1eιΘn , βneιΦn ,

γneιΨn)}. Then, there arises two cases:
Case (i) First we consider that Fs(H ) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)}. Then,

Lemma9.1 implies that for each ξ ∈ Tr(H ), ξ (αeιΘ,βeιΦ ,γ eιΨ ) ∈Tr(H (αeιΘ,βeιΦ,γ eιΨ )),
for all 0 < α ≤ t(h(H )), 0 < β ≤ i(h(H )), γ ≥ f (h(H )) > 0, 0 < Θ ≤
φ(h(H )), 0 < Φ ≤ ϕ(h(H )), andΨ ≥ ψ(h(H )) > 0.Thus,Tr(H ) = T ∗

r (H ).
Case (ii) We now suppose that |Fs(H )| ≥ 2. Since, T ∗

r (H ) ⊆ Tr(H ), we just
have to prove that Tr(H ) ⊆ T ∗

r (H ). Let ξ ∈ Tr(H ), and ξ (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊂
ξ (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ). As ξ (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ∈ Tr(H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )),
ξ (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ∈ Tr(H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), and the ordered pair
(H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )) is T -related. If ξ (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) /∈
Tr(H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), then there exists a minimal transversal τ of
H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) such that ξ (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ τ2 ⊂ ξ (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ).
Hence, we obtain a complex neutrosophic transversal δ of H such that δ ⊂ ξ .
Let ξ (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) = τ1 and δ = ξ (α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) ∪ ρ2 ∩ ρ1, where ρk

is an elementary complex neutrosophic set having support τk and height
(αkeιΘk , βkeιΦk , γkeιΨk ), k = 1, 2.This contradiction shows that ξ (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )

∈ Tr(H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )).
Then, Lemma9.1 implies that ξ (αeιΘ ,βeιΦ ,γ eιΨ ) ∈ Tr(H (αeιΘ ,βeιΦ ,γ eιΨ )), for α ∈
(α3, α1], β ∈ (β3, β1], γ ∈ (γ3, γ1],Θ ∈ (Θ3,Θ1],Φ ∈ (Φ3, Φ1], Ψ ∈ (Ψ3, Ψ1].
Continuing the same recursive procedure, we show that ξ (αeιΘ ,βeιΦ ,γ eιΨ ) ∈
Tr(H (αeιΘ ,βeιΦ ,γ eιΨ )), for each α ∈ (0, α1], β ∈ (0, β1], γ ∈ (0, γ1], Θ ∈ (0,Θ1],
Φ ∈ (0, Φ1], Ψ ∈ (0, Ψ1].

Example 9.27 LetH = (N , λ) be a complex neutrosophic hypergraph represented
by the incidence matrix as given in Table9.23. Note that

λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ) = {{j1, j2}, {j1, j3}, {j2, j3}},
λ(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π ) = {{j1, j2, j4}, {j1, j3, j4}, {j2, j3, j5}},
λ(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π ) = {{j1, j2, j4, j5}, {j1, j3, j4, j5}, {j2, j3, j4, j5}}.
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Table 9.23 Incidence matrix of complex neutrosophic hypergraph H = (N , λ)

I λ1 λ2 λ3

j1 (0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

(0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

(0, 0, 1)

j2 (0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

(0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

j3 (0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

(0.9eι(0.9)2π , 0.9eι(0.9)2π ,

0.9eι(0.9)2π )

j4 (0.6eι(0.6)2π , 0.6eι(0.6)2π ,

0.6eι(0.6)2π )

(0.6eι(0.6)2π , 0.6eι(0.6)2π ,

0.6eι(0.6)2π )

(0.3eι(0.3)2π , 0.3eι(0.3)2π ,

0.3eι(0.3)2π )

j5 (0.3eι(0.3)2π , 0.3eι(0.3)2π ,

0.3eι(0.3)2π )

(0.3eι(0.3)2π , 0.3eι(0.3)2π ,

0.3eι(0.3)2π )

(0.6eι(0.6)2π , 0.6eι(0.6)2π ,

0.6eι(0.6)2π )

Clearly, Fs(H ) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (0.6eι(0.6)2π , 0.6eι(0.6)2π ,

0.6eι(0.6)2π ), (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π )}. Also, Tr(H ) = {τ1, τ2, τ3} =
T ∗
r (H ), where

τ1 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (j2, 0.9e
ι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π )},

τ2 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (j3, 0.9e
ι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π )},

τ3 = {(j2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (j3, 0.9e
ι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π )}.

Since, {j4, j5} ∈ Tr (H (0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π )) and {j4} ∈ Tr (H (0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π )),
i.e., no minimal transversal of H (0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π ) contains {j4, j5}. Thus,
(H (0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π ),H (0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π )) is not T -related, there-
fore,H is not T -related.

Theorem 9.16 LetH = (N , λ) be an ordered complex neutrosophic hypergraph,
then Tr(H ) = T ∗

r (H ) ⇔ H is T -related.

Proof In view of Theorem9.15, this is enough to prove that Tr(H ) = T ∗
r (H )

implies H is T -related. Suppose that Fs(H ) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1),

(α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), . . . , (αneιΘn , βneιΦn , γneιΨn)} and H is not T -related.
Here, we obtain ξ ∈ Tr(H ) such that ξ /∈ T ∗

r (H ). Assume that the ordered pair

(H (αje
ιΘj ,βje

ιΦj ,γje
ιΨj ), H (αj+1e

ιΘj+1 ,βj+1e
ιΦj+1 ,γj+1e

ιΨj+1 )) is not T -related and c(H ) =
{H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), . . . ,H (αneιΘn ,βneιΦn ,γneιΨn )}. Then, there
exists a complex neutrosophic transversal τk such that τk ∈ Tr(H (αk eιΘk ,βk eιΦk ,γk eιΨk ))

and τk ⊂ τk+1, where

τk+1 ∈ Tr(H
(αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ))

satisfying the condition that N is not a minimal transversal of
H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ), for every N , τk ⊆ N ⊆ τk+1. Since, H = (N , λ) is
an ordered complex neutrosophic hypergraph, then H (αk eιΘk ,βk eιΦk ,γk eιΨk ) ⊆
H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ), therefore, τk is not a transversal of
H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ), for otherwise τk ∈ Tr(H (αk+1e
ιΘk+1 ,βk+1e

ιΦk+1 ,γk+1e
ιΨk+1 )),



426 9 Some Types of Hypergraphs for Single-Valued Neutrosophic Structures

which is a contradiction to our assumption. Let δ be an arbitrary CNT of
H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ) such that τk ⊆ δ ⊆ τk+1. Now, if τk ⊆ Q ⊂ δ, then
Q is not a crisp transversal of H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ). As we know that
δ /∈ Tr(H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 )) and τk ⊂ δ. Thus, we can obtain a minimal
CNT ξ of H such that ξ /∈ T ∗

r (H ). First, we compute a minimal CNT ξ1 of
H (αk eιΘk ,βk eιΦk ,γk eιΨk ), where τk is the top level cut of ξ1 at level (αkeιΘk , βkeιΦk , γkeιΨk )

and satisfies ξ
(αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 )

1 ⊆ τk+1. Then, Lemma9.1 implies that the

(αk+1eιΘk+1 , βk+1eιΦk+1 , γk+1eιΨk+1)-cut, ξ
(αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 )

1 of ξ1
should equal to some δ that satisfies τk ⊆ δ ⊆ τk+1 and τk ⊆ Q ⊂ δ, then
Q is not a crisp transversal of H (αk+1e

ιΘk+1 ,βk+1e
ιΦk+1 ,γk+1e

ιΨk+1 ). Thus, we obtain
ξ1 ∈ Tr(H (αk eιΘk ,βk eιΦk ,γk eιΨk )) \ T ∗

r (H (αk eιΘk ,βk eιΦk ,γk eιΨk )).
We now assume that (αkeιΘk , βkeιΦk , γkeιΨk ) ⊂ (α1eιΘ1 , β1eιΦ1 , γ1eιΨ1). Since,

H is ordered, then there exists an ordered sequence tk ⊇ tk−1 ⊃ · · · ⊇ t1 of crisp
minimal transversals of H (αk eιΘk ,βk eιΦk ,γk eιΨk ), H (αk−1e

ιΘk−1 ,βk−1e
ιΦk−1 ,γk−1e

ιΨk−1 ), · · · ,
H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ), respectively. Let ρl be an elementary CNSS having support tl
and height ξl . Then, ξ = ρ1 ∪ · · · ∪ ρl−1 ∪ δ such that ξ ∈ Tr(H ) and ξ /∈ T ∗

r (H ).

Corollary 9.2 Let H = (N , λ) be an ordered complex neutrosophic hypergraph
with Fs(H ) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), . . . , (αneιΘn ,

βneιΦn , γneιΨn)} and

c(H ) = {H (α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H (α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), . . . ,H (αneιΘn ,βneιΦn ,γneιΨn )}.

If an ordered pair (H (αje
ιΘj ,βje

ιΦj ,γje
ιΨj ),H (αj+1e

ιΘj+1 ,βj+1e
ιΦj+1 ,γj+1e

ιΨj+1 )) is not
T -related, then

(i) (αj+1eιΘj+1 , βj+1eιΦj+1 , γj+1eιΨj+1) ∈ Fs(Tr(H )).
(ii) (αj+1eιΘj+1 , βj+1eιΦj+1 , γj+1eιΨj+1) is a transition level for ξ ∈ Tr(H ) \ T ∗

r (H ).

Example 9.28 Let N = {(u, tN (u)eιφN (u), iN (u)eιϕN (u), fN (u)eιψN (u))|u ∈ X } be a
complex neutrosophic set on X = {a1, a2, a3, a4, a5, a6, a7} such that N (a7) =
(0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π ) and N (a) = (0.9eι(0.9)2π , 0.9 eι(0.9)2π ,

0.9eι(0.9)2π ), for all a ∈ X \ {a7}. LetH = (X ,E) be a crisp hypergraph on X , where
E1 = {a1, a2, a4}, E2 = {a1, a3, a4}, E3 = {a4, a5, a6}, E4 = {a1, a5}, and E5 = {a5,
a7}. Then, N -tempered complex neutrosophic hypergraphH = (N , λ) is given by
the incidence matrix as shown in Table9.24.

Here, 0 = (0, 0, 1), 0.9eι(0.9)2π = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), and
0.4eι(0.4)2π = (0.4eι(0.4)2π , 0.4 eι(0.4)2π , 0.4eι(0.4)2π ). Note that Fs(H ) = {(0.9eι(0.9)2π ,

0.9eι(0.9)2π , 0.9eι(0.9)2π ), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π )} and c(H ) =
{H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ),H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )}, where

H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ) = (X1}, E1), X1 = {a1, a2, a3, a4, a5, a6},
E1 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}},

H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π ) = (X2, E2), X2 = {a1, a2, a3, a4, a5, a6, a7},
E2 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}{a5, a7}}.
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Table 9.24 Incidence matrix of N -tempered complex neutrosophic hypergraph H

H λ1 λ2 λ3 λ4 λ5

a1 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0.9eι(0.9)2π 0

a2 0.9eι(0.9)2π 0 0 0 0

a3 0 0.9eι(0.9)2π 0 0 0

a4 0.9eι(0.9)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0

a5 0 0 0.9eι(0.9)2π 0.9eι(0.9)2π 0.4eι(0.4)2π

a6 0 0 0.9eι(0.9)2π 0 0

a7 0 0 0 0 0.4eι(0.4)2π

Note that

{a1, a4} ∈ Tr(H
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )), {a1, a4} /∈ Tr(H

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )),

i.e., {a1, a4, a5} is a transversal of H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π ) but not a minimal
transversal. Therefore, the ordered pair (H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ),

H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )) as well as H is not T -related.

Remark 9.7 • Example 9.28 shows that there exists some ordered complex neutro-
sophic hypergraphs that are not T -related.

• Every simply ordered complex neutrosophic hypergraph H = (N , λ) satis-
fies (T ∗

r (H )(αe
ιΘ ,βeιΦ ,γ eιΨ ) = Tr(H (αeιΘ ,βeιΦ ,γ eιΨ )), for all α ∈ (0, t(h(H ))], β ∈

(0, i(h(H ))], γ ∈ (0, f (h(H ))], Θ ∈ (0, φ(h(H ))], Φ ∈ (0, ϕ(h(H ))], Ψ ∈
(0, ψ(h(H ))].

Lemma 9.2 Let H = (X ,E) be a crisp hypergraph and j be an arbitrary vertex of
H. Then, j ∈ E ∈ Tr(H ) ⇔ j ∈ Ek ∈ E such that for any hyperedge El 	= Ek of H,
El � Ek.

Proposition 9.12 Let H1 = (X1,E1) be a crisp partial hypergraph of H = (X ,E)

that is obtained by removing those hyperedges of H = (X ,E) that contain any other
edges properly. Then,

(i) Tr(H1) = Tr(H ),

(ii) ∪Tr(H ) = X1.

Definition 9.89 LetH = (N , λ) be a complex neutrosophic hypergraph. The join
of H , denoted by J (H ), is defined as J (H ) = ⋃

ρ∈λ

ρ, where λ is the complex

neutrosophic hyperedge set of H .
For every α ∈ (0, t(h(H ))], β ∈ (0, i(h(H ))], γ ∈ (0, f (h(H ))], Θ ∈

(0, φ(h(H ))],Φ ∈ (0, ϕ(h(H ))],Ψ ∈ (0, ψ(h(H ))], the (αeιΘ , βeιΦ, γ eιΨ )-level
cut of J (H ), i.e., (J (H ))(αe

ιΘ ,βeιΦ ,γ eιΨ ) is the set of vertices of (αeιΘ , βeιΦ, γ eιΨ )-
level hypergraph ofH , i.e., (J (H ))(αe

ιΘ ,βeιΦ ,γ eιΨ ) = X (H (αeιΘ ,βeιΦ ,γ eιΨ )).
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Lemma 9.3 Let H = (N , λ) be a complex neutrosophic hypergraph and ξ ∈
Tr(H ). If j ∈ supp(ξ), then there exists a complex neutrosophic hyperedge ρ of
H such that

(i) ρ(j) = h(ρ) = ξ(j) > 0,
(ii) ξ h(ρ) ∩ ρh(ρ) = {j}.
Proof Let j0 ∈ supp(ξ) such that ξ ∈ Tr(H ) and ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0).
Since every ξ1 that is a transversal of H contains a transversal ξ such that ξ ⊆
j(H ). This implies that j0 ∈ N (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) = X (H (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 )). There-
fore, there exists at least one hyperedge ρ of H such that ρ(j0) ≥ (α0eιφ0 , β0eιϕ0

, γ0eιψ0). Let λ = {λ1, λ2, . . . , λm} be the set of hyperedges of H and ρ(j0) ≥
(α0eιφ0 , β0eιϕ0 , γ0eιψ0). We now prove that there exists at least one λk ∈ λ such
that h(λj) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0). For otherwise, we have h(λk) = (αkeιφk , βkeιϕk ,

γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0), for all λk ∈ λ, k = 1, 2, . . . ,m. This implies
that for every λk ∈ λ, there exists an element uk ∈ supp(ξ) such that uk ∈
(λk)

(αk eιφk ,βk eιϕk ,γk eιψk ) ∩ ξ (αk eιφk ,βk eιϕk ,γk eιψk ), for (αkeιφk , βkeιϕk , γkeιψk ) ≥ (α0eιφ0 ,

β0eιϕ0 , γ0eιψ0). Since, ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0), then h(λk) = (αkeιφk , βk eιϕk ,

γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0) anduk ∈ (λk)
(αk eιφk ,βk eιϕk ,γk eιψk ) ∩ ξ (αk eιφk ,βk eιϕk ,γk eιψk )

imply that uk 	= j0, k = 1, 2, . . . ,m. If these hold, it could be shown that ξ /∈ Tr(H )

by computing a complex neutrosophic transversal δ of H that satisfies δ ⊂ ξ .
This argument follows form the fact that X and λ are finite, there exist inter-
vals (α0 − ε, α0], (β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0], (ϕ0 − 2πε, ϕ0], and
(ψ0 − 2πε,ψ0] such that H (αeιφ ,βeιϕ ,γ eιψ ) = H (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) on (α0 − ε, α0],
(β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0], (ϕ0 − 2πε, ϕ0], and (ψ0 − 2πε,ψ0].

Define δ(u) as

Tδ(u) =
{
Tξ (u), if u 	= j0,

α0 − ε, if u = j0.
, Iδ(u) =

{
Iξ (u), if u 	= j0,

β0 − ε, if u = j0.
,

Fδ(u) =
{
Fξ (u), if u 	= j0,

γ0 − ε, if u = j0.
, φδ(u) =

{
φξ (u), if u 	= j0,

φ0 − 2πε, if u = j0.
,

ϕδ(u) =
{

ϕξ (u), if u 	= j0,

ϕ0 − 2πε, if u = j0.
, ψδ(u) =

{
ψξ(u), if u 	= j0,

ψ0 − 2πε, if u = j0.
.

Clearly δ ⊂ ξ and δ is a transversal of H . Also, ξ (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} con-
tains {uk |k = 1, 2, . . . ,m}. Therefore, ξ (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} is a transversal of
H (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ). The same argument holds for every H (αeιφ ,βeιϕ ,γ eιψ ), where
α ∈ (α0 − ε, α0], β ∈ (β0 − ε, β0], γ ∈ (γ0 − ε, γ0], φ ∈ (φ0 − 2πε, φ0], ϕ ∈ (ϕ0

− 2πε, ϕ0], ψ ∈ (ψ0 − 2πε,ψ0]. Since δ(αeιφ ,βeιϕ ,γ eιψ ) = ξ (αeιφ ,βeιϕ ,γ eιψ ), for all α ∈
(0, t(h(H ))] \ (α0 − ε, α0], β ∈ (0, i(h(H ))] \ (β0 − ε, β0], γ ∈ (0, f (h(H ))] \
(γ0 − ε, γ0], φ ∈ (0, φ(h(H ))] \ (φ0 − 2πε, φ0], ϕ ∈ (0, ϕ(h(H ))] \ (ϕ0
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Table 9.25 Incidence matrix of H

IH λ1 λ2 λ3 λ4 λ5

u1 0.7eι(0.7)2π 0.9eι(0.9)2π (0, 0, 1) (0, 0, 1) 0.4eι(0.4)2π

u2 0.7eι(0.7)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0.7eι(0.7)2π (0, 0, 1)

u3 (0, 0, 1) (0, 0, 1) 0.9eι(0.9)2π 0.7eι(0.7)2π 0.4eι(0.4)2π

u4 (0, 0, 1) 0.4eι(0.4)2π (0, 0, 1) 0.4eι(0.4)2π 0.4eι(0.4)2π

− 2πε, ϕ0], ψ ∈ (0, ψ(h(H ))] \ (ψ0 − 2πε,ψ0]. This establishes the existence of
ρ ∈ H for which ρ(j0) = h(ρ) = ξ(j0) > 0.

We now suppose that every hyperedge from the set λ = {λ1, λ2, . . . , λm} having
height ξ(j0) contain two or more than two elements of ξ (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0}. By
repeating the above procedure, we can establish that ξ /∈ Tr(H ), which is a contra-
diction.

Example 9.29 Consider a complex neutrosophic hypergraphH = (N , λ) on X =
{u1, u2, u3, u4} as represented by incidence matrix given in Table9.25.

Here, 0.7eι(0.7)2π = (0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π ), 0.9eι(0.9)2π =
(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), 0.4eι(0.4)2π = (0.4eι(0.4)2π , 0.4eι(0.4)2π ,

0.4eι(0.4)2π ). Then, we see that λ1, λ3, and λ5 have no transitions levels and
(0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π ) is the transition level of λ2 and λ4. The basic
sequences are given as

Bs(λ1) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π )},
Bs(λ2) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π )},
Bs(λ3) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π )},
Bs(λ4) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π ), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π )},
Bs(λ5) = {(0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π )}.

Thus,

Bc(λ1) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π )
1 },

Bc(λ2) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
2 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )
2 },

Bc(λ3) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
3 },

Bc(λ4) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π )
4 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )
4 },

Bc(λ5) = {λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )

5 }.

Also, we have Fs(H ) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (0.4eι(0.4)2π ,

0.4eι(0.4)2π , 0.4eι(0.4)2π )} and c(H ) = {H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ),

H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )}, where
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λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ) = {{u1, u2, u3}, {u1, u2}, {u2, u3}},
λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π ) = {{u1, u2, u3, u4}, {u1, u2}, {u1, u2, u4}, {u2, u3}, {u2, u3, u4}}.

We now determine Tr(H ) and T ∗
r (H ). If τ ∈ Tr(H ), then τ h(λ1) ∩ {u1, u2} 	=

∅, τ h(λ2) ∩ {u1, u2} 	= ∅, τ h(λ3) ∩ {u2, u3} 	= ∅, τ h(λ4) ∩ {u2, u3} 	= ∅, and τ h(λ5) ∩
{u1, u3, u4} 	= ∅. Note that Tr(H ) = {τ1, τ2, τ3, τ4}, where

τ1 = {(u1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (u3, 0.9e
ι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π )},

τ2 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (u3, 0.4e
ι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π },

τ3 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (u4, 0.4e
ι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π },

τ4 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ), (u1, 0.4e
ι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π }.

