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Relevance of Embryo Aneuploidy 
in Medically Assisted Reproduction

Esther Velilla and Carmen Morales

71.1  Background

The prevalence of primary and secondary infertility has been 
estimated in 1.9% and 10.5%, respectively, in women of 
20–44 years of age from 190 countries according published 
data in 2010 [1]. Aneuploidy is the main genetic factor that 
influences human reproductive success [2]. As it has been 
published, aneuploid embryos account for at least 10% of 
human pregnancies, and the incidence could exceed 50% for 
women over 35 years of age [3, 4]. Most aneuploidies com-
promise the implantation of the conceptuses that perish in 
utero, and those that implant may result in an early miscar-
riage or cause congenital birth defects.

Medically assisted reproduction (MAR) allows for the 
treatment of most infertile couples with the aim of securing a 
healthy birth. Therefore, in vitro fertilization (IVF) laborato-
ries are challenged to reduce the risk associated with multi-
ple pregnancy. For that, most of the IVF clinics have moved 
to the strategy of a single embryo transfer, diagnosed as 
chromosomally normal, since selecting just the morphologi-
cally normal ones to transfer is not enough to guarantee its 
success. Morphology of an embryo is weakly correlated with 
its viability and, hence, with its chromosome constitution. 
All type of uniform aneuploidies can survive to the blasto-
cyst stage [3, 5–13]. Moreover, 40–50% blastocysts with 
optimal morphology can be chromosomally abnormal [14, 
15], and euploid embryos do not always demonstrate better 
morphology than chaotic mosaics [16]. On the other hand, 
there is a correlation between aneuploidy and maternal age 
due to an increase of premature sister chromatids separation 
and meiotic nondisjunction of homologous chromosomes 
[17]. As an example, aneuploidy increases from 40% in fer-
tile egg donors to 80% in patients of 41–42 years old [18]. 

However, Harton et al. in 2013 [19] demonstrated that if a 
chromosomally normal embryo is transferred to the uterus, 
the chance to implant is independent of maternal age. The 
transfer of abnormal embryos in an IVF cycle is related to 
higher rates of implantation failure and miscarriage. 
Although there is a direct correlation between embryo aneu-
ploidy and maternal age, there is also positive correlation 
with other factors such as sperm chromosome abnormalities, 
altered male meiosis, or nongenetic male factor [20, 21].

Preimplantation genetic testing (PGT) has been used since 
the 1990s to diagnose genetically abnormal embryos for 
selecting, with some certainty, those genetically normal 
embryo(s) to be transferred to the uterus with the maximum 
guarantees to implant and to reach term. PGT has been incor-
porated into IVF laboratories to improve the efficiency of 
ART, increasing implantation rates while lowering pregnancy 
loss rate [22–29]. The success of PGT for aneuploidy screen-
ing (PGT-AS) is not limited to the technique itself but depends 
on different factors: (1) the optimization of the PGT-AS tech-
nique; (2) the proper selection of patients for PGT-AS; (3) the 
number of analyzed chromosomes (limited or comprehensive 
chromosome screening, CCS); and (4) the protocols of ovar-
ian stimulation, in vitro embryo culture, and embryo(s) trans-
fer. Focusing on PGT-AS technique, over the past years, 
different methodologies have been optimized to overcome 
many of the technical limitations intrinsic to the analysis of a 
single cell or a few number of them. Fluorescence in situ 
hybridization (FISH) on fixed nuclei from biopsied blasto-
meres was the technique of choice over the past two decades. 
However, the classic FISH technique analysis was limited to 
a restricted number of chromosomes [30] restricting the 
improvement of IVF outcomes with PGT-AS, as reported by 
several authors [31–38] and advised by the ESHRE PGD 
Consortium [39]. Therefore, the natural evolution of the 
PGT-AS has driven to the development, clinical validation, 
and application of the new emerging CCSs methodologies. 
Currently, the available CCS techniques developed and clini-
cal validated for PGT-AS are array comparative genomic 
hybridization (aCGH) [5, 11, 15, 40], 24- chromosome FISH 
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(FISH-24) [41], single nucleotide polymorphism (SNP) 
microarray [42], quantitative real-time polymerase chain reac-
tion (qPCR)-based CCS [43], and more recently next-genera-
tion sequencing (NGS) [44–50]. The application of CCS 
techniques also produces a change in the protocol of biopsy, 
moving from day 3 to day 5 of embryo development in order 
to have more quantity and quality of DNA for amplification 
and to overcome the high rate of mosaicism detected on cell 
stage embryos that can lead to misdiagnosis. Among these 
technologies, NGS seems to detect with higher accuracy for 
segmental imbalances [51, 52] and chromosomal mosaicism 
[51, 53–55]. Recently after three randomized control trials 
(RCT) testing day 5 blastocyst biopsies in good prognosis 
patients, there appear to be significant improvements in ongo-
ing pregnancy rates [26, 27, 56], encouraging physicians to 
recommend PGT-AS on trophectoderm samples.

