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Mouse Models of Neural Tube 
Defects

Irene E. Zohn

2.1	 �Overview

During embryonic development, the central ner-
vous system forms as the neural plate and then 
rolls into a tube in a complex morphogenetic pro-
cess known as neurulation. Neural tube defects 
(NTDs) occur when neurulation fails and are 
among the most common structural birth defects 
in humans. The frequency of NTDs varies greatly 
anywhere from 0.5 to 10  in 1000 live births, 
depending on the genetic background of the pop-
ulation, as well as a variety of environmental fac-
tors [1–3]. The prognosis varies depending on the 
size and placement of the lesion and ranges from 
death to severe or moderate disability, and some 
NTDs are asymptomatic. This chapter reviews 
how mouse models have contributed to the eluci-
dation of the genetic, molecular, and cellular 
basis of neural tube closure, as well as to our 
understanding of the causes and prevention of 
this devastating birth defect.

2.2	 �Types of NTDs

The neural tube initially forms as a flat epithelial 
plate that must roll into a tube to form the brain 
and spinal cord. Defects in this process result in 
NTDs, a constellation of malformations of the 
central nervous system (Fig. 2.1). The most com-
mon NTD in humans is spina bifida, which 
results from failure of closure in the spinal 
region. The consequence of spina bifida varies 
greatly, depending on the size and placement of 
the lesion, the involvement of the spinal nerves 
and meninges, as well as the presence of associ-
ated conditions such as hydrocephalus, Chiari 
malformation, genitourinary, and gastrointesti-
nal disorders. Spina bifida can manifest as 
myelomeningocele, meningocele, or spina bifida 
occulta. Myelomeningocele is the most common 
and severe form of spina bifida and involves pro-
trusion of the meninges and spinal cord through 
an opening in the vertebrae. Meningocele occurs 
when the meninges but not the spinal cord pro-
trude. Spina bifida occulta can be asymptomatic 
and occurs when the dorsal part of vertebrae does 
not properly form. More severe open NTDs 
include craniorachischisis and anencephaly. 
Craniorachischisis is the most serious NTD, 
resulting from failure of neural tube closure 
along the entire neural plate. Exencephaly (the 
embryonic precursor to anencephaly) occurs 
when closure fails in the anterior neural plate or 
future brain. Anencephaly and craniorachischisis 
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are fatal, resulting in the prenatal death or demise 
of the newborn shortly after birth. Spina bifida 
occulta and multiple abnormalities are classified 
clinically as NTDs; however, the developmental 
origins of these malformations are not due to 
failure of neural tube closure. Closed NTDs 
include encephalocele, iniencephaly, hydroceph-
alus, microcephaly, and holoprosencephaly. 
Encephalocele occurs when the cranial vault 
fails to form properly around a closed neural 
tube, leading to protrusion of the brain and 
meninges through an opening in the skull, 
whereas other NTDs such as iniencephaly, 
hydrocephalus, microcephaly, and holoprosen-
cephaly result from improper growth of the 
closed neural tube.

2.3	 �Diagnosis and Treatment 
of NTDs

Most NTDs are diagnosed before birth by stan-
dard prenatal screening tests. High levels of alpha 
fetal protein (AFP) in maternal serum or in amni-
otic fluid are correlated with NTDs and signal the 
need for further testing. Most NTDs can be iden-
tified by ultrasound during the routine anatomy 
scan between 18 and 22 weeks. Babies with spina 
bifida are typically delivered by cesarean section, 
and the lesion is surgically corrected either in 
utero or shortly after birth [4, 5]. However, sec-
ondary defects frequently occur with spina bifida, 
including Arnold-Chiari malformations with 
hindbrain herniation, hydrocephalus requiring 

Fig. 2.1  Top panels. Types of neural tube defects that 
originate from failure of neural tube closure. 
Craniorachischisis occurs when the neural tube fails to 
close along the entire length of the neural plate. Anencephaly 
occurs when closure fails in the cranium and spina bifida at 
the posterior end of the neural tube. Bottom Panels. Regions 
of neural tube closure postulated by analysis of defects in 
human embryos superimposed on newborn body. During 

normal neural tube formation, multiple zones of neural tube 
closure extend in anterior and posterior directions from dis-
tinct closure points. Zone 1 is in the spinal cord; zones 2, 3, 
and 4 in the cranium; and zone 5 in the most posterior of the 
neural tube. Anencephaly is caused by the failure of neural 
plate fusion in regions 2–4 and spina bifida by the failure of 
regions 1 and 5. Illustrations are after reference [328] and 
courtesy of Claris Nde
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placement of a shunt, and tethering of the spinal 
cord leading to progressive pain, incontinence, 
and weakness of the lower extremities, as well as 
spinal deformities [6–11]. Nerve damage can 
result in neurogenic bladder and bowel or paraly-
sis of lower extremities requiring the need to use 
a wheelchair, braces, or crutches [5]. Because of 
reduced sensation to lower extremities, patients 
are susceptible to unrealized infections, which 
may necessitate amputation of damaged limbs. 
Other complications include learning disabilities, 
social issues, and latex allergies [5]. In spite of 
these complications, with improvements in care, 
the majority of patients survive well into adult-
hood [5, 8].

