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1 Introduction

In recent years, computer virus is a major problem in hardware and software technol-
ogy. The computer virus is a particular kind of computer program which propagates
itself and spreads from one computer to another. The file system generally damaged
by the viruses andworms employs system vulnerability to look and attack computers.
Consequently, for improving the safety and reliability in the computer setups and
networks, the test on excellent examination of the computer virus spreading dynami-
cal process is an important instrument. There are mainly twomethods to examine the
considered problem similar to the biological viruses as microscopic andmacroscopic
mathematical models. To describe and control the spreading of computer virus, many
engineers and scientists suggested several ways to formulate mathematical models
[1–18]. In recent work, Singh et al. [19] have reported a newmathematical model for
describing spreading of computer virus by making use of a new fractional derivative
with the exponential kernel. Fractional order calculus (FOC) has been employed
to formulate the mathematical models of real-life problems. Nowadays, the FOC
is acting a pivotal role in the areas of physics, computer science, chemistry, earth
science, economics, etc. In recent years, many mathematicians and scientists paid
their attention in this very special branch of mathematical analysis [20–32]. In 2016,
Atangana–Baleanu (AB) fractional derivative was studied by Atangana and Baleanu
[33] connected with the Mittag–Leffler function in its kernel. The AB fractional
derivative has been used in describing various physical problems such as mathe-
matical model of exothermic reactions having fixed heat source in porous media
[34], Biswas–Milovic model in optical communications [35], regularized long-wave
equation in plasma waves [36], Fornberg–Whitham equation in wave breaking [37],
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rumor spreading dynamical model [38], dynamical system for competition between
commercial and rural banks in Indonesia [39], etc.

The principal aim of the present study is to suggest a novel epidemiological
model for describing the spreading for computer viruses with Mittag–Leffler-type
memory. A new numerical algorithm, namely q-HATM [40, 41] is used for solving
the epidemiological model of arbitrary order for computer viruses associated with
Mittag–Leffler-type kernel. The q-HATM is the combination of q-homotopy analysis
method (q-HAM) [42, 43] and Laplace transform method [44–47].

Motivated and very useful consequences of fractional operators in mathematical
modeling of real word problems, we present a fractional modified epidemiological
model (FMEM) for computer viruses. The key aim of this investigation is to apply
a novel fractional operator in describing the spreading of viruses in computers. The
existence and uniqueness of the solution of the FMEM for computer viruses are
investigated by using the concept of the well-known fixed-point theory. The article
is organized as follows: Sect. 2 presents the key results related to AB fractional
derivative. Section 3 is dedicated to the fractional modeling of computer viruses.
In Sect. 4, we report the existence and uniqueness of the solution of the FMEM for
computer viruses. In Sect. 5, the efficiency of q-HATM is used to obtain the analytical
solution of the FMEM for computer viruses. Section 6 reports the numerical results
and discussions. Section 7, which is the last portion of the article, points out the
conclusions.

2 The AB Fractional Derivative and Its Properties

Definition 2.1 Assume that S ∈ H 1(α, β), β > α, κ ∈ (0, 1] and differentiable,
then the AB fractional derivative in terms of Caputo is presented as [33]

ABC
α Dκ

τ (S(τ )) = B(κ)

1 − κ

τ∫

α

S′(η)Eκ

[
− κ

1 − κ
(τ − η)κ

]
dη. (1)

In Eq. (1), B(κ) is satisfying the property B(0) = B(1) = 1.