71.2  Is There an Optimal PGT-AS 
and Embryo Transfer Program?

One of the more recent discussions about PGT-AS using the 
new CCS platforms is which is the most efficient operating 
way in terms of maximizing pregnancy rates. When PGT-AS 
by FISH was established, most centers did the biopsy on day 
3, and euploid embryos were transferred in day 5 in a fresh 
cycle, but pregnancy rates were not as good as expected. In 
the last few years, there is published evidence showing that 
transferring cryopreserved embryos in a non-stimulated 
cycle increases clinical implantation rates [57–63] and 
decreases low birth weight and preterm delivery rate [64, 
65]. Coates et al. in 2017 [66] published a RCT comparing 
both approaches: to perform day 5 biopsy and vitrify all 
embryos while waiting for the PGT-AS results and to carry 
out the euploid embryo transfer in a non-stimulated cycle 
versus biopsing embryos at day 5 and transferring the euploid 
embryos on day 6 in a fresh cycle. Embryos showing slow 
development were biopsied on day 6 and kept frozen for a 
future non-stimulated transfer, in case of failed outcomes. 
The study was performed in a US institute with a long stand-
ing experience in embryo vitrification, embryo culture, and 
biopsy procedures, and the results showed, in terms of ongo-
ing pregnancy rates and live birth rates, a trend in favor of a 
freeze all strategy and transference of the euploid embryos in 
non-stimulated cycles. Another RCT published by Rubio 
et  al. [67] compared the effectiveness of clinical outcome 
with and without PGT-AS in women with advanced maternal 
age (from 38 to 41  years old) after embryo analysis by 
aCGH.  They published a higher delivery rate per transfer 
after the first transfer attempt (52.9% vs 24.2%) and higher 
delivery rate per patient (36.0% vs. 21.9%) in the group that 
performed PGD aneuploidy screening compared to the group 
that did not perform PGD.

The main issue when applying the freeze all strategy is 
that the laboratory must optimize its culture conditions to 
achieve the highest rates of blastocyst formation. Moreover, 
vitrification and thawing protocols must be optimized in 
order to achieve the highest post-warming survival and 
cleavage development rate. Unfortunately, not all IVF labo-
ratories around the world have standardized protocols, and, 
even among those following the highest quality standards, 
results may drastically differ from one center to another. This 
suggests that although publications are in favor of a specific 
strategy, each center should analyze its own laboratory effi-
ciency and which strategy is the best for them. For one labo-
ratory that does not have a good established blastocyst 
vitrification protocol and presents a high incidence of lysed 
cells and low development rate post-warming, the best 
approach would be to perform day 5 biopsy and transfer in a 
fresh cycle and only keep vitrified the D6 biopsied blastocyst 
for a second transfer. Another scenario may be a laboratory 
that presents a poor embryo culture conditions. In that way, 
the best approach should be to biopsy on day 3 and transfer 
in day 3/4 in a fresh cycle to avoid losing embryo potential.

71.3  Mosaicism

Transferring high morphological quality euploid embryos 
has increased pregnancy rates, but we are still faced with the 
challenge that some euploid embryos with a good morphol-
ogy fail to implant. In this scenario, many programs have 
started to utilize time-lapse PGD-AS studies to correlate 
morphokinetics parameters and the type of aneuploidy in an 
attempt to identify which embryos have better competence to 
implant, but that said, efficiency is still not 100%. This can 
mainly be due to two factors: mosaicism and technical 
limitations.

