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Preface

This book is targeted to graduate students, teachers and researchers interested in
various mathematical models associated with health, social and applied sciences.
The readers should find several useful tools and techniques necessary to develop
mathematical models and also various ways to solve them. The interpretation of the
findings should help readers to understand better the several issues associated with
health, social and applied sciences. The book consists of 10 chapters as follows:

The chapter on “Viral Immunology: Modeling and Analysis” aims to model and
analyse the interactions between viruses and immune system by proposing two
mathematical models that describe the role of adaptive immune response in
infectious diseases caused by viruses such as the human immunodeficiency virus,
hepatitis B virus and hepatitis C virus. The first model is based on delay differential
equations and the second on partial differential equations. The models integrate the
two main modes of virus propagation, namely virus-to-cell infection and direct
cell-to-cell transmission. The dynamical behaviours of the models were further
examined by five threshold parameters, and the biological aspects of the analytical
results were also presented.

The chapter on “Modeling the Stochastic Dynamics of Influenza Epidemics with
Vaccination Control, and theMaximumLikelihood Estimation ofModel Parameters”
discusses a family of stochastic models for the dynamics of influenza in a closed
human population. It considers treatment for the disease in the form of vaccination
and incorporates the periods of effectiveness of the vaccine and infectiousness for
individuals in the population. The method of maximum likelihood and expectation–
maximization algorithm has been applied in finding estimates for the parameters.
Estimators for some special epidemiological control parameters, such as the basic
reproduction number, are also computed. Further, a numerical simulation example
has been incorporated to find the maximum likelihood estimators of the parameters
of the model.

The chapter on “A Two-Dimensional Dynamical System for Local Transmission
of Dengue with Time Invariant Mosquito Density” discusses a mathematical model
describing the transmission of dengue. The critical parameters of the model
equations are determined by the climate variation and techniques to model the
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parameters are developed considering their uncertainty behaviour. The stability
analysis of the model is carried out, and the model equations are numerically solved
by using time-invariant parameters. Further, the simulated dengue infections are
validated with the actual cases in Colombo, Sri Lanka.

The chapter on “A Mathematical Study of a Model for HPV with Two High-
Risk Strains” aims to design a new two-sex deterministic model for two strains
(HPV type-16/18 and type-31/45) of HPV infection and analyse for gaining insights
into its transmission dynamics. The model is claimed to exhibit the phenomenon of
backward bifurcation, where a stable disease-free equilibrium coexists with one or
more stable endemic equilibria when the associated reproduction number is less
than unity. It is further claimed that the backward bifurcation phenomenon is caused
due to the imperfect vaccine as well as the re-infection of individuals who recover
naturally from previous infection with the same strain of the disease. Numerical
simulations of the model are also carried out, which reveal that increasing the
fraction of vaccinated females against strain 1 (HPV type-16/18) infection can
significantly bring down the burden of strain 2 (HPV type-31/45) infection.

The chapter on “The Impact of Fractional Differentiation in Terms of Fitting for
a Prostate Cancer Model Under Intermittent Androgen Suppression Therapy” aims
to introduce fractional calculus as a prospective mathematical tool for cancer
dynamics and for prostate cancer modelling, in particular. It first attempts to handle
the problem on the role of androgens for prostate cancer development. Based on the
hypothesis of authors, a new mathematical model consisting of conventional
logistic growth phenomena has been constructed. Another prospective model based
on an ecological phenomenon, cell quota, has also been developed. It compared
both the models demonstrating the mean squared error values for androgen- and
prostate-specific antigen for the first 1.5 cycles of intermittent androgen suppression
therapy administered to 62 selected patients from Vancouver Prostate Center
(Vancouver, BC, Canada). It also generates the fractional version of the model to
reduce the mean squared error values and verified that fractional differentiation
provides nearly better data fitting for mathematical modelling.

The chapter on “Toward the Realization of the ‘Europe 2020’ Agenda for
Economic Growth in the European Union: An Empirical Analysis Based on Goal
Programming” proposes a weighted goal programming model that can be used to
determine the optimal allocation of labour in each economic sector in order to
minimize the deviation from the goals of four different criteria which model eco-
nomic, environmental, energetic and social objectives. The model was applied to
each country of the European Union and measured their performance with respect
to the Europe 2020 agenda. The model claimed to provide insights and policy
recommendations such as a better integration of the incoming workforce in a
context of increasing immigration flows, development of renewable sources of
energy and green sustained transformation of national economic environments.

The chapter on “On the Poincaré-Andronov-Melnikov Method for Modelling of
Grazing Periodic Solutions in Discontinuous Systems” aims to derive Melnikov-
like condition for the persistence of a periodic and grazing solution under auton-
omous perturbation for discontinuous systems. The grazing Poincaré map is derived
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to fulfil the purpose. Then, its fixed point is investigated to determine desired
solutions leading to Melnikov-like conditions. It was further emphasized to illus-
trate the theory by means of an example modelling the type of solutions discussed.

The chapter on “Modelling and Analysis of Predation System with Nonlocal and
Nonsingular Operator” aims to model a novel system of predation involving two
individuals or species which interact in a nonlinear fashion with the Atangana–
Baleanu fractional derivative of order 0 < c < 1 in the sense of Caputo. This
derivative has been used to model some important real-life phenomena such as heat
flow, fractals, diffusion and groundwater flows, among many others. The local and
global stability analysis of such model is given to accurately provide a good choice
of parameters when numerically simulating the full process. Relevant numerical
results for different instances of fractional power are also discussed in this chapter.

The chapter on “New Aspects of Fractional Epidemiological Model for Computer
Viruses with Mittag–Leffler Law” aims to examine a fractional epidemiological
model with strong memory effects. It uses a fractional derivative with Mittag-Leffler
type kernel to moderate the epidemiological model in order to interpret the spreading
and controlling of computer viruses. The solution to the mathematical model has
been obtained by using q-HATM, a numerical algorithm used for solving epi-
demiological model of arbitrary order for computer viruses associated with the
Mittag-Leffler type kernel. The existence and uniqueness of the solution are
examined by employing the fixed point theory. Further, numerical simulations are
carried out for demonstrating the results.

The chapter on “Numerical Simulation of Nonlinear Ecological Models with
Nonlocal and Nonsingular Fractional Derivative” aims to focus on both non-spatial
and spatially extended predator–prey systems whose dynamics are described by the
Holling type-IV functional responses. It replaces the classical time derivative in
such models by the Atangana–Baleanu fractional derivative with nonlocal and
nonsingular properties. It claimed to formulate a two-step scheme based on the
fractional Adams–Bashforth method for approximating this derivative. A brief
linear stability analysis has been presented for the non-diffusive system and
reported the Hopf and Turing bifurcation analysis for the spatial case. Further,
numerical experiments are carried out to obtain range pattern results for different
parameter values of a in (0, 1] as well as numerical simulation to justify the
difference between integer and non-integer order results.

I am grateful to the contributors for their timely contribution and cooperation
during the entire process of reviewing and editing the chapters. The reviewers
deserve sincere gratitude for voluntarily offering their service for the success of the
book. The editor and staff at Springer also deserve special thanks for their coop-
eration. I would like to acknowledge the encouragement of several friends and
well-wishers for bringing out such a book.

Guwahati, India
November 2019

Hemen Dutta
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Viral Immunology: Modeling
and Analysis

Khalid Hattaf

1 Introduction

Immunity is a complex system that plays a vital role in the defense against infectious
agents. It is comprised of two branches, the innate and adaptive immune responses.
The innate immune response is the first line of defense against antigen which is
rapid in response but non-specific. However, the adaptive immune response starts to
work after the antigen has breached the innate or natural defense barrier. It is well
known that the humoral and cellular immune responses are two fundamental types of
adaptive immune response. The humoral immune response is mediated by antibodies
that are produced by B-cells and are programmed to neutralize the pathogen, while
the cellular immune response is carried out by cytotoxic T lymphocyte (CTL) cells
to attack the infected cells.

Modeling the role of adaptive immune response in viral infections such as HIV,
HBVandHCVhas been studied in several researches. In 2003,Wodarz [1] introduced
a mathematical model governed by five ordinary differential equations (ODEs) to
investigate the role of CTL and antibody responses in HCV dynamics and pathology.
The mathematical analysis of this model was studied in [2]. From this analysis, the
authors have observed that the basic reproduction number of [1] is proportional to
the total number of liver cells. This implies that an individual with a smaller liver
may be more resistant to the HCV infection than an individual with a larger one.
So, the model of [1] cannot be a reasonable model to describe the dynamics of
HCV infection. This problem has been corrected in [3] by replacing the mass action
process with a standard incidence function in order to model the role of adaptive
immune response in HBV infection. In 2016, Hattaf and Yousfi [4] proposed a class
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2 K. Hattaf

of delayed viral infection models with general incidence rate and adaptive immune
response in order to extend the above models and the other ones presented in [5–9].

All the immunological models mentioned above considered only the classical
mode of transmission that is virus-to-cell infection. However, viruses spread in the
human body through two different ways, one by virus-to-cell infection and the other
by cell-to-cell transmission via direct contact. It is shown that cell-to-cell transmis-
sion is the predominant mode of HIV spread and helps to explain why this virus
replicates so efficiently in lymphoid organs [10]. Also, cell-to-cell viral transmission
is a rapid and potent phenomenon [11, 12]. Motivated by these biological consider-
ations, we propose the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dU
dt = λ − dU (t) − f

(
U (t), I(t), V (t)

)
V (t) − g

(
U (t), I(t)

)
I(t),

dI
dt = ∫ ∞

0 f1(τ )e−α1τ [f (U (t − τ ), I(t − τ ), V (t − τ )
)
V (t − τ )

+g
(
U (t − τ ), I(t − τ )

)
I(t − τ )]dτ − aI(t) − pI(t)Z(t),

dV
dt = k

∫ ∞
0 f2(τ )e−α2τ I(t − τ )dτ − μV (t) − qV (t)W (t),

dW
dt = rV (t)W (t) − hW (t),
dZ
dt = cI(t)Z(t) − bZ(t),

(1)

where U (t), I(t), V (t), W (t) and Z(t) are, respectively, the densities of uninfected
cells, infected cells, free virus, antibodies andCTLcells at time t. The uninfected cells
are generated at a constant rate λ, die at rate dU and become infected by contact with
free virus at rate f (U, I , V )V and by contact with infected cells at rate g(U, I)I . The
positive constants a, h and b are the death rates of infected cells, antibodies and CTL
cells. However, μ denotes the clearance rate of free virus. The virions are neutralized
by antibodies at rate qVW , while the infected cells are killed by CTL cells at rate
pIZ . The parameters k, r and c represent the birth rates of virus, antibodies and CTL
cells, respectively. In addition, we assume that the free virus or infected cell contacts
an uninfected cell at time t − τ and the cell becomes infected at time t, where τ
is a random variable taken from a probability distribution f1(τ ) and e−α1τ accounts
for survival probability of infected but not yet virus-producing cells. Similarly, we
assume that the time necessary for the newly produced virions to become mature
and infectious is a random variable with a probability distribution f2(τ ). The survival
probability of immature virions is given by e−α2τ , and the probability distribution
functions are assumed to be nonnegative and

∫ ∞
0 f1(τ )dτ = ∫ ∞

0 f2(τ )dτ = 1.
The first purpose of this study is to analyze the global dynamics ofmodel (1)which

extends and generalizes many cases existing in the literature such as the models with
only cellular immune response [13–19], with only humoral immune response [20–
27] and with both cellular and humoral immune responses [1, 3–9, 28].

Modeling with PDEs allows to describe the evolution in time and space of viral
infections. Hence, the second purpose of this work is to introduce the spatial depen-
dence into model (1). This model becomes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= λ − dU (x, t) − f

(
U (x, t), I(x, t), V (x, t)

)
V (x, t)

−g
(
U (x, t), I(x, t)

)
I(x, t),

∂I

∂t
= ∫ ∞

0 f1(τ )e−α1τ [f (U (x, t − τ ), I(x, t − τ ), V (x, t − τ )
)
V (x, t − τ )

+g
(
U (x, t − τ ), I(x, t − τ )

)
I(x, t − τ )]dτ − aI(x, t) − pI(x, t)Z(x, t),

∂V

∂t
= dV�V + k

∫ ∞
0 f2(τ )e−α2τ I(x, t − τ )dτ − μV (x, t) − qV (x, t)W (x, t),

∂W

∂t
= rV (x, t)W (x, t) − hW (x, t),

∂Z

∂t
= cI(x, t)Z(x, t) − bZ(x, t),

(2)

where U (x, t), I(x, t), V (x, t), W (x, t) and Z(x, t) are the densities of uninfected
cells, infected cells, free virus, antibodies and CTL cells at position x and time t,
respectively. dV is the diffusion coefficient and� is the Laplacian operator. The other
parameters have the same biological meanings as those in model (1).

For both models (1) and (2), the incidence functions f (U, I , V ) and g(U, I) are
assumed to be continuously differentiable and satisfy the following hypotheses:

(H0) g(0,I)=0, for all I ≥ 0;
∂g

∂U
(U, I) ≥ 0

(
or g(U, I) is a strictly monotone

increasing function with respect toU when f ≡ 0
)
and

∂g

∂I
(U, I) ≤ 0, for all

U ≥ 0 and I ≥ 0.
(H1) f (0, I , V ) = 0, for all I ≥ 0 and V ≥ 0,
(H2) f (U, I , V ) is a strictly monotone increasing function with respect to U

(
or

∂f

∂U
(U, I , V ) ≥ 0 when g(U, I) is a strictly monotone increasing function

with respect to U
)
, for any fixed I ≥ 0 and V ≥ 0,

(H3) f (U, I , V ) is a monotone decreasing function with respect to I and V .

The organization of this chapter is as follows. The next section dealswith themath-
ematical analysis of the generalized DDEmodel including well-posedness, threshold
parameters and global stability of equilibria. Section 3 is devoted to the analysis of
the generalized PDEmodel. An application of the analytical results to HIV infection
is given in Sect. 4. The biological and mathematical conclusions are presented in the
last section.

2 Analysis of the Generalized DDE Model

In this section, we first establish the well-posedness of the DDE model (1) and the
threshold parameters for the existence of equilibria. After, we focus on the global
stability on these equilibria.
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2.1 Well-Posedness and Threshold Parameters

For the nonnegativity of solutions, we consider model (1) under the following initial
conditions:

U (θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, V (θ) = φ3(θ) ≥ 0,
W (θ) = φ4(θ) ≥ 0, Z(θ) = φ5(θ) ≥ 0, θ ∈ (−∞, 0]. (3)

For the existence of solutions, we need the following Banach space:

Cα =
{

ϕ ∈ C((−∞, 0], IR5
+) : ϕ(θ)eαθ is uniformly continuous

on (−∞, 0] and ‖ϕ‖ = sup
θ≤0

|ϕ(θ)|eαθ < ∞
}

,

where α is a positive constant and IR5
+ = {(x1, ..., x5) : xi ≥ 0, i = 1, ..., 5}.

Theorem 2.1 For any initial conditionφ = (φ1,φ2,φ3,φ4,φ5) ∈ Cα satisfying (3),
the DDE model (1) has a unique solution defined on [0,+∞). Also, this solution
remains nonnegative and bounded for all t ≥ 0.

Proof. From the standard theory of functional differential equations [29–31], the
DDE model (1) with initial condition φ ∈ Cα has a unique local solution on its
maximal interval of existence [0, tmax).

First, we show thatU (t) > 0 for all t ∈ [0, tmax). On the contrary, let t1 > 0 be the
first time such that U (t1) = 0 and dU (t1)

dt ≤ 0. According to the first equation of (1),
we have dU (t1)

dt = λ > 0 which is a contradiction. Then,U (t) > 0 for all t ∈ [0, tmax).
From (1), we obtain

I(t) = φ2(0)e
− ∫ t

0 (a+pZ(θ))dθ

+
∫ t

0
e−

∫ t
ξ (a+pZ(θ))dθ

∫ ∞
0

f1(τ )e−α1τ [f (U (ξ − τ ), I(ξ − τ ), V (ξ − τ )
)
V (ξ − τ )

+g
(
U (ξ − τ ), I(ξ − τ ))

)
I(ξ − τ )]dτdξ,

V (t) = φ3(0)e
− ∫ t

0 (μ+qW (θ))dθ + k
∫ t

0
e−

∫ t
ξ (μ+qW (θ))dθ

∫ ∞
0

f2(τ )e−α2τ I(ξ − τ )dτdξ,

W (t) = φ4(0)e
∫ t
0 (rV (θ)−h)dθ,

Z(t) = φ5(0)e
∫ t
0 (cI(θ)−b)dθ.

Hence, I(t) ≥ 0, V (t) ≥ 0, W (t) ≥ 0 and Z(t) ≥ 0, for all t ∈ [0, tmax).
Now, we prove the boundedness of the solution. The first equation of (1) gives

dU
dt ≤ λ − dU (t). Then,

lim sup
t→+∞

U (t) ≤ λ

d
, (4)
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which implies that U (t) is bounded. Denote

F1(t) = I(t) + p

c
Z(t) +

∫ ∞

0
f1(τ )e−α1τU (t − τ )dτ .

Then,

dF1(t)

dt
= λ

∫ ∞

0
f1(τ )e−α1τdτ − d

∫ ∞

0
f1(τ )e−α1τU (t − τ )dτ − aI(t) − pb

c
Z(t)

≤ λη1 − ρ1F1(t),

where ρ1 = min{a, b, d} and

ηi =
∫ ∞

0
fi(τ )e−αiτdτ , i = 1, 2. (5)

Hence, G1(t) ≤ max{F1(0),
λη1

ρ1
}, implying that I(t) and Z(t) are bounded. Let

F2(t) = V (t) + q

r
W (t).

Then,

dF2(t)

dt
= k

∫ ∞

0
f2(τ )e−α2τ I(t − τ )dτ − μV (t) − hq

r
W (t)

≤ k�η2 − ρ2F2(t),

where � = max{F1(0),
λη1

ρ1
} and ρ2 = min{μ, h}. So, F2(t) ≤ max{F2(0),

k�η2

ρ2
}

which implies that G2(t) is bounded and so are V (t) and W (t). From the above,
we have proved that all sate variables of (1) are bounded. Therefore, tmax = +∞,
and the proof is completed. �

In addition to (3), if we assume that φi(0) > 0 for all i = 1, ..., 5, then we have
the following result.

Remark 2.2 If φ ∈ Cα satisfying (3) with φi(0) > 0, then the solution of model (1)
with initial condition φ remains positive and bounded for all t ≥ 0.

On the other hand, model (1) has always a unique infection-free equilibrium

E0(U0, 0, 0, 0, 0), where U0 = λ

d
. Then, we define the first threshold parameter

which is called the basic reproduction number as follows

R0 = kη1η2f (
λ
d , 0, 0) + μη1g( λ

d , 0)

aμ
. (6)
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From the biological point of view, the threshold parameterR0 describes the average
number of secondary infections produced by one infected cell at the beginning of
infection.

The other arbitrary equilibria of model (1) satisfy the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ − dU − f (U, I , V )V − g(U, I)I = 0,
η1

(
f (U, I , V )V + g(U, I)I

) − aI − pIZ = 0,
kη2I − μV − qVW = 0,
rVW − hW = 0,
cIZ − bZ = 0.

(7)

The last two equations of (7) lead to W = 0 or V = h

r
, and Z = 0 or I = b

c
.

Let us first consider W = 0 and Z = 0, then V = kη1η2(λ − dU )

aμ
and

kη1η2f
(
U,

η1(λ − dU )

a
,
kη1η2(λ − dU )

aμ

) + μη1g
(
U,

η1(λ − dU )

a

) = aμ.

Since I = η1(λ − dU )

a
≥ 0, we have U ≤ λ

d
. Then, there is no equilibrium if U >

λ

d
. In this case, we define a function ψ1 on [0, λ

d ] as follows

ψ1(U ) = kη1η2f
(
U,

η1(λ − dU )

a
,
kη1η2(λ − dU )

aμ

) + μη1g
(
U,

η1(λ − dU )

a

) − aμ.

By (H0)-(H3), we have ψ1(0) = −aμ < 0, ψ1(
λ

d
) = aμ(R0 − 1) and

ψ′
1(U ) = kη1η2

(
∂f

∂U
− dη1

a

∂f

∂I
− kdη1η2

aμ

∂f

∂V

)

+ μη1

(
∂g

∂U
− dη1

a

∂g

∂I

)

> 0.

When R0 > 1, there exists a unique U1 ∈ (0,
λ

d
) such as ψ1(U1) = 0. So, model

(1) has a unique infection equilibrium without immunity E1(U1, I1, V1, 0, 0), where

I1 = η1(λ − dU1)

a
and V1 = kη1η2(λ − dU1)

aμ
.

When W �= 0 and Z = 0, we have V = h

r
and

ahf
(
U,

η1(λ − dU )

a
,
h

r

) + rη1(λ − dU )g
(
U,

η1(λ − dU )

a

) = ar(λ − dU ).
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It follows fromW = krη1η2(λ − dU ) − ahμ

ahq
≥ 0 thatU ≤ λ

d
− ahμ

dkrη1η2
. So, define

a function ψ2 on the closed interval [0, λ

d
− ahμ

dkrη1η2
] as follows

ψ2(U ) = ahf
(
U,

η1(λ − dU )

a
,
h

r

) + rη1(λ − dU )g
(
U,

η1(λ − dU )

a

) − ar(λ − dU ).

We have ψ2(0) = −arλ < 0 and

ψ′
2(U ) = ah

(
∂f

∂U
− dη1

a

∂f

∂I

)

+ rd

(

a − η1g
(
U,

η1(λ − dU )

a

)
)

+ rη1(λ − dU )

(
∂g

∂U
− dη1

a

∂g

∂I

)

> 0.

When the humoral immunity has not been established, we have rV1 − h ≤ 0. Then,
we define the reproduction number for humoral immunity as

RW
1 = rV1

h
, (8)

which implies that rV1 − h ≤ 0 is equivalent toRW
1 ≤ 1.

IfRW
1 < 1, then V1 <

h

r
, U1 >

λ

d
− ahμ

dkrη1η2
and

ψ2
(λ

d
− ahμ

dkrη1η2

) = ah

kη1η2
ψ1

(λ

d
− ahμ

dkrη1η2

)
<

ah

kη1η2
ψ1(U1) = 0.

So, there is no positive equilibrium if RW
1 < 1.

When RW
1 > 1, we have V1 >

h

r
, U1 <

λ

d
− ahμ

dkrη1η2
and ψ2(

λ

d
− ahμ

dkrη1η2
) > 0.

Hence, ifRW
1 > 1, model (1) has a unique infection equilibrium with only humoral

immunity E2(U2, I2, V2,W2, 0), whereU2 ∈ (0,
λ

d
− ahμ

dkrη1η2
), I2 = η1(λ − dU2)

a
,

V2 = h

r
and W2 = krη1η2(λ − dU2) − ahμ

ahq
.

When W = 0 and Z �= 0, we have I = b

c
, V = kbη2

cμ
and

kη2f
(
U,

b

c
,
kbη2
cμ

) + μg
(
U,

b

c

) = cμ

b
(λ − dU ).



8 K. Hattaf

By Z = cη1(λ − dU ) − ab

pb
≥ 0, we have U ≤ λ

d
− ab

dcη1
. So, there is no equi-

librium if U >
λ

d
− ab

dcη1
or

λ

d
− ab

dcη1
≤ 0. Consider a function ψ3 defined on

[0, λ
d − ab

dcη1
] by

ψ3(U ) = kη2f
(
U,

b

c
,
kbη2
cμ

) + μg
(
U,

b

c

) − cμ

b
(λ − dU ).

When the cellular immunity has not been established, we have cI1 − b ≤ 0. Then,
we define the reproduction number for cellular immunity as

RZ
1 = cI1

b
. (9)

IfRZ
1 < 1, then I1 <

b

c
, U1 >

λ

d
− ab

dcη1
and

ψ3(
λ

d
− ab

dcη1
) = 1

η1
ψ1(

λ

d
− ab

dcη1
) <

1

η1
ψ1(U1) = 0.

So, there is no biological equilibrium ifRZ
1 < 1.

When RZ
1 > 1, we have I1 >

b

c
, U1 <

λ

d
− ab

dcη1
and ψ3(

λ

d
− ab

dcη1
) > 0. Thus,

if RZ
1 > 1, model (1) has a unique infection equilibrium with only cellular immu-

nity E3(U3, I3, V3, 0,Z3), whereU3 ∈ (0,
λ

d
− ab

dcη1
), I3 = b

c
, V3 = kbη2

μc
and Z3 =

cη1(λ − dU3) − ab

pb
.

Finally, when W �= 0 and Z �= 0, we have I = b

c
and V = h

r
and

chf
(
U,

b

c
,
h

r

) + rbg
(
U,

b

c

) = rc(λ − dU ).

By Z = cη1(λ − dU ) − ab

pb
≥ 0, we have U ≤ λ

d
− ab

dcη1
. Then, there is no equi-

librium if U >
λ

d
− ab

dcη1
or

λ

d
− ab

dcη1
≤ 0. Define the function ψ4 on the interval

[0, λ
d − ab

dcη1
] by

ψ4(U ) = chf
(
U,

b

c
,
h

r

) + rbg
(
U,

b

c

) − rc(λ − dU ).
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We have ψ4(0) = −rcλ < 0 and

ψ′
4(U ) = ch

∂f

∂U
+ rb

∂g

∂U
+ rcd > 0.

In this last case, we define the reproduction number for cellular immunity in com-
petition as

RZ
2 = cI2

b
. (10)

IfRZ
2 < 1, then I2 <

b

c
, U2 >

λ

d
− ab

dcη1
and

ψ4(
λ

d
− ab

dcη1
) = c

a
ψ2(

λ

d
− ab

dcη1
) <

c

a
ψ2(U2) = 0.

Thus, there is no biological equilibrium when RZ
2 < 1.

If RZ
2 > 1, then I2 >

b

c
, U2 <

λ

d
− ab

dcη1
and ψ4(

λ

d
− ab

dcη1
) > 0. So, there exists

a unique U4 ∈ (0,
λ

d
− ab

dcη1
) such that ψ4(U4) = 0. From the third equation of (7),

we get

W4 = μ

q
(RW

3 − 1),

whereRW
3 is the reproduction number for humoral immunity in competition defined

as

RW
3 = rV3

h
. (11)

Therefore, ifRZ
2 > 1 andRW

3 > 1,model (1) has a unique infection equilibriumwith
both humoral and cellular immune responses E4(U4, I4, V4,W4,Z4), where U4 ∈
(0,

λ

d
− ab

dcη1
), I4 = b

c
, V4 = h

r
, W4 = μ

q (RW
3 − 1) and Z4 = cη1(λ − dU4) − ab

pb
.

Consequently, we get the following theorem.

Theorem 2.3

(i) IfR0 ≤ 1, then model (1) always has one infection-free equilibrium E0(U0, 0,

0, 0, 0), where U0 = λ

d
.

(ii) If R0 > 1, then model (1) has an infection equilibrium without immu-

nity E1(U1, I1, V1, 0, 0), where U1 ∈ (0,
λ

d
), I1 = η1(λ − dU1)

a
and V1 =

kη1η2(λ − dU1)

aμ
.
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(iii) If RW
1 > 1, then model (1) has an infection equilibrium with only humoral

immunity E2(U2, I2, V2,W2, 0), where U2 ∈ (0,
λ

d
− ahμ

dkrη1η2
), I2 =

η1(λ − dU2)

a
, V2 = h

r
and W2 = krη1η2(λ − dU2) − ahμ

ahq
.

(iv) If RZ
1 > 1, then model (1) has an infection equilibrium with only cellu-

lar immunity E3(U3, I3, V3, 0,Z3), where U3 ∈ (0,
λ

d
− ab

dcη1
), I3 = b

c
, V3 =

kbη2
μc

and Z3 = cη1(λ − dU3) − ab

pb
.

(v) If RZ
2 > 1 and RW

3 > 1, then model (1) has an infection equilibrium
with both humoral and cellular immune responses E4(U4, I4, V4,W4,Z4),

where U4 ∈ (0,
λ

d
− ab

dcη1
), I4 = b

c
, V4 = h

r
, W4 = μ

q (RW
3 − 1) and Z4 =

cη1(λ − dU4) − ab

pb
.

On the other hand, it is very important to note that

RW
3 = RW

1

RZ
1

= rkbη2
hμc

, W2 = μ

q
(RZ

2RW
3 − 1) and RW

3 >
1

RZ
2

. (12)

2.2 Global Dynamics

This subsection focuses on the global stability of the five equilibria of model (1) by
means of Lyapunov functionals. First, we have the following result.

Theorem 2.4 The infection-free equilibrium E0 of model (1) is globally asymptoti-
cally stable ifR0 ≤ 1.

Proof. To investigate the global dynamics of (1) whenR0 ≤ 1, we construct a Lya-
punov functional as follows

L0(t) = 1

η1
I(t) + β1U0

μ
V (t) + qf (U0, 0, 0)

rμ
W (t) + p

cη1
Z(t)

+ 1

η1

∫ ∞
0

f1(τ )e−α1τ
∫ t

t−τ

[
f
(
U (θ), I(θ), V (θ)

)
V (θ) + g

(
U (θ), I(θ)

)
I(θ)

]
dθdτ

+ kf (U0, 0, 0)

μ

∫ ∞
0

f2(τ )e−α2τ
∫ t

t−τ
I(θ)dθdτ ,

For simplicity, denoteϕ = ϕ(t) andϕτ = ϕ(t − τ ) for anyϕ ∈ {U, I , V,W,Z}. The
time derivative of L0 along the solution of model (1) is
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dL0
dt

=
(

f (U, I , V ) − f (U0, 0, 0)

)

V + a

η1
I

(
kη1η2f (U0, 0, 0) + μη1g(U, I)

aμ
− 1

)

−qhf (U0, 0, 0)

rμ
W − pb

cη1
Z .

By (4), we have lim sup
t→+∞

U (t) ≤ U0. Then, all omega limit points verify U (t) ≤ U0.

So, it is sufficient to consider solutions for which U (t) ≤ U0. According to (6) and
(H0)–(H3), we have

dL0
dt

≤
(

f (U, I , V ) − f (U0, 0, 0)

)

V + a

η1

(R0 − 1
)
I − qhf (U0, 0, 0)

rμ
W − pb

cη1
Z

≤ a

η1

(R0 − 1
)
I − qhf (U0, 0, 0)

rμ
W − pb

cη1
Z .

Since R0 ≤ 1, we have
dL0
dt

≤ 0. Clearly, the largest compact invariant set in

{(U, I , V,W,Z)|dL0
dt

= 0} is {E0}. From LaSalle’s invariance principle [32], we

deduce that E0 is globally asymptotically stable ifR0 ≤ 1. �

When R0 > 1, we assume that the incidence functions f and g satisfy for each
infection equilibrium Ei (1 ≤ i ≤ 4), the following hypothesis

(

1 − f (U, I , V )

f (U, Ii, Vi)

)(
f (U, Ii, Vi)

f (U, I , V )
− V

Vi

)

≤ 0,
(

1 − f (Ui, Ii, Vi)g(U, I)

f (U, Ii, Vi)g(Ui, Ii)

)(
f (U, Ii, Vi)g(Ui, Ii)

f (Ui, Ii, Vi)g(U, I)
− I

Ii

)

≤ 0.
(H4)

Theorem 2.5 Suppose that R0 > 1 and (H4) holds for each Ei.

(i) The infection equilibriumwithout immunity E1 of model (1) is globally asymp-
totically stable when RW

1 ≤ 1 and RZ
1 ≤ 1.

(ii) The infection equilibrium with only humoral immunity E2 of model (1) is
globally asymptotically stable when RW

1 > 1 and RZ
2 ≤ 1.

(iii) The infection equilibrium with only cellular immunity E3 of model (1) is glob-
ally asymptotically stable when RZ

1 > 1 and RW
3 ≤ 1.

(iv) The infection equilibrium with both humoral and cellular immune responses
E4 of model (1) is globally asymptotically stable whenRZ

2 > 1 andRW
3 > 1.
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Proof. For (i), we consider the following Lyapunov functional

L1(t) = U −U1 −
∫ U

U1

f (U1, I1, V1)

f (X , I1, V1)
dX + 1

η1
I1�

(
I

I1

)

+ f (U1, I1, V1)V1
kη2I1

V1�

(
V

V1

)

+ qf (U1, I1, V1)V1
rkη2I1

W + p

cη1
Z

+ 1

η1
f (U1, I1, V1)V1

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ
�

(
f
(
U (θ), I(θ), V (θ)

)
V (θ)

f (U1, I1, V1)V1

)

dθdτ

+ 1

η1
g(U1, I1)I1

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ
�

(
g
(
U (θ), I(θ)

)
I(θ)

g(U1, I1)I1

)

dθdτ

+ 1

η2
f (U1, I1, V1)V1

∫ ∞

0
f2(τ )e−α2τ

∫ t

t−τ
�

(
I(θ)

I1

)

dθdτ?

where �(ξ) = ξ − 1 − ln ξ, ξ > 0. By taking the time derivative of L1 along the
solution of model (1) and using λ = dU1 + f (U1, I1, V1)V1 + g(U1, I1)I1 = dU1 +
a

η1
I1 and kη2I1 = μV1, we get

dL1
dt

= dU1

(

1 − U

U1

)(

1 − f (U1, I1, V1)

f (U, I1, V1)

)

+ qhf (U1, I1, V1)V1
rkη2I1

(RW
1 − 1)W

+ pb

cη1
(RZ

1 − 1)Z + f (U1, I1, V1)V1

(

− 1 − V

V1
+ f (U, I1, V1)

f (U, I , V )
+ f (U, I , V )V

f (U, I1, V1)V1

)

+g(U1, I1)I1

(

− 1 − I

I1
+ f (U, I1, V1)g(U1, I1)

f (U1, I1, V1)g(U, I)
+ f (U1, I1, V1)g(U, I)I

f (U, I1, V1)g(U1, I1)I1

)

− 1

η1
f (U1, I1, V1)V1

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U1, I1, V1)

f (U, I1, V1)

)

+ �

(
f (Uτ , Iτ , Vτ )Vτ I1
f (U1, I1, V1)V1I

)

+�

(
f (U, I1, V1)

f (U, I , V )

)]

dτ − 1

η1
g(U1, I1)I1

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U1, I1, V1)

f (U, I1, V1)

)

+�

(
g(Uτ , Iτ )Iτ
g(U1, I1)I

)

+ �

(
f (U, I1, V1)g(U1, I1)

f (U1, I1, V1)g(U, I)

)]

dτ

− 1

η2
f (U1, I1, V1)V1

∫ ∞

0
f2(τ )e−α2τ�

(
V1Iτ
V I1

)

dτ .

According to (H2), we have

(

1 − U

Ui

)(

1 − f (Ui, Ii, Vi)

f (U, Ii, Vi)

)

≤ 0, for i=1,2,3,4. (13)

By (H4), we also have

−1 − V

Vi
+ f (U, Ii, Vi)

f (U, I , V )
+ f (U, I , V )V

f (U, Ii, Vi)Vi
=

(

1 − f (U, I , V )

f (U, Ii, Vi)

)(
f (U, Ii, Vi)

f (U, I , V )
− V

Vi

)

≤ 0,

(14)
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and

−1 − I

I1
+ f (U, Ii, Vi)g(Ui, Ii)

f (Ui, Ii, Vi)g(U, I)
+ f (Ui, Ii, Vi)g(U, I)I

f (U, Ii, Vi)g(Ui, Ii)Ii

=
(

1 − f (Ui, Ii, Vi)g(U, I)

f (U, Ii, Vi)g(Ti, Ii)

)(
f (U, Ii, Vi)g(Ui, Ii)

f (Ui, Ii, Vi)g(U, I)
− I

Ii

)

≤ 0.
(15)

Thus,
dL1
dt

≤ 0 if RW
1 ≤ 1 and RZ

1 ≤ 1. Further, we have
dL1
dt

= 0 if and only if

U = U1, I = I1, V = V1, W = 0 and Z = 0. It follows from LaSalle’s invariance
principle that E1 is globally asymptotically stable when RW

1 ≤ 1 and RZ
1 ≤ 1.

For (ii), we consider the following Lyapunov functional

L2 = U −U2 −
∫ U

U2

f (U2, I2, V2)

f (X , I2, V2)
dX + 1

η1
I2�

(
I

I2

)

+ f (U2, I2, V2)V2

kη2I2
V2�

(
V

V2

)

+ qf (U2, I2, V2)V2

rkη2I2
W2�

(
W

W2

)

+ p

cη1
Z

+ 1

η1
f (U2, I2, V2)V2

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
f
(
U (θ), I(θ), V (θ)

)
V (θ)

f (U2, I2, V2)V2

)

dθdτ

+ 1

η1
g(U2, I2)I2

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
g
(
U (θ), I(θ)

)
I(θ)

g(U2, I2)I2

)

dθdτ

+ 1

η2
f (U2, I2, V2)V2

∫ ∞

0
f2(τ )e−α2τ

∫ t

t−τ

�

(
I(θ)

I2

)

dθdτ .

By λ = dU2 + f (T2, I2, V2)V2 + g(U2, I2)I2 = dU2 + a

η1
I2, V2 = h

r
and kη2I2 =

μV2 + qV2W2, we have

dL2
dt

= dU2

(

1 − U

U2

)(

1 − f (U2, I2, V2)

f (U, I2, V2)

)

+ pb

cη1
(RZ

2 − 1)Z

+f (U2, I2, V2)V2

(

− 1 − V

V2
+ f (U, I2, V2)

f (U, I , V )
+ f (U, I , V )V

f (U, I2, V2)V2

)

+g(U2, I2)I2

(

− 1 − I

I2
+ f (U, I2, V2)g(U2, I2)

f (U2, I2, V2)g(U, I)
+ f (U2, I2, V2)g(U, I)I

f (U, I2, V2)g(U2, I2)I2

)

− 1

η1
f (U2, I2, V2)V2

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U2, I2, V2)

f (U, I2, V2)

)

+ �

(
f (Uτ , Iτ , Vτ )Vτ I2
f (U2, I2, V2)V2I

)

+�

(
f (U, I2, V2)

f (U, I , V )

)]

dτ − 1

η1
g(U2, I2)I2

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U2, I2, V2)

f (U, I2, V2)

)

+�

(
g(Uτ , Iτ )Iτ
g(U1, I1)I

)

+ �

(
f (U, I2, V2)g(U2, I2)

f (U2, I2, V2)g(U, I)

)]

dτ

− 1

η2
f (U2, I2, V2)V2

∫ ∞

0
f2(τ )e−α2τ�

(
V2Iτ
V I2

)

dτ .
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Since RZ
2 ≤ 1 and by (13)–(15), we have

dL2
dt

≤ 0 with equality if and only if

U = U2, I = I2 and V = V2. From (1), we have dI
dt = 0 and dV

dt = 0 which implies
Z = 0 and W = W2. Hence, the singleton {E2} is the largest invariant subset of

{(U, I , V,W,Z)|dL2
dt

= 0}. From LaSalle’s invariance principle, we deduce that E2

is globally asymptotically stable and we get (ii).
For (iii), we consider the following Lyapunov functional

L3 = U −U3 −
∫ U

U3

f (U3, I3, V3)

f (X , I3, V3)
dX + 1

η1
I3�

(
I

I3

)

+ f (U3, I3, V3)V3

kη2I3
V3�

(
V

V3

)

+qf (U3, I3, V3)V3

rkη2I3
W + p

cη1
Z3�

(
Z

Z3

)

+ 1

η1
f (U3, I3, V3)V3

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
f
(
U (θ), I(θ), V (θ)

)
V (θ)

f (U3, I3, V3)V3

)

dθdτ

+ 1

η1
g(U3, I3)I3

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
g
(
U (θ), I(θ)

)
I(θ)

g(U3, I3)I3

)

dθdτ

+ 1

η2
f (U3, I3, V3)V3

∫ ∞

0
f2(τ )e−α2τ

∫ t

t−τ

�

(
I(θ)

I3

)

dθdτ .

By using λ = dU3 + f (U3, I3, V3)V3 + g(U3, I3)I3 = dU3 + a

η1
I3 + p

η1
I3Z3, I3 =

b

c
and kη2I3 = μV3, we can get

dL3
dt

= dU3

(

1 − U

U3

)(

1 − f (U3, I3, V3)

f (U, I3, V3)

)

+ qhf (U3, I3, V3)V3
rkη2I3

(RW
3 − 1)W

+f (U3, I3, V3)V3

(

− 1 − V

V3
+ f (U, I3, V3)

f (U, I , V )
+ f (U, I , V )V

f (U, I3, V3)V3

)

+g(U3, I3)I3

(

− 1 − I

I3
+ f (U, I3, V3)g(U3, I3)

f (U3, I3, V3)g(U, I)
+ f (U3, I3, V3)g(U, I)I

f (U, I3, V3)g(U3, I3)I3

)

− 1

η1
f (U3, I3, V3)V3

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U3, I3, V3)

f (U, I3, V3)

)

+ �

(
f (Uτ , Iτ , Vτ )Vτ I3
f (U3, I3, V3)V3I

)

+�

(
f (U, I3, V3)

f (U, I , V )

)]

dτ − 1

η1
g(U3, I3)I3

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U3, I3, V3)

f (U, I3, V3)

)

+�

(
g(Uτ , Iτ )Iτ
g(U3, I3)I

)

+ �

(
f (U, I3, V3)g(T3, I3)

f (U3, I3, V3)g(U, I)

)]

dτ

− 1

η2
f (U3, I3, V3)V3

∫ ∞

0
f2(τ )e−α2τ�

(
V3Iτ
V I3

)

dτ .
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Thus,
dL3
dt

≤ 0 with equality if and only ifU = U3, I = I3 and V = V3. Then dI
dt = 0

and dV
dt = 0 which leads to Z = Z3 andW = 0. Therefore, the global asymptotic sta-

bility of E3 is ensured by LaSalle’s invariance principle whenRZ
1 > 1 andRW

3 ≤ 1.
It finally remains to prove (iv). For this, we consider the following Lyapunov

functional

L4 = U −U4 −
∫ U

U4

f (U4, I4, V4)

f (X , I4, V4)
dX + 1

η1
I4�

(
I

I4

)

+ f (U4, I4, V4)V4

kη2I4
V4�

(
V

V4

)

+qf (U4, I4, V4)V4

rkη2I4
W4�

(
W

W4

)

+ p

cη1
Z4�

(
Z

Z4

)

+ 1

η1
f (U4, I4, V4)V4

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
f
(
U (θ), I(θ), V (θ)

)
V (θ)

f (U4, I4, V4)V4

)

dθdτ

+ 1

η1
g(U4, I4)I4

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

�

(
g
(
U (θ), I(θ)

)
I(θ)

g(U4, I4)I4

)

dθdτ

+ 1

η2
f (U4, I4, V4)V4

∫ ∞

0
f2(τ )e−α2τ

∫ t

t−τ

�

(
I(θ)

I4

)

dθdτ .

Since λ = dU4 + f (U4, I4, V4)V4 + g(U4, I4)I4 = dU4 + a

η1
I4 + p

η1
I4Z4, I4 = b

c
,

V4 = h

r
and kη2I4 = μV4 + qV4W4, we have

dL4
dt

= dU3

(

1 − U

U4

)(

1 − f (U4, I4, V4)

f (U, I4, V4)

)

+f (U4, I4, V4)V4

(

− 1 − V

V4
+ f (U, I4, V4)

f (U, I , V )
+ f (U, I , V )V

f (U, I4, V4)V4

)

+g(U4, I4)I4

(

− 1 − I

I4
+ f (U, I4, V4)g(U4, I4)

f (U4, I4, V4)g(U, I)
+ f (U4, I4, V4)g(U, I)I

f (U, I4, V4)g(U4, I4)I4

)

− 1

η1
f (U4, I4, V4)V4

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U4, I4, V4)

f (U, I4, V4)

)

+ �

(
f (Uτ , Iτ , Vτ )Vτ I4
f (U4, I4, V4)V4I

)

+�

(
f (U, I4, V4)

f (U, I , V )

)]

dτ − 1

η1
g(U4, I4)I4

∫ ∞

0
f1(τ )e−α1τ

[

�

(
f (U4, I4, V4)

f (U, I4, V4)

)

+�

(
g(Uτ , Iτ )Iτ
g(U4, I4)I

)

+ �

(
f (U, I4, V4)g(U4, I4)

f (U4, I4, V4)g(U, I)

)]

dτ

− 1

η2
f (U4, I4, V4)V4

∫ ∞

0
f2(τ )e−α2τ�

(
V4Iτ
V I4

)

dτ .

Therefore,
dL4
dt

≤ 0 with equality holds if and only if U = U4, I = I4 and V = V4.

Let

� =
{

(U, I , V,W,Z)|dL4
dt

= 0

}

.
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The second and third equations of (1) lead to

İ = η1[f (U4, I4, V4)V4 + g(U4, I4)I4] − aI4 − pI4Z = 0,

V̇ = kη2I4 − μV4 − qV4W = 0,

which implies that Z = Z4 and W = W4. So, the largest compact invariant set in �

is the singleton {E4}. Consequently, E4 is globally asymptotically stable. This ends
the proof of Theorem 2.5. �

From (12) and Theorem 2.5, it is not hard to get the following important remark.

Remark 2.6 Suppose that R0 > 1 and (H4) holds for each Ei.

1. If max(RW
1 ,RZ

1 ) ≤ 1, then model (1) converges to E1 without immunity.
2. If max(RW

1 ,RZ
1 ) > 1, two cases occur:

(i) When max(RW
1 ,RZ

1 ) = RZ
1 , the cellular immunity is dominant and model (1)

converges to E3 without humoral immunity.
(ii) When max(RW

1 ,RZ
1 ) = RW

1 , the humoral immunity is dominant and model (1)
converges to E2 ifRZ

2 ≤ 1, or to E4 ifRZ
2 > 1.

As in [28], we can define the over-domination of cellular immunitywhenRZ
2 > 1 and

RW
3 < 1 and the over-domination of humoral immunity whenRZ

2 > 1 andRW
3 > 1.

3 Analysis of the Generalized PDE Model

In this section, we analyze the dynamical behaviors of the generalized PDE model
(2) under initial conditions

U (x, θ) = φ1(x, θ) ≥ 0, I(x, θ) = φ2(x, θ) ≥ 0, V (x, θ) = φ3(x, θ) ≥ 0,
W (x, θ) = φ4(x, θ) ≥ 0, Z(x, θ) = φ5(x, θ) ≥ 0, (x, θ) ∈ �̄ × (−∞, 0],

(16)
and Neumann boundary condition

∂V

∂ν
= 0 on ∂� × (0,+∞), (17)

where � is a bounded domain in IRn with smooth boundary ∂�, and
∂

∂ν
is the

outward normal derivative on the boundary ∂�.
Obviously, E0(U0, 0, 0, 0, 0) is also an equilibrium point of model (2). So, we

have the following result.

Theorem 3.1 The infection-free equilibrium E0 of model (2) is globally asymptoti-
cally stable ifR0 ≤ 1.



Viral Immunology: Modeling and Analysis 17

Proof. By applying the method presented in [33], we construct the Lyapunov func-
tional for model (2) at E0 as follows

L0 =
∫

�

{
1

η1
I(x, t) + β1U0

μ
V (x, t) + qf (U0, 0, 0)

rμ
W (x, t) + p

cη1
Z(x, t)

+ 1

η1

∫ ∞

0
f1(τ )e−α1τ

∫ t

t−τ

[
f
(
U (x, θ), I(x, θ), V (x, θ)

)
V (x, θ)

+g
(
U (θ), I(x, θ)

)
I(x, θ)

]
dθdτ + kf (U0, 0, 0)

μ

∫ ∞

0
f2(τ )e−α2τ

∫ t

t−τ
I(x, θ)dθdτ

}

dx.

Denote � = �(x, t) and �τ = �(x, t − τ ) for any � ∈ {U, I , V,W,Z}. Then,
dL0

dt
=

∫

�

{(

f (U, I , V ) − f (U0, 0, 0)

)

V + a

η1
I

(
kη1η2f (U0, 0, 0) + μη1g(U, I)

aμ
− 1

)

−qhf (U0, 0, 0)

rμ
W − pb

cη1
Z

}

dx.

Thus,

dL0

dt
≤

∫

�

{
a

η1

(R0 − 1
)
I − qhf (U0, 0, 0)

rμ
W − pb

cη1
Z

}

dx.

Since R0 ≤ 1, we have
dL0

dt
≤ 0. Further, the largest compact invariant set in

{(U, I , V,W,Z)|dL0

dt
= 0} is the singleton {E0}. This completes the proof. �

When R0 > 1, the points E1, E2, E3 and E4 are also the steady states of model
(2). Similarly to above and based on the Lyapunov functionals L1, L2, L3 and L4 for
DDE model (1), we easily get the following result.

Theorem 3.2 Suppose that R0 > 1 and (H4) holds for each Ei.

(i) The infection equilibrium without immunity E1 of model (2) is globally asymp-
totically stable when RW

1 ≤ 1 and RZ
1 ≤ 1.

(ii) The infection equilibrium with only humoral immunity E2 of model (2) is glob-
ally asymptotically stable when RW

1 > 1 and RZ
2 ≤ 1.

(iii) The infection equilibriumwith only cellular immunity E3 ofmodel (2) is globally
asymptotically stable when RZ

1 > 1 and RW
3 ≤ 1.

(iv) The infection equilibrium with both humoral and cellular immune responses E4

of model (2) is globally asymptotically stable when RZ
2 > 1 and RW

3 > 1.
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4 Application

In this section, we apply our main analytical results to the following HIV infection
model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= λ − dU (x, t) − β1U (x, t)V (x, t)

1 + ε1V (x, t)
− β2U (x, t)I(x, t)

1 + ε2I(x, t)
,

∂I

∂t
= ∫ ∞

0 f1(τ )e−α1τ [β1U (x, t − τ )V (x, t − τ )

1 + ε1V (x, t − τ )
+ β2U (x, t − τ )I(x, t − τ )

1 + ε2I(x, t − τ )
]dτ

−aI(x, t) − pI(x, t)Z(x, t),
∂V

∂t
= dV�V + k

∫ ∞
0 f2(τ )e−α2τ I(x, t − τ )dτ − μV (x, t) − qV (x, t)W (x, t),

∂W

∂t
= rV (x, t)W (x, t) − hW (x, t),

∂Z

∂t
= cI(x, t)Z(x, t) − bZ(x, t),

(18)

where ε1, ε2 ≥ 0 are constants that measure the saturation effect. The rates of virus-
to-cell infection and cell-to-cell transmission are, respectively, denoted by β1 and
β2. The other parameters and state variables have the same biological meanings as
in models (1) and (2). This HIV infection model is a special case of (2), it suffices to

take f (U, I , V ) = β1U

1 + ε1V
and g(U, I) = β2U

1 + ε2I
. Also, we consider model (18)

with initial conditions

U (x, θ) = φ1(x, θ) ≥ 0, I(x, θ) = φ2(x, θ) ≥ 0, V (x, θ) = φ3(x, θ) ≥ 0,
W (x, θ) = φ4(x, θ) ≥ 0, Z(x, θ) = φ5(x, θ) ≥ 0, (x, θ) ∈ �̄ × (−∞, 0],

(19)
and homogeneous Neumann boundary condition

∂V

∂ν
= 0 on ∂� × (0,+∞). (20)

It is obvious to verify that the hypotheses (H0)-(H3) are satisfied. On the other hand,
we have

(

1 − f (U, I , V )

f (U, Ii, Vi)

)(
f (U, Ii, Vi)

f (U, I , V )
− V

Vi

)

= −ε1(V − Vi)
2

Vi(1 + ε1Vi)(1 + ε1V )
≤ 0,

(

1 − f (Ui, Ii, Vi)g(U, I)

f (U, Ii, Vi)g(Ui, Ii)

)(
f (U, Ii, Vi)g(Ui, Ii)

f (Ui, Ii, Vi)g(U, I)
− I

Ii

)

= −ε2(I − Ii)2

Ii(1 + ε2Ii)(1 + ε2I)
≤ 0.

Therefore, the hypothesis (H4) is satisfied. By applying Theorems 3.1 and 3.2, we
get the following result.
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Corollary 4.1

1. IfR0 ≤ 1, then the infection-free equilibrium E0 of model (18) is globally asymp-
totically stable.

2. IfR0 > 1, then model (18) has four infection equilibria that are:

(i) the infection equilibrium without immunity E1 that is globally asymptotically
stable ifRW

1 ≤ 1 and RZ
1 ≤ 1;

(ii) the infection equilibriumwith only humoral immunity E2 that is globally asymp-
totically stable ifRW

1 > 1 and RZ
2 ≤ 1;

(iii) the infection equilibrium with only cellular immunity E3 that is globally asymp-
totically stable ifRZ

1 > 1 and RW
3 ≤ 1;

(iv) the infection equilibrium with both humoral and cellular immune responses E4

that is globally asymptotically stable ifRZ
2 > 1 and RW

3 > 1.

5 Conclusions

In this chapter, we have developed two immunological models, one with DDEs and
the other with PDEs in order to describe the interactions between host cells, virus and
adaptive immune system presented by CTL cells and antibodies. In both models, the
classical virus-to-cell infection and the direct cell-to-cell transmission are modeled
by two general incidence functions. Under some hypotheses on these incidence func-
tions, dynamical analysis of bothmodels shows that the global stability of equilibria is
completely characterized by five threshold parameters called the reproduction num-
bers for viral infectionR0, for humoral immunityRW

1 , for cellular immunityRZ
1 , for

cellular immunity in competitionRZ
2 and for humoral immunity in competitionRW

3 .
More accurately, we have proved that whenR0 ≤ 1 the infection-free equilibrium is
globally asymptotically stable which biologically means that the virus is cleared up.
When R0 > 1, the virus persists in the host and four steady states appear, the first
without immunity which is globally asymptotically stable if RW

1 ≤ 1 and RZ
1 ≤ 1;

the second with only humoral immunity which is globally asymptotically stable if
RW

1 > 1 andRZ
2 ≤ 1; the third with only cellular immunity which is globally asymp-

totically stable ifRZ
1 > 1 andRW

3 ≤ 1; and the fourth with both cellular and humoral
immune responses which is globally asymptotically stable if RZ

2 > 1 and RW
3 > 1.

Therefore, the activation of one or both branches of adaptive immunity is unable
to eradicate the virus in vivo, but plays a crucial role in the reduction of viral load
and infected cells. This last biological result can obviously be obtained by a simple
comparison between the components of viral load and infected cells before and after
the activation of the immunity. Based on Remark 2.6, we also deduce other biological
findings that are the over-domination of cellular immunity leads to the absence of
the humoral immunity, while the over-domination of the humoral immunity leads
to the persistence of viral infection with a weak response of both types of adaptive
immunity. On the other hand, the PDE models and corresponding results presented
in the more recent works [34, 35] are improved and extended.
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Modeling the Stochastic Dynamics of
Influenza Epidemics with Vaccination
Control, and the Maximum Likelihood
Estimation of Model Parameters

Divine Wanduku, C. Newman, O. Jegede and B. Oluyede

1 Introduction

Influenza ranks among the top ten most important diseases in the United States of
America (USA). In fact, the Center for Disease Control (CDC) estimates that from
2010–2011 to 2013–2014, influenza-associated deaths in the USA ranged from a
low of 12,000 (during 2011–2012) to a high of 56,000 (during 2012–2013) annu-
ally [1]. Globally, the World Health Organization ( WHO) estimates that seasonal
influenza results in approximately 290–650 thousand deaths each year from just
influenza-related respiratory diseases alone [2, 3]. These statistics necessitate more
investigation and understanding about the disease, in order to control or ameliorate
the burdens of the disease.

For hundreds of years, influenza, more commonly know as the flu, has plagued
mankind. The flu is caused by a virus and spreads from person to person through
direct contact and through particulates in the air. Symptoms include fever, cough,
sore throat, runny or stuffy nose, muscle or body aches, headaches, fatigue, and even
vomiting and diarrhea [4].

There are several strains of the influenza virus, all causing similar symptoms with
varying severity. Influenza viruses are generally categorized into four subgroups: A,
B, C, and D. Human influenza A and B viruses are the most common and cause
seasonal epidemics of disease almost every winter in the USA. The emergence of
a new and very different influenza A virus to infect people can cause an influenza
pandemic, for instance, the recent “swine flu” (officially called H1N1) and “bird flu”
(H5N1) (cf. [5]).

An individual infected with the flu can spread it to others up to about 6 ft away
through droplets from their mouth from coughing, sneezing, or merely talking. Once
an individual has been infected with the flu virus, it usually takes about 2days
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incubation period before symptoms start to show. From the onset of symptoms,
it can take 7–10days for an individual to recover. In general, adults who are infected
with the influenza virus are capable of spreading it to others a day before symptoms
show up as well as throughout the duration of the illness (cf. [6]).

In an attempt to slow the spread of seasonal influenza, the CDC recommends
annual influenza vaccination for people 6months of age and older. Themost common
vaccination is the seasonal flu injection, standard-dose trivalent shot (IIV3), and
there are several other options available. One setback is that the flu virus constantly
mutates and vaccination against one strainmay not protect against other strains. Once
vaccinated, it may take up to two weeks before the vaccine is completely effective
(cf. [7]).

Various types of mathematical compartmental models have been used to investi-
gate the dynamics of infectious diseases of humans [8–13] . For instance, in some
studies [13, 14], deterministic models for influenza are presented. Malaria epidemic
models [9, 15] have also been studied. Stochastic models with white noise pertur-
bations for influenza have also been studied [10–12]. Some papers [16, 17] have
presented mathematical models with perfect lifelong immunity conferred via vacci-
nation, where all individuals vaccinated can no longer be infected. Other papers [14]
study imperfect vaccination in influenza epidemics, where vaccinated individuals
obtain partial immunity resulting in lower disease transition rates than the unvacci-
nated population.

The compartmental mathematical epidemic dynamicmodels are largely classified
as SVIS, SVIRS, SIS, SIR, SIRS, SEIRS, SEIR, etc. epidemic dynamic models
depending on the compartments of the disease states directly involved in the general
disease dynamics [8–13]. For instance, SIR model represents transitions from the
susceptible state to the infectious and then to the removed state. An SEIR model
adds the incubation period via an exposed class E to the previous SIR model. SVIR
models incorporate the vaccination class V and represent the dynamics of diseases
that grant permanent immunity after recovery from disease, for example, influenza
where naturally acquired immunity against a strain of the virus is conferred after
viral infection [8, 18–20].

Stochastic epidemic dynamic models more realistically represent epidemic
dynamic processes because they include the randomness which inevitably occurs
during a disease outbreak, owing to the presence of constant random environmen-
tal fluctuations in the disease dynamics. For stochastic epidemic models, the state
of the system over time, which usually represents the number of people suscepti-
ble (S), vaccinated (V), infected but not infectious (E), infected and infectious (I),
or removed with natural immunity (R), is a stochastic process. Furthermore, the
stochastic process for the disease dynamics can be a continuous-time–continuous-
state, continuous-state–discrete-time, or discrete-time and discrete-state stochastic
process. The choice on which type of stochastic process to use to represent the
dynamics of the disease depends on the finiteness or infiniteness of the epidemi-
ological features of the disease that are represented mathematically. Some exam-



Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination … 25

ples of continuous-time–continuous-state stochastic epidemiological studies include
[10–12, 21] and discrete-time–discrete-state models include [8, 18, 22, 23].

In our study, we derive a SVIR discrete-time and discrete-state stochastic chain
model, wherein temporary artificial immunity through vaccination is considered,
in addition to the lifelong naturally acquired immunity for influenza in a closed
community of human beings.

Chain binomial models are an important class of Markov chain models, and
they have been used to represent and study infectious disease epidemics over time
[8, 22, 24–27]. This family of stochastic models represent the disease dynamics as
a random process, where transition between some states such as from susceptible to
infectious or from vaccinated to susceptible is characterized by binomial transition
probabilities.

Some pioneer chain binomial models for infectious diseases include Greenwood
andReed–Frostmodels [24, 25].Manyother studies such as [8, 22, 23] have extended
and expanded on the ideas of Greenwood and Reed–Frost, creating more realistic
epidemic dynamic models. Greenwood [24] in the 1931 study presented a SIS chain
binomial chain model for the spread of diseases in human populations, where a
breakdown of the population into successive generations indexed by t = 0, 1, 2, . . .
is used. Furthermore, the susceptible individuals are infected in a given generation
and are only capable of infecting others within that generation. And after which, they
remain infected, but isolated from subsequent disease spread. Greenwood assumed
that a susceptible person meets only one infectious person at any instance and inter-
action with the infectious person leads to transmission of disease with probability p.

Reed–Frost [25] built upon most of the ideas of the Greenwood model and pre-
sented a SIR epidemicmodel.Moreover, Reed–Frostmade amore realistic (i.e.,more
conforming to real-life scenario) assumption that a susceptible person at any instance
t has a chance to interact independently with any of the infectious individuals present
at that instance. Thus, the probability of the susceptible person getting infection at
any instance t, from at least one of the y infectious individuals the susceptible person
contacts in that instance, is given by p(y) = 1 − (1 − p)y.

The previous Greenwood and Reed–Frost models consider generations of infec-
tions, and the infectious individuals no longer participate in subsequent transmission
of disease to susceptible persons. This assumption is suitable for generalizations of
disease dynamics, where the disease suddenly outbreaks in a given time generation,
dies out, and reoccur in another time generation.

Tuckwell and Williams [8] utilized some ideas from Reed–Frost [25] and pro-
posed a more realistic SIR epidemic dynamic model. In their model, infection takes
place over discrete-time intervals, and the infectious population at any instance t
comprises of all infectious persons at different ages k = 0, 1, 2, . . . ,R − 2 of their
infectiousness over the constant duration of the infectious period R. The age k rep-
resents how long an individual has been infectious since initial infection from the
susceptible state. In their model, the total infectious individuals at any instance par-
ticipates in the disease transmission process, and it is assumed that at the end of the
infectious period R, all infectious persons are treated, fully recovered, and join the
removed class R.
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Tuckwell andWilliams [8] also assume that the ith individual in the population at
any instant t encounter a fixed number of people (family, office mates, employees)
denoted ni, and also a random number of people Mi(t), where the random variables
Mi(t) are mutually independent and independent of the state of the population. This
assumption leads to a more realistic random process description for the total number
of people the ith individual encounters at any instance Ni(t) = ni + Mi(t), t ≥ 0.
Moreover, the probability of getting infection at any instance becomes dependent on
the number of infectious people the ith susceptible individual meets among the Ni(t)
people.

Using ideas from Tuckwell–Williams [8], we propose a susceptible, vaccinated,
infected, and removed (SVIR) epidemic discrete-time and discrete-state family of
chain binomial models for influenza. Treatment in the form of vaccination is avail-
able, where the vaccine confers temporary effective artificial immunity against the
disease, but ultimately wanes over time. In line with [8], the infectious population
involves in the disease transmission process overall generations of the population
over time and overall ages of infectiousness. However, unlike [8], the vaccination
class is incorporated, and the total infectious and vaccinated populations are char-
acterized based on the ages of infection and vaccination since initial infection and
vaccination, over the constant and finite infectious and effective vaccination periods,
respectively.Moreover, as far as we know, no other discrete-time, discrete-state chain
binomial study in the line of thinking of Tuckwell–Williams [8] with multiple time
delays and with the vaccination class exists in the literature. This study provides
a suitable and more realistic extension of the chain binomial models: Greenwood,
Reed–Frost, and Tuckwell–William models above.

The rest of this paper is organized as follows: In Sect. 2, we present an adequate
description of the SVIR human population over discrete time. In Sect. 3, we derive
the transition probabilities of the SVIR Markov chain family of models, and present
special cases of the general SVIR Markov chain model. In Sect. 5, we present the
method of maximum likelihood estimation to find important parameters of the SVIR
chain models. In Sect. 6, we estimate some important epidemiological parameters
for the influenza epidemic model. Finally, in Sect. 7, we present numerical examples
for the SVIR influenza model and make general concluding remarks.

2 Description of the SVIR Influenza Epidemic Process

In this section, we describe and represent the influenza epidemic in the human pop-
ulation. We present the procedure to discretize time and decompose the human pop-
ulation into the different states of the disease involved in the influenza epidemic

Weconsider (1) a humanpopulation of sizen living in a closednatural environment
over a period of time consistent with the duration of an epidemic outbreak, where it
can be assumed that human movement into and out of the population is negligible or
nonexistent. In addition, the population is relatively safe, and no natural deaths occur
during the duration of the epidemic outbreak. Also, it is assumed no births occur
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during the duration of the epidemic or very strong measures are taken medically
to protect all newborns, such that they can be ignored from the effective diseased
population.

Furthermore, it is assumed (2) that a particular strain of an infectious disease
such as a flu or other similar respiratory infectious diseases breaks out in the closed
population, and the disease causes major suffering in the human being, but with
no mortal consequences due to disease-related causes. The scenario of influenza
epidemic driven by multiple strains of the virus is not considered. The readers are
referred to [28] for examples of influenza studies involving multiple strains of the
virus.

It is also assumed (3) that the infectious disease has a vaccine which provides
temporary effective artificial immunity against the strain of the infectious agent
(strain of the influenza virus) that lasts over a constant immunity period T1. At the
end of the immunity period T1, the vaccinated person becomes susceptible again
to the particular strain of the disease. It is assumed that individuals are vaccinated
only once throughout the season of the influenza epidemic. The disease also confers
natural immunity after recovery from the infection. The naturally acquired immunity
also provides effective natural protection against the strain of the disease agent, that
lasts over a period of time longer than the duration of the epidemic in the population.
Unlike the temporary artificial immunity period T1, it is assumed that the naturally
acquired immunity period is constant infinite.