2.4	 �The Etiology of NTDs

While the cause of individual cases of NTDs are 
rarely known, the vast majority of NTDs are due 
to complex interactions of multiple genetic and 
environmental factors with an estimated 60–70% 
of NTDs having a genetic contribution [12–14]. 
Evidence for the genetic causes of NTDs comes 
from the finding that chromosomal abnormalities 
are often present in NTD-affected fetuses, and 
NTDs are noted in spontaneous abortions with 
abnormal karyotypes [15–18]. NTDs also occur 
at higher rates in certain genetic syndromes, 
including Meckel-Gruber, Waardenburg, and 
22q11.2 deletion syndromes [19–33]. Finally, 
twin studies indicate a 5% concordance rate, and 
NTD risk is significantly increased in NTD 
patients or individuals with a previously affected 
pregnancy [18, 34–37]. In spite of a clear genetic 
component, few causative genes have been iden-
tified. This is in part due to complex etiology of 
the malformation, the number of genes that could 
cause the defect, as well as the existence of few 
multiplex families for genetic studies. While thus 
far a handful of genes associated with NTDs were 
identified in small cohorts of patients, few defini-
tive causative genes are known [38]. Interestingly, 
the majority of variants identified to date are 
linked to the noncanonical Wnt pathway that con-
trols planar cell polarity or to folic acid metabo-
lism, implicating these as key pathways driving 

NTDs in humans [39, 40]. This chapter will focus 
on Wnt signaling and folic acid metabolism to 
illustrate how the study of mouse models has 
been essential in elucidating the central role of 
these pathways in neurulation.

In addition to the large number of genes that 
could cause NTDs, another complicating factor 
in finding the genetic causes of NTDs in humans 
is the complex etiology of these defects. The 
majority of genetic mutations involved in NTDs 
do not likely cause a defect unless combined with 
other genetic or environmental factors. The mul-
tifactorial threshold model (Fig. 2.2) is proposed 
to account for the pattern of NTD inheritance 
observed in humans where multiple factors of 
small effect interact to cause a disease [41, 42]. 
This model postulates that neural tube closure is a 
threshold event that occurs either successfully or 
not, resulting in either normal neural tube closure 
or defects. A single genetic insult or environmen-
tal exposure might not cross the threshold to 
cause NTDs, but one or more factors in combina-
tion result in failure of neural tube closure. The 
mouse model is a tractable experimental system 
in which to test the multifactorial threshold model 
and test gene–gene, gene–environment, and envi-
ronment–environment interactions [41, 43]. 
Digenic inheritance can be modeled in mouse in 
compound mutants, or modifier variants do not 
cause NTDs themselves but increase the pene-
trance and/or severity of defects in combination 
[42, 44–50]. Gene–environment interactions are 
also tractable in the mouse model. For example, 
the impact of alterations of either macro- or 
micronutrients on the incidence and severity of 
NTDs can be studied in models [51]. Varying 
macronutrients such as dietary protein, fat, and 
carbohydrate composition of the mouse chow can 
influence NTD risk [51–54]. Micronutrient sup-
plementation with folic acid, inositol, retinoic 
acid, iron, as well as nutrients that feed into the 
folate pathway, including vitamin B12, choline, 
methionine, formate, and glycine, can also impact 
NTDs in a variety of mutant mouse models [51, 
55–59]. Studies of mouse models of diabetes pro-
vide novel insight as to the genes and pathways 
that interact with hyperglycemia to cause NTDs 
[51, 60, 61]. Exposure to teratogens, including 
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medications (e.g., valproic acid), arsenic, the 
mycotoxin fumonisin, or hyperthermia, as a result 
of hot tub usage or maternal fever can induce 
NTDs in mouse models [62–65].

2.5	 �NTDs Result from Failure 
of Neural Tube Closure

Primary neurulation is a complex morphogenetic 
process that results in the transformation of the 
flat neural plate into the neural tube (Fig.  2.3). 
Neural tube formation involves the coordinated 
growth and morphogenesis of multiple tissues. 
Forces that drive neural tube closure arise from 
the neural tissue itself (intrinsic forces), as well 
as from the adjacent surface ectoderm and under-
lying mesoderm (extrinsic forces; [66]). Primary 
neurulation begins after gastrulation as the neu-
roepithelium is induced from the embryonic 
ectoderm. Following induction, the neural plate 
forms as individual neuroepithelial cells elon-
gate, resulting in a thickening of the ectoderm on 
the dorsal side of the embryo. Two coordinated 
morphogenetic movements intrinsic to the neural 
plate drive elevation of the neural folds by facili-
tating the rolling of the plate into a tube. 
Convergent extension (CE) movements drive 

lengthening and narrowing of the neural plate 
and direct formation of hinge points around 
which the neural plate bends. A single hinge 
point forms in the midline of the neural plate 
(medial hinge point (MHP)), followed by the for-
mation of paired dorsal lateral hinge points 
(DLHPs) in lateral regions. Extrinsic forces from 
the surface epithelium and surrounding mesen-
chyme also promote elevation of the neural folds. 
As the paired neural folds meet in the dorsal mid-
line, they fuse and the neural and surface epithe-
lium remodels to form two separate epithelial 
sheets.

Broadly speaking, two mechanisms of neuru-
lation are employed to form a neural tube, pri-
mary and secondary neurulation. Primary 
neurulation is when a flat neural plate rolls into a 
tube, whereas secondary neurulation occurs 
when mesenchymal cells coalesce into a tube. In 
amniotes, the majority of the central nervous sys-
tem is formed by primary neurulation, whereas 
the most posterior portion of the spine caudal to 
the sacral vertebrae forms by secondary neurula-
tion [67–69]. In primary neurulation, the neural 
plate does not roll into a tube all at once; rather, 
closure is initiated at discrete points, followed by 
“zipping” to fuse the neural folds together 
(Fig. 2.1; [70]). Closure 1 initiates at the hind-