Definition 2.2 Let S ∈ H 1(α, β), β > α, κ ∈ (0, 1] and non-differentiable, then
the AB fractional derivative in Riemann–Liouville sense is presented as [33]

ABR
α Dκ

τ (S(τ )) = B(κ)

1 − κ

d

dτ

τ∫

α

S(η)Eκ

[
− κ

1 − κ
(τ − η)κ

]
dη. (2)

Definition 2.3 Consider 0 < κ < 1, and S be a function of τ , then the fractional
integral operator associated with AB fractional derivative of order κ is drafted as
[33]
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AB
0 I

κ
τ (S(τ )) = (1 − κ)

B(κ)
S(τ ) + κ

B(κ)�(κ)

τ∫

0

S(ϑ)(τ − ϑ)κ−1dϑ, τ ≥ 0. (3)

3 FMEM of Computer Viruses with Mittag–Leffler
Memory

In this section, we extend the epidemiologicalmodel for computer viruses formulated
by Piqueira and Araujo [5] by using the theory of AB fractional derivative to induce
the strong memory in the model description. Here, we denote the total population by
T. We divide the total population T into the following four categories:

Category I: The number of computers which are not infected is inclined to probable
infection and is indicated by the symbol S(τ ).

Category II: The number of computers which are not infected is associated with the
anti-virus and represented by the symbol A(τ ).

Category III: The number of computers which are infected by virus is denoted by
the symbol I (τ ).

Category IV: The number of removed computers because of infection or not is
represented by the symbol R(τ ).

In the mathematical formulation of the problem, the influx parameter mortality
parameters are taken in the following manner:

	 indicates the influx rate,which is representing the involvement of novel comput-
ers to the interconnected system, and θ stands for the proportion coefficient connected
to the mortality rate, not due to the virus.

In order to decorate the magnificent report with infected ones, the susceptible
category S(τ ) is converted into the infected category with a rate that is pertaining to
the chance of susceptible computers. Consequently, ξ represents the equivalent factor
and this rate is straightforwardly equivalent to the multiplication of S(τ ) and I (τ ).

The conversion of susceptible into antidotal is straightforwardly equivalent to the
product of S(τ ) and A(τ )with the equivalent factor represented viaμSA. On making
use of the anti-virus programs, the computers affected by virus can be got back to
normal ones and being converted in the antidotal one with a rate straightforwardly
equivalent to the product of A(τ ) and I (τ ) with the equivalent factor indicated via
μI A.Here,we indicate the rate of reducing the computer into the useless and computer
is removed from the system by the symbol ε, while we represent the proportion factor
of the computers that can be restored and converted into the susceptible category by
the symbol ρ.

The dynamical process of the spreading of the infection of a recognized virus is
investigated with the aid of the present approach and, so, the conversion of antidotal
into infected is not studied. Consequently, a scheme of vaccination can be described,
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and a cost-effective application of anti-virus programs can be clarified with the help
of the understudy model.

Considering all these suppositions, the mathematical representations can be
presented in the following manner

dS(τ )

dτ
= 	 − μSAS(τ )A(τ ) − ξ S(τ )I (τ ) − θ S(τ ) + ρR(τ ),

dI (τ )

dτ
= ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ) − θ I (τ ),

dR(τ )

dτ
= ε I (τ ) − ρR(τ ) − θR(τ ),

dA(τ )

dτ
= μSAS(τ )A(τ ) + μI A A(τ )I (τ ) − θ A(τ ). (4)

In considered model, the influx rate is investigated to be 	 = 0, as action of
viruses is very fast than the extension of system, so it is assumed that no new computer
is involved in the system all the while the spreading of the assessed virus. On the
similar manner, the fraction coefficient is taken to be θ = 0, supposing that the
machine obsolescence time is very bigger than the time of the virus movement.

Consequently, mathematical model (4) becomes as follows:

dS(τ )

dτ
= −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),

dI (τ )

dτ
= ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),

dR(τ )

dτ
= ε I (τ ) − ρR(τ ),

dA(τ )

dτ
= μSAS(τ )A(τ ) + μI A A(τ )I (τ ). (5)

It is well known that the mathematical models with classical derivatives do not
carry the memory of the system, so we extend the mathematical model (5) with the
aid of AB fractional derivative, then it reduces as follows:

ABC
0 Dκ

τ S(τ ) = −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),
ABC
0 Dκ

τ I (τ ) = ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),
ABC
0 Dκ

τ R(τ ) = ε I (τ ) − ρR(τ ),
ABC
0 Dκ

τ A(τ ) = μSAS(τ )A(τ ) + μI A A(τ )I (τ ).