It is also assumed (4) that the strain of the infectious agent has strong infec-
tious abilities, moreover, the human population is homogenous in susceptibility to
the strain of the virus, such that all susceptible individuals who contract the infec-
tious agent exhibit symptoms of illness after a relatively small time interval (roughly
between 2 and 4days [6]), and become infectious to other susceptible persons. Thus,
using one-time unit for the model to be more than the incubation period, for instance,
1week, the incubation period of the disease is considered relatively small (i.e., by
the time scale for the influenza epidemic model presented in this study, the incuba-
tion period is small enough such that it cannot form a distinct disease class), and
consequently, the exposure class can be ignored. Note that the general susceptible
population consisting of (i.) those who have never been vaccinated or infected and
(ii.) those who were previously vaccinated and have lost their artificial immunity are
vulnerable to infection of the strain of the virus.

It is further assumed (5) that the infectious period of all individuals who have
contracted the disease is constant and finite, and it is denoted T2. At the end of
that period T2, it is assumed that the immune system of the infected individual has
established sufficient natural immunity against the particular strain of the disease,
which lasts longer than the overall duration of the epidemic, and as a result individuals
with naturally acquired immunity are removed from the epidemic process.

From the above description, (6) the human population of size n is subdivided into
four major human subclasses, namely susceptible (S), vaccinated (V ), infectious
(I ), and removed (R). The susceptible class (S) does not have the disease, but are
vulnerable to infection from the infectious class (I ). A portion of the susceptible
individuals is vaccinated artificially against the disease, and after a small time lapse
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until the vaccine takes effect, the individuals become the vaccinated class (V ). The
vaccinated class (V ) can no longer contract the disease during the effective artificially
acquired temporary immunity period T1 of the vaccine (however, over the small
time lapse until the vaccine is effective, the vaccinated person can still be infected
by influenza). At the end of the period T1, the vaccine wanes, and the vaccinated
individuals become susceptible again to the disease. When the infectious class (I )
recovers from the disease at the end of the constant infectious period of time T2,
the individuals acquire natural immunity against the disease that can be considered
to be constant and infinite. The removed class denoted R consists of all individuals
with naturally acquired immunity. It is further assumed that the naturally acquired
immunity is very effective such that the removed class never becomes susceptible
again to the disease over the overall duration of the disease.

(7) The general susceptible population S(t) at any time t = 0, 1, 2, 3, . . . over the
duration of the epidemic can be further broken down into two subclasses S

︸︷︷︸

(t) and
︷︸︸︷

S (t), where S
︸︷︷︸

(t) represents all susceptible individuals present at time t, who

have never contracted the disease nor been vaccinated, and
︷︸︸︷

S (t) represents the
number of susceptible individuals present at time t, who were previously vaccinated,
and have lost the artificial immunity against the disease after the effective period T1.
That is,

S(t) = S
︸︷︷︸

(t) +
︷︸︸︷

S (t). (2.1)

Note that over the duration of the epidemic, when it is assumed that all individuals
are vaccinated only once against that strain of influenza virus, regardless whether the
vaccine wanes over time, it follows that, only the class S

︸︷︷︸

(t) will be liable to be

vaccinated. When vaccination occurs multiple times, then all susceptible individuals
S(t) will be liable to be vaccinated at any time t. Also, at any time t, the general sus-
ceptible class S(t) is vulnerable to infection. A compartmental framework exhibiting
the transitions between the different states in the population is shown in Fig. 1.

In the following, we characterize the different disease subclasses, namely suscep-
tible, vaccinated, infectious, and removed individuals over discrete-time intervals of
unit length, for example, days, weeks, months, etc. The description of the discretiza-
tion of time is presented in the following.

Definition 2.1 Time discretization process:
The different disease subclasses, namely susceptible, vaccinated, infectious, and

removal individuals, shall be counted over discrete-time intervals of unit length.
That is, over the time subintervals (t0, t0 + 0] ≡ t0, (t0, t0 + 1], (t0 + 1, t0 + 2],
(t0 + 2, t0 + 3], . . . , (t0 + (t − 2), t0 + (t − 1)], (t0 + (t − 1), t0 + t], where t0 ≥ 0
is any nonnegative real number. Furthermore, the number of individuals in any sub-
class of the population at any time t are taken to be the number of people in that state
present in the subinterval of time (t0 + (t − 1), t0 + t], counted up to and including
the point t0 = t, where t is a positive integer, that is, t = 0, 1, 2, . . .. Moreover, all
events that occur at the initial time t = 0 refer explicitly to every event that occurred at
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Fig. 1 Shows the framework of transitions between the different disease states (S,V,I,R) in the
population during the outbreak of the disease

the initial point t0, or equivalently, in the initial subinterval (t0, t0 + 0], which forms
an initial state for the epidemic. In addition, when t0 = 0, then the initial interval
(t0, t0 + 0] reduces to the point t = t0 = 0.

For example, the number of susceptible people present at time t = 2, denoted
S(2), refer to the number of people in the susceptible state S, who are present in the
subinterval of time (t0 + 1, t0 + 2]. More generally, S(t) is the number of susceptible
people present in the subinterval (t0 + (t − 1), t0 + t].

Another discrete measure of time denoted by k = 0, 1, 2, . . . , t, represents how
long individuals in the different disease states S, V, I , and R have been in the given
states since their initial conversion into the states. We let Sk(t), Vk(t), Ik(t), and
Rk(t),∀k = 0, 1, 2, 3, . . . , t denote the number of susceptible, vaccinated, infec-
tious, and removal individuals, respectively, present at time t, who have been in
their different states for k discrete-time units, where k = 0, 1, 2, 3, . . . , t. Note that
according to the description of the time measure k, then S0(t), V0(t), I0(t) and R0(t)
signify the number of people present at time t, who have just become susceptible,
vaccinated, infectious, and removed at time t.

For example, for t = 5, k = 2, S2(5) denotes the number of susceptible people
present at the end ofweek 5 (i.e., in (t0 + 4, t0 + 5]), whowere previously vaccinated,
and lost their artificial immunity 2weeks ago. Furthermore, S5(5) denotes the number
of susceptible people present at the end of week 5, who have never been vaccinated
or infected. Also, V2(5) denotes the number of vaccinated people present at the end
of week 5, who were vaccinated two weeks ago.

The decomposition of the susceptible population is presented in the following.

Definition 2.2 Decomposition and Aggregation of the Susceptible Population:
We decompose the susceptible population over the discrete times t = 0, 1, 2, . . .

into subcategories based on (1)when a personfirst becomes susceptible to the disease,
given that the person was previously vaccinated against the disease, and the artificial
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vaccine has worn out after the effective vaccination period T1, and (2) how long a
person has remained susceptible to the disease, since the initial time t = 0.

For t = 0, 1, 2, . . ., let Sk(t),∀k = 0, 1, 2, 3, . . . , t denote the number of suscep-
tible individuals present at time t, who have been susceptible for k discrete-time
units, where k = 0, 1, 2, 3, . . . , t. That is, the number of susceptible individuals S(t)
present at time t = 0, 1, 2, . . . can be written in the two equivalent ways

S(t) = S0(t) + S1(t) + S2(t) + S3(t) + S4(t) + · · ·
+St−3(t) + St−2(t) + St−1(t) + St(t), (2.2)

where from (2.1),

S
︸︷︷︸

(t) = S0(t) + S1(t) + S2(t) + S3(t) + S4(t) + · · ·
+St−3(t) + St−2(t) + St−1(t), (2.3)

and
︷︸︸︷

S (t) = St(t). (2.4)

From (2.3) to (2.4), since infection and vaccination occur over every time t =
0, 1, 2, . . ., it follows that Sk(t) ≤ S0(t − k),∀k = 0, 1, 2, . . . , t, and Sk(k) ≥ Sk+1

(k + 1),∀k = 0, 1, 2, . . . , t − 1.
Furthermore, for any time t at least as large as themaximum of the artificial immu-

nity and the infectious periods T1 and T2, respectively, that is, for t ≥ max (T1,T2)
it is easy to see that the relationship between susceptibility and vaccination is given
as follows:

Sk(t) ≤ S0(t − k) = VT1(t − k) = VT1+k(t)

= V0(t − (T1 + k)) ≥ 0, k = 0, 1, . . . , t − T1. (2.5)

It follows from (2.2) to (2.5) that the total susceptible population S(t) = S
︸︷︷︸

(t) +
︷︸︸︷

S (t) at any time t ≥ T1, or t ≥ max (T1,T2), can be written as follows:

︷︸︸︷

S (t) = S0(t) + S1(t) + S2(t) + · · · + St−T1(t) and S
︸︷︷︸

(t) = St(t). (2.6)

Also, for any time t < T1, or t ≤ min (T1,T2) then

︷︸︸︷

S(t) = 0, and S(t)
︸︷︷︸

= St(t). (2.7)

Also, under the assumption that the population is closed and there is no migration
of susceptible, vaccinated, infectious, and removal individuals, then it follows from
above that S(0) > 0, S0(0) ≥ 0, and Sk(0) = 0,∀k ≥ 1.
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To illustrate the above with an example, suppose influenza breaks out in the
population at time t = 0, and the artificial immunity period is T1 = 5 weeks, then
the susceptible population at time t = 2 (2nd week after the outbreak) is given by
(2.7) as follows

︷︸︸︷

S(2) = 0, S(2)
︸︷︷︸

= S2(2), and S(2) = S(2)
︸︷︷︸

= S2(2). (2.8)

The susceptible population at time t = 8 (8th week after the outbreak) is given by
(2.6) as follows

︷︸︸︷

S (8) = S0(8) + S1(8) + S2(8) + S3(8) and S
︸︷︷︸

(8) = S8(8). (2.9)

The decomposition of the vaccinated class V (t) at time t is presented in the following.

Definition 2.3 Decomposition and Aggregation of the Vaccinated Population:
We also decompose the vaccinated population class into subcategories based on

how long individuals have been vaccinated before returning to the susceptible class of
the population, whenever the artificial immunity wanes. As with the previous defini-
tion, we decompose the vaccinated population over the discrete times t = 0, 1, 2, . . .
into subcategories based on (1) when a person first becomes vaccinated against the
disease, and (2) how long a person has been vaccinated against the disease, since
the initial time t = 0, or simply how long a person has been vaccinated before the
artificial immunity wears off completely after the period of effectiveness of the vac-
cines T1. For t = 0, 1, 2, . . ., let Vk(t),∀k = 0, 1, 2, 3, . . . , t denote the number of
vaccinated individuals present at time t, who have been vaccinated for k discrete-
time units, where k = 0, 1, 2, 3, . . . , t. Letting V (t) be the number vaccinated people
present at time t, then it can be seen that for any t = 0, 1, 2, . . . , then V(t) can be
written in two different equivalent ways as follows: For t < T1 or t < min (T1,T2),

V (t) = V0(t) + V1(t) + V2(t) + V3(t) + V4(t) + · · · + Vt−3(t)

+ Vt−2(t) + Vt−1(t) + Vt(t) (2.10)

and since V0(t − k) = Vk(t), k = 0, 1, . . . , t, then V (t) is equivalently expressed as
follows:

V (t) = V0(t) + V0(t − 1) + V0(t − 2) + V0(t − 3)

+V0(t − 4) + · · · + V0(3) + V0(2) + V0(1) + V0(0). (2.11)

Also for any time t at least as large as T1, or at least as large as the maximum of
the artificial immunity and the infectious periods T1 and T2, respectively, that is, for
t ≥ T1, or t ≥ max (T1,T2) it is easy to see that some of the subclasses Vk(t)’s in in
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the expression (2.10) are no longer in the vaccinated state, but have been converted
into susceptible individuals. That is,

V0(t − T1) = VT1(t) = S0(t),

V0(t − (T1 + k)) = VT1+k(t) = VT1(t − k)

= S0(t − k) ≥ Sk(t),∀k = 0, 1, . . . , t − T1 (2.12)

Therefore, for t ≥ T1, or t ≥ max (T1,T2), the number of people in the vaccinated
class at time t is given by

V (t) = V0(t) + V1(t) + V2(t) + · · · + VT1−1(t)

or equivalently

V (t) = V0(t) + V0(t − 1) + V0(t − 2) + · · · + V0(t − (T1 − 1)).
(2.13)

The decomposition of the infectious class I(t) at time t is presented in the
following.

Definition 2.4 Decomposition and Aggregation of the Infectious Population:
We also decompose the infectious population class into subcategories based on

how long individuals have been infectious before transitioning into the removed class
of the population. As with the previous definition, we decompose the infectious
population over the discrete times t = 0, 1, 2, . . . into subcategories based on (1)
when a person first becomes infectious and (2) how long a person has been infectious,
since the initial time t = 0, and until the infectious period T2 is lapsed, where it is
assumed that all infectious individuals are identified, treated, and fully recovered
over the constant finite time period T2.

For t = 0, 1, 2, . . ., let Ik(t),∀k = 0, 1, 2, 3, . . . , t denote the number of infec-
tious individuals present at time t, who have been infectious for k discrete-time
units, where k = 0, 1, 2, 3, . . . , t. It follows that for any t = 0, 1, 2, . . . , the number
of infectious persons present at time t, denoted I(t), is written as follows: For t < T2
or t < min (T1,T2),

I(t) = I0(t) + I1(t) + I2(t) + I3(t) + I4(t) + · · · + It−3(t) + It−2(t) + It−1(t) + It(t),

or (2.14)

I(t) = I0(t) + I0(t − 1) + I0(t − 2) + I0(t − 3) + I0(t − 4) + · · ·
+ I0(3) + I0(2) + I0(1) + I0(0), (2.15)

where Ik(t) = I0(t − k),∀k = 0, 1, . . . t.
In addition, for any time t at least as large as the infectious period T2, or at least

as large as the maximum of the artificial immunity and the infectious periods T1 and
T2 respectively, that is, for t ≥ T2, or t ≥ max (T1,T2), it is easy to see that some of
the subcategories in expression (2.14) are no longer in the infectious class, but have
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been converted into the removed state. That is, for t ≥ T2, or t ≥ max (T1,T2), it is
easy to see that

I(t) = I0(t) + I1(t) + I2(t) + · · · + IT2−1(t),

or

I(t) = I0(t) + I0(t − 1) + I0(t − 2) + · · · + I0(t − (T2 − 1)),

and the following infectious classes are removed:

I0(t − T1) = IT2 (t) = R0(t),

I0(t − (T2 + k)) = IT2+k (t) = IT2 (t − k) = R0(t − k) = Rk (t),∀k = 0, 1, 2, . . . , t − T2
(2.16)

Thedecomposition of the removed classR(t) at time t is presented in the following:

Definition 2.5 Decomposition and Aggregation of the Removed Population:
Finally, we decompose the removed population class into subcategories based

on how long individuals have been removed from the infectious state. As with the
previous definition, we decompose the removed population over the discrete times
t = 0, 1, 2, · · · into subcategories based on (1)when a person first becomes removed,
and (2) how long a person has been removed from the infectious state since the initial
time t = 0 of disease outbreak, or simply how long the person has been removed from
the time when the person transitioned from the infectious state to the removal state.
For t = 0, 1, 2, . . ., let Rk(t),∀k = 0, 1, 2, 3, . . . , t denote the number of removed
individuals present at time t, who have been removed for k discrete-time units,
where k = 0, 1, 2, 3, . . . , t. It follows that for any time t = 0, 1, 2, . . . , the number of
removed individuals at time t denoted R(t), can be written in two different equivalent
ways as follows: For t < T2 or t < min (T1,T2),

R(t) = Rt(t) = R0(0) = R(0) ≥ 0. (2.17)

That is, R(t) in (2.17) is the removed population at the initial time.
Furthermore, for any time t at least as large as the infectious period T2, or at least

as large as the maximum of the artificial immunity and the infectious periods T1 and
T2 respectively, that is, for t ≥ T2 or t ≥ max (T1,T2),

R(t) = R0(t) + R1(t) + R2(t) + R3(t) + R4(t) + · · · + Rt−3(t) + Rt−2(t) +
Rt−1(t) + Rt(t)

or equivalently,

R(t) = R0(t) + R0(t − 1) + R0(t − 2) + R0(t − 3) + R0(t − 4) + · · · +
R0(3) + R0(2) + R0(1) + R0(0), (2.18)

where Rk(t) = R0(t − k),∀k = 0, 1, . . . t.
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It is also easy to see that some of the subcategories in (2.18) are equivalent to
some infectious subclasses as shown below:

R0(t) = IT2 (t) = I0(t − T2),

Rk (t) = R0(t − k) = IT2 (t − k) = IT2+k (t) = I0(t − (T2 + k)), k = 0, 1, . . . , t − T2.
(2.19)

Therefore, for t ≥ T2 or t ≥ max (T1,T2), the number of removed individuals at
time t, R(t) is given by:

R(t) = R0(t) + R1(t) + R2(t) + · · · + Rt−T2(t)

or

R(t) = R0(t) + R0(t − 1) + R0(t − 2) + · · · + R0(t − (t − T2)).

= R0(t) + R0(t − 1) + R0(t − 2) + · · · + R0(T2). (2.20)

Definition 2.6 Decomposition and Aggregation of the total human population:
It can be seen from Definitions 2.2–2.5 that the total human population of size n

can be written as follows:
For all t ∈ Z+ = 0, 1, 2, 3, . . .

n = S(t) + V (t) + I(t) + R(t), (2.21)

or

n = S(t)
︸︷︷︸

+
︷︸︸︷

S(t) +V (t) + I(t) + R(t). (2.22)

It is easy to see from (2.21) that since the total population is fixed at any time
t ≥ 0, then given the values of the states S(t), V (t) and I(t), the value of the stateR(t)
can be determined using the formula in (2.21). Furthermore, since all individuals are
vaccinated only once in the population; therefore, at any time t, only the susceptible
class S(t)

︸︷︷︸

= St(t) is liable to be vaccinated. In addition, note that at all movement

from the vaccinated class V to the susceptible class
︷︸︸︷

S(t) are deterministic by transla-
tion over the artificial immunity period T1. Therefore, the most relevant partition for

the susceptible class S(t) is S(t) = S(t)
︸︷︷︸

+
︷︸︸︷

S(t) . Also, due to connectivity between

the susceptible state component S(t)
︸︷︷︸

= St(t) and the susceptible state component
︷︸︸︷

S(t) , via the vaccinated class V (t), it is relevant to represent all microscopic sub-
vaccinated classes Vk(t), k = 0, . . . ,T1. Similarly, to explain connectivity between
S(t) and R(t), it is relevant to represent all the microscopic sub-infectious classes
Ik(t), k = 0, . . . ,T2. Thus, using the above information, the following decomposi-
tions and vectors will be sufficient to characterize the influenza epidemic at any
time t.
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So for T1 ≤ t < T2, the vector

B(t) = (S(t) = S(t)
︸︷︷︸

+
︷︸︸︷

S(t), V0(t), V1(t), . . . , VT1−1(t), I0(t), I1(t), . . . , It(t))

is sufficient to define all states of the process. Also,

n = S(t)
︸︷︷︸

+
t−T1
∑

i=0

Si (t) +
T1−1
∑

i=0

Vi (t) +
t
∑

i=0

Ii (t) + R(t), (2.23)

where Rt(t) = R(0) ≥ 0.
For T2 ≤ t < T1, the vector

B(t) = (S(t) = S(t)
︸︷︷︸

, V0(t), V1(t), . . . , Vt(t), I0(t), I1(t), . . . , IT2−1(t))

is sufficient to define all states of the process. Also,

n = S(t)
︸︷︷︸

+
t
∑

i=0

Vi (t) +
T2−1
∑

i=0

Ii (t) +
t−T2
∑

i=0

Ri (t) . (2.24)

Also, for t ≤ min (T1,T2), the vector

B(t) = (S(t), V0(t), V1(t), . . . , Vt(t), I0(t), I1(t), . . . , It(t))

is sufficient to define all states of the process. Also,

n =
t
∑

i=0

Si(t) +
t
∑

i=0

Vi(t) +
t
∑

i=0

Ii(t) + Rt(t), (2.25)

where Rt(t) = R(0) = 0.
In addition, for t ≥ max (T1,T2), the vector

B(t) = (S(t) = S(t)
︸︷︷︸

+
︷︸︸︷

S(t), V0(t), V1(t), . . . , VT1−1, I0(t), I1(t), . . . , IT2−1(t))

is sufficient to define all states of the process. Also,

n = S(t)
︸︷︷︸

+
t−T1
∑

i=0

Si (t) +
T1−1
∑

i=0

Vi (t) +
T2−1
∑

i=0

Ii (t) +
t−T2
∑

i=0

Ri (t) . (2.26)
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3 Derivation of the SVIR Influenza Markov Chain Model
and Transition Probabilities

In this section, we derive the SVIR chain-binomial epidemic dynamic model for the
influenza epidemic. The epidemic model presented is an extension of the studies
by Tuckwell and Williams [8], Greenwood [24], and Ajelli et al. [29]. That is, we
derive a random process that characterizes the dynamics of influenza in the human
population structured over time as described above and derive the general formula
for the transition probabilities of the Markov chain.

Let (�,F,P) be a complete probability space. Define the following nonnegative
integer valued random vector measurable function:

B : Z+ × � → Z
T1+T2+1
+ , (3.1)

where for each t ∈ Z+, and t ≥ max{T1,T2}, the random vector B is given by

B(t) = (S(t), V0(t), V1(t), . . . , VT1−1(t), I0(t), I1(t), . . . , IT2−1(t)) ∈ Z
T1+T2+1
+ .

(3.2)

Also, for each t ∈ Z+, an observed vector value b(t) for the random vector B(t) is
defined as follows:

b(t) = (xt, y0t , y1t , y2t , . . . , y(T1−1)t , z0t , z1t , . . . , z(T2−1)t ) ∈ Z
T1+T2+1
+ . (3.3)

Note that for each t ∈ Z+, the observed values xt, y0t , y1t , y2t , . . . , y(T1−1)t , z0t , z1t ,
. . . , z(T2−1)t are nonnegative integers. Furthermore,

B(t) = b(t)

if and only if

S(t) = xt, V0(t) = y0t , V1(t) = y1t , . . . , VT1−1(t) = y(T1−1)t ,

I0(t) = z0t , . . . , IT2−1(t) = z(T2−1)t . (3.4)

The random process {B(t), t = 1, 2, 3, . . . } describes the evolution of the influenza
epidemic in the SV IR population characterized above.

Furthermore, for t < min{T1,T2},

B(t) = (S(t), V0(t), V1(t), V2(t). . . . , Vt(t), I0(t), I1(t), . . . , It(t)) (3.5)

is sufficient to define all the states of the process.
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For T1 ≤ t < T2

B(t) = (S(t) = S(t)
︸︷︷︸

+
︷︸︸︷

S(t), V0(t), V1(t), . . . , VT1−1(t), I0(t), I1(t), . . . , It(t))

(3.6)
is sufficient to define all the states of the process.

For T2 ≤ t < T1

B(t) = (S(t) = S(t)
︸︷︷︸

, V0(t), V1(t), . . . , Vt(t), I0(t), I1(t), . . . , IT2−1(t)) (3.7)

is sufficient to define all states of the process.
And for t ≥ max{T1,T2}

B(t) = (S(t) = S(t)
︸︷︷︸

+
︷︸︸︷

S(t), V0(t), V1(t), . . . , VT1−1(t), I0(t), I1(t), . . . , IT2−1(t))

(3.8)
is sufficient to define all states of the process.

The SVIR model given by random process {B(t), t = 1, 2, 3, . . . } suitably
describes influenza epidemics for the following reasons. (1) Influenza epidemics
are seasonal epidemics, exhibiting timescales that can be approximated with small
discrete-time intervals. Moreover, the sizes of closed populations that experience
influenza outbreaks are often relatively small. These properties make discrete-time
and discrete-state (DTDS) random processes such as {B(t), t = 1, 2, 3, . . . } more
suitable tomodel influenza epidemics. See [30] formore properties ofDTDS stochas-
tic epidemic models. (2) During influenza epidemics, vaccination is an integral part
of disease control. Also, as earlier remarked in the introduction of this chapter, the
incubation period of influenza is relatively short compared to the periods of infec-
tiousness and artificial immunity T2 and T1, respectively. Therefore, considering
units of time, for instance, weekly defined in Definition 2.1, the incubation period
of approximately 2days for influenza [6] can be ignored. Thus, the SVIR epidemic
model {B(t), t = 1, 2, 3, . . . } sufficiently describes the evolution of influenza over
time, in the susceptible, vaccinated, and infectious states of the population.

It should be noted from (3.5) to (3.8) that the random process {B(t) : t ≥ 0} takes
different simplifications for different subintervals of the time interval, t ∈ [0,∞),
relative to the magnitude of the delays T1,T2 in the system. In addition, the most
interesting features of influenza dynamics, such as the outbreak turning into an epi-
demic, and persistence of the disease occur when t ≥ max{T1,T2}.

We make the following additional assumptions about the influenza epidemic. We
assume that the influenza epidemic in this scenario is caused by a new viral strain that
is sufficiently persistent, and the vaccine against the influenza viral strain, despite
the fact that it is available and relatively effective, it confers relatively shorter-term
protection compared to the duration of the influenza season. Moreover, the period of
infectiousness is also relatively shorter compared to the duration of the epidemic in
the population. These assumptions suggest that at time t ≥ max{T1,T2}, the disease
is still persistent in the population. Thus, we present the general form of the transition
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probability of the random process {B(t) : t ≥ 0} in the case where t ≥ max{T1,T2}.
In the following theorem, we show that the random process {B(t), t = 1, 2, 3, . . . }
is a Markov chain.

Theorem 3.1 For t ≥ max{T1,T2}, the random process {B(t), t = 1, 2, 3, . . . },
where the (T1 + T2 + 1) nonnegative integer value random vector function

B(t) = (S(t), V0(t), V1(t), . . . , VT2−1(t), I0(t), I1(t), . . . , IT2−1(t)),∀t = 0, 1, . . . ,

defines a Markov chain for all t = 0, 1, 2, 3, .... Furthermore, the transition proba-
bilities are completely specified by the conditional distribution of the states V0 and
I0. That is,

P(B(t + 1) = b(t + 1)|B(t) = b(t)) = P(V0(t + 1)

= y0t+1 , I0(t + 1) = z0t+1 |B(t) = b(t)), (3.9)

where the terms S(t + 1) = xt+1, V0(t + 1) = y0t+1 , I0(t + 1) = z0t+1 , and S(t) = xt
are related as follows

y0t+1 = xt − xt+1 − z0t+1 . (3.10)

That is,

1. If S(t + 1) = xt+1 = 0, then

P(B(t + 1) = b(t + 1)|B(t) = b(t))

= P(V0(t + 1) = y0t+1 , I0(t + 1) = xt − y0t+1 |B(t) = b(t)),

= P(V0(t + 1) = xt − z0t+1 , I0(t + 1) = z0t+1 |B(t) = b(t)),

(3.11)

2. If S(t + 1) = xt+1 = xt , then

P(B(t + 1) = b(t + 1)|B(t) = b(t))

= P(V0(t + 1) = 0, I0(t + 1) = 0|B(t) = b(t)),

(3.12)

3. If S(t + 1) = xt+1 ∈ (0, xt), then

P(B(t + 1) = b(t + 1)|B(t) = b(t))

= P(V0(t + 1) = xt − xt+1 − z0t+1 , I0(t + 1) = z0t+1 |B(t) = b(t)),

= P(V0(t + 1) = y0t+1 , I0(t + 1) = xt − xt+1 − z0t+1 |B(t) = b(t)).

(3.13)
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Proof As mentioned earlier, we show that {B(t) : t ≥ 0} is a Markov chain without
loss of generality for t ≥ max (T1,T2). Moreover, we assume further without loss of
generality that T1 ≥ T2. Indeed, for most influenza epidemics where vaccination is
available, it is expected that the artificial immunity from the vaccine protects against
the viral attack over the whole season of the influenza epidemic, which is typically
longer on average than the length of time until infected people recover from the
disease. Thus, max(T1,T2) = T1.

To show that {B(t), t ∈ Z+} is a Markov chain, it suffices to show that the Markov
property holds in {B(t), t ∈ Z+}. That is, we show that for all t ≥ max(T1,T2) =
T1 ≥ T2,

P(B(t + 1) = b(t + 1)|B(t) = b(t),B(t − 1)

= b(t − 1), . . . ,B(1) = b(1),B(0) = b(0))

= P(B(t + 1) = b(t + 1)|B(t) = b(t)), (3.14)

where B(t) and b(t) are defined in (3.2) and (3.3). Indeed, from (3.8),

P(B(t + 1) = b(t + 1)|B(t) = b(t),B(t − 1)

= b(t − 1), . . . ,B(1) = b(1),B(0) = b(0))

= P(S(t + 1) = x(t+1), V0(t + 1)

= y0t+1 , . . . , V(T1−1)(t + 1) = y(T1−1)t+1 ,

I0(t + 1) = z0t+1, . . . , I(T2−1)(t + 1)

= z(T2−1)(t+1) |B(t) = b(t), . . . ,B(0) = b(0))

≡ RHS. (3.15)

Observe that at time t + 1, S(t + 1) is expressed as follows:

S(t + 1) = S(t) − V0(t + 1) − I0(t + 1), ∀t ≥ max (T1,T2). (3.16)

The right-hand side (RHS) of (3.15) can be expressed explicitly as follows:

RHS ≡ P(St+1(t + 1) = xt+1, V0(t + 1) = y0t+1 , V1(t + 1) = y1t+1 , V2(t + 1) = y2t+1 , . . .

VT1−1(t + 1) = yT1−1t+1 , I0(t + 1) = z0t+1 , I1(t + 1) = z1t+1 , I2(t + 1) = z2t+1 , . . .

It2−1(t + 1) = zt2−1t+1 | St(t)
︸︷︷︸

= xt, V0(t) = y0t , V1(t) = y1t , V2(t) = y2t , . . .

VT1−1(t) = yT1−1t , I0(t) = z0t , I1(t) = z1t , I2(t) = z2t , . . . , It2−1(t) = zt2−1t ,

B(t − 1) = b(t − 1),B(t − 2) = b(t − 2), . . . ,B(1) = b(1),B(0) = b(0)).

(3.17)
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By applying (3.16)–(3.17), it is easy to see that (3.17) reduces to

RHS

≡ P(V0(t + 1) = y0t+1 = xt − xt+1 − z0t+1 , V1(t + 1) = y0t , V2(t + 1) = y1t , . . .

V(T1−1)(t + 1) = y(T1−2)t , I0(t + 1) = z0t+1 , I1(t + 1) = z0t ,

I2(t + 1) = z1t , . . . , I(t2−1)(t + 1) = z(t2−2)t |St(t) = xt,

V0(t) = y0t , V1(t) = y1t , V2(t) = y2t , . . . V(T1−1)(t) = y(T1−1)t ,

I0(t) = z0t , I1(t) = z1t , I2(t) = z2t , . . . , It2−1(t) = z(t2−1)t ,

B(t − 1) = b(t − 1),B(t − 2) = b(t − 2), . . . ,B(1) = b(1),B(0) = b(0)).

(3.18)

Since most of the terms in the argument of the conditional probability in (3.18) are
already given as the conditions of the probability, and V0(t + 1) and I0(t + 1) have
no relationship with B(t − 1),B(t − 2), . . . ,B(1), and B(0), the Markov property in
(3.14) follows immediately. Moreover, (3.18) further reduces to:

RHS ≡ P(V0(t + 1) = y0t+1 = xt − xt+1 − z0t+1 , I0(t + 1) = z0t+1 |S(t) = xt, V0(t) = y0t ,

V1(t) = y1t , . . . , VT1−1(t) = y(T1−1)t , I0(t) = z0t ,

I1(t) = z1t , . . . , I(T2−1)(t) = z(T2−1)t ), (3.19)

or to

RHS ≡ P(V0(t + 1) = y0t+1 , I0(t + 1) = z0t+1 = xt − xt+1 − y0t+1 |S(t) = xt, V0(t) = v0t ,

V1(t) = y1t , . . . , VT1−1(t) = y(T1−1)t , I0(t) = z0t ,

I1(t) = z1t , . . . , I(T2−1)(t) = z(T2−1)t ). (3.20)

Thus, the second part (3.9) is proved.

Remark 3.1 Observe Theorem 3.1[1.] for S(t + 1) = xt+1 = 0 signifies that at the
t + 1 time step, all susceptible individuals xt at the previous time step t, are either
vaccinated or infected by the virus. Theorem 3.1[2.] for S(t + 1) = xt+1 = xt signi-
fies that no infection or vaccination occurs at the t + 1 time step, and Theorem 3.1[3.]
for S(t + 1) = xt+1 ∈ (0, xt) signifies that either y0t+1 number of people are vacci-
nated, xt − xt+1 − y0t+1 are infected, and xt+1 remain susceptible at time t + 1, or
z0t+1 number of people are infected, xt − xt+1 − z0t+1 are vaccinated, and xt+1 remain
susceptible at time t + 1. Thus, the transition probabilities (3.11)–(3.13) represent
tri-variate distributions for S(t + 1), V0 and I0.

In reality, the relationship between the events of getting vaccinated and getting
infected exhibit various mathematical forms determined by the properties of the
particular disease scenario. That is, the joint conditional distributions of the random
variables V0(t) and I0(t), for any time t = 0, 1, . . ., can be expressed in various forms
depending on the disease scenario.
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For instance, in more organized societies, the decision to be vaccinated, in some
cases, is not influenced by the outbreak of influenza, since influenza seasons are
predictable and periodic vaccination against influenza is encouraged. In other disease
scenarios especially when the influenza outbreak is unpredictable, more people tend
to get vaccinated whenever the influenza epidemic breaks out, and more influenza
cases have been reported. Also, in other influenza scenarios, the vaccine may not be
sufficiently strong to prevent infection, but mainly to reduce the severity of infection.
These scenarios can also create independence betweenvaccination and infection.One
of such special influenza disease scenarios is described in the next section.

4 Special SVIR Models

As remarked in Theorem 3.1, the transition probabilities of the chain {B(t), t =
0, 1, 2, . . . } are completely defined by the joint conditional distribution of the dis-
crete random variables S(t + 1), V0 and I0. In fact, the general discrete tri-variate
distribution in (3.9) defines a family of trinomial distributions, since a susceptible
individual at any instant has three possible outcomes in the next time step, namely
getting infected, or getting vaccinated, or remaining susceptible. Furthermore, there
are several different ways to characterize the explicit form of the discrete trinomial
distribution in (3.9), which are used to specify the transition probabilities for the
chain. Thus, the stochastic process {B(t), t = 0, 1, 2, . . . } with general transition
probabilities in Theorem 3.1 defines a family of chain-trinomial models.

Each particular chain-trinomial model in the family is defined in a unique manner
based on the assumptions for the influenza scenario, and consequently on the struc-
ture, and interrelationship between the probabilities of getting vaccination, infection
or remaining susceptible in the next time step, for each susceptible individual in
the population. We consider an influenza scenario in this section, where the events
of getting infection and vaccinated are interconnected or correlated. That is, the
drive for vaccination is inspired by infectious encounters. Furthermore, the trino-
mial distribution will be used to characterize the transition probabilities for the chain
{B(t), t = 0, 1, 2, . . . }. Other scenarios for the influenza epidemic such as when vac-
cination and infection are uncorrelated will be studied elsewhere in the second part
of this work.

4.1 The SVIR Influenza Model with Vaccination Correlated
with Infectious Encounters

The following assumptions are made for the influenza epidemic in this subsection:

(a) It is assumed that the influenza epidemic is very severe and highly contagious,
and the population is also well sensitized about the disease, and there are avail-
able vaccines for those seeking vaccination.
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There are several different ways to express the relationship between the events
of vaccination and infection in an influenza epidemic. Note that influenza vac-
cines do not always completely protect against subsequent influenza infections.
In fact, in some instances, infection may occur even after vaccination, as well as
protection through vaccination may take effect after infection has occurred [7].
Informed by these facts in [4, 6, 7], we consider a hypothetical influenza-
vaccination scenario, where people who receive influenza vaccines require a
time lapse after inoculation until the vaccine takes effect. The inoculated person
may still be infected during this time lapse before the vaccine takes effect, and
as a result the person becomes infectious despite being vaccinated. On the other
hand, a recently infected person incubates the disease over a time lapse, during
which the individualmay also be vaccinated. The vaccinated personmay become
asymptomatic to the disease or less severely ill after receiving the vaccine. That
is, it is assumed that the vaccine may intercept and reverse early infection and
vice versa.
Mathematically, these assumptions are adapted in the model {B(t), t = 0, 1,

2, . . . }, and expressed as follows. For i = 1, 2, . . . , S(t − 1) = xt−1
︸︷︷︸

+ ︷︸︸︷xt−1 , if

the ith susceptible person in the time interval (t − 2, t − 1] is infected at time
t − 1, the individual remains exposed for at most one-time unit and becomes
infectious I0(t) at time t, provided that no vaccination occurs in the interval
(t − 1, t], otherwise, the individual is counted in the vaccinated class V0(t). That
is, if infection occurs first in any interval before vaccination, then vaccination
reverses the infectious state. Note that the infected person must be incubating
the disease, and not fully infectious.
On the other hand, if the ith susceptible person in the time interval (t − 2, t − 1]
is vaccinated at time t − 1, the individual remains vulnerable for one-time unit
and becomes vaccinated V0(t) at time t, provided that no infection occurs in
the interval (t − 1, t], otherwise, the individual is counted in the infected class
I0(t). That is, if vaccination occurs first in any interval before infection, then
infection reverses the vaccination state. Note that reversal of vaccination status
only occurs during the time lapse until the vaccine is effective.
Observe that assuming reversal of early infection by vaccination, and vice
versa, requires in Theorem 3.1 that for each t = 0, 1, 2, . . . , the sample space

S(t) = xt
︸︷︷︸

+ ︷︸︸︷xt for the random variables V0(t + 1) and I0(t + 1) does not

changewithin the time interval (t, t + 1), but at the endpoint t + 1 of the interval.
Furthermore, because of the high prevalence of the disease, every susceptible
person in the population at the end of any time interval t, that is, (t − 1, t] is
either infected, vaccinated, or remains susceptible. Moreover, the probability
of the ith susceptible individual from the (t − 1)th generation S(t − 1) = xt−1

escaping infection and avoiding vaccination at time t is denoted Pi
S(t).

(b) Using ideas from [8, 25], we assume further that p is the probability of becom-
ing infected after one interaction with an infected individual, and all interactions
between a susceptible person and infectious individuals are independent. Thus,
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at time t, the probability that the ith susceptible individual from the (t − 1)th
generation S(t − 1) = xt−1 becomes infectious after interaction with j infectious
individuals is denoted pij(t) ≡ pij, and is given by

pij = 1 − (1 − p)j, i = 1, 2, 3, . . . , xt−1,where S(t − 1) = xt−1. (4.1)

(c) Let Ni(t) represent the number of people the ith susceptible individual interacts
with at time t.Note thatNi(t) is a randomvariable for each t = 0, 1, 2, . . . . In fact,
{Ni(t), t = 0, 1, 2, . . . } is a random process. For the purpose of illustrating the
method of expectation–maximization (EM) algorithm to find the maximum like-
lihood estimators (MLEs) for the parameters of the influenza epidemic model,
we shall assume for simplicity that Ni(t) is a constant N > 0, that is Ni(t) ≡ N
(note that such a simplifying assumption was utilized in [8]). Moreover, we
assume that N is chosen in such a way that the binomial approximation for the
number of infectious people a susceptible person meets can be used. In the next
part of this study, we characterize the random process {Ni(t), t = 0, 1, 2, . . . } as
a Poisson process.

(d) Furthermore, it is assumed that there is homogenous mixing in the population,
and as a result, the probability that the ith susceptible person S(t − 1) = xt−1

at the beginning of the tth time interval (t − 1, t] meets an infectious person
I(t − 1) also from the (t − 1)th generation present at time t is given as I(t−1)

n−1 .
Thus, the probability that the ith individual meets exactly j infectious individuals
is defined as follows:

Pi
j(Ni(t)) =

(

Ni(t)

j

)(

I(t − 1)

n − 1

)j (

1 − I(t − 1)

n − 1

)Ni(t)−j

,

0 ≤ j ≤ Ni(t). (4.2)

It follows from the assumptions (a)–(d) above that the probability of the ith sus-
ceptible individual of S(t − 1) = xt−1 meeting infectious individuals and becom-
ing infected at time t is given by

Pi
I (t) =

Ni(t)
∑

j=1

(1 − (1 − p)j)

(

Ni(t)

j

)(

I(t − 1)

n − 1

)j (

1 − I(t − 1)

n − 1

)Ni(t)−j

, (4.3)

which simplifies to

Pi
I (t) ≡ Pt

I = 1 −
(

1 − pI(t − 1)

n − 1

)Ni(t)

. (4.4)

(e) It is assumed further that susceptible individuals are motivated to seek vacci-
nation due to their encounter with infectious individuals, and such encounters
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within any one time unit which do not lead to infection, give rise to immediate
desire in the susceptible person to get vaccinated within the very one-time unit.

Furthermore, it is assumed that the disease has an incubation period at most one-
time unit (e.g., one week, etc.), and the vaccine is relatively strong to reverse any
infection that occurs within the span of one-time unit, such that all susceptible people
who get infected and are also vaccinated within the one-time unit, obtain artificial
immunity, and join the vaccinated class instead. That is, suppose a susceptible person
is infected at the beginning of the time interval (t − 1, t], without the interception by
vaccination, the exposed person develops full-blown disease by the end of the interval
t. On the contrary, if the person exposed at time t − 1 or at any instant within the
time interval (t − 1, t] is also vaccinated within the very time interval (t − 1, t], then
the infection is reversed by the vaccination, and the individual joins the vaccination
class instead. The reversibility of vaccination by infection is not considered in this
influenza scenario.

Also, suppose a susceptible person eludes infection within a one-time unit (t −
1, t], we let φ ∈ (0, 1) be the probability that the susceptible individual experiences
an attitude change toward vaccination due to the encounters with infectious persons
and gets vaccinated within the very time interval. Thus, with probability 1 − φ, the
individual who has eluded infection after infectious contacts remains the same in
attitude about not getting vaccination, and also remaining susceptible by the end of
the time interval (t − 1, t]. Moreover, it is assumed that φ is independent of the size
of the infectious encounters at any time interval (t − 1, t],∀t. Vaccination without
the impact of infection is not considered in this scenario.

From above, it is easy to see that the probability that the ith susceptible person
S(t − 1) = xt−1 present at the beginning of the tth time interval (t − 1, t] meets j
(∀j = 1, 2, . . . ,N ) infectious persons of the class I(t − 1) (also from the (t − 1)th
generation) also present in the tth time interval (t − 1, t], and eludes infection from
the j infectious persons, and subsequently becomes vaccinated before or by the end
of the interval t, is given as follows:

(φ(1 − p)j)

(

Ni(t)

j

)(

I(t − 1)

n − 1

)j (

1 − I(t − 1)

n − 1

)Ni(t)−j

,∀j = 1, 2, . . . ,N . (4.5)

Also, from assumption (a), since three outcomes are possible for any susceptible
person of a previous time step t − 1, present at time t, therefore, the probability that
the ith susceptible personS(t − 1) = xt−1 at the beginning of the tth time interval (t −
1, t]meets at least one infectious person I(t − 1) (also from the (t − 1)th generation)
present at time t, and eludes infection from the infectious persons, and subsequently
becomes vaccinated at time t, is denoted Pi

V (t). Moreover, Pi
V (t) satisfies Pi

V (t) +
Pi
I (t) = 1 − Pi

S(t), and is derived as follows:

Pi
V (t) =

Ni(t)
∑

j=1

(φ(1 − p)j)

(

Ni(t)

j

)(

I(t − 1)

n − 1

)j (

1 − I(t − 1)

n − 1

)Ni(t)−j

, (4.6)
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which simplifies to

Pi
V (t) ≡ Pt

V = φ

(

1 − pI(t − 1)

n − 1

)Ni(t)

. (4.7)

We now present the transition probabilities for the SVIR stochastic process {B(t), t =
1, 2, 3, . . . }, whenever t ≥ max{T1,T2}.
Theorem 4.1 Let the conditions of Theorem 3.1 be satisfied, and let the probability
that the ith, ∀i = 1, 2, . . . , xt susceptible gets vaccinated at time t, denoted Pi

V (t)
be as defined in (4.7), the probability that the ith, ∀i = 1, 2, . . . , xt susceptible gets
infected at time t, denotedPi

I (t) be as defined in (4.4), whereP
i
V (t) + Pi

I (t) + Pi
S(t) =

1. It follows that for t ≥ max{T1,T2}, the transition probabilities for the stochastic
process {B(t), t = 1, 2, 3, . . . }, are given as follows. For S(t + 1) = xt+1 ∈ (0, xt),
and with every susceptible individual vaccinated only once, it follows that

P(B(t + 1) = bt+1|B(t)) =
(

xt
︸︷︷︸

y0t+1

)(

xt − y0t+1

z0t+1

)

(

Pi
V (t)

)y0t+1
(

Pi
I (t)
)z0t+1

× (Pi
S(t)
)xt−z0t+1−y0t+1 , (4.8)

where xt+1 + y0t+1 + z0t+1 = xt .
For S(t + 1) = xt+1 ∈ (0, xt), and with multiple vaccination in the population, it

follows that

P(B(t + 1) = bt+1|B(t)) =
(

xt
y0t+1

)(

xt − y0t+1

z0t+1

)

(

Pi
V (t)

)y0t+1
(

Pi
I (t)
)z0t+1

× (Pi
S(t)
)xt−z0t+1−y0t+1 , (4.9)

where xt+1 + y0t+1 + z0t+1 = xt . In addition, the conditional marginal distributions
of V0 and I0 are given as follows:

P(V0(t + 1) = y0t+1 |B(t)) =
(

xt
y0t+1

)

(

Pi
V (t)

)y0t+1
(

1 − Pi
V (t)

)xt−y0t+1 , (4.10)

and

P(I0(t + 1) = z0t+1 |B(t)) =
(

xt
z0t+1

)

(

Pi
I (t)
)z0t+1

(

1 − Pi
I (t)
)xt−z0t+1 . (4.11)

Proof Let not(V0(t) ∨ I0(t)) be the random variable representing the number of
people who remain susceptible at time t. It follows from basic probability rules that
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P(B(t + 1) = bt+1|B(t)) = P(V0(t = 1) = y0t+1 |B(t) = b(t))

×P(I0(t + 1) = z0t+1 |V0(t + 1) = y0t+1 ,B(t) = b(t)) ×
×P(not(V0(t + 1) ∨ I0(t + 1)) = xt − y0t+1 − z0t+1 |I0(t = 1)

= z0t+1, V0(t = 1)

= y0t+1 ,B(t) = b(t)).

(4.12)

From the assumptions (a)–(d) above, it is easy to see that since not(V0(t + 1) ∨
I0(t + 1)) + V0(t + 1) + I0(t + 1) = xt , then

P(B(t + 1) = bt+1|B(t)) =
(

xt
︸︷︷︸

y0t+1

)(

xt − y0t+1

z0t+1

)(

xt − y0t+1 − z0t+1

xt − y0t+1 − z0t+1

)

(

Pi
V (t)

)y0t+1

× (Pi
I (t)
)z0t+1

(

1 − Pi
V (t) − Pi

I (t)
)xt−z0t+1−y0t+1 (4.13)

Note that (4.13) reduces to (4.8). Also, the results for (4.10)–(4.11) follows imme-
diately from the assumptions (a)–(d) above.

5 Parameter Estimation

In this section, we find estimators for the true parameters of the SVIR Markov chain
model using observed data for the state of the process over time. In Sect. 4.1, observe
that both Pi

V (t) and Pi
I (t) depend on the probability of getting infection from one

interaction with an infectious person, p. Also, Pi
V (t) depends on φ-the probability

that a susceptible person who has eluded infection develops desire and becomes vac-
cinated at time t. Therefore, utilizing ideas from [23], we find a maximum likelihood
estimators (MLEs) for the probability of getting infection from one interaction with
an infectious person, p, and also for φ, for the chain {B(t), t = 0, 1, 2, . . . } in the
case defined in Sect. 4.1. That is, when the transition probabilities are defined in
(4.8).

Furthermore, we consider the random process {B(t), t = 0, 1, 2, . . . }, whenever
t ≥ max{T1,T2}without loss of generality. Also, note that the parameter � = (p,φ)

represent fixed measures in the population at each time t, that is, p and φ represent
fixedmeasurements for events occurring in the population during the tth time interval
(t − 1, t], where the population at any time t = 0, 1, 2, . . . is defined by the random
vector

B(t) = (S(t), V0(t), V1(t), . . . , VT1−1(t), I0(t), I1(t), . . . , IT2−1(t)), (5.1)

whenever t ≥ max{T1,T2}.
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Let b̂(t) be the observed value of the random vector B(t) at time t ≥ max{T1,T2},
t = 0, 1, 2, . . . , defined in (3.3). That is,

b̂(t) = (x̂t = x̂t
︸︷︷︸

+
︷︸︸︷

x̂t , ŷ0t , ŷ1t , ŷ2t , . . . , ˆyT1−1t , ˆz0t , ˆz1t , ˆz2t , . . . , ˆzt2−1t ), (5.2)

where x̂t, ŷ0t , ŷ1t , ŷ2t , . . . , ˆyT1−1t , ˆz0t , ˆz1t , ˆz2t , . . . , ˆzt2−1t ∈ Z+ are nonnegative
observed constant values for each component of B(t), at time t = 0, 1, 2, 3, . . . .

The population B(t) is observed over the time units, t = 0, 1, 2, . . . ,T , where the
initial state B(0) = b̂(0) is assumed to be known. That is, B(0) is deterministic, and
the observed data consists of the measurements

b̂(0), b̂(1), b̂(2), . . . , b̂(T ). (5.3)

We define the collection of random variables B(0),B(1),B(2), . . . ,B(T ) represent-
ing the population over times t = 0, 1, 2, . . . ,T as follows:

DT = {B(0),B(1),B(2), . . . ,B(T )} (5.4)

and from (5.2), the observed values of DT are given as

D̂T = {b̂(0), b̂(1), b̂(2), . . . , b̂(T )}. (5.5)

We use the observed sample path D̂T of the process {B(t) : t = 0, 1, 2, . . . } to find
maximum likelihood estimates for the parameters � = (p,φ). The generation of the
sample path D̂T in (5.5) from the population B(t) over times t = 0, 1, 2, . . . ,T is
illustrated in Fig. 2.

Remark 5.1 It must be noted that inferences for the parameters � = (p,φ) such as
confidence intervals and tests of significance, and consistency of estimators for the
parameters are beyond the scope of this work, and will appear elsewhere.

We assume that we have data for influenza over time units t = 0, 1, 2, . . . ,T
denoted D̂T , where D̂T is defined in (5.5), and D̂T is one realization of the human
population over time denoted DT , defined in (5.4). From (5.2), (5.4), and (5.5), the
likelihood function of � = (p,φ) is defined as follows:

L(�|D̂T ) = L(p,φ|D̂T ) = P(DT = D̂T |p,φ)

= P(B(T ) = b̂(T ),B(T − 1) = b̂(T − 1), . . . ,B(0) = b̂(0)|p,φ).

(5.6)
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Population at
t=0

B(0)

Population at
t=1

B(1)

Population at
t=2

B(2)

Population at
t=T

B(T)

),p(= Φθ
θ ),p(= Φ),p(= Φθ

),p(= Φθ

Fig. 2 Shows the transition of the process {B(t), t = 0, 1, 2, . . . } over time t = 0, 1, 2, . . . ,T , and
observed data D̂T = {b̂(0), b̂(1), b̂(2), . . . , b̂(T )}. The parameters � = (p,φ) are constant in the
population at all times t = 0, 1, 2, . . . ,T

From (5.6), applying the multiplication rule, it is easy to see that

L(p,φ|D) = P(B(T ) = b̂(T )|B(T − 1) = b̂(T − 1), . . . ,B(0) = b̂(0); p, φ)×
× P(B(T − 1) = b̂(T − 1)|B(T − 2) = b̂(T − 2), . . . ,B(0) = b̂(0); p, φ)×

...

× P(B(1) = b̂(1)|B(0) = b̂(0); p, φ) × P(B(0) = b̂(0); p,φ). (5.7)

But, since {B(t), t = 0, 1, 2, 3, . . . } is a Markov Chain, and since it is assumed B(0)
is known, it is easy to see that (5.7) reduces to

L(p,φ|D̂T ) =
T
∏

k=1

P(B(k) = b̂(k)|B(k − 1) = b̂(k − 1); p,φ). (5.8)

It follows from (5.8) and (3.9) that for S(k) = xk ∈ (0, xk−1),∀k = 1, 2, . . . ,T ,

L(p,φ|D̂T ) =
T
∏

k=1

P(V0(k) = ŷ0k , I0(k) = ẑ0k |B(k − 1) = b̂(k − 1); p,φ). (5.9)

Observe that substituting (4.8) into (5.9) leads to the likelihood function with respect
to the parameters p, and φ. We should note that applying the maximization technique



Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination … 49

to find the MLE p̂, and φ̂, for p, and φ, respectively, using the likelihood function L
defined in (5.9) leads to an intractable equation for the derivative of the log-likelihood
of Lwith respect to p or φ, set to zero. Thus, we apply the expectation–maximization
(EM) algorithm to find an appropriate MLE for p-the probability of passing the
infection from one independent infectious contact, and for φ-the probability that a
susceptible person gets vaccinated, given that the individual has escaped infection.

5.1 The EM Algorithm and Jensen’s Inequality

In this section, we introduce the EM algorithm, where missing information is incor-
porated into the incomplete likelihood function, at random, and Jensen’s inequality
is used to find a lower-bound for the complete log-likelihood function.

Recall, the expectation–maximization (EM) algorithm is an iterative algorithm
used to find theMLE of a parameter� of a given distribution [31, 32]. There are two
caseswhere the algorithm ismost useful: (1)when the data available for themaximum
likelihood estimation technique has missing components and (2) when maximizing
the likelihood function leads to an intractable equation, but adding missing data can
simplify the process. It is for the second case in our problem that we utilize this EM
algorithm.

Suppose we have observed data Y , and likelihood function L(�|Y ) = P(Y |�),
and suppose the vector Z is missing data or a missing component, so that X =
(Y ,Z) is the complete data. The complete log-likelihood function log L(�|X ) =
logP(Y ,Z|�) can be maximized to find the MLE of � in two basic EM algorithm
steps, namely the expectation (E) step and the maximization (M)-step.

The E-step consists of finding the expected value of the complete log-likelihood
function logP(Y ,Z|�) with respect to the conditional mass of Z given Y and �.
That is, we find

EZ|Y ;�[logL(�|X )] = EZ|Y ;�[logP(Y ,Z|�)]
=
∑

Z

log(P(Y ,Z|�)P(Z|Y ;�)). (5.10)

The M-step consists of maximizing EZ|Y ;�[logL(�|X )] to find an estimate �̂ for
�. This process is summarized in the following steps:

i. Let m = 0 and �̂m be an initial guess for �.

ii. Given the observed data Y , and assuming that the guess �̂m is correct, calculate
the conditional probability distribution P(Z|Y , �̂m) for the missing data Z .
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iii. Find the conditional expected log-likelihood referred to as Q, that is,

Q(�|�̂m) =
∑

Z

log(P(Y ,Z|�)P(Z|Y , �̂m))

= EZ|Y ,�̂m[log(P(X |�))], (5.11)

where X = (Y ,Z).
iv. Find the � that maximizes Q(�|�̂m). The result will be the new �̂m+1. That is,

�̂m+1 = argmax�Q(�|�̂m). (5.12)

v. Update �̂m and repeat step (iv) until � stops noticeably changing.

The E-step can be obtained by applying Jensen’s inequality. We recall Jensen’s
inequality [33] in the following:

Lemma 5.1 Suppose f is a convex function, and X is a random variable, then

E[f (X )] ≥ f (E[X ]). (5.13)

Conversely, if you have a concave function (e.g., a logarithmic function), then

E[f (x)] ≤ f (E[X ]). (5.14)

From (5.10), let Y = D̂T represent the observed data defined in (5.5). The fol-
lowing random missing information Z are incorporated to make the log-likelihood
function log(L) more tractable, where L is given in (5.9).

(i) the collection eiT = {ei0, ei1, ei2, . . . , eit, . . . , eiT }, where for each t ∈ {0, 1, 2,
. . . ,T } and i ∈ {1, 2, 3, . . . , xt−1 = S(t − 1)}, eit is a discrete random variable
representing the number of infectious individuals that the ith susceptible person
of the (t − 1)th generation meets at time t (i.e. in the interval (t − 1, t]). Since
from (4.3), a susceptible person only meets the fixed number of people, N , at
any time t, therefore

eit = j, j = 1, 2, 3, . . . ,N . (5.15)

(ii) the collection di
T ,j = {d i

0,j, d
i
1,j, d

i
2,j, . . . , d

i
t,j, . . . , d

i
T−1,j, d

i
T ,j}, where for each

t ∈ {0, 1, 2, . . . ,T }, i ∈ {1, 2, 3, . . . , xt−1 = S(t − 1)}, and j ∈ {1, 2, 3, . . . ,N },
di
t,j is a categorical random variable indicating the event that the lth infectious
individual passes the infection with probability p, where l = 1, 2, 3, . . . , j, given
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that the ith susceptible person meets j infectious people among the fixed number
of people N , at time t. Thus,

d i
t,j = l, l = 1, 2, 3, . . . , j. (5.16)

We consider a step-by-step approach to add the missing data eiT and di
T ,j into the

incomplete likelihood function L.

Lemma 5.2 Let the assumptions of Theorem 4.1 be satisfied. Given the missing at
random information eiT and di

T ,j defined in (5.15) and (5.16), then it follows from

(4.8) and (5.9), that the log-likelihood function log L(p,φ|D̂T ) satisfies the following
inequality:

logL(p,φ|D̂T ) ≥
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|B(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ)

× log(P(V0(k) = ŷ0k , e
i
k = j, d i

k,j = l|B(k − 1) = b̂(k − 1); p,φ))
]

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j, V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

× log(P(I0(k) = ŷ0k , e
i
k = j, d i

k,j = l|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ))
]

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j, I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

× log(P(not(V0(k) ∨ I0(k)) = û0k , e
i
k = j, d i

k,j = l|I0(k)
= ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ))

]

− λ1 − λ2

(5.17)

where û0k = x̂k−1 − ŷ0k − ẑ0k ,∀k = 1, 2, . . . ,T , and λ1, and also λ2 are proba-
bility terms that depends on eiT and di

T ,j .
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Proof From (5.9), denote the log-likelihood l(p,φ|D̂T ) ≡ log L(p,φ|D̂T ). It follows
from (5.9) that adding the missing random data eiT , we obtain

l(p,φ|D̂T ) = log
T
∏

k=1

P(V0(k) = y0k , I0(k) = z0k |B(k − 1) = b̂(k − 1); p,φ)

=
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(V0(k) = y0k , e
i
k = j|B(k − 1) = b̂(k − 1); p,φ)

⎤

⎦

+
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(I0(k) = z0k , e
i
k = j|V0(k) = y0k ,

B(k − 1) = b̂(k − 1); p,φ)
]

+
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(not(V0(k) ∨ I0(k)) = u0k , e
i
k = j|I0(k) = z0k ,,

V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
]

.

(5.18)

Equation (5.18) can be expressed further as follows

l(p,φ|D̂T ) =
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(V0(k) = y0k , e
i
k = j|B(k − 1) = b̂(k − 1))

P(eik = j|B(k − 1) = b̂(k − 1); p,φ)
; p,φ)

× P(eik = j|B(k − 1) = b̂(k − 1); p,φ)
]

+
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(I0(k) = y0k , e
i
k = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1)p,φ)

× P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
]

. +
T
∑

k=1

log

⎡

⎣

N
∑

j=1

P(not(V0(k) ∨ I0(k)) = u0k , e
i
k = j|I0(k) = z0k ,, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

P(eik = j|I0(k) = ẑ0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

× P(eik = j|I0(k) = z0k ,, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
]

.

(5.19)
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Applying Jensen’s inequity to (5.19), leads to the following

l(p,φ|D̂T ) ≥
T
∑

k=1

N
∑

j=1

log
{

P(V0(k) = y0k , e
i
k = j|B(k − 1) = b̂(k − 1); p,φ)

}

P(eik = j|B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

log
{

P(I0(k) = z0k , e
i
k = j|V0(k) = y0k ,

B(k − 1) = b̂(k − 1); p,φ)
}

× P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

log
{

P(not(V0(k) ∨ I0(k)) = u0k , e
i
k = j|I0(k)

= z0k ,, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
}

× P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ) − λ1,

(5.20)

where λ1 in (5.20) is given as follows

λ1 =
T
∑

k=1

N
∑

j=1

log
{

P(eik = j|B(k − 1) = b̂(k − 1); p,φ)
}

P(eik = j|B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

log
{

P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
}

×P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

log
{

P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
}

×P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

(5.21)

We add the missing data di
T ,j in (5.16) into the partially complete log-likelihood

function logP(V0(k) = y0k , e
i
k = j|B(k − 1) = b̂(k − 1); p,φ),

logP(I0(k) = z0k , e
i
k = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ) and

log
{

P(not(V0(k) ∨ I0(k)) = u0k , e
i
k = j|I0(k) = z0k ,, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

}

,
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∀k ∈ {1, 2, 3, . . . ,T }; j ∈ {1, 2, 3, . . . ,N }, and apply the same technique in (5.18)-
(5.21), as follows.

From (5.20)

l(p,φ|D̂T ) ≥
T
∑

k=1

N
∑

j=1

log

⎧

⎨

⎩

j
∑

l=1

P(V0(k) = y0k , e
i
k = j, dik,j = l|B(k − 1) = b̂(k − 1))

⎫

⎬

⎭

×P(eik = j|B(k − 1) = b̂(k − 1); p, φ)

+
T
∑

k=1

N
∑

j=1

log

⎧

⎨

⎩

j
∑

l=1

P(I0(k) = y0k , e
i
k = j, dik,j = l|V0(k) = y0k ,

B(k − 1) = b̂(k − 1); p, φ)
}

×P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p, φ)

+
T
∑

k=1

N
∑

j=1

log

⎧

⎨

⎩

j
∑

l=1

P(not(V0(k) ∨ I0(k))

= u0k , e
i
k = j, dik,j = l|I0(k) = z0k ,, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p, φ)

}

×P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p, φ) − λ1,

(5.22)

Applying Jensen’s inequality on (5.22), we obtain the following

l(p,φ|D̂T ) ≥
T
∑

k=1

N
∑

j=1

j
∑

l=1

log
{

P(V0(k) = y0k , eik = j, dik,j = l|B(k − 1)

= b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ)P(eik = j|B(k − 1)

= b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

log
{

P(I0(k) = z0k , eik = j, dik,j = l|V0(k) = y0k , )

B(k − 1) = b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p, φ)

P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

log
{

P(not(V0(k) ∨ I0(k)) = u0k , eik = j, dik,j

= l|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j, I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ) − λ1 − λ2, (5.23)
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where

λ2 =
T
∑

k=1

N
∑

j=1

log
{

P(dik,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ)P(eik = j|B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

log
{

P(dik,j = l|eik = j, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

log
{

P(dik,j = l|eik = j, I0(k) = z0k , V0(k) = y0k ,

B(k − 1) = b̂(k − 1); p,φ)
}

×P(dik,j = l|eik = j, I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(eik = j|I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ)

(5.24)

Remark 5.2 We note from (5.17) that the E-step of the EM algorithm consists of
finding the conditional expectation term

Q(�|�̂m) =
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|B(k − 1) = b̂(k − 1); pm,φm)

×P(d i
k,j = l|eik = j,B(k − 1) = b̂(k − 1); pm,φm)

× log(P(V0(k) = ŷ0k , e
i
k = j, d i

k,j = l|B(k − 1) = b̂(k − 1); p,φ))
]

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); pm,φm)

×P(d i
k,j = l|eik = j, V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); pm,φm)

× log(P(I0(k) = ŷ0k , e
i
k = j, d i

k,j = l|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ))
]

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

[

P(eik = j|I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); pm,φm)

×P(d i
k,j = l|eik = j, I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); pm,φm)

× log(P(not(V0(k) ∨ I0(k)) = û0k , e
i
k = j, d i

k,j = l|I0(k)
= z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p,φ))

]

(5.25)
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where � = (p,φ), and (p̂m, φ̂m) is the estimate of (p,φ) in the mth step of the EM
algorithm.

We specify an explicit expression for components of theE-step (5.25) in the following
result.

Lemma 5.3 For each k ∈ {1, 2, 3, . . . ,T }, j ∈ {1, 2, 3, . . . ,N }, and l ∈ {1, 2, 3,
. . . , j}, the following holds:

P(eik = j|B(k − 1) = b̂(k − 1); p̂(m), φ̂(m))

=
(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

, (5.26)

P(eik = j|V0(k) = y0k ,B(k − 1) = b̂(k − 1); p̂(m), φ̂(m))

=
(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

, (5.27)

and

P(eik = j|I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1)

= b̂(k − 1); p̂(m), φ̂(m))

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

. (5.28)

Also,

P(d i
k,j = l|eik = j,B(k − 1) = b̂(k − 1); p̂(m), φ̂(m)) = p̂(m), (5.29)

P(d i
k,j = l|eik = j, V0(k) = y0k ,B(k − 1) = b̂(k − 1); p̂(m), φ̂(m)) = p̂(m), (5.30)

and

P(di
k,j = l|eik = j, I0(k) = z0k , V0(k) = y0k ,B(k − 1) = b̂(k − 1); p̂(m), φ̂(m)) = p̂(m).