Fig. 2.2  Multifactorial threshold model illustrating the 
complex inheritance of NTDs. Multiple genetic and envi-
ronmental factors contribute to the susceptibility for 
NTDs. Defects result when neurulation is significantly dis-
rupted so that a threshold event, represented by the dotted 
line (NTD threshold), is surpassed. Susceptibility to NTDs 

follows a normal distribution, and in isolation, factors may 
not be sufficient to cause NTDs (no penetrance) or only a 
few individuals with a particular contributing factor show 
NTDs (low penetrance). However, factors in combination 
can  interact to surpass the NTD threshold, resulting in a 
high percentage of individuals showing NTDs
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brain/spinal cord boundary and extends in both 
anterior and posterior directions. This is fol-
lowed by the formation of closure points in the 
cranial region: Closure 2 at the midbrain/fore-
brain boundary and Closure 3 at the anterior 
aspect of the forebrain. The position of Closure 2 
is variable between mouse strains, and its posi-
tion is correlated with strain-specific susceptibil-
ity to exencephaly [71, 72]. Closure 2 may also 
be variable during human neurulation, as it has 
been identified in some but not other human 
embryo samples [73]. Another closure point then 
forms at the caudal end of the spine as closure of 
the posterior neuropore becomes imminent [74]. 
As primary neurulation ceases, there is a transi-
tion zone where the dorsal portion of the neural 
tube undergoes elevation and folding, whereas 
cells of the ventral neural tube delaminate and 
then integrate into the neural tube [75]. As neuru-
lation proceeds further, this transition zone gives 
way to purely secondary neurulation where neu-
romesodermal progenitors undergo mesenchy-
mal to epithelial transitions to incorporate into 
the forming neural tube [76]. Disruptions in any 

of these processes can result in NTDs. The 
remainder of this chapter will review the molecu-
lar and cellular basis of these processes, illustrat-
ing how studies in animal models reveal their 
integration to provide a basis for the interaction 
of genetic lesion impacting these processes in 
human NTDs.

2.6	 �Mouse Models Have Been 
Instrumental 
in Elucidating the Mechanics 
of Neural Tube Closure

While multiple animal models are used to study 
neurulation, the mouse has several advantages. 
First of all, as opposed to that in frogs (African 
clawed frog, Xenopus laevis) and fish (zebrafish, 
Danio rerio), neural tube closure in chickens and 
mice is most similar to that in humans, where pri-
mary neurulation occurs in the majority of the 
neural tube. In contrast, zebrafish employs a 
modified secondary neurulation process along 
the entire neural axis in which deep and superfi-

Fig. 2.3  Neural tube closure in the human embryo. The 
top-left panel shows an illustration of a neural plate stage 
embryo where the neural plate and neural grove has 
formed but the neural folds have not yet begun to elevate. 
The top-right panel shows a seven-somite stage embryo 
with a neural tube that has begun to form in the spinal 
region but the posterior neural pore is not yet closed and 
neural fold elevation is just beginning in the cranium. 
Bottom panels show cross-sectional views of the neural 

plate in different stages of closure from positions delin-
eated by the dotted lines in the top panels. (a) Cross-
section of a neural plate stage embryo where the neural 
groove is formed but the neural folds have not elevated. 
(b) Cross-section of neural plate where neural folds are in 
the process of elevating. (c) The neural tube has closed, 
and the neural ectoderm and nonneural ectoderm are in 
the process of separating. Illustrations courtesy of Claris 
Nde
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cial mesenchymal cells converge toward the mid-
line and coalesce into a neural keel intermediate. 
Deep and superficial cells then undergo radial 
intercalation to form an epithelial tube [77]. The 
Xenopus neural plate is also stratified into deep 
and superficial layers [78], and apical constric-
tion occurs in the superficial layers to drive neu-
ral fold elevation [79]. Once the folds fuse in the 
dorsal midline, deep and superficial cells undergo 
radial intercalation to form a pseudostratified epi-
thelium. While the pathways that control cell 
shape changes, such as convergent extension and 
apical constriction are conserved between these 
animal models, overall difference in morphogen-
esis between these models makes the mouse and 
chicken most broadly relevant for understanding 
human neural tube closure.

The mouse also has the advantage of being 
amenable to genetic approaches to study the 
genes required for neural tube closure. The avail-
ability of numerous mouse mutants with NTDs 
provides a rich source of diverse models for 
study to elucidate the genes and pathways 
required for neural tube closure [42, 44, 45, 59]. 
However, because the mouse embryo develops in 
utero, examination of the cell behaviors that 
underlie neurulation presents significant chal-
lenges compared to models that develop exteri-
orly. Thus, historically most of what is known 
about the dynamic cell movements and behav-
iors that drive neurulation comes from studies in 
the frog, fish, and chicken. Yet recent advances in 
live-imaging approaches combined with 
improved ex utero culture conditions are begin-
ning to overcome these hurdles, providing new 
insight as to the cell and tissue movements that 
underlie neural tube formation in the mouse and 
how genetic mutations disrupt this process [74, 
80–90].

2.7	 �Convergent Extension 
Movements and the Planar 
Cell Polarity Pathway

Following a thickening of the neuroepithelium, the 
neural plate undergoes convergent extension move-
ments, resulting in lengthening and narrowing 

