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Preface

Hygiene has two important components: preventive medicine and environmental 
medicine. From the viewpoint of preventive medicine, it is important to prevent and 
diagnose any undiagnosed disease or abnormality in its initial stage, based on scien-
tific evidence such as the bio-signals measured by a wearable device in daily life. 
According to one theory, sleep debt is a cause of many complaints. Brain science, 
as detailed in Chaps. 1 and 6, has received much attention in recent years due to its 
development in understanding the human control system and human beings them-
selves. In addition, mindfulness meditation is now attractive as a countermeasure to 
many complaints, including mental instability and diseases. Mental health is an 
untapped field, as discussed in the last chapter. Brain science and associated bio-
signals might be useful tools in developing the field. This book clarifies that medita-
tion is not similar to sleep.

In both components of the hygiene mentioned above, research has been based on 
the data associated with body activity, including the endocrine system (Chap. 2) and 
electro-activity in humans. For instance, it is important to evaluate the autonomic 
nervous system (Chaps. 3 and 4) to elucidate general malaise, motion sickness dur-
ing transportation, and space medicine (Chaps. 5 and 9). Electrophysiology is an 
important part of this field. In addition, bio-information is one of the targets in sev-
eral research fields that have developed rapidly in recent years; it is expected that the 
bio-signals will be widely used in the future. Bio-signals can be measured by mobile 
and universal devices, especially in the welfare/nursing care of the elderly and 
patients (Chaps. 6, 7, 8). Above all, aging population is increasing, mainly in devel-
oped countries. Therefore, it is useful for us to use the bio-signals to extend the 
healthy life span with reduced disease burden.

This book provides an outline of the principle and display methods of virtual 
reality (VR) and the biological effects of advanced technology such as VR, aug-
mented reality (AR), mixed reality (MR), and robotics (Chaps. 5, 9, 11). In addition, 
the realization of high image quality 4K/8K broadcasts is underway, led mainly by 
the Ministry of Internal Affairs and Communications and broadcasters. In addition, 
the progression of TV to high image quality will facilitate the sale of high-definition 
glassless 3D TV, which has been a venture whose market share and growth has not 
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been tremendous; however, further development may increase the opportunities for 
stereoscopic viewing in various fields, not limited to amusement and medical use. 
Therefore, there is an urgent need to clarify the problems related to stereoscopic 
viewing of the human body and reduce them as an important health topic. This 
progress can be applied to assist rehabilitation in clinical care to some degree (Chap. 
11). This book also introduces technology/innovation for preventive medicine and 
medical care.

By measuring and analyzing the biological signals over a long duration, the diag-
nostic accuracy can be dramatically improved, and the medical effects of the treat-
ment can be enhanced. In Chaps. 4 and 12, we describe their clinical significance in 
addition to the future prospects of these technologies and artificial intelligence. This 
will be required in telemedicine on isolated islands. In addition, we should stress on 
how to make good use of bio-information in the field of hygiene. Moreover, one can 
apply this information for economical pursuits as well as providing healthcare ser-
vice or even a combination of both. In addition, this book is designed for data sci-
entists and/or researchers of big data on bio-signals.

Contents in this book can be applied not only to the field of care and welfare but 
also to various fields such as robot operation interface and emotion analysis using 
biological signals. Creators and technical staff working in the field of data science/
data-based science are interested in this project. They are good at collecting data 
involved in body activities, including electrical activity in the human body, human 
behavior (Chap. 10), and other bio-information; however, no one seems to have 
figured out a method to apply these data practically for application in human ser-
vices. It is important to have a hygienic viewpoint. In addition, these are valuable 
resources for both new and established researchers as well as students seeking com-
prehensive information on environmental/occupational health and health promotion.