(5.31)
Furthermore,

P(V0(k) = ŷ0k , e
i
k = j, dik,j = l|B(k − 1) = b̂(k − 1); p, φ) =

(x̂k−1
︸︷︷︸

ŷ0k

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

(φ(1 − p))y0k (1 − φ(1 − p))
x̂k−1
︸︷︷︸

−ŷ0k
p,

(5.32)
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P(I0(k) = ẑ0k , e
i
k = j, d i

k,j = l|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ) =
(

x̂k−1 − ŷ0k
ẑ0k

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p(ẑ0k +1)(1 − p)x̂k−1−ŷ0k −ẑ0k ,

(5.33)

and

P(not(V0(k) ∨ I0(k)) = û0k , e
i
k = j, dik,j = l|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p, φ) =

(1)

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

((1 − p)(1 − φ))
û0k p,

(5.34)

where û0k = x̂k−1 − ŷ0k − ẑ0k ,∀k.
Proof Equations (5.26)–(5.31) follow immediately from assumptions (a)–(d) in
Sect. 4.1. For (5.32) and (5.34), we apply the multiplication rule and also apply
assumptions (a)–(d) in Sect. 4.1. That is,

P(V0(k) = ŷ0k , e
i
k = j, d i

k,j = l|B(k − 1) = b̂(k − 1); p,φ) =
P(V0(k) = ŷ0k , |eik = j, d i

k,j = lB(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ)

×P(eik = j|B(k − 1) = b̂(k − 1); p,φ). (5.35)

Observe from assumptions (a)–(d) in Sect. 4.1 that, given infection is passed across
only by the lth infectious person among the j infectious persons encountered for
that given instant, and also given that φ is the probability that a susceptible person
changes the mind, and becomes vaccinated within that time instant after escaping
infection from the lth infectious person, it follows thatφ(1 − p) is the probability that
a susceptible person gets vaccinated at any instant, and the conditional distribution
of the random variable V0(k) is binomial with parameters φ(1 − p) and x̂k−1

︸︷︷︸

. Thus,

P(V0(k) = ŷ0k |eik = j, d i
k,j = l,B(k − 1)

= b̂(k − 1); p,φ) =
(x̂k−1
︸︷︷︸

ŷ0k

)

(φ(1 − p))y0k (1 − φ(1 − p))
x̂k−1
︸︷︷︸

−ŷ0k
,

(5.36)

Also, the probability that the lth infectious person passes infection at any instant
given j infectious individuals present at the instant is given by

P(d i
k,j = l|eik = j,B(k − 1) = b̂(k − 1); p,φ) = p, (5.37)



58 D. Wanduku et al.

and the probability that the ith susceptible person meets j infectious people at time
k is given by

P(eik = j|B(k − 1) = b̂(k − 1); p,φ) =
(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

.

(5.38)
Substituting (5.36)–(5.38) into (5.35) gives (5.32).

Similarly,

P(I0(k) = ẑ0k , e
i
k = j, d i

k,j = l|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ) =
P(I0(k) = ẑ0k , |eik = j, d i

k,j = l, V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j, V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(eik = j|V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ). (5.39)

From assumptions (a)–(d) in Sect. 4.1, it is easy to see that

P(I0(k) = ẑ0k |eik = j, d i
k,j = l, V0(k) = ŷ0k ,

B(k − 1) = b̂(k − 1); p) =
(

x̂k−1 − ŷ0k
ẑ0k

)

(1 − p)x̂k−1−ŷ0k −ẑ0k (p)ẑ0k . (5.40)

Furthermore, all the other components of (5.39) are obtained similarly as in (5.37)–
(5.38).

Finally,

P(not(V0(k) ∨ I0(k)) = û0k , e
i
k = j, d i

k,j = l|V0(k) = ŷ0k ,

B(k − 1) = b̂(k − 1); p,φ) =
P(not(V0(k) ∨ I0(k)) = û0k , |eik = j, d i

k,j = l, I0(k) = ẑ0k , V0(k) = ŷ0k ,

B(k − 1) = b̂(k − 1); p,φ)

×P(di
k,j = l|eik = j, I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ)

×P(eik = j|I0(k) = ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p,φ). (5.41)

From assumptions (a)–(d) in Sect. 4.1, it is easy to see that for û0k = x̂k−1 − ŷ0k −
ẑ0k ,

P(not(V0(k) ∨ I0(k)) = û0k |eik = j, d i
k,j = l, I0(k)

= ẑ0k , V0(k) = ŷ0k ,B(k − 1) = b̂(k − 1); p)
=
(

x̂k−1 − ŷ0k − ẑ0k
û0k

)

(p + φ(1 − p))x̂k−1−ŷ0k −ẑ0k −û0k (1 − p − φ(1 − p))û0k

= (1 − p − φ(1 − p))û0k . (5.42)
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Furthermore, all the other components of (5.41) are obtained similarly as in (5.37)–
(5.38). Thus, from (5.39) to (5.42), the result in (5.34) follows immediately.

The following result presents an expression for the E-step of the EM algorithm.

Theorem 5.1 Assume that the results in Lemma 5.3 hold. For m = 0, 1, 2, . . . ,
the E-step of the EM algorithm in (5.25) in Remark 5.2 is expressed as follows for
� = (p,φ)

Q(�|�̂(m)) ≡ K +
T
∑

k=1

N

(

Î(k − 1)

n − 1

)

p̂(m)×

× ([1 + (ẑ0k + 1) + 1] log (p) + (x̂k−1 − ẑ0k + û0k ) log (1 − p)

(x̂k−1
︸︷︷︸

−ŷ0k ) log(1 − φ(1 − p)) + ŷ0k log(φ) + û0k log(1 − φ)

)

,

(5.43)

where û0k = x̂k−1 − ŷ0k − ẑ0k ,∀k, K denotes a constant term, and p̂(m) is an estimate
of p at the mth step. Also

Î(k − 1) = ẑ00 + ẑ01 + · · · + ẑ0k−1 . (5.44)

Proof From Lemma 5.2 and (5.25), it is easy to see that

Q(�|�̂(m)) ≡ Q(p,φ|p̂(m), φ̂m)

≡
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎧

⎨

⎩

log

⎡

⎣

(x̂k−1
︸︷︷︸

ŷ0k

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

+(x̂k−1
︸︷︷︸

−ŷ0k ) log(1 − φ(1 − p)) + (ŷ0k ) log(1 − p) + (ŷ0k ) log(φ) + log(p)

}

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎧

⎨

⎩

log

⎡

⎣

(

x̂k−1 − ŷ0k
ẑ0k−1

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

+(ẑ0k + 1) log(p) + (x̂k−1 − ŷ0k − ẑ0k ) log(1 − p)
}

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎧

⎨

⎩

log

⎡

⎣

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

+(û0k ) log(1 − p) + (û0k ) log(1 − φ) + log(p)
}

,

(5.45)
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where û0k = x̂k−1 − ŷ0k − ẑ0k ,∀k. Observe that
N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

= N

(

Î(k − 1)

n − 1

)

. (5.46)

Thus, (5.43) follows immediately from (5.45), where

K ≡
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎡

⎣log

⎡

⎣

( x̂k−1
︸︷︷︸

ŷ0k−1

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

⎤

⎦

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎡

⎣log

⎡

⎣

(

x̂k−1 − ŷ0k
ẑ0k−1

)(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

⎤

⎦

+
T
∑

k=1

N
∑

j=1

j
∑

l=1

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j

p̂(m) ×
⎡

⎣log

⎡

⎣

(

N

j

)
(

Î(k − 1)

n − 1

)j (

1 − Î(k − 1)

n − 1

)N−j
⎤

⎦

⎤

⎦ .

(5.47)

Also, (5.44) follows from Definition 2.4.

Remark 5.3 It follows from Theorem 5.1 that the M-step of the EM algorithm con-
sists of maximizing Q(p,φ|p̂(m), φ̂(m)) with respect to p,φ. This is equivalent to
maximizing the non-constant term of (5.43).

In the next result, we present the M-step of the EM algorithm, and an implicit MLE
for p,φ.

Theorem 5.2 Let the E-step of the EM algorithm be as defined in Theorem 5.1. The
M-step of the EM algorithm consists of solving the following nonlinear system of
equations for p and φ.
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φ

1 − φ(1 − p)

T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ŷ0k )

−
(

1

1 − p

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ẑ0k + û0k)

+
(

1

p

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(1 + (ẑ0k + 1) + 1) = 0, (5.48)

− (1 − p)

1 − φ(1 − p)

T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ŷ0k ) +
(

1

φ

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(ŷ0k)

−
(

1

1 − φ

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(û0k ) = 0. (5.49)

Moreover, the MLE of p and φ are given implicitly as the solutions of the system
(5.48)–(5.49).

Proof From (5.43), observe that at themth step,m = 0, 1, 2, . . ., maximizing the Q-
function defined in the E-step Q(�|�̂(m)) with respect to p and φ, consists of taking
the derivatives of Q(�|�̂(m)) with respect to p and φ, that is,

∂Q

∂p
= φ

1 − φ(1 − p)

T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ŷ0k )p̂
(m)

−
(

1

1 − p

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ẑ0k + û0k)p̂
(m)

+
(

1

p

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(1 + (ẑ0k + 1) + 1)p̂(m), (5.50)

∂Q

∂φ
= − (1 − p)

1 − φ(1 − p)

T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(x̂k−1
︸︷︷︸

−ŷ0k )p̂
(m)

+
(

1

φ

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(ŷ0k)p̂
(m)

−
(

1

1 − φ

) T
∑

k=1

N

(

Î(k − 1)

n − 1

)

(û0k )p̂
(m), (5.51)

and solving the simultaneous system of equations ∂Q
∂p = 0, and ∂Q

∂φ
= 0 for p and φ.

Observe that beyond the initial step, and the initial estimates p̂(0), φ̂(0) ∈ (0, 1) for
the parameters p and φ, the solutions for the system ∂Q

∂p = 0, and ∂Q
∂φ

= 0 have no
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dependence on p̂(m) ∈ (0, 1),∀m = 0, 1, 2, . . .. This implies that the MLE for the
parameters p and φ are obtained by solving the system ∂Q

∂p = 0, and ∂Q
∂φ

= 0, which
reduces to (5.48)-(5.49).

6 Some Epidemiological Parameters for Evaluating
the Occurrence of Epidemics

In this section, we calculate some epidemiological parameters to evaluate the preva-
lence of influenza. We consider disease control parameters, such as the basic repro-
duction number, and the probability of no spread. These parameters are used in
[33–37]. Furthermore, these epidemiological parameters are calculated for the ran-
domprocess {B(t), t = 0, 1, 2, . . . }, whenever the transition probabilities are defined
in Theorem 4.1.

An important first step to evaluate the prevalence of a new disease, or to determine
whether a new disease is strongly established in the population beyond the outbreak,
is to compute the expected number of infectious cases present in the population
at any time. If at any time, more people are infected than they are susceptible or
immune to the disease, then the prevalence of the disease spread is aggressive and
immediate controlmeasures are required. For a randomprocess such as {B(t), t ≥ 0},
the expected number of infectious people at any time, for example, E[I0(t)|B(0)] is
ensemble means, whereas available data for the disease epidemics from sources such
as CDC and WHO [38–40] are time-series data. It is necessary to find estimators for
the ensemble means using time-series data. Indeed, in an extension of this project,
it is shown that the SVIR Markov chain model {B(t), t ≥ 0} is ergodic and has a
unique limiting distribution. Moreover, the consistency of the estimators is exhibited.

In the following, we characterize the prevalence of influenza from the initial
infected population. That is, we calculate the expected number of infected individuals
that occur over time, given an initial infected population. This information is useful
to determine whether an epidemic will occur from the initial infected population.

6.1 Expected Number of Infected Individuals

Recall Definition 2.4, for t < min{T1,T2}, and T1 ≤ t < T2,

I(t) = I0(t) + I1(t) + I2(t) + · · · + It(t). (6.1)

Furthermore, for T2 ≤ t < T1 and t ≥ max{T1,T2},

I(t) = I0(t) + I1(t) + · · · + IT2−2 + IT2−1. (6.2)



Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination … 63

In the following result, we show that the expected infectious population over
time, given the initial outbreak of influenza depends only the state of the process at
one-time lag.

Lemma 6.1 For any t = 0, 1, 2, . . . ,

E[I0(t)|B(t − 1),B(t − 2), . . . ,B(1),B(0)] = E[I0(t)|B(t − 1)], (6.3)

and
E[I0(t)|B(0)] = E[E[I0(t)|B(t − 1)]|B(0)]. (6.4)

Proof It is easy to see from Theorem 3.1 and Theorem 4.1 that

E[I0(t)|B(t − 1),B(t − 2), . . . ,B(1),B(0)]
=
∑

z

∑

y

zP(V0(t) = y, I0(t) = z|B(t − 1),B(t − 2), . . . ,B(1),B(0))

=
∑

z

∑

y

zP(V0(t) = y, I0(t) = z|B(t − 1))

= E[I0(t)|B(t − 1)]. (6.5)

Also, by applying the properties of conditional expectations, for any t = 0, 1, 2, . . .,

E[I0(t)|B(0)] = E[E[I0(t)|B(t − 1),B(t − 2), . . . ,B(1),B(0)]|B(0)]. (6.6)

From (6.5), it follows that (6.6) reduces to,

E[I0(t)|B(0)] = E[E[I0(t)|B(t − 1)]|B(0)] (6.7)

definitely.
Using Lemma 6.1, we present in general form the expected number of infectious

people present at any time t, given the population at the initial outbreak.

Theorem 6.1 Let the assumptions of Theorem 3.1 and Theorem 4.1 hold. For t <

min{T1,T2} and t ∈ [T1,T2), it follows that

E[I(t)|B(0)] = I0(0) +
t−1
∑

k=1

E

[

S(t − k − 1)

(

1 −
(

1 − pI(t − k − 1)

n − 1

)N
)

|B(0)

]

.

(6.8)
For t ∈ [T2,T1) and t ≥ max{T1,T2},

E[I(t)|B(0)] =
T2−1
∑

k=1

E

[

S(t − k − 1)

(

1 −
(

1 − pI(t − k − 1)

n − 1

)N
)

|B(0)

]

.

(6.9)
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Proof For t < min{T1,T2},

I(t) = I0(t) + I1(t) + I2(t) + · · · + It(t)

= I0(t) + I0(t − 1) + I0(t − 2) + · · · + I0(1) + I0(0). (6.10)

E[I(t)|B(0)] = E[I0(t)|B(0)] + E[I0(t − 1)|B(0)] + . . .

+E[I0(1)|B(0)] + E[I0(0)|B(0)]

= I0(0) +
t−1
∑

k=1

E[I0(t − k)|B(0)]. (6.11)

For each k = 1, 2, 3, . . . , t − 1, applying Lemma 6.1

E[I0(t − k)|B(0)] = E[E[I0(t − k)|B(t − k − 1)]|B(0)]
= E[S(t − k − 1)PI (t − k)|B(0)]

= E

[

S(t − k − 1)

(

1 −
(

1 − pI(t − k − 1)

n − 1

)N
)

|B(0)

]

,

(6.12)

where PI (t − k) is defined in (4.4). Substituting (6.12) into (6.11), we obtain the
result in (6.8). Observe that the result for t ∈ [T1,T2) is obtained similarly as above.

For t ∈ [T2,T1) and t > max{T1,T2}

I(t) = I0(t) + I1(t) + I2(t) + · · · + IT2−1(t)

= I0(t) + I0(t − 1) + I0(t − 2) + · · · + I0(t − (T2 − 1)). (6.13)

E[I(t)|B(0)] = E[I0(t)|B(0)] + E[I0(t − 1)|B(0)] + . . .

+E[I0(t − (T2 − 1)|B(0)]

=
T2−1
∑

k=0

E[I0(t − k)|B(0)]. (6.14)

For each k = 0, 1, 2, 3, . . . , (T2 − 1) applying Lemma 6.1
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E[I0(t − k)|B(0)] = E[E[I0(t − k)|B(t − k − 1)]|B(0)]
= E[S(t − k − 1)PI (t − k − 1)|B(0)]

= E

[

S(t − k − 1)

(

1 −
(

1 − pI(t − k − 1)

n − 1

)N
)

|B(0)

]

,

(6.15)

where PI is defined in (4.4). Substituting (6.15) into (6.14), we obtain (6.9).

Remark 6.1 It should be observed from Theorem 6.1 that an explicit form for the
conditional expectation (6.8) and (6.9) can only be obtained provided the joint
distribution of (S(t), I(t)),∀t ≥ 0 is known. However, since (6.8) and (6.9) rep-
resent population parameters at time t (conditional population means), which are
a sum of random variables that represent observations over time until the time t,
these parameters can be estimated point-wise using sample paths of the process
{B(t), t = 0, 1, 2, . . . }, and the MLE of p obtained in Theorem 5.2.

For example, for t > max{T1,T2}, (6.9) can be estimated using the sample path
of

(S(t − k − 1), I0(t − k − 1), I1(t − k − 1), . . . , It−k−1(t − k − 1)) =
(x̂t−k−1, ẑ0t−k−1 , ẑ1t−k−1 , . . . , ẑt−k−1t−k−1),

k = 0, 1, 2, . . . ,T2 − 1. (6.16)

The next result presents the estimates for the conditional population means at any
time t,

Theorem 6.2 Assume that the conditions of Theorem 6.1 are satisfied. For t >

max{T1,T2}, the conditional expected value in (6.9) denotedμI(t)|B(0) = E[I(t)|B(0)]
can be estimated using the sample path of the process {B(t), t = 0, 1, 2, . . . }
namely:-

(S(t − k − 1), I0(t − k − 1), I1(t − k − 1), . . . , It−k−1(t − k − 1)) =
(x̂t−k−1, ẑ0t−k−1 , ẑ1t−k−1 , . . . , ẑt−k−1t−k−1),

k = 0, 1, 2, . . . ,T2 − 1. (6.17)

In fact, for t > max{T1,T2} and t ∈ [T2,T1)

μ̂I(t)|B(0) =
T2−1
∑

k=0

⎡

⎣x̂t−k−1

⎛

⎝1 −
(

1 − p̂
∑t−k−1

j=0 ẑjt−k−1

n − 1

)N
⎞

⎠

⎤

⎦ (6.18)

estimates μI(t)|B(0) = E[I(t)|B(0)] defined in (6.9).
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Also, for t < min{T1,T2} and t ∈ [T1,T2)

μ̂I(t)|B(0) = ẑ00 +
t−1
∑

k=1

⎡

⎣x̂t−k−1

⎛

⎝1 −
(

1 − p̂
∑t−k−1

j=0 ẑjt−k−1

n − 1

)N
⎞

⎠

⎤

⎦ (6.19)

estimates μI(t)|B(0) = E[I(t)|B(0)] defined in (6.8), where p̂ is the MLE of p defined
in (5.48).

Proof The results follow simply from (5.44) and the definition of μI(t)|B(0) =
E[I(t)|B(0)] defined in (6.9) and (6.8).

6.2 The Basic Reproduction Number for the SVIR Influenza
Epidemic

The basic reproduction number, generally denoted R0, is the expected number of
secondary cases of infection from one infectious person or from an initial number
of infectious people, I(0) = z00 , placed in a completely susceptible population, and
it is the most widely used predictor of an epidemic outbreak. If R0 < 1, the disease
is expected to die out. If R0 > 1, the disease is expected to spread out of control.

The basic reproduction number is highly dependent on the initial infectiousness
of the disease and the duration of the disease in the initial infectious population. The
basic reproduction number is important to determine disease control factors for an
epidemic [33–36]. In the absence of an explicit formula for the basic reproduction
number R0, it can be estimated empirically using the methods in this section.

Observe from (6.8) that while I0(0) is the initial infectious population, the

second term
∑t−1

k=1 E

[

S(t − k − 1)

(

1 −
(

1 − pI(t−k−1)
n−1

)N
)

|B(0)

]

represents the

expected number of secondary infectious cases present at time t, given that the
initial disease outbreak had only I0(0) number of infectious cases. Therefore,
∑T2−1

k=1 E

[

S(T2 − k − 1)

(

1 −
(

1 − pI(T2−k−1)
n−1

)N
)

|B(0)

]

must be the basic repro-

duction number given that I0(0) = 1, where T2 is the constant infectious period of
every infectious person in the population. Using the results of Theorem 6.2, the basic
reproduction number R0 can be estimated in the following.

Corollary 1 Let the assumptions of Theorem 6.1 and Theorem 6.2 be satisfied. The
basic reproduction number is given implicitly as follows:

R0 = E[I(T2)|B(0)] =
T2−1
∑

k=1

E

[

S (T2 − k − 1)

(

1 −
(

1 − pI(T2 − k − 1)

n − 1

)N
)

|B(0)

]

,

(6.20)
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For t ≤ T2, (6.20) can be estimated using the following sample path of the process
{B(t), t = 0, 1, 2, . . . }
(

S(T2 − k − 1), I0(T2 − k − 1), I1(T2 − k − 1), . . . , IT2−k−1(T2 − k − 1)
) =

(x̂T2−k−1, ẑ0T2−k−1 , ẑ1T2−k−1 , . . . , ẑT2−k−1T2−k−1
),

k = 1, 2, . . . ,T2 − 1. (6.21)

Furthermore, the estimate for R0 is given as follows

R̂0 =
T2−1
∑

k=1

x̂T2−k−1

⎛

⎝1 −
(

1 − p̂
∑T2−k−1

j=0 ẑjT2−k−1

n − 1

)N
⎞

⎠ . (6.22)

Proof The result follows very easily from the definition of the basic reproduction
number, (6.19), and setting t = T2, since T2 is the infectious period of individuals in
the population.

Remark 6.2 It should be observed fromCorollary 1 that an explicit form for the basic
reproduction number in (6.20) can only be obtained provided the joint distribution of
(S(t), I(t))∀t ≥ 0 is known. However, since (6.20) represents a population parameter
at time t, which is a sum of random variables that represent observations over time
until the time t, this parameter is easily estimated point-wise using the sample path
of the process {B(t), t = 0, 1, 2, . . . } given in (6.21), and the MLE of p obtained in
(5.51).

The advantage of R̂0 in (6.22) as an initial point estimate for the actual value R0 is
its dependence primarily on empirical data for influenza obtained over time, and also
the dependence on the feasible estimated value of the probability of passing infec-
tion from one infectious contact p. Furthermore, with limited real data over several
possible sample realizations for the stochastic process {B(t), t = 0, 1, 2, . . . } over a
given time interval, the statistic R̂0 can be studied numerically and the approximate
sampling distribution generated and studied.

More interval estimates for the parameter R0 in (6.20), require explicit sampling
distribution for the point estimate R̂0, which are beyond the scope of this work.

Observe from (4.4) and (6.22) that for each k ∈ {1, 2, . . . ,T2 − 1}, the term
(

1 −
(

1 − p̂
∑T2−k−1

j=0 ẑjT2−k−1

n−1

)N
)

is the estimated probability of getting infection at

every time step over the remaining infectious period T2 − 1 of the initial infec-
tious population I0(0) = 1. It is easy to see that the estimated basic reproduction
number R̂0 in (6.22) is a weighted sum of the susceptible population x̂T2−k−1 at
each time step k ∈ {1, 2, . . . ,T2 − 1} in the sample path (6.21), where the weights

are

(

1 −
(

1 − p̂
∑T2−k−1

j=0 ẑjT2−k−1

n−1

)N
)

. One way the estimated basic reproduction
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number R̂0 < 1 iswhen theweights

(

1 −
(

1 − p̂
∑T2−k−1

j=0 ẑjT2−k−1

n−1

)N
)


 1.Moreover,

theweights are infinitesimally small, whenever p̂ 
 1. This observation suggests that
one way to eradicate the disease from the population is to ensure the chance of get-
ting infected at any time step k ∈ {1, 2, . . . ,T2 − 1} is infinitesimally small. Thus,
in addition to enforcing vaccination as a disease control measure against influenza,
other measures that prevent contact with infected people must also be enforced, to
fully eradicate the disease.

7 Example for the EM Algorithm

To illustrate the EM algorithm presented in Sect. 5.1, the influenza data [38–40]
for the state of Georgia, USA, collected over 52 weeks in the years 2017–2018 by
the collaborating WHO and National Respiratory And Enteric Virus Surveillance
System (NREVSS) laboratories that are reporting to the CDC, is used to formulate
the characteristics of a hypothetical population suffering from an influenza epidemic,
and further used to calculate the MLEs for the parameters p and φ of the influenza
model. The following assumptions are made about the hypothetical population.

(1) It is assumed that the population has a fixed size n = 10,519,475which is equiva-
lent to the population size of the state of Georgia in 2018 [40], and over the period
of 52 weeks considered in this problem, the population is closed. In addition,

(2) The influenza epidemic is caused by the influenza type A virus, and the total
number of new infections reported each week are assumed to follow the data in
Fig. 3 exhibited in [38].

(3) It is also assumed that vaccination occurs each week and follows the weekly
estimates also exhibited in Fig. 3, which are constructed by randomly selecting
numbers in the localmonthly cumulative influenza-vaccination coverage interval
estimates in [39], for adults 18 years of age, and older. Observe from Fig. 3 that
vaccination rises with the rise in infection. This observation is very typical for
most influenza epidemics which are seasonal, and more people seek vaccination,
whenever there is a rise in infection.

(4) The period of effective artificial immunity is assumed to be more than 52 weeks,

that is, T1 > 52, such that the class
︷︸︸︷

S(t) = 0 for the entire duration over which
observations are made. It is also assumed that the infectious period T2 is only one
week, beyond which all infectious persons are fully recovered and removed with
permanent immunity against the disease. The condition (4) implies that the initial
susceptible population continuously decreases over the 52 weeks of observing
the epidemic, owing to continuous infection, and vaccination. Furthermore, the
infectious population present at the end of any week will be only those who are
just infected on that week.
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Fig. 3 Shows a time-series
graph for the number of
people vaccinated and
infected with influenza type
A virus every week, and over
a period of 52weeks

(5) It is also assumed for simplicity that every susceptible person meets a fixed
number N = 5 other people per unit time. The initial infectious population is
assumed to be 8 people, and nobody is assumed to be vaccinated or removed in
the population initially.

From the above assumptions (1)–(5), and the data in [38–40] exhibited in Fig. 3,
it follows from Theorem 5.2 that the M-step of the EM algorithm consists of solving
the nonlinear system of equations1

1339359
φ

1 − φ(1 − p)
− 2678625

(

1

1 − p

)

+ 81.82526

(

1

p

)

= 0, (7.1)

−1339359
(1 − p)

1 − φ(1 − p)
+ 105.9085

(

1

φ

)

− 1339080

(

1

1 − φ

)

= 0. (7.2)

It follows that using the convenient choice of initial estimates p̂(0) = 0.001, φ̂(0) =
0.001 for the parameters p andφ, theMLEsusingMATLABare φ̂ = 0.3954 ∗ 1.0e −
04, and p̂ = 0.3055 ∗ 1.0e − 04.

These numbers- φ̂ = 0.3954 ∗ 1.0e − 04, and p̂ = 0.3055 ∗ 1.0e − 04 seem to
be plausible estimates for p and φ, since clearly from Fig. 3, the vaccination rate is
greater than the infection rate.

When the fixed infectious period T2 in (4) is increased to two weeks for every
infectious person, and the other parameters remain the same as above, it follows
that using the convenient choice of initial estimates p̂(0) = 0.001, φ̂(0) = 0.001 for
the parameters p and φ, the MLEs using MATLAB are φ̂ = 0.2836 ∗ 1.0e − 03, and
p̂ = 0.2165 ∗ 1.0e − 03. The basic reproduction number in (6.20) reduces to

1The cumulative sums in (5.48)–(5.49) were calculated using “for-loops” in R.
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R0 = E[I(2)|B(0)] = E

[

S (0)

(

1 −
(

1 − pI(0)

n − 1

)N
)

|B(0)

]

= S (0)

(

1 −
(

1 − pI(0)

n − 1

)5
)

, (7.3)

where S(0) and I(0) are positive constants. Moreover, using the assumptions (1)–(5),
the estimate for R0 defined in (6.22) is given as follows

R̂0 = x̂0

(

1 −
(

1 − p̂ẑ00
n − 1

)N
)

= (1,051,475 − 8)

(

1 −
(

1 − (0.2165 ∗ 1.0e − 03)(8)

10,519,475 − 1

)5
)

= 0.0175287. (7.4)

Based on the value of R̂0 = 0.0175287 < 1, this suggests the disease is under control
through the vaccination process.

8 Conclusion

In this study, we have sufficiently defined an SVIRMarkov chain model for influenza
which effectively shows the progression of the disease and effectiveness of the vac-
cine to control the disease over time for an individual in the population. Moreover,
we defined the transition probabilities for the model. We presented two special cases
of our model-(1) based on the assumption that the event of getting vaccinated at
any instant depends on encounter with infectious people, and (2) the vaccination
occurring over time with as a Poisson process. We present detailed derivations of
the probabilities of the ith susceptible individual getting vaccinated or infected at
any instant and further define the transition probabilities for each special case of the
model.

We further used the maximum likelihood estimation technique and the
expectation–maximization (EM) algorithm to approximate the fixed parameters of
the model. To evaluate the occurrence and prevalence of the epidemic, we derived
estimators for the basic reproduction number R0 and the expected number of infected
individuals at any time t.

Finally, we presented numerical simulation examples for the influenza epidemic
and approximate the distribution of the total number of people in the population who
ever get infected. Given these scenarios, we see how vaccination can curb the spread
of influenza, and that the most limiting factor when trying to control the spread of
influenza is the number of infectious people one interacts with per unit time.
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A Two-Dimensional Dynamical System
for Local Transmission of Dengue with
Time Invariant Mosquito Density

W. P. T. M. Wickramaarachchi and S. S. N. Perera

1 Introduction

Dengue fever (DF) and its severe form, the dengue hemorrhagic fever (DHF), is one
of the most common widespread vector-borne diseases in the world. According to
the World Health Organization (WHO), dengue disease is ranked as one of the most
critical infectious diseases with severe impact on public health and well-being in the
society [1, 2]. The disease has spread to almost all tropical and sub-tropical parts
in the world, and it has been estimated that nearly 2.5 billion people in more than
100 countries are at risk [3]. Globally, every year, approximately 50 million dengue
infections occur; half a million DHF cases require hospitalization with over 20,000
deaths [1, 3, 4]. The economic impact of DF/DHF is massive, placing significant
burdens on affected nations and their communities. This impact varies and can include
deaths, medical expenditures for hospitalization of patients and their careful clinical
management, loss in productivity of the affected workforce, strain on healthcare
services due to sudden, high demand during an epidemic, considerable expenditures
for large-scale emergency control actions taken by the government in an outbreak,
etc [5].

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are endemic in Sri
Lanka now since the first reported outbreak of dengue fever in 1965 [6]. There has
been recurring outbreaks for the last five decades created some severe damages to
public health and well-being of Sri Lankan people. During the first four decades
of dengue in Sri Lanka, the burden had not been very severe. However, due to
population growth, urbanization, unsystematic development, and climate change,
dengue became a serious public health concern since 2008. The trend in dengue
cases in Sri Lanka since year 2002 till 2018 is illustrated in Fig. 1.
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Fig. 1 Dengue trend in Sri Lanka from year 2002 to 2018. Source http://www.epid.gov.lk/web

In the year 2012, a total of 44,461 cases of dengue have been reported around
the country. However, in the year 2013, number of cases has dropped to 32,063
but increased to 47,502 cases in the year 2014. Over the history of dengue in Sri
Lanka, country went through its extremely high outbreak in year 2017 where cases
amounted up to 180,000. Of them, the largest proportion was reported from the
Colombo District which is the most urbanized and densely populated of the country
[7]. Colombo is the capital and the largest city in Sri Lanka; its rapid urbanization and
increased human movements have created Colombo a highly vulnerable geographic
area for dengue disease. Out of them, the majority of the cases were reported in
Colombo city area where the urban population is at high risk to be infected. Figure2
shows the trend of dengue cases in Colombo Municipal Council (CMC) Area from
the year 2006 to 2017.
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Fig. 2 Weekly reported dengue cases in Colombo Municipal Council area from 2006 to 2017
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During the outbreak period, mainly after the monsoon season in Sri Lanka, a
country usually goes through emergency states to control the negative impact to the
national economy and the social stability and well-being of people. Government al-
locates a reasonable portion of funds for dengue control programs, awareness session
for public and school children and dengue patient management in hospitals. Though
the mortality rate due to dengue in Sri Lanka is fairly low compared to the number
of cases reported, households face serious socio-economic problems as the patients
may be advised to rest for months.

There is no vaccine or any specific treatment found for dengue disease yet and
several researches for a vaccine are currently in progress [3, 8]. For the time being, the
only mechanism for preventing and controlling DF/DHF is to ensure prompt diagno-
sis of cases of fever and appropriate clinical management during the hospitalization,
to reduce human–vector contact, and to control larval habitats [8]. Therefore, it is
very critical to investigate the dynamic of the dengue transmission by identifying the
driving factors for disease propagation in the population. Having a thorough under-
standing of the dynamic may help the decision makers and public health professional
to minimize the burden of the disease.

Dengue is a multi-factorial vector-borne disease as the transmission depends on
numerous factors such as climate, demography in the area, geo-spatial character-
istics, and the biological factors in the dengue mosquito. Due to this nature of the
transmission, dengue has been identified as a disease with a very complex and uncer-
tain transmission process. Among the factors of dengue disease transmission, climate
variations play amajor role. It is known that water bodies are essential formosquitoes
for breeding. Most of these sites are made by the rainfall [10, 11]. This has been
justified that in Sri Lanka, we experience dengue outbreaks a few weeks after the
monsoon periods. In addition to rainfall, temperature variation is also a sensitive
factor in the dengue transmission dynamic. Researchers have found that a reason-
ably high-temperature level has increased the vectorial capacity and these favorable
levels of temperature have an impact on the incubation period of mosquitoes in a
way which supports the transmission positively [14, 15, 22]. Due to these facts, it is
very critical to identify the relationship of these climate variation to the transmission
of disease [10].

Dengue cases time series data are highly noisy due to the complexity and multi-
factor nature of the transmission so are climate data such as rainfall and temperature.
As a result of this, classical time series models are not appropriate to identify the rela-
tionships. Thus, in this study, we use wavelet analysis and it enables us to investigate
the spectral properties of the time series along with the correlations of the oscilla-
tions. These properties are essential to estimate out parameters in the transmission
models.

Identification of these relationships may not only be sufficient to estimate the
critical parameters in the model. It is known that most of these climate factors are
uncertain. For example, high level of rainfall is not suitable for mosquito reproduc-
tion as the breeding sites may be washed out. Further, mosquitoes are unable to
survive in extremely high-temperature levels [10]. It is also found that one factor
may be in a favorable level while another is highly unfavorable for mosquitoes. This
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unpredictable nature in the transmission process has to be addressed. The traditional
approach to model parameters randomly has been the probabilistic by identifying a
suitable probability density. However, this is very challenging with epidemic data
since they are not reliable or they are not sufficient enough to figure out the probabil-
ity distributions precisely. Thus, it is proposed a fuzzy set theory approach to model
the parameters considering uncertainty, which is now being highly used in modeling
data. Membership functions are defined for two factors, namely rainfall and tem-
perature, considering their level of influence to make a favorable environment for
mosquitoes not only to reproduce but also to propagate the virus.

It is also known that the mosquito density is critical when we consider the trans-
mission locally; however, the human mobility is responsible to transmit the dis-
ease globally among multiple geographic locations. Many studies suggest that the
mosquito density is an extremely sensitive factor and it is very responsive to climate
variation induced mainly by temperature and rainfall. A favorable level of rainfall
and temperature increases the reproduction of dengue mosquitoes; hence, it supports
to rise the mosquito density in the environment.

Mathematical models are used to describe various real-world processes. Over
the last century, a large number of these models have been developed to investigate
the dynamic of numerous epidemic diseases [21]. They describe how the disease
propagates over the population with interactions between the human and vector pop-
ulations. However, most of them describe the dynamical behavior with considering
fixed parameter values [9, 21, 23]. In order to study the dynamical behavior with
varying parameters is still a challenging task. The estimation of these with respect
to external factors should be done under uncertainty and the fully stochastic models
are not appropriate since we do not know the underlying probability distributions
and lack of reliable epidemiological data. This study aims to develop a mathemati-
cal model for dengue disease transmission in which the critical parameters are time
invariant and they vary with respect to external forces. The techniques of estimating
these dynamic parameters under uncertainty are also developed.

This chapter is organized into two sections. First, it is discussed how the critical
parameters are estimated using available data. Noisy data are analyzed using wavelet
transformation, and significant relationships between dengue incidents and external
factors such as climate are identified. These results may then be used to model the
critical parameters considering the uncertainty nature of the process. Since suffi-
ciently reliable data are unavailable, probabilistic techniques may not be applicable
to model the uncertainty. Thus, fuzzy set theory is used to overcome this challenge.
Membership functions are developed considering the impact from rainfall and tem-
perature to create a suitable environment for denguemosquitoes to grow and transmit
the virus. Next, a discrete time dynamic model for mosquito density is developed in
which the fuzzy-based climate force for dengue disease is an input.

Secondly, a two-dimensional mathematical model for dengue transmission is also
derived using only susceptible and infected human population proportions and con-
sidering quasi-equilibrium status for mosquitoes. We assume there are sufficiently
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enough number of infected mosquitoes in the environment and this population is sta-
ble. Possible analytical and numerical results are obtained and discussed. Next, the
two-dimensional system is solved together with the discrete time mosquito density
model and the results are critically compared with the deterministic case. For this
model, an aggregate control measure is also introduced and it is investigated how the
infected human proportion is reduced as a result of increasing efficacy of the control
actions. For model validation and comparison, reported dengue incidence cases in
Colombo are used. Hence, model development and methods comparison are done
using Colombo data.

2 Analysis of Factors of Dengue Transmission in Colombo

In this study, we analyze dengue incidents time series using wavelet approach which
is amore sophisticated tool to analyze dengue data compared to statistical techniques.
The influence of climate variation to dengue transmission is analyzed using cross-
wavelet approach and wavelet coherence analysis.

Climate variations play an important role in occurring dengue outbreaks inColom-
bo. After the rainy season, it is reported large dengue outbreaks in Colombo each
year. Therefore, it is important to identify the patterns of dengue outbreaks and the
relationship between climate variation and dengue incidents in Colombo so that this
relationship can be used to model the parameters in mathematical model of dengue
transmission dynamically.

2.1 Wavelet Transform

Wavelets are finite energy functions which are capable of representing time–
frequency localization of a transient signal with only a small finite number of coef-
ficients [12, 24].

Definition 1 If ψ ∈ L2(R) satisfies the admissibility condition given by

Cψ =
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω < ∞, (1)

then,ψ is called a basic wavelet and, with respect to any basic waveletψ , the inte-
gral/continuous wavelet transform (IWT/CWT) of function f ∈ L2(R) is defined as

(Wψ f )(ba) = |a|− 1
2
∫ ∞
−∞ f (t)ψ( t−b

a )dt,

where a, b ∈ R with a �= 0.
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Wavelet implies a small wave, thus the area under the graph of the wavelet ψ(t) is
zero. That is,

∫ ∞
−∞ ψ(t)dt = 0. By setting

ψba(t) = |a|− 1
2 ψ(

t − b

a
), (2)

the IWT can be represented as

(Wψ f )(ba) = 〈f , ψba〉. (3)

Definition 2 Any original signal f ∈ L2(R) can be uniquely recovered by the inverse
transform defined as

f (t) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
[(Wψ f )(ba)]ψba

da

a2
db (4)

where ψba is as in (2).

For this analysis, theMorletwavelet is used as the basic (mother)wavelet function.
The Morlet wavelet is defined as

ψ(t) = K exp(−i2ω0t). exp(−t2/2), (5)

where ω0 represents the central angular frequency of the wavelet. In order ψ to have
unit energy, the normalization constant K [12] is selected such that K = π−1/4. The
relationship between the frequencies f and wavelet scales can be derived as

1
f = 4πa

ω0+
√

2+ω2
0

.

It is obviously seen that if ω0 ≈ 2π then f ≈ 1/a. An example of the Morlet wavelet
is given in Fig. 3.

2.2 Wavelet Power Spectrum

The wavelet transform can be considered as a generalization of the classical Fourier
transform so that the spectral properties of any time series x(t), t ∈ R can be visual-
ized. The wavelet power spectrum of the wavelet transform (Wψx)(ba) of the time
series x(t) with the basic wavelet ψ is defined as

(Sψx)(ba) = ‖(Wψx)(ba)‖2. (6)
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Fig. 3 The Morlet wavelet
function

The global wavelet power spectrum (Sψx)(a) which is comparable with the Fourier
spectrum of a signal can be defined as the averaged energy of all wavelet coefficients
of the same scale a and given by

(Sψx)(a) = σ 2
x

T

∫ T

0
‖(Wψx)(ba)‖2db, (7)

where σx is the standard deviation of the time series x(t) and T is the duration of the
time series. Averaging the scale components gives the mean variance of each time
location defined as

(Sψx)(b) = σ 2
x π1/4b1/2

Cψ

∫ ∞

0
a1/2‖(Wψx)(ba)‖2da, (8)

where Cψ as in 1.

2.3 Wavelet Coherency and Phase Difference

It is useful to quantify the statistical relationship between two signals if we have two
non-stationary time series. The wavelet coherence function measures the correlation
between two time series x(t) and y(t) [12]. The wavelet cross-spectrum of the two
time series x(t) and y(t) can be defined as

(Wψxy)(ba) = (Wψx)(ba)(Wψy)(ba)
∗. (9)

Here ′∗′ denotes the complex conjugate. The cross-spectrum normalized by the spec-
trum of each signal gives the wavelet coherence which is defined as
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(Rψxy)(ba) = ‖〈(Wψxy)(ba)〉‖
‖〈(Wψxx)(ba)〉‖1/2‖〈(Wψyy)(ba)〉‖1/2 . (10)

The notation ′〈〉′ stands for the smoothing operator in both time and scale param-
eters [12]. The wavelet coherency is similar to simple statistical correlation but
0 ≤ (Rψxy)(ba) ≤ 1. This measure equals to 1 implies a perfect relationship be-
tween the two signals in both time and scale, however this goes to 0 if the two time
series are independent.
As with the complex wavelets (for an example, Morlet wavelet), the local phase ζ

is proportional to the ratio between imaginary part (I) and the real part (R) of the
wavelet transform defined as [12, 13]

(ζψx)(ba) = tan−1 I[(Wψx)(ba)]
R[(Wψx)(ba)] . (11)

The phase difference of two time series x(t) and y(t) is useful in identifying anti-phase
relationships and it is defined as

(ζψxy)(ba) = tan−1 I[〈(Wψxy)(ba)〉]
R[〈(Wψxy)(ba)〉] . (12)

2.4 Statistical Significance and Cone of Influence

Similarly, in time series methods, we need to assess the statistical significance of
the patterns identified by the wavelet approach. The bootstrapping methods simply
re-sampling procedures are employed to evaluate the statistical significance. The
observed time series data are used to construct the time series defined under the null
hypothesis, which share some properties with the original series. A procedure based
on a re-sampling of the observed data with a Markov process scheme is used that
preserves only the short temporal correlations. We focus to test whether the wavelet
power spectra or wavelet coherence observed at a particular position on the time-
scale plane are not resulted from a random process with the sameMarkov transitions
(time order) as the original time series. The procedure of computing the bootstrapped
series is discussed in [12, 18]. the significant regions are covered in a black line inside
the power spectrum. Wavelet transformations are used for the time series which are
short and noisy. The values of the wavelet transform are generally corrupted as the
wavelet approaches the edges of the noisy time series, producing a boundary effect.
This affected area increases as the size of the scale parameter a increases. This region
is said to be cone of influence and it is generally represented as a cone in the wavelet
power spectra.
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2.5 Data Analysis

The weekly dengue data are analyzed from year 2006 to 2017 using wavelet trans-
formation. Figure4 shows the power spectrum of dengue incidents time series in
Colombo city. According to this figure, dengue incident data show some seasonal
oscillations and these fluctuations are in 16–32 weekly band period and this region
is shown in orange and red in color.

The climate data were obtained from the Department of Meteorology, Sri Lan-
ka, and weekly dengue cases data were obtained from Colombo Municipal Council.
There time series data are analyzed using wavelet theory to identify any phase re-
lationships among climate, mainly temperature and rainfall and dengue cases. The
cross-wavelet power spectra obtained from a MATLAB program is given in Fig. 5.

The cross-wavelet power spectrum obtained for maximum temperature versus
dengue incidents shows an anti-phase relationship (arrows pointing left). However,
Fig. 5 suggests this relationship is not significant. In contrast, there exists a significant
anti-phase relationship between dengue cases and rainfall with a ∼ 16-period band.
This suggests a possible lead time of rainfall for an outbreak of dengue in Colombo
during the period.

3 Modeling the Uncertainty

We aim to construct an index which explains the climate risk and the degree of
favorability to dengue disease transmission in Colombo. We analyze incident data in
Colombo with climate factors such as temperature and rainfall which are found to be

Fig. 4 Wavelet power spectrum of dengue data in Colombo Municipal Council from year 2006 to
2017
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Fig. 5 Top: Cross-wavelet power spectrum of weekly dengue cases versus average maximum
temperature and Bottom: Cross-wavelet power spectrum of weekly dengue cases versus average
rainfall in Colombo from year 2006 to 2017

the most significant climate drivers to dengue. We use fuzzy set theory to investigate
the influence from rainfall (RF) and the weekly averaged maximum temperature
(TEMP) for dengue transmission. Based on the results obtained using cross-wavelet
approach, the membership functions for weekly average rainfall with lead time and
immediatemaximum temperature are definedwith the degree ofmembership value in
[0,1] as the response variable which is the effect from each, respectively, to establish
unfavorable environmental conditions for dengue transmission.

3.1 Fuzzy Set: Preliminaries

Definition 3 Let U be a non-empty set and A, a subset of U . The characteristic
function of A is given by

A(x) =
{
1, if x ∈ A;
0, if x /∈ A; (13)

Definition 4 A fuzzy subset F of U is described by the function F : U → [0, 1]
called the membership function of fuzzy set F whereU is a classical non-empty set.
The value F(x) ∈ [0, 1] indicates the membership degree of the element x of U in



A Two-Dimensional Dynamical System for Local Transmission … 83

fuzzy set F , with F(x) = 1 and F(x) = 0 representing, respectively, the belonging-
ness and non-belongingness of x in F [20, 28].

Definition 5 A fuzzy set is concentrated by reducing the grade of membership of
all elements that are only partly in the set, in such a way that the less an element is in
the set, the more its grade of membership is reduced. The concentration of a fuzzy
set A can be defined by [19]

UCONC(A)(x) = Ua
A(x) with a > 1. (14)

The opposite of the concentration is the dilation. A fuzzy set is dilated or stretched
by increasing the grade of membership of all elements that are partly in the set. The
dilation of a fuzzy set A can be defined by [19]

UDIL(A)(x) = Ua
A(x) with a < 1. (15)

Definition 6 The trapezoidal curve is a function of a vector, x, and depends on four
scalar parameters a, b, c, and d , as given by

f (x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a;
x − a

b − a
, if a ≤ x ≤ b;

1, if b ≤ x ≤ c;
d − x

d − c
, if c ≤ x ≤ d;

0, if d ≤ x.

(16)

The parameters a and d locate the “feet” of the trapezoid and the parameters b and
c locate the “shoulders.”

3.2 Fuzzy Membership Functions for Climate Factors

It is identified that at least 5mm averaged weekly rainfall is required to make breed-
ing sites available for mosquitoes and the breeding sites are washed out due to the
heavy rainfall which is over 55mm [14, 15, 25]. Further, it is identified that a weekly
average temperature less than 16◦C is unfavorable for mosquitoes to transmit the
virus and a temperature between 30 and 34◦C is ideal for mosquitoes to rapidly
transmit of the virus due to the increased vector capacity and reduced incubation
period. Further, it is noted that extreme heating conditions do not support dengue
virus transmission so that we assume that the threshold temperature to be 37◦C
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Fig. 6 Membership function for average weekly rainfall with eight weeks lag (RF)

[14, 15, 25]. Based on these conditions, the trapezoidal-shaped membership func-
tions URF (x) : A ⊆ R → [0, 1] and URF (x) : B ⊆ R → [0, 1] are defined, respec-
tively, to represent the effect from leading RF and immediate TEMP to create an
unfavorable environment for dengue as

URF(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if x ≤ 5;
−x+10

5 , if 5 ≤ x ≤ 10;
0, if 10 ≤ x ≤ 30;
x−30
25 , if 30 ≤ x ≤ 55;

1, if x ≥ 55;

(17)

UTEMP(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if x ≤ 16;
−x+30

14 , if 16 ≤ x ≤ 30;
0, if 30 ≤ x ≤ 34;
x−34
3 , if 34 ≤ x ≤ 37;

1, if x ≥ 37.

(18)

The trapezoidal-shaped membership functions given in (17) and (18) are illustrated
in Figs. 6 and 7, respectively.

3.2.1 Fuzzy Operator of Overall Risk for Dengue

In the previous section, the individual effect from RF and TEMP is investigated to
create an unfavorable environmental condition for dengue. Now, we try to define a
fuzzy operator which computes the measure of combined effect from RF and TEMP.
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Fig. 7 Membership function for average weekly rainfall with eight weeks lag (RF)

A modified version of the Einstein Sum fuzzy operator in is used to measure the
combined effect from above factors. This operator overcomes the disadvantages of
the Hamacher operator where the it computes the combined effect to be zero if one
individual membership value is zero no matter how much the other membership
value is. For an example, if the RF is totally favorable (membership = 0) while
TEMP is slightly favorable (membership> 0), then the Hamacher operator produces
a membership value of zero which implies a totally favorable climate condition for
dengue transmission and is sometimes misleading.

Definition 7 We define the modified Einstein Sum operator which computes the
overall effect as a function UMES(x) : ([0, 1] × [0, 1]) → [0, 1] given by

UMES(x) = U 2
RF (x) +U 2

TEMP(x)

1 +URF(x) ·UTEMP(x)
. (19)

It is obviously seen that,

– If URF (x) = 0 and UTEMP(x) = 0 then UMES(x) = 0.
– If URF(x) = 0 and UTEMP(x) �= 0 then UMES(x) = U 2

TEMP(x) ≤ UTEMP(x) or if
UTEMP(x) = 0 and URF(x) �= 0 then UMES(x) = U 2

RF (x) ≤ URF (x).

Further, it can be shown that ifUTEMP(x) < URF(x) thenUMES(x) < URF . The behav-
ior of the overall effect UMES(x) for different membership values of RF and TEMP
is represented in Fig. 8. This plot is generated such that we input membership values
obtained for rainfall and temperature through the trapezoidal membership functions
and the combined effect is computed according to Eq. (19) representing the third
axis.

Then, we define the potential risk index of dengue transmission again as a function
M : ([0, 1] × [0, 1]) → [0, 1] defined by
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Fig. 8 Behavior of the overall effect for different membership values of RF and TEMP

M (x) = 1 −UMES(x). (20)

This risk index is constructed from time series data for rainfall and temperature.
Thus the index described in equation (20) is a fuzzy valued time series where each
observation is in [0,1].

4 Mathematical Model of Dengue Transmission

For the dengue transmission, both host (human) and vector (mosquito) populations
are divided into several compartments. Host population is divided into three com-
partments, namely susceptible (Sh), infected (I h), and recovered (Rh), and the vector
population is divided into two compartments, namely susceptible (Sv) and infected
(I v). Since the life span of the vector population is too short, the recovery of the vec-
tors is not considered [9]. The schematic diagram for the SIR model is represented
in Fig. 9, where
Sh(t) be the number of susceptible humans at time t,
I h(t) be the number of infected and infectious humans at time t,
Rh(t) be the number of recovered humans at time t,
Sv(t) be the number of susceptible mosquitoes at time t,
I v(t) be the number of infected and infectious mosquitoes at time t.

The model assumes all newborns are susceptible in both populations (no vertical
transmission) and a uniform birth rate. The per capita birth rates for humans is λ,
and the constant recruitment rate for mosquitoes is D. A susceptible, infectious, or
recoveredhumancandisappear from the respective compartmentwith a natural death,
at a per capita rate of μh and the infectious human can recover from the infection
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Fig. 9 Schematic diagram for SIR model of dengue disease transmission which describes the
interactions between human and mosquito populations

and join the recovered population with a per capita rate of r. The natural death rate
of mosquitoes is μv . The effective contact rates between the two populations, which
may be defined as the average number of contacts per time that leads to the infection
of one party if the other party is infectious, depends on a number of factors: the man
biting rate of the mosquitoes b, the transmission probabilities between vectors and
hosts namely the transmission probability of the virus from mosquitoes to humans,
βh and the transmission probability of the virus from humans to mosquitoes, βv .
Further, the effective contact rates between the populations depend on the number of
individuals in both human and mosquito populations, NT and Nv respectively. Since
b is the average number of bites per mosquito per unit time, there are b Nv

NT
number of

bites per human per time. Since there are Sh susceptible humans and the proportion
of the total number of bites that are potentially infectious to humans is I v

Nv
, the number

of potentially infectious bites given to susceptible humans is b
NT
ShI v bites per time.

However, only a fraction of these bites, namely βh, successfully infect humans. We
thus have infected humans per unit time is given by bβhI v

NT
Sh. Similarly, we obtain

the mosquitoes infected per unit time as bβv I h

NT
Sv . Based on this inflows and outflows

of each compartment, we describe the dengue transmission between humans and
mosquitoes by a system of nonlinear differential equations as in (21)
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dSh

dt
= λNT − bβh

NT
ShI v − μhS

h

dIh

dt
= bβh

NT
ShI v − (μh + r)I h

dRh

dt
= rIh − μhR

h

dSv

dt
= D − bβv

NT
SvI h − μvS

v

dI v

dt
= bβv

NT
SvI h − μvI

v

(21)

with the conditions

NT = Sh + I h + Rh

Nv = Sv + I v

and
Sh(0) ≥ 0, Ih(0) ≥ 0,Rh(0) ≥ 0, Sv(0) ≥ 0 and Iv(0) ≥ 0. It is assumed that rate of
change in the human and mosquito populations are zero ( dNT

dt = 0 and dNv

dt = 0).

Now it can be easily obtained that λ = μh and Nv = D
μv
. Now we introduce, S = Sh

NT
,

I = I h

NT
, R = Rh

NT
, Sv = Sv

Nv
and Iv = I v

Nv
. Now we obtain the dimensionless form of

the system (21) as
dS

dt
= λ − bβhSIv

Nv

NT
− μhS

dI

dt
= bβhSIv

Nv

NT
− (μh + r)I

dR

dt
= rI − μhR

dSv

dt
= μv − bβvSvI − μvSv

dIv
dt

= bβvSvI − μvIv.

(22)

Here,

S + I + R = 1

and

Sv + Iv = 1.

Since R = 1 − I − S and Sv = 1 − Iv , the system (22) now reads as
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dS

dt
= λ − γhSIv − μhS

dI

dt
= γhSIv − (μh + r)I

dIv
dt

= γv(1 − Iv)I − μvIv

(23)

where γv = bβv , γh = bβhn and n is a measure of mosquito density which is defined
as n = Nv

NT
with S(0) > 0, I(0) > 0 and Iv(0) > 0.++

4.1 The Equilibrium States of the Model

We let the set of solutions denoted by Ω to the system of nonlinear differential
equations in (23) as

Ω = {(S, I , Iv) ∈ R3+ : S + I ≤ 1, S, I , Iv ≥ 0}.
The equilibrium points can be found by solving the system of equations given by

λ − γhSIv − μhS =0

γhSIv − (μh + r)I =0

γv(1 − Iv)I − μvIv =0.

(24)

The disease-free equilibrium point E0 can be easily obtained as

E0 = (1, 0, 0).

The endemic equilibrium point is E1 = (S∗, I∗, I∗
v ) where

S∗ = P + Q

Q + PA
,

I∗ = A − 1

Q + PA
,

I∗
v = Q(A − 1)

A(Q + P)
,

with P = μh+r
μh

, Q = γv

μv
and A = γhγv

μv(μh+r) .

Definition 8 The basic reproductive number R0 for the system (23) is defined as
√
A

which is given by

R0 =
√

γhγv

μv(μh+r) .
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The Jacobian matrix of the right-hand side of the system (23) is computed as
follows to analyze the stability of the equilibrium points E0 and E1.

J =
⎛
⎝−γhIv − μh 0 −γhS

γhIv −(μh + r) γhS
0 γv(1 − Iv) −μv − γvI

⎞
⎠ (25)

The Jacobian matrix JE0 for the system (23) at the disease-free equilibrium point E0

is computed as

JE0 =
⎛
⎝−μh 0 −γh

0 −(μh + r) γh
0 γv −μv

⎞
⎠ . (26)

We diagonalize the Jacobian matrix JE0 for the disease-free equilibrium and the
characteristic equation is given by

det(JE0 − ηId ) = 0 (27)

where η is the eigenvalue of JE0 and Id is the identity matrix. The eigenvalues can be
obtained by solving Eq. (28)

η3 + a2η
2 + a1η + a0 = 0 (28)

where
a0 = μ2

hμv + rμhμv − μhγhγv,

a1 = μ2
h + 2μhμv + (μh + μv)r − γhγv,

a2 = r + μv + 2μh.

Equation (28) is solved and the three eigenvalues can be obtained as

−μh,
−(μv + μh + r) +

√
(μv + μh + r)2 − 4μv(μh + r)(1 − R2

0)

2
,

−(μv + μh + r) −
√

(μv + μh + r)2 − 4μv(μh + r)(1 − R2
0)

2
.

Theorem 1 If all eigenvalues obtained by Jacobian matrix have negative real parts,
then the equilibrium solution is locally stable.

Clearly, all three eigenvalues in the Jacobian matrix JE0 have negative real parts as
long as R0 is less than 1. Thus, the disease-free equilibrium E0 is locally asymptoti-
cally stable if R0 < 1.
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Now, we discuss the local stability of the endemic equilibrium E1. Then, the Jaco-
bian matrix JE1 for the system (23) at the endemic equilibrium point E1 is computed
as

JE1 =
⎛
⎝−γhI∗

v − μh 0 −γhS∗
γhI∗

v −(μh + r) γhS∗
0 γv(1 − I∗

v ) −μv − γvI∗

⎞
⎠ . (29)

Again we diagonalize the Jacobian matrix JE1 for the endemic equilibrium and the
characteristic equation is given by

det(JE1 − ηId ) = 0 (30)

where η is the eigenvalue of JE0 and Id is the identity matrix. The eigenvalues can be
obtained by solving Eq. (31)

η3 + c2η
2 + c1η + c0 = 0 (31)

where
c0 =μvμ

2
hP(R2

0 − 1),

c1 =μ2
hP

(
Q + PR2

0

P + Q

)
+ μvμhR

2
0 + (R2

0 − 1)

(
μvμhQP

Q + PR2
0

)
,

c2 =μh

(
Q + PR2

0

P + Q

)
+ μhP + μvR

2
0

(
P + Q

Q + PR2
0

)
.

(32)

Routh–Hurwitz stability criterion for third-order polynomials is used to determine
the stability of the endemic equilibrium E1.

Corollary 1 If P(x) is a third-order polynomial (i.e., P(x) = x3 + e2x2 + e1x + e0),
and its coefficients e0, e1 and e2 satisfy the conditions given by

e2 > 0

e1 > 0

e2e1 > e0,

then the equilibrium point is locally stable.

By using corollary 1, the local stability of endemic equilibrium point, E1 of the
system (23) is determined. It is clear that coefficients of (31) satisfy the conditions
in corollary 1 as long as R0 > 1. Thus the endemic equilibrium E1 is locally stable
whenever R0 > 1.
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Fig. 10 Susceptible human, infected human, and infected mosquito proportion dynamics

4.2 Numerical Results

The system of equations of the mathematical model in 23 is solved numerically
using MATLABODE solver. The solutions are illustrated in Fig. 10. The parameters
are μh = 0.0000391 per day, μv = 0.071 per day, b = 1/3 per day, βh = 0.5, βv =
0.7, n = 10, and r = 1/3 per day. The initial conditions are (S(0), I(0), Iv(0)) =
(0.000001, 0.0000625, 0.006) [9].

According to Fig. 10, it can be seen that each population proportions showperiodic
oscillations and the proportional limit to their corresponding equilibrium point in the
long run. However, this behavior is unrealistic compared to actual dynamic shown
by the dengue cases data and Fig. 11 shows the solution trajectories.

5 Two-Dimensional Model for Dengue

We consider the system of Eqs. 23. This three-dimensional system includes suscep-
tible humans (S), infected humans (I ), and infected mosquitoes (Iv). However, it
is very difficult to measure (Iv) in practice. Thus, we now attempt to reduce the
three-dimensional system into a two-dimensional system by eliminating the infect-
ed mosquito proportion. We assume that there are sufficient infected mosquitoes in
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Fig. 11 Solution trajectories, projected onto (S, I), (S, Iv) and (I , Iv). The same parameter values
are used as in Fig. 10

the environment who can transmit the virus to humans and this population is in an
equilibrium. Thus,

dIv
dt = 0.

This condition gives
γv(1 − Iv)I − μvIv =0

Iv = γvI

γvI + μv

.
(33)

Substituting this Iv into the first two equations and using γh = bβhn and γv = bβv

we get
dS

dt
=λ − b2nβhβvI

bβvI + μv

− μhS,

dI

dt
= b2nβhβvI

bβvI + μv

− (μh + r)I ,

(34)

with S(0) > 0 and I(0) > 0.
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5.1 The Equilibrium States of the Model

In this section, we discuss the stability analysis of the two-dimensional model. We
let the set of solutions denoted byΩ to the system of nonlinear differential equations
in (34) as

Ω
′ = {(S, I) ∈ R2+ : S + I ≤ 1, S, I ≥ 0}.

The Jacobian matrix of the system in (34) is obtained as

J
′ =

⎛
⎜⎜⎝

−μh
b2nβhβvμv

(bβvI + μv)2

0
b2nβhβvμv

(bβvI + μv)2
− (μh + r)

⎞
⎟⎟⎠ (35)

Clearly, the disease-free equilibrium state is E
′
0 = (1, 0). Thus, the Jacobian matrix

at the disease-free equilibrium can be obtained as

J
′
E0

=

⎛
⎜⎜⎝

−μh
b2nβhβv

μv

0
b2nβhβv

μv

− (μh + r)

⎞
⎟⎟⎠ (36)

We diagonalize the Jacobian matrix J
′
E0

for the disease-free equilibrium and the
characteristic equation is given by

det(J
′
E0

− ηId ) = 0 (37)

where η is the eigenvalue of J
′
E0
and Id is the identity matrix. The eigenvalues can be

obtained by solving Eq. (28)

η2 + a1η + a0 = 0 (38)

The two eigenvalues can be obtained as η1 = −μh and η2 = b2nβhβv

μv

− (μh + r).

According to Theorem1, if all eigenvalues obtained by Jacobianmatrix have negative
real parts, then the equilibrium solution is locally stable. Clearly, η1 < 0. Thus, the
disease-free equilibrium is locally stable if

b2nβhβv

μv

< μh + r (39)
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Now, let the endemic equilibrium state of the model is denoted by E∗ = (S∗, I∗).

This state can be obtained by solving
dS∗

dt
= 0 and

dI∗

dt
= 0. By solving these two

equations, we obtain

I∗ = M − Lμv

NL
(40)

and

S∗ = 1

μh

[
λ − M − Lμv

N

]
, (41)

where M = b2nβhβv , L = μh + r and N = bβv .
Substituting this state into the Jacobian matrix J

′
, we now obtain the Jacobian matrix

at the endemic equilibrium as

J
′
E1

=
(

−μh
L2μv

M

0 L2μv

M − L

)
. (42)

Routh–Hurwitz stability criterion for second-order polynomials is used to determine
the stability of the endemic equilibrium E

′
1. According to this criteria, the endemic

equilibrium is stable if all the coefficients of the second-order polynomial is positive.
We again diagonalize thematrix J

′
E1
and obtain the characteristic polynomial inwhich

the coefficients are
c1 = 1,

c2 = L(M − L) + μv + Mμh

M
,

c3 = μh[L(M − L) + μv]
M

.

Obviously c1 > 0.Now c2, c3 > 0wheneverM > L. Thus the system sn the endemic
equilibrium whenever b2nβhβv > μh + r.

5.2 Numerical Results

The two-dimensional deterministic system in 34 with is numerically solved using
MATLAB. The parameter values are n = 0.75,μh = 3.42 × 10−5,μv = 1/21, βh =
0.07, βv = 0.7, r = 1/14, λ = 0.0000456, and b = 1/3. The dynamic of susceptible
and infected population proportions are illustrated in Fig. 12.
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Fig. 12 Numerical solution of the two-dimensional system in 34

5.3 Sensitivity of the Parameters

It is clearly seen that the model expressed in system 34, there are number of param-
eters such as transmission probabilities from mosquitoes to humans and humans to
mosquitoes, biting rate, mosquito density, and birth and death rates of humans and
mosquitoes. Therefore, it is critical to investigate the sensitivity of these parameters
to change the behavior of the transmission dynamic of the disease. However, the
sensitivity analysis of the parameters are not carried out of which whose changes are
negligible with respect to outside environment such as birth and death rates of hu-
mans. Figure13 shows the variation in the dynamic as the mosquito density changes
in small amount. Figures14 and 15 show the sensitivity of the solution as the values
of the transmission probabilities βh and βv change their value while Fig. 16 shows
the sensitivity when the biting rate b varies in a considerably small interval.