Now Tr(H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )) = {{u2}, {u1, u3}} and Tr
(H (0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )) = {{u1, u3}, {u2, u3}, {u2, u4}, {u1, u2}, {u1, u3, u4}}
and τ

(αeιΘ ,βeιΦ ,γ eιΨ )

k ∈ Tr(H (αeιΘ ,βeιΦ ,γ eιΨ )), for all α ∈ (0, t(h(H ))], β ∈ (0,
i(h(H ))], γ ∈ (0, f (h(H ))], Θ ∈ (0, φ(h(H ))], Φ ∈ (0, ϕ(h(H ))], Ψ ∈ (0,
ψ(h(H ))]. Hence, T ∗

r (H ) = {τ1}.
We now illustrate Lemma9.3 through the above example.

λ2(u1) = h(λ2) = τ1(u1) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ),

λ3(u3) = h(λ3) = τ1(u3) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ),

λ2(u2) = h(λ2) = τ2(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ),

λ5(u3) = h(λ5) = τ2(u3) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π ),

λ3(u2) = h(λ3) = τ3(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ),

λ5(u4) = h(λ5) = τ3(u4) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π ),

λ5(u1) = h(λ5) = τ4(u2) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π ),

λ3(u2) = h(λ3) = τ4(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π ).

Also note that

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
2 = {u1},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
3 = {u3},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
2 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
2 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )
2 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )

5 = {u3},
τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
3 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
3 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )
3 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )

5 = {u4},
τ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )
4 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π )

5 = {u1},
τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
4 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
3 = {u2}.
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Hence, (Tr(H ))(0.9e
ι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π ) = {τ (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )

1 ,

τ
(0.9eι(0.9)2π,0.9eι(0.9)2π,0.9eι(0.9)2π )
2 , τ

(0.9eι(0.9)2π,0.9eι(0.9)2π,0.9eι(0.9)2π )
3 , τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )
4 }

= {{u1, u3}, {u2}, {u2}, {u2}} = {{u1, u3}, {u2}} = Tr(H (0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π )).

Theorem 9.17 LetH = (N , λ) be a complex neutrosophic hypergraph and j ∈ X .
If ξ ∈ Tr(H ) with j ∈ supp(ξ), then there exists an hyperedge ρ ∈ λ such that

(i) ρ(j) = h(ρ),

(ii) For λ1 ∈ λ such that h(λ1) ≥ h(ρ), λh(λ1)
1 � ρh(ρ),

(iii) Ek � ρh(ρ), where Ek is an arbitrary hyperedge of H h(ρ),

(iv) ξ(j) = ρ(j).

Corollary 9.3 Let H = (N , λ) be a complex neutrosophic hypergraph. If λ1 ∈ λ

satisfies h(λ1) ≥ h(ρ), λh(λ1)
1 � ρh(ρ), then h(λ1) ∈ Fs(H ).

9.10 Applications of Complex Neutrosophic Hypergraphs

In this section, we propose the modeling of overlapping communities that exist in
different social networks through complex neutrosophic hypergraphs. These com-
munities intersect each other when one person belongs to multiple communities at
the same time. The vertices of the complex neutrosophic hypergraphs are used to
represent different communities and the hyperlinks of individuals who participate in
more than one community are illustrated using hyperedges of complex neutrosophic
hypergraphs. Here, we define a score function for ranking complex neutrosophic sets
by considering the truth, indeterminacy, and falsity degrees.

Definition 9.90 Let N = (Teιφ, Ieιϕ,Feιψ ) be a complex neutrosophic number, the
score function S of N is defined as

S(N ) = 1 + T − 2I − F

2
+ 2π + φ − 2ϕ − ψ

4π
,

where S(N ) ∈ [−2, 2].

9.10.1 Modeling of Intersecting Research Communities

Research scholars have different fields of interest and these multiple research inter-
ests make researchers parts of different research communities at the same time. For
example, Mathematics, Physics, and Computer Science may be the fields of interest
for one researcher at the same time. That is how overlapping communities occur
in research fields. We use a complex neutrosophic hypergraph to model intersect-
ing communities that emerge in different research fields. The vertices of a complex
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Fig. 9.28 Intersecting research communities

Table 9.26 Periodic behavior of research communities

Research fields Accepted articles Submitted articles Rejected articles

F1 0.6eι(0.6)2π 0.6eι(0.3)2π 0.5eι(0.4)2π

F2 0.7eι(0.5)2π 0.3eι(0.7)2π 0.5eι(0.4)2π

F3 0.8eι(0.4)2π 0.6eι(0.3)2π 0.4eι(0.5)2π

F4 0.8eι(0.4)2π 0.6eι(0.7)2π 0.7eι(0.5)2π

F5 0.9eι(0.3)2π 0.4eι(0.5)2π 0.7eι(0.2)2π

F6 0.6eι(0.5)2π 0.3eι(0.4)2π 0.7eι(0.1)2π

F7 0.4eι(0.5)2π 0.3eι(0.2)2π 0.6eι(0.3)2π

F8 0.4eι(0.7)2π 0.5eι(0.1)2π 0.5eι(0.2)2π

F9 0.4eι(0.3)2π 0.4eι(0.4)2π 0.6eι(0.3)2π

F10 0.4eι(0.5)2π 0.5eι(0.2)2π 0.7eι(0.3)2π

neutrosophic hypergraph represent the different research fields and these fields are
connected through an hyperedge that represents a research scholar who works in the
corresponding fields. The correspondingmodel of intersecting research communities
is shown in Fig. 9.28.

Here, the truth, indeterminacy, and falsity degrees of each vertex represent the
accepted, submitted, and rejected articles of that community in a specific period of
time that is represented by the phase terms. This inconsistent information having
periodic nature is given in Table9.26.
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Fig. 9.29 Line graph of intersecting research communities

Note that number of accepted, submitted, and rejected articles of community F1

are 0.6, 0.6, and 0.5, and the corresponding behaviors repeat after (0.6)2π , (0.3)2π ,
and (0.4)2π periods of time, respectively, and so on. The research scholar λ1 belongs
to communities F1, F2, and F3 as he shares these three fields of interest. Similarly, λ2

belongs toF3 andF8 and the communities overlapwith each other. The indeterminate
information about a researcher is calculated using complex neutrosophic relations
given as

λ1({F1,F2,F3}) = (0.6eι(0.2)2π , 0.3eι(0.3)2π , 0.4eι(0.2)2π ),

λ2({F3,F8}) = (0.4eι(0.3)2π , 0.5eι(0.1)2π , 0.4eι(0.2)2π ),

λ3({F1,F4}) = (0.6eι(0.3)2π , 0.4eι(0.2)2π , 0.7eι(0.4)2π ),

λ4({F5,F8,F6}) = (0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.2)2π ),

λ5({F5,F7,F10}) = (0.4eι(0.3)2π , 0.3eι(0.2)2π , 0.7eι(0.3)2π ),

λ6({F8,F9,F10}) = (0.4eι(0.3)2π , 0.4eι(0.1)2π , 0.7eι(0.3)2π ).

It shows the researcher represented by λ1 has 0.6 accepted, 0.3 submitted, and 0.4
rejected articles within some specific periods of time. The line graph of intersecting
communities as given in Fig. 9.28 is shown in Fig. 9.29. Here, the nodes represent
the individuals and the communities are described by the links of same color.

This line graph represents the relationships between researchers. The researchers
that belong to the community F3 are connected through pink edge, members of F1

are linked by red edge, members of F10 are connected by purple links, cyan and
blue edges are used to represent the relation between the members of F5 and F8,
respectively. The absence of F2, F4, F6, F7, and F9 in the above graph shows that
these communities share no common researchers as their members. The membership
degrees of each edge of this line graph represent the collective work of corresponding
researchers. The score functions and choice values of a complex neutrosophic graph
are given as
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Table 9.27 Score and choice values of complex neutrosophic line graph

Sjk λ1 λ2 λ3 λ4 λ5 λ6 Cj

λ1 0 0.600 0.350 0 0 0 0.450

λ2 0.600 0 0 0.500 0 0.350 0.900

λ3 0.350 0 0 0 0 0 −0.350

λ4 0 0.500 0 0 0.450 0.450 0.900

λ5 0 0 0 0.450 0 0.450 0.200

λ6 0 0.350 0 0 0.450 0 −0.050

Sjk = 1

2
[1 + Tjk − 2Ijk − Fjk ] + 1

4π
[2π + φjk − 2ϕjk − ψjk ],

Cj =
∑
k

Sjk + 1

2
[1 + Tj − 2Ij − Fj] + 1

4π
[2π + φj − 2ϕj − ψj],

respectively. The score functions and choice values of researchers represented by the
line graph given in Fig. 9.29 are calculated in Table9.27.

The choice values of Table9.27 show that λ2 and λ4 are the most active and
efficient participants of these research communities. Also, the score values show that
λ1 and λ2 are the members having the strongest interactions between them and can
share the most fruitful ideas relevant to their corresponding research fields being
the participants of intersecting research communities. The procedure adopted in our
application is described in Algorithm 9.10.1.

Algorithm 9.10.1 Selection of a systematicmember from intersecting research com-
munities

1. Input the set of vertices (research communities) F1,F2, . . . ,Fj.

2. Input the complex neutrosophic set N of vertices such that N (Fk) = (Tkeιφk ,

Ikeιϕk ,Fkeιψk ), 1 ≤ k ≤ j, 0 ≤ Tk + Ik + Fk ≤ 3.
3. Input the number of hyperedges (researchers) r of a complex neutrosophic hyper-

graph H = (N , λ).
4. Input the membership degrees of the hyperedges E1,E2, . . . ,Er .
5. Construct a complex neutrosophic line graph l(H ) = (Nl, λl) whose vertices

are the r hyperedges E1,E2, · · · ,En such that Nl(En) = λ(En).
6. If |supp(λj) ∩ supp(λk)| ≥ 1, then draw an edge between Ej and Ek

and λl(EjEk) = (min{Tλ(Ej),Tλ(Ek)} eιmin{φλ(Ej),φλ(Ek )},min{Iλ(Ej), Iλ(Ek)}
eιmin{ϕλ(Ej),ϕλ(Ek )},max{Fλ(Ej),Fλ(Ek)}eιmax{ψλ(Ej),ψλ(Ek )}).

7. Input the adjacency matrix I = [(Tmn, Imn,Fmn)]r×r of vertices of complex neu-
trosophic line graph l(H ).

8. do m from 1 → r
9. Cm = 0
10. do n from 1 → r
11. Smn = 1

2 [1 + Tmn − 2Imn − Fmn] + 1
4π [2π + φmn − 2ϕmn − ψmn]

12. Cm = Cm + Smn
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13. end do
14. Cm = Cm + 1

2 [1 + Tm − 2Im − Fm] + 1
4π [2π + φm − 2ϕm − ψm]

15. end do
16. The vertex with highest choice value in l(H ) is the most effective researcher

among all the participants.

9.10.2 Influence of Modern Teaching Strategies
on Educational Institutes

Teaching strategies are defined as the methods, techniques, and procedures that an
educational institute utilizes to improve its performance. An educational institute
can be judged according to its inputs and outputs that are highly effected through the
teaching techniques adopted by that institute. Traditional teaching methods mainly
depend on textbooks and emphasizes on basic skills while the modern techniques are
based on technical approach and emphasize on creative ideas. Thus, modern teaching
is very important andmost effective in this technological era. Nowadays, educational
institutes are modified through modern teaching strategies to enhance their outputs
and these modern techniques play a vital role for teachers to explain the concepts
in a more effective and radiant manner. Here, we consider a complex neutrosophic
hypergraph modelH = (N , λ) to study the influence of modern teaching methods
on a specific group of institutes in a time frame of 12 months. The vertices of a
complex neutrosophic hypergraph represent the different teaching strategies and
these techniques are grouped through an hyperedge if they are applied in the same
institute. Sincemore than one institute can adopt the same strategy so the intersecting
communities occur in this case. Each strategy is different from the other in terms of
its positive, neutral, and negative impacts on students. The truth, indeterminacy, and
falsity degrees of each strategy represent the positive, neutral, and negative effects of
the corresponding technique on some institute during the time period of 12 months.
The indeterminate information about modern teaching strategies having periodic
nature is given in Table9.28.

Table 9.28 Impacts of modern teaching strategies

Teaching strategy Positive effects Neutral behavior Negative effects

Brain storming 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Micro technique 0.6eι(4/12)2π 0.6eι(3/12)2π 0.1eι(1/12)2π

Mind map 0.6eι(6/12)2π 0.3eι(5/12)2π 0.7eι(7/12)2π

Cooperative learning 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Dramatization 0.5eι(3/12)2π 0.3eι(3/12)2π 0.2eι(2/12)2π

Educational software 0.8eι(10/12)2π 0.3eι(3/12)2π 0.2eι(1/12)2π
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Fig. 9.30 Complex neutrosophic hypergraph model of modern teaching strategies

Note that the membership values (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π ) of
brain storming show that this teaching technique has positive influence with degree
0.8 and this effect spreads over 10 months, the indeterminacy value represents the
neutral effect or indeterminate behavior having degree 0.7 with time interval of 7
months, and the falsity degree 0.1 illustrates some negative effects of this strategy
that spreads over 1 month. Similarly, the effects of all other strategies can be seen
form Table9.28 along with their time periods. An hyperedge of a complex neutro-
sophic hypergraph represents some institute in which the corresponding techniques
are applied. The model of complex neutrosophic hypergraph grouping these strate-
gies is shown in Fig. 9.30.

Here, each hyperedge represents an institute which groups the strategies adopted
by that institute and the membership degrees of each hyperedge represent the com-
bined effects of teaching strategies on corresponding institute. We nowwant to find a
strategy or a collection of those techniques which are easy to apply, less in cost, and
have higher positive effects on the performance of educational institutes. To find such
methods, we calculate the minimal transversal of complex neutrosophic hypergraph
given in Fig. 9.30 using Algorithm 9.10.2.

Algorithm 9.10.2 Find a minimal complex neutrosophic transversal

1. Input the complex neutrosophic sets λ1, λ2, . . . , λr of hyperedges.
2. Input the membership degrees of hyperedges.
3. do j from 1 → r

4. Sj = λ
h(λj)

j
5. S = S ∪ Sj
6. end do
7. Take τ as the complex neutrosophic set having support S.
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By following the Algorithm 9.10.2, we construct a minimal complex neutrosophic
transversal of H = (N , λ).

We have five hyperedges E1,E2,E3,E4,E5 of H . The heights of all complex
neutrosophic hyperedges are given as

h(λ1) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π ), λ
h(λ1)
1 = {Brain storming},

h(λ2) = (0.7eι(10/12)2π , 0.6eι(7/12)2π , 0.1eι(1/12)2π ), λ
h(λ2)
2 = {Brain storming},

h(λ3) = (0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π ), λ
h(λ3)
3 = {Educational software},

h(λ4) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π ), λ
h(λ4)
4 = {Cooperative learning},

h(λ5) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π ), λ
h(λ5)
5 = {Brain storming,Cooperative learn.}.

S = λ
h(λ1)
1 ∪ λ

h(λ2)
2 ∪ λ

h(λ3)
3 ∪ λ

h(λ4)
4 ∪ λ

h(λ5)
5 {Brain storming,Cooperative learning,Educational software}.

The complex neutrosophic set having support S is given as

{(Brain storming, 0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π ), (Cooperative learning, 0.8eι(10/12)2π ,

0.7eι(7/12)2π , 0.1eι(1/12)2π ), (Educational software, 0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π )},

which is theminimal complex neutrosophic transversal ofH = (N , λ) and it shows
that brain storming, cooperative learning, and educational software are the most
influential teaching strategies for the given period of time. Thus, for some certain
period of time, an influential and effective collection of modern teaching techniques
can be determined.

9.11 Comparative Analysis

A complex neutrosophic set is characterized by truth, indeterminacy, and falsity
degrees which are the combination of real-valued amplitude terms and complex-
valued phase terms. To prove the flexibility and generalization of our proposed
model complex neutrosophic hypergraphs, we propose the modeling of social net-
works through complex neutrosophic graphs, complex neutrosophic hypergraphs,
and complex intuitionistic fuzzy hypergraphs. Consider a part of the social network
as described in Sect. 9.10.2. Here, we consider only three modern techniques that are
brain storming, cooperative learning, and educational software. A complex fuzzy
hypergraph model of these techniques is given in Fig. 9.31.

Note that a complex fuzzy hypergraph model of intersecting techniques just illus-
trates the positive effects of these methods during a specific time interval.We see that
a complex fuzzy hypergraph model fails to describe the negative effects of teaching
strategies. To describe the positive as well as negative effects of these strategies, we
utilize a complex intuitionistic fuzzy hypergraph model as shown in Fig. 9.32.

This shows that a complex intuitionistic fuzzy hypergraphmodel canwell describe
the positive and negative impacts of modern techniques on educational institutes but
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Fig. 9.31 Complex fuzzy
hypergraph model of
teaching techniques

(Brain storming,0.8eι(10/12)2π )
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Fig. 9.32 Complex
intuitionistic fuzzy
hypergraph model of
teaching techniques

(Brain storming,0.8eι(10/12)2π ,0.3eι(10/12)2π )
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it cannot handle the situations when there is no effect during some time interval or
there is indeterminate behavior. To handle such type of situations, we use a complex
neutrosophic model as shown in Fig. 9.33.

Note that a complex neutrosophic graphmodel describes the truth, indeterminacy,
and falsity degrees of impacts of teaching methods for some specific interval of time
and proves to be a more generalized model as compared to complex fuzzy and
complex intuitionistic fuzzy models. Figure9.33 shows that λ1 institute adopts the
modern methods such as educational software and cooperative learning. Now, if an
institute wants to utilize more than two strategies, then this model fails to model
the required situation. For example, λ1 wants to adopt all three modern teaching
techniques. Then, we cannot model this social network using a simple graph. To
handle such types of difficulties, i.e., for the modeling of indeterminate information
with periodic nature existing in social hyeprnetworks, we have proposed complex
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(Brain storming,0.8eι(10/12)2π ,0.2eι(10/12)2π ,0.3eι(10/12)2π )

(Cooperative learning,0.8eι(10/12)2π ,0.3eι(10/12)2π ,0.5eι(10/12)2π )

(Educational software,0.8eι(10/12)2π ,0.1eι(10/12)2π ,0.4eι(10/12)2π )

λ
1

λ2

Fig. 9.33 Complex neutrosophic graph model of modern techniques

Table 9.29 Comparative analysis
Models Edges Hyperedge

containing three
strategies

Effects of modern techniques

Positive effects Neutral behavior Negative effects

Complex fuzzy
hypergraph
model

λ1 {Brain storming, 0.8eι(10/12)2π − −

Cooperative
learning,

0.8eι(10/12)2π − −

Educational
software}

0.8eι(10/12)2π − −

Complex
intuitionistic
fuzzy hypergraph
model

λ1 {Brain storming, 0.8eι(10/12)2π − 0.3eι(10/12)2π

Cooperative
learning,

0.8eι(10/12)2π − 0.5eι(10/12)2π

Educational
software}

0.8eι(10/12)2π − 0.4eι(10/12)2π

Complex
neutrosophic
model

Cannot combine
more than two
elements

− 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

− 0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

− 0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π

Complex
neutrosophic
hypergraph
model

λ1 {Brain storming, 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

Cooperative
learning,

0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

Educational
software}

0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π
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neutrosophic hypergraphs. The applicability and flexibility of our proposed model
can be seen from Table9.29.

It can be seen clearly from Table9.29 that all existing models, including complex
neutrosophic graphs, complex fuzzy hypergraphs, and complex intuitionistic fuzzy
hypergraphs lack some information in order to handle the periodic and indetermi-
nate data in case of hypernetworks. Thus, our proposed model is more flexible and
applicable as it does not only deal with the reductant nature of imprecise informa-
tion but also includes the benefits of hypergraphs. Hence, a complex neutrosophic
hypergraph model combines the fruitful effects of complex neutrosophic sets and
hypergraph theory.
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Chapter 10
(Directed) Hypergraphs for Bipolar
Neutrosophic Structures

In this chapter, we present bipolar neutrosophic hypergraphs and B-tempered bipo-
lar neutrosophic hypergraphs. We describe the concepts of transversals, minimal
transversals and locally minimal transversals of bipolar neutrosophic hypergraphs.
Furthermore, we put forward some applications of bipolar neutrosophic hypergraphs
in marketing and biology. We also introduce bipolar neutrosophic directed hyper-
graphs, regular bipolar neutrosophic directed hypergraphs, homomorphism, and iso-
morphism on bipolar neutrosophic directed hypergraphs. To conclude, we describe
an efficient algorithm to solve decision-making problems. This chapter is due to
[7, 10, 16].