Hiroki Takada
Mar/3/2021
Bunkyo, Japan

Preface
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Chapter 1
Brain Measures

Masumi Takada, Hiroki Takada, and Akihiro Sugiura

Abstract  In this chapter, we refer to three contents under the theme of brain mea-
sures. The first outlines the anatomical and functional characteristics of the brain, 
and some past studies on the elucidation of information process mechanisms in the 
brain are shown. The second explains each principle and introduces each major 
measurement method based on the classification of the configuration and the func-
tion measurements. The configuration measures present computed tomography and 
magnetic resonance imaging (MRI), and the function measurements are positron 
emission tomography, functional MRI, and functional near-infrared spectroscopy 
(fNIRS). Finally, one of our actual studies on function measurements by fNIRS 
while playing a video game with a handheld game console with a two-dimensional 
(2D)/three-dimensional (3D) display as an example of fNIRS study is presented. A 
total of eight subjects sat on a chair and played the game. They first played TETRiS® 
for 60 s using the 2D display and continued the game for 60 s using the 3D display. 
The display was then returned to 2D, and the game was continued for 30 s. Regarding 
this as one set, fNIRS was measured while they continuously played five sets. 
Changes in oxyhemoglobin values over the three periods in the above five trials 
were recorded at 12 channels on the frontal, occipital, and bilateral temporal lobes 
at 7.7 Hz. Therefore, we concluded that sensory areas, such as the visual area, may 
have been activated when playing the game with 3D display compared to activa-
tion by 2D.

Keywords  Brain · Configuration · Function · Neurovascular coupling  
Video game
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1.1  �Introduction

The brain is an essential organ for mental function, and along with the medulla 
oblongata constitutes the central nervous system. These have information processing 
for the mind and physical body. For example, the brain inputs information from the 
five senses. Following this, it analyzes, memorizes, thinks, and orders the body as 
output from the input information. The structure of the brain can be anatomically 
separated into four parts: the cerebrum, diencephalon, cerebellum, and brainstem. 
Although each part handles different functions, processing is performed 
systematically in cooperation.

For the details of each part, the brainstem directly controls vital autonomic 
functions, such as respiration, circulation, and adjustment of sleep and awareness. 
The occurrence of irreparable damage in the brainstem is one of the criteria for 
judging brain death [1]. The cerebellum assumes balance function, postural con-
trol, adjustment of blood pressure and circulation, controlling voluntary move-
ment, and movement cognition. Damage to the cerebellum evokes functional 
abnormalities in motility and balance control. It thus causes difficulty in gait and 
postural maintenance. The diencephalon includes the hypothalamus and the thala-
mus. The hypothalamus functions as the center of the automatic nerve and endo-
crine system maintaining homeostasis through the automatic nerve and sensory 
information from the whole body. In addition, there are also centers of appetite, 
aphrodisia, aching pain, and thirst in the hypothalamus. The thalamus is the trans-
fer point of the sensory nerve between the cerebral cortex and periphery. All 
nerves except for the olfactory sense run to the cerebral cortex through the thala-
mus. The cerebrum is separated into the cerebral cortex and the limbic cortex. The 
cerebral cortex handles high intelligence function and autokinesis: esthesia, mem-
orization, intellection, language, judgment, and recognition. The limbic cortex is 
a classical function common to animals, such as life maintenance, affect, and 
instinct. The brain consists of many areas separated according to differences in 
cell configuration. In addition, a unique function is located in each area, and this 
basic concept between function and anatomic locations of the brain is known as 
the functional localization [2, 3]. Previous studies on finding brain functions in 
medicine, physiology, and psychology have been based on functional localization. 
Therefore, to elucidate information process mechanisms in the brain, verifying the 
relationship between injured area and loss of function [4, 5], and measuring the 
brain activity under task load conditions [6–8], or under external or internal stim-
uli have been performed. In addition, during an awake craniotomy, the surgeons 
located the motor and speech regions by electric stimulation or real communica-
tion before tumor removal, to avoid these sensitive areas with high accuracy dur-
ing surgery [9].

M. Takada et al.



3

1.2  �Types of Brain Measures and Their Principles

The brain measures are divided into two groups: configuration and function mea-
surement. Table 1.1 shows the characteristics of the brain measures. The details of 
the method for measurement are presented in the next section. Chapter 6 describes 
the details of an electroencephalogram (EEG).