As these Fig. 13, 14, 15 and 16 suggest, it can be clearly identified that the dynamic
of the transmission of dengue diseases changes with respect to model parameter
values. It is also clear that some parameters are more sensitive than others. However,
we may have to pick the parameters which are influenced by the external forces
significantly. Estimating each and every parameter value as a function of external
variables is not practical and the system may become extremely complex to analyze.

6 Mosquito Density Model

We discussed previously that the mosquito density is a vital parameter in the model
which is responsible to transmit the disease in a local environment. The impact of
this parameter in the transmission dynamic of the disease is clearly shown in Fig. 13.
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Fig. 13 Sensitivity of the infected human proportion when mosquito density n changes
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Fig. 14 Sensitivity of the infected human proportion when transmission probability humans to
mosquitoes βh changes

Further, it should be noted that the mosquito density is not constant over time and
takes different values with respect to climate variations. Thus, it is time-dependent
and its value changes with respect to climate factors, mainly due to rainfall and
temperature. Though this is critical parameter in ourmodel, finding reliablemosquito
density data is extremely challenging. Therefore, we attempt to model the dynamic
of this mosquito density in functional form. The development of this model is disused
in detail here.
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Fig. 15 Sensitivity of the infected human proportion when transmission probability from
mosquitoes to humans βv changes
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Fig. 16 Sensitivity of the infected human proportion when biting rate b changes

6.1 Gompertz Model

The Gompertz model is defined as [17, 26]

N (t + 1) = λ0N (t)θ (43)

where θ ∈ [0, 1] is an exponent, λ0 = exp(r0), N (t) is the size of the population at
time t and r0 is the growth rate of the population.
Now, we start with a simple model in which we suppose that the number of vectors
in time t, (Nv(t)) depends on the number of adult vectors in time t − 1, (Nv(t − 1))
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and the number of growing juvenile vectors in time t − 1, J (t − 1). This model can
be expressed as [16, 17]

Nv(t) = sNv(t − 1) + pJ (t − 1) (44)

where s ∈ [0, 1] is the per capita survival rate of the adult vectors and p is the per
capita growing probability of juveniles [16].
The number of juveniles at time t, (J (t)) is regulated by the adult vector density in
the previous time step. Thus we can write [16]

J (t) = F(Nv(t − 1)). (45)

Using Gompertz model in (43), the number of juveniles at time t, J (t) in (44) can
be expressed as

J (t) = λ0N
θ
v (t − 1). (46)

Now Eq. (43) can be written as

Nv(t) = sNv(t − 1) + p(λ0N
θ
v (t − 2)). (47)

6.2 Mathematical Analysis of the Density Model

Here, we discuss the stability analysis of the mosquito density model obtained as in
Eq. (47). We view this as a system of first-order difference equation and it is given
in (48),

Nv(t) =sNv(t − 1) + pJ (t − 1)

J (t) =λ0N
θ
v (t − 1).

(48)

It is easily found that the trivial equilibrium of the system (48) is

(N ∗
v , J ∗) = (0, 0).

The non-trivial equilibrium can be found as

(N ∗
v , J ∗) =

((
pλ0

1 − s

)1/1−θ

, λ0

(
pλ0

1 − s

)θ/1−θ)
, (49)

with s �= 1.The Jacobianmatrix (φ∗) for the system (48) is obtained at the equilibrium
as
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φ∗ =
⎛
⎝ s p

θλ0N ∗(θ−1)
v 0

⎞
⎠ . (50)

Let the eigenvalues of the Jacobian matrix φ∗ be η. We let det(φ∗ − ηId ) = 0 where
Id is the identity matrix and the characteristic polynomial can be obtained as

P(η) = η2 − sη − pλ0θN
∗(θ−1)
v . (51)

We solve P(η) = 0 and the expression for the eigenvalue is obtained as

η = s

2
±

√(
s

2

)2

+ θN ∗(θ−1). (52)

The trivial equilibrium is always unstable since θ ∈ (0, 1) andN ∗(θ−1) converges to a
value outside the unit circle [16]. However for the non-trivial equilibrium, the largest
eigenvalue of the Jacobian matrix is

η = s

2
+

√(
s

2

)2

+ θ(1 − s). (53)

Theorem 2 The non-trivial equilibrium in (49) is asymptotic stability if
|η| < 1.

Theorem 2 gives us

s

2
+

√(
s

2

)2

+ θ(1 − s) < 1

if and only if(
s

2

)2

+ θ(1 − s) <

(
1 − s

2

)2

.

This leads to obtain the condition for asymptotic stability of the system (48) as

θ < 1.

6.3 Model for Mosquito Density with Climate Force

In this section,wemodify themodel inEq. (47) considering the external force induced
by the rainfall and temperature. For this purpose, the climate risk index developed
in Sect. 3 is used. There, the risk index is given in Eq. (20) and the new model can be
expressed as
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Nv(t) = secM (t−1)Nv(t − 1) + p(λ0N
θ
v (t − 2)), (54)

where c is the coefficient of climate force and c ∈ [0, 1]. If c = 0, then climatic vari-
ation does not influence the mosquito reproduction and then the model is simplified
back to (47). If c = 1, then the climate force fully acts on mosquito propagation.
Since density n(t) = Nv(t)

NT (t) , then we obtain

n(t) = secM (t−1)n(t − 1) + p(λ0n
θ (t − 2)) (55)

(It is assumed that the mosquito life time is negligible compared to the life time of

a human and nθ (t) ≈ N θ
v (t)

NT (t) ).

7 Two-Dimensional Mathematical Model with Varying
Mosquito Density

In this section, we transform the deterministic two-dimensional mathematical model
of dengue transmission discussed in Sect. 5 into a non-deterministic system where
the mosquito density parameter n is time invariant as in Eq. (55). Now, we let n =
n(t) = F(temp, rf ). Thus, the system 34 can be rewritten as

dS

dt
=λ − b2n(t)βhβvI

bβvI + μv

− μhS,

dI

dt
=b2n(t)βhβvI

bβvI + μv

− (μh + r)I .

(56)

We aim to investigate the dynamic of the dengue transmission with respect to climate
variation only. Thus, other parameters are kept as constants. Since the system is now
non-deterministic, the stability analysis of the equilibrium states may not be feasible
to perform. Thus, the model is analyzed numerically.

7.1 Numerical Results

We solve system 56 and Eq. (55) together using a MATLAB program. The pa-
rameter values in the system 56 are , μh = 3.42 × 10−5, μv = 1/21, βh = 0.07,
βv = 0.7, r = 1/14, λ = 0.0000456, b = 1/3 and the parameter values in Eq. (55)
are s = 0.105, ρ = 0.61, θ = 0.115 and c = 0.65. The dynamic of the susceptible
and infected human proportions are shown in Fig. 17. It can be clearly seen that the
dynamic is now different to results obtained from the deterministic model. Instead
for a very smooth logistic growth of the infected population, this non-deterministic
model produces some oscillation together with a trend in time mostly due to the
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Fig. 17 Numerically simulated infected human proportion of the two-dimensional system in 56
and Eq. (55) simulated together
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Fig. 18 Solution trajectory of the plotted infected proportion onto susceptible

climate variation considered. Figures18 shows the solution trajectory plotted the in-
fected proportion onto susceptible. Figures18 shows the solution trajectory plotted
the infected proportion onto susceptible.

The simulated dengue infections in humans is validated with the actual dengue
incidents reported in Colombo Municipal Council area from year 2006 to 2017. The
Comparison is illustrated in Fig. 19. It is clearly shown in this figure that the model
captured the trend in dengue cases during the period and the fitted curve passes
through most of the peak outbreaks. It should be noted that the outbreak occurred in
mid 2017 is not predicted by the model since this peak is irregular compared to the
pattern shown in the historical data.



A Two-Dimensional Dynamical System for Local Transmission … 103

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time

In
fe

ct
ed

 H
um

an

reported dengue cases
simulated infectiones

Fig. 19 Comparison of actual dengue cases reported from year 2006 to 2017 and the fitted dengue
infections by the model

7.2 Introducing Control Measures

Now, we try to illustrate how the dynamics of mosquito density change as we intro-
duce control measures to the model given in system 56. It should be understood that,
we do not have any control over the climate since it is a natural phenomenon, but the
impact of climate conditions to the mosquito propagation in the environment can be
controlled [27]. Here, we introduce an aggregated control measure u ∈ [0, 1]. This
measure is a composition of several control actions such as

– Controlling the adult mosquitoes which is referred to reducing the survival of adult
mosquitoes. Practically this control measure includes chemical methods directed
against adult mosquitoes, such as insecticide space sprays or residual applications
[8, 27].

– Controlling the growing juveniles which is referred to reducing the growth of ju-
veniles. This control measure includes the biological methods (e.g., fish, copepods
small crustaceans that feed on mosquito larvae) to kill or reduce larval mosquito
populations in water containers and the chemical methods against the mosquito’s
aquatic stages for use in water containers (e.g., temephos sand granules) [8, 27].

The mathematical model with control can then be established as

dS

dt
=λ − b2n(t)(1 − u)βhβvI

bβvI + μv

− μhS,

dI

dt
=b2n(t)(1 − u)βhβvI

bβvI + μv

− (μh + r)I .

(57)

The change in the dynamic with respect to the varying effective levels of control
actions is given in Fig. 20. Arbitrary levels of control measures considered for the
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Fig. 20 Simulation of the model with different levels of control actions

simulation. According to Fig. 20, it is very clear that the proportion of humans who
are infected with the dengue virus reduces as the efficacy of the control actions
improved. It should also be noted that the effectiveness of this control measures
depends on multiple factors such as amount of available resources such as human
capital and funding, human motivation level, and attitude of public. Thus, 100%
efficacy is not achieved in the real world.

8 Conclusion

Dengue is one of the very critical public health concerns in the tropical and sub-
tropical regions around the world damaging the socio-economic stability and the
well-being of people living in the countries exposed to the disease. The impact of
this to Sri Lanka is extremely serious as a developing nation as every year a large
number of cases of dengue reported island wide, among them some are life ending.

Biomedical researchers are progressing to find out a potential vaccine to treat
dengue, however, none of them have been successful yet. Thus, health professionals
and public health officials suggest that the best way to fight with the disease is to
control the transmission over the population. Controlling may be only achieved by
identifying the dynamic of the disease and hence effectively introducing control
measures to reduce the mosquitoes.

Mathematicalmodels are used tomodel and simulate the dynamics and they reveal
very useful information supporting the control. The transmission process of dengue
itself is complex and the virus gets changes with respect to time, so do the behavior
and biting patterns of dengue mosquitoes vary. Thus, classical SIR models alone
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with a deterministic parameter space may not be applicable. The results generated
from these classical models have been far away explaining the real picture.

In this study, a two-dimensional differential system involving susceptible and
infected human populations derives from a classical SIR model. Dengue data in
Colombo is analyzed with respect to climate variation mainly by rainfall and temper-
ature and the mosquito density parameter is modeled using a discrete time nonlinear
model. The uncertainty in the process induced by the climate is modeled using fuzzy
set theory. The two-dimensional system and the model equation for mosquito den-
sity are solved together using a MATLAB program. Possible mathematical analysis
is carried out for the deterministic model and sensitivity of critical parameters is
analyzed numerically.

The fitted dengue infections are validated with the actual cases reported and the
model seems to have predicted the trend and fitted curve goes through most of the
peak outbreaks. Therefore, the outcomes of this mathematical model can be used
to establish early warning systems thus the disease burden can be minimized if the
appropriate control measures are implemented in correct time.
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AMathematical Study of a Model
for HPV with Two High-Risk Strains

A. Omame, D. Okuonghae and S. C. Inyama

1 Introduction

Cervical cancer is the most common cancer in women globally [1]. About 85% of
the cervical cancer cases and roughly 90% of the 270,000 deaths due to the disease
occur in lower- andmiddle-income countries [2].Humanpapillomavirus (HPV) is the
most important risk factor associated with cervical cancer, accounting for over 75%
of cervical cancer cases [1, 3]. HPV has been classified, based on their oncogenic
potentials, into high and low-risk HPV [3]. Low-risk types include types 6, 11, 42,
43 and 44 while types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82
form the high-risk HPV types [3, 4]. HPV type 16 and type 18 are the most common
high-risk types and are responsible for about 70% of global cervical cancer cases.
Overall, HPV 16 is the most prevalent type, found in about 54% of cervical cancer
cases, and HPV 18 is the second most prominent [5, 6]. Other oncogenic HPV types
cause the remaining cancers. Particularly, HPV 45 and HPV 31, being the third and
the fourth most prevalent types, are responsible for approximately 10% of cervical
cancers. Generally, the four HPV types, HPV 16, 18, 45, and 31 all together account
for 80% of global cervical cancer cases [6, 7]. Epidemiological data have shown
interactions among HPV types [8]. Liaw et al. [9] pointed out that women could
be susceptible to subsequent infections with HPV types 18, 39, 45, 59, and 68, if
they have suffered an initial infection with HPV type 16. However, with subsequent
infections with HPV, there may be a reduced risk of getting infected with the same
strain [10]. Studies have recently shown that HPV vaccines offer cross-protection
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against related HPV strains [1, 5, 11, 12]. Vaccination against one strain of HPV
can confer some cross-protection against other HPV infections [5, 11, 13].

Harari et al. [12] reported “partial cross-protection by the bivalent human papillo-
mavirus (HPV) vaccine, which targets HPV 16 and HPV 18, against HPV 31, 33, and
45 infection.” These claims were strongly supported by recent findings carried out
in Scotland [14] and the Netherlands [15]. Ho et al. [10] observed that susceptibility
to subsequent infection with HPV types 16, 31, 33, 35, 52, and 58 could be reduced
by IgG antibodies against HPV type 16. There are currently three major anti-HPV
vaccines: the bivalent Cervarix vaccine (which targets HPV 16 and 18), the quadri-
valent Gardasil vaccine (which targets the oncogenic HPV types 16 and 18 and the
warts causing HPV types 6 and 11) and the recently introduced nonavalent Gardasil
9 vaccine (which targets the high-risk HPV types 16, 18, 31, 33, 45, 52, and 58 and
the low-risk HPV types 6 and 11) [16]. The newly developed nonavalent Gardasil 9
HPV vaccine, though very effective, may likely be too expensive for low-income and
middle-income countries, where cervical cancer continues to remain a major cause
of female mortality, and as such the poorest countries may not easily have access to it
[2, 13]. Although the costs of the quadrivalentGardasil vaccine and the bivalentCer-
varix vaccine do not differ much, the higher cross-protection potential of the bivalent
vaccine gives it preference over the quadrivalent vaccine [17].The cross-protection
offered by the bivalent vaccine has been proven to be lasting and effective in women
[13]. Kudo et al. [18] confirmed this thus: “The bivalent HPV vaccine is highly effec-
tive against HPV 16 and 18. Furthermore, significant cross-protection against HPV
31, 45, and 52 was demonstrated and sustained up to 6years after vaccination. These
findings should reassure politicians about the vaccine effectiveness (VE) of bivalent
HPV vaccine in a Japanese population.” Therefore, the bivalent vaccine’s role in the
global fight against cervical cancer cannot be underestimated [13].

Several mathematical models have been developed to analyze interactions among
strains of different disease types (see, for instance, [19–23]). Garba et al. [24] dis-
cussed the dynamics of two strains of influenza, where they showed that cross-
immunity due to infection could induce the phenomenon of backward bifurcation.
Okuonghae et al. [23] studied the dynamics of a vaccination model of wild and
vaccine-derived polio strains. Their model exhibited the phenomenon of competi-
tive exclusion, where the strain with the higher reproduction number (greater than
one) drives the other strain to extinction. In a another paper, Elbasha and Galvani
[21] studied the interactions among HPV types and showed that mass vaccination
may reduce the prevalence of HPV types not included in the vaccine. Their model
was based on a simple Susceptible-Infected-Recovered (SIR) structure. Elbasha et
al. [22] considered a multi-type HPV transmission model. Their model incorporated
the epidemiology of HPV infection, disease and economics into its transmission
dynamics. The analyses of the model were mainly based on numerical simulations.

In this work, we consider a two-sex, two-strain HPV mathematical model that
rigorously assesses the impact of cross-immunity due to vaccination, in a population
where two high-risk strains coexist and there is vaccination for one of the strains,
which cross-protects against the strain not included in the vaccine. We are concerned
with a vaccination strategy that makes use of the bivalent Cervarix vaccine targeted
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at one group of high-risk HPV: type 16/18 but with cross-immunity property against
other high-risk HPV: type 31/45. This has not been done for any two-sex, two-strain
HPV model before. The paper is organized as follows. The model is formulated in
Sect. 2 and analyzed qualitatively in Sect. 3. Existence and global stability of the
boundary equilibria (for a special case) of the model are investigated in Sect. 4.
Numerical simulations are carried out in Sect. 5 while Sect. 6 gives the concluding
remarks.

2 Model Formulation

The model is based on the transmission dynamics of two-sex, two-strain HPV in-
fection. In this study, strain 1 is HPV type 16/18 while HPV type 31/45 is con-
sidered as strain 2. The total population at time t, denoted by N (t), is subdivided
into Nf (t) and Nm(t). Nf (t)is further subdivided into susceptible females (Sf (t)), fe-
males vaccinated with the bivalent Cervarix vaccine (Vf (t)), females infected with
strain 1 (If 1), females with persistent HPV (strain i (i = 1, 2) (Pf i)), females with
cancer (Cf ), females who have recovered from strain i (i = 1, 2) (Rfi), unvaccinated
females infected with strain 2, (If 2), vaccinated females infected with strain 2, (I pf 2),
females who have recovered from cancer (Rc

f ) , females who have recovered from
strain i and are infected with strain j(If i j), and females who have recovered from
both strains (Mf (t)). Similarly, Nm(t) is subdivided into susceptible males (Sm(t)),
males infectious with strain i (i = 1, 2) (Imi), males who have recovered from strain
i (i = 1, 2) (Rm i), males who have recovered from strain i and are infected with
strain j(Im i j). Thus

N (t) = Nf (t) + Nm(t)

Nf = Sf + Vf + If 1 + Pf 1 + Cf + Rc
f + Rf 1 + If 2 + I pf 2

+ Pf 2 + Rf 2 + If 12 + If 21 + Mf

Nm = Sm + Im1 + Rm1 + Im2 + Rm2 + Im12 + Im21 + Mm

It follows that the two-strain model for the transmission of HPV in a sexually active
population is given by the following system of differential equations (Tables1 and 2
describe the associated state variables and parameters in the model (1) while Figs. 1
and 2 give the flow diagrams of the model (1)):

dSf
dt

= (1 − f )�f − (
λm1 + λm2 + μf

)
Sf

dVf

dt
= f �f − [

(1 − ξ)λm1 + ηI (1 − ξ)λm2 + μf
]
Vf

dIf 1
dt

= (1 − ξ)λm1Vf + λm1Sf − (
τf 1 + δf 1 + μf

)
If 1 + ε1λm1Rf 1 + α1λm1Mf
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dPf 1

dt
= (1 − p1)τf 1If 1 + (1 − p21)τf 21If 21 − (

κf 1 + μf
)
Pf 1

dCf

dt
= (1 − q1)κf 1Pf 1 + ηc(1 − q2)κf 2Pf 2 − (

πf + μf + δfc
)
Cf

dRc
f

dt
= πf Cf − μf R

c
f

dRf 1

dt
= p1τf 1If 1 + q1κf 1Pf 1 − (

μf + λm2 + ε1λm1
)
Rf 1

dIf 2
dt

= λm2Sf − (
τf 2 + δf 2 + μf

)
If 2 + ε2λm2Rf 2 + α2λm2Mf

dIpf 2
dt

= ηI (1 − ξ)λm2Vf −
(
ηpτf 2 + δ

p
f 2 + μf

)
I pf 2

dPf 2

dt
= (1 − p2)ηpτf 2I

p
f 2 + (1 − p2)τf 2If 2 + (1 − p12)τf 12If 12 − (

ηcκf 2 + μf
)
Pf 2

dRf 2

dt
= p2ηpτf 2I

p
f 2 + p2τf 2If 2 + q2ηcκf 2Pf 2 − (

μf + λm1 + ε2λm2
)
Rf 2

dSm
dt

= �m − (
λf 1 + λf 2 + μm

)
Sm

dIm1
dt

= λf 1Sm − (τm1 + δm1 + μm)Im1 + ε3λf 1Rm1 + α3λf 1Mm

dRm1

dt
= τm1Im1 − (

μm + λf 2 + ε3λf 1
)
Rm1

dIm2
dt

= λf 2Sm + ε4λf 2Rm2 + α4λf 2Mm − (τm2 + δm2 + μm) Im2

dRm2

dt
= τm2Im2 − (

μm + λf 1 + ε4λf 2
)
Rm2

dIf 12
dt

= λm2Rf 1 − (
τf 12 + δf 12 + μf

)
If 12

dIf 21
dt

= λm1Rf 2 − (
τf 21 + δf 21 + μf

)
If 21

dMf

dt
= p12τf 12If 12 + p21τf 21If 21 − (

μf + α1λm1 + α2λm2
)
Mf

dIm12
dt

= λf 2Rm1 − (τm12 + δm12 + μm) Im12

dIm21
dt

= λf 1Rm2 − (τm21 + δm21 + μm) Im21

dMm

dt
= τm12Im12 + τm21Im21 − (

μm + α3λf 1 + α4λf 2
)
Mm

(1)
where,

λm1 = βm1(Im1 + Im21)

Nm
(2)
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Table 1 Description of variables in the model (1)

Variable Description

Sf (Sm) Population of susceptible females (males)

Vf Population of females vaccinated against strain 1

If 1(Im 1), i=1,2 Population of females (males) infected with strain 1

Pf i, i=1,2 Population of females with persistent strain i infection

Cf Population of females with cervical cancer

Rf i(Rm i) i=1,2 Population of females (males) who have recovered naturally from strain i

Im2 Population of infected males with strain 2

If 2 Population of unvaccinated infected females with strain 2

Ipf 2 Population of vaccinated infected females with strain 2

Rc
f Population of females who have recovered from cervical cancer

If i j(Im i j)

i,j=1,2; i �=j

Population of females (males) who have recovered from strain i and are
infected with strain j

Mf (Mm) Population of females (males) who have recovered from both strains

Nf (Nm) Total female (male) population

and

λm2 = βm2(Im2 + Im12)

Nm
(3)

λf 1 = βf 1(If 1 + If 21 + θp1Pf 1)

Nf
(4)

and

λf 2 = βf 2(If 2 + If 12 + φpI
p
f 2 + θp2Pf 2)

Nf
(5)

In (2) and (3), βm1 and βm2 are the effective contact rates for male-to-female trans-
mission of strain 1 and strain 2 infections, respectively. βm1 is the product of c

f
1 and

βm
1 (i.e., βm1 = cf1β

m
1 ), while βm2 is the product of c

f
1 and βm

2 (that is, βm2 = cf1β
m
2 ),

where βm
1 and βm

2 denote the probabilities of transmitting strain 1 and strain 2 in-
fections from male-to-female, respectively, and cf1 denotes the rate at which females
acquire new sexual partners. In (4) and (5), βf 1 and βf 2 are the effective contact rates
for female-to-male transmission of strain 1 and strain 2 infections, respectively. βf 1

is the product of cf1 and β
f
1 (i.e., βf 1 = cm1 β

f
1 ), while βf 2 is the product of cm1 and β

f
2

(that is, βf 2 = cm1 β
f
2 ), where β

f
1 and β

f
2 denote the probabilities of transmitting strain

1 and strain 2 infections from female-to-male and cm1 denotes the rate at which males
acquire new sexual partners.
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Table 2 Description of parameters in the model (1)

Parameter Description

�f (�m) Recruitment rate for females (males)

f Proportion of susceptible females vaccinated against strain 1

μf (μm) Natural death rate for females (males)

ξ Bivalent vaccine efficacy for females

ηI Modification parameter for cross-protection of vaccinated females against
incident infection with strain 2

ηp Modification parameter for cross-protection of vaccinated females against
persistent infection with strain 2

ηc Modification parameter for reduced rate of progression to cancer by females
with persistent strain 2 infection relative to those with persistent strain 1
infection

τf i(τm i), i=1,2 Recovery rate of females (males) infected with strain i

δf i(δm i), i=1,2 Disease induced death rate for females (males) infected with strain i

δf i j(δm i j)

i,j=1,2;i �=j

HPV induced death rate for females (males) who have recovered from strain
i and infected with strain j

δfc Cervical cancer induced death rate for females

δ
p
f 2 Disease induced death rate for females in Ipf 2 class

εi ,αi Modification parameters for reduced susceptibility of individuals who have
recovered naturally from either one or both strains relative to those in the
susceptible class

τf i j(τm i j) Recovery rate for females (males) who have recovered from strain i and are
infected with strain j

pi, pi j Proportion of females who recover naturally from HPV and do not progress
to persistent HPV infection

qi Proportion of females who recover from persistent strain i infection and do
not progress to cervical cancer

θp i, i=1,2 Modification parameter for the infectiousness of females with persistent
strain i infection relative to those in If 1, If 2, If 21, If 12 classes

φp Modification parameter for the infectiousness of females in Ipf 2 class relative
to those in If 2 class

πf Rate of recovery from cancer for females

κf 2 Transition rate out of Pf 2 class for females

The model will be studied subject to the group contact constraint given by

cmNm = cf Nf , (6)

a consistency condition which states that in any small interval of time [t, t + �t], the
total number of partnerships formed by females with males must equal total number
of partnerships formed by males with females [25, 26].
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Fig. 1 Schematic diagram of the female components of the model (1)

Since the model monitors human population, it is easy to show that the state
variables remain non-negative for all non-negative initial conditions (i.e., all the
state variables and parameters of the model are non-negative for all t > 0).

Some of the new features of ourwork include incorporating the dynamics of cross-
immunity due to vaccination (ηI �= 0, ηp �= 0) [5, 12, 18], allowing for heterogeneity
in infectiousness of vaccinated and unvaccinated females with strain 2 (HPV type
31/45) [27], including compartments for females (males) who recover from one
strain and are infected with the other strain, Ifij(Imij), i �= j, for females (males),
and allowing for disease transmission by individuals who recover from one strain
and are infected with the other strain (clinical studies have shown that subsequent
infections with other strains are possible after an initial infection with HPV [10].
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Fig. 2 Schematic diagram of the male components of the model (1)

3 Mathematical Analysis of the Model

We shall now rigorously analyze the model to gain insights into its dynamical fea-
tures. We first show that the system (1) is dissipative (i.e., all feasible solutions are
uniformly bounded in a proper subset D⊂ R22+ ). The system (1) is split into two
parts, namely the female population (Nf ) (with Nf = Sf + Vf + If 1 + Pf 1 + Cf +
Rc
f + Rf 1 + If 2 + I pf 2 + Pf 2 + Rf 2 + If 12 + If 21 + Mf ) and themale population (Nm)

(with Nm = Sm + Im1 + Rm1 + Im2 + Rm2 + Im12 + Im21 + Mm). Consider the feasi-
ble region

D = Df ∪ Dm ⊂ R14
+ × R8

+,
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with

Df =
{
(Sf , Vf , If 1,Pf 1,Cf ,R

c
f ,Rf 1, If 2, I

p
f 2,Pf 2,Rf 2, If 12, If 21,Mf ) ∈ R14

+ :
Sf + Vf + If 1 + Pf 1 + Cf + Rc

f + Rf 1

+ If 2 + I pf 2 + Pf 2 + Rf 2 + If 12 + If 21 + Mf ≤ �f

μf

}

and

Dm =
{
(Sm, Im1,Rm1, Im2,Rm2, Im12, Im21,Mm) ∈ R8

+ : Sm

+ Im1 + Rm1 + Im2 + Rm2 + Im12 + Im21 + Mm ≤ �m

μm

}

Adding the female compartments and the male compartments in the differential
system (1), respectively, gives

dNf

dt
= �f − μf Nf (t) − [δf 1If 1 + δfcCf + δf 2If 2 + δ

p
f 2I

p
f 2 + δf 12If 12 + δf 21If 21]

dNm

dt
= �m − μmNm(t) − [δm1Im1 + δm2Im2 + δm12Im12 + δm21Im21]

We have that,

�f − (μf + 6δf )Nf ≤ dNf

dt
< �f − μf Nf ,

�m − (μm + 4δm)Nm ≤ dNm

dt
< �m − μmNm

(7)

where δf =min
{
δf 1, δfc, δf 2, δ

p
f 2, δf 12, δf 21

}
,

δm =min{δm1, δm2, δm12, δm21},
It follows from (7) that,

dNf

dt
≤ �f − μf Nf (t),

dNm

dt
≤ �m − μmNm(t)

A standard comparison theorem [28] can be used to show that Nf (t) ≤ Nf (0)e−μf t +
�f

μf
(1 − e−μf t) and Nf (t) ≤ Nf (0)e−μf t + �f

μf
(1 − e−μf t). In particular, Nf (t) ≤ �f

μf

and Nf (t) ≤ �f

μf
if Nf (0) ≤ �f

μf
and Nm(0) ≤ �m

μm
, respectively. Thus, the region D

is positively invariant. Hence, it is sufficient to consider the dynamics of the flow
generated by (1) in D. Thus, the result is summarized.
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Lemma 3.1 The regionD=Df ∪Dm⊂ R14+ × R8+ is positively invariant for the two-
strain HPV model (1) with initial conditions in R22+

3.1 Local Stability of Disease-Free Equilibrium (DFE)

The model (1) has a DFE, obtained by setting the right-hand sides of the equations
in the model (1) to zero, given by

ξ0 =
(
S∗
f , V

∗
f , I∗

f 1,P
∗
f 1,C

∗
f ,R

c∗
f ,R∗

f 1, I
∗
f 2,

I p∗f 2 ,P∗
f 2,R

∗
f 2, S

∗
m, I∗

m1,R
∗
m1, I

∗
m2,R

∗
m2, I

∗
f 12, I

∗
f 21,M

∗
f , I∗

m12, I
∗
m21,M

∗
m

)

=
(
S∗
f , V

∗
f , 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗

m, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

with,

S∗
f = (1 − f )�f

μf
, V ∗

f = f �f

μf
, S∗

m = �m

μm

The linear stability of the disease-free equilibrium, ξ0 can be established using the
next-generation operator principle [29] on the system (1).

The next-generation matrices are, respectively, given by

F =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0 0 βm1Q1

N ∗
m

0 0 0 0 βm1Q1

N ∗
m

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
βm2S∗

f

N ∗
m

0 0
βm2S∗

f

N ∗
m

0

0 0 0 0 0 0 0
βm2S∗

f

N ∗
m

0 0 βm2Q2

N ∗
m

0
0 0 0 0 0 0 0 0 0 0 0 0

βf 1S∗
m

N ∗
f

βf 1θp1S∗
m

N ∗
f

0 0 0 0 0 0 0 βf 1S∗
m

N ∗
f

0 0

0 0 0 βf 2S∗
m

N ∗
f

βf 2φpS∗
m

N ∗
f

βf 2θp2S∗
m

N ∗
f

0 0 βf 2S∗
m

N ∗
f

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦



A Mathematical Study of a Model for HPV with Two High … 117

V =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

K1 0 0 0 0 0 0 0 0 0 0 0
−G1 K2 0 0 0 0 0 0 0 −G2 0 0
0 0 K3 0 0 −G4 0 0 0 0 0 0
0 0 0 K4 0 0 0 0 0 0 0 0
0 0 0 0 K5 0 0 0 0 0 0 0
0 0 0 −G6 −G5 K6 0 0 −G7 0 0 0
0 0 0 0 0 0 K7 0 0 0 0 0
0 0 0 0 0 0 0 K8 0 0 0 0
0 0 0 0 0 0 0 0 K9 0 0 0
0 0 0 0 0 0 0 0 0 K10 0 0
0 0 0 0 0 0 0 0 0 0 K11 0
0 0 0 0 0 0 0 0 0 0 0 K12

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

where,

Q1 = S∗
f + (1 − ξ)V ∗

f = (1 − f ξ)�f

μf
, Q2 = (1 − ξ)ηI V

∗
f = (1 − ξ)f ηI�f

μf

K1 = τf 1 + δf 1 + μf , K2 = κf 1 + μf , K3 = πf + μf + δfc, K4 = τf 2 + δf 2 + μf ,

K5 = ηpτf 2 + δ
p
f 2 + μf , K6 = ηcκf 2 + μf , K7 = τm1 + δm1 + μm,

K8 = τm2 + δm2 + μm, K9 = τf 12 + δf 12 + μm, K10 = τf 21 + δf 21 + μf ,

K11 = τm12 + δm12 + μm, K12 = τm21 + δm21 + μm, G1 = (1 − p1)τf 1,

G2 = (1 − p21)τf 21, G3 = (1 − q1)κf 1, G4 = ηc(1 − q2)κf 2, G5 = (1 − p2)ηpτf 2,

G6 = (1 − p2)τf 2, G7 = (1 − p12)τf 12, G8 = p2ηpτf 2, G9 = q2ηcκf 2,

G10 = p12τf 12,G11 = p21τf 21

Hence, it follows from [29] that the basic reproduction number of the model (1),
denoted by R0, is given by (where ρ is the spectral radius)
R0 = ρ(FV−1) = max{R01,R02} whereR01 andR02 are the associated reproduc-
tion numbers for strain 1 and strain 2, respectively, given by

R01 =
√

βf 1βm1(K2 + G1θp1)(1 − f ξ)

K1K2K7
, R02 =

√
βf 2βm2(K6 + G6θp2)

K4K6K8

The result below follows from Theorem 2 in [29].

Lemma 3.2 The DFE (ξ0) of the model (1) is locally asymptotically stable (LAS) if
R0 < 1, and unstable ifR0 > 1.
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3.2 Backward Bifurcation Analysis of the Model (1)

We shall investigate the type of bifurcation the model (1) may undergo, using the
center manifold theory as discussed in [30]. The following result can be obtained
using the approach in [30].

Theorem 3.1 IfR0 < 1 and a backward bifurcation coefficient a > 0, where

a = −2K1ν3ω3

N ∗
mX

∗
1

{
ω12X

∗
1 − ε1ω7N

∗
m + (ω13 + ω14 + ω15 + ω16)X

∗
1

− {ω1 + (1 − ξ)ω2}N ∗
m

}
− 2βm2βf 2(K6 + θp2G6)ν15ω15

K4K6N ∗
mN

∗
f{

ω12X
∗
1 − ε2ω11N

∗
m + (ω13 + ω14 + ω15 + ω16)x

∗
1 − ω1N

∗
m

}

− 2βm2βf 2ηI (1 − ξ)ν15ω15

K5K6N ∗
mN

∗
f

{
ω12x

∗
12 + (ω13 + ω14 + ω15 + ω16)x

∗
2 − ω2N

∗
m

}

− 2K1ν3ω3

N ∗
mN

∗
f

{
{ω1 + ω2}x∗

12 − ε3ω14N
∗
f + n1x

∗
12 − ω12N

∗
f

}

−
2βf 2βm2

{
K5(K6 + θp2G6)x∗

1 + K5(φpK6 + θp2G5)ηI (1 − ξ)x∗
2

}
ν15ω15

K4K5K6N ∗
mN

∗2
f

×
{
{ω1 + ω2}x∗

12 − ε4ω16N
∗
f + n1x

∗
12 − ω12N

∗
f

}
,

then model (1) exhibits backward bifurcation at R0 = 1. If the inequality sign is
reversed, then the system (1) exhibits a forward bifurcation atR0 = 1.

Proof Suppose

ξe = (S∗∗
f , V ∗∗

f , I∗∗
f 1 ,P∗∗

f 1 ,C
∗∗
f ,Rc∗∗

f ,R∗∗
f 1, I

∗∗
f 2 , I p∗∗

f 2 ,P∗∗
f 2 ,R

∗∗
f 2, S

∗∗
m , I∗∗

m1,R
∗∗
m1, I

∗∗
m2,

R∗∗
m2, I

∗∗
f 12, I

∗∗
f 21,M

∗∗
f , I∗∗

m12, I
∗∗
m21,M

∗∗
m )

represents any arbitrary endemic equilibrium of the model (i.e., an endemic equi-
librium in which at least one of the infected components is nonzero). The existence
(or otherwise) of backward bifurcation will be explored using the center manifold
theory [30]. To apply this theory, it is necessary to carry out the following change of
variables.
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Let
Sf = x1, Vf = x2, If 1 = x3,Pf 1 = x4,Cf = x5,R

c
f = x6,

Rf 1 = x7, If 2 = x8, I
p
f 2 = x9,

Pf 2 = x10,Rf 2 = x11, Sm = x12, Im1 = x13,Rm1 = x14,

Im2 = x15,Rm2 = x16, If 12 = x17,

If 21 = x18,Mf = x19, Im12 = x20, Im21 = x21,Mm = x22

so that

N =
22∑

i=1

xi.

Further, using the vector notation

X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,

x15, x16, x17, x18, x19, x20, x21, x22)
T

the model (1) can be rewritten in the form

dX

dt
= f = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13,

f14, f15, f16, f17, f18, f19, f20, f21, f22)
T

as follows:

dx1
dt

≡ f1 = (1 − f )�f − (
λm1 + λm2 + μf

)
x1

dx2
dt

≡ f2 = f �f − [
(1 − ξ)λm1 + ηI (1 − ξ)λm2 + μf

]
x2

dx3
dt

≡ f3 = (1 − ξ)λm1x2 + λm1x1 + ε1λm1x7 + α1λm1x19 − (τf 1 + δf 1 + μf )x3

dx4
dt

≡ f4 = (1 − p1)τf 1x3 + (1 − p21)τf 21x18 − (κf 1 + μf )x4

dx5
dt

≡ f5 = (1 − q1)κf 1x4 + ηc(1 − q2)κf 2x10 − (πf + μf + δfc)x5

dx6
dt

≡ f6 = πf x5 − μf x6

dx7
dt

≡ f7 = p1τf 1x3 + q1κf 1x4 − (
μf + λm2 + ε1λm1

)
x7

dx8
dt

≡ f8 = λm2x1 + ε2λm2x11 + α2λm2x19 − (τf 2 + δf 2 + μf )x8
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dx9
dt

≡ f9 = ηI (1 − ξ)λm2x2 − (ηpτf 2 + δ
p
f 2 + μf )x9

dx10
dt

≡ f10 = (1 − p2)ηpτf 2x9 + (1 − p2)τf 2x8 + (1 − p12)τf 12x17 − (ηcκf 2 + μf )x10

dx11
dt

≡ f11 = p2ηpτf 2x9 + p2τf 2x8 + q2ηcκf 2x10 − (
λm1 + ε2λm2 + μf

)
x11

dx12
dt

≡ f12 = �m − (
λf 1 + μm + λf 2

)
x12

dx13
dt

≡ f13 = λf 1x12 + ε3λf 1x14 + α3λf 1x22 − (τm1 + δm1 + μm)x13

dx14
dt

≡ f14 = τm1x13 − (
λf 2x14 + ε3λf 1x14 + μm

)
x14

dx15
dt

≡ f15 = λf 2x12 + ε4λf 2x16 + α4λf 2x22 − (τm2 + δm2 + μm)x15

dx16
dt

≡ f16 = τm2x15 − (
μm + λf 1 + ε4λf 2

)
x16

dx17
dt

≡ f17 = λm2x7 − (
τf 12 + δf 12 + μf

)
x17

dx18
dt

≡ f18 = λm1x11 − (
τf 21 + δf 21 + μf

)
x18

dx19
dt

≡ f19 = p12τf 12x17 + p21τf 21x18 − (
μf + α1λm1 + α2λm2

)
x19

dx20
dt

≡ f20 = λf 2x14 − (τm12 + δm12 + μm) x20

(8)

dx21
dt

≡ f21 = λf 1x16 − (τm21 + δm21 + μm) x21

dx22
dt

≡ f22 = τm12x20 + τm21x21 − (
μm + α3λf 1 + α4λf 2

)
x22

where,

λf 1 = βf 1(x3 + x18 + θp1x4)
∑11

i=1 xi +
∑19

i=17 xi

λf 2 = βf 2(x8 + x17 + φpx9 + θp2x10)
∑11

i=1 xi +
∑19

i=17 xi

λm1 = βm1(x13 + x21)
∑16

i=12 xi +
∑22

i=20 xi

λm2 = βm2(x15 + x20)
∑16

i=12 xi +
∑22

i=20 xi

Without loss of generality, consider the case when R01 = 1. Suppose, further, that
βf 1 is chosen as a bifurcation parameter. Solving for βf 1 = β∗

f 1 fromR01 = 1 gives

βf 1 = β∗
f 1 = K1K2K7

βm1
(
K2 + G1θp1

)
(1 − f ξ)
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The Jacobian of the transformed system (8), evaluated at theDFE (ξ0)withβf 1 = β∗
f 1,

is given by

J (ξ0)|βf 1=β∗
f 1

=
[
J11 J12
J21 J22

]

where

J11 =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−μf 0 0 0 0 0 0 0 0 0 0
0 −μf 0 0 0 0 0 0 0 0 0
0 0 −K1 0 0 0 0 0 0 0 0
0 0 G1 −K2 0 0 0 0 0 0 0
0 0 0 0 −K3 0 0 0 0 G4 0
0 0 0 0 0 −μf 0 0 0 0 0
0 0 p1τf 1 q1κf 1 0 0 −μf 0 0 0 0
0 0 0 0 0 0 0 −K4 0 0 0
0 0 0 0 0 0 0 0 −K5 0 0
0 0 0 0 0 0 0 G6 G5 −K6 0
0 0 0 0 0 0 0 p2τf 2 G8 G9 −μf

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

J12 =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

0 −βm1x∗
1

N ∗
m

0 −βm2x∗
1

N ∗
m

0 0 0 0 −βm2x∗
1

N ∗
m

−βm1x∗
1

N ∗
m

0

0 −βm1(1−ξ)x∗
2

N ∗
m

0 −βm2ηI (1−ξ)x∗
2

N ∗
m

0 0 0 0 −βm2ηI (1−ξ)x∗
2

N ∗
m

−βm2(1−ξ)x∗
2

N ∗
m

0

0 βm1X ∗
1

N ∗
m

0 0 0 0 0 0 0 βm2X ∗
1

N ∗
m

0
0 0 0 0 0 0 G2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 βm2x∗

1
N ∗
m

0 0 0 0 βm2x∗
1

N ∗
m

0 0

0 0 0 βm2ηI (1−ξ)x∗
2

N ∗
m

0 0 0 0 βm2ηI (1−ξ)x∗
2

N ∗
m

0 0
0 0 0 0 0 G7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

J21 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0 −βf 1x∗
12

N ∗
f

−βf 1θp1x∗
12

N ∗
f

0 0 0 −βf 2x∗
12

N ∗
f

−βf 2φpx∗
12

N ∗
f

−βf 2θp2x∗
12

N ∗
f

0

0 0 βf 1x∗
12

N ∗
f

βf 1θp1x∗
12

N ∗
f

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 βf 2x∗

12
N ∗
f

βf 2φpx∗
12

N ∗
f

βf 2θp2x∗
12

N ∗
f

0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦
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J22 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−μm 0 0 0 0 −βf 2x∗
12

N ∗
f

−βf 1x∗
12

N ∗
f

0 0 0 0

0 −K7 0 0 0 0 βf 1x∗
12

N ∗
f

0 0 0 0

0 τm1 −μm 0 0 0 0 0 0 0 0
0 0 0 −K8 0 βf 2x∗

12
N ∗
f

0 0 0 0 0

0 0 0 τm2 −μm 0 0 0 0 0 0
0 0 0 0 0 −K9 0 0 0 0 0
0 0 0 0 0 0 −K10 0 0 0 0
0 0 0 0 0 G10 G11 −μf 0 0 0
0 0 0 0 0 0 0 0 −K11 0 0
0 0 0 0 0 0 0 0 0 −K12 0
0 0 0 0 0 0 0 0 τm12 τm21 −μm

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

where N ∗
f = x∗

1 + x∗
2, N

∗
m = x∗

12 , X
∗
1 = x∗

1 + (1 − ξ)x∗
2.

It can be shown that the Jacobian of (1) has a right eigenvector (associated with
the nonzero eigenvalue) given by

w = [ω1,ω2,ω3,ω4,ω5,ω6,ω7,ω8,ω9,ω10,ω11,

ω12,ω13,ω14,ω15,ω16,ω17,ω18,ω19,ω20,ω21,ω22]
T

where,

ω1 = − 1

μf

{
K1x∗

1ω3

N ∗
f (1 − f ξ)

+ βm2x∗
1ω15

N ∗
m

}
,

ω2 = − 1

μf

{
K1(1 − ξ)x∗

2ω3

N ∗
f (1 − f ξ)

+ βm2ηI (1 − ξ)x∗
2ω15

N ∗
m

}
,

ω3 = ω3 > 0, ω4 = G1ω3

K2
,

ω5 = G1G3ω3

K2K3
+ G4βm2

{
G6K5x∗

1 + G5K4ηI (1 − ξ)x∗
2

}
ω15

K3K4K5K6N ∗
m

,

ω6 = πf G1G3ω3

μf K2K3
+ πf G4βm2

{
G6K5x∗

1 + G5K4ηI (1 − ξ)x∗
2

}
ω15

μf K3K4K5K6N ∗
m

,

ω7 = (p1τf 1K2 + q1κf 1G1)ω3

μf K2
,

ω8 = βm2x∗
1ω15

K4N ∗
m

, ω9 = βm2ηI (1 − ξ)x∗
2

K5N ∗
m

,

ω10 = βm2
{
G6K5x∗

1 + G5K4ηI (1 − ξ)x∗
2

}
ω15

K4K5K6N ∗
m

,
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ω11 = βm2
{
(p2τf 2K5K6 + G6G9K5)x∗

1 + (G8K4K6 + G5G9K4)ηI (1 − ξ)x∗
2

}
ω15

μf K4K5K6N ∗
m

,

ω12 = − 1

μm

{
K1K2K7x∗

12ω3

βm1N ∗
f (1 − f ξ)

+ βf 2βm2
{
K5(K6 + θp2G6)x∗

1 + K4(K6φp + θp2G5)ηI (1 − ξ)x∗
2

}
ω15

K4K5K6N ∗
f

}

ω13 = β∗
f 1x

∗
12(K2 + θp1G1)ω3

K2K7N ∗
f

, ω14 = τm1K1x∗
12ω3

βm1μm(1 − f ξ)N ∗
f

,

ω15 = ω15 > 0, ω16 = τm2ω15

μm

Furthermore, (1) has a corresponding left eigenvector (associatedwith the zero eigen-
value) given by

v = [ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10, ν11, ν12,

ν13, ν14, ν15, ν16, ν17, ν18, ν19, ν20, ν21, ν22]

where,

ν3 = ν3 > 0, ν4 = θp1ν3

(K2 + θp1G1)
,

ν8 = βf 2x∗
12ν15(K6 + θp2G6)

K4K6N ∗
f

, ν9 = βf 2x∗
12ν15(K6 + θp2G6)

K5K6N ∗
f

,

ν10 = βf 2θp2x∗
12ν15

K6N ∗
f

, ν13 = βm1X ∗
1 ν3

K7N ∗
m

,

ν17 = βf 2x∗
12ν15(K6 + θp2G6)

K6K9N ∗
f

, ν18 = (θp1G2 + K1K2)ν3

K10(K2 + θp1G1)
,

ν20 = βf 2βm2
{
(K6 + θp2G6)x∗

1 + (φpK6 + θp2G5)ηI (1 − ξ)x∗
2

}
ν15

K4K5K6K11N ∗
f

,

ν21 = βm1X ∗
1 ν3

K12N ∗
m

It follows from Theorem 4.1 in [30], by computing the nonzero partial derivatives of
F(x)(evaluated at the disease-free equilibrium, DFE (ξ0)) that the associated bifur-
cation coefficients defined by a and b, given by

a =
n∑

k,i,j=1

νkωiωj
∂2fk

∂xi∂xj
(0, 0) and b =

n∑

k,i=1

νkωi
∂2fk

∂xi∂β∗
S

(0, 0),
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are computed to be

a = −2βm1ν3ω13

N ∗2
m

{
ω12X

∗
1 − ε1ω7N

∗
m + (ω13 + ω14 + ω15 + ω16)X

∗
1

− {ω1 + (1 − ξ)ω2}N ∗
m

}

− 2βm2ν8ω15

N ∗2
m

{
ω12x

∗
1 − ε2ω11N

∗
m + (ω13 + ω14 + ω15 + ω16)x

∗
1 − ω1N

∗
m

}

− 2βm2ηI (1 − ξ)ν9ω15

N ∗2
m

{
ω12x

∗
2 + (ω13 + ω14 + ω15 + ω16)x

∗
2 − ω2N

∗
m

}

− 2β∗
f 1(ω3 + θp1ω4)ν13

N ∗2
f

{
{ω1 + ω2}x∗

12 − ε3ω14N
∗
f + n1x

∗
12 − ω12N

∗
f

}

− 2βf 2(ω8 + φpω9 + θp2ω10)ν15

N ∗2
f

{
{ω1 + ω2}x∗

12 − ε4ω16N
∗
f + n1x

∗
12 − ω12N

∗
f

}

(9)
Which is further simplified to give

a = −2K1ν3ω3

N ∗
mX

∗
1

{
ω12X

∗
1 − ε1ω7N

∗
m + (ω13 + ω14 + ω15 + ω16)X

∗
1

− {ω1 + (1 − ξ)ω2}N ∗
m

}

− 2βm2βf 2(K6 + θp2G6)ν15ω15

K4K6N ∗
mN

∗
f

{
ω12X

∗
1 − ε2ω11N

∗
m

+ (ω13 + ω14 + ω15 + ω16)x
∗
1 − ω1N

∗
m

}

− 2βm2βf 2ηI (1 − ξ)ν15ω15

K5K6N ∗
mN

∗
f

{
ω12x

∗
12 + (ω13 + ω14 + ω15 + ω16)x

∗
2 − ω2N

∗
m

}

− 2K1ν3ω3

N ∗
mN

∗
f

{
{ω1 + ω2}x∗

12 − ε3ω14N
∗
f + n1x

∗
12 − ω12N

∗
f

}

−
2βf 2βm2

{
K5(K6 + θp2G6)x∗

1 + K5(φpK6 + θp2G5)ηI (1 − ξ)x∗
2

}
ν15ω15

K4K5K6N ∗
mN

∗2
f

×
{
{ω1 + ω2}x∗

12 − ε4ω16N
∗
f + n1x

∗
12 − ω12N

∗
f

}

and

b = x∗
12

N ∗
f

ν13
(
ω3 + θp1ω4 + ω18

)
> 0
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Here,
n1 = ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10 + ω11

Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in [30]
that themodel (1), or the transformedmodel (8), will undergo a backward bifurcation
if the backward bifurcation coefficient, a, given by (9) is positive. �

Consider the model (1) with ε1 = ε2 = ε3 = ε4 = 0 and ξ = 1. The expression
for the backward bifurcation coefficient, a, given as (9) (and noting that all parameters
of the model (1) are positive), reduces to

a = −2K7ω3ν3

{
1

N ∗
m

(ω13 + ω14 + ω15 + ω16)

+ 1

N ∗
f

(ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10 + ω11)

+ ω1

( 1

N ∗
f

− 1

x∗
1

)}
− 2βm2βf 2(K2 + θp2G6)ω15ν15

K4K6N ∗
f{

x∗
1

N ∗
m

(ω13 + ω14 + ω15 + ω16) + ω1

( x∗
1

N ∗
f

− 1
)

+ x∗
1

N ∗
f

(ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10 + ω11)

}
< 0,

since N ∗
f > x∗

1, then
(

1
N ∗
f

− 1
x∗
1

)
< 0, and

(
x∗
1

N ∗
f

− 1
)

< 0, and noting that (ω13 +
ω14 + ω15 + ω16) > 0 and (ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10 + ω11) > 0
while ω1 < 0. Hence, it follows from Theorem 4.1 in [30] that the model (1) does
not undergo a backward bifurcation if ε1 = ε2 = ε3 = ε4 = 0 and ξ = 1. Imperfect
HPV vaccine also induced backward bifurcation in the two-sex vaccination model
in [31] while reinfection and imperfect vaccine caused backward bifurcation in the
two-sex HPV vaccination model in [32].

Remark It is interesting to note that, in the absence of reinfection of recovered
individuals with the same strain, if we set the cross-immunity parameter ηI to zero,
backward bifurcation still persists due to the presence of an imperfect vaccine, ξ.
However, setting ξ = 1, rules out the possibility of backward bifurcation in themodel
(1). This implies that, in the absence of reinfection of recovered individuals with the
same strain, the overriding parameter inducing backward bifurcation is the imperfect
vaccine.
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4 Existence and Stability of Boundary Equilibria

The existence and stability of boundary equilibria of themodel (1) is now investigated
for a special case when the disease-induced death rates are assumed to be negligi-
ble (that is, δf 1 = δf 2 = δ

p
f 2 = δf 12 = δf 21 = δm1 = δm2 = δm12 = δm21 = δfc = 0).

This is fitting in places like Northern America, Western Europe, Australia, and
New Zealand where the average annual HPV and cancer mortality rates are less
than four persons per 100,000 of the population [33, 34]. It should be noted that
setting δf 1 = δf 2 = δ

p
f 2 = δf 12 = δf 21 = δm1 = δm2 = δm12 = δm21 = δfc = 0 in (1)

gives Nf → �f

μf
and Nm → �m

μm
as t → ∞.

The approach in [23] will be used to explore the existence and stability of the
positive boundary equilibria. Let,

λ∗∗
f 1 =

βf 1μf

(
I∗∗
f 1 + I∗∗

f 21 + θp1P∗∗
f 1

)

�f
and λ∗∗

m1 = βm1μm(I∗∗
m1 + I∗∗

m21)

�m

λ∗∗
f 2 =

βf 2μf

(
I∗∗
f 2 + I∗∗

f 12 + φpI
p∗∗
f 2 + θp2P∗∗

f 2

)

�f
and λ∗∗

m2 = βm2μm(I∗∗
m2 + I∗∗

m12)

�m

(10)

be the forces of infection for strain 1 and strain 2, respectively, at the endemic steady
state.

The equilibria of the model (1) can then be obtained by finding the fixed points
of the equation

X = �(X ) =
(

θ1(λ
∗∗
1 ,λ∗∗

2 )

θ2(λ
∗∗
1 ,λ∗∗

2 )

)
, where X =

(
λ∗∗
1

λ∗∗
2

)
(11)

with,
λ∗∗
1 = λ∗∗

f 1 + λ∗∗
m1, λ∗∗

2 = λ∗∗
f 2 + λ∗∗

m2

4.1 Strain 1-Only Boundary Equilibrium (ξe1)

In the absence of strain 2, [obtainedby setting If 2 = I pf 2 = Pf 2 = Rf 2 = If 12 = If 21 =
Mf = Im2 = Rm2 = Im12 = Im21 = Mm = 0 in the model (1)], the strain 1-only sub-
model with δf 1 = δm1 = δfc = 0 is given by:
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dSf
dt

= (1 − f )�f − (
λm1 + μf

)
Sf

dVf

dt
= f �f − (1 − ξ)λm1Vf − μf Vf

dIf 1
dt

= (1 − ξ)λm1Vf + λm1Sf − K̄1If 1 + ε1λm1Rf 1

dPf 1

dt
= G1If 1 − K̄2Pf 1

dCf

dt
= G3Pf 1 − K̄3Cf

dRc
f

dt
= πf Cf − μf R

c
f

dRf 1

dt
= p1τf 1If 1 + q1κf 1Pf 1 − (

μf + ε1λm1
)
Rf 1

dSm
dt

= �m − (
λf 1 + μm

)
Sm

dIm1
dt

= λf 1Sm − K̄7Im1 + ε3λf 1Rm1

dRm1

dt
= τm1Im1 − (

μm + ε3λf 1
)
Rm1

(12)

with,
K̄1 = K̄1|δf 1=0 , K̄2 = K2|δf 1=0 , K̄3 = K3|δfc=0 , K̄7 = K7|δm1=0.
The analysis of the sub-model (12) will be considered in the following positively
invariant region

D1 = Df
1 ∪ Dm

1

with

Df
1 =

{
(Sf , Vf , If 1,Pf 1,Cf ,R

c
f ,Rf 1) ∈ R7

+ : Nf ≤ �f

μf

}
, and

Dm
1 =

{
(Sm, Im1,Rm1) ∈ R3

+ : Nm ≤ �m

μm

}

The DFE of the strain 1-only sub-model (12) is given by

ξ01 =(S∗
f , V

∗
f , I∗

f 1,P
∗
f 1,C

∗
f ,R

c∗
f ,R∗

f 1, S
∗
m, I∗

m1,R
∗
m1)

=(
f �f

μf
,
(1 − f )�f

μf
, 0, 0, 0, 0, 0,

�m

μm
, 0, 0)

(13)
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It follows from (11), that (by setting λ∗∗
2 = 0) the strain 1-only boundary equilibrium

(denoted by ξe1) is given by

ξe1 =
(
S∗∗
f , V ∗∗

f , I∗∗
f 1 ,P∗∗

f 1 ,C∗∗
f ,Rc∗∗

f ,R∗∗
f 1, 0, 0, 0, 0, S

∗∗
m , I∗∗

m1,R
∗∗
m1, 0, 0, 0, 0, 0, 0, 0, 0

)

(It should be noted here that N ∗∗
f and N ∗∗

m are replaced with their limiting values �f

μf

and �m
μm

, respectively, as all disease-induced death rates are assumed zero). It should

be noted that setting δf 1 = δm1 = δfc = 0 in (12) gives Nf → �f

μf
and Nm → �m

μm
as

t → ∞. Let β̄f 1 = μf βf 1

�f
and β̄m1 = μmβm1

�m
so that

λf 1 = β̄f 1(If 1 + θp1Pf 1) and λm1 = β̄m1Im1 (14)

Define

λ∗∗
f 2 =

βf 2μf

(
I∗∗
f 2 + θp2P∗∗

f 2

)

�f
, and λ∗∗

m2 = βm2I∗∗
m2μm

�m
(15)

where,

S∗∗
f = (1 − f ) �f(

λ∗∗
m1 + μf

) , V ∗∗
f = f �f[

(1 − ξ)λ∗∗
m1 + μf

] ,

I∗∗
f 1 =

{
(1 − ξ)�f (λ

∗∗
m1)

2 + (1 − ξf )�f μf λ
∗∗
m1

}
K̄2(μf + ε1λ

∗∗
m1)

C1(λ
∗∗
m1)

3 + C2(λ
∗∗
m1)

2 + C3λ
∗∗
m1 + C4

,

P∗∗
f 1 =

{
(1 − ξ)�f (λ

∗∗
m1)

2 + (1 − ξf )�f μf λ
∗∗
m1

}
G1(μf + ε1λ

∗∗
m1)

C1(λ
∗∗
m1)

3 + C2(λ
∗∗
m1)

2 + C3λ
∗∗
m1 + C4

,

R∗∗
f 1 =

{
(1 − ξ)�f (λ

∗∗
m1)

2 + (1 − ξf )�f μf λ
∗∗
m1

}
(G1 + K̄2)

C1(λ
∗∗
m1)

3 + C2(λ
∗∗
m1)

2 + C3λ
∗∗
m1 + C4

,

C∗∗
f =

{
(1 − ξ)�f (λ

∗∗
m1)

2 + (1 − ξf )�f μf λ
∗∗
m1

}
G1G3(μf + ε1λ

∗∗
m1)

K̄3
{
C1(λ

∗∗
m1)

3 + C2(λ
∗∗
m1)

2 + C3λ
∗∗
m1 + C4

} ,

Rc∗∗
f =

{
(1 − ξ)�f (λ

∗∗
m1)

2 + (1 − ξf )�f μf λ
∗∗
m1

}
G1G3πf (μf + ε1λ

∗∗
m1)

μf K3
{
C1(λ

∗∗
m1)

3 + C2(λ
∗∗
m1)

2 + C3λ
∗∗
m1 + C4

} ,

S∗∗
m = �m

(μm + λ∗∗
f 1)

, I∗∗
m1 = �mλ∗∗

f 1(μm + ε3λ
∗∗
f 1)

D1(λ
∗∗
f 1)

2 + D2λ
∗∗
f 1 + D3

R∗∗
m1 = τm1�mλ∗∗

f 1

D1(λ
∗∗
f 1)

2 + D2λ
∗∗
f 1 + D3

(16)

with,
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C1 = (1 − ξ)ε1
{
(1 − p1)(1 − q1)τf 1κf 1 + (1 − p1)τf 1μf + μf (κf 1+μf )

}
> 0

C2 = (1 − ξ)K̄1K̄2μf + (2 − ξ)μf ε1
{
(1 − p1)(1 − q1)τf 1κf 1

+ (1 − p1)τf 1μf + μf (κf 1 + μf )
}

> 0

C3 = (2 − ξ)μ2
f (τf 1 + μf )(κf 1 + μf ) + μ2

f ε1
{
(1 − p1)(1 − q1)τf 1κf 1

+ (1 − p1)τf 1μf + μf (κf 1 + μf )
}

> 0

D1 = ε3(K̄7 + τm1), D2 = μm(K̄7 + ε3 + τm1ε3), D3 = μ2
mK̄7

The existence of the strain 1-only boundary equilibrium can be determined fromfixed
point problem θ1(λ

∗∗
1 , 0) = λ∗∗

1 , which after some algebraic manipulations leads to
the following polynomial (in terms of λ∗∗

m1):

H1(λ
∗∗
m1)

6 + H2(λ
∗∗
m1)

5 + H3(λ
∗∗
m1)

4 + H4(λ
∗∗
m1)

3 + H5(λ
∗∗
m1)

2 + H6λ
∗∗
m1 + H7 = 0,

(17)
obtained from

λ∗∗
f 1 = λ∗∗

m1

[
b02(λ∗∗

m1)
2 + b01λ∗∗

m1 + b0
]

[
b33(λ∗∗

m1)
3 + b22(λ∗∗

m1)
2 + b11λ∗∗

m1 + b00
] ,

λ∗∗
m1 =

λ∗∗
f 1

(
c02λ∗∗

f 1 + c01
)

c22(λ∗∗
f 1)

2 + c11λ∗∗
f 1 + c00

(18)

where,

b0 = βf 1�f μ
2
f (1 − f ξ)(K̄2μf + θp1μf G1),

b01 = βf 1�f μf (1 − ξ)(K̄2μf + θp1μf G1) + βf 1�f μ
2
f (1 − ξ)(K̄2ε1 + θp1G1ε1),

b02 = βf 1�f μf (1 − ξ)(ε1K̄2 + θp1G1ε1),

b00 = K̄1K̄2�f μ
3
f ,

b11 = (2 − ξ)�f μ
2
f (τf 1 + μf )(κf 1 + μf )

+ �f μ
2
f ε1

{
(1 − p1)(1 − q1)τf 1κf 1 + (1 − p1)τf 1μf

+ μf (κf 1 + μf )
}

> 0

b22 = (1 − ξ)�f μf (τf 1 + μf )(κf 1 + μf )

+ (2 − ξ)�f μf ε1
{
(1 − p1)(1 − q1)τf 1κf 1 + (1 − p1)τf 1μf

+ μf (κf 1 + μf )
}

> 0

b33 = (1 − ξ)�f ε1
{
(1 − p1)(1 − q1)τf 1κf 1 + (1 − p1)τf 1μ

2
f (κf 1 + μf )

}
> 0

c00 = �mμ2
mK̄7, c11 = �mμmK̄7 + �mμmK̄7ε3 + �mμmτm1ε3,

c22 = ε3�m(K̄7 + τm1)

c01 = βm1�mμ2
m, c02 = βm1�mμmε3

(19)
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with

H1 = b202c22 + c11b02b33 + c00b
2
33 > 0

H2 = 2b01b02c22 + c11b02b22 + c11b01b33 + 2c00b22b33 − b202c02 − b02c01b33,

H3 = 2b0b02c22 + b201c22 + c11b02b11 + c11b01b22 + c11b0b33 + 2c00b11b33

+ c00b
2
22 − 2b01b02c02 − b02c01b22 − b01c01b33,

H4 = 2b0b01c22 + b00b02c11 + b01b11c11 + b0b22c11 − 2b0b02c02 − b201c02

− b02b11c01 − b01b22c01 + b00b33c00(2 − R2
01)

H5 = (b01c11 − b02c01)b00 + (b11c11 − 2b01c02)b0 + (b11c00 − b01c01)b11

+ b00c00b22(2 − R2
01)

H6 = b0b00c11 − b20c02 − b00b01c01 + 2b00b11c00(1 − R2
01)

H7 = b200c00(1 − R2
01) > 0 if R01 < 1

(20)
The components of the EEP are then obtained by solving forλ∗∗

m1 from the polynomial
(17) and substituting the positive values of λ∗∗

m1 into the expressions in (16) [noting
(19)]. Furthermore, it follows from (20) that the coefficientH1 is always positive and
H7 is positive (negative) ifR01 is less (greater) than unity. The following results can
be deduced.