10.1 Introduction

The notion of bipolar fuzzy sets (YinYang bipolar fuzzy sets) was introduced
by Zhang [35, 36] in the space {∀ (x, y) | (x, y) ∈ [−1, 0] × [0, 1]}. In Chinese
medicine, Yin and Yang are the two sides. Yin is the negative side of a system and
Yang is the positive side of a system. Although bipolar fuzzy sets and intuitionistic
fuzzy sets look similar to each other, they are essentially different sets [21, 22]. Bipo-
lar fuzzy sets are extension of fuzzy sets whose membership degree ranges [−1, 1].
In a bipolar fuzzy set, if the degree of membership is zero then we say the element
is unrelated to the corresponding property, membership degree (0, 1] indicates that
the object satisfies a certain property, whereas the membership degree [−1, 0) indi-
cates that the element satisfies the implicit counter property. Positive information
represents what is considered to be possible and negative information represents
what is granted to be impossible. Actually, a variety of decision-making problems
are based on two-sided bipolar judgements on a positive side and a negative side.
Smarandache [29] incorporated indeterminacy membership function as independent
component and defined neutrosophic set on three components truth, indeterminacy,

© Springer Nature Singapore Pte Ltd. 2020
M. Akram and A. Luqman, Fuzzy Hypergraphs and Related Extensions,
Studies in Fuzziness and Soft Computing 390,
https://doi.org/10.1007/978-981-15-2403-5_10
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and falsehood. However, from practical point of view, Smarandache [29] and Wang
et al. [32] defined single-valued neutrosophic sets where degree of truth member-
ship, indeterminacy membership, and falsity membership belong to [0, 1]. Deli et al.
[16] extended the ideas of bipolar fuzzy sets and neutrosophic sets to bipolar neutro-
sophic sets (bipolar single-valued neutrosophic sets) and studied its operations and
applications in decision-making problems.

Definition 10.1 A bipolar single-valued neutrosophic set on a non-empty set X is
an object of the form,

N = {(y, T+
N (y), I+

N (y), F+
N (y), T−

N (y), I−
N (y), F−

N (y)) : y ∈ X},

where T+
N , I+

N , F
+
N : X → [0, 1] and T−

N , I−
N , F

−
N : X → [−1, 0] are mappings. The

positive values T+
N (y), I+

N (y), F+
N (y) denote respectively the truth, indeterminacy

and false membership degrees of an element y ∈ X , whereas T−
N (y), I−

N (y), F−
N (y)

denote the implicit counter property of the truth, indeterminacy and falsemembership
degrees of the element y ∈ X corresponding to the bipolar neutrosophic set N .

Definition 10.2 A bipolar single-valued neutrosophic relation on a non-empty set
X is a bipolar neutrosophic subset of X × X of the form,

D = {(yz, T+
D (yz), I+

D (yz), F+
D (yz), T−

D (yz), I−
D (yz), F−

D (yz)) : yz ∈ X × X},

where T+
D , I+

D , F
+
D , T

−
D , I−

D , F
−
D are defined by the mappings T+

D , I+
D , F+

D : X ×
X → [0, 1] and T−

D , I−
D , F−

D : X × X → [−1, 0].
Definition 10.3 A bipolar single-valued neutrosophic graph on a non-empty set A
is a pair G = (C, D), where C is a bipolar single-valued neutrosophic set on A and
D is a bipolar single-valued neutrosophic relation in A such that

T+
D (yz) ≤ T+

C (y) ∧ T+
C (z), I+D (yz) ≤ I+C (y) ∧ I+C (z), F+

D (yz) ≤ F+
C (y) ∨ F+

C (z),

T−
D (yz) ≥ T−

C (y) ∨ T−
C (z), I−D (yz) ≥ I−C (y) ∨ I−C (z), F−

D (yz) ≥ F−
C (y) ∧ F−

C (z)

for all y, z ∈ X . Note that D(yz) = (0, 0, 1, 0, 0,−1) for all yz ∈ X × X\E .
Definition 10.4 The support of a bipolar neutrosophic set N = {(x, T+

N (x), I+
N (x),

F+
N (x), T−

N (x), I−
N (x), F−

N (x))|x ∈ X} is defined as supp(N ) = supp+(N ) ∪
supp−(N ), where

supp+(N ) = {x ∈ X |T+
N (x) 
= 0, I+

N (x) 
= 0, F+
N (x) 
= 0},

supp−(N ) = {x ∈ X |T−
N (x) 
= 0, I−

N (x) 
= 0, F−
N (x) 
= 0}.

supp+(N ) is called the positive support and supp−(N ) is called the negative support
of N .



10.1 Introduction 445

For further terminologies and studies on fuzzy sets, bipolar fuzzy sets, neutro-
sophic sets, and bipolar neutrosophic sets and graphs, readers are referred to [1–9,
11–15, 17–20, 23–28, 30, 31, 33, 34].

10.2 Bipolar Neutrosophic Hypergraphs

Definition 10.5 A bipolar neutrosophic graph on a non-empty set X is a pair G =
(A, B), where A is a bipolar neutrosophic set on X and B is a bipolar neutrosophic
relation in X such that

T+
B (xy) ≤ min{T+

A (x), T+
A (y)}, T−

B (xy) ≥ max{T−
A (x), T−

A (y)},
I+
B (xy) ≤ min{I+

A (x), I+
A (y)}, I−

B (xy) ≥ max{I−
A (x), I−

A (y)},
F+
B (xy) ≤ max{F+

A (x), F+
A (y)}, F−

B (xy) ≥ min{F−
A (x), F−

A (y)},

for all x, y ∈ X. Note that, D(xy) = (0, 0, 1, 0, 0,−1) = 0, for all xy ∈ X × X\E .
Definition 10.6 Let X be a non-empty set. A bipolar neutrosophic hypergraph H
on X is defined as an ordered pair H = (μ, ρ), where μ = {μ1, μ2, μ3, . . ., μn} is a
finite collection of bipolar neutrosophic subsets on X and ρ is a bipolar neutrosophic
relation on bipolar neutrosophic subsets μi such that

1.

T+
ρ (Ek) = T+

ρ ({x1, x2, . . . , xm}) ≤ min{T+
μi

(x1), T
+
μi

(x2), . . . , T
+
μi

(xm)},
I+
ρ (Ek) = I+

ρ ({x1, x2, . . . , xm}) ≤ min{I+
μi

(x1), I
+
μi

(x2), . . . , I
+
μi

(xm)},
F+

ρ (Ek) = F+
ρ ({x1, x2, . . . , xm}) ≤ max{F+

μi
(x1), F

+
μi

(x2), . . . , F
+
μi

(xm)},
T−

ρ (Ek) = T−
ρ ({x1, x2, . . . , xm}) ≥ max{T−

μi
(x1), T

−
μi

(x2), . . . , T
−
μi

(xm)},
I−
ρ (Ek) = I−

ρ ({x1, x2, . . . , xm}) ≥ max{I−
μi

(x1), I
−
μi

(x2), . . . , I
−
μi

(xm)},
F−

ρ (Ek) = F−
ρ ({x1, x2, . . . , xm}) ≥ min{F−

μi
(x1), F

−
μi

(x2), . . . , F
−
μi

(xm)},

for all x1, x2, x3, . . . , xm ∈ X.

2.
⋃

i
supp(μi (x)) = X , for all μi ∈ μ.

Definition 10.7 The height of a bipolar neutrosophic hypergraph H = (μ, ρ),
denoted by h(H), is defined as, h(H) = {(max(ρl), max(ρm), min(ρn))|ρl, ρm, ρn ∈
ρ}, where ρl = max T+

ρ j
(xi ), ρm = max I+

ρ j
(xi ), ρn = min F+

ρ j
(xi ).

The depth of a bipolar neutrosophic hypergraph H = (μ, ρ), denoted by d(H),
is defined as d(H) = {(min(ρl), min(ρm), max(ρn))|ρl, ρm, ρn ∈ ρ}, where ρl =
min T−

ρ j
(xi ), ρm = min I−

ρ j
(xi ), ρn = max F−

ρ j
(xi ).

Here, T+
ρ j

(xi ), I+
ρ j

(xi ) and F+
ρ j

(xi ) denote the positive truth, indeterminacy and
falsity membership values of vertex xi to the hyperedge ρ j , respectively, T−

ρ j
(xi ),
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I−
ρ j

(xi ) and F−
ρ j

(xi ) denote the negative truth, indeterminacy, and falsity membership
values of vertex xi to the hyperedge ρ j , respectively.

Definition 10.8 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph. The order
of H , denoted by o(H), is defined as o(H) = (o+(H), o−(H)), where

o+(H) =
∑

x∈X
minμ+

i (x), o−(H) =
∑

x∈X
maxμ−

i (x).

The size of H , denoted by s(H), is defined as s(H) = (s+(H), s−(H)), where

s+(H) =
∑

Ek⊂X

ρ+(Ek), s−(H) =
∑

Ek⊂X

ρ−(Ek).

In a bipolar neutrosophic hypergraph, two vertices xi and x j are adjacent vertices if
they both belong to the same bipolar neutrosophic hyperedge. Two bipolar neutro-
sophic hyperedges ρi and ρ j are called adjacent if their intersection is non-empty,
i.e., supp(ρi ) ∩ supp(ρ j ) 
= ∅, i 
= j .

We now define the adjacent level between two vertices and between two hyper-
edges.

Definition 10.9 The adjacent level between two vertices xi and x j , denoted by γ (xi ,
x j ), is defined as γ (xi , x j ) = (γ +, γ −), where

γ +(xi , x j ) = max
k

min[T+
k (xi ), T

+
k (x j )],max

k
min[I+k (xi ), I

+
k (x j )],min

k
max[F+

k (xi ), F
+
k (x j )],

γ −(xi , x j ) = min
k

max[T−
k (xi ), T

−
k (x j )],min

k
max[I−k (xi ), I

−
k (x j )],max

k
min[F−

k (xi ), F
−
k (x j )].

The adjacent level between two bipolar neutrosophic hyperedges ρi and ρ j , denoted
by σ(ρi , ρ j ), is defined as σ(ρi , ρ j ) = (σ+, σ−), where

σ+(ρi , ρ j ) = max
j

min[T+
j (x), T+

k (x)],max
j

min[I+
j (x), I+

k (x)],min
j

max[F+
j (x), F+

k (x)],
σ−(ρi , ρ j ) = min

j
max[T−

j (x), T−
k (x)],min

j
max[I−

j (x), I−
k (x)],max

j
min[F−

j (x), F−
k (x)].

Definition 10.10 A bipolar neutrosophic hypergraph H = (μ, ρ) is simple if it con-
tains no repeated hyperedges, i.e., if ρ j , ρk ∈ ρ and ρ j ⊆ ρk , then ρ j = ρk .

A bipolar neutrosophic hypergraph H = (μ, ρ) is support simple if ρ j , ρk ∈ ρ,
supp(ρ j ) = supp(ρk) and ρ j ⊆ ρk , then ρ j = ρk .

A bipolar neutrosophic hypergraph H = (μ, ρ) is strongly support simple if ρ j ,
ρk ∈ ρ and supp(ρ j ) = supp(ρk), then ρ j = ρk .

Remark 10.1 All these concepts imply that there are nomultiple hyperedges. Simple
bipolar neutrosophic hypergraphs are support simple and strongly support simple
bipolar neutrosophic hypergraphs are support simple. These two concepts, simple
and support simple, are independent o each other.
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Definition 10.11 A bipolar neutrosophic set N : X → [0, 1] × [−1, 0] is an ele-
mentary set if T+

N , I+
N , F

+
N , T

−
N , I−

N , F
−
N are all single valued on the support of N .

A bipolar neutrosophic hypergraph is an elementary if its all hyperedges are
elementary.

Proposition 10.1 A bipolar neutrosophic hypergraph is the generalization of fuzzy
hypergraph, bipolar fuzzy hypergraph, and neutrosophic hypergraph.

Theorem 10.1 Let H = (μ, ρ) be a simple, elementary bipolar neutrosophic hyper-
graph on a non-empty set X having order n. Then, |ρ| ≤ 2n − 1. The equality holds
if and only if {supp(ρ j )|ρ j ∈ ρ, ρ 
= 0} = P(X)\∅.
Proof Since H is simple and elementary, each nontrivial subset of X can be the
support of at most one ρ j ∈ ρ, therefore |ρ| ≤ 2n − 1. To prove that the equality
holds, let B = {T+

A (x), I+
A (x), F+

A (x), T−
A (x), I−

A (x), F−
A (x)|A ⊆ X} be the set of

mappings such that

T+
A (x) =

{
1

|A| , if x ∈ A,

0, otherwise.
I+
A (x) =

{
1

|A| , if x ∈ A,

0, otherwise.

F+
A (x) =

{
1

|A| , if x ∈ A,

0, otherwise.
T−
A (x) =

{ −1
|A| , if x ∈ A,

0, otherwise.

I−
A (x) =

{ −1
|A| , if x ∈ A,

0, otherwise.
F−
A (x) =

{ −1
|A| , if x ∈ A,

0, otherwise.

Then, each set having single element has height (1, 1, 1, −1, −1, −1), the set having
two elements has height (0.5, 0.5, 0.5, −0.5, −0.5, −0.5) and so on. Hence, H is
elementary, simple, and |ρ| = 2n − 1. �

Definition 10.12 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph. Suppose
that α, β, γ ∈ [0, 1] and η, θ , φ ∈ [−1, 0]. Let
1. ρ(α,β,γ,η,θ,φ) = {ρ(α,β,γ,η,θ,φ)

i :ρi ∈ ρ} and ρ
(α,β,γ,η,θ,φ)

i = {x ∈ X |T+
ρi

(x) ≥ α,
I+
ρi

(x) ≥ β, F+
ρi

(x) ≤ γ and T−
ρi

(x) ≤ η, I−
ρi

(x) ≤ θ , F−
ρi

(x) ≥ φ},
2. μ(α,β,γ,η,θ,φ) = ⋃

ρi∈ρ

ρ
(α,β,γ,η,θ,φ)

i .

Then, the ordered pair H (α,β,γ,η,θ,φ) = (μ(α,β,γ,η,θ,φ), ρ(α,β,γ,η,θ,φ)) is called the
(α, β, γ, η, θ, φ)–level hypergraph of H . Note that H (α,β,γ,η,θ,φ) is a crisp hyper-
graph.

Remark 10.2 If α ≥ ω, β ≥ ν, γ ≤ σ , η ≤ π , θ ≤ ε, φ ≥ ε and μ is a bipolar neu-
trosophic subset on X , then μ(α,β,γ,η,θ,φ) ⊆ μ(ω,ν,σ,π,ε,ε). Thus, for level hypergraphs
of H , we have ρ(α,β,γ,η,θ,φ) ⊆ ρ(ω,ν,σ,π,ε,ε). Thus the (α, β, γ, η, θ, φ)-level hyper-
edges of distinct bipolar neutrosophic hyperedges of ρ can be same and hence the
(α, β, γ, η, θ, φ)-level hypergraphs H (α,β,γ,η,θ,φ) of a simple bipolar neutrosophic
hypergraph H could be multiedged.
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For any bipolar neutrosophic hypergraph H = (μ, ρ), we can associate a finite
sequence of real numbers, called the fundamental sequence of H .

Definition 10.13 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph and
H (α,β,γ,η,θ,φ) be the (α, β, γ , η, θ , φ)-level hypergraph of H . The sequence of
real numbers, {α1 = (T+

α1
, I+

α1
, F+

α1
, T−

α1
, I−

α1
, F−

α1
), α2 = (T+

α2
, I+

α2
, F+

α2
, T−

α2
, I−

α2
,

F−
α2

), . . . , αn = (T+
αn
, I+

αn
, F+

αn
, T−

αn
, I−

αn
, F−

αn
)}, 0 < T+

α1
, I+

α1
< T+

α2
, I+

α2
< · · · T+

αn
, I+

αn
,

F+
α1

> F+
α2

> · · · > F+
αn

> 0, 0 > T−
α1

, I−
α1

> T−
α2

, I−
α2

> · · · T−
αn

, I−
αn

, F−
α1

< F−
α2

<

· · · < F−
αn

< 0, where (T+
αn
,I+

αn
,F+

αn
) = h(H) and (T−

αn
,I−

αn
,F−

αn
) = d(H), which sat-

isfies the following properties:

(i) if αi−1 = (T+
αi−1

, I+
αi−1

, F+
αi−1

, T−
αi−1

, I−
αi−1

, F−
αi−1

) < α = (T+
α , I+

α , F+
α , T−

α , I−
α ,

F−
α ) ≤ αi = (T+

αi
, I+

αi
, F+

αi
, T−

αi
, I−

αi
, F−

αi
), then ρα = ραi ,

(ii) ραi ⊆ ραi+1 ,

is called the fundamental sequence of H , denoted by FS(H). The set of αi -level
hypergraphs {Hα1 , Hα2 , . . ., Hαn } is called the core hypergraphs of H or simply the
core set of H and is denoted by c(H).

Definition 10.14 A bipolar neutrosophic hypergraph H = (μ, ρ) is ordered if the
core set c(H) = {Hα1 , Hα2 , . . ., Hαn } of H is ordered, i.e., {Hα1 ⊆ Hα2 ⊆ · · · ⊆
Hαn }. H is simply ordered if H is ordered and whenever ρ ′ ⊂ ραi+1\ραi then ρ ′ �
μαi .

Definition 10.15 A bipolar neutrosophic hypergraph H1 = (μ1, ρ1) is called a par-
tial bipolar neutrosophic hypergraph of H2 = (μ2, ρ2) if ρ1 ⊆ ρ2. We denote it as
H1 ⊆ H2.

Definition 10.16 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph on X having
FS(H) = {α1, α2, α3, . . ., αn}, suppose αn+1 = 0. Then, H is called sectionally ele-
mentary if for each hyperedge ρ j ∈ ρ, j ∈ {1, 2, 3, . . . , n} and for all α ∈ (αi+1, αi ],
we have ρα

i = ρ
αi
i .

Note that H is sectionally elementary if and only if ρ j (x) ∈ FS(H) for each
ρ j ∈ ρ and x ∈ X .

Example 10.1 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph as shown in
Fig. 10.1, where ρ = {ρ1, ρ2, ρ3, ρ4}. Incidence matrix of H is given in Table10.1.

By routine calculations, we have h(H) = (0.9, 0.8, 0.1) and d(H) = (−0.9,
−0.8,−0.1), H (0.9,0.8,0.1,−0.9,−0.8,−0.1) = {x1, x2}, H (0.8,0.7,0.1,−0.8,−0.7,−0.1) =
{x1, x2}, H (0.5,0.4,0.3,−0.5,−0.4,−0.3) = {{x1, x2, x4}, {x1, x2}, {x4}, {x1, x5}}.Therefore,
FS(H)={(0.9, 0.8, 0.1,−0.9,−0.8,−0.1), (0.8, 0.7, 0.1,−0.8,−0.7,−0.1), (0.5,
0.4, 0.3,−0.5,−0.4,−0.3)}. The set of core hypergraphs is
c(H) = {H (0.9,0.8,0.1,−0.9,−0.8,−0.1) = (X1, ρ

∗
1 ), H

(0.8,0.7,0.1,−0.8,−0.7,−0.1) = (X2, ρ
∗
2 ),

H (0.5,0.4,0.3,−0.5,−0.4,−0.3) = (X3, ρ
∗
3 )}.

Note that, supp(ρi ) = supp(ρ j ) for all ρi , ρ j ∈ ρ implies ρi = ρ j . Thus, H is
strongly support simple and support simple. The induced fundamental sequence of
H is given in Fig. 10.2.
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Table 10.1 Incidence matrix of H

I ρ1 ρ2 ρ3 ρ4

x1 (0.8, 0.7, 0.1,
−0.8,−0.7,−0.1)

(0.9, 0.8, 0.1,
−0.9,−0.8,−0.1)

0 (0.5, 0.4, 0.3,
−0.5,−0.4,−0.3)

x2 (0.8, 0.7, 0.1,
−0.8,−0.7,−0.1)

(0.9, 0.8, 0.1,
−0.9,−0.8,−0.1)

0 0

x3 0 0 (0.3, 0.3, 0.4,
−0.3,−0.3,−0.4)

0

x4 (0.5, 0.4, 0.3,
−0.5,−0.4,−0.3)

0 (0.5, 0.4, 0.3,
−0.5,−0.4,−0.3)

0

x5 0 0 0 (0.5, 0.4, 0.3,
−0.5,−0.4,−0.3)

x1
x2 x4

x5
x3

ρ1(0.5,0.4,0.3,−0.5,−0.4,−0.1)

ρ2(0.9,0.8,0.1,−0.9,−0.8,−0.1)

ρ 3
(0
.3,
0.3

,0
.4,
−0

.3,
−0

.3,
−0

.4)
ρ
4 (0.5,0.4,0.3,−

0.5,−
0.4,−

0.3)

Fig. 10.1 Bipolar neutrosophic hypergraph

Theorem 10.2 Let H = (μ, ρ) be an elementary bipolar neutrosophic hypergraph.
Then, H is strongly support simple if and only if H is support simple.

Proof Suppose that H is elementary, support simple, and supp(ρi ) = supp(ρ j ),
for ρi , ρ j ∈ ρ. Let h(ρi ) ≤ h(ρ j ), d(ρi ) ≥ d(ρ j ). Since, H is elementary, then we
have ρi ≤ ρ j and since H is support simple, we have ρi = ρ j . Hence, H is strongly
support simple. The converse part can be proved trivially. �
Theorem 10.3 A bipolar neutrosophic hypergraph H = (μ, ρ) is single-valued
bipolar neutrosophic graph (possibly with loops) if and only if H is elementary,
support simple, and all the hyperedges have two(or one) element support.