(6)

The initial conditions associated with fractional model (6) are presented as

S = α1, I = α2, R = α3 and A = α4 at τ = 0. (7)
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In this investigation, we have taken T (τ ) = S(τ ) + I (τ ) + R(τ ) + A(τ ) to be
fixed at a time τ . We suppose that � stands for the Banach space of continuous
real-valued functions over the interval � having the norm

‖(S(τ ), I (τ ), R(τ ), A(τ ))‖ = ‖S(τ )‖ + ‖I (τ )‖ + ‖R(τ )‖ + ‖A(τ )‖. (8)

In Eq. (8), ‖S(τ )‖ = sup{|S(τ ) : τ ∈ �|}, ‖I (τ )‖ = sup{|I ((τ ) : τ ∈ �|},
‖R(τ )‖ = sup{|R(τ ) : τ ∈ �|} and ‖A(τ )‖ = sup{|A(τ ) : τ ∈ �|}. Specially
� = C(�) ×C(�) ×C(�) ×C(�), here C(�) is the Banach space of continuous
� valued functions on the interval � possessing the sup norm.

4 Existence and Uniqueness of a Solution of FMEM
for Computer Viruses with Mittag–Leffler Memory

In the present part, we investigate the existence of the solution with the help of the
concept of the well-known fixed-point approach.

Firstly, we employ the fractional integral operator on the fractional order model
(6), and it gives

S(τ ) − S(0) = AB
0 I

κ
τ {−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )},

I (τ ) − I (0) = AB
0 I

κ
τ {ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )},

R(τ ) − R(0) = AB
0 I

κ
τ {ε I (τ ) − ρR(τ )},

A(τ ) − A(0) = AB
0 I

κ
τ {μSAS(τ )A(τ ) + μI A A(τ )I (τ )}.

(9)

On using the representation given in Eq. (3), it reduces to the following system

S(τ ) − S(0) = (1 − κ)

B(κ)
{−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{−μSAS(ϑ)A(ϑ) − ξ S(ϑ)I (ϑ) + ρR(ϑ)}(τ − ϑ)κ−1dϑ,

I (τ ) − I (0) = (1 − κ)

B(κ)
{ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{ξ S(ϑ)I (ϑ) − μI A A(ϑ)I (ϑ) − ε I (ϑ)}(τ − ϑ)κ−1dϑ,

R(τ ) − R(0) = (1 − κ)

B(κ)
{ε I (τ ) − ρR(τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{ε I (ϑ) − ρR(ϑ)}(τ − ϑ)κ−1dϑ,

A(τ ) − A(0) = (1 − κ)

B(κ)
{μSAS(τ )A(τ ) + μI A A(τ )I (τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{μSAS(ϑ)A(ϑ) + μI A A(τ )I (ϑ)}(τ − ϑ)κ−1dϑ. (10)
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In order to clarify the system, we use the subsequent notations

�1(τ, S) = −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),

�2(τ, I ) = ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),

�3(τ, R) = ε I (τ ) − ρR(τ ),

�4(τ, A) = μSAS(τ )A(τ ) + μI A A(τ )I (τ ).

(11)

Theorem 4.1 The kernels �1(τ, S),�2(τ, I ),�3(τ, R) and �4(τ, A) fulfill the
Lipschitz condition and contraction if the subsequent result is satisfied

0 ≤ (μSAβ4 + ξβ2) < 1. (12)

Proof We initiate with �1(τ, S). Let S(τ ) and S∗(τ ) are two functions, then we get

∥∥Ω1(τ, S) − Ω1(τ, S
∗)

∥∥ = ∥∥−μSA
{
S(τ ) − S∗(τ )

}
A(τ ) − ξ

{
S(τ ) − S∗(τ )

}
I (τ )

∥∥.