Theorem 4.1 The strain 1-only sub-model (12) with δf 1 = δm1 = δfc = 0 has:

(i) six or four endemic equilibria if H2 < 0,H3 > 0,H4 < 0,H5 > 0,H6 < 0 and
R01 < 1,

(ii) four or two endemic equilibria ifH2 > 0,H3 < 0,H4 > 0,H5 < 0,H6 > 0 and
R01 < 1,

(iii) two endemic equilibria if H2 > 0,H3 > 0,H4 < 0,H5 < 0,H6 > 0 and
R01 < 1

(iv) no endemic equilibrium otherwise, ifR01 < 1,

The first three items of Theorem 4.1 (i)–(iii) suggest the possibility of backward
bifurcation in the strain 1-only sub-model (12)with negligible disease-induceddeaths
(i.e., δf 1 = δm1 = δfc = 0) when R01 < 1.

4.1.1 Backward Bifurcation Analysis of Strain-1 only Sub-model

Following the application of the center manifold theory [30] (as used in Sect. 3.2),
we observe that ε1, ε3, and ξ can cause backward bifurcation in the strain 1-only
sub-model (the associated backward bifurcation diagram is depicted in Fig. 3). The
following results can be established.
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Fig. 3 Bifurcation diagram for the model (12). Parameter values used are: βf 1 = 0.7422,βm1 =
0.88, ε1 = ε3 = 10,πf = 0.0000009. All other parameters as in Table4

Theorem 4.2 In the absence of reinfection of recovered individuals with strain 1
(ε1 = ε3 = 0), the sub-model (12) with perfect vaccine (ξ = 1) does not undergo
backward bifurcation.

4.1.2 GAS of DFE of Strain-1 only Sub-model (12) for special case

Theorem 4.3 In the absence of reinfection of recovered individuals with the same
strain and imperfect vaccine (i.e., ε1 = ε3 = 0, ξ = 1), the DFE of the strain 1-only
sub-model (12), given by ξ01, is GAS in D whenever R01|ξ=1 = R̄01 ≤ 1.

Proof Consider the model (1) with strain 1-only (i.e., let R02 < 1, so that strain 2
dies out) given by (12). Also, let ε1 = ε3 = 0, ξ = 1. Further, let us consider the
Lyapunov function:

L1 = (K2 + θp1G1)β
f
f 1cf S

∗
f

K1K2K7N ∗
f

If 1 + θp1β
f
f 1cf S

∗
f

K2K7N ∗
f

Pf 1 + R̄01

K7
Im1

with Lyapunov derivative

L̇1 = (K2 + θp1G1)β
f
f 1cf S

∗
f

K1K2K7N ∗
f

İf 1 + θp1β
f
f 1cf S

∗
f

K2K7N ∗
f

Ṗf 1 + R̄01

K7
İm1



132 A. Omame et al.

Substituting the expressions for İf 1, Ṗf 1 and İm1 from (12), we have that

L̇1 = (K2 + θp1G1)β
f
f 1cf S

∗
f

K1K2K7N ∗
f

[λm1Sf − K1If 1] + θp1β
f
f 1cf S

∗
f

K2K7N ∗
f

[G1If 1 − K2Pf 1]

+ R̄01

K7
[λf 1Sm − K7Im1]

= (K2 + θp1G1)β
f
f 1cf S

∗
f λm1Sf

K1K2K7N ∗
f

+ R̄01λf 1Sm
K7

− If 1

[
(K2 + θp1G1)β

f
f 1cf S

∗
f

K2K7N ∗
f

− θp1G1β
f
f 1cf S

∗
f

K2K7N ∗
f

]
− Pf 1

[
θp1β

f
f 1cf S

∗
f

K7N ∗
f

]
− R01Im1

which can be further simplified into

L̇1 = (K2 + θp1G1)β
f
f 1cf S

∗
f λm1Sf

K1K2K7N ∗
f

+ R̄01λf 1Sm
K7

− β
f
f 1cf S

∗
f (If 1 + θp1Pf 1)

K7N ∗
f

− R̄01Im1

Applying the group constraint in (6) and the definition of the forces of infection in
(2)–(5), we have that

L̇1 = (K2 + θp1G1)β
f
f 1cf S

∗
f λm1Sf

K1K2K7N ∗
f

− R̄01λm1Nf

cmβm
m1

+ R̄01λf 1Sm
K7

− S∗
f λf 1Nm

K7N ∗
f

L̇1 ≤ R̄01λm1Nf

cmβm
m1

(
R̄01Sf
Nf

− 1

)

+ λf 1Nm

K7

(R01Sm
Nm

− 1

) (

since
S∗
f

N ∗
f

< 1

)

≤ R̄01λm1Nf

cmβm
m1

(R̄01 − 1
) + λf 1Nm

K7

(R̄01 − 1
)

(
since

Sf
Nf

< 1, and
Sm
Nm

< 1

)

Since all the model parameters and variables are non-negative, it follows that L̇1 ≤ 0
for R01 ≤ 1 with L̇1 = 0 if and only if If 1 = Pf 1 = Im1 = 0. Hence, L1 is a Lya-
punov function on D. Thus, using the LaSalle’s invariance principle [35], If 1 →
0,Pf 1 → 0 and Im1 → 0 as t → ∞. Substituting If 1 = Pf 1 = Im1 = 0 in (12)
shows that Cf → 0,Rc

f → 0,Rf 1 → 0, Sf → S∗
f , Vf → V ∗

f ,Rm1 → 0, Sm → S∗
m as

t → ∞. Thus, every solution to the equations of the strain 1-only sub-model (12)
with ε1 = ε3 = 0, ξ = 1, with initial conditions in D, approaches the DFE (ξ01) as
t → ∞ whenever R̄01 ≤ 1. �
Also, we prove the following result.

Theorem 4.4 In the absence of reinfection of recovered individuals with strain 2
(i.e. ε2 = ε4 = 0), the DFE of the strain 2-only sub-model (27), given by ξ02, is GAS
in D whenever R02 ≤ 1.
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Proof Consider the Lyapunov function

L2 = (K6 + θp2G6)β
f
f 2cf

K4K6K8
If 2 + θp2β

f
f 2cf

K6K8
Pf 2 + R02

K8
Im2

with Lyapunov derivative

L̇2 = (K6 + θp2G6)β
f
f 2cf

K4K6K8
İf 2 + θp2β

f
f 2cf

K6K8
Ṗf 2 + R02

K8
İm2

Substituting the expressions for İf 2, Ṗf 2 and İm2 from (12), we have that

L̇2 = (K6 + θp2G6)β
f
f 2cf

K4K6K8
[λm2Sf − K4If 2] + θp2β

f
f 2cf

K6K8
[G6If 2 − K6Pf 2]

+ R02

K8
[λf 2Sm − K8Im2]

= (K6 + θp2G6)β
f
f 2cf λm2Sf

K4K6K8
+ R02λf 2Sm

K8

− If 2

[
(K6 + θp2G6)β

f
f 2cf

K6K8
− θp2G6β

f
f 2cf

K6K8

]
− Pf 2

[
θp2β

f
f 2cf

K8

]
− R02Im2

which can be further simplified into

L̇2 = (K6 + θp2G6)β
f
f 2cf λm2Sf

K4K6K8
+ R02λf 2Sm

K8
− β

f
f 2cf (If 2 + θp2Pf 2)

K8
− R02Im2

Applying the group constraint in (6) and the definition of the forces of infection in
(2)–(5), we have that

L̇2 = (K6 + θp2G6)β
f
f 2cf λm2Sf

K4K6K8
− R02λm2Nf

cmβm
m2

+ R02λf 2Sm
K8

− λf 2Nm

K8

L̇2 ≤ R02λm2Nf

cmβm
m2

(R02Sf
Nf

− 1

)
+ λf 2Nm

K8

(R02Sm
Nm

− 1

)

≤ R02λm2Nf

cmβm
m2

(R02 − 1) + λf 2Nm

K8
(R02 − 1)

(
since

Sf
Nf

< 1, and
Sm
Nm

< 1

)

The proof is concluded as in the proof of Theorem 4.3 �

Theorem 4.5 In the absence of reinfection of recovered individuals with the same
strain (i.e., ε1 = ε3 = 0), the model (1) with δf 1 = δm1 = δfc = 0, ξ = 1, has a
unique strain 1-only boundary equilibrium, ξe1, whenever R02 < 1 < R01|ξ=1 =
R̄01 ≤ 1
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Proof In the absence of reinfection of recovered individuals with the same strain and
imperfect vaccine (i. e., ε1 = ε3 = 0, ξ = 1), the polynomial (17) reduces to

H̄5(λ
∗∗
m1)

2 + H̄6λ
∗∗
m1 + H̄7 = 0 (21)

with,

H̄5 = �f μ
2
f (τf 1 + μf )(κf 1 + μf )[βf 1�m�f μ

2
f K̄7(1 − f )(K̄2μf + θp1μf G1)

+ �m�f μ
2
mμ2

f ... × (τf 1 + μf )(κf 1 + μf )K̄7] > 0,

H̄6 = βf 1�
2
f �mμ5

f μmK̄1K̄2K̄7(1 − f )(K̄2μf + θp1μf G1)

+ 2�2
f �mμ5

f μ
2
mK̄1K̄2K̄7... × (τf 1 + μf )(κf 1 + μf )(1 − R̄2

01),

H̄7 = �m�2
f μ

6
f μ

2
mK̄2K̄2K̄7(1 − R̄2

01) < 0, if R̄01 > 1

(22)

It follows from (21) and (22) that, irrespective of the sign of H̄6, the quadratic (21) has
a unique positive solution whenever R̄01 > 1. In addition, it should be pointed out
that for the equilibrium ξe1 to exist, it is necessary that strain 2 dies out asymptotically
(i.e. R02 < 1, in line with Theorem 4.4). Hence, the model (1) has a unique strain
1-only boundary equilibrium, ξe1, whenever R02 < 1 < R̄01.

�

4.1.3 GAS of the Strain-1 Only Boundary Equilibrium for Special Case

Theorem 4.6 In the absence of reinfection of recovered individuals with the same
strain and imperfect vaccine (i.e., ε1 = ε3 =, ξ = 1), the unique strain 1-only bound-
ary equilibrium, ξe1, of the model (1), with δf 1 = δm1 = δfc = 0 is globally asymp-
totically stable (GAS) in D�D01 whenever R02 < 1 < R̄01 = R01|ξ=1, where

D01 =
{
(Sf , Vf , If 1,Pf 1,Cf ,R

c
f ,Rf 1, Sm, Im1,Rm1) ∈ D1 :

If 1 = Pf 1 = Cf = Rc
f = Rf 1 = Im1 = 0

}

Proof Consider the model (12) with (14), ε1 = ε3 = 0 and R̄01 > 1, so that the
associated unique endemic equilibriumexists.Also, consider the nonlinear Lyapunov
function of the Goh–Volterra type:
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V1 = (K2 + θp1G1)β̄f 1S
∗∗
m

[
Sf − S∗∗

f − S∗∗
f ln

(
Sf
S∗∗
f

)

+ Vf − V ∗∗
f − V ∗∗

f ln

(
Vf

V ∗∗
f

)

+ If 1 − I∗∗
f 1 − I∗∗

f 1 ln

(
If 1
I∗∗
f 1

) ]
+ K1θp1β̄f 1S

∗∗
m

[
Pf 1 − P∗∗

f 1 − P∗∗
f 1 ln

(
Pf 1

P∗∗
f 1

) ]

K1K2

[
Sm − S∗∗

m − S∗∗
m ln

(
Sm
S∗∗
m

)
+ Im1 − I∗∗

m1 − I∗∗
m1 ln

(
Im1
I∗∗
m1

) ]

with Lyapunov derivative,

V̇1 = (K2 + θp1G1)β̄f 1S
∗∗
m

[(
1 − S∗∗

f

Sf

)
Ṡf +

(
1 − V ∗∗

f

Vf

)
V̇f +

(
1 − I∗∗

f 1

If 1

)
İf 1

]

+ K1θp1β̄f 1S
∗∗
m

[(
1 − P∗∗

f 1

Pf 1

)
Ṗf 1

]
+ K1K2

[ (
1 − S∗∗

m

Sm

)
Ṡm +

(
1 − I∗∗

m1

Im1

)
İm1

]

(23)
Substituting the derivatives in (12) into V̇1, we have

V̇1 = (K2 + θp1G1)β̄f 1S
∗∗
m

[ (
1 − S∗∗

f

Sf

)
((1 − f )�f − (β̄m1Im1 + μf )Sf )

+
(
1 − V ∗∗

f

Vf

)
(f �f − μf Vf )

+
(
1 − I∗∗

f 1

If 1

)
(β̄m1Im1Sf − K1If 1)

]

+ K1θp1β̄f 1S
∗∗
m

[ (
1 − P∗∗

f 1

Pf 1

)
(G1If 1 − K2Pf 1)

]

+ K1K2

[ (
1 − S∗∗

m

Sm

)
(�m − (

β̄f 1(If 1 + θp1Pf 1) + μm
)
Sm)

+
(
1 − I∗∗

m1

Im1

)
(β̄f 1(If 1 + θp1Pf 1)Sm − K7Im1)

]

(24)

Observe from model (12) that, at steady state,

(1 − f )�f = (
β̄m1I

∗∗
m1 + μf

)
S∗∗
f , f �f = μf V

∗∗
f , β̄m1Im1S

∗∗
f = K1I

∗∗
f 1 ,

G1I
∗∗
f 1 = K2P

∗∗
f 1 , �m =

(
β̄f 1(I

∗∗
f 1 + θp1P

∗∗
f 1 ) + μm

)
S∗∗
m , β̄f 1(I

∗∗
f 1 + θp1P

∗∗
f 1 )S

∗∗
m

= K7I
∗∗
m1

(25)
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Substituting the expressions in (25) into (24) gives

V̇1 = (K2 + θp1G1)β̄f 1S
∗∗
m

[(
1 − S∗∗

f

Sf

)
(β̄m1I

∗∗
m1S

∗∗
f + μf S

∗∗
f − β̄m1Im1Sf − μf Sf )

+
(
1 − V ∗∗

f

Vf

)
(μf V

∗∗
f − μf Vf ) +

(
1 − I∗∗

f 1

If 1

)
(β̄m1Im1Sf − K1If 1)

]

+ K1θp1β̄f 1S
∗∗
m

[ (
1 − P∗∗

f 1

Pf 1

)
(G1If 1 − K2Pf 1)

]

+ K1K2

[ (
1 − S∗∗

m

Sm

)
(β̄f 1I

∗∗
f 1 S

∗∗
m + β̄f 1θp1P

∗∗
f 1S

∗∗
m

+ μmS
∗∗
m − β̄f 1If 1Sm − β̄f 1θp1Pf 1Sm − μmSm)

+
(
1 − I∗∗

m1

Im1

)
(β̄f 1If 1Sm + β̄f 1θp1Pf 1Sm − K7Im1)

]

which can be simplified to

V̇1 = (K2 + θp1G2)β̄f 1μf S
∗∗
m S∗∗

f

(

2 − S∗∗
f

Sf
− Sf

S∗∗
f

)

+ K1K2μmS
∗∗
m

(
2 − S∗∗

m

Sm
− Sm

S∗∗
m

)

+ K1K2β̄f 1I
∗∗
f 1 S

∗∗
m

(

4 − S∗∗
f

Sf
− S∗∗

m

Sm
− Im1I∗∗

f 1 Sf

I∗∗
m1If 1S

∗∗
f

− If 1I∗∗
m1Sm

I∗∗
f 1 Im1S

∗∗
m

)

+ K1K2β̄f 1θp1P
∗∗
f 1S

∗∗
m

(

5 − S∗∗
f

Sf
− S∗∗

m

Sm
− Im1I∗∗

f 1 Sf

I∗∗
m1If 1S

∗∗
f

− I∗∗
m1Pf 1Sm

Im1P∗∗
f 1S

∗∗
m

− If 1P∗∗
f 1

I∗∗
f 1Pf 1

)

(26)
Finally, since arithmetic mean is greater that geometric mean, the following inequal-
ities from (26) hold:

(

2 − S∗∗
f

Sf
− Sf

S∗∗
f

)

≤ 0,

(
2 − S∗∗

m

Sm
− Sm

S∗∗
m

)
≤ 0

(

4 − S∗∗
f

Sf
− S∗∗

m

Sm
− Im1I∗∗

f 1 Sf

I∗∗
m1If 1S

∗∗
f

− If 1I∗∗
m1Sm

I∗∗
f 1 Im1S

∗∗
m

)

≤ 0

(

5 − S∗∗
f

Sf
− S∗∗

m

Sm
− Im1I∗∗

f 1 Sf

I∗∗
m1If 1S

∗∗
f

− I∗∗
m1Pf 1Sm

Im1P∗∗
f 1S

∗∗
m

− If 1P∗∗
f 1

I∗∗
f 1Pf 1

)

≤ 0

Thus, V̇1 ≤ 0 for R̄01 > 1. Hence, V1 is a Lyapunov function in D�D01 and
it follows from the LaSalle’s invariance principle [35], that every solution to the
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equations of the model (12) with (14), and initial conditions inD�D01 approach the
associated unique endemic equilibrium ξe1, of the model as t → ∞ for R̄01 > 1.

4.2 Strain 2-Only Boundary Equilibrium

The strain 2-only sub-model (is obtained by setting Vf = If 1 = Pf 1 = Rf 1 = I pf 2 =
If 12 = If 21 = Mf = Im1 = Rm1 = Im12 = Im21 = Mm = 0 in the model (1)) is given
by:

dSf
dt

= �f − (
λm2 + μf

)
Sf

dIf 2
dt

= λm2Sf − K4If 2 + ε2λm2Rf 2

dPf 2

dt
= G6If 2 − K6Pf 2

dCf

dt
= G4Pf 2 − K3Cf

dRc
f

dt
= πf Cf − μf R

c
f

dRf 2

dt
= p2τf 2If 2 + q2ηcκf 2Pf 2 − (

μf + ε2λm2
)
Rf 2

dSm
dt

= �m − (
λf 2 + μm

)
Sm

dIm2
dt

= λf 2Sm + ε4λf 2Rm2 − K8Im2

dRm2

dt
= τm2Im2 − (

μm + ε4λf 2
)
Rm2

(27)

where now

λf 2 = βf 2(If 2 + θp2Pf 2)

Nf
, λm2 = βm2Im2

Nm

with

Nf =Sf + If 2 + Pf 2 + Cf + Rc
f + Rf 2, and

Nm =Sm + Im2 + Rm2
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The sub-model (27) will be considered in the positively invariant region:

D2 = Df
2 ∪ Dm

2

with

Df
2 =

{
(Sf , If 2,Pf 2,Cf ,R

c
f ,Rf 2) ∈ R6

+ : Nf ≤ �f

μf

}
, and

Dm
2 =

{
(Sm, Im2,Rm2) ∈ R3

+ : Nm ≤ �m

μm

}

The strain 2-only sub-model (27) has a DFE, obtained by setting the right-hand sides
of the equations in the model (27) to zero, given by

ξ02 =(S∗
f , I

∗
f 2,P

∗
f 2,C

∗
f ,R

c∗
f ,R∗

f 2, S
∗
m, I∗

m2,R
∗
m2)

=(
�f

μf
, 0, 0, 0, 0, 0,

�m

μm
, 0, 0)

(28)

Setting λf 1 = λm1 = 0 in (1) gives the following general form of the strain 2-only
boundary equilibrium (denoted by ξe2)

ε2 =
(
S∗∗
f , 0, 0, 0,C∗∗

f ,Rc∗∗
f , 0, I∗∗

f 2 , 0,P∗∗
f 2 ,R

∗∗
f 2, S

∗∗
m , 0, 0, I∗∗

m2,R
∗∗
m2, 0, 0, 0, 0, 0, 0

)

(It should be noted here that N ∗∗
f and N ∗∗

m are replaced with their limiting values �f

μf

and �m
μm

, respectively, as all disease-induced death rates are assumed zero). It should

be noted that setting δf 2 = δm2 = δfc = 0 in (27) gives Nf → �f

μf
and Nm → �m

μm
as

t → ∞. Let β̄f 2 = μf βf 2

�f
and β̄m2 = μmβm2

�m
so that

λf 2 = β̄f 2(If 2 + θp2Pf 2) and λm2 = β̄m2Im2 (29)

Define

λ∗∗
f 2 =

βf 2μf

(
I∗∗
f 2 + θp2P∗∗

f 2

)

�f
, and λ∗∗

m2 = βm2I∗∗
m2μm

�m
(30)

Setting the right-hand sides of model (27) to zero gives the steady-state solutions
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S∗∗
f = �f(

λ∗∗
m2 + μf

) ,

I∗∗
f 2 =

K6�f

(
ε2λ

∗∗2
m2 + μf λ

∗∗
m2

)

(
μf + λ∗∗

m2

) [
λ∗∗
m2

(
K4K6ε2 − K6p2τf 2ε2 + G6G9ε2

) + K4K6μf
] ,

R∗∗
f 2 =

�f

(
ε2λ

∗∗2
m2 + μf λ

∗∗
m2

) (
K6p2τf 2 + G6G9

)

(
μf + λ∗∗

m2

) (
μf + ε2λ

∗∗
m2

) [
λ∗∗
m2

(
K4K6ε2 − K6p2τf 2ε2 + G6G9ε2

) + K4K6μf
]

P∗∗
f 2 =

G6�f

(
ε2λ

∗∗2
m2 + μf λ

∗∗
m2

)

(
μf + λ∗∗

m2

) [
λ∗∗
m2

(
K4K6ε2 − K6p2τf 2ε2 + G6G9ε2

) + K4K6μf
] ,

C∗∗
f =

G4G6�f

(
ε2λ

∗∗2
m2 + μf λ

∗∗
m2

)

(
μf + λ∗∗

m2

)
K3

[
λ∗∗
m2

(
K4K6ε2 − K6p2τf 2ε2 + G6G9ε2

) + K4K6μf
] ,

Rc∗∗
f =

G4G6�f πf

(
ε2λ

∗∗2
m2 + μf λ

∗∗
m2

)

μf K3
(
μf + λ∗∗

m2

) [
λ∗∗
m2

(
K4K6ε2 − K6p2τf 2ε2 + G6G9ε2

) + K4K6μf
] ,

S∗∗
m = �m(

λ∗∗
f 2 + μm

) ,

I∗∗
m2 =

�mλ∗∗
f 2

(
ε4λ

∗∗
f 2 + μm

)

[
(K8ε4 − τm2ε4) λ∗∗2

f 2 + (K8μm + K8μmε4 − τm2μmε4)λ∗∗
f 2 + K8μ

2
m

]

R∗∗
m2 =

τm2λ
∗∗
f 2�m

[
(K8ε4 − τm2ε4) λ∗∗2

f 2 + (K8μm + K8μmε4 − τm2μmε4)λ∗∗
f 2 + K8μ

2
m

]

(31)
Substituting the above expressions into (30), gives

λ∗∗
f 2 = h02λ∗∗2

m2 + h01λ∗∗
m2

h22λ∗∗2
m2 + h11λ∗∗

m2 + h00
,

λ∗∗
m2 = j02λ∗∗2

f 2 + j01λ∗∗
f 2

j22λ∗∗2
f 2 + j11λ∗∗

f 2 + j00

(32)

where,
h02 = βf 2μf ε2(K6 + θp2G6), h01 = βf 2μ

2
f (K6 + θp2G6),

h22 = K4K6ε2 − ε2(K6p2τf 2 + G6G9),

h11 = K4K6μf + K4K6μf ε2 − μf ε2(K2p2τf 2 + G6G9),

h00 = K4K6μ
2
f ,

j02 = βm2μmε4, j01 = βm2μ
2
m, j22 = K8ε4 − τm2ε4,

j11 = K8μm + K8μmε4 − τm2μmε4, j00 = K8μ
2
m

(33)
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The existence of the strain 2-only boundary equilibrium can be determined fromfixed
point problem θ2(0,λ∗∗

2 ) = λ∗∗
2 , which after some algebraic manipulations leads to

the following polynomial (in terms of λ∗∗
m2):

Y1(λ
∗∗
m2)

4 + Y2(λ
∗∗
m2)

3 + Y3(λ
∗∗
m2)

2 + Y4λ
∗∗
m2 + Y5 = 0 (34)

with

Y1 = h202j22 + h02h22j11 + h222j00 > 0

Y2 = 2h01h02j22 + h02h11j11 + h01h22j11 + 2h11h22j00 − h202j02 − h02h22j01,

Y3 = h201j22 + h02h00j11 + h01h11j11 + h211j00 − 2h01h02j02

− h02h11j01 + h00h22j00(2 − R2
02)

Y4 = h00h01j11 − h201j02 − h02h00j01 + h00h11j00(1 − R2
02),

Y5 = h200j00(1 − R2
02) > 0 if R02 < 1

(35)

Using the approaches in Sect. 4.1 and the center manifold theory [30] (as applied in
Sect. 3.2), the following results can be established.

Theorem 4.7 In the absence of reinfection of recovered individuals with strain 2
(ε2 = ε4 = 0), the sub-model (27) does not undergo backward bifurcation.

Theorem 4.8 In the absence of reinfection of recovered individuals with strain 2
(i.e. ε2 = ε4 = 0), the model (1)with δf 2 = δm2 = δfc = 0 has a unique strain 2-only
boundary equilibrium, ξe2, whenever R01 < 1 < R02

Theorem 4.9 In the absence of re,infection of recovered individuals with strain 2
(i.e., ε2 = ε4 =), the unique strain 2-only boundary equilibrium, ξe2, of the model
(1), with δf 2 = δm2 = δfc = 0, is globally asymptotically stable (GAS) in D�D02

whenever R01 < 1 < R02, where

D02 =
{
(Sf , If 2,Pf 2,Cf ,R

c
f ,Rf 2, Sm, Im2,Rm2) ∈ D2 :

If 2 = Pf 2 = Cf = Rc
f = Rf 2 = Im2 = 0

}

5 Simulations of the Two-Strain HPV Model (1)

5.1 Uncertainty and Sensitivity Analysis

Uncertainties are expected to arise in estimates of the values of the parameters used in
the numerical simulations. Applying the approach in Blower and Dowlatabadi [36],
we carry out a Latin hypercube sampling (LHS) on the parameters of the model,
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to ascertain the effect of these uncertainties and to determine the parameter(s) that
have the greatest impact on the transmission dynamics of HPV. For the sensitivity
analysis, a partial rank correlation coefficient (PRCC) was calculated between values
of the parameters in the response function and the values of the response function
derived from the sensitivity analysis. Using the reproduction numbers R01 and R02

as response functions, it follows from Table3, that the top PRCC-ranked parameters
are: the effective contact rates, βf 1 (βm1) and βf 2 (βm2) for strain 1 and strain 2,
respectively, the fraction of vaccinated females f , the Cervarix vaccine efficacy, ξ,
the treatment rates, τf 1 (τm1) and τf 2 (τm2) for strain 1 and strain 2, respectively, as
well as the demographic parameters, μf and μm.

5.2 Numerical Simulations

We now simulate the model (1) numerically using the parameter estimates in Table 4
(unless otherwise stated), to assess the potential impact of various targeted control
strategies on the transmission dynamics of HPV in the population. Demographic pa-
rameters relevant to SouthAfricawere chosen. Specifically, since the total population
of sexually active susceptible females and males (15–64 years) in South Africa are
estimated to be 17,125,878, and 16,100,016, respectively, at disease-free equilibrium,
�f

μf
= 16,751,173 and �m

μm
= 17,174,710 [37, 38]. In South Africa, the life expectancy

for females and males is estimated at 64.6years and 61.6years, respectively [37].
Hence, we have that μf = 0.0162 and μm = 0.0155, so that �f =271,369 and �m

= 266,208 per year, and the total HPV prevalence in South Africa was estimated
around 5% in 2009 [39, 40].

The effect of the fraction of vaccinated females, f , on the cumulative new cases
of strain 1 and strain 2 infections, depicted in Figs. 4 and 5, respectively, shows a
decrease in the cumulative new cases of strain 1 infection with increasing fraction of
vaccinated females, as expected. Also, increasing the fraction of vaccinated females
leads to a corresponding decrease in the cumulative new cases of strain 2 infection.
Numerical simulations for the casesR01 < 1 andR01 > 1, depicted in Fig. 6, show
that strain 1 dies outwhenR01 < 1 and persists at steady statewhenR01 > 1. Similar
conclusions are reached for the cases R02 < 1 and R02 > 1 (Figs. 6 and 7). The
results of this study conform with the findings in [5, 11], that the bivalent Cervarix
vaccine offers high protection not only against the most prevalent HPV types 16 and
18, but also against other oncogenic types like HPV 31 and 45. Moreover, the results
of our findings will be very useful especially in poor and middle-income countries
(where cervical cancer continues to be a major cause of deaths among women [2])
who may not be able to afford the high cost of the nonavalent Gardasil 9 HPV
vaccine.
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Table 3 Partial rank correlation coefficients (PRCC) for R01 and R02 and each input parameter
variable

Parameters R01 R02

μf −0.5377 −0.7109

μm −0.5396 −0.6937

ε1 0.0076 –

ε2 – −0.0014

ε3 −0.0187 –

ε4 – 0.0313

p1 −0.0014 –

p2 – −0.0597

ξ −0.5644 –

q1 0.0905 –

q2 – −0.0325

πf −0.0105 −0.0319

τf 1 −0.8511 –

τm1 −0.8542 –

δf 1 −0.0137 –

κf 1 −0.0042 –

κf 2 – 0.0315

δm1 −0.0210 –

δfc 0.0385 0.0551

f −0.9600 –

βf 2 – 0.6088

βm2 – 0.9470

ηc – −0.0128

δf 2 −0.0137 −0.0298

δm2 – −0.0346

τf 2 – −0.9285

τm2 – −0.9324

θp1 0.0142 –

θp2 – 0.0187

βf 1 0.5001 –

βm1 0.8835 –
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Table 4 Baseline values and ranges of the parameters of the model (1)

Parameter Baseline value (per
year)

Range (per year) References

μf 0.0162 [0.0100, 0.2000] [37]

μm 0.0155 [0.0100, 0.2000] [37]

�f 271,369 [250,000, 280,000] [37]

�m 26,6208 [25,0000, 280,000] [37]

β
f
1 (β

f
2 ) 0.5 [0.4,0.6] [41, 42]

βm
1 (βm

2 ) 0.4 [0.3,0.5] [41, 42]

cf 2 [1, 5] [42]

ηI (ηp) 0.5 [0.5, 1.0] Inferred from [5]

ηc 0.5 [0.5, 1.0] Inferred from [5]

φp 0.7 [0.5, 1.0] Assumed

ε1(ε2) 0.2 [0.1, 1.0] Inferred from [10]

ε3(ε4) 0.3 [0.1, 1.0] Inferred from [10]

θp1(θp2) 0.9 [0.7, 0.9] [32, 41, 42]

f 0.87 [0.5, 0.9] [38]

ξ 0.9 [0.9, 1] [42]

δf 1(δm1) 0.001 [0.0005, 0.002] [41, 42]

δf 12(δm12) 0.001 [0.0005, 0.002] [41, 42]

δf 2(δm2) 0.001 [0.0005, 0.002] [41, 42]

δf 21(δm21) 0.001 [0.0005, 0.002] [41, 42]

δ
p
f 2 0.01 [0.005, 0.002] Assumed

γf (γm) 0.5 [0.3, 0.7] [41]

φf (φm) 0.9 [0.7, 0.9] [42]

κf 1(κf 2) 114 [110, 120] [20]

τf 1(τf 2) 0.9 [0.5, 2.5] [42]

τf 21(τf 12) 0.9 [0.5, 2.5] [42]

τm1(τm2) 0.9 [0.5, 2.5] [42]

τm21(τm12) 0.9 [0.5, 2.5] [42]

κf 1(κf 2) 0.3 [0.1, 0.5] [41]

δcf 0.01 [0.005, 0.002] [42]

ωf 0.01 [0.005, 0.02] [32]

πf 0.76 [0.56, 0.96] [42, 43]

α1 0.4 [0.1, 1.0] Inferred from [10]

α2 0.5 [0.1, 1.0] Inferred from [10]

α3 0.3 [0.1, 1.0] Inferred from [10]

α4 0.2 [0.1, 1.0] Inferred from [10]

p1(p2) 0.5 [0.1, 1.0] Assumed

q1(q2) 0.3 [0.1, 1.0] Assumed

p12(p21) 0.5 [0.1, 1.0] Assumed
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Fig. 4 Effect of the fraction of vaccinated susceptible females, f , on the cumulative new cases of
strain 1 infection. aHere, βf 1 = 3.5,βm1 = 3.5, b here,βf 1 = 4.7,βm1 = 4.7. All other parameters
as in Table4

6 Conclusions

A new two-sex, two-strain HPV mathematical model that rigorously assesses the
impact of cross-immunity due to vaccination, in a population where two strains
coexist and there is vaccination for one of the strains, which cross-protects against
the strain not included in the vaccine was considered. We discussed a vaccination
strategy thatmakes use of the bivalentCervarix vaccine targeted at one group of high-
risk HPV: type 16/18 but with cross-immunity property against other high-risk HPV:
type 31/45. Themodel (1) has a locally asymptotically stable disease-free equilibrium
whenever the basic reproduction number (R0) is less than unity. The model was also
shown to undergo the phenomenon of backward bifurcation,where the stable disease-
free equilibrium coexists with one stable endemic equilibrium when the associated
reproduction number is less than unity. The analysis showed that the phenomenon of
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Fig. 5 Effect of the fraction of vaccinated susceptible females, f , on the cumulative new cases of
strain 2 infection. aHere,βf 2 = 3.5,βm2 = 3.5, b here,βf 2 = 4.7,βm2 = 4.7. All other parameters
as in Table4

backward bifurcation is caused by the imperfect vaccine (that partially cross-protects
the strain not included in the vaccine) as well as the reinfection of individuals who
recover from a previous infection with the same strain.

Furthermore, the existence and stability of the boundary equilibrium of the strain
1-only sub-model was investigated. It is shown rigorously that the strain 1-only
sub-model undergoes backward bifurcation due to the reinfection of recovered in-
dividuals and the presence of an imperfect vaccine. In the absence of reinfection
of recovered individuals and imperfect vaccine for females, the DFE of the strain
1-only submodel is shown to be globally asymptotically stable when the associated
reproduction number is less than one. Also, we observe that the strain 2-only sub-
model does not undergo the phenomenon of backward bifurcation in the absence of
reinfection of recovered individuals.
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Fig. 6 Infected individuals with strain 1 at different initial conditions. a Here, βf 1 = βm1 = 1.7,
so that R01 = 0.865268 < 1, b here, βf 1 = βm1 = 2.1, so that R01 = 1.06886 > 1. All other pa-
rameters as in Table4

Moreover, numerical simulations of the model show that increasing the fraction
of females vaccinated against a particular strain could significantly bring down the
burden of the strain not included in the vaccine. Therefore, for effective control and
prevention of oncogenic HPV types and cervical cancer, this study recommendswide
vaccination of susceptible females with the bivalent Cervarix vaccine, especially in
a population where HPV type 16/18 and type 31/45 are co-circulating. The findings
in this study are consistent with the reports in Kudo et al. [18] that significant cross-
protection against HPV 31, 45, and 52 was shown by the bivalent Cervarix vaccine
which targets HPV types 16 and 18. One of the recommendations in [18] was a call
on the government authorities of Japan to consider the effectiveness of this vaccine
and ensure a continuous national vaccination program with the vaccine. Also, the
results of our findings will be very useful especially in poor and developing countries
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Fig. 7 Infected individuals with strain 2 at different initial conditions. a Here, βf 2 = βm2 = 0.8,
so that R02 = 0.875646 < 1, b here, βf 2 = βm2 = 2.2, so that R02 = 2.40803 > 1. All other pa-
rameters as in Table4

(where cervical cancer continues to be a major cause of deaths among women [2])
who may not be able to afford the high cost of the nonavalent Gardasil 9 HPV
vaccine. Sensitivity analysis of the model (1), using the reproduction numbers R01

andR02 as response functions, revealed that the top PRCC-ranked parameters are: the
effective contact rates, βf 1 (βm1) and βf 2 (βm2) for strain 1 and strain 2, respectively,
the fraction of vaccinated females f , the Cervarix vaccine efficacy, ξ, the treatment
rates, τf 1 (τm1) and τf 2 (τm2) for strain 1 and strain 2, respectively, as well as the
demographic parameters, μf and μm.
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The Impact of Fractional Differentiation
in Terms of Fitting for a Prostate Cancer
Model Under Intermittent Androgen
Suppression Therapy

Ozlem Ozturk Mizrak, Cihan Mizrak, Ardak Kashkynbayev
and Yang Kuang

1 Introduction

In the 1930s and 40s, Charles Huggins and his colleagues demonstrated that surgical
castration often leads to significant regression of prostate cancer, and in 1966 he
was awarded the Nobel Prize in Medicine and Physiology [1]. Today, androgen
deprivation therapy (ADT) performs the same goal without surgery; however, the
treatment is expensive and has many negative side effects such as sexual dysfunction
and dementia [2].

Continuous androgen deprivation (CAD) treatment is a standard treatmentmethod
applied after the first radiation therapy that failed for localized advanced prostate
cancer patients [2–5]. On the other hand, most patients eventually develop resistance
to treatment, and then the disease becomes more aggressive and the prognosis is
poor at this stage [6, 7]. Therefore, it is very important to estimate when resistance
will occur in a patient, to improve the quality of life and to prevent treatment in
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vain. Intermittent androgen deprivation (IAD) aims to reduce side effects and delay
development of resistance; however, the delay in resistance with this treatment is still
controversial, and CAD remains the standard treatment method [4].

A solid understanding of the treatment of prostate cancer and the lack of standards
trigger the need for mathematical models. Especially in the last 15 years, many
mathematical models have been proposed to help explain the functioning dynamics
of prostate cancer in the hope of answering the abovementioned questions.

Jackson [8] developed the first prostate cancer model in 2004, based on experi-
mental data, under CAD treatment, whichwould lead tomodeling efforts to be shown
later. In 2008, Ideta et al. [9] demonstrated a mathematical model under IAD therapy,
including themutation of androgen-independent (AI) cells from androgen-dependent
(AD) cells. Shimada and Aihara [10] investigated the competition between different
prostate cell populations. Another approach to competition modeling is based on
Ideta’s model. [9]. Eikenberry et al. [11] developed Ideta’s model to investigate the
evolutionary role of androgens on prostate cancer, taking into account intracellular
signals. This model was later described by Portz et al. [12] (PKN) to ensure com-
pliance with clinical prostate-specific antigen (PSA) data, and the PKN model was
then simplified by Baez and Kuang (BK) [13] to ensure compliance with both PSA
and androgen data. As another expansion of the models of Ideta [9] and Eikenberry
[11], Jain et al. [14] provided that the model they generate captures the biochemical
dynamic of prostate cancer in detail. On the other hand, Hirata et al. [15] developed
a fragmented linear model taking into account three populations of cells to ensure
compliance with clinical PSA data. Many researchers have studied the parameter
estimation [16, 17], optimum change times for IAD and control [16], Hirata et al.
[18] and the prediction of progression of resistant prostate cancer [19] using the
model of Hirata et al. [15].

Here,we especially focus on theBKmodel as it is one of the latest versions of PKN
model and has good data fitting and forecasting ability. On the other hand, although
cell quota phenomenon used in both PKN and BK models is an original approach to
reflect the limiting effect of nutrient content in cancer cell populations, the minimum
androgen amounts (cell quotas) required for survival of cell populations of castration
sensitive (CS) and resistant (CR) are not easily measurable, while serum androgen
data are easily available in the clinic. Therefore, this situation poses a problem in
moving the model to clinical practice. In addition, in the BK model, the authors
made data fitting and prediction under the hypothesis that the amount of androgen
in the serum is equal to the amount of androgen in the cancer cells. However, this
assumption is contrary to the biological fact that a portion of the serum androgen
reaches the cell by diffusion, so it has misleading results, such as at the time of the
discontinuation of IAD treatment, the intracellular androgen reaches its maximum
level instantly.

At this point, the question is “Can we create a new model by demonstrating the
growth of cancerous cells with the classic logistic growth model instead of the cell
quota model?”. The model and model dynamics created in response to this question
are discussed in the following section.
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2 Basic Logistic Growth Versus Cell Quota Model

Let us first recall theModel 1 (Single populationmodel) andModel 2 (Twopopulation
model) of Baez and Kuang (BK):

2.1 Model 1: One Population Model

dx

dt
= μ

(
1 − q

Q

)
x −

((
v

R

Q + R

)
+ δx

)
x,

dv

dt
= −dv,

dQ

dt
= γ (Qm − Q) − μ(Q − q),

dP

dt
= bQ + σQx − εP

where

γ = γ1u(t) + γ2, u(t) =
{
1, on treatment
0, off treatment

.

2.2 Model 2: Two Population Model

Dx1 = μ

(
1 − q1

Q

)
x1 − (D1(Q) + δ1X1

)
x1 − λ(Q)x1

Dx2 = μ

(
1 − q2

Q

)
x2 − (D2(Q) + δ2X2

)
x2 − λ(Q)x2

DQ = γ (Qm − Q) − μ(Q − q1)x1 + μ(Q − q2)x2
x1 + x2

DP = bQ + σ(Qx1 + Qx2) − εP

where
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Di (Q) = di
Ri

Q + Ri
, i = 1, 2,

λ(Q) = c
K

Q + K

In both of the BK models, the cell growth rate is determined by the androgen cell
quota. Specifically, as in the PKN model [20], they model the growth rate by a two
parameter function of androgen cell quota

G(Q) = μ

(
1 − 1

Q

)
,

where Q is the androgen cell quota. Above equation is known as the Droop equation
or a Droop growth rate model [21]. It assumes that Q is the concentration of the
most limiting resource or nutrient, and q is the minimum level of Q required to
prevent cell death [22]. BK models also assume androgen-dependent death rates
for cancer cells (d1, d2). Besides this, for Model 1, they assume a time-dependent
maximum baseline death rate v, which decreases exponentially at rate d to reflect
the cell castration-resistance development due to the decreasing death rate and also
include a density-independent death rate δ that constrains the total volume of cancer
cells to be within realistic ranges. For a more detailed explanation of these models,
the reader is referred to [19].

As stated before, our main problem is on investigating the androgen relevance of
the CR cell proliferation. Even if CR cell proliferation has already been accepted to
be effected positively with androgen concentration in the above cell quota models,
we prefer to use logistic growth terms rather than cell quota to provide saturation
effect of the population to be able to rebuild the BK models:

2.3 Model 1*: One Population Logistic Model

Dx(t) = r(A, x)x (1)

Dv(t) = −dv (2)

dA

dt
= γ (a0 − A) − μ

Aω

Aω + ρω
x, (3)

dP

dt
= bA + σ Ax − εP (4)

where
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r(A, x) = μ
As

As + ks

(
1 − x

θ

)
−
(

v
R

A + R

)
+ δx), (5)

γ = γ1u(t) + γ2, u(t) =
{
1, on treatment
0, off treatment

. (6)

2.4 Model 2*: Two Population Logistic Model

Dx1(t) = r1(A, x1, x2)x1 − m(A)x1 (7)

Dx2(t) = r2(A, x1, x2)x2 + m(A)x1 (8)

dA

dt
= γ (a0 − A) − μ

Aω

Aω + ρω
(x1 + x2), (9)

dP

dt
= bA + σ A(x1 + x2) − εP (10)

where

r1(A, x1, x2) = μ
Am

Am + km

(
1 − x1 + x2

θ

)
−
(
d1

R1

A + R1
+ δ1X1

)
x1, (11)

r2(A, x1, x2) = μ
An

An + kn

(
1 − x1 + x2

θ

)
−
(
d2

R2

A + R2
+ δ2X2

)
x2 (12)

m(A) = c
K

A + K
. (13)

Since the terms other than growth and uptake are similar to those in the BK
models, we avoid explaining them repeatedly. Here, we hypothesize that proliferative
advantage of cells over each other changes as to androgen levels that are represented
by A in the model formulizations. In other words, while below a threshold level of
androgen, CR cells have greater capacity for proliferation compared to CS cells,
above this threshold value CS cells gain a proliferative advantage over CR reversely.
To be able to capture this assumption, we prefer to use Hill functions with constraint
n < m. Thus, while we vary n between 0.01 and 2.99, m is assumed as ‖n‖ +
1. Due to the fact that we desire to have no significant change in Hill functions
for androgen-rich environments, we vary k between 0.1 and 1. We also avoid to
choose far less quantities for lower bounds of n and k not to encounter with any
mathematical uncertainty in case of low androgen levels approaching zero. Likewise,
as androgen within the cells is used for growth, we formulate the uptake term using
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Fig. 1 Proliferation (left column) and net growth (right column) rates of CS and CR cells with
respect to androgen for patients 1, 14, and 104, respectively, for 1.5 cycles of treatment

a Hill function that allows the uptake rate which approaches its maximum, μ, when
the serum androgen concentration increases. In this term, we expect ω ∈ [1, 3] and
ρ ∈ [(a/2) − 2, (a/2)] where a is the maximum androgen level in the patient’s
serum. Other parameter values are nearly same as parameter values in BK models.
Differently, the carrying capacity of cancer cells is taken as estimated by Rutter and
Kuang [23] (Fig. 1).

2.5 Model Dynamics

2.5.1 Analysis of the Asymptotic Behavior of Model 1*

Let us rewrite Model 1* in an explicit form:

dx

dt
= μ

As

As + ks

(
1 − x

θ

)
x −

(
v

R

A + R
+ δx

)
x, (14)

dv

dt
= −dv, (15)

dA

dt
= γ (a0 − A) − μ

Aω

Aω + ρω
x, (16)
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dP

dt
= bA + σ Ax − εP. (17)

Observe from the last equation thatP is decoupled from the system. Therefore, we
will restrict our attention only to the dynamics of Eqs. (14)–(17). For the convenience
of the reader, let us introduce the function qi (A) = μ Ai

Ai+ki . One can easily show that
qi is an increasing function for A ≥ 0 and i > 0.

Proposition 1 The region
{
(x, v, A) : 0 ≤ x ≤ qs (a0)

δ
, v ≥ 0, 0 ≤ A ≤ a0

}
is posi-

tive invariant.

Proof We want to prove that solutions of the system (14)–(17) which start positive
remain positive. Since Eq. (15) is explicatively solvable, we obtain v(t) = v0e−dt

which ensures its positivity for v(0) ≥ 0 and boundedness for t ≥ 0. The positivity
of x easily follows since x appears in every term of Eq. (14). Further, note that from
(16) we have A′(0) and A′(a0) < 0. Thus, it easily follows that 0 ≤ A(t) ≤ a0 for
t ≥ 0. It remains to show that x is bounded. From Eq. (14), we see that

dx

dt
≤ qs(a0)x − δx2,

which in tern implies that limt→∞ sup(x(t)) ≤ qs (a0)
δ

.

Proposition 2 The system of Eqs. (14)–(17) has an unstable cancer-free (disease-
free) equilibrium E0 = (0, 0, a0) and a locally asymptotically stable endemic

equilibrium E1 = θqs(A)
θδ+qs(A)

, 0, A, 0 < A < a0.

Proof From Eq. (14), we see that there are two cases for the steady states: x = 0 or
x = x̄ > 0. The case x = 0 gives us the cancer-free equilibrium E0 which generates
the following Jacobian matrix.

J (E0) =
⎡
⎣ qs(a0) 0 0

0 −d 0
qω(a0) 0 −γ

⎤
⎦.

The set of eigenvalues are given by the diagonal elements: {qs(a0),−d,−γ }.
Since qs(a0) > 0, we conclude that the cancer-free equilibrium is unstable.

Let us define a function h(A) = qs (A)

δ+ qs (A)

θ

− γ (a0−A)

qω(A)
. One can check that

limA→0− h(A) = −∞ and h(a0) > 0. Thus, by the Intermediate Value Theorem
(IVT) there exists A ∈ (0, a0) such that h

(
A
) = 0. From Eqs. (14) and (16), we can

find E1 which satisfies the following equations x̄ = qs(A)

δ+ qs (A)
θ

= γ (a0−A)
qω(A)

. The Jacobian

matrix evaluated at E1 gives us the following matrix.



158 O. O. Mizrak et al.

J (E1) =
⎡
⎣−qs0

(
A
) − R

R+A x̄ q ′
s

(
A
)(
1 − x̄

θ

)
x̄

0 −d 0
−qω

(
A
)

0 −γ − q ′
ω

(
A
)
x̄

⎤
⎦.

Observe that λ2 = −d < 0. The remaining two eigenvalues can be evaluated as

λ1,3 = Tr J 1 ±
√(

Tr J 1
)2 − 4 det J 1

2
,

where

J 1 =
[−qs0

(
A
)
q ′
s

(
A
)(
1 − x̄

θ

)
x̄

−qω

(
A
) −γ − q ′

ω

(
A
)
x̄

]
.

One can show that Re
(
λ1,3

)
< 0 since Tr J 1 < 0 and det J 1 > 0. Thus,

the endemic equilibrium E1 is locally asymptotically stable. This completes the
proof. �

In Proposition 1, for E0 point, v = 0, A = a0 is a sign that cancerous cells can
be completely destroyed with androgen in abundance at a time when resistance to
cancer in therapy has developed. However, the fact that this point is not stable means
that cancer cells alone cannot be completely eliminated by IAD therapy. Since ADT
is non-curative, this property is biologically reasonable. On the other hand, in the
same proposition, for locally stable E1 point, v = 0 indicates that at the time of the
castration resistance, we can hold the tumor volume at a locally stable level for a
certain amount of androgen levels.

2.5.2 Analysis of the Asymptotic Behavior of Model 2*

Let us rewrite Model 2* in an explicit form:

dx1
dt

= qm(A)

(
1 − x1 + x2

θ

)
x1 − (D1(A) + δ1x1)x1 − m(A)x1, (18)

dx2
dt

= qn(A)

(
1 − x1 + x2

θ

)
x2 − (D2(A) + δ2x2)x2 + m(A)x1, (19)

dA

dt
= γ (a0 − A) − μ

Aω

Aω + ρω
(x1 + x2) (20)

dP

dt
= bA + σ A(x1 + x2) − εP, (21)

where Di (A) = di
Ri

A+Ri
and m(A) = c K

A+K .
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As it was in Model 1*, we do not analyze Eq. (21) since P is decoupled from
Eqs. (18)–(20).

Proposition 3 If n < m and δ2 ≤ δ1, then the region {(x1, x2, A) : x1 ≥ 0,
x2 ≥ 0, x1 + x2 ≤ qm (a0)−Dm

δ2
, 0 ≤ A ≤ a0} is positive invariant, where Dm =

min{D1(a0), D2(a0)}.
Proof From Proposition 1, we know 0 ≤ A(t) ≤ a0 if 0 ≤ A(O) ≤ a0. Now
assume on the contrary that the solutions x(t) and x2 do not remain positive. Then,
there is t1 > 0 such that x1(t1) = 0 or x2(t1) = 0. Let us consider x1(t1) = 0 Then,
x ′
1(t) ≥ −m(A)x1 for t ∈ (0, t1) which implies that x1(t1) ≥ x1(0)e−m(A)t1 > 0.
Contradiction: The latter case can be handled similarly since x2 appears in the first
two terms and x1 also appears in two terms. Set X = x1 + x2. Then, we have

dX

dt
≤ (qm(A) − Dm)X − δ2X

2

≤ (qm(a0) − Dm)X − δ2X
2,

which implies that limt→∞ sup X (t) ≤ qm (a0)−Dm

δ2
.

Now,we study the steady states ofModel 2*.We seek to understand the conditions
under which one population will overtake the other, and the circumstances under
which they may coexist.

Proposition 4 The system of Eqs. (18)–(20) has a cancer-free (disease-free) equilib-

rium E0 = (0, 0, a0), a CR cell only equilibrium E2 =
(
0, θ qn(A1)−D2(A1)

qn(A1)+θδ2
, A1

)
, and

a coexistence equilibrium E3 = (
x∗
1 , x

∗
2 , A

∗), where x∗
1 > 0, x∗

2 > 0, 0 < A1 < a0,
and 0 < A∗ < a0.

Proof From Eq. (18), we see that either x1 = 0 or x1 > 0.
If x1 = 0, then there are two mutually exclusive cases: x2 = 0 and x2 
= 0. In

the first case, the steady state is E0 = (0, 0, a0). In the latter case, the steady state is
E2 = (0, x̄, A1), where A1 ∈ (0, a0) and x̄ = θ

qn(A1)−D2(A1)

qn(A1)+θδ2
= γ (a0−A1)

μ Aω

Aω+ρω

> 0.

If x1 > 0, it follows fromEq. (19) that x2 > 0. Thus, there emerges the coexistence
equilibrium E3 = (

x∗
1 , x

∗
2 , A

∗).
Denote the functions f (A) = qm(A)−D1(A)−m(A) and g(A) = qn(A)−D2(A).
Proposition 4 demonstrates that if the CS cell population survives, then the CR

must also survive. Biologically, this makes sense, as the CR will always receive new
mutated CR cells as IAD continues.

Next, we study the extinction of cancer cell populations and stability conditions
for each of these steady states when feasible.

Proposition 5 The cancer-free equilibrium E0 = (0, 0, a0) is locally asymptotically
stable if f (a0) < 0 and g(a0) < 0 and unstable if f (a0) > 0 or g(a0) > 0.
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Proof Let us compute the Jacobian matrix at E0.

J (E0) =
⎡
⎢⎣

f (a0) 0 0
m(a0) g(a0) 0

−μ
(aω

0 )
aω
0 +ρω aω

0 −γ

⎤
⎥⎦

Since J (E) is a lower triangular matrix, the set eigenvalues of J (E) are given by
the diagonal entries. Thus, the stability of E0 is completely determined by the sign
of f (a) and g(a0). This finalizes the proof. �

Proposition 6 If f (a0) < 0, then the CS population will die out. If, further, g(a0) <

0, then both cancer populations will die out.

Proof One can easily check that f and g are increasing functions for A > 0. From
Eq. (18), we have

x ′
1

x1
= qm(A)

(
1 − x1 + x2

θ

)
− D1(A) − δ1x1 − m(A)

≤ f (A) − δ1x1
≤ f (a0).

Thus, x1(t) ≤ c1e f (a0)t which implies that limt→∞ x1(t) = 0. Applying a sim-
ilar argument to Eq. (19) along with limt→∞ x1(t) = 0 and g(a0) < 0 yields
limt→∞ x2(t) = 0.

Both for Propositions 5 and 6, f (a0) < 0 and g(a0) < 0, which means that CS and
CR cells have too low growth rates, and if this condition is provided then both cancer
cells will be eliminated producing a locally asymptotically stable E0 point.

The following proposition provides a simple set of conditions that yields the
biologically realistic final outcome when sensitive cells are overtaken by resistant
cells.

Proposition 7 The CR only equilibrium E2 is locally asymptotically stable if
f (A1) <

2qm (A1)g(A1)

qn(A1)+θδ2
and g(A1)(qn(A1) − θδ2 − 2) < 0.

Proof The Jacobian matrix evaluated at E2 is given by

J (E2) =

⎡
⎢⎢⎣

f (A1) − 2qm (A1)g(A1)

qn(A1)+θδ2
0 0

m(A1) − qn(A1)

θ
x2

g(A1)(qn(A1)−θδ2−2)
qn(A1)+θδ2

q ′
n(A1)

(
1 − x2

θ

)
x2 − D′

2(A)x2

−μ
(Aω

1 )
Aω
1 +ρω 0 −γ − μ

ωρω Aω−1
1

(Aω
1 +ρω)

x2

⎤
⎥⎥⎦.

It is seen that the set of eigenvalues are given by the diagonal entries of J (E2).
If f (A1) <

2qm (A1)g(A1)

qn(A1)+θδ2
and g(A1)(qn(A1) − θδ2 − 2) < 0, then all diagonal entries

are negativewhich yields theCRonly equilibrium E2 is locally asymptotically stable.
This finalizes the proof. �
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2.6 Clinical Trial Data

During the chapter, data from Bruchovsky et al. [24] are used for our analysis and
model calibration. This clinical trial admitted patients who demonstrated a rising
serum PSA level after they received radiotherapy and had no evidence of metastasis
[24]. The treatment in each cycle consisted of administering cyproterone acetate for
four weeks, followed by a combination of leuprolide acetate and cyproterone acetate,
for an average of 36weeks. If serum PSA is less than 4µg/L by the end of this period,
the androgen suppression therapy is stopped. If a patient’s serumPSA stays above the
threshold, the patient will be taken off of the study. After the treatment is interrupted,
PSA and androgen are monitored every four weeks. The therapy is restarted when
the patient’s serum PSA increases to≥10µg/L [24]. The data set is available at [25].

2.7 Comparison of Models

In this section, we compare our logistic models with BK models giving an error
table for 1.5 cycles data fitting. Unlike the BK model, we classify patients’ cases
as without relapse, with metastasis (without relapse) and with relapse to be able to
conduct more detailed research.

To compare models, we conduct simulations with MATLAB’s (MATLAB 9.4,
R2018a) built-in function fmincon, which uses the Interior Point Algorithm, to find
the optimum parameters for each patient. The algorithm searches for a minimum
value in a range of pre-specified parameter ranges,whichwere estimated fromvarious
literature sources.We use this algorithm to minimize theMSE for PSA and androgen
data. The MSE is calculated with the following equations:

Perror =
∑N

i=1

(
Pi − Pi

∧)2
N

Aerror =
∑N

i=1

(
Ai − Ai

∧)2
N

whereN represents the total number of data points, Pi represents the PSA data value,
and P̂i the value from the model. Likewise, Ai represents the androgen data value
and Âi the value from the model. We then use an equally weighted combination of
both errors

error = Perror + Aerror

as our objective function, which is then minimized with fmincon.
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Table 1 Comparison of mean squared error (MSE) for androgen and prostate-specific antigen
(PSA) for the first 1.5 cycles

Model PSA Androgen

Min Mean Max Min Mean Max

One pop logistic 0,173931 2,445644 36,51354 0,968212 10,34476 49,41232

One pop BK 0,058844 2,46837 25,04435 0,773269 8,656484 51,09163

Two pop logistic 0,088222 2,438892 44,1696 0,801594 10,16664 45,70097

Two pop BK 0,353765 3,766446 69,38941 0,998116 12,53949 55,10578

Table 2 Comparison of mean squared error (MSE) for androgen and prostate-specific antigen
(PSA) for the first 1.5 cycles for one population BK (OPBK) and logistic (OPL) models with
respect to fractional counterparts (OPFBK) and (OPFL)

Model PSA Androgen

Min Mean Max Min Mean Max

OPL 0,173931 2,445644 36,51354 0,968212 10,34476 49,41232

OPFL 0,091858 2,164708 35,277998 0,864893 9,633965 42,721133

OPBK 0,058844 2,46837 25,04435 0,773269 8,656484 51,09163

OPFBK 0,057346 1,667311 25,201899 0,470016 8,138561 49,036617

OPL one population logistic,OPBK one population BK,OPFL one population fractional logistic,
OPFBK one population fractional BK

Table 1 and simulations below show that one pop and two pop logistic and BK
models fit data about the same accuracy. However, logistic models reduce the fitting
error for PSA while one pop BK model serves better data fitting for androgen with
respect to one pop logistic. Two pop logistic model again performs better data fitting
for androgen when compared to two pop BK (Table 2).

2.7.1 Case 1: Without Relapse (Patients 1, 15, 17, 63)

See Figs. 2, 3, 4, and 5.

2.7.2 Case 2: With Metastasis (Without Relapse) (Patients 32, 64, 83)

See Figs. 6, 7, 8, and 9.

2.7.3 Case 3: With Relapse (Patients 12, 19, 36, 101)

See Figs. 10, 11, 12, and 13.
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Fig. 2 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

Fig. 3 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment
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Fig. 4 Simulations of PSA fittings for every two population model for 1.5 cycles of treatment

Fig. 5 Simulations of androgen fittings for every two population model for 1.5 cycles of treatment
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Fig. 6 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

Fig. 7 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment
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Fig. 8 Simulations of PSA fittings for every two population model for 1.5 cycles of treatment

Fig. 9 Simulations of androgen fittings for every two population model for 1.5 cycles of treatment
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Fig. 10 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

Fig. 11 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment
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Fig. 12 Simulations of PSA fittings for every two population model for 1.5 cycles of treatment

Fig. 13 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment
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2.8 Conclusion

With this chapter, we generate new models based on logistic growth terms alterna-
tively to cell quota models. Thesemodels succeed to emphasize the role of androgens
on the development of CR cells with accurate data fittings. Of course, simulations
can be conducted for larger time intervals and also forecasting abilities of these pro-
posed models should be investigated separately. What is more, all simulations in are
for patients who do not encounter any relapse during the clinical trial. Forecasting
situations should be investigated for other patients in Case 2 and Case 3 to monitor
differences like the existence of any relapse.

3 Does Fractional Differentiation Provide Better Data
Fitting for Clinical Data-Based Prostate Cancer Models
Under Androgen Suppression Therapy?

In this section, we introduce the fractional versions of one and two population BK
and logisticmodels shown in Sect. 2. Then, the stability analysis of them is examined,
and outcomes are discussed with numerical simulations.

3.1 Fractional Model 1: One Population Fractional BK
Model

dα1x

dtα1
= μ

(
1 − q

Q

)
x −

(
v

R

Q + R
+ δx

)
x, (22)

dα2v

dtα2
= −dv, (23)

dα3Q

dtα3
= γ (Qm − Q) − μ(Q − q), (24)

dα4 P

dtα4
= bQ + σQx − εP (25)

where αi ∈ (0, 1] for i = 1, 2, 3, 4 and represents Caputo-type fractional order and

γ = γ1u(t) + γ2, u(t) =
{
1; on treatment,
0, off treatment.

(26)
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3.2 Fractional Model 1*: One Population Fractional Logistic
Model 1

dβ1x

dtβ1
= μ

As

As + ks

(
1 − x

θ

)
x −

(
v

R

A + R
+ δx

)
x, (27)

dβ2v

dtβ2
= −dv, (28)

dβ3 A

dtβ3
= γ (a0 − A) − μ

Aω

Aω + ρω
x, (29)

dβ4 P

dtβ4
= bA + σ A(x1 + x2) − εP (30)

where βi ∈ (0, 1] for i = 1, 2, 3, 4 and represents Caputo-type fractional order.

3.3 Model Dynamics of One Population Fractional BK
and Logistic Models

3.3.1 Stability Analysis of Fractional Model 1

Observe from the last equation that P is decoupled from the system. Therefore, we
will restrict our attention only to the dynamics of Eqs. (22)–(24). The next auxil-
iary Lemma will be useful. We omit the proof because it easily follows from the
Generalized Mean Value Theorem for fractional differential equations [4].

Lemma 1 [2] Assume that F(t) and dαF(t)
dtα are continuous in [a, b] for α ∈ (0, 1].

If dαF(t)
dtα ≥ 0 for all t ∈ (a, b), then F(t) is non-decreasing in the interval [a, b],

and if dαF(t)
dtα ≤ 0 for all t ∈ (a, b), then F(t) is non-increasing in the interval [a, b].

Proposition 2 The region {(x, v, Q) : 0 ≤ x ≤ μ

δ

(
1 − q

Qm

)
, v ≥ 0, q ≤ Q ≤ Qm}

is positive invariant.

Proof One can easily show the existence and uniqueness of the solutions to the
system (22)–(24) with the initial values x(O), v(O) and Q(O) on (0,1) by using
Theorem 3.1 and Remark 3.2 in [3]. Next, we want to prove that solutions of (22)–
(24) which start positive remain positive. It is easy to see that dα1 x

dtα1 |x=0 = 0, and
dα2 v
dtα2 ′ |v=0 = 0.

Thus, by Lemma 1, it follows that solutions which start positive remain positive.
Further, observe that
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dα3Q

dtα3
|Q=q = γ (Qm − q) > 0 and

dα3Q

dtα3
|Q=Qm = −μ(Qm − q) < 0

Thus, the last inequality and Lemma 1 yield q ≤ Q ≤ Qm . Further, note that
from 1 we have

dα1x

dtα1
≤ μ

(
1 − q

Qm

)
x − δx2,

which in tern implies that dα1 x
dtα1 ≤ 0. Thus, by Lemma 1, x(t) is

x = μ

δ

(
1 − q

Qm

)

bounded above by μ

δ

(
1 − q

Qm

)
. This finishes the proof. �

Next, we want to analyze the asymptotic behavior of the system (22)–(24). From
the application point of view, it is convenient to assume that αi , i = 1, 2, 3 are
rational numbers.

Proposition 3 The system of Eqs. (22)–(24) has an unstable cancer-free (disease-

free) equilibrium E0 =
(
0, 0, γ Qm+μq

μ+γ

)
and a locally asymptotically stable endemic

equilibrium E1 =
(

μγ

δ

Qm−q
γ Qm+μq , 0, γ Qm+μq

μ+γ

)
.