1.2.1  �Configuration Measurements

The typical techniques for configuration measurements include computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). The characteristics of these tech-
niques are simultaneously measuring both head shape and changes in the condition 
of the cerebral tissue. An X-ray CT scanner, which has an X-ray tube (source) and 
an X-ray detector across a subject (head), measures the X-ray attenuation in each 
degree of the CT detector (projection angle) during rotation of the CT scanner. 
Further, the measured attenuation information is processed by a computer to obtain 
a CT image constituting the X-ray absorption value in each pixel. Figure 1.1 shows 
an example of a clinical CT image. This image has characteristic findings of sub-
arachnoid hemorrhage; this image shows a high-density area, following cisterna, 
due to hemorrhage. Subarachnoid hemorrhage is a dangerous disorder because of 
severe symptoms, such as sensation disturbance and higher brain dysfunction, due 
to a rapid increase in intracranial pressure.

Table 1.1  List of brain measurer type

Type Technique Source Method Area Invasiveness

Configuration X-ray CT X-rays Active Whole + (radiation)
MRI NMR signal Active Whole −

Function EEG/MEG Action potential/
magnetic field

Passive Superficial −

Nuclear medicine 
(PET, SPECT)

Radioisotope Active Whole + (radiation)

Functional-MRI BOLD signal (NMR 
signal)

Active Whole −

Functional-NIRS NIR light Active Superficial −
CT Computed tomography, MRI Magnetic resonance imaging, EEG Electroencephalogram, MEG 
Magnetoencephalography, PET Positron emission tomography, SPECT Single-photon emission 
tomography, NIRS Near-infrared spectroscopy, NMR Nuclear magnetic resonance, BOLD Blood 
oxygen level dependent, NIR Near-infrared

1  Brain Measures
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MRI makes images of water molecules in the body by applying nuclear magnetic 
resonance (NMR). For more details on the principle of MRI, the molecule in the 
static magnetic field induces NMR by exposure to electromagnetic rays with a spe-
cific frequency. NMR is in the excited state; further, during returning to the ground 
state, the molecule radiates electromagnetic rays as signals, which are utilized in 
MRI. MRI can obtain various contrast types of images according to the scan method 
because the type of signals changes with the scan method. Comparing CT with 
MRI, MRI has higher configuration detectability than CT (especially changes in the 
tissues). In contrast, although CT scan indicates a high radiation dose, there are 
some advantages, such as short study time and high readiness crises. Moreover, a 
CT scan can obtain images that have clear findings of the hemorrhage from the early 
stage, compared with MRI. Hence, the best test is currently available according to 
the advantage of each equipment to avail diagnostic imaging.

1.2.2  �Function Measurements

As for the function measurements, there are some measurement methods attributed 
to differences in the principle of measurement based on physiology. An EEG and 
magnetoencephalography (MEG) are aimed at the activity of nerve cells (neurons 
and synapses). In EEG, some electrodes are set at regular intervals on the scalp, and 
the integrated action potential of nerve cells grouped by each brain function just 

Fig. 1.1  Example of a CT 
image (subarachnoid 
hemorrhage). This image 
shows high-density area 
following cisterna

M. Takada et al.
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below the electrode is recorded (see more detail in Chap. 6). In contrast, unlike the 
EEG measurement method, the MEG can detect both the intensity and precise 
position of the neural activity by small changes in the magnetic field with electric 
current (potential) with the neural activity from many detectors set around the head 
because the magnetic field does not reduce or distort by the skull or skin.

Evaluation of brain function by cerebral blood circulation is premised on the 
establishment of neurovascular coupling [10, 11], representing a direct relationship 
between neural activity and local blood flow. When the brain cells become active, 
local blood flow increases depending on the degree of activity. For more information, 
the neural cells have to use adenosine triphosphate (ATP), which manages bioenergy 
during electrical activity. To produce ATP, oxygen and glucose are required. 
However, neural cells do not store both and receive both through the blood flow. In 
this way, by measuring changes in local blood flow, we can archive the localization 
of neural activity. The three typical measurement techniques based on neurovascular 
coupling are shown below.