(13)

On utilizing of the inequality of triangular on Eq. (13), it gives

∥∥�1(τ, S) − �1(τ, S
∗)

∥∥ ≤ ∥∥μSA
{
S(τ ) − S∗(τ )

}
A(τ )

∥∥ + ∥∥β
{
S(τ ) − S∗(τ )

}
I (τ )

∥∥
≤ {μSAβ4 + ξβ2}

∥∥S(τ ) − S∗(τ )
∥∥

≤ λ1

∥∥(
S(τ ) − S∗(τ )

)∥∥. (14)

Letting λ1 = μSAβ4 + ξβ2, where ‖S(τ )‖ ≤ β1, ‖I (τ )‖ ≤ β2, ‖R(τ )‖ ≤ β3 and
‖A(τ )‖ ≤ β4 are bounded functions, then Eq. (14) gives

∥∥�1(τ, S) − �1(t, S
∗)

∥∥ ≤ λ1

∥∥S(τ ) − S∗(τ )
∥∥. (15)

Thus, the �1(τ, S) satisfy the Lipschitz condition and if 0 ≤ μSAβ4 + ξβ2 < 1,
then it is also a contraction.

In the similar way, we can easily prove the following results

‖�2(τ, I ) − �2(τ, I ∗)‖ ≤ λ2‖I (τ ) − I ∗(τ )‖,
‖�3(τ, R) − �3(τ, R∗)‖ ≤ λ3‖R(τ ) − R∗(τ )‖,
‖�4(τ, A) − �4(τ, A∗)‖ ≤ λ4‖A(τ ) − A∗(τ )‖.

(16)

On making use of the abovementioned kernels, Eq. (10) reduces as follows:
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S(τ ) = S(0) + (1−κ)

B(κ)
�1(τ, S) + κ

B(κ)�(κ)

τ∫
0

�1(ϑ, S)(τ − ϑ)κ−1dϑ,

I (τ ) = I (0) + (1−κ)

B(κ)
�2(τ, I ) + κ

B(κ)�(κ)

τ∫
0

�2(ϑ, I )(τ − ϑ)κ−1dϑ,

R(τ ) = R(0) + (1 − κ)

B(κ)
�3(τ, R) + κ

B(κ)�(κ)

τ∫

0

�3(ϑ, R)(τ − ϑ)κ−1dϑ,

A(τ ) = A(0) + (1 − κ)

B(κ)
�4(τ, A) + κ

B(κ)�(κ)

τ∫

0

�4(ϑ, A)(τ − ϑ)κ−1dϑ.

(17)

Now, we present the following recursive formula

Sn(τ ) = (1−κ)

B(κ)
�1(τ, Sn−1) + κ

B(κ)�(κ)

τ∫
0

�1(y, Sn−1)(τ − ϑ)κ−1dy,

In(τ ) = (1−κ)

B(κ)
�2(τ, In−1) + κ

B(κ)�(κ)

τ∫
0

�2(ϑ, I n−1)(τ − ϑ)κ−1dϑ,

Rn(τ ) = (1−κ)

B(κ)
�3(τ, Rn−1) + κ

B(κ)�(κ)

τ∫
0

�3(ϑ, Rn−1)(τ − ϑ)κ−1dϑ,

An(τ ) = (1−κ)

B(κ)
�4(τ, An−1) + κ

B(κ)�(κ)

τ∫
0

�4(ϑ, An−1)(τ − ϑ)κ−1dϑ.