along the anterior-posterior and medial-lateral 
axes. Polarized cell behaviors that mediate conver-
gent extension movements are controlled by the 
planar cell polarity (PCP) pathway [91–93]. PCP 
was first described in Drosophila, where it controls 
the polarity of cells within an epithelium and the 
positioning of asymmetrically localized structures 
such as wing hairs [94]. The PCP pathway is con-
served in vertebrates and is controlled by the non-
canonical Wnt pathway leading to asymmetrical 
distribution of protein complexes within an epithe-
lium (Fig. 2.4). During neurulation, PCP regulates 
the polarization of mediolateral protrusions that 
drive convergent extension movements [95]. Best 
studied in the Looptail (Lp) mouse line with muta-
tion of Van Gogh like-2 (Vangl2), defective conver-
gent extension leads to craniorachischisis, where 
the neural tube fails to close along the entire 
anterior-posterior axis accompanied by shortening 
of the embryo and a wider midline and floorplate 
[96–104]. Interestingly, human embryos with cra-
niorachischisis are short with a broad floorplate 
[105], suggesting that similar mechanisms may 
underlie craniorachischisis in humans. Vangl2 is 
necessary for convergent extension movements in 
the notochord and neural plate [98], and mutations 
in other PCP pathway genes also result in NTDs in 
the mouse. For example, compound mutants for 
the vertebrate homologues of Disheveled or 
Frizzled receptors show craniorachischisis [106–
108], as do targeted knockouts of other PCP path-
way components such as Celsr1, Wnt5a, and Ptk7 
[109–112]. Mutations of PCP genes can also result 
in spina bifida and exencephaly [106, 113–117].

Consistent with the multifactorial threshold 
model for NTDs, a number of genes can interact 
with Vangl2Lp heterozygotes, resulting in NTDs 
in compound mutants. For example, Vangl2Lp can 
genetically interact with other PCP genes, 
including Wnt5a, Vangl1, Dvl2, Dvl3, Celsr1, Fz1, 
Fz2, Daam1, and Protein tyrosine kinase-7 (Ptk7) 
in compound mutants to cause NTDs [76, 97, 
107–112, 118–121]. Additionally, Vangl2Lp can 
genetically interact with mutations in genes not 
previously identified as regulating PCP pathways 
to give NTDs. These include Grhl3, Bardet- 
Biedl syndrome-1 (BBS1), BBS4, BBS6, cor-
don bleu (cobl) and Scribble (Scrbl), Syndecan 4 
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(Sdc4), and Sec24b [121–127]. Interestingly, het-
erozygous Vangl2Lp/+ embryos show a slightly 
wider and shorter midline and delayed neural 
tube closure [98], providing the basis for the 
development of NTDs in heterozygous embryos 
and in genetic interaction experiments.

PCP genes are also associated with NTDs in 
humans. Thus far, multiple mutations in a variety 
of PCP-related genes are associated with NTDs 
in humans, including predicted and/or proven 
deleterious mutations in CELSR1, CELSR3, 
FZD6, PRICKLE1, VANGL1, VANGL2, FUZ, 
SCRIB, PTK7, and DACT1 [40, 128–148]. The 
deleterious nature of a handful of these sequence 
variants has been verified in a variety of assays to 
test the ability to rescue PCP phenotypes in 
zebrafish, binding to known interacting proteins 
or altered localization in polarized epithelium 
[129, 134, 136, 137, 139, 140]. Remarkably, 
digenic inheritance has also been found involving 
PCP genes in human patients [40, 141, 142, 145, 
148].

2.8	 �Hinge Point Formation

The medial point in the spinal cord is formed as 
cells of the neural epithelium become wedge 
shaped eliciting bending of the neural plate 
around these hinge points (Fig.  2.5). The pseu-
dostratified neuroepithelium is comprised of 
bipolar neural progenitors with a nucleus that 
moves between apical and basal positions depen-
dent upon the phase of the cell cycle. During 
mitosis, the nucleus is localized at the apical sur-
face, and during other phases of the cell cycle, it 
is positioned more basally. As hinge points form, 
the cell cycle is prolonged, resulting in greater 
numbers of cells in the hinge point in nonmitotic 
phases and nuclei localized in basal positions 
[149–152]. The majority of cells in the MHP 
have basally positioned nuclei, resulting in 
multiple wedge-shaped cells that contribute to 
the bending of the epithelium. This in combi-
nation with local destabilization of adherens 
and tight junctions at the hinge points allows 
bending of the rigid neural plate at the hinge 
points [149–151]. The rigidity of the neural 
plate is maintained by apical constriction 
involving nonmuscle myosin that contracts the 

Fig. 2.4  Key elements 
of the noncanonical 
Wnt/planar cell polarity 
pathway signaling 
pathway involved in 
neural tube closure in 
humans and mice. 
Wnt5a stimulates the 
PCP pathway by binding 
to Frizzled that interacts 
with Celsr1, Vangl, 
Prickle, and the 
coreceptor Ptk7 to 
recruit disheveled (Dvl). 
Dvl activates the small 
GTPases Rho and Rac, 
leading to planar 
polarized actomyosin 
contraction
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circumferential actomyosin cables anchored at 
the adherens junction [153, 154].

In the cranial region, coordinated apical con-
striction of the neural epithelium also contributes 
to hinge point formation and bending of the 

neural plate [149, 153]. The contractile force 
needed for apical constriction is also generated 
by myosin contracting the actin filaments, a pro-
cess involving the small GTPase RhoA, ROCK, 
and myosin light chain kinase [155–158]. 