Proof Let H = (μ, ρ) be an elementary, support simple, and each hyperedge has
two(or one) element support. Since, H is elementary, each hyperedge is single valued
on supp(μ). Each hyperedge has two(or one) element support, i.e., each hyperedge
contains exactly two(or one) elements in it. Hence, H is single-valued bipolar neu-
trosophic graph(possibly with loops). Converse part can be proved on the same
lines. �
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Fig. 10.2 Induced
fundamental sequence of H

x1 x2

Hα1

x1

x2

H
α
2

x1

x2

x4

x5

Hα3

Definition 10.17 A bipolar neutrosophic hypergraph H = (μ, ρ) is called a B =
(T+

B , I+
B , F+

B , T−
B , I−

B , F−
B )-tempered bipolar neutrosophic hypergraph if there exists

a crisp hypergraph H∗ = (X, E) and a bipolar neutrosophic set B = (T+
B , I+

B , F+
B ,

T−
B , I−

B , F−
B ) : X → [0, 1] × [−1, 0] such that ρ = {DF = (T+

DF
, I+

DF
, F+

DF
, T−

DF
,

I−
DF
, F−

DF
)|F ∈ E}, where

T+
DF

(x) =
{
min(T+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

I+
DF

(x) =
{
min(I+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

F+
DF

(x) =
{
max(F+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

T−
DF

(x) =
{
max(T−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

I−
DF

(x) =
{
max(I−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

F−
DF

(x) =
{
min(F−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

Example 10.2 Consider a bipolar neutrosophic hypergraph H = (μ, ρ) given in
Fig. 10.3, where ρ = {ρ1, ρ2, ρ3}. Incidence matrix of H is given in Table10.2.

Define a bipolar neutrosophic set B = (T+
B , I+

B , F
+
B , T

−
B , I−

B , F
−
B ):X → [0, 1] ×

[−1, 0] as
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x1(0.1,0.2,0.3,−0.1,−0.2,−0.3)

x2(0.2,0.3,0.4,−0.2,−0.3,−0.4)

x3(0.3,0.4,0.5,−0.3,−0.4,−0.5)
x4(0.4,0.5,0.6,−0.4,−0.5,−0.6)

(0.2
,0.3

,0.6
−0.2,

−0.3
,−0.

6)

(0.3,0.4,0.6,−0.3,−0.4,−0.6)

(0.1,0.2,0.6,−
0.1,−

0.2,−
0.6)

Fig. 10.3 B-tempered bipolar neutrosophic hypergraph

Table 10.2 B-tempered bipolar neutrosophic hypergraph

I ρ1 ρ2 ρ3

x1 (0.1, 0.2, 0.6,
− 0.1,−0.2,−0.6)

0 0

x2 0 (0.2, 0.3, 0.6,
− 0.2,−0.3,−0.6)

0

x3 0 0 (0.3, 0.4, 0.6,
− 0.3,−0.4,−0.6)

x4 (0.1, 0.2, 0.6,
− 0.1,−0.2,−0.6)

(0.2, 0.3, 0.6,
− 0.2,−0.3,−0.6)

(0.3, 0.4, 0.6,
− 0.3,−0.4,−0.6)

B = {(x1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (x2, 0.2, 0.3, 0.4,−0.2,−0.3,−0.4),

(x3, 0.3, 0.4, 0.5,−0.3,−0.4,−0.5), (x4, 0.4, 0.5, 0.6,−0.4,−0.5,−0.6)}.

By routine calculations, we have

T+
D{x1,x4}(x1) = min{T+

B (x1), T
+
B (x4)} = min{0.1, 0.4} = 0.1,

I+
D{x1 ,x4}(x1) = min{I+

B (x1), I+
B (x4)} = min{0.2, 0.5} = 0.2,

F+
D{x1,x4}(x1) = max{F+

B (x1), F
+
B (x4)} = max{0.3, 0.6} = 0.6.

Similarly,

T−
D{x1,x4}(x1) = −0.1, I−

D{x1 ,x4}(x1) = −0.2, F−
D{x1 ,x4}(x1) = −0.6.

The remaining values can be calculated using the same technique. Thus, we have
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ρ1 = (T+
D{x1 ,x4} , I

+
D{x1 ,x4} , F

+
D{x1 ,x4} , T

−
D{x1 ,x4} , I

−
D{x1 ,x4} , F

−
D{x1 ,x4}),

ρ2 = (T+
D{x2 ,x4} , I

+
D{x2 ,x4} , F

+
D{x2 ,x4} , T

−
D{x2 ,x4} , I

−
D{x2 ,x4} , F

−
D{x2 ,x4}),

ρ3 = (T+
D{x3 ,x4} , I

+
D{x3 ,x4} , F

+
D{x3 ,x4} , T

−
D{x3 ,x4} , I

−
D{x3 ,x4} , F

−
D{x3 ,x4}).

Hence, H is B-tempered bipolar neutrosophic hypergraph.

Theorem 10.4 A bipolar neutrosophic hypergraph H = (μ, ρ) is B = (T+
B , I+

B ,
F+
B , T

−
B , I−

B , F
−
B )-tempered bipolar neutrosophic hypergraph if and only if H is

simply ordered, elementary, and support simple.

Proof Suppose that H is a B = (T+
B , I+

B , F+
B , T

−
B , I−

B , F−
B )-tempered bipolar

neutrosophic hypergraph of a crisp hypergraph H∗. Then clearly H is elemen-
tary and hence also will be support simple. To prove H to be simply ordered,
let c(H) = {(X1, ρ

∗
1 ), (X2, ρ

∗
2 ), (X3, ρ

∗
3 ), . . ., (Xn, ρ

∗
n )} be the core hypergraphs

of H . Since H is elementary, then H will be ordered. To show that H is sim-
ply ordered, let us suppose the existence of a crisp hyperedge E ∈ ρ∗

i+1\ρ∗
i . Then

there will be an element x∗ ∈ E satisfying B+(x∗) = α+
i+1, B

−(x∗) = α−
i+1. Since

B+(x∗) = α+
i+1 < αi , B−(x∗) = α−

i+1 > αi , it is followed that x∗ /∈ Xi and E � Xi ,
hence H is simply ordered.

Conversely, suppose that H is simply ordered, elementary, and support simple. Let
c(H) = {(X1, ρ

∗
1 ), (X2, ρ

∗
2 ), (X3, ρ

∗
3 ), . . ., (Xn, ρ

∗
n )}.Define B = (T+

B , I+
B , F+

B , T−
B ,

I−
B , F−

B ) : Xn → [0, 1] × [−1, 0] as

B+(x) =
{

α+
1 , if x ∈ X1,

α+
i , if x ∈ Xi\Xi−1, i = 1, 2, 3, . . . , n

B−(x) =
{

β−
1 , if x ∈ X1,

β−
i , if x ∈ Xi\Xi−1, i = 1, 2, 3, . . . , n

We prove that ρ = {DF = (T+
DF
, I+

DF
, F+

DF
, T−

DF
, I−

DF
, F−

DF
) : F ∈ ρ∗}, where

T+
DF

(x) =
{
min(T+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

I+
DF

(x) =
{
min(I+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

F+
DF

(x) =
{
max(F+

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

T−
DF

(x) =
{
max(T−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

I−
DF

(x) =
{
max(I−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.

F−
DF

(x) =
{
min(F−

B (y)) : y ∈ F, if x ∈ F,

0, otherwise.
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Let F ∈ ρ∗
n . Because H is support simple and elementary, there is only one bipolar

neutrosophic hyperedge CF = (T+
CF
, (I+

CF
, (F+

CF
, T−

CF
, I−

CF
, F−

CF
) in ρ whose support

is ρ∗. Also the supports of different hyperedges in ρ are different and lies in ρ∗
n . Thus,

to prove that ρ = {DF = (T+
DF
, I+

DF
, F+

DF
, T−

DF
, I−

DF
, F−

DF
) : F ∈ ρ∗}, it is enough to

show that

T+
CF

= T+
DF

, I+
CF

= I+
DF

, F+
CF

= F+
DF

,

T−
CF

= T−
DF

, I−
CF

= I−
DF

, F−
CF

= F−
DF

,

for all F ∈ ρ∗
n . Since, H is support simple, that is, all the hyperedges have differ-

ent support and all hyperedges are elementary, the definition of FS(H) implies that
h(CF ) is equal to some αi . Therefore, ρ∗ ⊆ Xi . If i > 1, then F ∈ ρ∗\ρ∗

i−1. Since
F ⊆ Xi , the definition of B = (T+

B , I+
B , F

+
B , T

−
B , I−

B , F
−
B ) implies that for each x ∈ F ,

B+(x) ≥ α+
i and B−(x) ≤ α−

i . Our claim is that B+(x) = α+
i and B−(x) = α−

i , for
some x ∈ F . If not, then the definition of B = (T+

B , I+
B , F

+
B , T

−
B , I−

B , F
−
B ) implies

that B+(x) ≥ α+
i , B

−(x) ≤ α−
i for all x ∈ F , which follows that F ⊆ Xi−1 and

therefore F ∈ ρ∗\ρ∗
i−1 and because H is simply ordered F � Xi−1, which is a con-

tradiction. Hence it is followed from the definition of DF that DF = CF . Hence, H is
B-tempered bipolar neutrosophic hypergraph. This completes the proof. �

10.3 Transversals of Bipolar Neutrosophic Hypergraphs

A transversal for a crisp hypergraphG = (X, E) is an arbitrary subset t of X such that
for all εi ∈ E , t ∩ εi 
= ∅. A transversal t is called the minimal transversal if no any
proper subset of t is a transversal of G. We now define the concepts of transversals
and minimal transversals of bipolar neutrosophic hypergraphs.

Definition 10.18 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph on X . A
bipolar neutrosophic transversal T = (τ+, τ−) of H is a bipolar neutrosophic subset
of X having the property T (h(ρi ),d(ρi )) ∩ ρ

(h(ρi ),d(ρi ))

i 
= ∅, for all ρi ∈ ρ.
T is called the minimal bipolar neutrosophic transversal for H if whenever T1 ⊂

T , T1 is not a bipolar neutrosophic transversal of H . The collection of all minimal
bipolar neutrosophic transversals(and the bipolar neutrosophic hypergraph formed
by this set) is denoted by Tr (H).

Theorem 10.5 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph then the fol-
lowing statements are equivalent:

(i) T is a bipolar neutrosophic transversal of H.
(ii) For allρi ∈ ρ and for eachα = (T+

α , I+
α , F+

α , T−
α , I−

α , F−
α ) ∈ [0, 1] × [−1, 0],

satisfying the conditions 0 < (T+
α , I+

α , F+
α ) < h(ρi ), 0 > (T−

α , I−
α , F−

α ) >

d(ρi ), T α ∩ ρα 
= ∅.

(iii) T α is a transversal of Hα , for all α ∈ [0, 1] × [−1, 0] with 0 < α+ < α+
1 ,

0 > α− > α−
1 .
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Proof (i) ⇒ (i i). Since T is a bipolar neutrosophic transversal of H therefore
for any α ∈ [0, 1] × [−1, 0] satisfying the conditions, 0 < (T+

α , I+
α , F+

α ) < h(ρi ),

0 > (T−
α , I−

α , F−
α ) > d(ρi ), T (α+,α−) ⊇ T (h(ρi ),d(ρi )) ρ

(α+,α−)
i ⊇ ρ

(h(ρi ),d(ρi ))

i . Hence,

T (α+,α−) ∩ ρ
(α+,α−)
i ⊇ T (h(ρi ),d(ρi )) ∩ ρ

(h(ρi ),d(ρi ))

i 
= ∅. Since T is transversal.
(i i) ⇒ (i i i). Since T α ∩ ρα

i 
= ∅, for all ρi ∈ ρ and 0 < α+ < α+
1 , 0 > α− > α−

1 ,

therefore T α is a transversal of Hα .
(i i i) ⇒ (i). The proof is trivial. �

Remark 10.3 If T is a minimal bipolar neutrosophic transversal of H , then it is not
necessary that T α will be a minimal transversal of Hα for all α ∈ [0, 1] × [−1, 0].
Further, the set of all minimal transversals of H may not form a hypergraph on X .

Definition 10.19 Let T be a bipolar neutrosophic set satisfying the property that
T α is a minimal transversal for Hα for all α ∈ [0, 1] × [−1, 0], then T is called the
locally minimal bipolar neutrosophic transversal of H . The set of all locally minimal
bipolar neutrosophic transversals of H is denoted by T ∗

r (H).

Lemma 10.1 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph with FS(H) =
{α1, α2, α3, . . . , αn}. If T is a bipolar neutrosophic transversal of H, then h(T ) >

h(ρ j ), d(T ) < d(ρ j ), for all ρ j ∈ ρ. If T is a minimal transversal then,

h(T ) = max{h(ρ j ) : ρ j ∈ ρ} = α+
1 ,

d(T ) = min{d(ρ j ) : ρ j ∈ ρ} = α−
1 .

Proof Since T is a bipolar neutrosophic transversal of H , therefore, T (h(ρ j ),d(ρ j )) ∩
ρ

(h(ρ j ),d(ρ j ))

j 
= ∅, for allρ j ∈ ρ.Let x be a generic element of supp(T ) then, τ+(x) ≥
h(ρ j ), τ−(x) ≤ d(ρ j ),which implies that h(T ) ≥ τ+(x) ≥ h(ρ j ), d(T ) ≤ τ−(x) ≤
d(ρ j ). If T is minimal and

h(ρ j ) = max{ρ j (x) : for all x ∈ X, ρ j ∈ ρ} = α+
1 ,

d(ρ j ) = min{ρ j (x) : for all x ∈ X, ρ j ∈ ρ} = α−
1 ,

which implies that

h(T ) = max{h(ρ j ) : ρ j ∈ ρ} = α+
1 ,

d(T ) = min{d(ρ j ) : ρ j ∈ ρ} = α−
1 .

�

Theorem 10.6 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph on X. For all
T ∈ Tr (H) and for each x ∈ X such that T (x) ∈ FS(H). The fundamental sequence
of Tr (H) is a subset of FS(H).
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Proof Let FS(H) = {α1,α2,α3, . . .,αn} be the fundamental sequence of H . Suppose
T = (τ+, τ−) ∈ Tr (H) and T (x) ∈ (αi+1, αi ]. Define amappingφ = (φ+, φ−) such
that

φ+(v) =
{

α+
i , if x = v,

τ+(v), otherwise.
φ−(v) =

{
α−
i , if x = v,

τ−(v), otherwise.

From the definition of φ, we have φαi = T αi . The definition of FS(H) gives Hα =
Hαi , for allα ∈ (αi+1, αi ]. Therefore,φαi is a transversal of Hα , for allα ∈ (αi+1, αi ].
Since T = (τ+, τ−) is a bipolar neutrosophic transversal and φα = T α , for all α /∈
(αi+1, αi ], φ = (φ+, φ−) is a bipolar neutrosophic transversal.

Now φ = (φ+, φ−) ≤ T = (τ+, τ−) and theminimality of T implies that φ = T .
Hence, T (x) = φ(x) = α1. Thus, for each T ∈ Tr (H) and for all x ∈ X , we have
T (x) ∈ FS(H). Therefore, FS(Tr (H)) ⊆ FS(H). �

Theorem 10.7 The set Tr (H) of all minimal transversals of H is sectionally ele-
mentary.

Proof Let FS(Tr (H)) = {α1, α2, α3, . . ., αn}. Suppose that there is some T ∈ Tr (H)

and some α ∈ (αi+1, αi ] such that T αi is a proper subset of T α . Since [Tr (H)]α =
[Tr (H)]αi , there exists some φ ∈ Tr (H) such that φαi = T α . Then T αi ⊂ φαi implies
the bipolar neutrosophic set β defined as

β(x) =
{

α, if x ∈ φαi \T αi ,

φ(x), otherwise.

is a bipolar neutrosophic transversal of H . Now α < φ, which is a contradiction to
the minimality of φ. �

Theorem 10.8 Let FS(H) = {α1, α2, α3, . . ., αn}. The top level cut of T , T α1 is a
minimal transversal of Hα1 , for each T ∈ Tr (H).

Proof On contrary, suppose that there is a minimal transversal T of Hαi such that
T ⊂ T αi . Define a bipolar neutrosophic set β such that

β(x) =
{

α2, if x ∈ T α1\T,

T (x), otherwise.

Then β is a bipolar neutrosophic transversal of H and β < T , a contradiction to the
minimality of T . �

Although finding Tr (H) for bipolar neutrosophic hypergraphs is more complicated.
We now give an algorithm for finding Tr (H) in the following Construction10.4.

Construction 10.4 Algorithm for finding Tr (H) Let H = (μ, ρ) be a bipolar neu-
trosophic hypergraph with the set of core hypergraphs c(H) = {Hα1 , Hα2 , Hα3 , . . .,
Hαn }. An iterative procedure to find the minimal bipolar neutrosophic transversal T
of H is as follows.
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1. Find a crisp minimal transversal t1 of Hα1 .
2. Find a minimal transversal t2 of Hα2 satisfying the property t1 ⊆ t2, i.e., construct

a new hypergraph H2 with hyperedges ρα2 which is augmented having a loop at
each x ∈ t1. Equivalently, we can say that ρ(H2) = ρα2 ∪ {{x}|x ∈ t1}. Let t2 be
an arbitrary minimal transversal of H2.

3. Continue the procedure iteratively, we get a sequence of minimal transversals
t1 ⊆ t2 ⊆ t3 ⊆ · · · ⊆ t j such that t j be the minimal transversal of Hα j satisfying
the property t j−1 ⊆ t j .

4. Let μ j be the elementary bipolar neutrosophic set having the support Tj and

(h(μ j ), d(μ j )) = (α+
j , α−

j ) = α j , 1 ≤ j ≤ n. Then, T =
n⋃

j=1
{μ j |1 ≤ j ≤ n} is

a minimal bipolar neutrosophic transversal of H .

To see the validity of this algorithm, note that T is a bipolar neutrosophic transversal
of H . If T1 < T , then there is an element x ∈ X such that

T+
T1

(x) < T+
T (x), I+

T1
(x) < I+

T (x), F+
T1

(x) > F+
T (x),

T−
T1

(x) > T−
T (x), I−

T1
(x) > I−

T (x), F−
T1

(x) < F−
T (x).

But then x is not an element of T (x)-level cut of T1. So T T (x)
1 ⊂ T T (x) = t T (x),

therefore T T (x)
1 is not a transversal of HT (x). Hence T is a minimal bipolar neutro-

sophic transversal of H . The above construction clearly shows that T is also a locally
minimal transversal, that is, T ∈ T ∗

r (H).

Example 10.3 Consider a bipolar neutrosophic hypergraph H = (μ, ρ) as shown in
Fig. 10.1. The fundamental sequence of H is FS(H) = {α1 = (0.9, 0.8, 0.1,−0.9,
−0.8,−0.1), α2 = (0.8, 0.7, 0.1,−0.8,−0.7,−0.1), α3 = (0.5, 0.4, 0.3,−0.5,
−0.4,−0.3)}. Clearly, t1 = t2 = {x1} is a minimal(crisp) transversal of Hα1 and
Hα2 and t3 = {x1, x2, x4} is a minimal transversal of Hα3 . Note that t1 ⊆ t2 ⊆ t3.

Let μ1 = {(x1, 0.9, 0.8, 0.1,−0.9,−0.8,−0.1)}, μ2 = {(x1, 0.8, 0.7, 0.1,
−0.8,−0.7,−0.1)}, μ3 = {(x1, 0.5, 0.4, 0.3,−0.5,−0.4,−0.3), (x2, 0.5, 0.4, 0.3,

−0.5,−0.4,−0.3), (x4, 0.5, 0.4, 0.3,−0.5,−0.4,−0.3)}. Hence, T =
n⋃

j=1
μ j =

{(x1, 0.9, 0.8, 0.1,−0.9,−0.8,−0.1), (x4, 0.5, 0.4, 0.3,−0.5,−0.4,−0.3)}, is a
minimal bipolar neutrosophic transversal of H .

Theorem 10.9 Let T be a bipolar neutrosophic transversal of bipolar neutrosophic
hypergraph H. Then, there is a minimal bipolar neutrosophic transversal T1 of H
such that T1 ≤ T .

Proof SinceT α1 is aminimal transversal of Hα1 .Define recursively t j as a transversal
of Hα j , then t j is minimal transversal because of the property t j−1 ⊆ t j ⊆ T α j . Let
Tj be the elementary bipolar neutrosophic set having support t j , height α

+
j and depth

α−
j . Then, T1 =

n⋃

j=1
{Tj |1 ≤ j ≤ n} is a minimal bipolar neutrosophic transversal of

H satisfying the property T1 ≤ T . �
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Theorem 10.10 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph and T ∈
Tr (H). If x ∈ supp(T ) then there exists a bipolar neutrosophic hyperedge ρi ∈ ρ of
H for which the following conditions are satisfied.

(i) ρ+
i (x) = h(ρi ) = T+(x) > 0, ρ−

i (x) = d(ρi ) = T−(x) < 0,
(ii) T (h(ρi ),d(ρi )) ∩ ρ

(h(ρi ),d(ρi ))

i = {x}.
Proof (i) Suppose that T+(x) > 0 and T−(x) < 0. Let B be the set of all bipolar
neutrosophic hyperedges of H in which for all β ∈ B, β+(x) ≥ T+(x), β−(x) ≤
T−(x).Since, T T (x) is a transversal of HT (x) and x ∈ T T (x), then the set is non-empty.
Further, for each β ∈ B we have

h(β) ≥ β+(x) ≥ T+(x)

d(β) ≤ β−(x) ≤ T−(x).