The first is nuclear medicine, in particular, positron emission tomography (PET) 
and single-photon emission computed tomography (SPECT). PET can create 
images of local blood volume, oxygen metabolism, glycometabolism, and 
distribution of neural receptors by using radioactive tracer (medicine) labeled by 
positron-emitting radionuclides that decay and release the positron (β+-ray). This 
positron emits two gamma rays in opposite directions because the positron collides 
with the surrounding electrons. Because the annihilation gamma-ray goes straight, 
coincidence detection of the annihilation gamma rays can correctly determine the 
annihilation position of the positron in the body. Finally, determining the annihila-
tion position from all directions, such as X-ray CT, can obtain tomographic images. 
In contrast, SPECT obtains tomographic images by using tracer-labeled γ-ray emit-
ting radionuclides, such as 99mTc and 123I. SPECT is weaker in quantitativeness than 
PET. However, SPECT is easier to access to radioisotopes as an advantage.

The second is functional MRI (fMRI), which utilizes redox reactions of hemo-
globin (Hb). As mentioned above, much activity of the neural cells require much 
oxygen. Hb combines oxygen in the lung and changes into oxygenated Hb (oxy-
Hb). Transporting oxygen to the tissue, oxy-Hb changes into deoxygenated Hb 
(deoxy-Hb) due to the reduction reaction. One of the features of deoxy-Hb (para-
magnet) is the ease of magnetization, comparable to oxy-Hb (negligible diamag-
net). The NMR signal of deoxy-Hb is different from that of oxy-Hb in short-time 
imaging. Hence, local brain activity decreases the local magnetic field according to 
the decrease in deoxy-Hb concentration in the local brain blood capillary because of 
an increase in the local oxy-Hb concentration. This phenomenon is called the blood 
oxygenation level-dependent effect [12, 13], which is utilized in fMRI. Figure 1.2 
shows local brain activity images under the motion task as an example of an experi-
mental fMRI study. These images represent brain activity while the subject did left 
finger tapping continuously. The activation of the motor area is shown in Fig. 1.2.

The third is functional-near-infrared spectroscopy (fNILS), measuring the rela-
tive amount of local blood through the use of absorption of near-infrared light by 
Hb. fNIRS can measure changes in blood volume (local neural activity) at 2–3 cm 

1  Brain Measures
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below the head surface where it positions the cerebral cortex. The near-infrared ray 
at 700–1000 nm utilized in fNIRS indicates permeability for body tissue, such as 
bone and skin. In contrast, they are specifically absorbed by Hb. Each oxy-Hb, 
deoxy-Hb, and total Hb concentration is obtained by applying a difference in Hb 
absorbance index related to oxygenation state and wavelength of near-infrared light. 
This is done according to the continuous wave method [14], in which the amount of 
attenuation is calculated from the incident and detection light for two or more dif-
ferent wavelengths. Actual measurement values obtained from the fNIRS equip-
ment do not reflect the absolute values of Hb concentration because the measurement 
values are expressed as a product of Hb concentration and light path. However, by 
equalizing all the distances from the light-receiving probe to the light-transmitting 
probe, each relative Hb concentration value is attainable because it can be assumed 
that light passes across a constant distance. fNIRS measurements are acquired by 
positioning the photo-transmitter probe and the photo-receiver probe on the scalp at 
regular intervals. Near-infrared light irradiated from the photo-transmitter is 
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Fig. 1.2  Local brain activity images while a subject did left finger tapping continuously

M. Takada et al.
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scattered and reflected in the cerebral cortex and then detected from the photo-
receiver probe at a constant distance.

1.3  �Actual Case of Functional Measurement

This section shows one of our studies on the evaluation of local brain function by 
using fNIRS while playing a video game with a handheld game console that has a 
two-dimensional (2D)/three-dimensional (3D) switchable display.

1.3.1  �Background

The number of elderly people with dementia in Japan is estimated to reach approxi-
mately 7 million by 2025, indicating that a fifth of those aged 65 years and more 
would have dementia. Dementia is now a disease that is close to home affecting 
anyone. Based on the comprehensive strategy to accelerate dementia measures, the 
Health, Labor, and Welfare Ministry of Japan (called the New Orange Plan) aimed 
toward friendly community planning for the elderly with dementia, enabling people 
to live a life the way they want to until the end by prevention; thus, early diagnosis 
of/response to dementia is required.