Fig. 2.5  Interaction of BMP and Shh signaling results in 
different modes of neurulation along the anterior-posterior 
axis. In the anterior spinal cord (Mode 1), only the medial 
hinge point (MHP) (blue) forms. In the mid-spinal cord 
(Mode 2), both MHP and paired dorsal lateral hinge 
points (DLHP) (red) form. In the posterior spinal region 
(Mode 3), only exaggerated DLHPs are found. The forma-
tion of the MHP is promoted by Shh from the notochord 
and that of DLHPs is inhibited by BMP from the nonneu-
ral ectoderm. BMP expression is consistent along the 
anterior/posterior axis, but Shh is not expressed in the 
lower spinal cord and the BMP antagonist Noggin is not 
expressed in the anterior spinal cord. In Mode 1 neurula-
tion, BMP and Shh are expressed and inhibit DLHP but 
promote MHP formation. In the mid-spinal cord region, 

Mode 2 neurulation  involves both MHP and DLHPs. 
Here  Noggin  blocks the DLHP inhibiting activity of 
BMP.  In the posterior spinal region, Shh expression is 
weak or nonexistent and no MHP forms. The absence of 
Shh and the presence of Noggin promote the formation of 
prominent DLHPs. BMP and Shh influence hinge point 
formation by regulating cellular behaviors. In the DLHP 
(red) and MHP (blue), inhibition of BMP prolongs the cell 
cycle, resulting in increased number of cells with basal 
positioned nuclei, as well as local destabilization of adher-
ence junctions, which leads to buckling of the neural plate 
around regions (white) where circumferential contraction 
of actomyosin cables promote a rigid neural plate. Planar 
polarized apical constriction also contributes to formation 
of the medial hinge point
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Inhibition of this kinase cascade or mutation of 
actin-binding proteins disrupts neural tube clo-
sure [159–164]. One of the best studied regula-
tors of apical constriction in the cranial region is 
Shroom3 [155, 156, 158, 165, 166]. Importantly, 
putative loss of function sequence variants in 
SHROOM3 are associated with NTDs in humans 
[167–169].

2.9	 �Apical Constriction Is 
Coordinated with PCP 
Activation in the Neural 
Plate

Dynamic integration of PCP and apical constric-
tion pathways drives simultaneous convergent 
extension and bending of the neural plate [158, 
170–173]. Asymmetrical enrichment of PCP 
components with apical constriction pathways at 
the mediolateral facing edge of neuroepithelial 
cells results in the tightening of actomyosin 
cables preferentially along the mediolateral axis 
to allow for the rolling of the neural plate [170]. 
Narrowing and lengthening of the neural plate 
also involves the coordination of PCP and apical 
constriction as epithelial rosettes resolve in a pre-
ferred direction [174, 175]. This complex and 
intimate link between the dynamic localization of 
core PCP proteins, actomyosin assembly, and 
polarized junction shrinking during cell interca-
lation is key for neural tube closure [176]. This 
interaction also provides a basis for genetic inter-
action of the basal-lateral Scribble and the core 
PCP protein Vangl2, which results in craniora-
chischisis in Vangl2Lp/+;ScrblCcr/+ compound 
mutants [122].

2.10	 �Formation of Hinge Points Is 
Regulated by Shh and BMPs

The relative contribution of the MHP and DLHPs 
to neurulation differs along the anterior-posterior 
axis of the spinal cord (Fig.  2.5; [177]). In the 
anterior spinal cord, MHPs are most prominent 
and DLHPs fail to form, resulting in the neural 
plate folding over the MHP and the neural folds 

meeting in the dorsal midline. This pattern of 
neurulation is referred to as “Mode 1.” In more 
caudal regions, both the MHP and paired DLHPs 
are prominent and the neural plate rolls around 
these hinge points. This is referred to as “Mode 
2” neurulation. In the posterior spinal cord, 
“Mode 3” neurulation predominates where a 
prominent MHP does not form and the neural 
folds roll around the DLHP. In the cranial region, 
both MHP and DLHPs form and DLHP forma-
tion is a dynamic process, as evident in live-
imaging experiments where DLHPs form, 
disappear, and then reform as the neural folds 
elevate [81].

The dynamic activity of Shh and BMPs along 
the anterior-posterior axis of the spinal cord 
influences the mode of neurulation (Fig.  2.5; 
[178]). Shh is expressed at highest levels in the 
anterior regions of the spinal cord and is almost 
nonexistent in the most caudal regions [178]. 
Moreover, Shh and BMPs inhibit formation of 
the DLHPs [178, 179]. BMPs are secreted from 
the surface ectoderm, and their expression 
remains essentially constant along the spinal neu-
ral plate. However, the BMP antagonist Noggin 
is expressed in middle and posterior regions, 
where it promotes DLHP formation by inhibiting 
BMPs and destabilizing adherens and tight junc-
tions [149–151]. While disruption of BMP sig-
naling results in NTDs [180–186], loss of Shh 
signaling results in exaggerated hinge points, and 
the neural tube still closes. On the other hand, 
activation of Shh signaling by loss of negative 
regulators results in failure of DLHP formation 
and neural tube closure in regions of the neural 
tube where DLHPs are critical [187]. Importantly, 
sequence variants in negative regulators of Shh 
signaling, including SUFU, PTCH1, PKA, and 
GPR161, are associated with spina bifida in 
humans [188–191].

2.11	 �PCP, Ciliogenesis, and Shh 
Signaling

PCP signaling also influences the positioning of 
cilia on the cell [192]. Many of the genes that 
interact with Vangl2Lp to cause NTDs in mouse 
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models are involved in cilia, including BBS 
(Bardet–Biedl syndrome) proteins. While NTDs 
are not commonly described as features of BBS, 
mouse mutants in some of the genes that cause 
BBS show a low penetrance of NTDs or interact 
with other genes to cause NTDs [126, 193]. 
Similarly  other ciliopathies, such as Meckel-
Gruber (MKS) and Joubert syndromes are also 
associated with NTDs in mouse models but not 
the human syndrome [194–196]. Mutations of 
the PCP effector proteins Fuzzy and Inturned 
result in defects in cilia and Shh signaling and 
neural tube closure [115–117]. Because cilia 
play an essential role in the transduction of Shh 
signaling [197, 198], the PCP pathway can 
potentially interact with Shh signaling to cause 
NTDs.