(18)

The associated initial conditions are presented as

S0(τ ) = S(0), I0(τ ) = I (0), R0(τ ) = R(0), A0(τ ) = A(0). (19)

The difference formulas are written in the following manner

℘1,n(τ ) = Sn(τ ) − Sn−1(τ ) = (1 − κ)

B(κ)
(�1(τ, Sn−1) − �1(τ, Sn−2))

+ κ

B(κ)�(κ)

∫ τ

0
(�1(ϑ, Sn−1) − �1(ϑ, Sn−2))(τ − ϑ)κ−1dϑ

℘2,n(τ ) = In(τ ) − In−1(τ ) = (1 − κ)

B(κ)
(�2(τ, In−1) − �2(τ, In−2))

+ κ

B(κ)�(κ)

τ∫

0

(�2(ϑ, In−1) − �2(ϑ, In−2)) (τ − ϑ)κ−1dϑ,

℘3,n(τ ) = Rn(τ ) − Rn−1(τ ) = (1 − κ)

B(κ)
(�3(τ, Rn−1) − �3(τ, Rn−2))

+ κ

B(κ)�(κ)

τ∫

0

(�3(ϑ, Rn−1) − �3(ϑ, Rn−2))(τ − ϑ)κ−1dϑ,
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℘4,n(τ ) = An(τ ) − An−1(τ ) = (1 − κ)

B(κ)
(�4(τ, An−1) − �4(τ, An−2))

+ κ

B(κ)�(κ)

t∫

0

(�4(ϑ, An−1) − �4(ϑ, An−2))(τ − ϑ)κ−1dϑ. (20)

It is worth to observe that

Sn(τ ) =
n∑

i=0
℘1,i (τ ),

In(τ ) =
n∑

i=0
℘2,i (τ ),

Rn(τ ) =
n∑

i=0
℘3,i (τ ),

An(τ ) =
n∑

i=0
℘4,i (τ ).

(21)

We can easily obtain the subsequent result

∥∥℘1,n(τ )
∥∥ = ‖Sn(τ ) − Sn−1(τ )‖

=
∥∥∥∥∥∥

(1−κ)

B(κ)
(�1(τ, Sn−1) − �1(τ, Sn−2))

+ κ
B(κ)�(κ)

τ∫
0

(�1(ϑ, Sn−1) − �1(ϑ, Sn−2))(τ − ϑ)κ−1 dϑ

∥∥∥∥∥∥. (22)

On utilization of the triangular inequality on Eq. (22) enables us to get the result

∥∥Sn(τ ) − Sn−1(τ )
∥∥ ≤ (1 − κ)

B(κ)

∥∥(
�1(τ, Sn−1) − �1(τ, Sn−2)

)∥∥

+ κ

B(κ)�(κ)

∥∥∥∥∥∥
τ∫

0

(
�1(ϑ, Sn−1) − �1(ϑ, Sn−2)

)
(τ − ϑ)κ−1dϑ

∥∥∥∥∥∥.

(23)

We have already proved that �1(τ, S) holds the Lipchitz condition, so we get

‖Sn(τ ) − Sn−1(τ )‖ ≤ (1 − κ)

B(κ)
λ1‖Sn−1(τ ) − Sn−2(τ )‖

+ κ

B(κ)�(κ)
λ1

τ∫

0

‖Sn−1(ϑ) − Sn−2(ϑ)‖(τ − ϑ)κ−1dϑ,

(24)
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Then, we have

∥∥℘1,n(τ )
∥∥ ≤ (1 − κ)

B(κ)
λ1

∥∥℘1,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ1

τ∫

0

∥∥℘1,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ.

(25)

On employing the same way, we get

∥∥℘2,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ2

∥∥℘2,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ2

τ∫
0

∥∥℘2,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ,

∥∥℘3,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ3

∥∥℘3,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ3

τ∫
0

∥∥℘3,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ,

∥∥℘4,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ4

∥∥℘4,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ4

τ∫
0

∥∥℘4,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ.

(26)

On making use of the abovementioned results, we establish the following
theorems.