Proof Let E = (x∗, v∗, Q∗) be steady state of the system of Eqs. (22)–(24). From
Eq. (22), we see that there are two cases for the steady states: x∗ = 0 or x∗ > 0. The
case x∗ = 0 gives us the cancer-free equilibrium E0. If x∗ > 0, then x∗ = μγ

δ

Qm−q
γ Qm+μq

gives us the endemic equilibrium E1.
Our model consists of multi-order fractional differential equations (FDEs), i.e.,

αi do not have to be equal. Thus, we cannot evaluate the Jacobian matrix at the
fixed points to analyze the stability. Instead, we convert the system (22)–(24) into
its equivalent single-order system. Since all αi are rational numbers, there exist
relatively prime positive integer pairs (ki , li ) such that αi = ki

li
. Let L be the least

common multiple of the denominators, i.e., L = LCM(l1, l2, l3). Set α = 1/L and
N = L(α1 + α2 + α3). Then, three-dimensional system (22)–(24) is equivalent to
the following augmented N-dimensional system.

dαx1
dtα

= x2,

dαx2
dtα

= x3,

dαxLα1

dtα
= μ

(
1 − q

Q

)
x −

(
v

R

Q + R
+ δx

)
x,

dαv

dtα
= v2,
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dαv2

dtα
= v3,

dαvLα2

dtα
= −dv,

dαQ

dtα
= Q2,

dαQ2

dtα
= Q3,

dαQLα3

dtα
= γ (Qm − Q) − μ(Q − q), (31)

where x ∈ R; for 2 ≤ i ≤ Lα1; vi ∈ R; for 2 ≤ i ≤ L; and Q ∈ R; for

2 ≤ i ≤ L: The cancer-free equilibrium E0 =
(
0, 0, γ Qm+μq

μ+γ

)
and the endemic

equilibrium E1 =
(
0, 0 γ Qm+μq

μ+γ

)
of the system (22)–(24) correspond to the cancer-

free equilibrium Ẽ0 =
⎛
⎝0, . . . , 0, 0︸ ︷︷ ︸

N−1

,
γ Qm+μq

μ+γ

⎞
⎠ and the endemic equilibrium Ẽ1 =

(0, . . . , 0, 0︸ ︷︷ ︸
Lα1−1

,
μγ

δ

Qm−q
γ Qm+μq , 0, . . . , 0,︸ ︷︷ ︸

Lα2+Lα3−1

γ Qm+μq
μ+γ

) of the system (31), respectively. Thus,

we analyze the asymptotic behavior of the system (31). For more details how to
convert a multi-order FDE to a single-order FDE, we refer the reader to the paper
[1]. The cancer-free equilibrium Ẽ0 generates the following Jacobian matrix.

J
(
Ẽ0
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
...

μ
(
1 − q

Q∗

)
0 · · · · · · 0

...

0 · · · −d · · · 0
...

0 · · · −γ − μ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Q∗ = γ Qm+μq
μ+γ

. By Theorem 4.1 in [1], the cancer-free equilibrium is stable

if and only if the eigenvalues of the matrix J
(
E
)
satisfy either |arg(λ)| > απ/2

or solutions of the equation |arg(λ)| = απ/2 have geometric multiplicity one.
Further, the eigenvalues of the matrix J

(
Ẽ0
)
are the roots of the polynomial

det
(
diag

(
λLα1 , λLα2 , λLα3

)− J6
)
, where

J6 =
⎡
⎢⎣

μ
(
1 − q

Q∗

)
0 0

0 −d 0
0 0 −γ − μ

⎤
⎥⎦.
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Since μ
(
1 − q

Q∗

)
= μγ (Qm−q)

γ Qm+μq > 0, the equation λLα1 = μ
(
1 − q

Q∗

)
has at

least one positive root yielding |arg(λ)| = 0. Thus, we conclude that the cancer-free
equilibrium is unstable.

The Jacobian matrix evaluated at Ẽ1 gives us the following matrix.

J
(
Ẽ1
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
...

− μγ (Qm−q)

γ Qm0+μq0 · · · · · · μqx∗
(Q∗)2 0

...

0 · · · −d · · · 0
...

0 0 −γ − μ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again by Theorem 4.1 in [1], the eigenvalues of the matrix J
(
Ẽ1
)
are determined

by finding the roots of the polynomial det
(
diag

(
λLα1 , λLα2 , λLα3

)− J2
)
, where

J7 =
⎡
⎢⎣

− μγ (Qm−q)

γ Qm0+μq0 − R
R+Q∗ x∗ μqx∗

(Q∗)2

0 −d 0
0 0 −γ − μ

⎤
⎥⎦

Thus, the eigenvalues satisfy the following algebraic equations λLα1 =
−μγ (Qm−q)

γ Qm+μq < 0, λLα2 = −d < 0, and λLα3 = −γ − μ < 0.
Thus, one can show that all eigenvalues satisfy the inequality |arg(λ)| > απ/2.

Theorem4.1 in [1] implies that the endemics equilibrium E1 is locally asymptotically
stable. This completes the proof. �

3.3.2 Stability Analysis of Fractional Model 1*

Observe from the last equation that P is decoupled from the system. Therefore, we
will restrict our attention only to the dynamics of Eqs. (27)–(29). For convenience,
let us introduce the function qi (A) = μ Ai

Ai+ki . One can easily show that qi is an
increasing function for A ≥ 0 and i > 0.

Proposition 4 The region
{
(x, v, A) : 0 ≤ x ≤ qs (a0)

δ
, v ≥ 0, 0 ≤ A ≤ a0

}
is posi-

tive invariant.

Proof One can easily show the existence and uniqueness of the solutions to the
system (27)–(29) with the initial values x(O), v(O), and A(O) on (0,1) by using
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Theorem 3.1 and Remark 3.2 in [3]. Next, we want to prove that solutions of (27)–
(29) which start positive remain positive. It is easy to see that dβ1 x

dtβ1 x = 0 = 0,
dβ2 ′v
dtβ2

∣∣∣
v=0

= 0, and dβ3 A
dtβ3

∣∣∣
A=0

= γ a0 > 0.

Thus, by Lemma 1, it follows that solutions which start positive remain positive.
Further, note that from 6 we have

dβ1x

dt
≤ qs(a0)x − δx2,

which in tern implies that dβ1 x
dtβ1

∣∣∣ ≤ 0.

x = qs(a0)

δ, to

Thus, by Lemma 1, x(t) is bounded above by qs(a0). It remains to show that A is

bounded. Observe from Eq. (29) that we have dβ3 A
dtβ3

∣∣∣ < 0.

A = a0

Therefore, again by Lemma 1, we obtain A(t) bounded by a0. This finishes the
proof. �

Next, we want to analyze the asymptotic behavior of the system (27)–(29). From
the application point of view, it is convenient to assume that β, i = 1, 2, 3 are rational
numbers.

Proposition 5 The system of Eqs. (27)–(29) has an unstable cancer-free (disease-
free) equilibrium E0 = (0, 0, a0) and a locally asymptotically stable endemic

equilibrium E1 =
(

θqs(A)
θδ+qs(A)

, 0, A
)
, 0 < A < a0.

Proof From Eq. (27), we see that there are two cases for the steady states: x = 0 or
x = x̄ > 0. The case x = 0 gives us the cancer-free equilibrium E0. If x = x̄ > 0,
consider a function h(A) = qs (A)

δ+ qs (A)

θ

− γ (a0−A)

qω(A)
. One can check that limA→0− h(A) =

−1 and h(a0) > 0. Thus, by the Intermediate Value Theorem (IVT), there exists
A ∈ (0, a0) such that h

(
A
) = 0. From Eqs. (27) and (29), we can find E1 which

satisfies the following equations x̄ = qs(A)

δ+ qs (A)
θ

= γ (a0−A)
qω(A)

.

Our model consists of multi-order fractional differential equations (FDEs), i.e.,
αi do not have to be equal. Thus, we cannot evaluate the Jacobian matrix at the
fixed points to analyze the stability. Instead, we convert the system (27)–(29) into
its equivalent single-order system. Since all βi are rational numbers, there exist
relatively prime positive integer pairs (ki , li ) such that βi = ki

li
. Let L be the least

common multiple of the denominators, i.e., L = LCM(l1, l2, l3). Set α = 1/L and
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N = L(β1 + β2 + β3). Then, three-dimensional system (27)–(29) is equivalent to
the following augmented N-dimensional system.

dβx

d f β
= x2,

dx2
dtβ

= x3,

...

dβxLβ1

dtβ
= μ

As

As + ks

(
1 − x

θ

)
x −

(
v

R

A + R
+ δx

)
x,

dβv

dtβ
= v2,

dβv2

dtβ
= v3,

...

dβvβ2

dtβ
= −dv,

dβA

dtβ
= A2,

dβ A2

dtβ
= A3,

...

dβ ALβ3

dtβ
= γ (a0 − A) − μ

Aω

Aω + ρω
x, (32)

where xi ∈ R; for 2 ≤ i ≤ Lβ1; vi ∈ R; for 2 ≤ i ≤ Lβ2; and Ai ∈ R;
for 2 ≤ i ≤ L: The cancer-free equilibrium E0 = (0, 0, a0) and the endemic

equilibrium E1 =
(

θqs(A)
θδ+qs(A)

, 0, A
)

of the system (27)–(29) correspond to the

cancer-free equilibrium E0 =
⎛
⎝0, . . . , 0, 0︸ ︷︷ ︸

N−1

, a0

⎞
⎠ and the endemic equilibrium

E1 = (0, . . . , 0, 0︸ ︷︷ ︸
Lβ1−1

,
θqs(A)

θδ+qs(A)
, 0, . . . , 0,︸ ︷︷ ︸

Lβ2+Lβ3−1

A) of the system (32), respectively. Thus,

we analyze the asymptotic behavior of the system (32). For more details how to
convert a multi-order FDE to a single-order FDE, we refer the reader to the paper
[1]. The cancer-free equilibrium E0 generates the following Jacobian matrix
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J
(
E0
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
...

qs(a0) 0 · · · · · · 0
...

0 · · · −d · · · 0
...

qω(a0) · · · · · · −γ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Theorem 4.1 in [1], the cancer-free equilibrium is stable if and only if the
eigenvalues of the matrix J

(
E0
)
satisfy either |arg(λ)| > απ/2 or solutions of the

equation |arg(λ)| = απ/2 have geometric multiplicity one. Further, the eigenvalues
of thematrix J

(
E0
)
are the roots of the polynomial det

(
diag

(
λLβ1 , λLβ2 , λLβ3

)− J7
)
,

where

J1 =
⎡
⎣ qs(a0) 0 0

0 −d 0
qω(a0) 0 −γ

⎤
⎦.

Since qs(a0) > 0, the equation λLβ1 = qs(a0) has at least one positive root. Thus,
we conclude that the cancer-free equilibrium is unstable.

The Jacobian matrix evaluated at E1 gives us the following matrix.

J
(
E1
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
...

−qs
(
A
) · · · − R

R+A
x̄ · · · q ′

s

(
A
)(
1 − x̄

θ

)
x̄ 0

...

0 · · · −d · · · 0
...

qω

(
A
)

0 · · · −γ − q ′
ω

(
A
)
x̄ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again by Theorem 4.1 in [1], the eigenvalues of the matrix J
(
E1
)
are determined

by finding the roots of the polynomial det
(
diag

(
λLβ1, λLβ2 , λLβ3

)− J2
)
, where

J2 =
⎡
⎢⎣

−qs
(
A
) − R

R+A
x̄ q ′

s

(
A
)(
1 − x̄

θ

)
x̄

0 −d 0
qω

(
A
)

0 −γ − q ′
ω

(
A
)
x̄

⎤
⎥⎦.

Thus, the eigenvalues satisfy the following equation
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(
λLβ2 + d

)(
qω

(
A
)
q ′
s

(
A
)(

1 − x̄

θ

)
x̄ + qs

(
A
)(

γ + q ′
ω

(
A
)
x̄
)
λLβ1+Lβ3

+ qs
(
A
)
λLβ3 + (γ + q ′

ω

(
A
)
x̄
)
λLβ1

) = 0.

Observe that λ is a solution for λLβ2 = −d < 0, and the remaining eigenvalues
can be evaluated from

λLβ1+Lβ3 + qs
(
A
)
λLβ3 + (γ + q ′

ω

(
A
)
x̄
)
λLβ1

+ qω

(
A
)
q ′
s

(
A
)(

1 − x̄

θ

)
x̄ + qs

(
A
)(

γ + q ′
ω

(
A
)
x̄
) = 0.

Since qs
(
A
)

> 0, γ + q ′
ω

(
A
)
x̄ > 0, qs

(
A
)(

γ + q ′
ω

(
A
)
x̄
)

> 0, and
qω

(
A
)
q ′
s

(
A
)(
1 − x̄

θ

)
x̄ > 0, Descartes’ rule of signs guarantees that there is no

positive real root. This completes the proof. �
As we stated in the paper [1], every process in nature has its own specific speed

so it needs to be represented by their own specific fractional derivative orders, too.
For example here, we cannot say that serum androgen and PSA have to diffuse at the
same rate or CS and CR cells have to proliferate at the same rate in a patient. Hence,
we prefer to model each equation above using different differential orders. Due to
the microscopic environment of the above processes, we consider derivative orders
between 0 and 1 and investigate which order would fit our data set best. Doing this,
we provide a justification on that fractional-order modeling could improve the fit to
a particular set of experimental data when compared with the ordinary form.

In the literature, there are several papers including numerical methods, parameter
estimate, and stability analysis for the fractional models in biology and medicine.
To be able to obtain numerical solutions of the above fractional systems, we impose
the explicit product integration (PI) rectangular rule [2] to the process of finding
optimum parameters fitting data for each patient. To compare models, we conduct
simulations with MATLAB’s (MATLAB 9.4, R2018a) built-in function fmincon,
which uses the Interior Point Algorithm, to find the optimum parameters for each
patient. The algorithm searches for a minimum value in a range of pre-specified
parameter ranges, which were estimated from various literature sources. We use this
algorithm to minimize the MSE for PSA and androgen data. The MSE is calculated
with the following equations:

Perror =
∑N

i=1(Pi − P
∧

)2

N
(33)

Aerror =
∑N

i=1(Ai − Ai

∧

)2

N
(34)

whereN represents the total number of data points, Pi represents the PSA data value,
and P

∧

the value from the model. Likewise, Ai represents the androgen data value
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Fig. 14 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

and Ai

∧

the value from the model. We then use an equally weighted combination of
both errors

error = Perror + Aerror (35)

as our objective function, which is then minimized with fmincon.
When the MSE values of the PSA values of the OPBK and OPL models are

examined, it is clear that the fractional conjugates of these models reduce the error.
When the same study is done for androgen values, it is seen that the MSE values are
still less for the fractional conjugates.

3.4 Case 1: Without Relapse (Patients 1, 15, 17, 63)

See Figs. 14 and 15.

3.5 Case 2: With Metastasis (Without Relapse) (Patients 32,
64, 83)

See Figs 16 and 17.
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Fig. 15 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment

Fig. 16 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

3.6 Case 3: With Relapse (Patients 12, 19, 36, 101)

See Figs. 18 and 19.
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Fig. 17 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment

Fig. 18 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

3.7 Fractional Model 2: Two Population Fractional BK
Model

dχ1x1
dt

= μ

(
1 − q1

Q

)
x1 − (D1(Q) + δ1X1

)
x1 − λ(Q)x1 (36)
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Fig. 19 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

dχ2x2
dt

= μ

(
1 − q2

Q

)
x2 − (D2(Q) + δ2X2

)
x2 − λ(Q)x2 (37)

dχ3Q

dt
= γ (Qm − Q) − μ(Q − q1)x1 + μ(Q − q2)x2

x1 + x2
(38)

dχ4 P

dt
= bQ + σ(Qx1 + Qx2) − εP (39)

where χi ∈ (0, 1] for i = 1, 2, 3, 4 and represents Caputo-type fractional order and

Di (Q) = di
Ri

Q + Ri
, i = 1, 2 (40)

λ(Q) = c
K

Q + K
(41)

3.8 Fractional Model 2*: Two Population Fractional Logistic
Model

dψ1x1
dt

= r1(A, x1, x2)x1 − m(A)x1 (42)
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dψ2x2
dt

= r2(A, x1, x2)x2 + m(A)x1 (43)

dψ3 A

dt
= γ (a0 − A) − μ

Aω

Aω + ρω
(x1 + x2), (44)

dβ4 P

dtβ4
= bA + σ A(x1 + x2) − εP (45)

where ψi ∈ (0, 1] for i = 1, 2, 3, 4 and represents Caputo-type fractional order and

r1(A, x1, x2) = μ
Am

Am + km

(
1 − x1 + x2

θ

)
−
(
d1

R1

A + R1
+ δ1X1

)
x1, (46)

r2(A, x1, x2) = μ
An

An + kn

(
1 − x1 + x2

θ

)
−
(
d2

R2

A + R2
+ δ2X2

)
x2 (47)

m(A) = c
K

A + K
. (48)

3.9 Model Dynamics of Two Population Fractional BK
and Logistic Models

3.9.1 Stability Analysis of Fractional Model 2

Proposition 6 Suppose that q2 ≤ q1 ≤ Qm . Then, the region
{(x1, x2, Q) : x1 ≥ 0, x2 ≥ 0, q2 ≤ Q ≤ Qm} is positive invariant.
Proof It follows from Eqs. (36)–(38) that

dχ1x1
dtχ1

|x1=0 = 0 and
dχ2x2
dtχ1

|x2=0 = ρ(Q)x1 ≥ 0.

The above inequalities guarantee by Lemma 1 the positiveness of x1 and x2. Next,
one can see that

dχ3Q

dtχ3
|Q=q2 = γ (Qm − q2) + μ

(q1 − q2)x2
x1 + x2

> 0

and

dχ3Q

dtχ3
|Q=Qm

= −μ
(Qm − q1)x1 + (Qm − q2)x2

x1 + x2
< 0
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Thus, by Lemma 1, it follows that q2 ≤ Q ≤ Qm . �
Remark 7 If in addition, we assume that χ1 = χ2 and δ2 ≤ δ1, then x1 + x2 ≤
G2(Qm )−Dm

δ2
, where Dm = min{D1(q2), D2(q2)}.

Proof Since q2 ≤ q1, we have G1(Q) ≤ G2(Q). Further, one can easily show that
the growth rate Gi (Q), i = 1, 2 is increasing function of Q. Now, set X = x1 + x2.
Then, we have

dχ1X

dtχ1
= dχ1x1

dt
+ dχ2x2

dt
≤ (G2(Q) − Dm)X − δ2X

2

≤ (G2(Qm) − Dm)X − δ2X
2.

Thus, dχ1 X
dtχ1 |x= G2 ′(Qm )−Dm

δ2

≤ 0.

By virtue of Lemma 1, we have limt→∞ sup X (t) ≤ G2(Qm )−Dm

δ2
.

Proposition 8 The system of Eqs. (36)–(38) has a cancer-free (disease-free) equi-

librium F0 = (0, 0, Qm), a CR cell only equilibrium F1 =
(
0, G1(Q1)−D2(Q1)

δ2
, Q1

)
,

and a coexistence equilibrium F2 =
(
G1(Q2)−D2(Q2)−ρ(Q2)

δ1
, x∗

2 , Q2

)
, where x∗

2 > 0,

Q1 < Q2 and Q1 = γ Qm+μq2
γ+μ

.

Proof From Eq. (36), we see that either x1 = 0 or x1 > 0.
If x1 = 0, then there are two mutually exclusive cases: x2 = 0 and x2 
= 0. In the

first case, the steady state is F0 = (0, 0, Qm). In the latter case, the steady state is

F1 =
(
0, G1(Q1)−D2(Q1)

δ2
, Q1

)
, where Q1 can be found to be Q1 = γ Qm+μq2

γ+μ
.

If x1 > 0, it follows fromEq. (37) that x2 > 0. Thus, there emerges the coexistence

equilibrium F2 =
(
G1(Q′

2)−D2(Q′
2)−ρ(Q′

2)
δ1

, x∗
2 , Q2

)
,. Further, from 17 we have

0 = (Q2 − q1)x∗
1 + (Q2 − q2)x∗

2

x1 + x2
≥ (Qm − Q2) − μ(Q2 − q2).

The last inequality implies that Q2 ≥ γ Qm+μq2
γ+μ

= Q1. �
From the application point of view, we assume that χi , i = 1, 2, 3, are rational

numbers. For convenience, denote the functions u(Q) = G1(Q) − D1(Q) − ρ(Q)

and v(Q) = G2(Q) − D2(Q).

Proposition 9 The cancer-free equilibrium F0 = (0, 0, Qm) is unstable if u(Qm) >

0 or v(Qm) > 0 and locally asymptotically stable if u(Qm) < 0 and v(Qm) < 0.
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Proof We convert the system (36)–(38) into its equivalent single-order system. Since
all χi are rational numbers, there exist relatively prime positive integer pairs (ki , li )
such thatαi = ki

li
. LetM be the least commonmultiple of the denominators, i.e.,M =

LCM(l1, l2, l3). Set χ = 1/M and N = M(χ1 +χ2 +χ3). Then, three-dimensional
system (36)–(38) is equivalent to the following augmented N-dimensional system.

dχ x1
dtχ

= y2,

dχ y2
dtχ

= y3,

...

dχ yMα1

dtχ
= μ

(
1 − q1

Q

)
x1 − (D1(Q) + δ1x1)x1 − ρ(Q)x1,

dχ x2
dχ t

= z2,

dχ z2
dχ t

= z3,

...

dχ zMα2

dtχ
= μ

(
1 − q2

Q

)
x2 − (D2(Q) + δ2x2)x2 + ρ(Q)x1,

dχ Q

dtχ
= Q2,

dχ Q2

dtχ
= Q3,

...

dχ QMα3

dtχ
= γ (Qm − Q) − μ

(Q − q1)x1 + (Q − q2)x2
x1 + x2

. (49)

Thus, we analyze the asymptotic behavior of the system (49). Let us compute the
Jacobian matrix at F0.

J
(
F̃0
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 · · · 0
...

u(Qm) 0 · · · · · · 0
...

ρ(Qm) · · · v(Qm) 0 0
...

0 · · · · · · −γ Qm − μ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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By Theorem 4.1 in [1], the cancer-free equilibrium is stable if and only if the
eigenvalues of the matrix J

(
F̃0
)
satisfy either |arg(λ)| > χπ/2 or solutions of the

equation |arg(λ)| = χπ/2 have geometric multiplicity one. Further, the eigenvalues
of the matrix J (F) are determined by the roots of the polynomial

det
(
diag

(
λMχ1 , λMχ2 , λMχ3

)− J4
)
,

where

J4 =
⎧⎨
⎩
u(Qm) 0 0
ρ(Qm) v(Qm) 0

0 0 −γ Qm − μ

⎫⎬
⎭

Since J4 is a lower triangular matrix, the set eigenvalues of J
(
F̃0
)
are given by

the following algebraic equations.

λMχ1 = u(Qm), λMχ2 = v(Qm), and λMχ3 = −γ Qm − μ < 0. (50)

If u(Qm) > 0 or v(Qm) > 0, then at least one eigenvalue is positive which in
tern implies that arg(λ) = 0. Thus, the cancer-free equilibrium is unstable.

If u(Qm) < 0 and v(Qm) < 0, then one can show that all solutions of the
(50) satisfy |arg(λ)| > χπ/2. Thus, by Theorem 4.1 in [1], we conclude that the
cancer-free equilibrium is locally asymptotically stable. This finalizes the proof. �

Proposition 10 The CR only equilibrium F1 is locally asymptotically stable if
u(Q1) < 0 and v(Q1) > 0.

Proof In order to analyze the asymptotic behavior of F, we again consider the
system (49). The CR only equilibrium F̃1 of the system (36)–(37) corresponds
F̃1 = (0, . . . , 0, 0︸ ︷︷ ︸

Mχ1+Mχ2−1

,
μγ

δ

Qm−q
γ Qm+μq , 0, . . . , 0,︸ ︷︷ ︸

Mχ3−1

γ Qm+μq
μ+γ

) of the system (49). The Jacobian

matrix evaluated at F̃1 is given by

J
(
F̃1
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · · · · · · · 0
...

u(Q1) 0 · · · · · · · · · 0
... −v(Q1)

(
μq2
Q2

1
+ d2R2

(R′
2+Q1)2

)
G2(Q1)−D2(Q1)

δ′
2

ρ(Q1) · · · · · · 0
...

μδ2(q1−q2)
G2(Q1)−D′

2(Q1)
0 · · · −γ − μ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Theorem 4.1 in [1], the CR only equilibrium is asymptotically stable
if the eigenvalues of the matrix J

(
F̃1
)
satisfy |arg(λ)| > χπ/2. Further, the
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eigenvalues of the matrix J
(
F̃1
)
are determined by the roots of the polynomial

det
(
diag

(
λMχ1 , λMχ2 , λMχ3

)− J5
)
, where

J5 =

⎧⎪⎨
⎪⎩

u(Q1) 0 0

ρ(Q1) −v(Q1)
(

μq2
Q2

1
+ d2R2

(R2+Q1)2

)
G2(Q1)−D′

2(Q1)

δ2
μδ2(q1−q2)

G2(Q1)−D′
2(Q1)

0 −γ − μ

⎫⎪⎬
⎪⎭.

It is seen that the set of eigenvalues satisfy the following algebraic equations

λMχ1 = u(Q1),

λMχ2 = −v(Q1),

λMχ3 = −γ − μ < 0.

If u(Q1) < 0 and v(Q1) > 0, then it is easy to show that all eigenvalues satisfy the
inequality |arg(λ)| > χπ/2 = π/2M . Thus, the CR only equilibrium F1 is locally
asymptotically stable. This finalizes the proof. �

3.9.2 Stability Analysis of Fractional Model 2*

As it was inModel 2, we do not analyze Eq. (45) since P is decoupled fromEqs. (42)–
(44).

Proposition 11 The region {(x1, x2, A) : x1 ≥ 0, x2 ≥ 0, 0 ≤ A ≤ a0} is positive
invariant.

Proof From Proposition 3, we know that 0 ≤ A(t) ≤ a0 if 0 ≤ A(O) ≤ a0. Next,
observe that

dψ1x1
dt

∣∣∣∣
x1=0

= 0 and
dψ2 ′x2
dt

∣∣∣∣
x2=0

= m(A)x1 ≥ 0.

Thus, by Lemma 1, it follows that solutions which start positive remain positive.

Remark 12 If in addition, we assume that ψ1 = ψ2, n < m, and δ2 ≤ δ1, then
x1 + x2 ≤ qm (a0)−Dm

δ2
.

Proof Set X = x1 + x2. Then, we have

dψ1X

dt
= dψ1x1

dt
+ dψ2x2

dt

≤ (qm(A) − Dm)X − δ2X
2
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≤ (qm(a0) − Dm)X − δ2X
2.

Thus, dψ1 X
dt |

X= qm (a0)−Dm
δ2

≤ 0. By virtue of Lemma 1, we have limt→∞ sup X (t) ≤
qm (a0)−Dm

δ2
.

Proposition 13 The system of Eqs. (42)–(44) has a cancer-free (disease-free) equi-

librium E0 = (0, 0, a0), a CR cell only equilibrium E2 =
(
0, θ qn(A1)−D2(A1)

qn(A1)+θδ2
, A1

)
,

and a coexistence equilibrium E3 = (
x∗
1 , x

∗
2 , A

∗), where x∗
1 > 0, x∗

2 > 0, 0 < A1 <

a0, and 0 < A∗ < a0.

Proof From Eq. (42), we see that either x1 = 0 or x1 > 0.
If x1 = 0, then there are two mutually exclusive cases: x2 = 0 and x2 
= 0. In

the first case the steady state is E0 = (0, 0, a0). In the latter case, the steady state is
E2 = (0, x̄, A1), where A1 ∈ (0, a0) and x̄ = θ

qn(A1)−D2(A1)

qn(A1)+θδ2
= γ (a0−A1)

μ
Aω
1

Aω
1 +ρω

> 0.

If x1 > 0, it follows fromEq. (43) that x2 > 0. Thus, there emerges the coexistence
equilibrium E3 = (

x∗
1 , x

∗
2 , A

∗).
As inModel 2, in order to carry out the asymptotic behaviorwe assume thatψi , i =

1, 2, 3, are rational numbers. Denote the functions f (A) = qm(A)− D1(A)−m(A)

and g(A) = qn(A) − D2(A).

Proposition 14 The cancer-free equilibrium E0 = (0, 0, a0) is unstable if f (a0) > 0
or g(a0) > 0 and locally asymptotically stable if f (a0) < 0 and g(a0) < 0.

Proof We convert the system (42)–(44) into its equivalent single-order system.
Since all ψi are rational numbers, there exist relatively prime positive integer pairs
(ki , li ) such that ψi = ki

li
. Let M be the least common multiple of the denomi-

nators, i.e., M = LCM(l1, l2, l3). Set ψ = 1/M and N = M(ψ1 + ψ2 + ψ3).
Then, three-dimensional system (42)–(44) is equivalent to the following augmented
N-dimensional system

dψ x1
dtψ

= y2,

dψ y2
dtψ

= y3,

...

dψ yMψ1

dtψ
= qm(A)

(
1 − x1 + x2

θ

)
x1 − (D1(A) + δ1x1)x1 − m(A)x1,

dψ x2
dtψ

= z2,

dψ z2
dtψ

= z3

...
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dψ zMψ2

dtψ
= qn(A)

(
1 − x1 + x2

θ

)
x2 − (D2(A) + δ2x2)x2 + m(A)x1,

dψ A

dtψ
= A2,

dψ A2

dtψ
= A3,

...

dψ AMψ3

dtψ
= γ (a0 − A) − μ

Aω

Aω + ρω
(x1 + x2) (51)

Thus, we analyze the asymptotic behavior of the system (51). Let us compute the

Jacobian matrix at cancer-free equilibrium Ẽ0 =
⎛
⎝0, . . . , 0, 0︸ ︷︷ ︸

N−1

, a0

⎞
⎠.

J
(
Ẽ0
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 · · · 0
...

f (a0) 0 · · · · · · 0
...

m(a0) 0 g(a0) 0
...

−μ
aω
0

aω
0 +ρω · · · −μ

aω
0

aω
0 +ρω · · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

By Theorem 4.1 in [1], the cancer-free equilibrium is stable if and only if
the eigenvalues of the matrix J

(
Ẽ0
)
satisfy either |arg(λ)| > ψπ/2 or solutions

of the equation |arg(λ)| = ψπ/2 have geometric multiplicity one. Further, the
eigenvalues of the matrix J

(
Ẽ0
)
are determined by the roots of the polynomial

det
(
diag

(
λMψ1 , λMψ2 , λMψ3

)− J2
)
, where

J2 =

⎧⎪⎨
⎪⎩

f (a0) 0 0
m(a0) g(a0) 0

−μ
aω
0

aω
0 +ρω −μ

aω
0

aω
0 +ρω −γ

⎫⎪⎬
⎪⎭.

Since J2 is a lower triangular matrix, the set eigenvalues of J
(
Ẽ0
)
are given by

the following algebraic equations.

λMψ1 = f (a0), λ
Mψ2 = g(a0), and λMψ3 = −γ < 0. (52)

If f (a0) > 0 or g(a0) > 0, then at least one eigenvalue is positive which in tern
implies that arg(λ) = 0. Thus, the cancer-free equilibrium is unstable.
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If f (a0) < 0 and g(a0) < 0, then one can show that all solutions of the (52) satisfy
|arg(λ)| > ψπ/2. Thus, by Theorem 4.1 in [1], we conclude that the cancer-free
equilibrium is locally asymptotically stable. This finalizes the proof. �

Proposition 15 The CR only equilibrium E2 is locally asymptotically stable if
f (A1) <

2qm (A1)g(A1)

qn(A1)+θδ2
and g(A1)(qn(A1) − θδ2 − 2) < 0.

Proof In order to analyze the asymptotic behavior of E2, we again consider the
system (51). The CR only equilibrium E2 of the system (42)–(44) corresponds to the
CR only equilibrium Ẽ2 = (0, . . . , 0, 0︸ ︷︷ ︸

Mχ1+Mχ2−1

, θ
(qn(A1)−D2A1)

qn(A1)+θδ2
, 0, . . . , 0,︸ ︷︷ ︸

Mχ3−1

A1) of the system

(51). The Jacobian matrix evaluated at Ẽ2 is given by

J
(
Ẽ2
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · · · · 0
...

f (A1) − 2qm (A1)g(A1)

qn(A1)+θδ2
0 · · · · · · · · · 0

...

m(A1) − qn(A1)

θ
x2 0 · · · · · · g(A1)(qn(A1)−θδ2−2)

qn(A1)+θδ2
0

...

q ′
n(A1)

(
1 − x2

θ

)
x2 − D′

2(A1)x2 0 · · · · · · −γ − μ
ωρω Aω−1

1
(Aω

1 +ρω)2
x2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By Theorem 4.1 in [1], the CR only equilibrium is asymptotically stable
if the eigenvalues of the matrix J

(
E
)
satisfy |arg(λ)| > ψπ/2. Further, the

eigenvalues of the matrix J
(
E
)
are determined by the roots of the polynomial

det
(
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(
λMψ1 , λMψ2 , λMψ3

)− J3
)
, where
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0 0
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Aω
1

Aω
1 +ρω 0 −γ − μ

ωρω Aω−1
1

(Aω
1 +ρω)2
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⎫⎪⎬
⎪⎭

It is seen that the set of eigenvalues satisfy the following algebraic equations

λMψ1 = f (A1) − 2qm(A1)g(A1)

qn(A1) + θδ2
,

λMψ2 = g(A1)(qn(A1) − θδ2 − 2),

λMψ3 = −γ − μ
ωρωAω−1

1

(Aω
1 + ρω)2

x̄ < 0.

If f (A1) <
2qm (A1)g(A1)

qn(A1)+θδ2
and g(A1)(qn(A1) − θδ2 − 2) < 0, then it is easy to show

that all eigenvalues satisfy the inequality |arg(λ)| > βπ/2 = π/2M . Thus, the CR
only equilibrium E2 is locally asymptotically stable. This finalizes the proof. �
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Table 3 Comparison of mean squared error (MSE) for androgen and prostate-specific antigen
(PSA) for the first 1.5 cycles for two population BK (TPBK) and logistic (TPL) models with
respect to fractional counterparts (TPFBK) and (TPFL)

Model PSA Androgen

Min Mean Max Min Mean Max

TPL 0,088222 2,438892 44,1696 0,801594 10,16664 45,70097

TPFL 0,076367 1,994876 33,404229 0,699228 10,893238 42,223214

TPBK 0,353765 3,766446 69,38941 0,998116 12,53949 55,10578

TPFBK 1,225462 2,079395 34,058538 0,741277 11,467617 52,934657

TPL two population logistic, TPFL two population fractional logistic, TPBK two population BK,
TPFBK two population fractional BK

Following the same methodology expressed for one population models above, we
find the MSE values of the PSA and androgen values of the TPBK and TPL models.
When a MSE comparison is made for PSA values, it is clear that the fractional con-
jugates of these models reduce the error. When the same study is done for androgen
values, it is seen that the MSE values either remain almost the same for fractional
conjugates or fall (Table 3).

3.10 Case 1: Without Relapse (Patients 1, 15, 17, 63)

See Figs. 20 and 21.

Fig. 20 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment
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Fig. 21 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment

3.11 Case 2: With Metastasis (Without Relapse) (Patients 32,
64, 83)

See Figs. 22 and 23.

Fig. 22 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment
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Fig. 23 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment

3.12 Case 3: With Relapse (Patients 12, 19, 36, 101)

Here, αi (i = 1, 2, 3, 4) values represent the net growth rate of CS and CR cells and
the diffusion rate of serum androgen and PSA, respectively. For example, for Patient
1 (in OPFBK model), while CS cells show a bit faster growth than CR cells, and
androgen is diffusing faster than PSA. The values of other patients can be similarly
interpreted (Figs. 24 and 25; Tables 4, 5, 6, and 7).

3.13 Conclusion

With this section, we generate the fractional versions of one and two population
BK and logistic models and reach this result that the fractional conjugates of these
models either reduce the MSE values or leave them almost the same. Therefore,
fractional derivation generally occurs as a good alternative to modeling with better
data fitting. On the other hand, multi-order fractional systems created in this section
are not very desirable to include more parameters than ordinary equivalents. To this
end, the focus should be on creating fractional models with fewer parameters without
compromising on the basis of biological facts in future studies. Also, these fractional
models should be solved especially with the implicit PI trapezoidal rule about which
is emphasized that it is more reliable than the other methods stated in the paper
[2] with fewer errors and then should be analyzed with respect to the change of
MSE values. In addition to this, fractional and delay versions of TPBK and TPL
models can be compared, and the advantages and disadvantages against each other
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Fig. 24 Simulations of PSA fittings for every one population model for 1.5 cycles of treatment

Fig. 25 Simulations of androgen fittings for every one population model for 1.5 cycles of treatment

can be investigated. Finally, tomake predictions on resistance, imposing an ensemble
Kalman filter into these fractional models may be another direction for future work.
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Table 4 Optimal alpha values for patients in numerical simulations (for OPFBK model)

Patient α1 α2 α3 α4

1 0,624761 0,500000 0,990000 0,500000

15 0,832262 0,743663 0,988468 0,516263

17 0,766818 0,513626 0,989989 0,989332

63 0,795169 0,964573 0,911281 0,500004

32 0,989981 0,588649 0,989991 0,538456

64 0,594303 0,724906 0,989996 0,500006

83 0,500006 0,500150 0,989998 0,575342

12 0,500000 0,743973 0,989999 0,500000

19 0,714895 0,500859 0,989668 0,644767

36 0,733337 0,500071 0,989991 0,716358

101 0,989984 0,775649 0,989987 0,989843

Table 5 Optimal beta values for patients in numerical simulations (for OPFL model)

Patient β1 β2 β3 β4

1 0,989966 0,501054 0,969879 0,500121

15 0,989404 0,515919 0,953509 0,502991

17 0,989557 0,561484 0,989507 0,971678

63 0,989626 0,506515 0,856649 0,501253

32 0,989494 0,552440 0,805364 0,515453

64 0,987768 0,630501 0,989197 0,500776

83 0,990000 0,747626 0,989999 0,504897

12 0,935231 0,726912 0,920229 0,595430

19 0,964345 0,833712 0,972717 0,654057

36 0,988691 0,524407 0,989012 0,510935

101 0,989789 0,724291 0,989215 0,981611

4 Research Results

The results of the research presented so far can be summarized as follows:

• First of all, the mathematical model we have formed by accepting that androgens
have a positive effect on CR cell proliferation has created proliferation terms using
logistic growth terms. Moreover, this model, which provides generally better data
fittings than the BK model, does not compete only with the BK model but also
compete with other models in the literature.

• The stability analysis of the logistic models reveals whether the cancer cells can be
completely eliminated, what restrictions should be made if they cannot be, what
conditions should be provided to keep them at a local stable level, what the CS and
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Table 6 Optimal chi values for patients in numerical simulations (for TPFBK model)

Patient χ1 χ2 χ3 χ4

1 0,500519 0,715126 0,989899 0,500083

15 0,628557 0,707221 0,989803 0,500245

17 0,989421 0,705671 0,989774 0,972518

63 0,747118 0,826512 0,989854 0,528226

32 0,725712 0,819878 0,966505 0,709687

64 0,622157 0,705622 0,989871 0,500917

83 0,989976 0,731043 0,989981 0,986780

12 0,947467 0,537256 0,656281 0,516388

19 0,939402 0,718373 0,989187 0,684748

36 0,969878 0,680010 0,989877 0,635165

101 0,989781 0,603203 0,989088 0,712237

Table 7 Optimal psi values for patients in numerical simulations (for TPFL model)

Patient ψ1 ψ2 ψ3 ψ4

1 0,977256 0,602088 0,941998 0,524273

15 0,955527 0,779392 0,934645 0,547061

17 0,928922 0,765377 0,884623 0,832938

63 0,852426 0,862360 0,911937 0,617110

32 0,982154 0,536804 0,913867 0,533610

64 0,949548 0,533055 0,943829 0,500418

83 0,989897 0,783728 0,989889 0,957508

12 0,876736 0,917007 0,717897 0,572673

19 0,989981 0,588552 0,989951 0,617169

36 0,989994 0,582408 0,989987 0,500968

101 0,989936 0,501915 0,967355 0,967479

CR cells are meant to live together, or the conditions in which CR cells override
CS cells.

• Afterward, the fractional versions of both the proposed logistic models and the BK
model have been built to show that they provide better data fittings with respect
to ordinary forms by reducing the MSE value, as we have claimed before. For
fractional models, stability analysis was performed, too, and conditions affecting
cancer dynamics were determined.

• This research process, above all, has provided the opportunity to get in touch with
other researchers, especially Professor Yang Kuang, in the courses and seminars
that have been attended from time to time in an internationally educated university
and benefit from their knowledge and experience, and has opened a horizon that is
difficult to win without coming here. In addition, this research period has provided
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the opportunity to follow new trends and the latest studies in the field of mathe-
matical biology closely. With these studies, which we initiated as an introduction
to mathematical oncology, we will try to create domestic research groups that will
lead to similar studies in our country and will try to make the studies most suitable
for clinical use. We will also continue to expand our international connections
while continuing to move across this field with new competitive project ideas.

Acknowledgements: O.O.M. is supported by the Scientific andResearchCouncil of Turkeywithin
the context of 2214-A-Ph.D. Research Fellowship Abroad and by the Scientific Research Unit of
AnkaraUniversitywith the grant number 17L0430006.We are also grateful toNicholas Bruchovsky
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Toward the Realization of the “Europe
2020” Agenda for Economic Growth
in the European Union: An Empirical
Analysis Based on Goal Programming

Cinzia Colapinto, Davide La Torre, Danilo Liuzzi and Aymeric Vié

1 Introduction

As awareness on environmental issue has spiked, with dissemination of social move-
ments in favor of stronger environmental respect and profusion of international
treaties, optimal resource allocation and economic growth cannot be distinguished
from sustainability and ecological considerations. Nowadays, countries are subject
to numerous binding frameworks for policy making (i.e., the 1992 United Nations
Framework Convention on Climate Change and the more recent Cop 21 conference
organized in Paris in 2016), introducing greenhouse gas emission targets. As sci-
entific reports (such as the Intergovernmental Panel on Climate Change) encounter
large media coverage, the importance of these targets can be expected to increase,
further adding constraints on economic policies design and implementation.

These added international and social incentives to more environment-friendly
measures yet encounter complex national and international economic situations.
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Indeed, after the last global financial crisismost developed countries show lowgrowth
and budget recovery, and improving, but still stagnant, labor markets, thus balancing
these fundamental policy topics with the more recent environmental stakes is evi-
dently a struggle. An illustrative example did arise in France, when important social
unrest from the “yellow jackets” originally emerged from an increase in the taxa-
tion of most polluting fuels. These elements further demonstrate the importance of
careful consideration of each of the goals in the design of public policy. While such
arbitrages are difficult to make by decision makers, several tools can bring a substan-
tial help and support in policy design. The problem of simultaneously conciliating
economic, environmental, social, and energy policy targets is well captured by the
mathematical models of multiple criteria decision analysis (MCDA), which indeed
allow to identify the optimal policy design accounting for all different objectives.

The European Union is a typical and interesting case study. After the 2008 eco-
nomic crisis, in 2010 European institutions and notably the European Council, and
European Commission, proposed the introduction of numerical multi-criteria policy
targets, the so-called Europe 2020 strategy [1]. This highly varied set of national tar-
gets covers a large subset of national issues, such as economic growth, employment,
education and research, reduction of greenhouse gas emissions, progress toward
higher energy efficiency, and struggle against poverty and social exclusion. While
these sets of actions and associated objectives (such as a decrease by 20% of GHG
emissions or an increase in energy efficiency by 20%) are formulated at the Euro-
pean Union scale, the objectives are nationally transposed, leaving European Union
members a relative margin of freedom in their implementation. This feature creates
a context in which MCDA techniques can be applied to evaluate the satisfaction of
Europe 2020 objectives by European Union states.

The application of MCDA techniques, and specifically goal programming (GP)
and its variants and extensions, to macroeconomic policies is not novel. They have
been widely used to tackle similar issues of decision making with competing objec-
tives, as they allow to identify a Pareto optimal solution with respect to the goals
involved. Nevertheless, the use of GP models has before emerged in engineering,
where they have been implemented to analyze supply chain optimization problems
facing imprecise assessment of both demand and information [2, 3], vendor problems
[4, 5], production planning [6], or also decision making in manufacturing [7, 8]. The
increasing popularity of GP models, already noticed by Ignizio [9], gave birth for
instance to financial portfolio selection applications [10, 11], with consideration of
manager preferences [12], highlighting the flexibility of GP approaches to integrate
these constraints as well, and also in the context of optimal allocation of renewable
energies with quota constraints [13]. In marketing, decision-making problems seeing
an application of GPmethods are sales operation [14] andmedia planning [15, 16]. In
agricultural and environmental management, as the GP methodology constitutes an
adequate tool to model environmental interactions [17], uses of MCDA approaches
have dealt with agricultural land planning [18, 19], outsourcing management [20],
and crop selection [21].



Toward the Realization of the “Europe 2020” Agenda … 201

The extant MCDA literature covers a large variety of models and applications
reviewed byColapinto et al. [22], and theGP formulation has been applied tomacroe-
conomic policy design and evaluation. Some researchers [23–25] have usedweighted
goal programming (WGP) to study the global sustainability and development of the
GCC countries. Other authors employ this methodology to study macroeconomic
policies in Spain [26, 27] through the joint analysis of optimal economic and envi-
ronmental policies. More recently, Omrani et al. [28] have applied a WGP model to
more efficiently plan regional sustainable development and workforce allocation in
Iran. Zografidou et al. [29] have suggested an optimal design of renewable energy
production in Greece by weighting social, financial, and production goals. Nomani
et al. [30] implemented a fuzzy goal programming approach to evaluate the satisfac-
tion of sustainability policy targets in India. Finally, Bravo et al. [31] have studied the
robustness of WGP models applied to offshore wind-farm site location determina-
tion. Indeed, GP and its variants offer the ability to balance different objectives and
are relevant tools to study the satisfaction of several mutually conflicting objectives.
Recent economic works provide multi-criteria models emphasizing the comparison
of welfare criteria [32] and studying the economy/environment trade-off through
externality modeling, notably establishing that “independently of the relative impor-
tance of economic and environmental factors, it is paradoxically optimal for the
economy to asymptotically reach the maximum pollution level that the environment
is able to bear” in the multi-criteria decision making [33].

Our chapter proposes a GP model to describe and measure the progress of
each European country toward the satisfaction of the main Europe 2020 goals,
and expands the following authors’ previous work with the use of a fuzzy GP
model [34]. With respect to Vié et al. [34], this chapter presents a more detailed
analysis with updated and more complete data. The Europe 2020 strategy is used as
a reference framework for activities in the EU at national and regional levels. Our
model is linear and includes seven economic sectors and four different criteria. The
data have been collected using information provided by the European Commission
and the EU statistics office, Eurostat. Eurostat regularly publishes comprehensive
progress reports for the targets. We referred to the targets for different sectors indi-
cated in the Europe 2020 agenda, including employment, research and development
(R&D), climate change and energy, education, and poverty and social exclusion. In
particular, the climate change and energy targets are:

(a) greenhouse gas emissions 20% lower than 1990 levels
(b) 20% of energy coming from renewables
(c) 20% increase in energy efficiency.

Our model mainly focuses on the analysis of a sustainable economic growth and
combines the economic objective (GDP) together with GHG emissions and energy
efficiency. Our model does not distinguish skilled from unskilled labor force and
supposes that population level is equal to the labor force.

The chapter is organized as follows. Section 2 reviews some basic notions in
MCDA and GP. Section 3 presents the model formulation, including a detailed
description of the economic sectors and the criteria. Section 4 describes how the data
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have been collected, while Sect. 5 illustrates the results. As usual, Sect. 6 concludes.
In the appendices (1–10), we report data calculation and model results.

2 A Review of Multiple Criteria Decision Analysis
and Goal Programming

Multiple criteria decision analysis or multiple criteria decision making (MCDM) is a
discipline that considers decision-making situations involving multiple and conflict-
ing criteria. Some examples of conflicting criteria that have been considered in the
literature are quality, cost, price, satisfaction, risk, and others. Considering multiple
criteria with respect to a single criterion leads to more informed and better decisions.
However, typically there does not exist a unique optimal solution and it is neces-
sary to use a decision maker’s preferences to differentiate between solutions. Many
important advances have been developed in this field in the last sixty years including
new approaches, innovative methods, and sophisticated computational algorithms. A
classical MCDA model involves several criteria, objectives, or attributes, to be con-
sidered simultaneously. These dimensions are usually conflicting, and the decision
maker will look for the solution of the best compromise.

MCDA models are based on the notion of partial or Pareto order which can be
summarized as follows: Given two vectors a, b ∈ RP , we say that a ≤ b if and only if
ai ≤ bi for all i = 1 . . . p. The general formulation of aMCDAmodel can be stated as
follows [35]: Given a set of p criteria f1, f2, . . . , f p, determine the optimal solution
of the vector function f (x) := [

f1(x), f2(x), . . . , f p(x)
]
under the condition that

x ∈ D ⊆ �n where D designates the set of feasible solutions. The optimal solution
has to be understood in Pareto sense: We say that a point x̂ ∈ D is a global Pareto
optimal solution or global Pareto efficient solution if f (x) ∈ f (x̂)+(−Rp

+\{0})c for
all x ∈ D. Practically speaking, a Pareto optimal solution describes a state in which
goods and resources are distributed in such a way that it is not possible to improve a
single criterion without also causing at least one other criterion to become worse off
than before the change. In other words, a state is not Pareto efficient if there exists
a certain change in the allocation of goods and resources that may result in some
criteria being in a better position with no criterion being in a worse position than
before the change. If a point x ∈ D is not Pareto efficient, there is potential for a
Pareto improvement and an increase in Pareto efficiency.

GP is a well-known technique to solve MCDA models. The GP model is based
on a notion of distance, and it seeks to minimize positive or negative deviations
of the achievement levels with respect to the aspiration ones. It is an aggregating
methodology that allows obtaining a solution representing the best compromise that
can be achieved by the decision maker, as noted by Jayaraman et al. [24].

The WGP model is one of the possible variants of the GP model that have been
proposed in the literature. In this context, the decision maker can show different
appreciation of the positive and negative deviations based on the relative importance
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of the objective and this is expressed by introducing different weights w+
i and w−

i .
The mathematical formulation of the WGP model reads as follows:

Minimize
p∑

i=1

w+
i δ+

i + w−
i δ−

i

subject to:

fi (x) + δ−
i − δ+

i = gi i = 1 . . . p
x ∈ F

δ−
i , δ+

i ≥ 0 i = 1 . . . p

3 Model Formulation

As previously mentioned, MCDA usually deals with decision making with mul-
tiple and conflicting criteria, objectives, or attributes and considers decision mak-
ers’ preferences to determine the best compromise among optimal solutions. GP
was first introduced by Charnes and Cooper [36]. Given a set of n linear criteria
Fi (X1, X2, . . . , Xn) = ∑n

j=1 Ai j Xi j and a set of goals Gi the WGP model reads as

p∑

i=1

α+
i D+

i + α−
i D−

i

Subject to:
n∑

j=1
Ai j X j + D−

i + D+
i = Gi , i = 1 . . . p

X ∈ Ω

D−
i , D+

i ≥ 0, i = 1 . . . p

(1)

where Ω is a feasible set, α+
i and α−

i are weights, Xj are the input variables repre-
senting the number of employees in each economic sector, the coefficient Aij states
the contribution of the jth variable to the achievement of the ith criterion, and D−

i
and D+

i are the positive and negative deviations with respect to the aspirational goal
levels Gi , i = 1, . . . , n, respectively.

Previous researchers—see, i.e., Andre’ et al. [26] and San Cristóbal [27] in Spain,
Jayaraman et al. [23, 25] in theGCC countries—have shown how the government can
determine its optimal policy according to different criteria using the GP approach.
Considering the Europe 2020 objectives established by the European Commission,
our macroeconomic model simultaneously considers the following four criteria with
their respective units:

(a) F1 is the economic output (in million US$)



204 C. Colapinto et al.

(b) F2 is the GHG emissions (in Gg of CO2 equivalent kilo tonnes)
(c) F3 is the electric consumption (in thousand tonnes of oil equivalent)
(d) F4 is the number of employees (in thousands).

The decision variables in our GP model are all relevant economic sectors for
the analysis. They are equivalent to the main activities identified by NACE Rev. 2
classification:

• X1: agriculture, forestry, and fishing
• X2: energy industry
• X3: manufacturing industry
• X4: construction and residential
• X5: trade, transports, distribution, and repairing
• X6: commercial services (information, communication, financial, and insurance
activities)

• X7: general services (administrative, state, technical, scientific, education, health,
and social services).

Each criterion Fi is linear with respect to each decision variable X j and takes the
form:

F1(X1, X2, . . . , X7) = A11X1 + A12X2 + · · · + A17X7

F2(X1, X2, . . . , X7) = A21X1 + A22X2 + · · · + A27X7

F3(X1, X2, . . . , X7) = A31X1 + A32X2 + · · · + A37X7

F4(X1, X2, . . . , X7) = A41X1 + A42X2 + · · · + A47X7

The seven economic categories aim to represent—for each country—its economic,
social, environmental, and energy characteristics. We also replicate the choice made
in previous publications [23, 27] that fit well the NACE (second revision) classifica-
tion of economic activities created within the European Union. Such a classification
is complete, aiming to describe efficiently whole economic patterns. Our choice
of categories is restricted either to specific global categories, such as agriculture
combined with fishing and forestry, either to an aggregate category as commercial
services, which includes both financial and insurance activities and information and
communication economics.

The GP problem we intend to solve can then be written in the following form:

Minimize (α+
1 D

+
1 + α−

1 D
−
1 ) + (

α+
2 D

+
2 + α−

2 D
−
2

) + (
α+
3 D

+
3 + α−

3 D
−
3

)

+ (
α+
4 D

+
4 + α−

4 D
−
4

)

Subject to :
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A11X1 + A12X2 + · · · + A17X7 − D+
1 + D−

1 = G1

A21X1 + A22X2 + · · · + A27X7 − D+
2 + D−

2 = G2

A31X1 + A32X2 + · · · + A37X7 − D+
3 + D−

3 = G3

X1 + X2 + · · · + X7 − D+
4 + D−

4 = G4

X1 ≥ �1, X2 ≥ �2, X3 ≥ �3, X4 ≥ �4, X5 ≥ �5, X6 ≥ �6, X7 ≥ �7

X j , j = 1, 2, . . . , 7 are positive and integer
D+

i , D−
i ≥ 0, i = 1, 2, 3, 4

(2)

The variables D+
i , D−

i describe the positive and the negative deviations. The input
variables X j take integer values and must be at least equal to the positive number � j

which is the number of employees in each sector of our analysis (seeAppendix 1).A1j

is the economic output per capita (worker) for the jth economic sector (see Appendix
2). A2j describes the GHG emission per capita (worker) for the jth economic sector
(see Appendix 3). A3j models the energy consumption per capita (worker) for the jth
economic sector (see Appendix 4).

For each country, we solve the above model (2) which takes then the form of a
mixed-integer linear programming (MILP) model. We have implemented it using
LINGO. So far, we have assumed equal weights for each objective. In other words,
all the weights α+

n and α−
n , n = 1, . . . , 4, are equal. Our choice is motivated by the

fact that the Europe 2020 agenda does not provide any priority or ranking among
the objectives and all of them must be jointly met. However, these weights might
be modified at the regional level when the national preferences and the economic
situation of each country have to be taken into account.

4 Data Collection and Computation

In this section, we briefly discuss how we have estimated all parameters involved in
the model. For each constraint, we describe how the data have been collected and
how the estimations have been computed. We also provide their interpretation.

4.1 The Gross Domestic Product Constraint

The GDP per capita denoted A1i (see Appendix 2) is expressed in US$ thousands per
capita. It is computed for a given sector i in each country by taking the ratio of the
economic output (GDP) for the selected sector i in US$ millions in 2015 [37–40, 35]
and the number of employees (expressed in thousands) in the same year for the same
economic sector i [41, 42]. Following the Europe 2020 recommendation that the
economic output must be at least conserved with respect to the year of analysis, and
following GDP growth rate projections of the International Monetary Fund (IMF)
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and the OECD up to 2020, we defined the economic GDP objectiveG1 as the sum of
the forecast GDP of all sectors. For instance, a country with a GDP of 100 in 1990
forecasted to grow by 10% to 2020 will have an economic output target of 110. The
resulting GDP constraint can be expressed as follows: The economic output of the
country needs to be at least as good as current projections.

4.2 The Greenhouse Gas Constraint

The average sectorial greenhouse gas (GHG) emissions per capita A2i (see Appendix
3 for the data) is expressed in tonnes of CO2 equivalent per capita, for a given sector
i in each country. It is computed by dividing sectorial GHG emissions (in thousands
of tonnes) in the selected country in 2015 and the number of employees (expressed in
thousands) in the same year for the same economic sector and country [37–42]. This
delivers the benchmark from which the environmental policy target G2 is computed,
according to the Europe 2020 objective consisting in a decrease by 20% of GHG
emissions at the scale of the national economy, an objective that we apply to all
sectors separately. For instance, a country with a GHG emission level of 100 in 1990
will have a GHG emission target of 80 at the horizon 2020.

4.3 The Energy Constraint

The average sectorial energy consumption per capita Ai3 (see Appendix 4 for the
data) is expressed in tonnes of oil equivalent per capita, for a given economic sector i
in each country. In order to obtain its numerical values, we took the ratio of the energy
consumption for the selected sector i in the selected country in thousands of tonnes of
oil equivalent in 2015 [43],1 and of the number of employees (expressed in thousands)
in the same year for the same sector i and country [37–42]. The determination of the
energy consumption targetsG3 proceeded by transforming the resulting consumption
with the 20%2 increases in energy efficiency imposed by the Europe 2020 strategy,
with respect to the 1990 level constituting the benchmark of the policy set.

1Eurostat data in thousands of tonnes of oil equivalent (ktoe) on a net calorific value basis.
2Europe 2020 objectives in energy sector deal with an increasing of energy efficiency by 20%,which
mathematically implies a reduction of energy consumption by 16.66% from the 1990 consumption
to the horizon 2020.
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4.4 The Employment Constraint

This constraint is simple, as the model aims at maintaining employment at the bench-
mark level set in the year of analysis. This constraint is declined in each economic
sector, based on the number of jobs recorded in the year of data collecting [41, 42].
Natural population growth (and estimated forecasts for later years) was considered
to formulate the aggregate employment goal G4. Note that this constraint operates
in the aggregate level, offering countries flexibility in the allocation of incoming
workforce across economic sectors.

5 Model Implementation and Discussion

As said above, we implement our model using the software LINGO and the results
are presented in Appendix 9. We have ticked with “x” any time there is a signif-
icant deviation value (detailed results table can be found in Appendix 10). In all
simulations, we have normalized the weights to 1. We would like to point out that
confidential and missing data for Cyprus, Croatia, and Malta restrict us to make less
precise conclusions than those done for other countries.

From what we observed, the current trend will allow all European countries to
have D+

4 = 0, which means that the entire available labor force will be used for
creating a sustainable development. This result outlines the need for a better inte-
gration of unemployed workforce, possibly through intensified training policies and
inclusive measures in the labor market. In the context of automation, improving the
effectiveness of changes in qualification seems relevant to ensure optimal economic
performance, employment, and social inclusion.

In several countries, we observe a significant nonzero value for the deviation
D−

4 , meaning that the satisfaction of the objectives of the model requires additional
workforce to be integrated within the economy in specific sectors. In a context of
increasing immigration toward European countries, this study outlines the necessity
and the benefits coming from a more efficient integration of newcomers within the
labor market in Eastern and Northern countries (for instance, Germany).

Some countries present a significant deviation in the values taken by D−
1 , standing

for a negative deviation from the economic goal. For these countries, the satisfaction
of the simultaneous objectives leads to a slower economic output than targeted. This
can be interpreted as a lack of productivity that can be verified empirically comparing
the average economic product of these countries, with economically well-performing
countries. Improving competitiveness and production efficiency may result from
organizational changes or evolutions in the length of work time permitted.

A significant deviation in the parameter D+
1 , a positive deviation from the eco-

nomic goal, shows a great economic performance of the country, for which the
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optimal allocation of workers to reach Europe 2020 goals leads to higher eco-
nomic growth than expected (for instance, Eastern countries, Belgium, Luxemburg,
Germany show this result).

Only two countries show a significant negative deviation from the environmental
goal D−

2 . The optimal allocation of workers provides the achievement of the environ-
mental goals in Czech and Slovak Republics. These results can be explained by the
transformations of national economic patterns following the collapse of USSR dur-
ing the early nineties and the dissolution of Czechoslovakia in 1993. It illustrates the
significant progress made in switching to a cleaner energy production system after
the Soviet period. A large number of European countries include in their optimal
allocation a positive deviation D+

2 , stressing that GHG emissions at the optimal allo-
cation are significantly higher than the objective (especially in the UK, France, and
Spain). The importance and the wide diffusion of these positive deviations outlines
the need for an increased transformation of European production systems leading to
lower environmental impact sectors, especially in industry and agriculture, for which
these countries show higher GHG emissions than average.

Five countries (Cyprus, Czech and Slovak Republics, Romania, and Sweden)
show significant values in the deviation D−

3 . This result stands for a negative devi-
ation from the energy consumption reduction goal which means that their optimal
allocation goes beyond the required reduction of energy consumption. This result
for the Czech and Slovak Republics and in Romania might be justified again by their
national economic pattern transformation from former Soviet-linked countries into
Eastern European countries.

Most countries in our sample show important and significant positive deviation
D+

3 from the energy production goal, outlining emergency and significant needs for
a better energy efficiency, and development of renewable sources of energy, able to
satisfy the Europe 2020 energy objective while keeping the other parameters—eco-
nomic output, number of jobs, environmental impact—at least as goodwith respect to
the sustainability objectives. Different measures may be implemented to reach these
goals: for instance, development of renewable energies, intensified use of nuclear
energy, or waste reduction.

6 Conclusion and Policy Implications

The GP model allows policy makers to identify the best combination of investments
and choices that optimizes the multiple and competing objectives that usually coexist
within a national strategy plan. To ensure that each member state tailors the Europe
2020 strategy in the most effective way, the European Commission has proposed that
goals are translated into national targets and trajectories. The purpose of the European
plan relies on the interactions among interrelated targets: indeed, investing in cleaner,
low carbon technologies could help the environment, contribute to fighting climate
change, and create new business and employment opportunities in Europe. However,
some stakeholders will enjoy benefits only in the long term, and that is why these
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changes meet resistance and conflicting objectives occur. Our implementation of a
GPmodel for European countries, with respect to the Europe 2020 goals in reduction
of GHG emissions and increase in energy efficiency, combinedwith economic output
and employment constraints, outlines the need for a better integration and training
of the incoming workforce in a context of increasing immigration flows, jointly with
deep and sustained transformations of economic national systems toward a more
energy-efficient production system, combined with the development of renewable
energies in many EU countries.

Improving our model to represent more efficiently the reality and support public
policies implies to identify the utility payoffs attached to each deviation that goes
beyond the object of this chapter. For future research, it would be interesting consid-
ering that the utility, or preferences of the policy maker, can be taken into account
by switching to a more sophisticated GP variant, where the appropriate coefficients
for each sector of deviation are identified.

Acknowledgements The authors would like to thank the two anonymous referees for useful sug-
gestions and thorough reviewing, and all the participants of the 12th Multi-objective Programming
and Goal Programming (MOPGP) International Conference ofMetz, France (2017), for their useful
suggestions and remarks.

Appendix 1—Employment by Main Sector in EU
(in Thousands)
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Appendix 2—Economic Output (GDP) Per Economic Sector
in EU Countries (US$ Millions)
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Appendix 3—Emissions of GHG3 in Economic Sectors in EU
Countries4

3CO2, CH4, N2O, HFCs, PFCs, SF6, NO4, NOX, NMVOC, PFC, PM (2, 5, and 10); summed
and transformed in CO2 equivalent and thousands of tonnes.
4United Nation—Framework Convention on Climate Change—Submitted National
Communications, sixth edition, due January 1, 2014, data from 2011 in principle, in equivalent
CO2 emissions (Gg), data based on national accounts//Data confirmed in European Environment
Agency Data//Eurostat—Air emissions national accounts by NACE Rev. 2 activity, 2014 data,
in thousands of tonnes of CO2 equivalent.
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Appendix 4—Energy Consumption5 in Economic Sectors
in EU Countries

5In thousands of tonnes of oil equivalent (ktoe) on a net calorific value basis.
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Appendix 5—Europe 2020 GP Goals
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Appendix 6—Aij Coefficients for the Economic Constraint
(in Thousands of US$ Per Capita)
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Appendix 7—Aij Coefficients for the Environmental
Constraint (in Tonnes of CO2 Equivalent Per Capita)
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Appendix 8—Aij Coefficients for the Energy Constraint6

6In tonnes of oil equivalent.
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Appendix 9—Model Results: Significant Deviations
in the Results of the GP Model

D−
1 D+

1 D−
2 D+

2 D−
3 D+

3 D−
4 D+

4

Austria x x x

Belgium x x

Bulgaria x x

Croatia x x x

Cyprus x x

Czech Rep. x X x

Denmark x x x

Estonia x x x

Finland x x x

France x x x

Germany x x x

Greece x x x x

Hungary x x

Ireland x x x

Italy x x x

Latvia x

Lithuania x x x

Luxembourg x x x

Malta x x x

Netherlands x

Poland x x x

Portugal x x x

Romania x x x

Slovak Rep. x X x

Slovenia x x x

Spain x x x

Sweden x x

UK x x x
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Appendix 10—Model Results: Detailed Results of the GP
Model
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On the Poincaré-Andronov-Melnikov
Method for Modelling of Grazing
Periodic Solutions in Discontinuous
Systems

Flaviano Battelli and Michal Fečkan

1 Introduction

Grazing is a typical phenomenon that may appear in discontinuous dynamical sys-
tems. This usually happens when a solution either has a zero velocity when touching
an impact surface or when a solution just tangentially touching a switching surface.
Grazing of a solution is well studied, so we refer the reader [1–5] and the references
cited there in for motivation to discontinuous systems.