2.12	 �Role of the Nonneural 
Ectoderm in Neural Fold 
Elevation and Fusion

The nonneural ectoderm is required for neural 
tube closure by providing an inductive signal for 
DLHP formation, a driving force for the eleva-
tion of the neural folds and participating in the 
fusion of the neural folds [199–203]. In chicken 
embryos, removal of the surface epithelium 
results in failure of DLHP formation and neural 
fold elevation [202]. This could reflect either an 
inductive or a mechanical role in DLHP forma-
tion and elevation of the neural folds. In support 
of an inductive role, removal of all but a small 
strip of surface epithelium is sufficient to induce 
DLHPs [202]. BMP and Noggin are expressed in 
the surface ectoderm, and culture with a Noggin-
coated bead will induce DLHPs [179]. On the 
other hand, oriented cell divisions in the epider-
mis of the chicken embryo drive  medial-lateral 
expansion of the tissue [204], and the surface epi-
thelium in Xenopus migrates medially during 
neural tube closure [203], potentially providing a 
mechanical force for neural fold elevation. The 
surface ectoderm differentially contacts the neu-
ral tube along the anterior posterior neural axis 
and it is likely that the role of the surface ecto-
derm changes as well [173].

Grhl2 and Grhl3 are expressed almost exclu-
sively in the surface ectoderm during neurulation 
and are required for the proper development of 
the epidermis and neural tube closure [205–212]. 
Grhl3 is also expressed in the hindgut epithe-
lium, and mutation of Grhl3ct in a hypomorphic 
mouse line creates an imbalance in proliferation 
between the posterior neural tube and the under-
lying hindgut epithelium resulting in spina bifida 
[213]. Grhl3 and Grhl2 null mouse mutants show 
defects in more anterior regions of the spinal cord 
and failure of DLHP formation in spite of normal 
expression of epidermally derived factors 
involved in DLHP formation, such as BMP2 and 
Noggin [205–212]. Importantly, GRHL genes are 
implicated in human NTDs [167, 168, 214].

During fusion of the neural folds, cells extend 
finger-like projections that contact protrusions on 
the opposing neural folds, intercalate, draw the 
folds closer, and fasten them together [81, 82]. 
The neural folds are comprised of neural and 
nonneural ectoderm, which extend different pro-
jections in regionally distinct areas of the neural 
tube [85, 90, 153]. Live-imaging experiments in 
the mouse suggest that closure in the hindbrain/
midbrain region does not occur by “zipping” 
but rather formation of multiple intermediate clo-
sure points that “button up” the folds  together 
[82, 89]. The tissue layer that makes initial con-
tact differs based on the anterior-posterior level. 
Between closure points 1 and 2, fusion is initi-
ated by cells of the nonneural ectoderm, followed 
by cells of the neural ectoderm [82, 215]. 
Between closure points 2 and 3, both layers con-
tact at the same time while initiation at closure 3 
is mediated by the neural ectoderm [215]. 
Scanning electron microscopy revealed that pro-
trusions are predominantly filopodia during 
early stages of spinal neurulation, then replaced 
by membrane ruffles and filopodia [90, 153]. 
The PCP pathway is also required for directional 
protrusive activity of the neural epithelium dur-
ing fusion [76]. Grhl2 is also required for neural 
fold fusion evident in live-imaging experiments 
where elevation and apposition of the neural 
folds can occur but fusion fails [208]. As the 
neural folds meet in the midline, extensive tissue 
remodeling separates the neural and nonneural 
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ectoderm joining the opposing folds. Molecularly, 
GRHL transcription factors influence expression 
of multiple proteins that can influence neural fold 
fusion, including adherens junctions, as well as 
proteins that suppress EMT to reinforce the epi-
thelial properties of the nonneural ectoderm dur-
ing tissue remodeling [86].

2.13	 �Prevention of NTDs by 
Micronutrient 
Supplementation

Maternal diet is a key environmental factor influ-
encing the incidence of NTDs, and by the 1960s, 
folic acid emerged as a key micronutrient with 
reports that women with NTD-affected pregnan-
cies had reduced intake of folate, as well as lower 
folate levels in blood, than in normal pregnancies 
[216, 217]. This led to a series of clinical trials to 
test if folic acid supplementation could prevent 
NTDs [218–223]. In 1991, results of a double-
blind randomized trial demonstrated a 72% 
reduction of NTDs in a large trial involving 
women with previous NTD-affected pregnancies 
[224]. Further trials to determine if folic acid 
supplementation could prevent NTDs in women 
of average risk demonstrated that improvement is 
greater depending on the initial NTD rate of the 
population [225]. For example, in Northern 
China, where the NTD rate is very high (48  in 
10,000 live births), the incidence was reduced to 
7  in 10,000 with supplementation. But in 
Southern China, the NTD rate was rather low 
(10  in 10,000) and was only  reduced to 6  in 
10,000 [226]. Many countries now fortify grains 
and cereals with folic acid, and in the United 
States, studies show that fortification results in 
increased folate status of the population, and an 
estimated  30% reduction in the incidence of 
NTDs [227–229]. The MTHFR gene encodes 
methylenetetrahydrofolate reductase, which is 
essential for the conversion of homocysteine to 
methionine, a key reaction in the folate pathway. 
Common polymorphisms in the MTHFR gene 
that reduce enzyme function are associated with 
increased risk of NTDs [230]. For example, 40% 
of the general population is heterozygous and 

10% homozygous for the hypomorphic MTHFR 
667C>T allele. Another common mechanism 
impacting folate metabolism is the production of 
function-blocking autoantibodies against the 
folate receptor, which are found at higher levels 
in maternal serum from NTD-affected pregnan-
cies [231–234]. Folic acid supplementation can 
overcome the increased risk associated with 
MTHFR 667C>T polymorphism or the presence 
of folic acid receptor autoantibodies [235, 236]. 
However, folic acid supplementation does not 
prevent all NTDs in humans, and supplementa-
tion typically only reduces the incidence to 5–7 
per 10,000 live births [225].