Embryo mosaicism is one of the main sources of error 
when performing PGT-AS [68–76]. To establish the rate of 
mosaicism in preimplantation embryos is a complex task 
since it varies according to the embryo stage, the technology 
used for the diagnosis, and the skills of the genetic laboratory 
for the interpretation. In cleavage-stage embryos, the esti-
mated levels of mosaicism vary from 15 to 75% while in 
blastocyst have been estimated in 3–24%, according to a 
published review [77]. The great variability on reported data 
can also be influenced by different factors other than PGT-AS 
procedure itself, including the etiology of infertility, female’s 
age, or even in vitro culture and environmental conditions. 
All these elements can also impact the abnormal chromo-
some segregation leading to embryonic mosaicism. However, 
it appears that there is a general agreement for the observa-
tion that a gradual decrease in aneuploidy takes place during 
embryo development most probably due to self-correction 
mechanisms and preferential development of euploid cells.
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Mosaicism occurs during mitotic division of the 
embryo, giving rise to chromosomally different cell lines. 
When analyzing one cell from the embryo, it is assumed 
that the result is representative of the whole embryo. In 
order to avoid mosaicism misdiagnosis when performing 
PGT-AS, two different strategies have been proposed. The 
first is to perform polar body 1 and 2 analysis. Using this 
strategy, only chromosomal abnormalities of maternal 
meiotic origin are analyzed, while paternal meiotic abnor-
malities and abnormal chromosomal mitotic segregations 
are not evaluated. The second is to perform trophectoderm 
biopsy at blastocyst stage, analyzing more than one embry-
onic cell in in a developmental stage with a lower rate of 
mosaicism compared to day 3 embryos. This strategy can 
be used only if a good system for day 5 embryo culture is 
available and if a high number of embryos is achieved. 
However, although mosaicism rate is lower, it can be pres-
ent so there is still a risk of misdiagnosis. At the blastocyst 
stage, different types of mosaics have been described [78]: 
mosaicism that affect both trophectoderm (TFE) and inner 
cell mass (ICM), when the abnormal cells are confined to 
the TFE or ICM exclusively or when the ICM is normal 
TFE is abnormal (or vice versa). Depending on the type of 
mosaicism we are facing and the TFE cells we are biopsing 
by chance will condition PGT-AS misdiagnosis rate on 
blastocyst stage. Some studies have tried to estimate this 
correlation between ICM and TFE cell lines by biopsing 
two or three different groups of cells of the same embryo. 
They observed a diagnosis correlation of 95–100%, and 
the discordance between ICM and TFE cell lines was esti-
mated to be around 3–4% [79, 80].

Another strategy to avoid misdiagnosis due to mosaicism 
on the PGT-AS results has been to perform two cells biopsy 
on day 3. However, this strategy has been demonstrated to be 
detrimental for embryo developmental competence and has 
not been recommended any longer.

New CCS platforms for PGT-AS such as NGS can detect 
low levels of diploid/aneuploid mosaicism with high accu-
racy (lower than 20%). Mosaic or potentially mosaic embryos 
have become a new category to classify embryos [81]. 
According PGDIS recommendations [82], embryos with a 
mosaicism rate lower than 20% can be considered as euploid 
(and then transferable), while embryos with more than 80% 
of abnormal cells are classified as aneuploid. The remaining 
ones (20–80%) can be classified as mosaics. However, to 
establish the thresholds between which the embryos can be 
considered transferable or not is a controversial issue. Simon 
et al. recently suggested [81] that one consider above 50% of 
mosaicism embryo to be classified as aneuploid and non-
transferable. According to a worldwide survey from 32 coun-
tries, <10% of the analyzed embryos are classified as mosaics 
[81]. These embryos have a theoretically decreased implan-
tation rate and increased risk of miscarriage, pregnancy com-

plications, and clinically affected life births [81, 82]. 
Transferring embryos categorized as mosaic, although can 
raise some ethical considerations, is generally accepted 
when the couple does not have any euploid embryos [82, 83]. 
Different factors should be taken into consideration such as 
the methodology used for testing, the involved chromo-
somes, or the reproductive medical history of the couple 
[81–83]. Regarding this matter, PGDIS consortium pub-
lished a suggested guideline to prioritize mosaic embryos for 
transfer. Patients may consider transferring a mosaic embryo 
only after a proper genetic counselling about the risks of 
miscarriage and adverse outcomes they can face.

71.4  Conclusion

One of the most important challenges for the embryologist is 
to discern which is the most competent embryo to transfer. 
Many efforts to find the magical wand have been made in 
studying the cytoplasmic and nuclear competence, the mor-
phology, and morphokinetics during embryo development or 
in developing the most paramount technique to detect all 
chromosome aneuploidies. Yet still, just when we thought 
that we had the most comprehensive technology that permits 
us to screen all chromosomes, some new question arises and 
makes us go back in time and question all we know. Is 
embryo mosaicism an indicator of euploidy? Do we have to 
discard mosaic embryos?
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