In this chapter, we investigate a persistence of a grazing solution under au-
tonomous perturbation for the case of tangential grazing when a nearby dynamics is
sliding.Wederive aMelnikov like condition for the persistence of such grazingwhich
is a generalization of periodic Melnikov method [6]. We also present an example for
illustration. Both periodic and grazing solutions are itself interesting phenomenon
in discontinuous systems, so the appearance of both simultaneously is much more
interesting. This is the first reason why we study the persistence of such kind of solu-
tions under perturbation. The second reason is that such kind of solutions determine
borders in parametric discontinuous systems between the grazing, nongrazing and
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sliding, and periodicity and nonperiodicity phenomena as well. Consequently, this
chapter fulfils a gap in the existing theory of modelling of discontinuous systems.

The chapter is organized as follows. In Sect. 2, we introduce the investigated
problem and study the set of initial values near the periodic and grazing solution
which determine grazing solutions under perturbation. The grazing Poincaré map
is derived in Sect. 3. Section4 is devoted for solving fixed points of the grazing
Poincarémap via Lyapunov-Schmidtmethod in terms of the correspondingMelnikov
conditions. Section5 presents a class of examples to illustrate our theory.

2 Notations

Let � ⊂ R
n be an open subset of Rn and G, f+, f− : � → R be Cr functions, r ≥ 2.

We set �± := {x ∈ � | ±G(x) > 0} and assume the discontinuous equation

ẋ = f (x) :=
{
f+(x) if x ∈ �+
f−(x) if x ∈ �−

(2.1)

has a C1 periodic solution touching tangentially the hypersurface S := {x ∈ � |
G(x) = 0}. With this, we mean that a C1 periodic function x0(t) of period, say
T > 0, exists such that x0(t) ∈ �+ for all t ∈ [0,T ], t �= t0 ∈]0,T [, G(x0(t0)) = 0
and the equation

ẋ0(t) = f+(x0(t))

is satisfied for all t ∈ [0,T ]. Let

g(x, ε,μ) :=
{

g+(x, ε,μ) if x ∈ �+
g−(x, ε,μ) if x ∈ �−

where g+, g− : � × B → R
n are Cr functions. Here B ⊆ R

2 is an ball in R2 centred
at (0, 0). In this chapter, we study the problem of existence of a periodic solution of
the perturbed discontinuous equation

ẋ = f±(x) + εg±(x, ε,μ), x ∈ �±. (2.2)

We suppose that 0 is a regular value of G. Since d(t) := G(x0(t)) has a minimum
at t = t0 we have

d(t0) = d ′(t0) = 0, d ′′(t0) ≥ 0

we assume the minimum is strong that is d ′′(t0) > 0. Let x0 := x0(t0) and x̄ = x0(0).
Conditions d ′(t0) = 0, d ′′(t0) > 0 are equivalent to

G ′(x0)f+(x0) = 0, G ′′(x0)f+(x0)
2 + G ′(x0)f ′

+(x0)f+(x0) > 0. (2.3)
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Let B(x̄, ρ) be the ball of radius ρ centred at x̄ with ρ < ρ0 and B := B(x̄, ρ0) ⊂ �+.
For any x̃ ∈ B(x̄, ρ) let φ(t, x̃, ε,μ) be the solution of equation

ẋ = f+(x) + εg+(x, ε,μ) (2.4)

such that φ(0, x̃, ε,μ) = x̃ [in other words φ(t, x̃, ε,μ) is the flow of Eq. (2.4)].
When ε = 0 we get φ(t, x, 0,μ) = φ0(t, x), the flow of equation ẋ = f+(x), which
is independent of μ.

Lemma 2.1 Let x0(t) be a periodic solution of Eq. (2.1) touching tangentially
S = {x ∈ � | G(x) = 0} at x0 = x0(t0). Suppose G ′(x0) �= 0 and that condition (2.3)
holds. Then there exist ρ > 0, ε̄ > 0 such that for any |ε| < ε̄ there exists a hypersur-
face Sε,μ ⊂ B(x̄, ρ) such that for any x ∈ Sε,μ, φ(t, x, ε,μ) touches tangentially the
manifold S at a point φ(t(x, ε,μ), x, ε,μ). Moreover t(x, ε,μ) is Cr, t(x̄, 0,μ) = t0,
and, for any x ∈ Sε,μ, G(φ(t, x, ε,μ)) has a minimum at t(x, ε,μ).

Proof. We consider the function δ(t, x, ε,μ) := G(φ(t, x, ε,μ)), |ε| ≤ ε̄. Let

h(t, x, ε,μ) :=
(

δ(t, x, ε,μ)

δt(t, x, ε,μ)

)
: R × B(x̄, ρ) × [−ε̄, ε̄] × R → R

2.

Note that δ(t, x, 0,μ) := d(t, x) = G(φ0(t, x)) is independent of μ. Hence h(t, x,

0,μ) = h0(t, x) :=
(

G(φ0(t, x))
G ′(φ0(t, x))f+(φ0(t, x))

)
does not depend on μ and h(t, x̄,

0,μ) = h0(t, x̄) =
(
d(t)
d ′(t)

)
. We prove that the system

h(t, x, ε,μ) = 0

has a Cr solution t(x, ε,μ) for any x belonging to a hypersurface Sε,μ of the ball
B(x̄, ρ). We have

h0(t0, x̄) = 0

and
∂h0

∂(x, t)
(t0, x̄, 0,μ) =

(
dx(t0, x̄) dt(t0, x̄)
dxt(t0, x̄) dtt(t0, x̄)

)
=

(
dx(t0, x̄) 0
dxt(t0, x̄) d ′′(t0)

)

Hence if rank dx(t0, x̄) = 1, the implicit function theorem implies the existence of a
submanifold Sε,μ of B(x̄, ρ), which is described by an equation like xj = Xj(xĵ , ε,μ),
for some j = 1, . . . , n (here xĵ means that the coordinate xj in x is missed) and
of a function t = t(xĵ , ε,μ) such that h(t, x, ε) = 0 when t = t(xĵ , ε,μ) and xj =
Xj(xĵ , ε,μ). To be more precise, we can proceed in two steps. First to solve equation
δt(t, x, ε,μ) = 0 in a neighbourhood of (t0, x̄, 0,μ), with μ in a compact set, for
t = t(x, ε,μ),with t(x̄, 0,μ) = t0. Thenplug t = t(x, ε,μ) into δ(t, x, ε,μ) to obtain:

Sε,μ = {x ∈ B(x̄, ρ) | δ(t(x, ε,μ), x, ε,μ) = 0}.
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Note that t(x, 0,μ) = t0(x) is independent of μ and is defined by the fact that
dt(t0(x), x) = 0.

We have:

dx(t0, x̄) = G ′(φ0(t0, x̄))φ0x(t0, x̄) = G ′(x0)φ0x(t0, x̄)

and φ0x(t0, x̄) = φx(t0, x̄, 0) is invertible being the fundamental matrix of the linear
equation ẋ = f ′+(x0(t))x. So dx(t0, x̄) �= 0 if and only if G ′(x0) �= 0 and this holds by

the assumptions. Since d ′′(t0) > 0, rank
[

∂h0
∂(x,t)

]
= 2. Possibly reordering variables

we can assume that h(t, x, ε,μ) = 0 if and only if

t = t(x1̂, ε,μ) and x1 = X1(x1̂, ε,μ).

Next, from the implicit function theorem we get:

x̄1 = X1(x̄1̂, 0,μ), t0 = t(x̄1̂, 0,μ).

In particular, x̄ ∈ S0 = S0,μ. Now we prove that δ(t, (X1(x1̂, ε,μ), x1̂), ε,μ) has a
minimum at t = t(x1̂, ε,μ). We already know that

δ(t(x1̂, ε,μ), (X1(x1̂, ε,μ), x1̂), ε,μ)

=δt(t(x1̂, ε,μ), (X1(x1̂, ε,μ), x1̂), ε,μ) = 0.

Next

lim
x1̂→x̄1̂
ε→0

δtt(t(x1̂, ε,μ), (X1(x̄1̂, ε,μ), x1̂), ε,μ) = δtt(t0, x̄, 0) = d ′′(t0) > 0.

Thus, t(x1̂, ε,μ) is a local minimum point for δ(t, (X1(x̄1̂, ε,μ), x1̂), ε,μ). This point
is a global minimum in an interval like

[− T
3 , 4

3T
]
because δ(t, x, ε,μ) → d(t) as

(ε, x) → (0, x̄).

Remark 2.2 From the proof of Lemma 2.1, we see that x ∈ Sε,μ ∩ B(x̄, ρ) if and
only if

min{δ(t, x, ε,μ) | 0 ≤ t ≤ T } = 0

which is equivalent to:

G(φ(t(x, ε,μ), x, ε,μ)) = 0,
G ′(φ(t(x, ε,μ), x, ε,μ))φt(t(x, ε,μ), x, ε,μ) = 0

(2.5)

Differentiating the first equality in (2.5) with respect to x ∈ Sε,μ, we get

G ′(φ(t(x, ε,μ), x, ε,μ))

[φt(t(x, ε,μ), x, ε,μ))tx(x, ε,μ) + φx(t(x, ε,μ), x, ε,μ)]|TxSε,μ
= 0

(2.6)
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and then, using the second equality in (2.5):

[G ′(φ(t(x, ε,μ), x, ε,μ))φx(t(x, ε,μ), x, ε,μ)]|TxSε,μ
= 0.

Since φx(t(x, ε,μ), x, ε,μ) is invertible, the kernel of

G ′(φ(t(x, ε,μ), x, ε,μ))φx(t(x, ε,μ), x, ε,μ)

is (n − 1)-dimensional. As a consequence,

N [G ′(φ(t(x, ε,μ), x, ε,μ))φx(t(x, ε,μ), x, ε,μ)] = TxSε,μ.

When ε = 0 and x = x̄, this gives, due to t(x̄, 0,μ) = t0, φ(t0, x̄, 0,μ) = x0:

N [G ′(x0)φ0x(t0, x̄)] = Tx̄S0.

Now, we remark that the equality δt(t(x, ε,μ), x, ε,μ) = 0 holds for any x ∈
B(x̄, ρ) (since t(x, ε,μ) has been found solving first δt(t, x, ε,μ) = 0). Hence

∂

∂x
δ(t(x, ε,μ), x, ε,μ) = δx(t(x, ε,μ), x, ε,μ) �= 0

for any x ∈ B(x̄, ρ) (with ρ sufficiently small) since

lim
x→x̄
ε→0

δx(t(x, ε,μ), x, ε,μ) = dx(t0, x̄) = G ′(x0)φ0,x(t0, x̄) �= 0.

Moreover δtt(t(x, ε,μ), x, ε,μ) > 0 for |x − x̄| + |ε| sufficiently small since

lim
x→x̄
ε→0

δtt(t(x, ε,μ), x, ε,μ) = d ′′(t0) > 0.

Hence t(x, ε,μ) is a local strong minimum of δ(t, x, ε,μ).
Now, the conditions δ(t(x, ε,μ), x, ε,μ) = 0 and δx(t(x, ε,μ), x, ε,μ) �= 0 for

x ∈ Sε,μ imply that the hypersurface Sε,μ splits B(x̄, ρ) in two connected open sets,
say Bε,μ

− (x̄, ρ) and Bε,μ
+ (x̄, ρ) characterized by the following.

x ∈ Bε,μ
+ (x̄, ρ) if and only if min{G(φ(t, x, ε,μ)) | 0 ≤ t ≤ T } > 0,

x ∈ Bε,μ
− (x̄, ρ) if and only if min{G(φ(t, x, ε,μ)) | 0 ≤ t ≤ T } < 0.

Let ϕ(t, x, ε,μ) be the flow of the discontinuous system (2.2). The sign of G(ϕ(t, x,
ε,μ)) when x ∈ Bε,μ

− (x̄, ρ) depends on the properties of the function f−(x). We dis-
tinguish between the following two cases:

(i) G ′(x0)f−(x0) > 0;
(ii) G ′(x0)f−(x0) < 0.

Suppose x ∈ Bε,μ
− (x̄, ρ). In this case, we have min δ(t, x, ε,μ) < 0.
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Then there exists a unique t̃ = t̃(x, ε,μ), with t̃(x̄, 0,μ) = t0, such that G(φ(t̃,
x, ε,μ)) = 0 and G(φ(t, x, ε,μ)) > 0, for t < t̃. We derive that

δt(t̃, x, ε,μ)) = G ′(φ(t̃, x, ε,μ))[f+(φ(t̃, x, ε,μ)) + εg+(φ(t̃, x, ε,μ), ε,μ)] ≤ 0.

Since δ(t̃, x, ε,μ) = G(φ(t̃, x, ε,μ)) = 0, we see that the equality holds if and only
if x ∈ Sε,μ and t̃ = t(x, ε,μ). So we conclude that

G ′(φ(t̃, x, ε,μ))[f+(φ(t̃, x, ε,μ)) + εg+(φ(t̃, x, ε,μ), ε,μ)] < 0 (2.7)

for any x ∈ Bε,μ
− (x̄, ρ). Because of the uniqueness, we see that φ(t̃, x, ε,μ) → x0 as

ε → 0 and x → x̄. Hence, if ρ and ε are small enough we get, in case (i),

G ′(φ(t̃, x, ε,μ))[f−(φ(t̃, x, ε,μ)) + εg−(φ(t̃, x, ε,μ), ε,μ)] > 0.

This means that the vector field on �− pushes the solution into �+ while the vector
field on �+ pushes the solution into �−. As a consequence, we have sliding. On the
other hand, if (ii) holds then the solution enters into �− at the point φ(t̃, x, ε,μ) ∈ S
that is φ(t, x, ε,μ) crosses S transversally at φ(t̃, x, ε,μ).

In this chapter, we study the problem of existence of grazing periodic solutions
that is periodic solutions starting from a point in Sε,μ. In Sect. 3, we construct the
Poincaré map of Eq. (2.4). Then in Sect. 4, we study the problem of existence of fixed
points in Sε,μ of the Poincaré map.

We conclude this section with the construction of another submanifold of S that
will be useful in the next sections. Let

h±(x, ε,μ) = f±(x) + εg±(x, ε,μ)

and set
Mε,μ = {x ∈ S | G ′(x)h+(x, ε,μ) = 0}.

When ε = 0 we get

M0,μ = M0 = {x ∈ S | G ′(x)f+(x) = 0}
= {x ∈ � | G(x) = 0, G ′(x)f+(x) = 0}.

The Jacobian matrix (with respect to x) at x0 of the map

(
G(x)

G ′(x)f+(x)

)
is

(
G ′(x0)

G ′′(x0)f+(x0) + G ′(x0)f ′+(x0)

)

whose rank equals 2 because of assumption (2.3). Indeed from (2.3) it follows that
G ′(x0) and G ′′(x0)f+(x0) + G ′(x0)f ′+(x0) do not have the same kernel hence they
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cannot be proportional. Hence for any μ in a given fixed compact subset of R there
exists ε0 > 0 and a (connected) neighbourhood U of x0 such that for |ε| < ε0,
Mε,μ is a codimension 1 submanifold of S ∩U . Using φt(t(x, ε,μ), x, ε,μ) =
h+(φ(t(x, ε,μ), x, ε,μ), ε,μ) and (2.5) we see that

φ(t(x, ε,μ), x, ε,μ) ∈ Mε,μ.

Since the flow is invertible, we obtain (at least locally in a neigbborhood of x0)

Mε,μ = {φ(t(x, ε,μ), x, ε,μ) | x ∈ Sε,μ ∩ B(x̄, ρ)}. (2.8)

Since Mε,μ is a codimension one submanifold of S, for ε sufficiently small (and
μ in a given compact subset of R) it splits a given (small) neighbourhood of
x0, say B(x0, r), into two connected components characterized by the inequalities
G ′(x)h+(x, t, ε,μ) > 0 and G ′(x)h+(x, t, ε,μ) < 0.

From Eq. (2.8), it follows that Mε,μ is the image under the flow φ(t(x, ε,μ),

x, ε,μ) of Sε,μ ∩ B(x̄, ρ). As a consequence, we deduce that Bε,μ
− (x̄, ρ) is sent by the

flow φ(t̃(x, ε,μ), x, ε,μ) into one of the two components of B(x0, r) ∩ S] \ Mε,μ.
From Eq. (2.7), it follows that the image under the flow of Bε−(x̄, ρ) belongs to the
connected component of [B(x0, r) ∩ S] \ Mε,μ where G ′(x)h+(x, t, ε,μ) < 0. We
collect all the above remarks in the following.

Proposition 2.3 Suppose x0(t) is a periodic solution of Eq. (2.1) touching tangen-
tially S = {x ∈ R

n | G(x) = 0} at x0 = x0(t0) and that condition (2.3) as well as
G ′(x0) �= 0 hold. Then there exist B(x0, r) and ε0 > 0 such that for any |ε| < ε0
and μ in a given compact subset of R the manifold Mε,μ splits B(x0, r) ∩ S into
two open (in the induced topology on S) subsets of B(x0, r) ∩ S characterized by the
inequalities

G ′(x)h+(x, t, ε,μ) > 0 G ′(x)h+(x, t, ε,μ) < 0

respectively. Moreover, the following holds:

(a) Mε,μ = {φ(t(x, ε,μ), x, ε,μ) | x ∈ Sε,μ ∩ B(x̄, ρ)},
(b) if x ∈ Bε,μ

− (x̄, ρ) then

G ′(φ(t(x, ε,μ), x, ε,μ))h+(φ(t(x, ε,μ), x, ε,μ), t, ε,μ) < 0.

3 The Poincaré Map

In this section, we construct the Poincaré map of Eq. (2.4) in the sliding case (that is
when (i) holds). Thismap is defined for x ∈ B(x̄, ρ) ∩ L,L being any fixed hyperplane
through x̄ transverse to f+(x̄), for example L = {x̄} + {f+(x̄)}⊥, and takes values on
L. When x ∈ Bε,μ

+ (x̄, ρ) ∩ L, it is simply the Poincaré map of equation ẋ = f+(x) +
εg+(x, ε,μ).
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Before giving the definition of the Poincaré map on Bε,μ
− (x̄, ρ) ∩ L, we need to

make few remarks.
For x ∈ Bε,μ

− (x̄, ρ) ∩ L, consider the solution starting from φ(t̃, x, ε) ∈ S, with
t̃ = t̃(x, ε,μ). To this end, we define the vector field on S. For simplicity, assume
that

S = {x ∈ R
n | xn = 0}.

Since the argument is local in a neighbourhood of x0, we can always reduce to this
situation by a (usually nonlinear) change of variables. Thus, we take G(x) = xn and
Eqs. (2.3), (2.5) read, respectively:

f+,n(x0) = 0, f ′
+,n(x0) · f+(x0) > 0

and
φn(t(x, ε,μ), x, ε,μ) = 0, [e∗

nφx(t(x, ε,μ), x, ε,μ)]|TxSε
= 0

for any x ∈ Sε. Moreover e∗
nφt(t(x, ε,μ), x, ε,μ) = 0, that is

f+,n(φ(t(x, ε,μ), x, ε,μ)) = 0.

The vector field on S is then given by the equation

ẋn̂ = h(xn̂, ε,μ) = h0(xn̂) + εh1(xn̂, ε,μ) (3.1)

where

h(xn̂, ε,μ) = h−,n(xn̂, ε,μ)h+,n̂(xn̂, ε,μ) − h+,n(xn̂, ε,μ)h−,n̂(xn̂, ε,μ)

h−,n(xn̂, ε,μ) − h+,n(xn̂, ε,μ)
.

Note that

lim
ε→0

h−,n(xn̂, ε,μ) − h+,n(xn̂, ε,μ) = f−,n(xn̂) − f+,n(xn̂) �= 0

for |x − x0| sufficiently small. Thus for ε sufficiently small, Eq. (3.1) is well defined
in a neighbourhood of x0,n̂. To avoid misunderstanding, we emphasize that with
h±,n(xn̂, ε) we mean the function h±,n((xn̂, 0), ε) and similarly for h±,n̂(xn̂, ε). In the
following, we write xn̂ to denote both xn̂ and (xn̂, 0), the meaning being clear from
the context. Solutions of (3.1) will remain in S until h+,n(xn̂, ε) < 0 < h−,n(xn̂, ε).
When g(x, t, ε,μ) = g(x, ε,μ) the manifoldMε,μ,t are t-independent and, actually,
being G(x) = xn, we have:

Mε,μ = {x ∈ S | h+,n(x, ε,μ) = 0}

and
M0 = {x ∈ S | f+,n(x) = 0}.
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Sliding will occur until the solution xn̂(t, t̃,φn̂(t̃, x, ε,μ), ε,μ) of Eq. (3.1)
starting, at t = t̃ = t̃(x, ε,μ), from φn̂(t̃, x, ε,μ), x ∈ B−(x̄, ρ), reaches the mani-
foldMε,μ that is until

h+,n(xn̂(t, t̃,φn̂(t̃, x, ε,μ), ε,μ), ε,μ) = 0.

Here xn̂(t, t̃, x̃, ε,μ) is the solution of (3.1) satisfying xn̂(t̃, t̃, x̃, ε,μ) = x̃. SinceMε,μ

is a codimension 1 submanifold of S and x0 ∈ M0, there exists a neighbourhood
B(x0, r) of x0 such that [B(x0, r) ∩ S] \ Mε,μ has two connected components. These
two connected components are characterized by the inequalities h+,n(x, ε) > 0,
h+,n(x, ε) < 0.

In the previous section, we observed that the image under the flow of V ∩ Bε−(x̄, ρ)

belongs to the connected component of [B(x0, r) ∩ S] \ Mε,μ where h+,n(x, ε,μ) <

0.
In order to have sliding, we need that the solutions of Eq. (3.1) on S cross the

manifoldMε,μ. We prove that the solutions of (3.1) crossMε,μ transversally. Indeed
onMε,μ we have:

x ∈ Mε,μ ⇒ h(xn̂, ε,μ) = h+,n̂(xn̂, ε,μ).

Hence a solution of Eq. (3.1) crossesMε,μ and going from {x ∈ S | h(xn̂, ε,μ) < 0}
into {x ∈ S | h(xn̂, ε,μ) > 0} if

h′
+,n(xn̂, ε,μ)h+,n̂(xn̂, ε,μ) > 0

for any xn̂ ∈ B(x0, r) ∩ S. Of course, this holds if it holds for ε = 0, that is

f ′
+,n(xn̂)f+,n̂(xn̂) > 0 (3.2)

for any xn̂ ∈ B(x0, r) ∩ S. Note that f ′+,n(xn̂) and h′+,n(xn̂, ε) denote the derivative of
f+,n(xn̂), h+,n(xn̂, ε) with respect to (x1, . . . , xn−1) at (x1, . . . , xn−1, 0).

Condition (3.2) implies that we have a sliding behaviour also for the solutions of
Eq. (2.1) when x belongs to B0−(x̄, ρ).

Let t̄(x, ε,μ) be the first time after t̃(x, ε,μ) such that

xn̂(t, t̃(x, ε,μ),φn̂(t̃(x, ε,μ), x, ε,μ), ε,μ) ∈ Mε,μ.

Clearly, if x ∈ Sε,μ then t̄(x, ε,μ) = t̃(x, ε,μ) = t(x, ε,μ). Finally we consider the
solution

xr(t, x, ε,μ) =
φ(t, t̄(x, ε,μ), xn̂(t̄(x, ε,μ), t̃(x, ε,μ),φn̂(t̃(x, ε,μ), x, ε,μ), ε,μ))

of ẋ = h+(x, ε,μ) such that
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xr(t̄(x, ε,μ), x, ε,μ) = xn̂(t̄(x, ε,μ), t̃(x, ε,μ),φn̂(t̃(x, ε,μ), x, ε,μ), ε,μ).

Because of continuous dependence on the data, we see that

sup
t∈[t̄(x,ε), 32 T]

|xr(t, x, ε,μ) − x0(t)| → 0

as (x, ε) → (x̄, 0), uniformly for μ in compact sets. Hence there exists a smooth
function T (x, ε,μ) such that

T (x̄, 0,μ) = T ,

xr(t, x, ε,μ) /∈ L for t̄(x, ε,μ) ≤ t < T (x, ε,μ),

xr(T (x, ε,μ), x, ε,μ) ∈ L,

supt̄(x,ε,μ)≤t≤T (x,ε,μ) |xr(t, x, ε,μ) − x0(t)| → 0, as (x, ε) → (x̄, 0).

The map π(·, ε,μ) : Bε−(x̄, ρ) ∩ L → L, π(x, ε,μ) = xr(T (x, ε,μ), x, ε,μ) is the
Poincaré map.

In the following section, we study the restriction of π(x, ε,μ) to Sε,μ. In this
case, we have grazing instead of sliding and the Poincaré map is still defined as
π(x, ε,μ) = xr(T (x, ε,μ), x, ε,μ), but

xr(t, x, ε,μ) = φ(t, x, ε,μ)

for any x ∈ Sε,μ, φ(t, x, ε,μ) being the flow of equation ẋ = f+(x) + εg+(x, ε,μ).
Hence

π(x, ε,μ) = φ(T (x, ε,μ), x, ε,μ), for any x ∈ Sε,μ. (3.3)

4 Grazing Periodic Solutions

In this section, we prove that if a certain condition is satisfied there exists a grazing
periodic solution of Eq. (2.4). Actually, we prove the following.

Theorem 4.1 Suppose the equation ẋ = f+(x) has the T-periodic solution x0(t) ∈
�+, for t �= t0 touching tangentially the manifold G(x) = 0 at the point x0 = x(t0).
Suppose further that G ′(x0) �= 0, and that (2.3) holds. Suppose that the generic
condition

N (I − P′(x̄))/Tx̄(S0 ∩ L) = {0} (4.1)

holds, where P : L → L is the Poincaré map of ẋ = f+(x). Then the adjoint equation
ẋ = −f ′+(x0(t))∗x has a unique, up to a multiplicative constant, solution ψ(t) such

that ψ(T ) ∈ Tx̄L ∩ [R(I − P′(x̄))|Tx̄(S0∩L)

]⊥
. Next let ψ1(t) be the solution of ẋ =

−f ′+(x0(t))∗x such that ψ1(0) = ψ(T ) − ψ(0). Then, if the function
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�(μ) =
∫ t0

0
ψ1(s)

∗g+(x0(s), 0,μ)ds +
∫ T

0
ψ(s)∗g+(x0(s), 0,μ)ds

has a simple zero at some point μ = μ0, there exists μ(ε) such that for μ = μ(ε)
equation ẋ = f+(x) + εg+(x, ε,μ) has a periodic and grazing solution x0(t, ε)whose
period is a C1-function of ε and tends to T as ε → 0. Moreover, for any compact
interval I ⊂ R we have

lim
ε→0

sup
t∈I

|x0(t, ε) − x0(t)| = 0.

Proof. We want to solve

π(x, ε,μ) − x = 0, x ∈ Sε,μ ∩ L. (4.2)

Note, first, that L = x̄ + Tx̄L = {x̄ + ξ | ξ ∈ Tx̄L}. Hence, for any x ∈ Sε,μ ∩ L we
have π(x, ε,μ) − x ∈ Tx̄L. In the following, we take Tx̄L = {f+(x̄)}⊥

Recalling thatP : L → L is thePoincarémapof ẋ = f+(x),wegetπ(·, 0,μ)/(S0 ∩
L) = P/(S0 ∩ L). Henceπx(x̄, 0,μ)ξ = P′(x̄)ξ for ξ ∈ Tx̄(S0 ∩ L). To solve (4.2),we
use the Lyapunov-Schmidt method. By (4.1), it holds codimR(I − P′(x̄))/Tx̄(S0 ∩
L) = 1 in Tx̄L. So we take a projection P1 : Tx̄L → R(I − P′(x̄))/Tx̄(S0 ∩ L), and
split (4.2) into

P1(π(x, ε,μ) − x) = 0, x ∈ Sε,μ ∩ L (4.3)

and
(I − P1)(π(x, ε,μ) − x) = 0, x ∈ Sε,μ ∩ L. (4.4)

We write Eq. (4.4) in a more explicit form. First of all Eq. (4.4) is equivalent to

ψ∗[π(x, ε,μ) − x] = 0 (4.5)

for some non-zero vector ψ ∈ Tx̄L orthogonal toR(I − P′(x̄))/Tx̄(S0 ∩ L), that is,

ψ ∈ Tx̄L, and ψ∗v = 0 (4.6)

for any v ∈ V := R(I − P′(x̄))/Tx̄(S0 ∩ L) or equivalently:

ψ ∈ Tx̄L, and ψ∗Aw = 0

for any w ∈ W := Tx̄(S0 ∩ L) with

A = I − P′(x̄) : Tx̄L → Tx̄L. (4.7)

Note that V and W are codimension 1 subspaces of Tx̄L. If ψ1 is another non-zero
vector satisfying (4.6) then ψ1 = μψ for some scalar μ �= 0 and hence Eq. (4.5) and



252 F. Battelli and M. Fečkan

ψ∗
1 [π(x, ε,μ) − x] = 0

are equivalent.
The second equation reads also [A∗ψ]∗w = 0 for anyw ∈ W := Tx̄(S0 ∩ L), that

is,
A∗ψ = b̃

for some vector b̃ ∈ Tx̄L ∩ Tx̄(S0 ∩ L)⊥. Indeed, from (4.7) it follows

A∗ : Tx̄L → Tx̄L.

Let
b = φ0,x(t0, x̄)

∗G ′(x0)∗.

It is clear that b ∈ Tx̄L. In fact:

b∗f+(x̄) = G ′(x0)φ0,x(t0, x̄)ẋ0(0) = G ′(x0)ẋ0(t0) = 0.

Next, we know that

Tx̄(S0 ∩ L) = {ξ ∈ Tx̄L | G ′(x0)φ0,x(t0, x̄)ξ = 0}.

So, for any ξ ∈ Tx̄(S0 ∩ L), we have (using P̄ = P̄∗):

b∗ξ = G ′(x0)φ0,x(T , x̄)ξ = 0.

Note also that ψ ∈ Tx̄L implies
P̄ψ = ψ,

where P̄ : Rn → Tx̄L is the orthogonal projection onto Tx̄L along f+(x̄).
Thus, we can write

A∗ψ = λb = λφ0,x(t0, x̄)
∗G ′(x0)∗.

for some λ ∈ R.
Now we consider Eq. (4.3). When ε = 0 it reads: P1(P(x) − x) = 0, x ∈ S0 ∩ L

and has the solution x = x̄ ∈ S0 ∩ L. Differentiating the lefthand side with respect
to x at x̄, we get: P1(P′(x̄) − I)|Tx̄S0∩L = (P′(x̄) − I)|Tx̄S0∩L whose kernel reduces to
{0} because of (4.1). So P1(P′(x̄) − I)|Tx̄S0∩L is an isomorphism from Tx̄S0 ∩ L onto
R(I − P′(x̄))/Tx̄S0 ∩ L. Then, for ε sufficiently small and any μ from a compact
subset of R, (4.3) has a unique solution x(ε,μ) ∈ Sε,μ ∩ L such that x(0,μ) = x̄.
Now we insert x(ε,μ) into (4.5) to get the equation

G̃(μ, ε) = 0,
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where G̃(μ, ε) := ψ∗[π(x(ε,μ), ε,μ) − x(ε,μ)]. We have

G̃(μ, 0) = ψ∗[π(x(0,μ), 0,μ) − x(0,μ) = ψ∗[P(x̄) − x̄] = 0

since P(x̄) = x̄. As a consequence, we set

G(μ, ε) :=
{

ε−1G̃(μ, ε) if ε �= 0
G̃ε(μ, 0) if ε = 0.

We want to apply the implicit function theorem to the function G(μ, ε). To this end,
we need that μ0 ∈ R exists such that

G(μ0, 0) = 0 and Gμ(μ0, 0) �= 0.

It is easy to check that

G(μ, 0) = ψ∗[(P′(x̄) − I)xε(0,μ) + πε(x̄, 0,μ)].

From Eq. (3.3) we get

πε(x̄, 0,μ) = φ0t(T , x̄)Tε(x̄, 0) + φε(T , x̄, 0,μ)

= f+(x̄)Tε(x̄, 0) + φε(T , x̄, 0,μ).
(4.8)

So, from P̄ψ = ψ, P̄f+(x̄) = 0 and P̄ = P̄∗ we get:

ψ∗πε(x̄, 0,μ) = ψ∗P̄πε(x̄, 0,μ) = ψ∗P̄φε(T , x̄, 0,μ) = ψ∗φε(T , x̄, 0,μ).

Next from A∗ψ = λP̄φ0,x(t0, x̄)∗G ′(x0)∗, A = I − P′(x̄), we derive

ψ∗(P′(x̄) − I)xε(0,μ) = −(A∗ψ)∗xε(0,μ)

= −λG ′(x0)φ0,x(t0, x̄)P̄xε(0,μ)

= −λG ′(x0)φx(t0, x̄, 0,μ)xε(0,μ)

because x(ε,μ) ∈ Sε,μ ∩ L and then P̄x(ε,μ) = x(ε,μ). Now, from the proof of
Lemma 2.1 we know that Sε,μ = {x ∈ L | δ(t̄(x, ε,μ), x, ε,μ) = 0}, where t̄(x, ε,μ)

is such that
δt(t̄(x, ε,μ), x, ε,μ) = 0 for any x ∈ Sε,μ.

As a consequence,
δ(t̄(x(ε,μ), ε,μ), x(ε,μ), ε,μ) = 0.

Differentiating with respect to ε = 0 and using

δt(t̄(x, ε,μ), x, ε,μ) = 0 for any x ∈ Sε,μ
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we get:

δx(t̄(x(ε,μ), ε,μ), x(ε,μ), ε,μ)xε(ε,μ) + δε(t̄(x(ε,μ), ε,μ), x(ε,μ), ε,μ) = 0.

Setting ε = 0 and recalling that x(0,μ) = x̄, t̄(x̄, 0,μ) = t0, φ0(t0, x̄) = x0, the pre-
vious equation gives:

G ′(x0)[φ0x(t0, x̄)xε(0,μ) + φε(t0, x̄, 0,μ)] = 0.

Thus:
ψ∗(P′(x̄) − I)xε(0,μ) = −λG ′(x0)φx(t0, x̄, 0,μ)xε(0,μ)

= λG ′(x0)φε(t0, x̄, 0,μ).

As a consequence:

G(μ, 0) = λG ′(x0)φε(t0, x̄, 0,μ) + ψ∗φε(T , x̄, 0,μ).

Now we observe that (I − P̄)[π(x, ε,μ) − x] = 0, for any x ∈ Bε−(x̄, ρ) ∩ L since
π(x, ε,μ) − x ∈ Tx̄L. Let x(ε) ∈ Bε−(x̄, ρ) ∩ L be such that x(0) = x̄. Write x(ε) =
x̄ + εx̃(ε), where x̃(ε) is a C1 function taking values in ∈ Tx̄L. Then differentiating
(I − P̄)[π(x̄ + εx̃(ε), ε,μ) − x̄ − εx̃(ε)] = 0 at ε = 0 we get:

(I − P̄)[P′(x̄)x̃(0) − x̃(0) + πε(x̄, 0,μ)] = 0

since P′(x̄) = πx(x̄, 0,μ). However P′(x̄) : Tx̄L → Tx̄L and hence (I − P̄)P′(x̄) = 0.
Thus (I − P̄)πε(x̄, 0,μ) = 0 for any μ ∈ R. Then, using (4.8) we get:

f+(x̄)Tε(x̄, 0) = −(I − P̄)φε(T , x̄, 0,μ).

Now φ(t, x̄, ε,μ) is the solution of the Cauchy problem:

{
ż = f+(z) + εg+(z, ε,μ)

z(0) = x̄

and hence differentiating with respect to ε and recalling that φ(t, x̄, 0,μ) = x0(t),
we see that φε(t, x̄, 0,μ) satisfies:

{
ż = f ′+(x0(t))z + g+(x0(t), 0,μ)

z(0) = 0.

Hence

φε(t, x̄, 0,μ) =
∫ t

0
X (t)X (s)−1g+(x0(s), 0,μ)ds
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with X (t) = φ0x(t, x̄). Hence

G(μ, 0) = λG ′(x0)
∫ t0

0
X (t0)X (s)−1g+(x0(s), 0,μ)ds

+ψ∗
∫ T

0
X (T )X (s)−1g+(x0(s), 0,μ)ds

=
∫ t0

0
ψ1(s)

∗g+(x0(s), 0,μ)ds +
∫ T

0
ψ(s)∗g+(x0(s), 0,μ)ds

for
ψ1(t) = X (t)−1∗X (t0)

∗[λG ′(x0)]∗, ψ(t) = X (t)−1∗X (T )∗ψ.

Note ψ1(t) and ψ(t) solve the adjoint linear equation

ẋ = −f ′
+(x0(t))x

together with

ψ1(0) = λX (t0)∗G ′(x0)∗ = λφ0x(t0, x̄)∗G ′(x0)∗ = A∗ψ,

ψ(T ) − ψ(0) = ψ1(0).

The first is obvious, as for the second we have indeed:

ψ(T ) − ψ(0) = (I − X (T ))∗ψ = [ψ∗(I − X (T ))]∗.

Differentiating P(x) = φ0(T (x), x) at x = x̄ we get: P′(x̄) = f+(x̄)T ′(x̄) + φ0x(T , x̄)
i.e. X (T ) = P′(x̄) − f+(x̄)T ′(x̄). So, recalling that ψ∗f+(x̄) = 0,

ψ∗(I − X (T )) = ψ∗(I − P′(x̄)) = ψ∗A = λb∗ = λG ′(x0)X (t0)

and then
ψ(T ) − ψ(0) = λX (t0)

∗G ′(x0)∗ = ψ1(0).

Since ψ1(t) solves the adjoint equation, condition ψ1(0) = ψ(T ) − ψ(0) defines
ψ1(t) uniquely in terms of ψ(t).

5 Example

Consider the unperturbed Hamiltonian system

⎧⎨
⎩
ẋ = Hy(x, y) := ∂H

∂y (x, y)

ẏ = −Hx(x, y) := − ∂H
∂x (x, y)

ż = h(z)
(5.1)
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where h(0) = 0, h′(0) �= 0 and h ∈ C2, H ∈ C3. Let the discontinuity manifold be
defined by the equation G(x, y, z) := x − c = 0, c ∈ R and suppose the equation

{
ẋ = Hy(x, y)
ẏ = −Hx(x, y)

has the T -periodic solution (x0(t), y0(t)) such that x0(t) > c for any t ∈ [0,T ] \
{t0} and x0(t0) = c. We take γ(t) := (x0(t), y0(t), 0)∗ as the T -periodic solution of
Eq. (5.1) to which we apply Theorem 4.1. Note that γ(t) has been denoted by x0(t)
in the previous sections. We use this different notation to avoid misunderstanding.
We write x̄ for (x0, y0, 0) := (x0(0), y0(0), 0). With reference to the notation of the
previous sections, we have:

Tx̄L =
⎧⎨
⎩

⎛
⎝ Hy(x, y)

−Hx(x, y)
0

⎞
⎠

⎫⎬
⎭

⊥

=
⎧⎨
⎩

⎛
⎝u

v

w

⎞
⎠ | Hy(x0, y0)u = Hx(x0, y0)v

⎫⎬
⎭ ,

hence

Tx̄L =
⎧⎨
⎩

⎛
⎝uHx(x0, y0)
uHy(x0, y0)

w

⎞
⎠ | u, w ∈ R

⎫⎬
⎭ =

⎧⎨
⎩

⎛
⎝−u ẏ0(0)

u ẋ0(0)
w

⎞
⎠ | u, w ∈ R

⎫⎬
⎭

and

L = x̄ + Tx̄L =
⎧⎨
⎩

⎛
⎝x0 − uẏ0(0)
y0 + uẋ0(0)

w

⎞
⎠ | u, w ∈ R

⎫⎬
⎭ .

For (x, y, z) ∈ L, the Poincaré map is then given by

P(x, y, z) = P(x0 + uHx(x0, y0), y0 + uHy(x0, y0), w).

Next, the flow of Eq. (5.1) can be written as:

φ0(t, x, y, z) = (φ1(t, x, y),φ2(t, x, y),φ3(t, z))
∗. (5.2)

and then φ0(t, x, y, z) ∈ L if and only if φ1(t, x, y) = x0 + uHx(x0, y0) and φ2(t, x, y) =
y0 + uHy(x0, y0) for some u, that is, if and only if

Hy(x0, y0)[φ1(t, x, y) − x0] = Hx(x0, y0)[φ2(t, x, y) − x0].

Hence the time needed to a solution starting from L to reach again L is a function of
(x, y) only. Thus

P(x, y, z) = φ(T (x, y), x, y, z), for any (x, y, z) ∈ L.
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We derive, using also (5.2)

∂P
∂x (x0, y0, 0) = φt(T , x0, y0, 0)Tx(x0, y0) + φx(T , x0, y0, 0)
= γ̇(T )Tx(x0, y0) + φx(T , x0, y0, 0),

∂P
∂y (x0, y0, 0) = φt(T , x0, y0, 0)Ty(x0, y0) + φy(T , x0, y0, 0)
= γ̇(T )Tx(x0, y0) + φx(T , x0, y0, 0),

∂P
∂z (x0, y0, 0) = φz(T , x0, y0, 0) = (0, 0,φ3,z(T , 0))∗ = (0, 0, eh

′(0)t)∗,

since φ3,z(t, 0) is a solution of equation ż = h′(0)z, z(0) = 1.
Then:

P′(x̄) =
(

π0 0
0 eh

′(0)T

)
,

where π0 is the derivative of the Poincaré map of the Hamiltonian system (5.1)
without the z-equation. We take the basis of Tx̄L:

e =
⎛
⎝−ẏ0(0)

ẋ0(0)
0

⎞
⎠ , e3 =

⎛
⎝0
0
1

⎞
⎠ .

Now we look at S0. Since the (x, y)-equations and the z-equation are uncoupled, we
see that (x0(t), y0(t), z(τ )) ∈ S0, for all t and τ in a small neighbourhood of t = 0.
Hence

Tx̄S0 = span

⎧⎨
⎩

⎛
⎝ẋ0(0)
ẏ0(0)
0

⎞
⎠ ,

⎛
⎝0
0
1

⎞
⎠

⎫⎬
⎭ .

We conclude that, being Tx̄(S0 ∩ L) one-dimensional:

Tx̄(S0 ∩ L) = span {e3} .

We have

(I − P′(x̄))e3 =
⎛
⎝ 0

0
1 − eh

′(0)T

⎞
⎠ = (1 − eh

′(0)T )e3.

Thus, since h′(0) �= 0, we see thatR(I − P′(x̄))|Tx̄(S0∩L) = span{e3} from which as-
sumption (4.1) follows.

Next, the adjoint equation reads:

⎧⎨
⎩
ẋ = −Hxy(x0(t), y0(t))x + Hxx(x0(t), y0(t))y
ẏ = −Hyy(x0(t), y0(t))x + Hxy(x0(t), y0(t))y
ż = −h′(0)z
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and it follows from the previous considerations that

Tx̄L ∩ span{e3}⊥ = span{e}.

Thus, since (x0(t), y0(t)) is T−periodic, we see that, up to a multiplicative constant,
ψ(t) solves

⎧⎪⎪⎨
⎪⎪⎩

ẋ = −Hxy(x0(t), y0(t))x + Hxx(x0(t), y0(t))y
ẏ = −Hyy(x0(t), y0(t))x + Hxy(x0(t), y0(t))y
ż = −h′(0)z
x(T ) = −ẏ0(0) = −ẏ0(T ), y(T ) = ẋ0(0) = ẋ0(T ), z(T ) = 0.

Soψ(t) = (−ẏ0(t), ẋ0(t), 0) isT -periodic and thenψ1(0) = ψ(T ) − ψ(0) = 0,ψ1(t)
being a solution of the adjoint equation. We conclude that

�(μ) =
∫ T

0
(−ẏ0(t), ẋ0(t), 0)

∗g+(x0(t), y0(t), 0,μ)dt.

For concreteness, let us consider

⎧⎨
⎩
ẋ = y
ẏ = −x + ε(y(μ − y2) + z)
ż = sin z + ε(x + y + z),

(5.3)

Fig. 1 The plot of solutions
(x(t), y(t)) of (5.3) with
μ = 0.751, ε = 0.01 and
x(0) = 0.01, y(0) = 0.99,
z(0) = −0.01 on [0, 6.5]
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so H (x, y) = x2+y2

2 , h(z) = sin z, G(x, y, z) = x + 1 and g+(x, y, ε,μ) = (0, y(μ −
y2) + z, x + y + z)∗. Then x0(t) = sin t, y0(t) = cos t, t0 = π, T = 2π and

�(μ) =
∫ 2π

0
cos2 t(μ − cos2 t)dt = π

(
μ − 3

4

)
.

Clearly μ = 3
4 is a simple zero of �(μ), so applying Theorem 4.1, there is a smooth

function μ(ε) defined for ε small such that μ(0) = 3
4 and (5.3) possesses a periodic

and grazing solution for μ = μ(ε) which is located near (sin t, cos t, 0) (see Fig. 1).
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Modelling and Analysis of Predation
System with Nonlocal and Nonsingular
Operator

Kolade M. Owolabi and Hemen Dutta

1 Introduction

A general time-dependent partial differential equation (PDE) of reaction-diffusion
type is an equation of the form

ut = δLg(x, t) + Fg(x, t), (1.1)

where L is the stiff part that stands for the linear operator, and F is non-stiff or mildly
stiff part that represents the nonlinear operator [1, 2], which accounts for the local
reaction, and δ is the diffusion coefficient, g(x, t) denotes density or concentration of
species at time t and position x. Reaction-diffusion system is a set of mathematical
equations that illustrate the manner in which the density of species or concentration
of substances is being distributed in space under the influence of reaction and dif-
fusion. Many physical problems encountered in various fields of applied sciences
and engineering, such as the Gray-Scott, Fisher-KPP, Allen-Cahn, and many other
biological systems are modelled in the form (1.1).

Fractional reaction-diffusion system that governs the nonlinear interaction be-
tween the predator and prey species are considered in this work for spatial pattern
formations. Population dynamics has become an important area of research, which
is aimed to analyse how various dynamical behaviours may influence the ecosystem
distribution. The spatial pattern formation is regarded as one of the key areas of study
in mathematical biology [3]. The most widely studied dynamic for spatial pattern
formation process is the reaction-diffusion system that was suggested byAlan Turing
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in 1952 [4]. It was demonstrated that a system of reacting and diffusing chemical
species could give arise from initial near-homogeneity into a spatial structure of
chemical concentration. The scenario called Turing instability or diffusion-driven
instability has now been proved to arise in chemistry. Numerical experiments have
shown and lead to the formation of spots, stripes, mitotic spots and stripes and other
complex patterns, see [3, 5–10] for theoretical and experimental literature on spatial
pattern formation processes.

In recent years, research has shown that models with fractional-order case are
most reliable and accurate when compared to classical order problems [11, 12].
Fractional calculus is considered as the generalization of standard derivatives and
integrals to fractional derivatives and integrals, and it has been the focus of many
studies over the years due to their wide range of applicability such as fluidmechanics,
physics, biology, viscoelasticity, fractals, groundwater analysis and other engineering
applications, see [12–15] for more details. Various numerical methods have been
proposed for solving fractional reaction-diffusion equations, see [11, 16–24].

There are several existing definitions and properties of fractional calculus. In
what follows, we briefly report some definitions based on fractional derivatives and
integrals that are connected to this study.

Let g to be a not necessarily differentiable function, let γ be real such that γ > 0,
then the Caputo derivative of fractional power γ is defined as [15]

C
0 Dγ

t g(t) = 1

�(γ)

∫ t

0
(t − ξ)γ−1g(ξ)dξ. (1.2)

We adapt the Sobolev space given by

H1[a, b] :=
{
g ∈ L2[a, b] : dg

dt
∈ L2[a, b]

}

to define the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives for the
Caputo and Riemann-Liouville cases.

Let g ∈ H1(a, b), for b > a and γ ∈ [0, 1] then the Caputo-Fabrizio fractional
derivative of order γ with exponential law is defined by [25]

CFDγ
t g(t) = M (γ)

(1 − γ)

∫ t

a
g′(ξ) exp

[
−γ

t − ξ

1 − γ

]
dξ, (1.3)

where M (α) denotes a normalized function such that M (0) = 1 and M (1) = 1.
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For g ∈ H1[a, b] and 0 < γ < 1, the left and right Atangana-Baleanu operators
in the sense of Caputo are given by

ABC
aDγ

t g(t) = M (γ)

1 − γ

∫ t

a
g′(ξ)Eγ

(
− γ

1 − γ
(t − ξ)γ

)
dξ, (1.4)

and
ABC

bDγ
t g(t) = −M (γ)

1 − γ

∫ b

t
g′(ξ)Eγ

(
− γ

1 − γ
(ξ − t)γ

)
dξ, (1.5)

respectively. Similarly,with g ∈ H1[a, b] and 0 < γ < 1, the left and rightAtangana-
Baleanu operators in Riemann-Liouville sense are defined as

ABC
aDγ

t g(t) = M (γ)

1 − γ

d

dt

∫ t

a
g(ξ)Eγ

(
− γ

1 − γ
(t − ξ)γ

)
dξ, (1.6)

and
ABC

bDγ
t g(t) = −M (γ)

1 − γ

d

dt

∫ b

t
g(ξ)Eγ

(
− γ

1 − γ
(ξ − t)γ

)
dξ, (1.7)

whereM (γ) > 0 denotes the normalization function as in the case ofCaputo-Fabrizio
derivative.

The left and right fractional integrals for the Atangana-Baleanu derivative are
given by

AB
aI

γg(t) = 1 − γ

M (γ)
g(t) + γ

M (γ) a
Iγg(t)

and
AB

bI
γg(t) = 1 − γ

M (γ)
g(t) + γ

M (γ) b
Iγg(t)ξ.

The Laplace transform of the left Atangana-Baleanu derivatives in both sense of
Caputo and Riemann-Liouville operators is respectively given as

L
{
ABC
a Dγ

t g(t)
} = M (γ)

1 − γ

sγL{g(t)}(s) − sγ−1g(a)

sγ + γ
1+γ

and

L
{
ABR
a Dγ

t g(t)
} = M (γ)

1 − γ

sγL{g(t)}(s)
sγ + γ

1+γ

.

Mittag-Leffler function is an important operator which has been described by
many authors in several books and excellent papers [26–29]. Some authors through
the Laplace transform have reported the associated integral to ABC nonlocal and
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nonsingular fractional derivative in [30, 31]. We define the one parameter Mittag-
Leffler kernel in (1.4) by

Eγ(z) =
∞∑
k=0

zk

�(γk + 1)
, Re(γ) > 0. (1.8)

The two-parameter Mittag-Leffler kernel is given by the series expansion

Eγ,η(z) =
∞∑
k=0

zk

�(γk + η)
, (γ, η ∈ C,Re(γ) > 0). (1.9)

Lemma 1.1 [32] Let s, s1, s2, s3 ∈ C, (Re(s),Re(s1),Re(s2) > 0). Then

∫ y

0
(y − t)s1−1Es,s1(s3(y − t)s)ts2−1dt = �(s2)y

s1+s2−1Es,s1+s2(s3y
s). (1.10)

The choice of using the ABC derivative in this paper is due to a number of the
merits the operator has over some of the existing derivatives that have been applied
over the years. This new derivative has brought new weapons into applied mathe-
matics to model complex real-world scenarios more accurately because the operator
has both Markovian and non-Markovian properties, while the Riemann-Liouville
and Caputo derivatives have just Markovian and non-Markovian, respectively. The
ABC waiting time combined the power law, stretched exponential and Brownian
motion, while Riemann-Liouville and Caputo derivatives have only power law and
exponential decay, respectively. Atangana-Baleanu derivative in the sense of Caputo
has probability distribution which is both Gaussian and non-Gaussian and can switch
over from Gaussian to non-Gaussian without steady state.

The aim of this chapter is to extend the concept of fractional calculus to study
pattern formation process in a range of multicomponent predator-prey dynamics
of fractional reaction-diffusion systems. The remainder part of this work is broken
into sections as follows. General reaction-diffusion system modelled with the novel
Atangana-Baleanu operator of fractional order is presented in Sect. 2, with suggested
numerical method of solution. Predator-prey system of two-, three-species and their
linear stability analysis are given in Sect. 3. Numerical experiments are given in
Sect. 4. Finally, conclusion is made in Sect. 5.

2 Approximation Techniques

In this section, a numerical technique for solving the general partial differential equa-
tion with non-integer order is derived in the sense of Atangana-Baleanu fractional
operator. To achieve this, we replace the classical time derivative in (1.1) with the
ABC derivative to obtain
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ABC
0Dγ

t g(x, t) = δLg(x, t) + Fg(x, t), (2.11)

where ABC
0Dγ

t is defined as the left ABC derivative given in (1.4), L and F remain as
the linear and nonlinear operators, respectively. For simplicity, we relax the diffusion
constant by setting it to unity. Next, we apply Laplace transform to both sides of the
above equation to obtain

L
{
ABC

0Dγ
t g(x, t)

} = L {Lg(x, t) + Fg(x, t)} ,

ABC
0Dγ

t g(s, t) = L {Lg(x, t) + Fg(x, t)} . (2.12)

By substituting g(s, t) = g(t) and L {Lg(x, t) + Fg(x, t)} = G(g, t) we get

ABC
0Dγ

t g(t) = G(g, t). (2.13)

With the use of Atangana-Baleanu fractional integral, we have

g(x, t) = g(x, 0) + 1 − γ

M (γ)
G(g, t) + γ

M (γ)�(γ)

∫ t

0
G(g, ξ)(t − ξ)γ−1dξ. (2.14)

At g(x, tn) = gn, we have

gn+1 = g0 + 1 − γ

M (γ)
G(g, tn+1) + γ

M (γ)�(γ)

∫ tn+1

0
G(g, ξ)(tn+1 − ξ)γ−1dξ (2.15)

and

gn = g0 + 1 − γ

M (γ)
G(g, tn) + γ

M (γ)�(γ)

∫ tn

0
G(g, ξ)(tn − ξ)γ−1dξ. (2.16)

By subtracting (2.16) from (2.15), one obtains

gn+1 = gn + 1 − γ

M (γ)
[Gn+1 − Gn] (2.17)

+ γ

M (γ)�(γ)

[∫ tn+1

0
G(g, ξ)(tn+1 − ξ)γ−1 −

∫ tn

0
G(g, ξ)(tn − ξ)γ−1

]
dξ

Next, we approximate the function G(g, t) in terms of the Lagrangian polynomial as

G(g, t) ≈ P(t) = t − tn−1

tn − tn−1
Gn + t − tn

tn−1 − tn
Gn−1 (2.18)
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By following the procedure in [33], we finally have

gn+1 = gn + 1 − γ

M (γ)
[Gn+1 − Gn]

+ γ

M (γ)�(γ)

⎡
⎢⎢⎢⎣

hγ
(
2(n+1)γ

γ
− (n+1)γ+1

γ+1

)
Gn

−hγ
(

(n+1)γ

γ
− (n+1)γ+1

γ+1

)
Gn−1

−hγ
(
nγ

γ
− nγ+1

γ+1

)
Gn + nγ+1

γ+1Gn−1

⎤
⎥⎥⎥⎦ (2.19)

which after further factorization becomes

gn+1 = gn + 1 − γ

M (γ)
[Gn+1 − Gn]

+ γhγ

M (γ)�(γ)

{(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn

−
(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn−1

}
(2.20)

It should be mentioned that we recover the classical Adams-Bashforth method as
γ → 1. For stability and convergence properties of this scheme, see [33].

To define the scheme in real space, we then apply the inverse Laplace transform
technique as

g(x, tn+1) = L −1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g(x, tn) + 1 − γ

M (γ)
[Gn+1 − Gn]

+ γhγ

M (γ)�(γ)

(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn

− γhγ

M (γ)�(γ)

(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn−1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.21)

At this junction, any standard method can be used to discretize in space variable x in
the form

g(xj, tn+1) = L −1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g(xj, tn) + 1 − γ

M (γ)
[Gn+1

j − Gn
j ]

+ γhγ

M (γ)�(γ)

(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn

j

− γhγ

M (γ)�(γ)

(
2(n + 1)γ − nγ

γ
+ nγ+1 − (n + 1)γ+1

γ + 1

)
Gn−1

j

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.22)

The linear and nonlinear operators on the right-hand side of Eq. (2.11) are discretized
using the finite difference scheme, see [2] for details.
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3 Main Models and Mathematical Analysis

In this section, we introduce two- and three-species models and carry out their lin-
ear stability analysis. The objective here is to seek for conditions under which the
nontrivial steady-state solution is linearly stable in the absence of diffusion but un-
stable in the presence of diffusion. This phenomenon is popularly called the Turing
instability or diffusion-driven instability. Spatial pattern formation will be examined
by the numerical method.

3.1 Two-Species Predator-Prey System

A classical predator-prey model with logistic growth is given by [34]

∂U

∂t
= δ1�U + rU

(
1 − U

K

)
− (λ + aV )UV

∂V

∂t
= δ2�V − mV + e(λ + aV )UV, (3.23)

whereU (x, t), V (x, t) are the population densities of prey and predator, respectively;
(x, t) ∈ � × R

+ with bounded boundary �, r and K are the prey intrinsic growth
rate and carrying capacity, respectively. The food conversion rate is denoted by
e, m denotes death rate of predator, the attack and cooperation in hunting rates
are respectively, given as λ and a, diffusion coefficients for prey and predator are
represented by δ1 and δ2. We assumed all parameters are positive. To ensure that
nothing is going in and out of the domain, we impose homogeneous or zero-flux
boundary conditions

∂U · n = 0, ∂V · n = 0, on ∂� × R
+,

where n is the outward normal to ∂�, and subject to initial function

U (x, 0) = U0(x), V (x, 0) = V0(x), x ∈ �.

To reduce the number of parameters, we adopt non-dimensional idea in [3, 9], by
setting x = x/d , (with d , the diameter of �), τ = r/m,κ = eλ/m, α = am/λ2,

βi = δi/d2, i = 1, 2. So that (3.23) becomes

∂u

∂t
= δ1�u + τu

(
1 − u

κ

)
− (1 + αv)uv

∂v

∂t
= δ2�v − v + (1 + αv)uv, (3.24)
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By replacing the classical time derivative in (3.24) with the Atangana-Baleanu
fractional-order operator, we have nonlinear system

ABC
0Dγ

t u = δ1�u + τu
(
1 − u

κ

)
− (1 + αv)uv

ABC
0Dγ

t v = δ2�v − v + (1 + αv)uv, (3.25)

Following the procedures in [3, 35], we denote the biologically meaningful equi-
librium point which guarantees the coexistence of species u and v by E∗ = (u∗, v∗),
where v∗ is the solution of

g(x) := κρ2x3 + 2ρκx2 + κ(1 − τρ)x + τ (1 − κ) = 0

and

u∗ = 1

1 + ρv∗ .

For linear stability of (3.25), we let ABC0Dγ
t u = 0 and ABC

0Dγ
t v = 0.Also, we assume

0 = λ0 < λ1 < λ2 < · · · < λn < · · · (3.26)

be the eigenvalues of the Jacobian or community matrix arising from

ABC
0Dγ

t

(
P

Q

)
=
(
a11 a12
a21 a22

)(
P

Q

)
+
(

δ1�P

δ2�Q

)
+
(
G1

G2

)
(3.27)

where P = u − u∗ and Q = v − v∗ are the perturbation parameters, and

a11 = − τ

κ(1 + ρv∗)
, a12 = −1 + 2ρv∗

1 + ρv∗ ,

a21 = (1 + ρv∗)v∗, a22 = ρv∗

1 + ρv∗

G1 = −τP2

κ
− (1 + ρv∗)PQ − ρQ(PQ + u∗Q + v∗P), (3.28)

G2 = (1 + ρv∗)PQ + ρQ(PQ + u∗Q + v∗P).

For simplicity, we let
ABC

0Dγ
t U = AU, (3.29)

where

U =
(
P

Q

)
, A =

(
− τ

κ(1+ρv∗) + δ1� − 1+2ρv∗
1+ρv∗

(1 + ρv∗)v∗ ρv∗
1+ρv∗ + δ2�

)
. (3.30)
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For i = 0, 1, 2, . . . , �i is an eigenvalue of A provided �i is an eigenvalue of the
following matrix

B =
(

−
(

τ
κ(1+ρv∗) + λiδ1

)
− 1+2ρv∗

1+ρv∗

(1 + ρv∗)v∗ ρv∗
1+ρv∗ − λiδ2

)
. (3.31)

The characteristic polynomial equation of matrix B becomes

�2
i − φi�i + ϕi = 0, (3.32)

where

φi = φ0 − λi(δ1 + δ2) =⇒ tr(Bi),

ϕi = ϕ0 + δ1δ2λ
2
i + τδ2 − κρv∗δ1

κ(1 + ρv∗)
λi =⇒ det(Bi) (3.33)

and

φ0 = − τ

κ(1 + ρv∗)
+ ρv∗

1 + ρv∗ = κρv∗ − τ

κ(1 + ρv∗)
,

ϕ0 =
(

− τ

κ(1 + ρv∗)

)(
ρv∗

1 + ρv∗

)
−
(

−1 + 2ρv∗

1 + ρv∗

) (
(1 + ρv∗)v∗) (3.34)

= v∗
(
2ρv∗ − τρ

κ(1 + ρv∗)2
+ 1

)

being themain invariants without diffusion [35]. It should be noted that the necessary
and sufficient condition for linear stability of equilibrium point E∗ in the absence of
diffusion is that φ0 < 0 and ϕ0 > 0, see [3, 9] for details. it is obvious that in the
absence of diffusion, the equilibrium point E∗ is stable, provided the condition

κρv∗ < τ <
(1 + 2ρv∗)(κ(1 + ρv∗))

ρ
(3.35)

is satisfied, and unstable if otherwise. Hence, the above inequality can be taken as
necessary condition for stability in the presence of diffusion. The phase portraits
and time series results for system (3.25) in the absence of diffusion for some γ are
reported in Fig. 1.

Theorem 3.1 For any of the conditions

κρv∗ < τ <
(1 + 2ρv∗)(κ(1 + ρv∗))

ρ
,

δ2

δ1
≥ κρv∗

τ
, (3.36)
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Fig. 1 Phase portraits and time series result for system (3.25) in the absence of diffusion for some
instances of fractional order γ. Parameters are; (u0, v0) = (1.7, 0.8), τ = 3,α = 0.3,κ = 4.5 for
t = 100
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and

κρv∗ < τ <
(1 + 2ρv∗)(κ(1 + ρv∗))

ρ
,

δ2

δ1
<

κρv∗

τ
,

(κδ1ρv∗ − τδ2)
2

δ1δ2
< 4κv∗[(1 + 2ρv∗)(1 + ρv∗)2κ − τρ] (3.37)

to be satisfied,it implies the coexistence equilibrium state is linearly stable.

The proof follows directly, when inequality in (3.35) is satisfied, then φ0 < 0 ∀i such
that φi < 0. By virtue of the second condition in (3.33), it is obvious that any of
conditions (3.36) or (3.37) indicate that for every i, ϕi > 0.

It is known that the equilibrium point E∗ is stable and unstable in the absence
and presence diffusion, respectively. This phenomenon is popularly referred to as
diffusion-driven instability or Turing instability. For φ0 < 0 implies that φi < 0, for
all i. Then, diffusion-driven instability may arise if ϕ0 > 0 and ϕi < 0. In addition,
by virtue of necessary condition for the occurrence of Turing instability is that

δ2

δ1
<

κρv∗

τ
δ1 > δ2. (3.38)

For further details on stability analysis of diffusive systems, readers are referred to
the classical books by Murray [3, 9].

Theorem 3.2 If conditions

κρv∗ < τ <
(1 + 2ρv∗)(κ(1 + ρv∗))

ρ

and
δ2

δ1
<

κρv∗

τ
δ1 > δ2

with either

δ1 >
κ(1 + ρv∗)ϕ0 + τλ1δ2

κλ1[ρv∗ − λ1δ2(1 + ρv∗)]
δ2 <

ρv∗

λ1(1 + ρv∗)
(3.39)

or
(κδ1ρv∗ − τδ2)

2

δ1δ2
> 4κv∗[κ(1 + 2ρv∗)(1 + ρv∗)2 − τρ] (3.40)

hold, then diffusion-driven instability is occurred.
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3.2 Three-Species Predator-Prey-Mutualist System

The three component system here consists of the prey, predator and mutualist of
species, interacting in nonlinear fashion to form the following partial differential
equation

∂u

∂t
− δ1�u = f1(u, v, w) = u

(
1 − u − av

1 + cw

)
, x ∈ �, t > 0,

∂v

∂t
− δ2�(v + δ4uv) = f2(u, v, w) = v(2 − v + bu), x ∈ �, t > 0,

∂w

∂t
− δ3�w = f3(u, v, w) = w

(
1 − w

1 + du

)
, x ∈ �, t > 0, (3.41)

∂nu = 0, ∂nv = 0, ∂nw = 0, x ∈ ∂�, t > 0,

where u(x, t), v(x, t) and w(x, t) are respective prey, predator and mutualist popula-
tion densities. In the model, v−prey serves as food to u−predator, the relationship
between w and u is of symbiotic mutualist, c and d are mutualistic parameters, the
maximum predator growth rate and predation coefficients are denoted by b and a,
respectively. The constants δi(i = 1, 2, 3) are self-diffusion coefficients while δ2δ4
is the cross-diffusion pressure which represents the mutual interaction between the
individual species. Here, � is the domain-habitat for the three species, which is
bounded in R

N with smooth boundary ∂�. The homogeneous Neumann boundary
condition imposed here shows that there is zero-flux population across the boundary.
For further biological background, see [3, 35–37].