Folic acid supplementation can also prevent 
NTDs in mouse models, including lines with 
deletion of Folbp1, Rfc1, Cart1, and Gcn5 or 
mutation in Lrp6Cd and Pax32H [237–246]. The 
maternal genotype also impacts the risk of NTDs 
and response to supplementation. For example, 
NTDs in the Lrp2 mouse model are prevented by 
the injection of folic acid but not dietary folic 
acid [247]. Since Lrp2 plays an important role in 
folate uptake with folate deficiency [248], this 
result highlights the impact of the maternal geno-
type on folate status. This is echoed in human 
data where mothers who are heterozygous for the 
MTHFR 667C>T allele have a slightly increased 
risk of having an NTD-affected pregnancy, 
whereas the risk increases to 60% for homozy-
gous mothers and to 90% for homozygous 
females from homozygous mothers [230].

Similar to NTDs in humans, many mutant 
mouse lines are not rescued by folic acid supple-
mentation [181, 210, 249–252]. Interestingly, 
this may be influenced by the impact of the par-
ticular mutant allele rather than the gene involved. 
For example, NTDs in the Lrp6cd mouse line are 
prevented by supplementation with folic acid, 
whereas supplementation in the Lrp6null mouse 
line results in more severe NTDs and embryo loss 
[253]. In fact, folic acid supplementation results 
in the early loss of mutant embryos in some 
mouse lines [253, 254]. Furthermore, high levels 
of dietary folic acid intake results in activation of 
negative feedback loops, leading to overrepres-
sion of folic acid metabolism [255, 256]. The 
adverse effects of folic acid supplementation are 
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cumulative, with long-term but not short-term 
supplementation being detrimental [254].

Importantly, folic acid deficiency is not suffi-
cient to induce NTDs in humans or mouse mod-
els [257–263]. Rather, gene–environment 
interactions (e.g., suboptimal folate status plus a 
genetic predisposition) likely combine to result 
in NTDs. For example, folate deficiency increased 
the frequency of NTDs in Pax3Sp mutants and 
other susceptible mouse background strains [259, 
260]. Similarly, mutation of a gene required for 
folate metabolism (Shmt1) does not result in 
NTDs, but with folate deficiency, NTDs occur 
[257, 264]. Altered folate metabolism has been 
documented in cell lines derived from NTD-
affected human fetuses, as well the Pax3Sp and 
Lrp6Cd mouse models of NTDs [243, 265, 266]. 
Finally, Pax3Sp/+;Shmt1−/+ compound mutants 
show increased penetrance and severity of NTDs, 
indicating an interaction of Pax3 mutation with 
the folate pathway [264]. This may be relevant to 
human NTDs as spina bifida and anencephaly are 
associated with PAX3 mutations in the autosomal 
dominant Waardenburg syndrome, as well as in 
nonsyndromic NTDs [22, 32, 167, 267–277].

2.14	 �Mechanisms by Which Folic 
Acid Prevents NTDs

In spite of the clear benefit for folic acid supple-
mentation, it is not clear how folic acid prevents 
NTDs [230]. Folates are not synthesized by the 
body and need to be included in the diet. Folic acid 
feeds into the folate one carbon metabolism path-
way (Fig. 2.6), a network of interlinked reactions 
that generates key metabolites required for several 
cellular processes, including the synthesis of 
nucleic and amino acids; the production of methyl 
donor S-adenosyl methionine (SAM) used for 
methylation of histones, proteins, lipids, and DNA; 
as well as influencing homocysteine production 
[278–280]. These outputs can directly impact api-
cal constriction and the cytoskeletal dynamics 
necessary for neural fold elevation, as well as cilia 
formation [281–283]. The emerging picture is that 
a variety of functional outputs of folate metabo-

lism are required for normal development. 
Impaired flux of metabolites through these reac-
tions may be the key factor responsible for NTDs 
with deficiency and prevention with supplementa-
tion. The specific metabolites required are likely 
due to individual metabolic need based on how 
flux through the pathway is perturbed by genetic 
mutations and environmental factors.

2.15	 �Folate is a Cofactor 
Required for Synthesis 
of DNA, Amino Acid 
and Methyl Donors

The Pax3Sp2H mutant mouse strain, which has a 
metabolic deficiency in the supply of folate for 
the biosynthesis of pyrimidine, is susceptible to 
NTDs with folate deficiency, and NTDs in this 
strain are prevented by folate supplementation 
[243, 264]. Either  Folic acid supplementation 
or  deficiency have measurable effects on DNA 
methylation impacting gene expression [284, 
285]. Importantly, both global DNA hypomethyl-
ation and hypomethylation at specific genes are 
associated with an increased risk for NTDs [286]. 
One of these genes is Pax3, which exhibits 
reduced expression and altered methylation with 
exposure to polycyclic aromatic hydrocarbon, as 
well as oxidative stress in diabetic pregnancy that 
induces NTDs [287, 288]. Similar to the Pax3 
mutant models, supplementation of diabetic mice 
with folic acid can prevent NTDs [289]. The 
greater susceptibility of females to NTDs and 
prevention by folic acid supplementation sug-
gests an epigenetic requirement for folate metab-
olism to provide methyl donor groups. Data from 
both humans and mouse demonstrate that anen-
cephaly affects more females than males, and 
NTDs in females are reduced to a greater extent 
with folic acid supplementation [290]. Epigenetic 
inactivation of the X chromosome is proposed to 
act as a sink for methyl donors, resulting in less 
methyl donor groups available for other func-
tions. Folic acid supplementation potentially 
increases available methyl groups and preferen-
tially rescue NTDs in females [290–292].
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2.16	 �Folate and Homocysteine