Theorem 4.2 The exact solution of the FMEM for computer viruses (6) exists if we
can find τ0 such that

(1 − κ)

B(κ)
λ1 + κ

B(κ)�(κ + 1)
λ1τ

κ
0 < 1. (27)

Proof From the results (25) and (26), we have

∥∥℘1,n(τ )
∥∥ ≤ ‖Sn(0)‖

[(
(1−κ)

B(κ)
λ1

)
+

(
κ

B(κ)�(κ+1)λ1τ
κ
)]n

∥∥℘2,n(τ )
∥∥ ≤ ‖In(0)‖

[(
(1−κ)

B(κ)
λ2

)
+

(
κ

B(κ)�(κ+1) λ2τ
κ
)]n

,∥∥℘3,n(τ )
∥∥ ≤ ‖Rn(0)‖

[(
(1−κ)

B(κ)
λ3

)
+

(
κ

B(κ)�(κ+1)λ3τ
κ
)]n

,∥∥℘4,n(τ )
∥∥ ≤ ‖An(0)‖

[(
(1−κ)

B(κ)
λ4

)
+

(
κ

B(κ)�(κ+1)λ4τ
κ
)]n

.

(28)

Thus, the abovementioned solutions exist and are continuous. In order to demon-
strate that Eq. (18) is a solution of FMEM for computer viruses (6), we suppose
that

S(τ ) − S(0) = Sn(τ ) − W1,n(τ ),

I (τ ) − I (0) = In(τ ) − W2,n(τ ),

R(τ ) − R(0) = Rn(τ ) − W3,n(τ ),

A(τ ) − A(0) = An(τ ) − W4,n(τ ). (29)
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Therefore, we have

∥∥W1,n(τ )
∥∥ =

∥∥∥∥∥∥
(1−κ)

B(κ)
(�1(τ, S) − �1(τ, Sn−1))

+ κ
B(κ)�(κ)

τ∫
0

(�1(τ, S) − �1(τ, Sn−1))(τ − τ)κ−1dτ

∥∥∥∥∥∥.

≤ (1 − κ)

B(κ)
‖(�1(τ, S) − �1(τ, Sn−1))‖

+ κ

B(κ)�(κ)

τ∫

0

‖(�1(ϑ, S) − �1(ϑ, Sn−1))‖ (τ − ϑ)κ−1dϑ

≤ (1 − κ)

B(κ)
λ1‖S(τ ) − Sn−1(τ )‖ + κ

B(κ)�(κ + 1)
λ1‖S(τ ) − Sn−1(τ )‖τ κ .

(30)

On making use of the abovementioned process recursively, it gives

∥∥W1,n(τ )
∥∥ ≤

(
(1 − κ)

B(κ)
+ κ

B(κ)�(κ + 1)
τ κ

)n+1

λn+1
1 β1. (31)

Then at τ0, we have

∥∥W4,n(τ )
∥∥ ≤

(
(1 − κ)

B(κ)
+ κ

B(κ)�(κ + 1)
τ κ
0

)n+1

λn+1
1 β1. (32)

Next, on using the limit n tends to infinity, we have

∥∥W1,n(τ )
∥∥ → 0.

In the same way, we get

∥∥W2,n(τ )
∥∥ → 0,

∥∥W3,n(τ )
∥∥ → 0 and

∥∥W4,n(τ )
∥∥ → 0.

Hence, the exact solution of the FMEMfor computer viruses (6) exists if condition
(27) is satisfied.

Now, we show that the FMEM for computer viruses (6) has a unique solution.
In order to prove the uniqueness of the solutions, we assume that there exists

another system of solutions of mathematical model (6) be S∗(τ ), I ∗(τ ), R∗(τ ) and
A∗(τ ) then

S(τ ) − S∗(τ ) = (1 − κ)

B(κ)

(
�1(τ, S) − �1(τ, S

∗)
)
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+ κ

B(κ)�(κ)

τ∫

0

(
�1(ϑ, S) − �1(ϑ, S∗)

)
(τ − ϑ)κ−1dϑ. (33)

On operating the norm on Eq. (33), we get

∥∥S(τ ) − S∗(τ )
∥∥ ≤ (1 − κ)

B(κ)

∥∥�1(τ, S) − �1(τ, S
∗)

∥∥

+ κ

B(κ)�(κ)

τ∫

0

∥∥(
�1(ϑ, S) − �1(ϑ, S∗)

)∥∥(τ − ϑ)κ−1dϑ.