On contrary suppose that (i) does not hold then for each β ∈ B we have h(β) >

T+(x), d(β) < T−(x) and there is xβ 
= x such that xβ ∈ β(h(β),d(β)) ∩ T (h(β),d(β))

(using the definition of transversals). Define a bipolar neutrosophic set ψ as

ψ+(v) =
{
T+(v), if x 
= v
max{h(ρi )|h(ρi ) < T+(x)}, if x = v

ψ−(v) =
{
T−(v), if x 
= v
min{d(ρi )|d(ρi ) < T−(x)}, if x = v

Then, ψ is a transversal of H and ψ < T . A contradiction to the minimality of T .
Hence (i) holds for some ρi ∈ ρ.

(i i) Suppose each β ∈ B satisfies the condition (i) and contrary suppose contains
an element xβ 
= x such that xβ ∈ β(h(β),d(β)) ∩ T (h(β),d(β)). Then there exists a bipo-
lar neutrosophic transversal ψ of H such that ψ < T , which is a
contradiction. �

Theorem 10.11 Let H = (μ, ρ) be a bipolar neutrosophic hypergraph and let x ∈
X. Then there exists a minimal bipolar neutrosophic transversal T ∈ Tr (H) if and
only if there is a ρi ∈ ρ satisfying the following conditions:

(i) ρ+
i (x) = h(ρi ) and ρ−

i (x) = d(ρi ).

(ii) For all ρ∗
i ∈ ρ with h(ρ∗

i ) > h(ρi ) and d(ρ∗
i ) < d(ρi ), ρ

∗(h(ρ∗
i ),d(ρ∗

i ))

i �

ρ
(h(ρi ),d(ρi ))

i .

(iii) Any hyperedge of H (h(ρi ),d(ρi )) is not a proper subset of ρ(h(ρi ),d(ρi ))

i .

Proof (i) Suppose T ∈ Tr (H) and T+(x) > 0, T−(x) < 0 then (i) follows from
Theorem10.10.

(ii) Suppose on contrary, for some ρ ′
i ∈ ρ having h(ρ ′

i ) > h(ρi ) and d(ρ ′
i ) < d(ρi ),

we haveρ
′(h(ρi ),d(ρi ))

i ⊆ ρ
(h(ρi ),d(ρi ))

i . Then, there exists an element v 
= x satisfy-

ing the condition v ∈ ρ
′(h(ρ ′

i ),d(ρ ′
i ))

i ∩ T (h(ρ ′
i ),d(ρ ′

i )) ⊆ ρ
(h(ρi ),d(ρi ))

i ∩ T (h(ρi ),d(ρi )),

which is contradiction to Theorem10.10. Hence (ii) holds.
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(iii) On contrary, suppose that for each ρi ∈ ρ satisfying the conditions (i) and
(i i), there exists ρ∗

i ∈ ρ such that ∅ ⊂ ρ
∗(h(ρi ),d(ρi ))

i ⊂ ρ
(h(ρi ),d(ρi ))

i . Since,
ρ

∗(h(ρi ),d(ρi ))

i is non-empty then we have, ρ∗+
i (x) = h(ρi ) = h(ρ∗

i ), ρ∗−
i (x) =

d(ρi ) = h(ρ∗
i ). If (ρ

∗+
i (x), ρ∗−

i (x)) = (h(ρ∗
i ), d(ρ∗

i )), our supposition implies
that there exists ∅ ⊂ ρ ′

i ∈ ρ such that

∅ ⊂ ρ
′(h(ρi ),d(ρi ))

i ⊂ ρ
∗(h(ρi ),d(ρi ))

i ⊂ ρ
(h(ρi ),d(ρi ))

i .

This recursive process must end after finitely many iterations, thus we suppose
that ρ∗+

i (x) < h(ρ∗
i ), ρ

∗−
i (x) > d(ρ∗

i ). Then, there exists some v 
= x such that

x ∈ ρ
∗(h(ρi ),d(ρi ))

i ∩ T ∗(h(ρi ),d(ρi )) ⊆ ρ
(h(ρi ),d(ρi ))

i ∩ T ∗(h(ρi ),d(ρi )),

which is a contradiction to Theorem10.10. Hence, our supposition is false and
(iii) holds.

Conversely, we assume that for any vertex x ∈ X and hyperedges ρi , ρ∗
i ∈ ρ all

three conditions hold. Suppose that h(ρi ) ≥ α+
i , d(ρi ) ≤ α−

i , for some αi ∈ FS(H).

From conditions (ii) and (iii), there exists y ∈ ρ
∗(h(ρ∗

i ),d(ρ∗
i ))

i \ρ(h(ρi ),d(ρi ))

i , for each
ρ∗
i ∈ ρ and h(ρ∗

i ) ≥ h(ρi ), d(ρ∗
i ) ≤ d(ρi ). Let Z be the set of all such vertices, thus

Z ∩ ρ
(h(ρi ),d(ρi ))

i = ∅. Let T1, T2, T3, . . . , Tn be the sequence of transversals such that
Tj ⊆ Z , for all 1 ≤ j < i and Ti ⊆ Z ∪ {x}. Then for each i , x ∈ Ti . Let μi be a

bipolar neutrosophic set corresponding to Ti , then T =
n⋃

i=1
μi is the minimal bipolar

neutrosophic transversal and x ∈ supp(T ). �

10.4 Applications of Bipolar Neutrosophic Hypergraphs

In recent years, research in anthropology (study of human and their culture) has been
involved with evaluation of social networks. Such type of networks is developed by
defining one or more relations on the set of individuals. The relations can be taken
from effective relationships, aspects of some organizations and from awide variety of
other resources. Network models, represented as simple graphs, lack some informa-
tion necessary for super-dyadic relationships between the vertices. Natural existence
of hyperedges can be found in co-citation, e-mail networks, co-authorship, weblog
networks and social networks, etc. Representation of these models as hypergraphs
maintains the dyadic relationships.
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10.4.1 Super-Dyadic Managements in Marketing Channels

Dyadic communication management has been a primary tool in marketing chan-
nels. Marketing researchers and managers have recognized mutual commitment in
marketing channels as central key to successful marketing and to produce benefits
for associations. Bipolar neutrosophic hypergraphs consist of marketing managers
as vertices and hyperedges represent their dyadic communications involving their
correlative thoughts, ideas, plans, projects, and objectives. Strong dyadic commu-
nications can improve the marketing strategies and the production of an organiza-
tion. A bipolar neutrosophic networkmodel representing the dyadic communications
among the marketing managers of an organization is given in Fig. 10.4. The positive
membership degrees of each person represent the percentage of its positive dyadic
behavior and negative membership degrees describe its negative dyadic behavior
toward the other members of the same dyad group. Adjacent level between any pair
of vertices depicts that how much their dyadic relationship is competent. By routine
calculations, we have adjacent levels as given in Table10.3.

It can be noted that the most competent dyadic pair is (Abel, Ansel). Bipolar neu-
trosophic hyperedges are taken as the different digital marketing strategies adopted
by the different dyadic groups of the same organization. The main objective of this
model is to figure out the most effective dyad of digital marketing techniques. The
marketing managers are divided into six different groups and the digital marketing
strategies adopted by these six groups are represented by hyperedges, i.e., the bipolar
neutrosophic hyperedges {S1, S2, S3, S4, S5, S6} represent the following strategies
{Spread the wealth, Align strategies, Analyze the competition, Provide value, Build
relationships, Promotions}, respectively. The individual effects of positive mem-
bership and negative membership degrees of each marketing strategy toward the
achievements of an organization are given in Tables10.4 and 10.5, respectively.
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Table 10.3 Adjacent levels

Dyad airs Adjacent level Dyad pairs Adjacent level

γ (Aaroon, Abel) (0.1, 0.2, 0.5,−0.1,
− 0.2,−0.5)

γ (Abel, Abner) (0.3, 0.4, 0.6,−0.3,
− 0.4,−0.6)

γ (Abel, Adler) (0.2, 0.3, 0.5,−0.2,
− 0.3,−0.5)

γ (Abner, Adler) (0.2, 0.3, 0.6,−0.2,
− 0.3,−0.6)

γ (Abbot, Abel) (0.2, 0.3, 0.5 − 0.2,
− 0.3,−0.5)

γ (Abel, Ansel) (0.3, 0.4, 0.5,−0.3,
− 0.4,−0.5)

γ (Abel, Albert) (0.1, 0.2, 0.5,−0.1,
− 0.2,−0.5)

γ (Ansel, Albert) (0.1, 0.2, 0.5,−0.1,
− 0.2,−0.5)

γ (Abbot, Ansel) (0.2, 0.3, 0.5,−0.2,
− 0.3,−0.5)

γ (Abbot, Alen) (0.2, 0.3, 0.6 − 0.2,
− 0.3,−0.6)

γ (Alen, Alsen) (0.3, 0.4, 0.6,−0.3,
− 0.4,−0.6)

γ (Aaroon, Ansel) (0.1, 0.2, 0.5,−0.1,
− 0.2,−0.5)

γ (Aaroon, Adler) (0.1, 0.2, 0.4,−0.1,
− 0.2,−0.4)

γ (Ansel, Adler) (0.2, 0.3, 0.5,−0.2,
− 0.3,−0.5)

γ (Aaroon, Adan) (0.1, 0.2, 0.4,−0.1,
− 0.2,−0.4)

γ (Aaroon, Albert) (0.1, 0.2, 0.3,−0.1,
− 0.2,−0.3)

γ (Albert, Adan) (0.1, 0.2, 0.4,−01,
− 0.2,−0.4)

γ (Aaroon, Abbot) (0.1, 0.2, 0.4,−0.1,
− 0.2,−0.4)

Table 10.4 Positive effects of marketing strategies

Marketing strategy Increase in earnings Indeterminate factor Break-even point

Spread the wealth 0.1 0.2 0.5

Align strategy 0.2 0.3 0.6

Analyze the competition 0.1 0.2 0.5

Provide value 0.1 0.2 0.4

Build the relationships 0.1 0.2 0.5

Promotions 0.2 0.3 0.6

Table 10.5 Negative effects of marketing strategies

Marketing strategy Decrease in earnings Indeterminate factor
of loss

Critical point

Spread the wealth −0.1 −0.2 −0.5

Align strategy −0.2 −0.3 −0.6

Analyze the competition −0.1 −0.2 −0.5

Provide value −0.1 −0.2 −0.4

Build the relationships −0.1 −0.2 −0.5

Promotions −0.2 −0.3 −0.6
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Table 10.6 Positive and negative effects of dyadic marketing

Dyadic strategies Positive effects Negative effects

σ (Spread the wealth, align strategy) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Spread the wealth, build the relationships) (0.1, 0.2, 0.5) (−0.1,−0.2,−0.5)

σ (Spread the wealth, promotions) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Spread the wealth, analyze the competition) (0.1, 0.2, 0.5) (−0.1,−0.2,−0.5)

σ (Spread the wealth, provide value) (0.1, 0.2, 0.5) (−0.1,−0.2 − 0.5)

σ (Align strategy, analyze the competition) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Align strategy, provide value) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Align strategy, build the relationships) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Align strategy, promotions) (0.2, 0.3, 0.6) (−0.2,−0.3,−0.6)

σ (Analyze the competition, build relationships) (0.1, 0.2, 0.5) (−0.1,−0.2,−0.6)

σ (Analyze the competition, promotions) (0, 1, 0.2, 0.6) (−0.1,−0.2,−0.5)

σ (Provide value, build relationships) (0.1, 0.2, 0.5) (−0.1,−0.2,−0.5)

σ (Provide value, promotions) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

σ (Build the relationships, promotions) (0.1, 0.2, 0.6) (−0.1,−0.2,−0.6)

Effective dyads of marketing strategies enhance the performance of an organiza-
tion and perceive the better techniques to be adopted. Positive and negative adjacency
of all dyadic communication managements is given in Table10.6.

The most powerful and competent marketing strategies adopted mutually are
Align strategy and Promotions. Thus, to improve the efficiency of an organiza-
tion, dyadic managements should align their marketing strategies with their busi-
ness strategies and should develop the strategies for the marketing areas that align
with the marketing strategy. Then, they should use the promotion techniques to
allure customers to purchase their products. The membership degrees of this dyad is
(0.2, 0.3, 0.6,−0.2,−0.3,−0.6) which shows that the combine effect of this dyad
will increase the earnings of an organization up to 20% and loss will be reduced
up to 20%, chances of break-even point will be 60%. Thus, we conclude that super
dyad marketing communications are more effective to improve the performance of
an organization. The method of searching out the most effective dyads is described
in the following algorithm is given in Table10.7.

10.4.2 Production of New Alleles Using Mutations

When a DNA gene is changed in such a way that the genetic message carried by this
gene is altered is called mutation. Randomly genetic alterations caused by evaluation
have different effects. Most genetic changes are neutral, some other are injurious and
very rare of them have positive effects. If the germ cells (ova and spermatozoa) are
affected by the mutations then the alteration will be passed to all cells and will
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Table 10.7 Algorithm for super-dyadic managements

Algorithm for searching out the most effective dyads

1. Input the degrees of membership of all vertices(marketing managers) x1, x2, . . . , xn .

2. Input the degrees of membership of all hyperedges S1, S2, . . . , Sm .

3. Calculate the adjacency level between vertices xi and x j as,

γ +(xi , x j ) = maxk min[T+
k (xi ), T

+
k (x j )], maxk min[I+

k (xi ), I
+
k (x j )],mink max[F+

k (xi ), F
+
k (x j )],

γ −(xi , x j ) = mink max[T−
k (xi ), T

−
k (x j )], mink max[I−

k (xi ), I
−
k (x j )], maxk min[F−

k (xi ), F
−
k (x j )].

4. Find the most competent dyadic pair as

max T+
γ (xi , x j ), max I+

γ (xi , x j ), min F+
γ (xi x j ),

min T−
γ (xi , x j ), min I−

γ (xi , x j ), max F−
γ (xi , x j ).

5. Calculate the adjacency level between hyperedges Sk and S j as,

σ+(Sk , S j ) = maxk min[T+
k (x), T+

j (x)],maxk min[I+
k (x), I+

j (x)],mink max[F+
k (x), F+

j (x)],
σ−(Sk , S j ) = mink max[T−

k (x), T−
j (x)],mink max[I−

k (x), I−
j (x)],maxk min[F−

k (x), F−
j (x)].

6. Find the most effective super dyad management as,

max T+
σ (Sk , S j ), max I+

σ (Sk , x j ), min F+
σ (Sk , S j ),

min T−
σ (Sk , S j ), min I−

σ (Sk , x j ), max F−
σ (Sk , S j ).

affect the future generations. Such type of mutations is called “germline mutations”
and can cause the inherited properties. Understanding their multiple effects, some
mutations can provide auspicious improvements in newly productive genes as their
resistance to many diseases can be increased by inheriting the beneficial mutations
from other genes. We will take the vertices of a bipolar neutrosophic hypergraph
representing the peoples having genes of somebeneficialmutations existing in human
beings. Groups of families having the same mutant properties are shown by bipolar
neutrosophic hyperedges {M1, M2, M3, M4, M5}. Positive membership degrees and
negativemembership degrees contain the percentageof effects ofmutations. To create
new families from these genes, new alleles, we will apply the minimal property of
transversals of bipolar neutrosophic hypergraphs. In this case, DNA mutations of all
genes are copied into everynewcell of the newgrowing embryo.Bipolar neutrosophic
model is shown in Fig. 10.5.

The positivemembership degrees and negativemembership degrees of eachmuta-
tion reveal the percentage of positive effects and negative effects of corresponding
mutation, respectively. It can be noted from Table10.8, that the families with Apo-
AIM mutation have 90% lower risk of heart disease, 20% have chances to being
neutral and there are 10% chances of failure of this mutation. Negative member-
ship degrees show that the possibility of occurrence of bad effects is −90% and
possibility of non occurrence is −10%. Consider a bipolar neutrosophic set T =
{(g1, 0.8, 0.2, 0.1,−0.8,−0.2,−0.1), (g8, 0.6, 0.3, 0.2,−0.6,−0.3,−0.2), (g11,
0.9, 0.2, 0.1,−0.9,−0.2,−0.1)}. By routine calculations, we have
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Fig. 10.5 Bipolar
neutrosophic hypergraph
model
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T (0.9,0.2,0.1,−0.9,−0.2,−0.1) ∩ M (0.9,0.2,0.1,−0.9,−0.2,−0.1)
1 = {g11} ∩ {g6, g9, g10, g11} = g11,

T (0.5,0.1,0.1,−0.5,−0.1,−0.1) ∩ M (0.5,0.1,0.1,−0.5,−0.1,−0.1)
2 = {g11, g1} ∩ {g12, g11} = g11,

T (0.6,0.3,0.2,−0.6,−0.3,−0.2) ∩ M (0.6,0.3,0.2,−0.6,−0.3,−0.2)
3 = {g8} ∩ {g7, g8} = g8,

T (0.5,0.1,0.1,−0.5,−0.1,−0.1) ∩ M (0.5,0.1,0.1,−0.5,−0.1,−0.1)
4 = {g1, g11} ∩ {g1, g2, g5, g7} = g1,

T (0.8,0.2,0.1,−0.8,−0.2,−0.1) ∩ M (0.8,0.2,0.1,−0.8,−0.2,−0.1)
5 = {g1, g11} ∩ {g1, g2, g3, g4, g8} = g1.

Thus, T is a bipolar neutrosophic transversal. It can be seen that the intersection
of bipolar neutrosophic set is non-empty with all bipolar neutrosophic hyperedges.
Thus, this family will contain the maximum mutations among all the hyperedges.
By following the same technique, we can determine different families which inherit
the mutual properties of all the above mutations and thus are more strong, healthy,
and sharp. Hence,

T = {(g11, 0.8, 0.2, 0.1,−0.8,−0.2,−0.1), (g7, 0.6, 0.3, 0.2,−0.6,−0.3,−0.2),
(g2, 0.9, 0.2, 0.1,−0.9,−0.2,−0.1)},

T = {(g10, 0.9, 0.2, 0.1,−0.9,−0.2,−0.1), (g12, 0.9, 0.2, 0.1,−0.9,−0.2,−0.1),
(g8, 0.6, 0.3, 0.2,−0.6,−0.3,−0.2)},

T = {(g7, 0.5, 0.1, 0.1,−0.5,−0.2,−0.1), (g4, 0.8, 0.2, 0.1,−0.8,−0.2,−0.1),
(g6, 0.9, 0.2, 0.1,−0.9,−0.2,−0.1), (g12, 0.5, 0.1, 0.1,−0.5,−0.1,−0.1)},

are the required families and are shown by dashed lines in Fig. 10.5. The procedure
adopted in our application is given in following Table10.9.



464 10 (Directed) Hypergraphs for Bipolar Neutrosophic Structures

Table 10.8 Effects of mutations

Apo-AIM (0.9, 0.2, 0.1,−0.9,−0.2,−0.1)

Bone density (0.5, 0.1, 0.1,−0.5,−0.1,−0.1)

Sickle cell anemia (0.6, 0.3, 0.2,−0.6,−0.3,−0.2)

Malaria resistance (0.5, 0.1, 0.1,−0.5,−0.1,−0.1)

Tetrachromatic vision (0.8, 0.2, 0.1,−0.8,−0.2,−0.1)

Table 10.9 Algorithm for new alleles

To find different families which inherit the mutual properties of all above mutations

1. Input the degree of membership of all bipolar neutrosophic hyperedges M1, M2, . . ., Mn .

2. Calculate the height of bipolar neutrosophic hyperedge Mj = {xl , xl+1, . . . , xk }, 1 ≤ l ≤ n − 1, 2 ≤ k ≤ n as,

h(Mj ) = {max T+
Mj

(xi ),max I+
Mj

(xi ),min F+
Mj

(xi )}.
3. Calculate the depth of bipolar neutrosophic hyperedge Mj = {xl , xl+1, . . . , xk }, 1 ≤ l ≤ n − 1, 2 ≤ k ≤ n as,

d(Mj ) = {min T−
Mj

(xi ),min I−
Mj

(xi ),max F−
Mj

(xi )}.
4. Find a minimal bipolar neutrosophic transversal T such that T (h(Mj ),d(Mj )) ∩ M

(h(Mj ),d(Mj ))

j 
= ∅ using the following steps.

5. Find a crisp minimal transversal t1 of Hα1 .

6. Find a minimal transversal t2 of Hα2 satisfying the property t1 ⊆ t2, i.e.,

ρ(H2) = ρα2 ∪ {{x}|x ∈ t1}.
Let t2 be an arbitrary minimal transversal of H2.

7. Continue the procedure iteratively, obtain a sequence of minimal transversals t1 ⊆ t2 ⊆ t3 ⊆ · · · ⊆ t j

such that t j be the minimal transversal of Hα j satisfying the property t j−1 ⊆ t j .

8. Let μ j be the elementary bipolar neutrosophic set having the support Tj and (h(μ j ), d(μ j )) = (α+
j , α−

j ) = α j , 1 ≤ j ≤ n.

Then T =
n⋃

j=1
{μ j |1 ≤ j ≤ n} is a minimal bipolar neutrosophic transversal of H .