Although daily life activities, such as having meals, exercising, pursuing hob-
bies, and relationships with others, are effective for the prevention of dementia, 
brain activity training is particularly gaining attention. Additionally, in the USA, 
regarding the relationship between vision and cognitive decline, such as 
Alzheimer’s disease, it was revealed that those who have better vision have a 63% 
lower risk of dementia [15]. Visuospatial disorder is relatively common in 
Alzheimer’s dementia, and a strong relationship exists between cognition disorder 
and decreased vision performance. Until now, researchers have shown that vision 
performance training using virtual reality information media content could 
increase the tension and relaxation effect of the ciliary muscle group [16, 17]. 
Inhibition and alleviation of decreased vision in aged adults is expected to be a 
strategy for the prevention of dementia. Furthermore, to prevent dementia, various 
establishments have put forth efforts to encourage exercise and the pursuit of hob-
bies. However, there are only a few reports on dementia prevention training using 
brain training. This might be due to the fact that exercises can be evaluated by an 
objective indicator, whereas brain training only with a special device used to mea-
sure brain activity.

In this study, we report the changes in brain activity when study subjects played 
a game related to vision and short-term memory involving 3D images.

1  Brain Measures
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1.3.2  �Methods and Task Design

The subjects were eight healthy young persons (22.8 ± 0.9 years [mean ± standard]) 
with no past medical history of diseases of the ear or nervous system. The experiment 
was sufficiently explained to the subjects and prior written consent was obtained.

For fNIRS, a FOIRE-3000 (SHIMADZU, Kyoto) was used. Channels were 
arranged as follows: 1–12 ch on the frontal lobe, 13–24 ch on the left temporal lobe, 
25–36 ch on the right temporal lobe, and 37–48 ch on the occipital lobe (Fig. 1.3). 
The probe caps to fix the channels were set to the bilateral preauricular points, plane 
α covering the nasion (the root of the nose) and plane β parallel to the plane α. The 
distance between planes α and β was 3 cm, and plane β was vertically upward of 
plane α. The occipital lobe was fixed so as to set the center of the probe cap to the 
inion in the occipital region (external occipital protuberance).

For the 3D handheld game console, NINTENDO 3DS (Nintendo, Kyoto) was 
used. NINTENDO 3DS adopted the parallax barrier method, and the liquid crystal 
display was 3.53-inch (76.8 mm width × 46.08 mm length). For the game software, 
TETRiS® (BANDAI NAMCO GAMES, Tokyo), which is relatively simple to 
operate, was selected from general games.

The subjects sat on a chair and played the game in a comfortable position. They 
first played TETRiS® for 60 s using the 2D display (early 2D) and continued the 
game for 60 s using the 3D display (3D). The display was then returned to 2D, and 
the game was continued for 30 s (late 2D). Regarding this procedure as one set, 
fNIRS was measured while they continuously played five sets. Changes in oxy-Hb 
values over the early 2D, 3D, and late 2D periods in the above five trials were 
recorded at 12 channels on the frontal, occipital, and bilateral temporal lobes at 
7.7 Hz. The oxy-Hb value on fNIRS was compared between early 2D and 3D and 
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between 3D and late 2D (doubled because of 30  s recording time) using the 
Wilcoxon signed-rank sum test setting the significance level at p < 0.05.

1.3.3  �Results and Discussion

The value at each channel was compared between early 2D and 3D and between 3D 
and late 2D using the Wilcoxon signed-rank sum test. Channels at which significant 
changes were observed were recorded.

Figure 1.4 shows the results of the statistical test comparing early 2D and 3D. On 
comparison, in the frontal lobe, the 3D integrated value was significantly greater in 
early 2D at ch7 and ch12, while in the left temporal lobe, it was significantly greater 
at ch13, ch18–ch21, and ch24. In the right temporal lobe, the integrated value was 
significantly greater in 3D at ch27, while in the occipital lobe, it was significantly 
greater at ch42–ch44. Figure 1.5 shows the results of the statistical test comparing 
3D and late 2D. On comparison, the integrated value was significantly greater in late 
2D at ch2, ch5, ch7, ch8, and ch10 in the frontal lobe. In the left and right temporal 
lobes, the integrated value was significantly greater in late 2D at ch13 and ch27. 
However, no significant difference was noted in the occipital lobe.