Another possible mechanism by which folic acid 
supplementation might prevent NTDs is by 
reducing homocysteine levels [293]. Elevated 
maternal homocysteine during pregnancy is 
associated with an increased risk for NTDs 
[294]. Homocysteine accumulation leads to 
homocysteinylation of a slew of proteins increas-
ing their antigenicity. Folate deficiency in a 
mouse model increases homocysteine levels and 
expression of autoantibodies against homocyste-
inylated proteins that was reversible with folate 
supplementation [295]. In humans, genotypes 
associated with reduced folate uptake or metabo-
lism result in elevated antifolate receptor autoan-
tibodies further impacting folate status of the 
mother [296]. Furthermore, homocysteinylated 
H3K79 was increased in brain tissue from NTD 
cases along with alterations in gene expression 
[297].

2.17	 �Studies in Mice Suggest 
Supplementation 
with Inositol or Formate May 
Prevent Folate-Resistant 
NTDs

Aside from MTHFR, other enzymes in the folate 
one carbon metabolism pathway have not consis-
tently been associated with NTDs in human popu-
lations or in mouse models [39]. On the other 
hand, the glycine cleavage branch of the pathway 
that links folate one carbon metabolism in the 
mitochondria with reactions in the cytoplasm 
through the transfer of formate is emerging as key 
for NTD susceptibility in both mouse models and 
humans [148, 298–300]. In human populations, 
sequence variants in either the mitochondrial 
methylenetetrahydrofolate reductase (MTHFD1L) 
or the mitochondrial inner membrane folate trans-
porter (SLC25A32) are associated with increased 
risk for NTDs [298, 299, 301, 302]. Mutation of 

Fig. 2.6  The folate 
pathway and neural tube 
defects. Schematic of the 
folate metabolic pathway 
showing key enzymes 
involved in the cytoplasm 
and mitochondria (blue). 
Key outputs of the folate 
cycle hypothesized to 
modulate neural tube 
closure are shown in red 
boxes and include 
regulation of DNA 
synthesis by providing 
the building blocks for 
pyrimidines and purines, 
as well as production of 
methyl donors required 
for methylation of DNA, 
proteins, and lipids. 
Metabolites that can 
prevent NTDs when 
supplemented in mouse 
models are highlighted 
by yellow ovals and key 
enzymes implicated in 
NTDs in humans, such as 
MTHFR and MTHFD1L, 
and are also highlighted 
by yellow boxes
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mouse homologues of these genes also results in 
NTDs [299, 300, 302–306]. Importantly, NTDs 
in many of these models are prevented by supple-
mentation with formate but not folate. These 
findings provide important preclinical data sug-
gesting that formate supplementation in conjunc-
tion with folate should be considered in the 
prevention of folate-insensitive NTDs in humans.

Another supplement with a promise to prevent 
folate-resistant NTDs is inositol, a simple carbo-
hydrate naturally found in many foods [307]. 
Inositol acts as an insulin-sensitizing agent, and 
supplementation improves glucose and lipid pro-
files with positive effects on fertility in assisted 
reproduction and in women with polycystic ovary 
syndrome [308]. Hyperglycemia results in inosi-
tol depletion, and inositol supplementation sup-
presses diabetes-induced NTDs in mouse models 
[309, 310]. Mouse embryos grown in culture and 
Grhl3ct mutants, in particular, develop NTDs 
with reduced inositol in the growth media, and 
the incidence of NTDs in Grhl3ct mutants is 
reduced by inositol but not folic acid supplemen-
tation [311–315]. Additionally, mutation of genes 
involved in inositol metabolism results in NTDs 
[316, 317]. Studies in humans also provide sup-
port for inositol in the prevention of NTDs. Low 
serum concentrations of inositol are associated 
with increased NTD risk and are also found in 
children with spina bifida. Preliminary trials 
where dual supplementation of inositol and folate 
is given to women with previous NTD-affected 
pregnancies suggest that this treatment is highly 
effective as no NTDs have occurred in the dual 
supplementation group, whereas some NTDs did 
occur with folate supplementation alone. 
However, the sample size of these studies is still 
too low to draw definitive conclusions 
[318–323].

2.18	 �Future Directions

In recent years, next-generation sequencing 
approaches such as whole-genome and whole-
exome sequencing, as well as targeted sequenc-
ing of extensive panels of candidate genes in 
large NTD patient cohorts, have been employed 

to identify the genes responsible for NTDs in 
humans [38, 141, 142, 145, 324–326]. These 
approaches have the potential to identify new 
candidate genes, as well as multiple sequence 
variants, in a single individual that might contrib-
ute to NTD in a multifactorial fashion. In fact, a 
recent whole-genome sequencing study con-
cluded that the genetic basis for NTD is omnige-
nic involving genes spread across almost the 
entire genome [326]. Furthermore, this study 
concluded that predicted loss of function variants 
in almost all genes had some minor impact on 
NTD risk, and NTD risk was associated with 
increased numbers of rare loss of function vari-
ants. Surprisingly, there was no significant 
enrichment of damaging variants in human ortho-
logs of the 249 mouse NTD-associated genes 
previously implicated in NTDs [42, 44–46, 59, 
327]. These findings indicate that previous efforts 
using targeted genomic screens that rely heavily 
on the candidate genes identified in animal mod-
els represent only the tip of the iceberg in terms 
of the genes that contribute to NTDs. As new can-
didate genes are identified in these human 
screens, the mouse model will be essential for 
modeling the complex interaction of variants 
leading to NTDs.
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