9. Family of minimal bipolar neutrosophic transversals describes the most powerful mutations.

10.5 Bipolar Neutrosophic Directed Hypergraphs

Definition 10.20 A bipolar neutrosophic directed hypergraph with underlying set
X is an ordered pair G = (σ, ε), where σ is non-empty set of vertices and ε is a set
of bipolar neutrosophic directed hyperarcs(or hyperedges).

A bipolar neutrosophic directed hyperarc(or hyperedge) εi ∈ ε is an ordered pair
(T (εi ), H(εi )), such that T (εi ) ⊂ X , T (εi ) 
= ∅, is called its tail and H(εi ) 
= T (εi )

is its head.

Definition 10.21 LetG = (σ, ε) be a bipolar neutrosophic directed hypergraph. The
order of G, denoted by O(G), is defined as O(G) = (O+(G), O−(G)), where

O+(G) =
∑

x∈X
min σ+

i (x) O−(G) =
∑

x∈X
max σ−

i (x).

The size of G, denoted by S(G), is defined as S(G) = (S+(G), S−(G)), where
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S+(G) =
∑

Ek⊂X

ε+(Ek), S−(G) =
∑

Ek⊂X

ε−(Ek).

In a bipolar neutrosophic directed hypergraph, the vertices ui and u j are adjacent
vertices if they both belong to the same bipolar neutrosophic directed hyperedge.
Two bipolar neutrosophic directed hyperedges εi and ε j are called adjacent if they
have non-empty intersection, i.e., supp(εi ) ∩ supp(ε j ) 
= ∅, i 
= j .

Definition 10.22 A bipolar neutrosophic directed hypergraph G = (σ, ε) is simple
if it contains no repeated directed hyperedges, i.e., if ε j , εk ∈ ε and ε j ⊆ εk , then
ε j = εk .

A bipolar neutrosophic directed hypergraph G = (σ, ε) is said to be support sim-
ple if ε j , εk ∈ ε, supp(ε j ) = supp(εk) and ε j ⊆ εk , then ε j = εk .

A bipolar neutrosophic directed hypergraphG = (σ, ε) is strongly support simple
if ε j , εk ∈ ε and supp(ε j ) = supp(εk), then ε j = εk .

Example 10.4 Consider a bipolar neutrosophic directed hypergraph G = (σ , ε),
where σ = {σ1, σ2, σ3, σ4} be the family of bipolar neutrosophic subsets on X =
{v1, v2, v3, v4, v5, v6}, as shown in Fig. 10.6, such that

σ1 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),
(v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3),

σ2 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v3, 0.4, 0.2, 0.3,−0.4,−0.2,−0.3),
(v6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ3 = {(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v4, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),
(v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ4 = {(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),
(v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)}.

Bipolar neutrosophic relation ε is defined as

ε(v1, v2, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v1, v3, v6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v4, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v2, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3).

Note that, G is simple, strongly support simple and support simple, that is, it
contains no repeated directed hyperedges and if whenever ε j , εk ∈ ε and supp(ε j ) =
supp(εk), then ε j = εk . Further,

o(G) = (1.1, 1.2, 1.8,−1.1,−1.2,−1.8),

s(G) = (0.4, 0.6, 1.4,−0.4,−0.6,−1.4).



466 10 (Directed) Hypergraphs for Bipolar Neutrosophic Structures

v2(0.2,0.2,0.3,−0.2,−0.2,−0.3)

v5(0.3,0.2,0.3,−0.3,−0.2,−0.3)

v4(0.2,0.2,0.3,−0.2,−0.2,−0.3)

v (0.1,0.2,0.3,−0.1,−0.2,−0.3)
v3(0.4,0.2,0.3,−0.4,−0.2,−0.3)

v1(0.1,0.2,0.3,−0.1,−0.2,−0.3),)

(0.1,0.2,0.3,−0.1,−0.2,−0.3)
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Fig. 10.6 Bipolar neutrosophic directed hypergraph

Definition 10.23 The height of a bipolar neutrosophic directed hypergraphG = (σ ,
ε), denoted by h(G), is defined as, h(G) = {max(εl),max(εm),min(εn)|εl , εm, εn ∈
ε}, where εl = max T+

ε j
(xi ), εm = max I+

ε j
(xi ), εn = min F+

ε j
(xi ).

The depth of a bipolar neutrosophic directed hypergraph G = (σ, ε), denoted by
d(G), is defined as, d(G) = {min(εl),min(εm),max(εn)|εl, εm, εn ∈ ε}, where εl =
min T−

ε j
(xi ), εm = min I−

ε j
(xi ), εn = max F−

ε j
(xi ).

The functions T+
ε j

(xi ), I+
ε j

(xi ) and F+
ε j

(xi ) denote the positive truth, indeterminacy
and falsity membership values of vertex xi to the hyperedge ε j , respectively, t−ε j

(xi ),
I−
ε j

(xi ), and F−
ε j

(xi ) denote the negative truth, indeterminacy, and falsity membership
values of vertex xi to the hyperedge ε j , respectively.

Definition 10.24 Let ε = (ε−, ε+) be a directed hyperedge in a bipolar neutrosophic
directed hypergraph. Then the vertex set ε− is called the in-set and the vertex set ε+
is called the out-set of the directed hyperedge ε. It is not necessary that the sets ε−,
ε+ will be disjoint. The hyperedge ε is called the join of the vertices of ε− and ε+.

Definition 10.25 The in-degree D−
G (v) of a vertex v is defined as the sum of mem-

bership degrees of all those directed hyperedges such that v is contained in their
out-set, i.e.,

D−
G (v) = (

∑

v∈H(Ek )

ε+(Ek),
∑

v∈H(Ek )

ε−(Ek)).

The out-degree D+
G (v) of a vertex v is defined as the sum of membership degrees of

all those directed hyperedges such that v is contained in their in-set, i.e.,

D+
G (v) = (

∑

v∈T (Ek )

ε+(Ek),
∑

v∈T (Ek )

ε−(Ek)).
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v1(0.1,0.1,0.1,−0.2,−0.2,−0.2)

v2(0.1,0.1,0.1,−0.2,−0.2,−0.2)

v5(0.1,0.1,0.1,−0.2,−0.2,−0.2) v3(0.1,0.1,0.1,−0.2,−0.2,−0.2)

v6(0.1,0.1,0.1,−0.2,−0.2,−0.2)

v4(0.1,0.1,0.1,−0.2,−0.2,−0.2)

(0.1,0.1,0.1,−
0.2,−

0.2,−
0.2)

(0.1,
0.1,

0.1,
−0.2,

−0.2,
−0.2)

(0.1,0.1,0.1,−0.2,−0.2,−0.2)

(0.1,0.1,0.1,−
0.2,−

0.2,−
0.2)

Fig. 10.7 Regular bipolar neutrosophic directed hypergraph

Definition 10.26 A bipolar neutrosophic directed hypergraph G = (σ, ε) is called
k-regular if in-degrees and out-degrees of all the vertices in G are same.

Example 10.5 Consider a bipolar neutrosophic directed hypergraph G = (σ, ε) as
shown in Fig. 10.7, where σ = {σ1, σ2, σ3, σ4} is the family of bipolar neutrosophic
subsets on X = {v1, v2, v3, v4, v5, v6} and

σ1 = {(v1, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v2, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v5, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)},
σ2 = {(v1, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v3, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v6, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)},
σ3 = {(v6, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v4, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v3, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)},
σ4 = {(v2, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v4, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v5, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)}.

The bipolar neutrosophic relation ε is defined as

ε(v1, v2, v5) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v1, v3, v6) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v6, v4, v3) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v2, v4, v5) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2).

By routine calculations, we see that the bipolar neutrosophic directed hypergraph is
regular.
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Note that

D−
G (v1) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2) = D+

G (v1)

D−
G (v2) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2) = D+

G (v2).

Similarly,D−
G (v3) = D+

G (v3),D
−
G (v4) = D+

G (v4), D
−
G (v5) = D+

G (v5),D
−
G (v6) = D+

G (v6).
Hence, G is regular bipolar neutrosophic directed hypergraph.

We now discuss the basic properties of isomorphism on bipolar neutrosophic
directed hypergraphs.

Definition 10.27 Let G = (σ, ε) and G ′ = (σ ′, ε′) be two bipolar neutrosophic
directed hypergraphs, where σ = {σ1, σ2, σ3, . . . , σk} and σ ′ = {σ ′

1, σ
′
2, σ

′
3, . . . , σ

′
k}.

A homomorphism of bipolar neutrosophic directed hypergraphs χ : G → G ′ is a
mapping χ : X → X ′ which satisfies

1.

min T+
σi

(u) ≤ min T+
σ ′
i
(χ(u)),min I+

σi
(u) ≤ min I+

σ ′
i
(χ(u)),max F+

σi
(u) ≥ max F+

σ ′
i
(χ(u)),

max T−
σi

(u) ≥ max T−
σ ′
i
(χ(u)),max I−

σi
(u) ≥ max I−

σ ′
i
(χ(u)),min F−

σi
(u) ≤ min F−

σ ′
i
(χ(u)),

for all u ∈ X .
2.

T+
ε (u1, u2, u3, . . . , uk) ≤ T+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I+
ε (u1, u2, u3, . . . , uk) ≤ I+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

F+
ε (u1, u2, u3, . . . , uk) ≥ F+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

t−ε (u1, u2, u3, . . . , uk) ≥ T−
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I−
ε (u1, u2, u3, . . . , uk) ≥ I−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

F−
ε (u1, u2, u3, . . . , uk) ≤ F−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

for all {u1, u2, u3, . . . , uk} = Ei ⊂ X .

Note that, for a homomorphism χ : G → G ′, χ(ε) = (T (χ(ε)), H(χ(ε))) is an
hyperarc in G ′ if ε = (T (ε), H(ε)) is an hyperarc in G.

Definition 10.28 A weak isomorphism χ : G → G ′ is a mapping χ : X → X ′
which is a bijective homomorphism and satisfies
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min T+
σi

(v) = min T+
σ ′
i
(χ(v)),min I+

σi
(v) = min I+

σ ′
i
(χ(v)),max F+

σi
(v) = max F+

σ ′
i
(χ(v)),

max T−
σi

(v) = max T−
σ ′
i
(χ(v)),max I−

σi
(v) = max I−

σ ′
i
(χ(v)),min F−

σi
(v) = min F−

σ ′
i
(χ(v)),

for all v ∈ X .

Definition 10.29 A co-weak isomorphism χ : G → G ′ is a mapping χ : X → X ′
which is a bijective homomorphism and satisfies

T+
ε (x1, x2, x3, . . . , xk) = T+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I+
ε (x1, x2, x3, . . . , xk) = I+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

F+
ε (x1, x2, x3, . . . , xk) = F+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

t−ε (x1, x2, x3, . . . , xk) = T−
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I−
ε (x1, x2, x3, . . . , xk) = I−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

F−
ε (x1, x2, x3, . . . , xk) = F−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

for all {x1, x2, x3, . . . , xk} = Ei ⊂ X.

Definition 10.30 An isomorphism of bipolar neutrosophic directed hypergraphs χ :
G → G ′ is a mapping χ : X → X ′ which is bijective homomorphism and satisfies

1.

min T+
σi

(u) = min T+
σ ′
i
(χ(u)),min I+

σi
(u) = min I+

σ ′
i
(χ(u)),max F+

σi
(u) = max F+

σ ′
i
(χ(u)),

max T−
σi

(u) = max T−
σ ′
i
(χ(u)),max I−

σi
(u) = max I−

σ ′
i
(χ(u)),min F−

σi
(u) = min F−

σ ′
i
(χ(u)),

for all u ∈ X .
2.

T+
ε (u1, u2, u3, . . . , uk) = T+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I+
ε (u1, u2, u3, . . . , uk) = I+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

F+
ε (u1, u2, u3, . . . , uk) = F+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

t−ε (u1, u2, u3, . . . , uk) = T−
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),
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I−
ε (u1, u2, u3, . . . , uk) = I−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

F−
ε (u1, u2, u3, . . . , uk) = F−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

for all {u1, u2, u3, . . . , uk} = Ei ⊂ X.

If two bipolar neutrosophic directed hypergraphsG andG ′ are isomorphic, we denote
it as G ∼= G ′.

Example 10.6 Let σ = {σ1, σ2, σ3} and σ ′ = {σ ′
1, σ

′
2, σ

′
3} be the families of bipolar

neutrosophic subsets on X = {v1, v2, v3, v4, v5, v6} and X ′ = {v′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6},

respectively, as

σ1 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),
(v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3), (v6, 0.4, 0.2, 0.5,−0.4,−0.2,−0.5)},

σ2 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v3, 0.4, 0.2, 0.3,−0.4,−0.2,−0.3),
(v6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ3 = {(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v4, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),
(v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ ′
1 = {(v′

4, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
3, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),

(v′
6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3), (v′

5, 0.4, 0.2, 0.5,−0.4,−0.2,−0.5)},
σ ′
2 = {(v′

4, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
2, 0.4, 0.2, 0.3,−0.4,−0.2,−0.3),

(v′
5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ ′
3 = {(v′

5, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
1, 0.2, 0.2, 0.3,−0.2,−0.2,−0.3),

(v′
6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)}.

The bipolar neutrosophic relations ε and ε′ are defined as

ε(v1, v2, v5, v6) = (0.1, 0.2, 0.5,−0.1,−0.2,−0.5),

ε(v1, v3, v6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v4, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε′(v′
4, v

′
3, v

′
6, v

′
5) = (0.1, 0.2, 0.5,−0.1,−0.2,−0.5),

ε′(v′
4, v

′
2, v

′
5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε′(v′
5, v

′
1, v

′
6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3).

Define a mapping χ : X → X ′ as

χ(v1) = v′
4, χ(v2) = v′

3,

χ(v3) = v′
2, χ(v4) = v′

1,

χ(v5) = v′
6, χ(v6) = v′

5.
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v2(0.2,0.2,0.3,−0.2,−0.2,−0.3)

v5(0.3,0.2,0.3,−0.3,−0.2,−0.3)

v4(0.2,0.2,0.3,−0.2,−0.2,−0.3)

v6(0.1,0.2,0.3,−0.1,−0.2,−0.3)

v3(0.4,0.2,0.3,−0.4,−0.2,−0.3)

v1(0.1,0.2,0.3,−0.1,−0.2,−0.3),)

(0.1,0.2,0.3,−0.1,−0.2,−0.3)(0.1,0.2,0.5,−
0.1,−

0.2,−
0.5)

(0
.1
,0
.2
,0
.3
,−

0.
1,
−0

.2
,−

0.
3)

Fig. 10.8 Bipolar neutrosophic hypergraph G

Note that

σ1(v1) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3) = σ ′
1(v

′
4) = σ ′

1(χ(v1)),

σ1(v2) = (0.2, 0.2, 0.3,−0.2,−0.2,−0.3) = σ ′
1(v

′
3) = σ ′

1(χ(v2)),

σ2(v3) = (0.4, 0.2, 0.3,−0.4,−0.2,−0.3) = σ ′
2(v

′
2) = σ ′

2(χ(v3)),

σ3(v4) = (0.2, 0.2, 0.3,−0.2,−0.2,−0.3) = σ ′
3(v

′
1) = σ ′

3(χ(v4)),

σ3(v5) = (0.3, 0.2, 0.3,−0.3,−0.2,−0.3) = σ ′
3(v

′
6) = σ ′

3(χ(v5)).

Similarly, σ(v) = σ ′(χ(v)), for all v ∈ X, ε({v1, v2, v3, . . . , vk}) = ε′({χ(v1),
χ(v2), χ(v3), . . . , χ(vk)}), for all vk ∈ X. Hence, G and G ′ are isomorphic and the
corresponding bipolar neutrosophic directed hypergraphs are shown in Figs. 10.8 and
10.9, respectively.

Note that, χ(ε) = (T (χ(ε), H(χ(ε))) is an hyperarc in G ′ if ε = (T (ε), H(ε))

is an hyperarc in G.

Remark 10.4 A weak isomorphism of bipolar neutrosophic directed hypergraphs
preserves the membership degrees of vertices but not necessarily the membership
degrees of directed hyperedges. A co-weak isomorphism of bipolar neutrosophic
directed hypergraphs preserves the membership degrees of directed hyperedges but
not necessarily the membership degrees of vertices.

In isomorphism of crisp hypergraphs, isomorphic hypergraphs have same degree as
well as the order. The same also holds in bipolar neutrosophic directed hypergraphs.

Theorem 10.12 Let G and G ′ be two isomorphic bipolar neutrosophic directed
hypergraphs. Then, they both have the same order and size.
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v1(0.2,0.2,0.3,−0.2,−0.2,−0.3),)
v2(0.4,0.2,0.3,−0.4,−0.2,−0.3)

v3(0.2,0.2,0.3,−0.2,−0.2,−0.3)

v4(0.1,0.2,0.3,−0.1,−0.2,−0.3)

v5(0.4,0.2,0.5,−0.4,−0.2,−0.5)

v6(0.3,0.2,0.3,−0.3,−0.2,−0.3)

(0.1,
0.2,0

.5,−0.
1,−0.2

,−0.5)

(0.1,0.2,0.3,−0.1,−0.2,−0.3)

(0.1,0.2,0.3,−
0.1,−

0.2,−
0.3)

Fig. 10.9 Bipolar neutrosophic hypergraph G ′

Proof LetG = (σ, ε) andG ′ = (σ ′, ε′) be two bipolar neutrosophic directed hyper-
graphs, where σ = {σ1, σ2, σ3, . . ., σk} and σ ′ = {σ ′

1, σ
′
2, σ

′
3, . . . , σ

′
k} be the family

of bipolar neutrosophic sets defined on X and X ′, respectively. Let χ : X → X ′ be
an isomorphism between G and G ′ then

min σ+
i (z) = min σ ′+

i (χ(z)), max σ−
i (z) = max σ ′−

i (χ(z)), for all z ∈ X

ε(z1, z2, z3, . . . , zk) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

O+(G) =
∑

z∈X
min σ+

i (z) =
∑

z∈X
min σ ′+

i (χ(z)) =
∑

z′∈X ′
min σ ′+

i (z′) = O+(G ′),

O−(G) =
∑

z∈X
max σ−

i (z) =
∑

z∈X
max σ ′−

i (χ(z)) =
∑

z′∈X ′
max σ ′+

i (z′) = O−(G ′),

S +(G) =
∑

Ek⊂X

ε+(Ek) =
∑

Ek⊂X

ε′+(χ(Ek)) =
∑

E ′
k⊂X ′

ε′+(E ′
k) = S +(G ′),

S −(G) =
∑

Ek⊂X

ε−(Ek) =
∑

Ek⊂X

ε′−(χ(Ek)) =
∑

E ′
k⊂X ′

ε′−(E ′
k) = S −(G ′),

for all {z1, z2, z3, . . . , zk} = Ei ⊂ X. This completes the proof. �

Theorem 10.13 Isomorphism between bipolar neutrosophic hypergraphs is an
equivalence relation.

Proof Let G = (X, σ, ε), G ′ = (X ′, σ ′, ε′) and G ′′ = (X ′′, σ ′′, ε′′) be bipolar neu-
trosophic directed hypergraphs having underlying sets X , X ′ and X ′′, respectively.

(i) Reflexive: Consider the identity mapping χ : X → X, such that χ(z) = z,
for all z ∈ X. Then, χ is bijective homomorphism and satisfies min σ+

i (z) =
min σ ′+

i (χ(z)), max σ−
i (z) = max σ ′−

i (χ(z)), for all z ∈ X and
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ε+(z1, z2, z3, . . . , zk) = ε′+(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

ε−(z1, z2, z3, . . . , zk) = ε′−(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ X. Hence, χ is an isomorphism of bipolar
neutrosophic directed hypergraphs to itself. Thus, reflexive relation is satisfied.

(ii) Symmetric: Let χ : X → X ′ be an isomorphism between G and G ′, then χ

is bijective mapping and χ(z) = z′, for all z ∈ X . From the isomorphism of
χ , we have min σ+

i (z) = min σ ′+
i (χ(z)), max σ−

i (z) = max σ ′−
i (χ(z)), for all

z ∈ X and

ε+(z1, z2, z3, . . . , zk) = ε′+(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

ε−(z1, z2, z3, . . . , zk) = ε′−(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all z1, z2, z3, . . . , zk} = Ek ⊂ X. Since, χ is bijective, χ−1 : X ′ → X
exists and χ−1(z′) = z, for all z′ ∈ X ′. Then, min σ+

i χ−1(z′) = min σ ′+
i (z′),

max σ−
i χ−1(z′) = max σ ′−

i (z′), for all z′ ∈ X ′, and

ε+(χ−1(z′
1), χ

−1(z′
2), χ

−1(z′
3), . . . , χ

−1(z′
k)) = ε′+(z′

1, z
′
2, z

′
3, . . . , z

′
k),

ε−(χ−1(z′
1), χ

−1(z′
2), χ

−1(z′
3), . . . , χ

−1(z′
k)) = ε′−(z′

1, z
′
2, z

′
3, . . . , z

′
k),

for all {z′
1, z

′
2, z

′
3, . . . , z

′
k} = E ′

k ⊂ X ′.Hence, we get a bijective mapping χ−1 :
X ′ → X, which is isomorphism from G ′ to G, i.e., G ∼= G ′ ⇒ G ′ ∼= G.