Similarly, we replace the classical time derivative in system (3.41) with the ABC
operator with fractional order γ ∈ (0, 1] and set δ4 = 0 to obtain

ABC
0Dγ

t u − δ1�u = f1(u, v, w) = u

(
1 − u − av

1 + cw

)
, x ∈ �, t > 0,

ABC
0Dγ

t v − δ2�v = f2(u, v, w) = v(2 − v + bu), x ∈ �, t > 0,
(3.42)

ABC
0Dγ

t w − δ3�w = f3(u, v, w) = w

(
1 − w

1 + du

)
, x ∈ �, t > 0,

For spatial pattern formation analysis, we require to know the condition under
which the nontrivial steady state is stable in the absence of diffusion and unstable
in the presence of diffusion. By setting fi(u, v, w) = 0, i = 1, 2, 3, and after some
algebraic calculations we obtain the equilibrium state solution E∗ = (u∗, v∗, w∗),
where
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u∗ = c(d − 1) − ab − 1 +√[c(1 − d) + ab + 1]2 + 4cd(−2a + c + 1)

2cd
v∗ = bu∗ + 2 (3.43)

w∗ = du∗ + 1.

To start with, we require to show that point E∗ in the absence of diffusion
(δi = 0, i = 1, 2, 3) is locally stable, we have the fractional autonomous system

ABC
0Dγ

t u(t) = u

(
1 − u − av

1 + cw

)
, t > 0,

ABC
0Dγ

t v(t) = v(2 − v + bu), t > 0, (3.44)

ABC
0Dγ

t w(t) = w

(
1 − w

1 + du

)
, t > 0.

Numerical results for some values of γ are given in Fig. 2.

Fig. 2 Time series result of system (3.44) for different γ. Parameters are; a = 3, b = 1, c = 6, d =
0.5 for t = 50
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Theorem 3.3 The point E∗ of system (3.44) which corresponds to the coexistence
of the species is locally asymptotically stable if the following conditions hold:

a ≤ 4, b ≤ 1, ad ≤ 2, 1 = c > 2a. (3.45)

Proof For notational convenience, we let

D(z) =
⎛
⎝

ABC
0Dγ

t u
ABC

0Dγ
t v

ABC
0Dγ

t w

⎞
⎠ =

⎛
⎝u
(
1 − u − av

1+cw

)
v(2 − v + bu)
w
(
1 − w

1+du

)
⎞
⎠ (3.46)

Obviously, with D(z)|E∗ = 0, we have

A|E∗ =
⎛
⎜⎝

−u∗ − au∗
1+cw∗

acu∗v∗
(1+cw∗)2

bv∗ −v∗ 0
dw∗3

(1+du∗)2 0 −w∗
1+du∗

⎞
⎟⎠ (3.47)

with corresponding characteristic equation

ζ(λ) = λ3 + q1λ
2 + q2λ + q3, (3.48)

where

q1 = u∗ + v∗ + w∗

1 + du∗ ,

q2 = u∗v∗ + w∗(u∗ + v∗)
1 + du∗ + abu∗v∗

1 + cw∗ − acdu∗v∗w∗2

(1 + cw∗)2(1 + du∗)2
, (3.49)

q3 = abu∗v∗w∗

(1 + cw∗)(1 + du∗)
− acdu∗v∗2w∗2

(1 + cw∗)2(1 + du∗)2
+ u∗v∗w∗

1 + du∗ .

By following the Routh-Hurwitz criterion, we can deduce that point E∗ is locally
asymptotically stable since conditions in (3.45) hold, we say that q1q2 − q3 > 0 for
all q1 > 0, q2 > 0 and q3 > 0.

In the presence of diffusion, we consider model (3.42) and discuss its locally
stability. We assume 0 = σ1 < σ2 < · · · → ∞ to be eigenvalues of the Laplacian
operator −� on � subject to zero-flux boundary condition, we also let ψ(σi) be
the corresponding space eigenfunctions to σi. By following authors in [38, 39],
we have (i) χij := {ν · θij; ν ∈ R

3}, where {θij} are orthonormal basis functions of
ψ(σi) for j = 1, . . . , dimψ(σi), and (ii) χ := {z ∈ [C1(�)]3 : ∂nu = ∂nv = ∂nw =
0, on ∂�}, and χ = ⊕∞

i=1χi where χ = ⊕dimψ(σi)

i=1 χij.
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Theorem 3.4 The equilibrium solution E∗ of system (3.42) is locally asymptotically
stable if conditions

a ≤ 4, b ≤ 1, ad ≤ 2, 1 = c > 2a

are satisfied.

Proof The linearized form of fractional system (3.42) at γ = 1 and point E∗ can be
written in the form

zt = z(D� + A|E∗),

where

D =
⎛
⎝δ1 0 0
0 δ2 0
0 0 δ3

⎞
⎠ .

Clearly, it is not difficult to see that under the operator D� + A|E∗ , χi is considered
as its invariant, and λ is the eigenvalue of χi provided it is an eigenvalue of matrix
−σiD + A|E∗ . By calculating its characteristic polynomial, we have

ϑ(λ) = λ3 + p1λ
2 + p2λ + p3, (3.50)

where

p1 = u∗ + v∗ + w∗
1 + du∗ + σi(δ1 + δ2 + δ3),

p2 = u∗v∗ + u∗σiδ2 + v∗σiδ1 + σ2i δ1δ2 + (u∗ + v∗ + σi(δ1 + δ2))

(
w∗

1 + du∗ + δ3σi

)

+ abu∗v∗
1 + cw∗ − acdu∗v∗w∗2

(1 + cw∗)2(1 + du∗)2
, (3.51)

p3 =
(

w∗
1 + du∗ + δ3σi

){
u∗v∗ + u∗σiδ2 + v∗σiδ1 + σ2i δ1δ2 + abu∗v∗

1 + cw∗
}

− acdu∗v∗w∗2
(1 + cw∗)2(1 + du∗)2

(v∗ + δ2σi).

Similarly, by applying the conditions a ≤ 4, b ≤ 1, ad ≤ 2, 1 = c > 2a, we can
see that p1, p2, p3 are all positive, and p1p2 − p3 > 0. It directly follows from Routh-
Hurwitz criterion that for every i > 0, the roots λi,1,λi,2 and λi,3 of ϑi(λ) = 0 have
negative real parts. �
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4 Experimental Results

In this section, we present numerical results for both systems (3.25) and (3.42) to
justify the theoretical findings, for different instances of fractional order γ. As sug-
gested in [2, 40], the domain size has to be chosen large enough to give enough room
for the species to propagate in space. Throughout our analysis here, we choose the
zero-flux boundary conditions clamped at the ends of domain size x ∈ [0,D] in one-
dimension with discretization step h = 0.05. In both systems, we initial conditions
that are neighbourhood of equilibrium values subject to a small noise perturbation.
Figures3 and 4 show the behaviour of fractional predator-prey systems (3.25) and
(3.42) for some values of γ.

We extend our experiment to two-dimensional results. Fractional model (3.25) is
numerically solved on a square domain [0,D] × [0,D], forD = 200, with time-step
�t = 0.25 and a space-step �x = 0.05. We employ the standard five-point approx-
imation technique for the 2D Laplacian operator subject to the zero-flux boundary
conditions [40] and initial conditions

Fig. 3 One-dimensional distribution of system (3.25) at γ = (0.50, 0.75) for upper and lower rows,
respectively with D = 40, τ = 3,α = 0.3 and κ = 5
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Fig. 4 One-dimensional distribution of system (3.42) at γ = 0.63 withD = 5, τ = 3,α = 0.3 and
κ = 5

u(x, y, 0) = 1 − exp(−10((x − ν/2)2 + (y − ν/2)2)),

v(x, y, 0) = exp(−10((x − ν/2)2 + (y − ν/2)2)) (4.52)

to obtain results in Figs. 5 and 6 for different instances of γ. When γ < 0.5, we
observed amixed population of stripes and spots patterns denoting spatial interaction
between a zebra and cheetah species, this assertion is evident in Fig. 5.When γ > 0.5,
only the predator class is becoming dominant, they occupied the whole domain-
habitat. At γ = 0.94, it is obvious that the situation has turned to survival of the
fittest, only the matured and strongest among the predator could survive due to
shortage of prey which serves as food. A serious decline in densities is noticeable.

In the 2D simulations, we noticed that the distributions of prey- and predator-
species are of the same type. Thus, we continue simulation analysis of pattern for-
mations with that of the predator (v) species. In Fig. 7, we fixed γ = 0.99 and vary
the simulation time as seen in the figure caption.
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Fig. 5 Numerical results showing the dynamical evolution of fractional predator-prey system
(3.25) obtained for 0 < γ ≤ 0.5 with τ = 3,α = 0.3 and κ = 5. simulation runs for N = 200 and
t = 1000

5 Conclusion

Two notable dynamics of fractional reaction-diffusion models which describe spatial
interaction between the predator and prey species are studied in this work for pattern
formations. The classical derivatives in each of the models are replaced with the new
Atangana-Baleanu fractional-order derivative in the sense of Caputo. The models
are examined for stability and conditions for equilibrium state to be locally asymp-
totically stable are revealed. The condition for the occurrence of Turing instability is
equally given. Some numerical results for different instances of fractional order are
reported in one and two dimensions.
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Fig. 6 Numerical results showing the dynamical evolution of fractional predator-prey system (3.25)
obtained for 0.5 < γ ≤ 1 with τ = 3,α = 0.3 and κ = 5. simulation runs for N = 200 and t =
1000
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Fig. 7 Evolution of v−species in system (3.25) for different instances of time at γ = 0.99. Other
parameters are given in Fig. 6
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New Aspects of Fractional
Epidemiological Model for Computer
Viruses with Mittag–Leffler Law

Devendra Kumar and Jagdev Singh

1 Introduction

In recent years, computer virus is a major problem in hardware and software technol-
ogy. The computer virus is a particular kind of computer program which propagates
itself and spreads from one computer to another. The file system generally damaged
by the viruses andworms employs system vulnerability to look and attack computers.
Consequently, for improving the safety and reliability in the computer setups and
networks, the test on excellent examination of the computer virus spreading dynami-
cal process is an important instrument. There are mainly twomethods to examine the
considered problem similar to the biological viruses as microscopic andmacroscopic
mathematical models. To describe and control the spreading of computer virus, many
engineers and scientists suggested several ways to formulate mathematical models
[1–18]. In recent work, Singh et al. [19] have reported a newmathematical model for
describing spreading of computer virus by making use of a new fractional derivative
with the exponential kernel. Fractional order calculus (FOC) has been employed
to formulate the mathematical models of real-life problems. Nowadays, the FOC
is acting a pivotal role in the areas of physics, computer science, chemistry, earth
science, economics, etc. In recent years, many mathematicians and scientists paid
their attention in this very special branch of mathematical analysis [20–32]. In 2016,
Atangana–Baleanu (AB) fractional derivative was studied by Atangana and Baleanu
[33] connected with the Mittag–Leffler function in its kernel. The AB fractional
derivative has been used in describing various physical problems such as mathe-
matical model of exothermic reactions having fixed heat source in porous media
[34], Biswas–Milovic model in optical communications [35], regularized long-wave
equation in plasma waves [36], Fornberg–Whitham equation in wave breaking [37],
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rumor spreading dynamical model [38], dynamical system for competition between
commercial and rural banks in Indonesia [39], etc.

The principal aim of the present study is to suggest a novel epidemiological
model for describing the spreading for computer viruses with Mittag–Leffler-type
memory. A new numerical algorithm, namely q-HATM [40, 41] is used for solving
the epidemiological model of arbitrary order for computer viruses associated with
Mittag–Leffler-type kernel. The q-HATM is the combination of q-homotopy analysis
method (q-HAM) [42, 43] and Laplace transform method [44–47].

Motivated and very useful consequences of fractional operators in mathematical
modeling of real word problems, we present a fractional modified epidemiological
model (FMEM) for computer viruses. The key aim of this investigation is to apply
a novel fractional operator in describing the spreading of viruses in computers. The
existence and uniqueness of the solution of the FMEM for computer viruses are
investigated by using the concept of the well-known fixed-point theory. The article
is organized as follows: Sect. 2 presents the key results related to AB fractional
derivative. Section 3 is dedicated to the fractional modeling of computer viruses.
In Sect. 4, we report the existence and uniqueness of the solution of the FMEM for
computer viruses. In Sect. 5, the efficiency of q-HATM is used to obtain the analytical
solution of the FMEM for computer viruses. Section 6 reports the numerical results
and discussions. Section 7, which is the last portion of the article, points out the
conclusions.

2 The AB Fractional Derivative and Its Properties

Definition 2.1 Assume that S ∈ H 1(α, β), β > α, κ ∈ (0, 1] and differentiable,
then the AB fractional derivative in terms of Caputo is presented as [33]

ABC
α Dκ

τ (S(τ )) = B(κ)

1 − κ

τ∫

α

S′(η)Eκ

[
− κ

1 − κ
(τ − η)κ

]
dη. (1)

In Eq. (1), B(κ) is satisfying the property B(0) = B(1) = 1.

Definition 2.2 Let S ∈ H 1(α, β), β > α, κ ∈ (0, 1] and non-differentiable, then
the AB fractional derivative in Riemann–Liouville sense is presented as [33]

ABR
α Dκ

τ (S(τ )) = B(κ)

1 − κ

d

dτ

τ∫

α

S(η)Eκ

[
− κ

1 − κ
(τ − η)κ

]
dη. (2)

Definition 2.3 Consider 0 < κ < 1, and S be a function of τ , then the fractional
integral operator associated with AB fractional derivative of order κ is drafted as
[33]
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AB
0 I

κ
τ (S(τ )) = (1 − κ)

B(κ)
S(τ ) + κ

B(κ)�(κ)

τ∫

0

S(ϑ)(τ − ϑ)κ−1dϑ, τ ≥ 0. (3)

3 FMEM of Computer Viruses with Mittag–Leffler
Memory

In this section, we extend the epidemiologicalmodel for computer viruses formulated
by Piqueira and Araujo [5] by using the theory of AB fractional derivative to induce
the strong memory in the model description. Here, we denote the total population by
T. We divide the total population T into the following four categories:

Category I: The number of computers which are not infected is inclined to probable
infection and is indicated by the symbol S(τ ).

Category II: The number of computers which are not infected is associated with the
anti-virus and represented by the symbol A(τ ).

Category III: The number of computers which are infected by virus is denoted by
the symbol I (τ ).

Category IV: The number of removed computers because of infection or not is
represented by the symbol R(τ ).

In the mathematical formulation of the problem, the influx parameter mortality
parameters are taken in the following manner:

	 indicates the influx rate,which is representing the involvement of novel comput-
ers to the interconnected system, and θ stands for the proportion coefficient connected
to the mortality rate, not due to the virus.

In order to decorate the magnificent report with infected ones, the susceptible
category S(τ ) is converted into the infected category with a rate that is pertaining to
the chance of susceptible computers. Consequently, ξ represents the equivalent factor
and this rate is straightforwardly equivalent to the multiplication of S(τ ) and I (τ ).

The conversion of susceptible into antidotal is straightforwardly equivalent to the
product of S(τ ) and A(τ )with the equivalent factor represented viaμSA. On making
use of the anti-virus programs, the computers affected by virus can be got back to
normal ones and being converted in the antidotal one with a rate straightforwardly
equivalent to the product of A(τ ) and I (τ ) with the equivalent factor indicated via
μI A.Here,we indicate the rate of reducing the computer into the useless and computer
is removed from the system by the symbol ε, while we represent the proportion factor
of the computers that can be restored and converted into the susceptible category by
the symbol ρ.

The dynamical process of the spreading of the infection of a recognized virus is
investigated with the aid of the present approach and, so, the conversion of antidotal
into infected is not studied. Consequently, a scheme of vaccination can be described,
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and a cost-effective application of anti-virus programs can be clarified with the help
of the understudy model.

Considering all these suppositions, the mathematical representations can be
presented in the following manner

dS(τ )

dτ
= 	 − μSAS(τ )A(τ ) − ξ S(τ )I (τ ) − θ S(τ ) + ρR(τ ),

dI (τ )

dτ
= ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ) − θ I (τ ),

dR(τ )

dτ
= ε I (τ ) − ρR(τ ) − θR(τ ),

dA(τ )

dτ
= μSAS(τ )A(τ ) + μI A A(τ )I (τ ) − θ A(τ ). (4)

In considered model, the influx rate is investigated to be 	 = 0, as action of
viruses is very fast than the extension of system, so it is assumed that no new computer
is involved in the system all the while the spreading of the assessed virus. On the
similar manner, the fraction coefficient is taken to be θ = 0, supposing that the
machine obsolescence time is very bigger than the time of the virus movement.

Consequently, mathematical model (4) becomes as follows:

dS(τ )

dτ
= −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),

dI (τ )

dτ
= ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),

dR(τ )

dτ
= ε I (τ ) − ρR(τ ),

dA(τ )

dτ
= μSAS(τ )A(τ ) + μI A A(τ )I (τ ). (5)

It is well known that the mathematical models with classical derivatives do not
carry the memory of the system, so we extend the mathematical model (5) with the
aid of AB fractional derivative, then it reduces as follows:

ABC
0 Dκ

τ S(τ ) = −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),
ABC
0 Dκ

τ I (τ ) = ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),
ABC
0 Dκ

τ R(τ ) = ε I (τ ) − ρR(τ ),
ABC
0 Dκ

τ A(τ ) = μSAS(τ )A(τ ) + μI A A(τ )I (τ ).

(6)

The initial conditions associated with fractional model (6) are presented as

S = α1, I = α2, R = α3 and A = α4 at τ = 0. (7)
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In this investigation, we have taken T (τ ) = S(τ ) + I (τ ) + R(τ ) + A(τ ) to be
fixed at a time τ . We suppose that � stands for the Banach space of continuous
real-valued functions over the interval � having the norm

‖(S(τ ), I (τ ), R(τ ), A(τ ))‖ = ‖S(τ )‖ + ‖I (τ )‖ + ‖R(τ )‖ + ‖A(τ )‖. (8)

In Eq. (8), ‖S(τ )‖ = sup{|S(τ ) : τ ∈ �|}, ‖I (τ )‖ = sup{|I ((τ ) : τ ∈ �|},
‖R(τ )‖ = sup{|R(τ ) : τ ∈ �|} and ‖A(τ )‖ = sup{|A(τ ) : τ ∈ �|}. Specially
� = C(�) ×C(�) ×C(�) ×C(�), here C(�) is the Banach space of continuous
� valued functions on the interval � possessing the sup norm.

4 Existence and Uniqueness of a Solution of FMEM
for Computer Viruses with Mittag–Leffler Memory

In the present part, we investigate the existence of the solution with the help of the
concept of the well-known fixed-point approach.

Firstly, we employ the fractional integral operator on the fractional order model
(6), and it gives

S(τ ) − S(0) = AB
0 I

κ
τ {−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )},

I (τ ) − I (0) = AB
0 I

κ
τ {ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )},

R(τ ) − R(0) = AB
0 I

κ
τ {ε I (τ ) − ρR(τ )},

A(τ ) − A(0) = AB
0 I

κ
τ {μSAS(τ )A(τ ) + μI A A(τ )I (τ )}.

(9)

On using the representation given in Eq. (3), it reduces to the following system

S(τ ) − S(0) = (1 − κ)

B(κ)
{−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{−μSAS(ϑ)A(ϑ) − ξ S(ϑ)I (ϑ) + ρR(ϑ)}(τ − ϑ)κ−1dϑ,

I (τ ) − I (0) = (1 − κ)

B(κ)
{ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{ξ S(ϑ)I (ϑ) − μI A A(ϑ)I (ϑ) − ε I (ϑ)}(τ − ϑ)κ−1dϑ,

R(τ ) − R(0) = (1 − κ)

B(κ)
{ε I (τ ) − ρR(τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{ε I (ϑ) − ρR(ϑ)}(τ − ϑ)κ−1dϑ,

A(τ ) − A(0) = (1 − κ)

B(κ)
{μSAS(τ )A(τ ) + μI A A(τ )I (τ )}

+ κ

B(κ)�(κ)

∫ τ

0
{μSAS(ϑ)A(ϑ) + μI A A(τ )I (ϑ)}(τ − ϑ)κ−1dϑ. (10)
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In order to clarify the system, we use the subsequent notations

�1(τ, S) = −μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ ),

�2(τ, I ) = ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ ),

�3(τ, R) = ε I (τ ) − ρR(τ ),

�4(τ, A) = μSAS(τ )A(τ ) + μI A A(τ )I (τ ).

(11)

Theorem 4.1 The kernels �1(τ, S),�2(τ, I ),�3(τ, R) and �4(τ, A) fulfill the
Lipschitz condition and contraction if the subsequent result is satisfied

0 ≤ (μSAβ4 + ξβ2) < 1. (12)

Proof We initiate with �1(τ, S). Let S(τ ) and S∗(τ ) are two functions, then we get

∥∥Ω1(τ, S) − Ω1(τ, S
∗)

∥∥ = ∥∥−μSA
{
S(τ ) − S∗(τ )

}
A(τ ) − ξ

{
S(τ ) − S∗(τ )

}
I (τ )

∥∥.

(13)

On utilizing of the inequality of triangular on Eq. (13), it gives

∥∥�1(τ, S) − �1(τ, S
∗)

∥∥ ≤ ∥∥μSA
{
S(τ ) − S∗(τ )

}
A(τ )

∥∥ + ∥∥β
{
S(τ ) − S∗(τ )

}
I (τ )

∥∥
≤ {μSAβ4 + ξβ2}

∥∥S(τ ) − S∗(τ )
∥∥

≤ λ1

∥∥(
S(τ ) − S∗(τ )

)∥∥. (14)

Letting λ1 = μSAβ4 + ξβ2, where ‖S(τ )‖ ≤ β1, ‖I (τ )‖ ≤ β2, ‖R(τ )‖ ≤ β3 and
‖A(τ )‖ ≤ β4 are bounded functions, then Eq. (14) gives

∥∥�1(τ, S) − �1(t, S
∗)

∥∥ ≤ λ1

∥∥S(τ ) − S∗(τ )
∥∥. (15)

Thus, the �1(τ, S) satisfy the Lipschitz condition and if 0 ≤ μSAβ4 + ξβ2 < 1,
then it is also a contraction.

In the similar way, we can easily prove the following results

‖�2(τ, I ) − �2(τ, I ∗)‖ ≤ λ2‖I (τ ) − I ∗(τ )‖,
‖�3(τ, R) − �3(τ, R∗)‖ ≤ λ3‖R(τ ) − R∗(τ )‖,
‖�4(τ, A) − �4(τ, A∗)‖ ≤ λ4‖A(τ ) − A∗(τ )‖.

(16)

On making use of the abovementioned kernels, Eq. (10) reduces as follows:
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S(τ ) = S(0) + (1−κ)

B(κ)
�1(τ, S) + κ

B(κ)�(κ)

τ∫
0

�1(ϑ, S)(τ − ϑ)κ−1dϑ,

I (τ ) = I (0) + (1−κ)

B(κ)
�2(τ, I ) + κ

B(κ)�(κ)

τ∫
0

�2(ϑ, I )(τ − ϑ)κ−1dϑ,

R(τ ) = R(0) + (1 − κ)

B(κ)
�3(τ, R) + κ

B(κ)�(κ)

τ∫

0

�3(ϑ, R)(τ − ϑ)κ−1dϑ,

A(τ ) = A(0) + (1 − κ)

B(κ)
�4(τ, A) + κ

B(κ)�(κ)

τ∫

0

�4(ϑ, A)(τ − ϑ)κ−1dϑ.

(17)

Now, we present the following recursive formula

Sn(τ ) = (1−κ)

B(κ)
�1(τ, Sn−1) + κ

B(κ)�(κ)

τ∫
0

�1(y, Sn−1)(τ − ϑ)κ−1dy,

In(τ ) = (1−κ)

B(κ)
�2(τ, In−1) + κ

B(κ)�(κ)

τ∫
0

�2(ϑ, I n−1)(τ − ϑ)κ−1dϑ,

Rn(τ ) = (1−κ)

B(κ)
�3(τ, Rn−1) + κ

B(κ)�(κ)

τ∫
0

�3(ϑ, Rn−1)(τ − ϑ)κ−1dϑ,

An(τ ) = (1−κ)

B(κ)
�4(τ, An−1) + κ

B(κ)�(κ)

τ∫
0

�4(ϑ, An−1)(τ − ϑ)κ−1dϑ.

(18)

The associated initial conditions are presented as

S0(τ ) = S(0), I0(τ ) = I (0), R0(τ ) = R(0), A0(τ ) = A(0). (19)

The difference formulas are written in the following manner

℘1,n(τ ) = Sn(τ ) − Sn−1(τ ) = (1 − κ)

B(κ)
(�1(τ, Sn−1) − �1(τ, Sn−2))

+ κ

B(κ)�(κ)

∫ τ

0
(�1(ϑ, Sn−1) − �1(ϑ, Sn−2))(τ − ϑ)κ−1dϑ

℘2,n(τ ) = In(τ ) − In−1(τ ) = (1 − κ)

B(κ)
(�2(τ, In−1) − �2(τ, In−2))

+ κ

B(κ)�(κ)

τ∫

0

(�2(ϑ, In−1) − �2(ϑ, In−2)) (τ − ϑ)κ−1dϑ,

℘3,n(τ ) = Rn(τ ) − Rn−1(τ ) = (1 − κ)

B(κ)
(�3(τ, Rn−1) − �3(τ, Rn−2))

+ κ

B(κ)�(κ)

τ∫

0

(�3(ϑ, Rn−1) − �3(ϑ, Rn−2))(τ − ϑ)κ−1dϑ,
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℘4,n(τ ) = An(τ ) − An−1(τ ) = (1 − κ)

B(κ)
(�4(τ, An−1) − �4(τ, An−2))

+ κ

B(κ)�(κ)

t∫

0

(�4(ϑ, An−1) − �4(ϑ, An−2))(τ − ϑ)κ−1dϑ. (20)

It is worth to observe that

Sn(τ ) =
n∑

i=0
℘1,i (τ ),

In(τ ) =
n∑

i=0
℘2,i (τ ),

Rn(τ ) =
n∑

i=0
℘3,i (τ ),

An(τ ) =
n∑

i=0
℘4,i (τ ).

(21)

We can easily obtain the subsequent result

∥∥℘1,n(τ )
∥∥ = ‖Sn(τ ) − Sn−1(τ )‖

=
∥∥∥∥∥∥

(1−κ)

B(κ)
(�1(τ, Sn−1) − �1(τ, Sn−2))

+ κ
B(κ)�(κ)

τ∫
0

(�1(ϑ, Sn−1) − �1(ϑ, Sn−2))(τ − ϑ)κ−1 dϑ

∥∥∥∥∥∥. (22)

On utilization of the triangular inequality on Eq. (22) enables us to get the result

∥∥Sn(τ ) − Sn−1(τ )
∥∥ ≤ (1 − κ)

B(κ)

∥∥(
�1(τ, Sn−1) − �1(τ, Sn−2)

)∥∥

+ κ

B(κ)�(κ)

∥∥∥∥∥∥
τ∫

0

(
�1(ϑ, Sn−1) − �1(ϑ, Sn−2)

)
(τ − ϑ)κ−1dϑ

∥∥∥∥∥∥.

(23)

We have already proved that �1(τ, S) holds the Lipchitz condition, so we get

‖Sn(τ ) − Sn−1(τ )‖ ≤ (1 − κ)

B(κ)
λ1‖Sn−1(τ ) − Sn−2(τ )‖

+ κ

B(κ)�(κ)
λ1

τ∫

0

‖Sn−1(ϑ) − Sn−2(ϑ)‖(τ − ϑ)κ−1dϑ,

(24)
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Then, we have

∥∥℘1,n(τ )
∥∥ ≤ (1 − κ)

B(κ)
λ1

∥∥℘1,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ1

τ∫

0

∥∥℘1,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ.

(25)

On employing the same way, we get

∥∥℘2,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ2

∥∥℘2,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ2

τ∫
0

∥∥℘2,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ,

∥∥℘3,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ3

∥∥℘3,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ3

τ∫
0

∥∥℘3,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ,

∥∥℘4,n(τ )
∥∥ ≤ (1−κ)

B(κ)
λ4

∥∥℘4,n−1(τ )
∥∥ + κ

B(κ)Γ (κ)
λ4

τ∫
0

∥∥℘4,n−1(ϑ)
∥∥(τ − ϑ)κ−1dϑ.

(26)

On making use of the abovementioned results, we establish the following
theorems.

Theorem 4.2 The exact solution of the FMEM for computer viruses (6) exists if we
can find τ0 such that

(1 − κ)

B(κ)
λ1 + κ

B(κ)�(κ + 1)
λ1τ

κ
0 < 1. (27)

Proof From the results (25) and (26), we have

∥∥℘1,n(τ )
∥∥ ≤ ‖Sn(0)‖

[(
(1−κ)

B(κ)
λ1

)
+

(
κ

B(κ)�(κ+1)λ1τ
κ
)]n

∥∥℘2,n(τ )
∥∥ ≤ ‖In(0)‖

[(
(1−κ)

B(κ)
λ2

)
+

(
κ

B(κ)�(κ+1) λ2τ
κ
)]n

,∥∥℘3,n(τ )
∥∥ ≤ ‖Rn(0)‖

[(
(1−κ)

B(κ)
λ3

)
+

(
κ

B(κ)�(κ+1)λ3τ
κ
)]n

,∥∥℘4,n(τ )
∥∥ ≤ ‖An(0)‖

[(
(1−κ)

B(κ)
λ4

)
+

(
κ

B(κ)�(κ+1)λ4τ
κ
)]n

.

(28)

Thus, the abovementioned solutions exist and are continuous. In order to demon-
strate that Eq. (18) is a solution of FMEM for computer viruses (6), we suppose
that

S(τ ) − S(0) = Sn(τ ) − W1,n(τ ),

I (τ ) − I (0) = In(τ ) − W2,n(τ ),

R(τ ) − R(0) = Rn(τ ) − W3,n(τ ),

A(τ ) − A(0) = An(τ ) − W4,n(τ ). (29)
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Therefore, we have

∥∥W1,n(τ )
∥∥ =

∥∥∥∥∥∥
(1−κ)

B(κ)
(�1(τ, S) − �1(τ, Sn−1))

+ κ
B(κ)�(κ)

τ∫
0

(�1(τ, S) − �1(τ, Sn−1))(τ − τ)κ−1dτ

∥∥∥∥∥∥.

≤ (1 − κ)

B(κ)
‖(�1(τ, S) − �1(τ, Sn−1))‖

+ κ

B(κ)�(κ)

τ∫

0

‖(�1(ϑ, S) − �1(ϑ, Sn−1))‖ (τ − ϑ)κ−1dϑ

≤ (1 − κ)

B(κ)
λ1‖S(τ ) − Sn−1(τ )‖ + κ

B(κ)�(κ + 1)
λ1‖S(τ ) − Sn−1(τ )‖τ κ .

(30)

On making use of the abovementioned process recursively, it gives

∥∥W1,n(τ )
∥∥ ≤

(
(1 − κ)

B(κ)
+ κ

B(κ)�(κ + 1)
τ κ

)n+1

λn+1
1 β1. (31)

Then at τ0, we have

∥∥W4,n(τ )
∥∥ ≤

(
(1 − κ)

B(κ)
+ κ

B(κ)�(κ + 1)
τ κ
0

)n+1

λn+1
1 β1. (32)

Next, on using the limit n tends to infinity, we have

∥∥W1,n(τ )
∥∥ → 0.

In the same way, we get

∥∥W2,n(τ )
∥∥ → 0,

∥∥W3,n(τ )
∥∥ → 0 and

∥∥W4,n(τ )
∥∥ → 0.

Hence, the exact solution of the FMEMfor computer viruses (6) exists if condition
(27) is satisfied.

Now, we show that the FMEM for computer viruses (6) has a unique solution.
In order to prove the uniqueness of the solutions, we assume that there exists

another system of solutions of mathematical model (6) be S∗(τ ), I ∗(τ ), R∗(τ ) and
A∗(τ ) then

S(τ ) − S∗(τ ) = (1 − κ)

B(κ)

(
�1(τ, S) − �1(τ, S

∗)
)
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+ κ

B(κ)�(κ)

τ∫

0

(
�1(ϑ, S) − �1(ϑ, S∗)

)
(τ − ϑ)κ−1dϑ. (33)

On operating the norm on Eq. (33), we get

∥∥S(τ ) − S∗(τ )
∥∥ ≤ (1 − κ)

B(κ)

∥∥�1(τ, S) − �1(τ, S
∗)

∥∥

+ κ

B(κ)�(κ)

τ∫

0

∥∥(
�1(ϑ, S) − �1(ϑ, S∗)

)∥∥(τ − ϑ)κ−1dϑ.

(34)

The use of the Lipschitz condition of �1(τ, S) enables us to get

∥∥S(τ ) − S∗(τ )
∥∥

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
≤ 0. (35)

Theorem 4.3 The FMEM for computer viruses (6) has a unique solution if

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
> 0. (36)

Proof From Eq. (35), we have

∥∥S(τ ) − S∗(τ )
∥∥

(
1 − (1 − κ)

B(κ)
λ1 − κ

B(κ)�(κ + 1)
λ1τ

κ

)
≤ 0. (37)

If condition (36) holds, then Eq. (37) yields

∥∥S(τ ) − S∗(τ )
∥∥ = 0.

Thus, we have

S(τ ) = S∗(τ ). (38)

On utilizing the similar methodology, we arrive at the following results

I (τ ) = I ∗(τ ), R(τ ) = R∗(τ ), A(τ ) = A∗(τ ). (39)

Thus, the proof of the uniqueness theorem is completed.
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5 Application of q-HATM to Solve FMEM for Computer
Viruses

First of all, we use the Laplace transform on FMEM for computer viruses (6), and it
gives

L[S] − α1
p − pκ+κ(1−pκ )

pκ L[−μSAS(τ )A(τ ) − ξ S(τ )I (τ ) + ρR(τ )] = 0,

L[I ] − α2
p − pκ+κ(1−pκ )

pκ L[ξ S(τ )I (τ ) − μI A A(τ )I (τ ) − ε I (τ )] = 0,

L[R] − α3
p − pκ+κ(1−pκ )

pκ L[ε I (τ ) − ρR(τ )] = 0,

L[A] − α4
p − pκ+κ(1−pκ )

pκ L[μSAS(τ )A(τ ) + μI A A(τ )I (τ )] = 0.

(40)

The nonlinear operators are given as

N1[�1(τ ; z)] = L[�1(τ ; z)] − α1

p
− pκ + κ(1 − pκ)

pκ
L[−μSA�1(τ ; z)�4(τ ; z)

−ξ�1(τ ; z)�2(τ ; z) + ρ�3(τ ; z)] = 0,

N2[�2(τ ; z)] = L[�2(τ ; z)] − α2

p
− pκ + κ(1 − pκ)

pκ
L[ξ�1(τ ; z)�2(τ ; z)

−μI A�4(τ ; z)�2(τ ; z) − ε�2(τ ; z) ] = 0,

N3[�3(τ ; z)] = L[�3(τ ; z)] − α3

p
− pκ + κ(1 − pκ)

pκ
L[ε�2(τ ; z)

−ρ�3(τ ; z)] = 0,

N4[�4(τ ; z)] = L[�4(τ ; z)] − α4

p
− pκ + κ(1 − pκ)

pκ
L[μSA�1(τ ; z)�4(τ ; z)

+μI A�4(τ ; z)�2(τ ; z)] = 0, (41)

and thus, we have

�1,�(
S(�−1)) = L
[
S(�−1)

] − α1

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
−μSA

(
�−1∑
r=0

Sr A(�−1−r)

)

−ξ

(
�−1∑
r=0

Sr I(�−1−r)

)
− ρR(�−1)

]
,

�2,�( 
I(�−1)) = L
[
I(�−1)

] − α2

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
ξ

(
�−1∑
r=0

Sr I(�−1−r)

)
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−μI A

(
�−1∑
r=0

Ar I(�−1−r)

)
− ε I(�−1)

]
,

�3,�( 
R(�−1)) = L
[
R(�−1)

] − α3

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L
[
ε I(�−1) − ρR(�−1)

]
,

�4,�( 
A(�−1)) = L
[
A(�−1)

] − α4

p

(
1 − k�

n

)

− pκ + κ(1 − pκ)

pκ
L

[
μSA

(
�−1∑
r=0

Sr A(�−1−r)

)

+μI A

(
�−1∑
r=0

Ar I(�−1−r)

)]
(42)

and k� is defined as

k� =
{
0, � ≤ 1,
n, � > 1.

(43)

Next, the deformation equations of �th-order are presented as

L
[
S�(τ ) − k�S(�−1)(τ )

] = ��1,�(
S(�−1)),

L
[
I�(τ ) − k� I(�−1)(τ )

] = ��2,�(
⇀

I (�−1)),

L
[
R�(τ ) − k�R(�−1)(τ )

] = ��3,�( 
R(�−1)),

L
[
A�(τ ) − k�A(�−1)(τ )

] = ��4,�( 
A(�−1)).

(44)

The utilization the inversion of Laplace transform on Eq. (44) enables us to get

S�(τ ) = k�S(�−1)(τ ) + �L−1
[
�1,�(
S(�−1))

]
,

I�(τ ) = k� I(�−1)(τ ) + �L−1
[�1,�( Ī(�−1))

]
,

R�(τ ) = k�R(�−1)(τ ) + �L−1
[
�1,�( 
R(�−1))

]
,

A�(τ ) = k�A(�−1)(τ ) + �L−1
[
�1,�( 
A(�−1))

]
.

(45)

We take the initial guess S0(τ ) = α1, I0(τ ) = α2, R0(τ ) = α3, A0(τ ) = α4 and
solving Eq. (45) for � = 0, 1, 2, . . . , we determine the values of S�(τ ), I�(τ ), R�(τ )

and A�(τ ), ∀� ≥ 1.
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Finally, the solution of FMEM for computer viruses (6) is given as

S(τ ) = S0(τ ) + S1(τ )
(
1
n

) + S2(τ )
(
1
n

)2 + · · · ,

I (τ ) = I0(τ ) + I1(τ )
(
1
n

) + I2(τ )
(
1
n

)2 + · · · ,

R(τ ) = R0(τ ) + R1(τ )
(
1
n

) + R2(τ )
(
1
n

)2 + · · · ,

A(τ ) = A0(τ ) + A1(τ )
(
1
n

) + A2(τ )
(
1
n

)2 + · · · .

(46)

6 Numerical Simulations

In this part,wepresent the numerical computation for FMEMfor computer viruses (6)
as function of time atμSA = 0.025, μI A = 0.25, ξ = 0.1, ε = 9, ρ = 0.8, � = −1
and n = 3 for defined values of order of AB fractional operator. The initial conditions
are taken as S(0) = 3, I (0) = 95, R(0) = 1 and A(0) = 1. The numerical outcomes
for different kind of computer populations are present through Figs. 1, 2, 3 and 4.
Figure 1 presents the impact of order of AB fractional operator on the group of non-
infected computerswith the possibility of infection. Figure 2 demonstrates the impact

Fig. 1 Nature of S(τ ) with respect to τ for distinct orders of AB fractional derivative
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Fig. 2 Nature of I (τ ) with respect to τ for distinct orders of AB fractional derivative

of order of AB fractional operator on the group of infected computers. Figure 3
presents the influence of order of AB fractional operator on the class of removed
ones due to the infection or not. Figure 4 presents the effect of order of AB fractional
derivative on non-infected computers associated with anti-virus. It can be noticed
from Figs. 1, 2, 3 and 4 that there is a significant impact of order of AB fractional
operator on different kind of populations of computers due toMittag–Lefflermemory.

7 Concluding Remarks, Observations and Suggestions

In this work, the FMEM for computer viruses is studied involving Mittag–Leffler
memory effects. The existence and uniqueness of the solution of FMEMfor computer
viruses are examined. The solution of the FMEM for computer viruses is obtained
with the aid of q-HATM. To demonstrate the effects of Mittag–Leffler memory on
different groups of computer, some numerical simulations are conducted. The numer-
ical outcomes give very clear indications that the use of AB fractional derivative in
mathematical modeling of computer viruses is very fruitful, and the q-HATM is a
very accurate and easy approach for solving such type of fractional models.
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Fig. 3 Nature of R(τ ) with respect to τ for distinct orders of AB fractional derivative
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Fig. 4 Nature of A(τ ) with respect to τ for distinct orders of AB fractional derivative
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Numerical Simulation of Nonlinear
Ecological Models with Nonlocal
and Nonsingular Fractional Derivative

Kolade M. Owolabi

1 Introduction

Over the years, the subject of ecology has been studied and becomes day-in and
day-out activities. The meaning of ecology has gone beyond monitoring a flock
of animals. In population dynamics, it has been used to address the interpersonal
relationship between two or more species, where a functional response of the higher
species (predator) to that of the lower species (prey) is known to be the change in
the density of prey attached per unit time per predator as the prey density changes.
Different types of functional response used tomodel various predation scenarios have
been reported in [20, 21] to compliment the realistic standard Lotka–Voltera system.
Zhang et al. [35] study the effect of periodic forcing and impulsive perturbations on
predator–prey system with Holling type-IV functional response.

In contrast to the classical single or multicomponent species dynamics that were
extensively reported in literature between the 1970s and 1980s and till date, respec-
tively [19], predator–prey systems are known to give rise to period and spatiotemporal
oscillations. Though most systems with steady-state equilibria often result to oscil-
latory transients with a stable frequency. Many (fluctuating) population scenarios
appear to be modelled by such interactions. Nonetheless, fractional predator–prey
models have been poorly reported with respect to the interaction of nonlinear dy-
namics. The total population of the mathematical model can be denoted by P, which
is subdivided into two or three groups, that is, a group referred to as the prey on
which the higher class depends for existence. The second group contains the species
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known as the predator, and this group of population depends on the lower or weak
class to make living.

The dynamical system of predation consisting of the prey species u(t), the lower
or intermediate predator species v(t) and the top predator species denoted by w(t)
are modelled by the following general food chain system

du

dt
= f1(u, v, w),

dv

dt
= f2(u, v, w),

dw

dt
= f3(u, v, w), (1)

where the reaction functions fi, i = 1, 2, 3 which account for the local kinetics are
continuous and Lipschitzian on R3+; hence, the solution exists and is unique.

In the present case, we consider a fractional extension of the classical model (1)
as

dαu

dtα
= f1(u, v, w),

dαv

dtα
= f2(u, v, w),

dαw

dtα
= f3(u, v, w), (2)

where the functions fi and parameters remain as earlier defined, and dαu
dtα is given

by the Atangana–Baleanu fractional derivative of order α ∈ (0, 1] in the sense of
Caputo [5, 18, 26, 27]

ABCDα
a,t[u(t)] = M (α)

1 − α

∫ t

a
u′(ξ)Eα

[
−α

(t − ξ)α

1 − α

]
dξ (3)

where M (α) is a normalized function as given by Caputo and Fabrizio [12, 13],
and Eα is a one-parameter Mittag–Leffler function defined in terms of power series
expansion

u(z) = Eα(z) =
∞∑
s=0

zs

�(αs + 1)
, α > 0, α ∈ R, z ∈ C. (4)

The Laplace transform of (3) is defined as [5, 24, 25]

L
{
ABC
a D(α)

t u(t)
}

(p) =M (α)

1 − α
L

{∫ t

a
u′(ξ)Eα

[
−α

(t − ξ)α

1 − α

]
dξ

}

=M (α)

1 − α

pαL {u(t)}(p) − sα−1u(0)

pα + α
1−α

.

(5)

In a more compact form, modelling of system (2) with Atangana–Baleanu deriva-
tive becomes
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ABC
0 Dα

t [·(t)] = 1 − α

AB(α)
fi(u, v, w, t) + α

AB(α)�(α)

∫ t

0
fi(u, v, w, ξ)(t − ξ)α−1dξ

(6)

with similar expression for other components. The above derivative has both nonlocal
and nonsingular kernel properties [5]. Recently, this new derivative as defined in (3)
has been applied to model real-life phenomena, see for instance [5–10], and other
applications can be found in [23, 24, 31, 32].

Due to some limitations of the Caputo, Riemann–Liouville and the Caputo–
Fabrizio fractional operators, the Atangana–Baleanu derivative was able to bring
new weapons into the field of applied mathematics to formulate accurately some
of real-life problems in science and engineering. Some of the properties of this
derivative over the existing ones include the ability to combine both Markovian
and non-Markovian properties, while the Caputo operator is non-Markovian and
Riemann–Liouville is Markovian. The ABC derivative waiting time is power law,
Brownian motion and stretched exponential law, whereas the Riemann–Liouville
formulation has only power law, and Caputo–Fabrizio is exponential decay.

Nonetheless, since Atangana–Baleanu fractional operator is still new, the level
of work done based on its applicability is still poorly understood, most especially,
the numerical approximation of the derivative. Some of the existing numerical meth-
ods which have been extended to handle noninteger order problems include the
Laplace method, homotopy analysis method and predictor–corrector scheme, spec-
tral algorithm [33], numerical spectral Legendre–Galerkin algorithm [14–17] and
Tchebyshev–Galerkin operational matrix method [1, 11], to mention a few. Other
applications of the Atangana–Baleanu operator can be found in [2–4]. In this chapter,
we extend the use of Adams–Bashforth scheme to time-fractional reaction–diffusion
systems of predation.

The aim of this chapter is to model two and three components predator–prey dy-
namics with Holling type-IV functional responses using the Atangana–Baleanu frac-
tional derivative, and to compare the results to obtain for fractional order α ∈ (0, 1)
with that of the classical case when α = 1. Section2 deals with the mathematical
analysis of the main equations. Formulation of the numerical scheme for approx-
imation of the Atangana–Baleanu fractional derivative is discussed in Sect. 3. We
experiment for different values of fractional order in Sect. 4, and finally conclude
with Sect. 5.

2 Mathematical Analysis of the Main Dynamics

In this section, stability analysis for two different predation systems with Holling
type-IV functional response will be considered.
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2.1 Fractional Predator–Prey Dynamics with Holling
Response Function of Type-IV

We begin our analysis by considering a simplified form of predator–prey dynamics
with Holling type-IV case

ABC
0 Dα

t u = f1(u, v, w) = u(φ − ϕu) − ψ1uv

β1 + u2
,

ABC
0 Dα

t v = f2(u, v, w) = ψ2uv

β1 + u2
− δ1v − ψ3vw

β2 + v
, (7)

ABC
0 Dα

t w = f3(u, v, w) = ψ4vw

β2 + v
− δ2w,

where ABC
0 Dα

t (·) is the Atangana–Baleanu fractional derivative of order α ∈ (0, 1], φ
denotes the growth rate of species u, the intraspecific competition among species u is
represented byϕ, the half-saturation constant is given by βi(i = 1, 2), and the lower-
and top-predators death rates are given by δ1 and δ2, respectively. The pair positive
parameters (ψ1,ψ2) and (ψ3,ψ4) stand for themaximum per capital reduction values
for which species u and v can attain, respectively. It is reasonable to assume that the
initial populations u(0) ≥ 0, v(0) ≥ 0 and w(0) ≥ 0, and continuous local kinetic
functions fi, i = 1, 2, 3.

To examine the equilibrium points of fractional system (7), we let

ABC
0 Dα

t (·) = 0, =⇒ fi(u, v, w) = 0, i = 1, 2, 3,

from which we can determine the equilibrium points u∗, v∗ and w∗. A close look at
model (7) shows there are four positive equilibrium. We will consider the stability
analysis technique as discussed in [28] and consider only the nontrivial case which is
expected to guarantee the existence of the three species. The point S∗ = (u∗, v∗, w∗)
which represents the biologicallymeaningful equilibriumpoint exists, provided there
is a positive solution that satisfies the system

f1(u, v, w) = u(φ − ϕu) − ψ1uv

β1 + u2
= 0,

f2(u, v, w) = ψ2uv

β1 + u2
− δ1v − ψ3vw

β2 + v
= 0, (8)

f3(u, v, w) = ψ4vw

β2 + v
− δ2w = 0,

Solving (8) directly results to v∗ = δ2β2/(ψ4 − δ2), and u∗ is determined from the
root of equation

u3 − φu2

ϕ
+ β1u +

(
ψ1v

∗ − φβ2

ϕ

)
= 0, (9)
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bear in mind that 0 < u∗ ≤ /ϕ and f (0) =
(

ψ1v
∗−φβ2

ϕ

)
< 0, if condition v∗ <

φβ1

ψ1

holds. Again, f (φ/ϕ) = ψ1v
∗/ϕ > 0. This implies that f (0)f (φ/ϕ) < 0, meaning

that there exists a nonnegative root of (9). From the second dynamics in (8), we
obtain

w∗ =
(

ψ2u∗

β1 + u∗2 − δ1

)
β2 + v∗

ψ3
.

So, we say that the point S∗ exists subject to conditions

ψ4 > δ2, v∗ <
φβ1

ψ1
,

ψ2u∗

β1 + u∗2 − δ1.

Next, we examine the dynamical property of system (7) by computing the com-
munity matrix of the species as

A =

⎛
⎜⎜⎜⎜⎜⎝

φ − 2ϕu∗ − ψ1v
∗(β1−u∗2)2

(β1+u∗2)2 − ψ1u∗
β1+u∗2 0

ψ2v
∗(β1−u∗2)2

(β1+u∗2)2
ψ2u∗

β1+u∗2 − β2ψ3w
∗

β2+u∗ − δ1 − ψ3v
∗

β2+u∗

0 β2ψ4w
∗

(β2+u∗)2 0

⎞
⎟⎟⎟⎟⎟⎠

(u∗,v∗,w∗)

(10)

which has the characteristic equation

λ3 + [−(a11 + a22)]︸ ︷︷ ︸
X

λ2 + a11a22 − a12a21 − a23a32︸ ︷︷ ︸
Y

λ + a11a23a32︸ ︷︷ ︸
Z

= 0.

By following the Routh–Hurwitz condition, the equilibrium point S∗ is locally
asymptotically stable if and only if the conditions X > 0, Y > 0 and XY − Z > 0
are satisfied. Clearly, the conditions X > 0 and Z > 0 hold if

2ϕu + ψ1v
∗(β1 − u∗2) − ψ2u∗(β1 + u∗2)

(β1 + u∗2)2
+
(

β2ψ2w
∗

(β2 + v∗)

)
> φ

and

u∗2 < β1, ψ2 <
ψ1v

∗(β1 − u∗2)
u∗(β1 + u∗2)

.

Therefore, we can conclude that the necessary condition for XY − Z > 0 is when
(a12a21 − a11a22) < 0holds, sinceXY − Z = (a12a21 − a11a22)(a11 + a22) + a22a23
a32, given that

[
ψ∗
2

β1 + u∗2 −
(

β2ψ3w
∗

(β2 + v∗)2
+ φ

)]
(φ − 2ϕu∗) +

(
β2ψ3w

∗

(β2 + v∗)2
+ δ1

)
ϕ1v

∗(β1 − u∗2)
(β1 + u∗2)2

> 0.
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So, subject to the above conditions, the nontrivial point S∗ is locally asymptotically
stable. The essence of stability analysis reported here is to guide in the correct choice
of parameter values when numerically simulating the full dynamical system.

2.2 Fractional Reaction–Diffusion Dynamics with Holling
Type-IV Functional Response

In this section, we consider the dynamical system with Holling type-IV functional
response

Dα
t u = fu(u, v) = ρu

(
1 − u

κ

)
− μuv

1 + βu + γu2
,

Dα
t v = fv(u, v) = σμuv

1 + βu + γu2
− δv, (11)

where the u and v are the prey and predator populations, respectively, the term
μu

1+βu+γu2 is also referred to as the Monod–Haldane-type functional response [30,
34], ρ is the growth rate of prey, the capture rate μ, κ denotes the carrying capacity,
the prey–predator conversion rate isσ, andwedenote the half-saturation parameter by
γ. The parameter b is assumed to be greater than−2

√
γ to ensure that the population

of u-species is nonnegative. All parameters here are assumed to be positive.
An extension is given here by considering the time-fractional reaction–diffusion

problem with Holling type-IV functional response formulated in the form

ABC
0 Dα

t u = Du�u + fu(u, v), (x, t) ∈ L = [0,T ] × �,
ABC
0 Dα

t v = Dv�v + fv(u, v) (12)

subject to the Neumann (zero-flux) boundary conditions ∂u
∂ν

= ∂v
∂ν

= 0, (x, t)Σ =
(0,T ) × ∂� and initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

where� is the domain assumed to be bounded inR2 with a smooth boundary ∂�,�
denotes the Laplacian operator on �, and the outward normal to ∂� is represented
by ν. The parameters Du,Dv are the diffusion coefficients, u(x, t) and v(x, t) are the
population densities of the prey and predator species at time t ∈ [0,T ] and position
x ∈ �, fu, fv , and the associated parameters remain as defined in (11).

The nonspatial system (11) has at least two steady states that correspond to
spatially homogeneous system (12). The interest of the this chapter is to report the
nontrivial coexistence point E = (u∗, v∗) where

u∗ = μσ − δβ

2δγ
, v∗ = ρσ(βδ − μσ + δγκ)u∗ + σρδ

γκδ2
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subject to conditions

(ρ,κ, μ, β, γ, δ,σ)|μσ > δβ,

(μσ − δβ)2 > γδ2,

κ + β

γ
− μσ

δγ
< 0,

√
(μσ − δβ)2 − 4δ2γ >

−(δ2β2 + μ2σ2 + δ2γβκ) + 2(δ2γ + δβμσ) + δγμσκ

(δβ − μσ + δγκ)
> 0.

So for linear stability analysis, dynamic system (11) is linearized at equilibrium point
(u∗, v∗). Following stability technique applied in [22], we assume a solution

u(x, t) ≡ u∗eλt+iωx, v(x, t) ≡ v∗eλt+iωx (13)

where ω is the wave number, λ denotes the eigenvalue arising from the Jacobian or
community matrix A of system (11). For Hopf bifurcation to occur, Re(λ) = 0 and
Im(λ) �= 0. The system undergoes Hopf bifurcation when

FH = {(ρ,κ,μ,β, γ, δ,σ)| det(A0) > 0, tr(A0) = 0} , (14)

where

det(A0) = μδv∗ + σμ(ρ − 2(ρu∗/κ))u∗

1 + βu∗ + γu∗2 −
(

ρ − 2ρu∗

κ

)
δ − (β + 2γu∗)μδv∗

(1 + βu∗ + γu∗2)2

tr(A0) = μ(σu∗ − v∗ + γu∗2v∗ + βσu∗2 + σu∗3γ)

(1 + βu∗ + γu∗2)2
+ 2ρu∗

κ
− ρ − δ.

The bifurcation parameter is taken as κ here. The Turing bifurcation is defined as

FT = {(ρ,κ,μ,β, γ, δ,σ)| det(Aω) = 0, tr(Aω) = 0} , (15)

where

det(Aω) = −(δ + Dvω
2)

[
ρ − 2ρu∗

κ
− Duω

2

]

×
[(

ρ − 2ρu∗
κ

− Duκ
2
)

σμu∗ + (δ + Dvω
2)μv∗

]

(1 + βu∗ + γn∗2)

−μ(β + 2γu∗)(δ + Dvω
2)u∗v∗

(1 + βu∗ + γu∗2)2
,
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tr(Aω) = μ(σu∗ − v∗ + γu∗2v∗ + βσu∗2 + σu∗3γ)

(1 + βu∗ + γu∗2)2 + 2ρu∗
κ

+ ρ − δ − (Du + Dv)ω2.

In Sect. 4, we give the numerical simulation experiments for both the nonspatially
and spatially time-fractional dynamics (11) and (12).

3 Numerical Method for Atangana–Baleanu
Fractional Derivative

In this section, we write the fractional differential system (6) in the form

ABC
0 Dα

t z(t) = f (z(t), t), z(0) = z0, (16)

where z = z(u, v, w), and 0 < α ≤ 1. By applying the fundamental theorem of cal-
culus, we transform the above differential equation into fractional integral type

z(t) − z(0) = (1 − α)

ABC(α)
f (z(t), t) + α

�(α)ABC(α)

∫ t

0
f (z(ξ), ξ)(t − ξ)α−1dξ.

(17)
At point t = tn+1, for n = 1, 2, . . ., we obtain

z(tn+1) − z(0) = (1 − α)

ABC(α)
f (z(tn), tn) + α

�(α)ABC(α)

∫ tn+1

0
f (z(ξ), ξ)(tn+1 − ξ)α−1dξ.

(18)
Similarly at point t = tn for n = 1, 2, . . ., we get

z(tn) − z(0) = (1 − α)

ABC(α)
f (z(tn−1), tn−1) + α

�(α)ABC(α)

∫ tn

0
f (z(ξ), ξ)(tn − ξ)α−1dξ.

(19)
On subtraction yields

z(tn+1) − z(tn) = (1 − α)

ABC(α)
{f (z(tn)) − f (z(tn−1), tn−1)}

+ α

�(α)ABC(α)

∫ tn+1

0
f (z(ξ), ξ)(tn+1 − ξ)α−1dξ (20)

− α

�(α)ABC(α)

∫ tn

0
f (z(ξ), ξ)(tn − ξ)α−1dξ.
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After some algebraic manipulations, we obtain

z(tn+1) − z(tn)

= 1 − α

ABC(α)
{f (zn, tn) − f (zn−1, tn−1)} + αf (zn, tn)

ABC(α)�(α)h

{
2htαn+1

α
− tα+1

n+1

α + 1

}

− αf (zn−1, tn−1)

ABC(α)�(α)h

{
htαn+1

α
− tα+1

n+1

α + 1

}
− αf (zn, tn)

ABC(α)�(α)h

{
htαn
α

− tα+1
n

α + 1

}

+ f (zn−1, tn−1)

ABC(α)�(α)
tα+1
n . (21)

Thus,

zn+1 = zn + f (zn, tn)

{
1 − α

ABC(α)
+ α

ABC(α)h

[
2htαn+1

α
− tα+1

n+1

α + 1

]

− α

ABC(α)�(α)h

[
htαn
α

− tα+1
n

α + 1

]}
+ f (zn−1, tn−1) (22)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

[
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

h�(α)ABC(α)

]}
.

This equation is referred to as the two-step Adams–Bashforth scheme for Atangana–
Baleanu fractional derivative in Caputo sense. Details of convergence and stability
results can be found in [9].

So when applied to fractional dynamic system (2) bear in mind that z = z(u, v,

w, t), we have

un+1 − un

= f1(un, vn, wn, tn)

{
(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)

− α

h�(α)ABC(α)

(
htαn
α

− tα+1
n

α + 1

)}
+ f1(un−1, vn−1, wn−1, tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,



312 K. M. Owolabi

vn+1 − vn

= f2(un, vn, wn, tn)

{
(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)

− α

h�(α)ABC(α)

(
htαn
α

− tα+1
n

α + 1

)}
+ f2(un−1, vn−1, wn−1, tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,

wn+1 − wn

= f3(un, vn, wn, tn)

{
(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)

− α

h�(α)ABC(α)

(
htαn
α

− tα+1
n

α + 1

)}
+ f3(un−1, vn−1, wn−1, tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,

By substituting the values of fi(u, v, w), i = 1, 2, 3 as earlier given, we obtain

un+1 − un = un(tn)(φ − ϕun(tn)) − ψ1un(tn)vn(tn)

β1 + u2n(tn)

×
{

(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)

− α

h�(α)ABC(α)

(
htαn
α

− tα+1
n

α + 1

)}

+un−1(tn−1)(φ − ϕun−1(tn−1)) − ψ1un−1(tn−1)vn−1(tn−1)

β1 + u2n−1(tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,
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vn+1 − vn = ψ2un(tn)vn(tn)

β1 + u2n(tn)
− δ1vn(tn) − ψ3vn(tn)wn(tn)

β2 + vn(tn)

×
{

(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)

− α

h�(α)ABC(α)

(
htαn
α

− tα+1
n

α + 1

)}

+ψ2un−1(tn−1)vn−1(tn−1)

β1 + u2n−1(tn−1)
− δ1vn−1(tn−1) − ψ3vn−1(tn−1)wn−1(tn−1)

β2 + vn−1(tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,

wn+1 − wn = ψ4vn(tn)wn(tn)

β2 + vn(tn)
− δ2wn(tn)

×
{

(1 − α)

ABC(α)
+ α

ABC(α)h
+
(
2htαn=1

α
− tα+1

n+1

α + 1

)
− α

h�(α)ABC(α)

×
(
htαn
α

− tα+1
n

α + 1

)}
+ ψ4vn−1(tn−1)wn−1(tn−1)

β2 + vn−1(tn−1)
− δ2wn−1(tn−1)

×
{

α − 1

ABC(α)
− α

h�(α)ABC(α)

(
htαn+1

α
− tα+1

n+1

α + 1
+ tα+1

n+1

h�(α)ABC(α)

)}
,

which is the numerical approximation of fractional dynamic system (2) using the
Atangana–Baleanu fractional derivative in the sense of Caputo.

4 Numerical Experiment and Results

Our numerical experiments in this section are performed with a MATLAB package.
We apply the fractional two-step Adams–Bashforth method formulated in Sect. 3
for the approximation of the Atangana–Baleanu fractional derivative. Two impor-
tant predation models with Holling type-IV earlier studied theoretically are now
considered for our numerical experiments.

Webegin our simulation experiment of fractional system (7)with parameters: δ1 =
0.037, δ2 = 0.053,ϕ = (0.30, 1.20),φ = (0.25, 0.5),ψ1 = 0.15,ψ2 = 0.27,ψ3 =
0.29,ψ4 = 0.095,β1 = 1,β2 = 2. Simulation time is fixed at t = 1000 to obtain
2D (columns 2, 3) and 3D (column 1) dynamics in Figs. 1, 2, 3, 4 and 5 which
correspond to α = (0.25, 0.35, 0.67, 0.73, 1.0), respectively. We observed a drastic
behaviour for classical case when α = 1.
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Fig. 1 Numerical results for system (7) with α = 0.25

Fig. 2 Numerical results for system (7) with α = 0.35
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Fig. 3 Numerical results for system (7) with α = 0.67

Fig. 4 Numerical results for system (7) with α = 0.73
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Fig. 5 Numerical results for system (7) with α = 1.00

It should bementioned that apart from the dynamical behaviours reported here, we
observed several other scenarios that are not presented in this section. For instance,
whenφwhich symbolizes the intrinsic growth rate of prey species u is decreasing, the
dynamic undergoes periodic attractor. The chaotic attractor becomes stable, and the
value of intraspecific competition ϕ is increasing. Increasing the parameters δ1 and
δ2 which denote the death rates of the lower- and top-predators result to the dynamic
to change from chaotic case to periodic, and from chaotic to stable distributions,
respectively.

Fig. 6 Numerical results for fractional predator–prey system (11) with α = 0.25
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Fig. 7 Numerical results for fractional predator–prey system (11) with α = 0.50

Fig. 8 Numerical results for fractional predator–prey system (11) with α = 0.98

Fig. 9 Spatiotemporal dynamics of fractional reaction–diffusion system (12) with α = 0.38

We simulate systems (11) and (12) by employing the zero-flux Neumann bound-
ary conditions to examine some chaotic behaviour of the systems for different values
ofα ∈ (0, 1]. The parameters used areκ ∈ [2.8, 4.0], ρ = 1,μ = 0.625,β = 1, γ =



318 K. M. Owolabi

Fig. 10 Spatiotemporal dynamics of fractional reaction–diffusion system (12) with α = 0.52

Fig. 11 Spatiotemporal dynamics of fractional reaction–diffusion system (12) with α = 0.71

0.125, δ = 0.78,Du = 0.05,Dv = 0.25 and σ = 0.69, which satisfy (ρ,κ,μ,β, γ,

δ,σ) in E = (u∗, v∗). The initial condition is taken as a small amplitude random per-
turbation which is allowed to evolve naturally in the computation to induce a nontriv-
ial result. We employ a finite difference approximation to discretize the Laplacian
operator (� = ∂2(·)/∂x2); see [9, 29] for details. The spatiotemporal behaviours
reported in this work show the coexistence of the species. Figures 6, 7 and 8 cor-
respond to time-evolution of non-diffusive system (11), while Figs. 9, 10 and 11
indicate chaotic behaviour of dynamic system (12) in the presence of diffusion. The
behaviour of the dynamics obtained in the absence and presence of diffusion in this
work has a lot of biological interpretation, and readers are referred to [20, 21] for
further explanations.

5 Conclusion

In this work, different examples of predation systems whose dynamics are governed
by theHolling type-IV functional responses are theoretically studied and numerically
investigated. The classical time derivative in such systems is modelled in time with
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the novel Atangana–Baleanu fractional order derivative in the sense of Caputo. To
help in the correct choice of parameters, the local stability analysis for each of the
models is examined. A fractional two-step Adams–Bashforth scheme is developed to
approximate the fractional derivative of order α ∈ (0, 1]. The biological importance
of the comparative simulation results on the population densities of the prey and
predators is presented. Numerical results for some instances of fractional order for
both diffusive and nondiffusive revealing the behaviour of the species are presented.
Extension of the mathematical techniques presented in this work to more complex
models in engineering is left for future research.
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