An increase in local cerebral blood flow from early 2D to 3D and from 3D to late 
2D was noted (values at ch3 were not presented due to measurement failure). Local 
cerebral blood flow increased from early 2D to 3D in many channels. The increase 
in the local cerebral blood flow from 3D to late 2D was greater than that from early 
2D to 3D; however, a sharp reduction in the local brain blood flow was also observed 
in several channels.
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A marked increase in local brain blood flow was noted in the frontal, occipital, 
and left temporal lobes. In the frontal lobe, brain blood flow consistently increased 
from early 2D to late 2D in many channels. Because the frontal lobe controls 
psychogenesis, such as emotion, attention, thinking, and voluntary movement, brain 
blood flow may have continued to increase due to thinking and concentration on the 
game operation. In the occipital and left temporal lobes, the brain blood flow 
increased from early 2D to 3D, and no significant difference was noted between 3D 
and late 2D. Various sensory areas are present in the left temporal lobe. In contrast 
to the right temporal lobe, which memorizes sounds and shapes, the left temporal 
lobe memorizes and understands speech [18, 19]. Because TETRiS® is a game that 
requires thinking, 3D images may have a large influence on the left temporal lobe.

Changes in brain blood flow while playing the game were compared between 
playing using the 2D and 3D displays by measuring fNIRS. Because the visual area 
responsible for vision is located in the occipital lobe [18, 19], it may have been 
strongly influenced when 2D was switched to 3D.  In conclusion, the visual area 
responsible for vision is present in the occipital lobe, and various sensory areas are 
present in the left temporal lobe. Thus, sensory areas, such as the visual area, may 
have been activated when playing the game with 3D images compared to the 
activation by 2D.

1.4  �Conclusion

This chapter treated three contents under the theme of brain measures. First, we 
outlined the anatomical and functional characteristics of the brain. Second, each 
principle was explained and each major measurement method was introduced based 
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on the distinction between the configuration and the function measurements. Finally, 
one of our actual studies on function measurement by fNIRS while playing a video 
game with a handheld game console having a 3D display as an example of fNIRS 
studies. The brain measurement technology has been advancing to determine brain 
function by the particular application in the medical field.
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Chapter 2
Endocrine System

Dominika Kanikowska

Abstract  This chapter describes the essential principles of endocrinology—sim-
plified and explained. The section provides the organisation of the endocrine sys-
tem, as well the general concept of hormone production and a brief description of 
the hormone function. The information presented is also meant to understand the 
physiological mechanism involved in the endocrine regulation of organ function. 
Understanding the mechanism underlying normal endocrine physiology is essential 
to understand the pathophysiology—transition from health to disease.

Keywords  Endocrine system · Hormone · Biological rhythms · Hypothalamus  
Pituitary gland · Adrenal gland · Thyroid gland · Parathyroid gland · Pancreas

2.1  �General Information

Homeostasis is a dynamic process by which an organism maintains and controls its 
internal environment. The endocrine system regulates the homeostasis of the body 
using hormones, i.e. chemical mediators released into the blood by specialised 
organs, the so-called endocrine glands.

The effect of the hormone is elicited depending on where it was released:

	1.	 Endocrine (biologic effect on target cells in distant organs)
	2.	 Paracrine (biologic effect on target cells in neighbouring organ/tissue)
	3.	 Autocrine (biologic effect on the same cell that releases it)
	4.	 Intracrine (intracellular biologic effect on the same cell that releases it)

The figures and tables are my own ones.
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Based on their chemical structure, hormones can be classified into: protein or 
peptide (e.g. insulin), steroid (e.g. cortisol) and amino-acid derived (e.g. 
epinephrine).