(iii) Transitive: Letχ : X → X ′ and Let λ : X ′ → X ′′ be an isomorphism of bipolar
neutrosophic directed hypergraphs G to G ′ and G ′ to G ′′, respectively, defined
by χ(z) = z′ and λ(z′) = z′′. Then, λ ◦ χ : X → X ′′ is a bijective mapping
fromG toG ′′ such that (λ ◦ χ)(z) = λ(χ(z)), for all z ∈ X.Since,χ : X → X ′
is an isomorphism, we have

min σ+
i (z) = min σ ′+

i (χ(z)), max σ−
i (z) = max σ ′−

i (χ(z)),

ε(z1, z2, z3, . . . , zk) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all z ∈ X and for all {z1, z2, z3, . . . , zk} = Ek ⊂ X. Since, λ : X ′ → X ′′ is
an isomorphism, we have

min σ ′+
i (z′) = min σ ′′+

i (λ(z′)),max σ ′−
i (z′) = max σ ′′−

i (λ(z′)),

ε′(z′
1, z

′
2, z

′
3, . . . , z

′
k) = ε′′(λ(z′

1), λ(z′
2), λ(z′

3), . . . , λ(z′
k)),

for all z′ ∈ X ′ and {z′
1, z

′
2, z

′
3, . . . , z

′
k} = E ′

k ⊂ X ′. Thus, we have
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min σ+
i (z) = min σ ′+

i (χ(z)) = min σ ′+
i (z′) = min σ ′′+

i (λ(z′)) = min σ ′′+
i (λ(χ(z))),

ε(z1, z2, z3, . . . , zk ) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk )) = ε′(z′1, z′2, z′3, . . . , z′k )
= ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k ))
= ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk ))),

for all z ∈ X, z′ ∈ X ′, z′′ ∈ X ′′ {z1, z2, z3, . . . , zk} = Ek ⊂ X and {z′
1, z

′
2,

z′
3, . . . , z

′
k} = E ′

k ⊂ X ′.

Clearly, λ ◦ χ is an isomorphism from G to G ′′. Hence, isomorphism of bipolar
neutrosophic directed hypergraphs is an equivalence relation. �

Theorem 10.14 Aweak isomorphism between bipolar neutrosophic directed hyper-
graphs is a partial order relation.

Proof Let G = (X, σ, ε), G ′ = (X ′, σ ′, ε′) and G ′′ = (X ′′, σ ′′, ε′′) be bipolar neu-
trosophic directed hypergraphs having underlying sets X , X ′ and X ′′, respectively.

(i) Reflexive: Consider the identity mapping χ : X → X, such that χ(z) = z, for
all z ∈ X . Then, χ is bijective homomorphism and satisfies

min σ+
i (z) =min σ ′+

i (χ(z)), max σ−
i (z) = max σ ′−

i (χ(z)),

for all z ∈ X,

T+
ε (z1, z2, z3, . . . , zk) ≤ T+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F+
ε (z1, z2, z3, . . . , zk) ≥ F+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

T−
ε (z1, z2, z3, . . . , zk) ≥ T−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F−
ε (z1, z2, z3, . . . , zk) ≤ F−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)).

Hence, χ is a weak isomorphism of bipolar neutrosophic directed hypergraphs
to itself. Thus, reflexive relation is satisfied.

(ii) Anti symmetric:Letχ : X → X ′ be aweak isomorphismbetweenG andG ′ and
λ : X ′ → X be a weak isomorphism between G ′ and G. Then χ is a bijective
mapping χ(z) = z′, satisfying

min σ+
i (z) =min σ ′+

i (χ(z)), max σ−
i (z) = max σ ′−

i (χ(z)),

T+
ε (z1, z2, z3, . . . , zk) ≤ T+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F+
ε (z1, z2, z3, . . . , zk) ≥ F+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

T−
ε (z1, z2, z3, . . . , zk) ≥ T−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),
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I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F−
ε (z1, z2, z3, . . . , zk) ≤ F−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)), (10.1)

for all z ∈ X, and for all {z1, z2, z3, . . . , zk} = Ei ⊂ X. Since, λ is a bijective
mapping λ(z′) = z, satisfying

min σ+
i (z′) =min σ ′+

i (λ(z′)), max σ−
i (z′) = max σ ′−

i (λ(z′)),

T+
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ T+

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

I+
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ I+

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

F+
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ F+

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

T−
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ T−

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

I−
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ I−

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

F−
ε (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ F−

ε′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

for all z′ ∈ X ′ and for all {z′
1, z

′
2, z

′
3, . . . , z

′
k} = E ′

i ⊂ X ′. The inequalities (1)
and (2) hold true only ifG andG ′ contain the same directed hyperedges having
same membership degrees. Hence G and G ′ are equivalent.

(iii) Transitive: Let χ : X → X ′ and let λ : X ′ → X ′′ be weak isomorphism of
bipolar neutrosophic directed hypergraphs G to G ′ and G ′ to G ′′, respec-
tively, defined byχ(z) = z′ and λ(z′) = z′′. Then λ ◦ χ : X → X ′′ is a bijective
mapping from G to G ′′ such that (λ ◦ χ)(z) = λ(χ(z)), for all z ∈ X . Since
χ : X → X ′ is a weak isomorphism, we have min σ+

i (z) = min σ ′+
i (χ(z)),

max σ−
i (z) = max σ ′−

i (χ(z)), for all z ∈ X and

T+
ε (z1, z2, z3, . . . , zk) ≤ T+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F+
ε (z1, z2, z3, . . . , zk) ≥ F+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

t−ε (z1, z2, z3, . . . , zk) ≥ T−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

F−
ε (z1, z2, z3, . . . , zk) ≤ F−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ X. Similarly λ is a weak isomorphism,
we havemin σ ′+

i (z′) = min σ ′′+
i (λ(z′)), max σ ′−

i (z′) = max σ ′′−
i (λ(z′)), for all

z′ ∈ X ′ and

T+
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ T+

ε′′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),
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I+
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ I+

ε′′(λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

F+
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ F+

ε′′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

T−
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ T−

ε′′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

I−
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≥ I−

ε′′(λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

F−
ε′ (z′

1, z
′
2, z

′
3, . . . , z

′
k) ≤ F−

ε′′ (λ(z′
1), λ(z′

2), λ(z′
3), . . . , λ(z′

k)),

for all {z′
1, z

′
2, z

′
3, . . . , z

′
k} = E ′

k ⊂ X ′. From the above conditions, we have

min σ+
i (z) = min σ ′+

i (χ(z)) = min σ ′+
i (z′) = min σ ′′+

i (λ(z′)) = min σ ′′+
i (λ(χ(z))),

max σ−
i (z) = max σ ′−

i (χ(z)) = max σ ′−
i (z′) = max σ ′−

i (z′) = max σ ′′−
i (λ(χ(z))),

for all z ∈ X and

T+
ε (z1, z2, z3, . . . , zk) ≤ T+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)) = T+
ε′ (z′1, z′2, z′3, . . . , z′k)

≤ T+
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= T+
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)) = I+
ε′ (z′1, z′2, z′3, . . . , z′k)

≤ I+
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= I+
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

F+
ε (z1, z2, z3, . . . , zk) ≥ F+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)) = F+
ε′ (z′1, z′2, z′3, . . . , z′k)

≥ F+
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= F+
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))).

Similarly, we have

T−
ε (z1, z2, z3, . . . , zk ) ≥ T−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk )) = t−
ε′ (z′1, z′2, z′3, . . . , z′k )

≥ T−
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k ))

= t−
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk ))),

I−ε (z1, z2, z3, . . . , zk ) ≥ I−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk )) = I−

ε′ (z′1, z′2, z′3, . . . , z′k )
≥ I−

ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k ))
= I−

ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk ))),

F−
ε (z1, z2, z3, . . . , zk ) ≤ F−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk )) = F−
ε′ (z′1, z′2, z′3, . . . , z′k )

≤ F−
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k ))

= F−
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk ))).

for all {z1, z2, z3, . . . , zk} = Ek ⊂ X , for all {z′
1, z

′
2, z

′
3, . . . , z

′
k} = E ′

k ⊂ X ′.
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Clearly, λ ◦ χ is a weak isomorphism from G to G ′′. Hence weak isomorphism of
bipolar neutrosophic directed hypergraphs is a partial order relation. �

Remark 10.5 IfG andG ′ are isomorphic bipolar neutrosophic directed hypergraphs,
then their vertices preserve degrees but the converse is not true, that is, if degrees
are preserved then bipolar neutrosophic directed hypergraphs may or may not be
isomorphic.

To check whether the two bipolar neutrosophic directed hypergraphs are isomor-
phic or not, it is mandatory that they have same number of vertices having same
degrees and same number of directed hyperedges.

Remark 10.6 • If two bipolar neutrosophic directed hypergraphs are weak isomor-
phic then they have same orders but converse may or may not be true.

• If twobipolar neutrosophic directed hypergraphs are co-weak isomorphic then they
are of same size but the same size of bipolar neutrosophic directed hypergraphs
does not imply to the co-weak isomorphism.

• Any two isomorphic bipolar neutrosophic directed hypergraphs have same order
and size but the converse may or may not be true.

Definition 10.31 A bipolar neutrosophic directed hyperpath of length k in a bipolar
neutrosophic directed hypergraph is defined as a sequence x1,E1, x2,E2, . . . ,Ek,

xk+1 of distinct vertices and directed hyperedges such that

1. ε(Ei ) > 0, i = 1, 2, 3, . . . , k,
2. xi , xi+1 ∈ Ei .

The consecutive pairs (xi , xi+1) are called the directed arcs of the directed hyperpath.

Definition 10.32 Let s and t be any two arbitrary vertices in a bipolar neutrosophic
directed hypergraph and they are connected through a directed hyperpath of length k
then the strength of that directed hyperpath is ηk(s, t) = (η+

k (s, t), η−
k (s, t)), where

the positive strength is defined as

η+
k (s, t) = (min{T+

ε (E1), T
+
ε (E2), T

+
ε (E3), . . . , T

+
ε (Ek)},

min{I+
ε (E1), I

+
ε (E2), I

+
ε (E3), . . . , I

+
ε (Ek)},

max{F+
ε (E1), F

+
ε (E2), F

+
ε (E3), . . . , F

+
ε (Ek)})

and the negative strength is defined as

η−
k (s, t) = (max{T−

ε (E1), T
−
ε (E2), T

−
ε (E3), . . . , T

−
ε (Ek)},

max{I−
ε (E1), I

−
ε (E2), I

−
ε (E3), . . . , I

−
ε (Ek)},

min{F−
ε (E1), F

−
ε (E2), T

−
ε (E3), . . . , T

−
ε (Ek)}),

x ∈ E1, y ∈ Ek, where E1,E2,E3, . . . ,Ek are directed hyperedges.
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(v1,0.1,0.2,0.1,−0.1,−0.2,−0.1)

(v2.0.2,0.3,0.2,−0.2,−0.3,−0.2)

(v3,0.3,0.4,0.3,−0.3,−0.4,−0.3)

(v4,0.4,0.5,0.4,−0.4,−0.5,−0.4)

(v5,0.
5,0.6,

0.5,−0.
5,−0.6,

−0.5)

(v7,0.2,0.3,0.2,−0.2,−0.3,−0.2)

(v6,0.1,0.2,0.1,−0.1,−0.2,−0.1)

(0.1,0.2,0.2,−
0.1,−

0.2,−
0.2)

(0
.2
,0
.3
,0
.3
,−

0.
2,
−0

.3
,−

0.
3)

(0.2,0.3,0.5,−
0.2,−

0.3,−
0.5)(0.1,0

.2,0.4
,−0.1,−

0.2,−0
.4)

Fig. 10.10 Strong bipolar neutrosophic directed hypergraph

The strength of connectedness between x and y is defined as

η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))|k = 1, 2, 3, . . .}.

Definition 10.33 A strong arc in a bipolar neutrosophic directed hypergraph is
defined as η(s, t) ≥ η∞(s, t).

Definition 10.34 Abipolar neutrosophic directed hypergraph is said to be connected
if η∞(s, t) > 0, for all s, t ∈ X , that is, there exists a bipolar neutrosophic directed
hyperpath between each pair of vertices.

Definition 10.35 A strong or effective bipolar neutrosophic directed hypergraph is
defined as

T+
ε (Ek) = T+

ε ({x1, x2, x3, . . . , xm}) = min{T+
σi

(x1), T
+
σi

(x2), . . . , T
+
σi

(xm)},
I+
ε (Ek) = I+

ε ({x1, x2, x3, . . . , xm}) = min{I+
σi

(x1), I
+
σi

(x2), . . . , I
+
σi

(xm)},
F+

ε (Ek) = F+
ε ({x1, x2, x3, . . . , xm}) = max{F+

σi
(x1), F

+
σi

(x2), . . . , F
+
σi

(xm)},
T−

ε (Ek) = t−ε ({x1, x2, x3, . . . , xm}) = max{t−σi (x1), T−
σi

(x2), . . . , T
−
σi

(xm)},
I−
ε (Ek) = I−

ε ({x1, x2, x3, . . . , xm}) = max{I−
σi

(x1), I
−
σi

(x2), . . . , I
−
σi

(xm)},
F−

ε (Ek) = F−
ε ({x1, x2, x3, . . . , xm}) = min{F−

σi
(x1), F

−
σi

(x2), . . . , F
−
σi

(xm)},

for all {x1, x2, x3, . . . , xm} = Ek ⊂ X.

Example 10.7 Consider a bipolar neutrosophic directed hypergraph G = (σ, ε), as
shown in Fig. 10.10.
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Note that

T+
ε (E1) = T+

ε ({v1, v2, v6}) = min{T+
σi

(v1), T
+
σi

(v2), T
+
σi

(x6)},

I+
ε (E1) = I+

ε ({v1, v2, v6}) = min{I+
σi

(v1), I
+
σi

(v2), I
+
σi

(x6)},

F+
ε (E1) = F+

ε ({v1, v2, v6}) = max{F+
σi

(v1), F
+
σi

(v2), F
+
σi

(x6)},

t−ε (E1) = t−ε ({v1, v2, v6}) = max{t−σi (v1), T−
σi

(v2), t
−
σi

(x6)},

I−
ε (E1) = I−

ε ({v1, v2, v6}) = max{I−
σi

(v1), I
−
σi

(v2), I
−
σi

(x6)},

F−
ε (E1) = F−

ε ({v1, v2, v6}) = min{F−
σi

(v1), F
−
σi

(v2), F
−
σi

(x6)}.

Similarly, for all {x1, x2, x3, . . . , xk} = Ek ⊂ X , we have

T+
ε (Ek) = T+

ε ({v1, v2, . . . , vk}) = min{T+
σi

(v1), T
+
σi

(v2), . . . , T
+
σi

(xk)},

I+
ε (Ek) = I+

ε ({v1, v2, . . . , vk}) = min{I+
σi

(v1), I
+
σi

(v2), . . . , T
+
σi

(xk)},

F+
ε (Ek) = F+

ε ({v1, v2, . . . , vk}) = max{F+
σi

(v1), F
+
σi

(v2), . . . , T
+
σi

(xk)},

t−ε (Ek) = t−ε ({v1, v2, . . . , vk}) = max{t−σi (v1), T−
σi

(v2), . . . , T
+
σi

(xk)},

I−
ε (Ek) = I−

ε ({v1, v2, . . . , vk}) = max{I−
σi

(v1), I
−
σi

(v2), . . . , T
+
σi

(xk)},

F−
ε (Ek) = F−

ε ({v1, v2, . . . , vk}) = min{F−
σi

(v1), F
−
σi

(v2), . . . , T
+
σi

(xk)}.

Hence, G is strong.

Theorem 10.15 Let G and G ′ be isomorphic bipolar neutrosophic directed hyper-
graphs, then G is connected if and only if G ′ is connected.

Proof Let G = (X, σ, ε) andG ′ = (X ′, σ ′, ε′) be two bipolar neutrosophic directed
hypergraphs, where ε = {ε1, ε2, ε3, . . . , εk} and ε′ = {ε′

1, ε
′
2, ε

′
3, . . . , ε

′
k} are directed

hyperedges of G and G ′. Let χ : G → G ′ be an isomorphism between G and G ′.
Suppose that G is connected such that
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0 < η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))|k = 1, 2, 3, . . .}

= {sup k
min
i=1

T+
ε (Ei ), sup

k
min
i=1

I+ε (Ei ), inf
k

max
i=1

F+
ε (Ei ),

inf
k

max
i=1

T−
ε (Ei ), inf

k
max
i=1

I−ε (Ei ), sup
k

min
i=1

F−
ε (Ei )|k = 1, 2, 3, . . .}

= {sup k
min
i=1

T+
ε′ (χ(Ei )), sup

k
min
i=1

I+
ε′ (χ(Ei )), inf

k
max
i=1

F+
ε′ (χ(Ei )),

inf
k

max
i=1

T−
ε′ (χ(Ei )), inf

k
max
i=1

I−
ε′ (χ(Ei )), sup

k
min
i=1

F−
ε′ (χ(Ei ))

|k = 1, 2, 3, . . .}
= {sup t (η′+

k (χ(s), χ(t))), sup I (η′+
k (χ(s), χ(t))),

inf f (η′+
k (χ(s), χ(t))), inf t (η′−

k (χ(s), χ(t))), inf I (η′−
k (χ(s), χ(t))),

sup f (η′−
k (χ(s), χ(t)))|k = 1, 2, 3, . . .}

= η′∞(χ(s), χ(t)) > 0

Hence, G ′ is connected. The converse part can be proved by following the same
procedure. �

Theorem 10.16 Let G = (X, σ, ε) and G ′ = (X ′, σ ′, ε′) be two isomorphic bipolar
neutrosophic directed hypergraphs. The arcs in G are strong if and only if their image
arcs in G ′ are strong.

Proof Let (s, t) be a strong arc in G such that η(s, t) ≥ η∞(s, t). Since G and G ′
are isomorphic, then there is a bijective mapping χ : G → G ′ such that η∞(s, t) ≤
η(s, t) = η′(χ(s), χ(t)) ⇒ η′(χ(s), χ(t)) ≥ η∞(s, t) = η′∞(χ(s), χ(t)), which
implies that (χ(s), χ(t)) is a strong arc in G ′.

Converse part is trivial. �

Theorem 10.17 Let G be a strong connected bipolar neutrosophic directed hyper-
graph, then every arc of G is a strong arc.

Proof Let G be a strong strong bipolar neutrosophic directed hypergraph such that

T+
ε (Ek) = T+

ε ({x1, x2, x3, . . . , xm}) = min{T+
σi

(x1), T
+
σi

(x2), . . . , T
+
σi

(xm)},

I+
ε (Ek) = I+

ε ({x1, x2, x3, . . . , xm}) = min{I+
σi

(x1), I
+
σi

(x2), . . . , I
+
σi

(xm)},

F+
ε (Ek) = F+

ε ({x1, x2, x3, . . . , xm}) = max{F+
σi

(x1), F
+
σi

(x2), . . . , F
+
σi

(xm)},

t−ε (Ek) = t−ε ({x1, x2, x3, . . . , xm}) = max{t−σi (x1), T−
σi

(x2), . . . , T
−
σi

(xm)},
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I−
ε (Ek) = I−

ε ({x1, x2, x3, . . . , xm}) = max{I−
σi

(x1), I
−
σi

(x2), . . . , I
−
σi

(xm)},

F−
ε (Ek) = F−

ε ({x1, x2, x3, . . . , xm}) = min{F−
σi

(x1), F
−
σi

(x2), . . . , F
−
σi

(xm)},

for all {x1, x2, x3, . . . , xm} = Ek ⊂ X in ε.

There are following two cases:

1. If s and t are connected through only one directed hyperarc (s, t), then η(s, t) =
η∞(s, t).

2. If s and t are connected by two or more than two hyperpaths, then consider an
arbitrary directed hyperpath s = x1, E1, x2, E2, . . . , Ek, xk+1 = t . The strength
of the path is

η(s, t) = { k
min
i=1

T+
ε (Ei ),

k
min
i=1

I+
ε (Ei ),

k
max
i=1

F+
ε (Ei ),

k
max
i=1

T−
ε (Ei ),

k
max
i=1

I−
ε (Ei ),

k
min
i=1

F−
ε (Ei )}

= { k
min
i=1

(
m
min
j=1

T+
σi

(x j )),
k

min
i=1

(
m
min
j=1

I+
σi

(x j )),
k

max
i=1

(
m

max
j=1

F+
σi

(x j )),

k
max
i=1

(
m

max
j=1

T−
σi

(x j )),
k

max
i=1

(
m

max
j=1

I−
σi

(x j )),
k

min
i=1

(
m
min
j=1

F−
σi

(x j ))}
= min T+

σi
(x j ),min I+

σi
(x j ),max F+

σi
(x j ),max T−

σi
(x j ),max I−

σi
(x j ),min F−

σi
(x j )

≤ [min T+
σi

(s)]min[min T+
σi

(t)],≤ [min I+
σi

(s)]min[min I+
σi

(t)],
≥ [max F+

σi
(s)]max[max F+

σi
(t)],≥ [max T−

σi
(s)]max[max T−

σi
(t)],

≥ [max I−
σi

(s))]max[max I−
σi

(t)],≤ [min F−
σi

(s)]min[min F−
σi

(t)]. (10.2)

η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))}
= {sup(max t+ε (Ei )), sup(max I+

ε (Ei )), inf(min f +
ε (Ei )), inf(min t−ε (Ei )),

inf(max I−
ε (Ei )), sup(max f −

ε (Ei ))}
≤ [min T+

σi
(s)]min[min T+

σi
(t)],≤ [min I+

σi
(s)]min[min I+

σi
(t)],

≥ [max F+
σi

(s)]max[max F+
σi

(t)],≥ [max T−
σi

(s)]max[max T−
σi

(t)],
≥ [max I−

σi
(s))]max[max I−

σi
(t)],≤ [min F−

σi
(s)]min[min F−

σi
(t)]

= η(s, t) (by using Eq.10.2)

η∞(s, t) ≤ η(s, t).