(34)

The use of the Lipschitz condition of �1(τ, S) enables us to get

∥∥S(τ ) − S∗(τ )
∥∥

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
≤ 0. (35)

Theorem 4.3 The FMEM for computer viruses (6) has a unique solution if

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
> 0. (36)

Proof From Eq. (35), we have

∥∥S(τ ) − S∗(τ )
∥∥

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
≤ 0. (37)

If condition (36) holds, then Eq. (37) yields

∥∥S(τ ) − S∗(τ )
∥∥ = 0.

Thus, we have

S(τ ) = S∗(τ ). (38)

On utilizing the similar methodology, we arrive at the following results

I (τ ) = I ∗(τ ), R(τ ) = R∗(τ ), A(τ ) = A∗(τ ). (39)

Thus, the proof of the uniqueness theorem is completed.
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5 Application of q-HATM to Solve FMEM for Computer
Viruses

First of all, we use the Laplace transform on FMEM for computer viruses (6), and it
gives

L[S] − α1
p − pκ+κ(1−pκ )

pκ L[−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )] = 0,

L[I ] − α2
p − pκ+κ(1−pκ )

pκ L[ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )] = 0,

L[R] − α3
p − pκ+κ(1−pκ )

pκ L[ε I (τ ) − ρR(τ )] = 0,

L[A] − α4
p − pκ+κ(1−pκ )

pκ L[μSAS(τ )A(τ ) + μI A A(τ )I (τ )] = 0.

(40)

The nonlinear operators are given as

N1[�1(τ ; z)] = L[�1(τ ; z)] − α1

p
− pκ + κ(1 − pκ)

pκ
L[−μSA�1(τ ; z)�4(τ ; z)

−ξ�1(τ ; z)�2(τ ; z) + ρ�3(τ ; z)] = 0,

N2[�2(τ ; z)] = L[�2(τ ; z)] − α2

p
− pκ + κ(1 − pκ)

pκ
L[ξ�1(τ ; z)�2(τ ; z)

−μI A�4(τ ; z)�2(τ ; z) − ε�2(τ ; z) ] = 0,

N3[�3(τ ; z)] = L[�3(τ ; z)] − α3

p
− pκ + κ(1 − pκ)

pκ
L[ε�2(τ ; z)

−ρ�3(τ ; z)] = 0,

N4[�4(τ ; z)] = L[�4(τ ; z)] − α4

p
− pκ + κ(1 − pκ)

pκ
L[μSA�1(τ ; z)�4(τ ; z)

+μI A�4(τ ; z)�2(τ ; z)] = 0, (41)

and thus, we have

�1,�(
S(�−1)) = L
[
S(�−1)

] − α1

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
−μSA

(
�−1∑
r=0

Sr A(�−1−r)

)

−ξ

(
�−1∑
r=0

Sr I(�−1−r)

)
− ρR(�−1)

]
,

�2,�( 
I(�−1)) = L
[
I(�−1)

] − α2

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
ξ

(
�−1∑
r=0

Sr I(�−1−r)

)
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−μI A

(
�−1∑
r=0

Ar I(�−1−r)

)
− ε I(�−1)

]
,

�3,�( 
R(�−1)) = L
[
R(�−1)

] − α3

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L
[
ε I(�−1) − ρR(�−1)

]
,

�4,�( 
A(�−1)) = L
[
A(�−1)

] − α4

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
μSA

(
�−1∑
r=0

Sr A(�−1−r)

)

+μI A

(
�−1∑
r=0

Ar I(�−1−r)

)]
(42)

and k� is defined as

k� =
{
0, � ≤ 1,
n, � > 1.