Hormones act selectively on those tissues and organs that express hormone-
specific receptors. Based on their cellular localisation, hormone-specific receptors 
can be classified into:

	1.	 Cell membrane (binding of, i.e. protein or peptide hormones, catecholamines)
	2.	 Intracellular (binding of, i.e. steroid hormones, steroid derivative vitamin D3, 

thyroid hormones)

Based on their mechanism of action, hormones can be classified into: trophic 
(hormones that affect the secretion of other endocrine glands) and non-trophic (hor-
mones that are secreted by endocrine glands) (Fig. 2.1).

The principle of negative feedback is crucial both for the functioning of the endo-
crine system and for the diagnosis of endocrine disorders. According to this princi-
ple, trophic hormones stimulate the secretion of non-trophic hormones, and these 
also suppress the secretion of trophic hormones. This allows for maintaining the 
optimal concentration of specific hormones in the blood. Three levels of feedback 
can be recognised: long, short and ultrashort loops.

Hormonal homeostasis exhibits periodic fluctuations. Several hormones were 
shown to have pulsatory oscillations (i.e. gonadotropin hormones, growth hor-
mone), daily oscillations (i.e. melatonin, cortisol) (Fig.  2.2) or even seasonal 
rhythms (i.e. melatonin, cortisol).

Diseases of the endocrine system resulting from the alteration in the circulating 
level of hormones are classified as either (1) overproduction (hyperfunction) or (2) 
undersecretion (hypofunction).

Hyperfunction is associated usually with:

	1.	 Dysfunction of the endocrine gland (primary hyperfunction)
	2.	 Stimulation of a target endocrine organ by excessive trophic hormone synthesis 

and secretion (secondary hyperfunction)

Pituitary
gland

Thyroid
gland

↑ Trophic
hormone

↑  Non-trophic
hormone

(+)

(-)

Fig. 2.1  Hormonal control 
of hormone release. 
Hormone synthesises by 
pituitary gland induce 
production of hormone 
from thyroid gland. 
Non-thropic hormone 
inhibits synthesis of 
thropic hormone
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	3.	 Endocrine hyperactivity secondary to disease of other organs (e.g. hypersecre-
tion of humoral “hormone-like” factors by non-endocrine tumours)

Hypofunction is associated usually with:

	1.	 Lesion of the endocrine gland (primary hypofunction)
	2.	 A decrease in a trophic stimulus of hormone production in a target endocrine 

gland (secondary hypofunction)
	3.	 Endocrine dysfunction resulting from the failure of receptor response, so that 

despite the presence of the hormone in the correct concentration, the target organ 
is unable to respond to its action

To known whether the hormonal disorder is primary or secondary, the level of 
the target, non-trophic hormone and the concentration of the appropriate tropic hor-
mone should be evaluated.

Increased trophic hormone levels with low non-trophic hormone levels indicate 
primary hyperfunction, mainly due to the failure of a gland (e.g. hypertrophy or 
tumour), which causes an increase in the amount of trophic hormone and a decrease 
in the secretion of the target hormone. Increased trophic hormone levels with 
increased target gland hormone levels indicate secondary hyperfunction (autono-
mous secretion of trophic hormone or inability of target gland hormone to suppress 
trophic hormone release). Increased trophic hormone levels with low target hor-
mone levels indicate primary failure of the target endocrine organ (primary hypo-
function) (e.g. due to inflammation, autoantibody). The secretion of the tropic 
hormone is elevated but does not cause the expected increase in a non-trophic hor-
mone. Low trophic hormone levels with low non-trophic hormone (target gland 
hormone) levels indicate a trophic hormone deficiency (secondary hypofunction), as 
seen with pituitary failure (e.g. due to injury, excessive blood loss).

Melatonin

Night

Cortisol

24 hours (time)

12:00 18:00 24:00 06:00 12:00

Fig. 2.2  Circadian rhythm 
of cortisol and melatonin
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2.2  �The Hypothalamus and Pituitary Gland

The hypothalamus is the region of the central nervous system and is regulated by the 
higher centres of the brain, and involved in maintaining homeostasis. The hypo-
thalamus contains centres for the regulation of appetite, thirst, body temperature, 
sleep and wakefulness. It also regulates biological rhythms (the “body clock”), and 
these rhythms, as well as the cycle of sleep and wakefulness, are correlated with the 
secretion of melatonin (Fig. 2.3). The primary pacemaker of the circadian system in 
mammals (the “body clock”) consists of two clusters of neurons, the suprachias-
matic nuclei (SCN), in the hypothalamus. The SCN is the “body clock” that controls 
behavioural, metabolic and physiological rhythms and can also synchronise periph-
eral oscillators that are found in cells, tissues and organs throughout the body 
(Fig. 2.3).