Hence, every hyperarc in G is strong. �

Theorem 10.18 Let G = (σ, ε) and G ′ = (σ ′, ε′) be isomorphic bipolar neutro-
sophic directed hypergraphs, then G is strong if and only if G ′ is strong.
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Proof Let χ : G → G ′ be the isomorphism between G and G ′, such that

min T+
σi

(w) = min T+
σ ′
i
(χ(w)),min I+

σi
(w) = min I+

σ ′
i
(χ(w)),

max F+
σi

(w) = max F+
σ ′
i
(χ(w)),max T−

σi
(w) = max T−

σ ′
i
(χ(w)),

max I−
σi

(w) = max I−
σ ′
i
(χ(w)),min F−

σi
(w) = min F−

σ ′
i
(χ(w)),

for all w ∈ X.

T+
ε (Ei ) = T+

ε (w1,w2,w3, . . . ,wk) = T+
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

I+
ε (Ei ) = I+

ε (w1,w2,w3, . . . ,wk) = I+
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

F+
ε (Ei ) = F+

ε (w1,w2,w3, . . . ,wk) = F+
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

T−
ε (Ei ) = t−ε (w1,w2,w3, . . . ,wk) = T−

ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

I−
ε (Ei ) = I−

ε (w1,w2,w3, . . . ,wk) = I−
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

F−
ε (Ei ) = F−

ε (w1,w2,w3, . . . ,wk) = F−
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

for all {w1,w2,w3, . . . ,wk} = Ei ⊂ X. Let G be a strong bipolar neutrosophic
directed hypergraph and

T+
ε′ (E ′

i ) = T+
ε′ (χ(Ei )) = T+

ε (Ei ) = min T+
σi

(wi ) = min T+
σ ′
i
(w′

i ),

I+
ε′ (E ′

i ) = I+
ε′ (χ(Ei )) = I+

ε (Ei ) = min I+
σi

(wi ) = min I+
σ ′
i
(w′

i ),

F+
ε′ (E ′

i ) = F+
ε′ (χ(Ei )) = F+

ε (Ei ) = max T+
σi

(wi ) = max T+
σ ′
i
(w′

i ),

T−
ε′ (E ′

i ) = t−ε′ (χ(Ei )) = t−ε (Ei ) = max T−
σi

(wi ) = max T−
σ ′
i
(w′

i ),

I−
ε′ (E ′

i ) = I−
ε′ (χ(Ei )) = I−

ε (Ei ) = max I−
σi

(wi ) = max I−
σ ′
i
(w′

i ),

F−
ε′ (E ′

i ) = F−
ε′ (χ(Ei )) = F−

ε (Ei ) = min F−
σi

(wi ) = min F−
σ ′
i
(w′

i ).

Hence, G ′ is a strong bipolar neutrosophic directed hypergraph. The converse part
is obvious. �

Theorem 10.19 Let χ : G → G ′ be a co-weak isomorphism between G and G ′ and
G ′ is strong. Then G is a strong bipolar neutrosophic directed hypergraph.

Proof Let χ : G → G ′ be a co-weak isomorphism between G and G ′, which satis-
fies

min T+
σi

(x) ≤ min T+
σ ′
i
(χ(x)), min I+

σi
(x) ≤ min I+

σ ′
i
(χ(x)),

max F+
σi

(x) ≥ max F+
σ ′
i
(χ(x)), max T−

σi
(x) ≥ max T−

σ ′
i
(χ(x)),

max I−
σi

(x) ≥ max I−
σ ′
i
(χ(x)), min F−

σi
(x) ≤ min F−

σ ′
i
(χ(x)),

for all x ∈ X.

T+
ε (x1, x2, x3, . . . , xk) = T+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I+
ε (x1, x2, x3, . . . , xk) = I+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),
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F+
ε (x1, x2, x3, . . . , xk) = F+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

t−ε (x1, x2, x3, . . . , xk) = T−
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I−
ε (x1, x2, x3, . . . , xk) = I−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

F−
ε (x1, x2, x3, . . . , xk) = F−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

for all {x1, x2, x3, . . . , xk} = Ei ⊂ X. Since, G ′ is strong, then

T+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)) = min{T+

σ ′
i
(χ(x1), T

+
σ ′
i
(χ(x2), T

+
σ ′
i
(χ(x3), . . . , T

+
σ ′
i
(χ(xk)}

= T+
ε (x1, x2, x3, . . . , xk)

≤ min{T+
σi

(x1), T
+
σi

(x2), T
+
σi

(x3), . . . , T
+
σi

(xk)}
≤ min{T+

σ ′
i
(χ(x1), T

+
σ ′
i
(χ(x2), T

+
σ ′
i
(χ(x3), . . . , T

+
σ ′
i
(χ(xk)}

T+
ε (x1, x2, x3, . . . , xk) = min{T+

σi
(x1), T

+
σi

(x2), T
+
σi

(x3), . . . , T
+
σi

(xk)}
I+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)) = min{I+

σ ′
i
(χ(x1), I

+
σ ′
i
(χ(x2), I

+
σ ′
i
(χ(x3), . . . , I

+
σ ′
i
(χ(xk)}

= I+
ε (x1, x2, x3, . . . , xk)

≤ min{I+
σi

(x1), I
+
σi

(x2), I
+
σi

(x3), . . . , I
+
σi

(xk)}
≤ min{I+

σ ′
i
(χ(x1), I

+
σ ′
i
(χ(x2), I

+
σ ′
i
(χ(x3), . . . , I

+
σ ′
i
(χ(xk)}

I+
ε (x1, x2, x3, . . . , xk) = min{I+

σi
(x1), I

+
σi

(x2), I
+
σi

(x3), . . . , I
+
σi

(xk)}

Similarly,

F+
ε (x1, x2, x3, . . . , xk) = max{F+

σi
(x1), F

+
σi

(x2), F
+
σi

(x3), . . . , F
+
σi

(xk)}
T−

ε (x1, x2, x3, . . . , xk) = max{t−σi (x1), T−
σi

(x2), t
−
σi

(x3), . . . , t
−
σi

(xk)}
I−
ε (x1, x2, x3, . . . , xk) = max{I−

σi
(x1), I

−
σi

(x2), I
−
σi

(x3), . . . , I
−
σi

(xk)}
F−

ε (x1, x2, x3, . . . , xk) = min{F−
σi

(x1), F
−
σi

(x2), F
−
σi

(x3), . . . , F
−
σi

(xk)}

Hence, G is strong bipolar neutrosophic directed hypergraph. �

10.6 Applications of Bipolar Neutrosophic Directed
Hypergraphs

Decision-making acts as a vital feature of current administration. Decisions are con-
sidered very important in this way that they determine both organizational and man-
agerial actions. A decision can be defined as “a series of action which is consciously
chosen from among a set of alternatives to achieve a desired result.” It is appeared
as a balanced commitment to action and a well-organized judgment. Problems in
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almost every conceivable discipline, including decision-making can be solved using
graphical models.

10.6.1 Affiliation with an Apprenticeship Group

A social group is a unity of two or more humans, sharing similar activities and
characteristics, who interact with one another. Social interactions can also occur
on the Internet in online communities and these relationships preclude the face-to-
face interactions. Different social groups are created on the basis of typical features,
including education, apprenticeship, entertainment, tourism, ethics, and religion. It is
bit difficult for an anonymous user to choose a social group that fulfills his desires and
objectives appropriately. We develop a bipolar neutrosophic directed hypergraphical
model depicting that how a user can join the most beneficial apprenticeship group
by following a step-by-step procedure. A bipolar neutrosophic directed hypergraph
illustrating a group of users as members of different apprenticeship groups is shown
in Fig. 10.11.

If a user wants to select the most appropriate educational group, that is, the most
effective one to promote and encourage a specific behavior or outcome, the following
procedure can help him. Firstly, one should think about the collective contribution of
members toward the group, which can be found out bymeans of membership degrees
of bipolar neutrosophic directed hyperedges. The positive and negative contributions
of users toward a specific apprenticeship group are given in Tables10.10 and 10.11,
respectively.

USER1

USER2

USER3

USER4

USER5

USER6

USER7

USER8

GROUP1 GROUP2

GROUP3

GROUP4

GROUP5

GROUP6

(0.5,0.1,0.4,−0.5,−0.1,−0.4) (0.6,0.2,0.3,−0.6,−0.2,−0.3)
(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.7,0.2,0.1,−0.7,−0.2,−0.1)

(0.4,0.1,0.1,−0.4,−0.1,−0.1)

(0.5,0.1,0.1,−0.5,−0.1,−0.1)

(0.9,0.2,0.3,−0.9,−0.2,−0.3)

(0.9,0.1,0.2,−0.9,−0.1,−0.2)

(0.5,0.2,0.1,−0.5,−0.2,−0.1)

(0.4,0.2,0.3,−0.4,−0.2,−0.3)

(0.6,0.1,0.2,−0.6,−0.1,−0.2)

(0.2,0
.1,0.1,

−0.2.−
0.1,−0.1

)

(0.8,0.2,0.1,−0.8,−0.2,−0.1)

(0.9,0.1,0.1,−0.9,−0.1,−0.1)

Fig. 10.11 A bipolar neutrosophic directed hypergraph illustrating the affiliations of users
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Table 10.10 Didactical behavior of users toward apprenticeship groups

Apprenticeship groups Didactical behavior Indeterminate
behavior

Irrelevant to didactics

GROUP1 0.6 0.1 0.2

GROUP2 0.5 0.1 0.1

GROUP3 0.4 0.2 0.3

GROUP4 0.6 0.2 0.3

GROUP5 0.5 0.1 0.4

GROUP6 0.6 0.2 0.3

Table 10.11 Prenicious behavior of users towards apprenticeship groups

Apprenticeship groups Prenicious behavior Indeterminate
behavior

Extraneous behavior

GROUP1 −0.6 −0.1 −0.2

GROUP2 −0.5 −0.1 −0.1

GROUP3 −0.4 −0.2 −0.3

GROUP4 −0.6 −0.2 −0.3

GROUP5 −0.5 −0.1 −0.4

GROUP6 −0.6 −0.2 −0.3

Table 10.12 Educational effects of groups on the users

Apprenticeship groups Educational effects

GROUP1 (0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

GROUP2 (0.5, 0.2, 0.1,−0.5,−0.2,−0.1)

GROUP3 (0.9, 0.1, 0.2,−0.9,−0.1,−0.2)

GROUP4 (0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

GROUP5 (0.5, 0.5, 0.1,−0.5,−0.5,−0.1)

GROUP6 (0.2, 0.1, 0.1,−0.2,−0.1,−0.1)

It can be noted that GROUP1 has 60% didactical behavior, which is maximum
among all other groups, 10% indeterminacy and 20% is irrelevant to its objectives.
Moreover, it owns −60% of prenicious behavior, which is minimum as compared to
all other groups and −20% of extraneous behavior. Thus, GROUP1 can be a most
appropriate choice for an anonymous user. Secondly, one should do his research on
the powerful impacts of all under consideration groups on their members. Degrees
of membership of all group vertices depict their effects on their members as given
in Table10.12.

Note that, GROUP1 has maximum positive effects and minimum negative effects
on itsmembers. Thirdly, a person can detect the influence of a group by calculating its
in-degree and out-degree as in-degrees interpret the percentage of users joining the
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Table 10.13 Educational effects of groups on the users

Apprenticeship
groups

In-degrees Out-degrees

GROUP1 (0.6, 0.1, 0.2,−0.6,−0.1,−0.2) (0, 0, 0, 0, 0, 0)

GROUP2 (0.2, 0.1, 0.1,−0.2,−0.1,−0.1) (0.5, 0.1, 0.2,−0.5,−0.1,−0.2)

GROUP3 (1.2, 0.2, 0.6,−1.2,−0.2,−0.6) (0.5, 0.1, 0.2,−0.5,−0.1,−0.2)

GROUP4 (0.6, 0.1, 0.3,−0.6,−0.1,−0.3) (0, 0, 0, 0, 0, 0)

GROUP5 (0.5, 0.1, 0.4,−0.5,−0.1,−0.4) (0.2, 0.1, 0.1,−0.2,−0.1,−0.1)

GROUP6 (0.2, 0.1, 0.3,−0.2,−0.1,−0.3) (0.4, 0.2, 0.2,−0.4,−0.2,−0.2)

group and out-degrees interpret the percentage of users leaving that group. In-degrees
and out-degrees of all Apprenticeship groups are given in Table10.13.

Thus, an Apprenticeship group having maximum in-degrees and minimum out-
degrees will be the most suitable choice. It can be noted that GROUP1 and GROUP4
both have minimum out-degrees. To handle such type of situations, we will then
compare the in-degrees of these two groups. GROUP1 and GROUP4 both have same
positive truth membership and positive indeterminacy but the falsity membership
value is minimum in case of GROUP1 and the conditions are same in case of negative
membership values. Hence GROUP1will be more suitable than GROUP4. Note that,
in all above cases that we have discussed, GROUP1 is the most appropriate choice
with the given data. So if any userwants to join anApprenticeship group, by following
the above procedure, he should be affiliatewithGROUP1, as this group hasmaximum
positive effects on the didactical behavior of its members and is more closely to the
educational objectives. The guide will help to think about selecting a group based on
the purpose of someone communication and understanding of the users. It will also
help to consider what information is best communicated through different groups.
The method of searching out the most beneficial group is described in the following
Algorithm 10.6.1.

Algorithm 10.6.1 Algorithm to search out the most beneficial group

1. Input the degree of membership of all vertices(users) x1, x2, . . . , xn .
2. Find the positive and negative contributions of users toward groups by calculating

the degree of membership of all directed hyperedges as

T+
ρ (Ek) ≤ min{T+

μi
(x1), T

+
μi

(x2), . . . , T
+
μi

(xm)},

I+
ρ (Ek) ≤ min{I+

μi
(x1), I

+
μi

(x2), . . . , I
+
μi

(xm)},

F+
ρ (Ek) ≤ max{F+

μi
(x1), F

+
μi

(x2), . . . , F
+
μi

(xm)},

t−ρ (Ek) ≥ max{t−μi
(x1), T

−
μi

(x2), . . . , T
−
μi

(xm)},
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I−
ρ (Ek) ≥ max{I−

μi
(x1), I

−
μi

(x2), . . . , I
−
μi

(xm)},

F−
ρ (Ek) ≥ min{F−

μi
(x1), F

−
μi

(x2), . . . , F
−
μi

(xm)}.

3. Obtain the most appropriate group as

max T+
ρ (Ek),max I+

ρ (Ek),min F+
ρ (Ek),min T−

ρ (Ek),min I−
ρ (Ek),max F−

ρ (Ek)

4. Find the group having strong educational impacts on the users as

max T+
μi

(xk),max I+
μi

(xk),min F+
μi

(xk),min T−
μi

(xk),min I−
μi

(xk),max F−
μi

(xk),

where all xk are the vertices representing the different groups.
5. Find the positive influence of groups xk on the users by calculating the in-degrees

D−(xk) as

(
∑

xk∈H(Ek )

T+
ε (Ek),

∑

xk∈H(Ek )

I+
ε (Ek),

∑

xk∈H(Ek )

F+
ε (Ek),

∑

xk∈H(Ek )

t−ε(Ek),

∑

xk∈H(Ek )

I−ε(Ek),
∑

xk∈H(Ek )

F−ε(Ek))

6. Find the negative influence of groups xk on the users by calculating the out-degrees
D+(xk) as

(
∑

xk∈T (Ek )

T+
ε (Ek),

∑

xk∈T (Ek )

I+
ε (Ek),

∑

xk∈T (Ek )

F+
ε (Ek),

∑

xk∈T (Ek )

t−ε(Ek),

∑

xk∈T (Ek )

I−ε(Ek),
∑

xk∈T (Ek )

F−ε(Ek))

7. Obtain the most effective group as, (max D−(xk),min D+(xk)).

10.6.2 Portrayal of Compatible Chemicals

The formal concept of “isomorphism” captures the informal notion that some
objects have “the same structure” if one ignores individual distinctions of “atomic”
components of objects. A hypergraph can exists in different forms having the same
number of vertices, hyperedges, and also the same connectivity. Such hypergraphs
are called isomorphic. Appropriate chemical storage plans are designed to control
health and physical dynamite associated with laboratory chemical storage. There are
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Inorganic Acids

Saturated Hydrocarbons

Cyanohydrins

Nitriles

Ethers

Phenols

Petrolum Oils

Phosphorus,

Aromatic Hydrocarbons

Olefins

Sulfur, Molten

(0.9,0.1,0.1,−0.9,−0.1,−0.1) (0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0,8,0.1,0.2,−0.8,−0.1,−0.2)

(0.7,0.1,0.2,−0.7,−0.1,−0.2)

(0.7,0.1,0.2,−0.7,−0.1,−0.2)(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0.8,0.1,0.1,−0.8,−0.1,−0.1)

Fig. 10.12 Safe combinations of compatible chemicals

many chemicals which are not compatible with each other and react when they are
mixed. The recants can be dangerous in such cases, so care must be taken when
attempting to mix or store the chemicals. Here, we describe that if a model repre-
sentation of compatible groups is given, then by using the isomorphism property we
can represent any type of chemicals. Consider the groups of incompatible chemi-
cals, which cannot interact with each other, as the vertices of bipolar neutrosophic
directed hypergraph G. Directed hyperedges between the groups represent the safe
combinations and absence of hyperedges depicts that the combinations are unsafe.
A bipolar neutrosophic directed hypergraph model illustrating the safe combinations
is given in Fig. 10.12.

Membership degrees of each chemical group represent that how they react posi-
tively or negatively when are mixed. For example, membership degree of Inorganic
Acids (0.9, 0.1, 0.1,−0.9,−0.1,−0.1) depict that these chemicals are 90% compat-
ible, 10% have indeterminacy and 10% have chances to explode. Similarly, negative
membership degrees describe the incompatibility of this group.

Now, if we have to represent the compatibilities of chemicals {Phosphoric acid,
Cyclohexane, Dicylcopentadiene, Gasolines, Carbolic oil, Acetone cyanohydrin,
Acetonitrile, Diethyl ether, Phosphorus, Sulfur, Benzene} belonging to different
groups as mentioned in the above bipolar neutrosophic directed hypergraph, we will
find out a bipolar neutrosophic directed hypergraph isomorphic to above. A bipolar
neutrosophic directed hypergraph G ′ isomorphic to the above is given in Fig. 10.13.
Define a bijective mapping h : G → G ′, such that
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(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.8,0.1,0.2,−0.8,−0.1,−0.2)

(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0,8,0.1,0.2,−0.8,−0.1,−0.2)(0.7,
0.1,0

.2,−0
.7,−0

.1,−0
.2)

(0.7,0.1,0.2,−0.7,−0.1,−0.2)
(0.9,0.1,0.1,−0.9,−0.1,−0.1)

(0.8,0.1,0.1,−0.8,−0.1,−0.1)

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

Fig. 10.13 Isomorphic bipolar neutrosophic directed hypergraphs G ′

h(Inorganic Acids) = X1, h(Aromatic Hydrocarbons) = X2,

h(Petroleum Oils) = X3, h(Phenols) = X4,

h(Saturated Hydrocarbons) = X5, h(Ethers) = X6,

h(Cyanohydrins) = X7, h(Niriles) = X8,

h(Sulfur, molten) = X9, h(Phosphorus) = X10,

h(Olefins) = X11.

It can be noted that

T+
G (I norganicAcids) = T+

G ′(X1), I+
G (I norganicAcids) = I+

G ′(X1),

F+
G (I norganicAcids) = F+

G ′(X1), T−
G (I norganicAcids) = T−

G ′(X1),

I−
G (I norganicAcids) = I−

G ′(X1), F−
G (I norganicAcids) = F−

G ′(X1).

Similarly, membership degrees of all groups are equal to their images.
Now determine the relative groups of all given elements and put that elements

in corresponding images boxes. For instance, Phosphoric acid belongs to the group
of Inorganic acids and the image of Inorganic Acids is X1. Hence, Phosphoric acid
will be kept in X1 box. Similarly, Cyclohexane is an element of Saturated Hydrocar-
bons, Dicylcopentadiene belongs to Olefins, Gasolines belongs to Petroleum Oils,
Carbolic oil is an element of Phenols, Acetone cyanohydrin belongs to Cyanohy-
drins, Acetonitrile is in Nitriles, Diethyl ether belongs to Ethers, Benzene belongs to
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Aromatic Hydrocarbons and Phosphorus, Sulfur are mapped onto themselves. Thus,
these elements will be positioned at the places of X5, X11, X3, X4, X7, X8, X6,
X2, X10, and X9, respectively. Hence, by using the isomorphism property of bipolar
neutrosophic directed hypergraphs, we can check the compatibility of chemicals by
considering their preimages.
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