(43)

Next, the deformation equations of �th-order are presented as

L
[
S�(τ ) − k�S(�−1)(τ )

] = ��1,�(
S(�−1)),

L
[
I�(τ ) − k� I(�−1)(τ )

] = ��2,�(
⇀

I (�−1)),

L
[
R�(τ ) − k�R(�−1)(τ )

] = ��3,�( 
R(�−1)),

L
[
A�(τ ) − k�A(�−1)(τ )

] = ��4,�( 
A(�−1)).

(44)

The utilization the inversion of Laplace transform on Eq. (44) enables us to get

S�(τ ) = k�S(�−1)(τ ) + �L−1
[
�1,�(
S(�−1))

]
,

I�(τ ) = k� I(�−1)(τ ) + �L−1
[�1,�( Ī(�−1))

]
,

R�(τ ) = k�R(�−1)(τ ) + �L−1
[
�1,�( 
R(�−1))

]
,

A�(τ ) = k�A(�−1)(τ ) + �L−1
[
�1,�( 
A(�−1))

]
.

(45)

We take the initial guess S0(τ ) = α1, I0(τ ) = α2, R0(τ ) = α3, A0(τ ) = α4 and
solving Eq. (45) for � = 0, 1, 2, . . . , we determine the values of S�(τ ), I�(τ ), R�(τ )

and A�(τ ), ∀� ≥ 1.
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Finally, the solution of FMEM for computer viruses (6) is given as

S(τ ) = S0(τ ) + S1(τ )
(
1
n

) + S2(τ )
(
1
n

)2 + · · · ,

I (τ ) = I0(τ ) + I1(τ )
(
1
n

) + I2(τ )
(
1
n

)2 + · · · ,

R(τ ) = R0(τ ) + R1(τ )
(
1
n

) + R2(τ )
(
1
n

)2 + · · · ,

A(τ ) = A0(τ ) + A1(τ )
(
1
n

) + A2(τ )
(
1
n

)2 + · · · .

(46)

6 Numerical Simulations

In this part,wepresent the numerical computation for FMEMfor computer viruses (6)
as function of time atμSA = 0.025, μI A = 0.25, ξ = 0.1, ε = 9, ρ = 0.8, � = −1
and n = 3 for defined values of order of AB fractional operator. The initial conditions
are taken as S(0) = 3, I (0) = 95, R(0) = 1 and A(0) = 1. The numerical outcomes
for different kind of computer populations are present through Figs. 1, 2, 3 and 4.
Figure 1 presents the impact of order of AB fractional operator on the group of non-
infected computerswith the possibility of infection. Figure 2 demonstrates the impact

Fig. 1 Nature of S(τ ) with respect to τ for distinct orders of AB fractional derivative
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Fig. 2 Nature of I (τ ) with respect to τ for distinct orders of AB fractional derivative

of order of AB fractional operator on the group of infected computers. Figure 3
presents the influence of order of AB fractional operator on the class of removed
ones due to the infection or not. Figure 4 presents the effect of order of AB fractional
derivative on non-infected computers associated with anti-virus. It can be noticed
from Figs. 1, 2, 3 and 4 that there is a significant impact of order of AB fractional
operator on different kind of populations of computers due toMittag–Lefflermemory.

7 Concluding Remarks, Observations and Suggestions

In this work, the FMEM for computer viruses is studied involving Mittag–Leffler
memory effects. The existence and uniqueness of the solution of FMEMfor computer
viruses are examined. The solution of the FMEM for computer viruses is obtained
with the aid of q-HATM. To demonstrate the effects of Mittag–Leffler memory on
different groups of computer, some numerical simulations are conducted. The numer-
ical outcomes give very clear indications that the use of AB fractional derivative in
mathematical modeling of computer viruses is very fruitful, and the q-HATM is a
very accurate and easy approach for solving such type of fractional models.
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Fig. 3 Nature of R(τ ) with respect to τ for distinct orders of AB fractional derivative
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Fig. 4 Nature of A(τ ) with respect to τ for distinct orders of AB fractional derivative
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