Melatonin is a derivative of tryptophan and is produced by the pineal gland. 
Melatonin secretion is regulated by the light-dark cycle and shown circadian rhythm 
with the highest concentration around midnight (Fig. 2.2).

The hypothalamus controls the secretion of the pituitary hormones via:

	1.	 A neural pathway for the two neurohormones, oxytocin and vasopressin, released 
by the posterior pituitary

	2.	 A humoral pathways and the pituitary portal system (involving releasing hor-
mones and statins) to the anterior pituitary

Oxytocin (OT) physiological effects are lactating breast (milk ejection) and the 
uterus during pregnancy (uterine contraction during parturition).

Vasopressin (AVP) physiological effects are to increase water reabsorption in the 
kidneys (antidiuretic effect) and is a potent vasoconstrictor (vasopressin effect). It is 
released in response to the increased osmolality of the plasma, which stimulates 
osmoreceptors in the anterior hypothalamus.

The humoral factors which stimulate the secretion of pituitary hormones include 
growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone 

Hypothalamus (SCN)/ Pineal gland

External synchronization
(via the retinohypothalamic tract)

Internal synchronization
(humoral, autonomic)

Oscillators in peripheral tissues and organs

Light/dark cycle

Fig. 2.3  Some interactions between the “body clock” (SCN), pineal gland, peripheral oscillators 
and the environment (light/dark cycle)
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(TRH), corticotropin-releasing hormone (CRH) and gonadotropin-releasing hor-
mone (GnRH). The statins released are somatostatin and dopamine (Fig. 2.4).

The pituitary gland takes a central role in the regulation of the endocrine system, 
closely connected to the hypothalamus and affecting the function of other endocrine 
glands through the production and release of trophic hormones. The pituitary gland 
consists of two parts:

	1.	 The anterior part (adenohypophysis)
	2.	 The posterior part (neurohypophysis)

The posterior part (the neurohypophysis) consists of nerve endings that originate 
from nuclei of the hypothalamus and is the place of the storage and release of oxy-
tocin and vasopressin.

The anterior part (the adenohypophysis) communicates with the hypothalamus 
via the pituitary portal system and produces hormones that control the trophic activ-
ity of peripheral endocrine glands. These trophic hormones and their secretions are:

	1.	 Somatotrophic cells, producing growth hormone (GH)
	2.	 Lactotrophic cells, secreting prolactin (Prl)
	3.	 Thyrotrophic cells secreting a thyroid-stimulating hormone (TSH)
	4.	 Gonadotrophic cells, secreting the gonadotrophins (LH and FSH)
	5.	 Adrenocorticotrophic cells, secreting an adrenocorticotrophic hormone (ACTH)

Anterior

Pituitary

Hypothalamus

Posterior

ACTH, TSH,GH,
LH, FSH, Prl AVP, OT

Lactation/ Parturition

Water balance

Response to stress

Growth/development

Lactation/ Reproduction

Metabolism

Fig. 2.4  A functional relationship between the hypothalamus and the pituitary gland. GH growth 
hormone, TSH thyrotropin, ACTH corticotropin, LH luteinising hormone, FSH follicle-stimulating 
hormone, Prl prolactin, AVP arginine vasopressin, OT oxytocin
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2.3  �Thyroid Gland

The thyroid gland is located at the anterior side of the neck. It is composed of two 
lobes connected by an isthmus. The thyroid gland synthesises two sets of hormones:

	1.	 Follicular epithelial cells, secreting tyrosine-derived thyroid hormones: tet-
raiodothyronine (T4) and triiodothyronine (T3); these hormones are regarded as 
essential in thyroid physiology and pathology.

	2.	 C cells (parafollicular cells), secreting calcitonin, a polypeptide hormone 
involved in the metabolism of calcium

The secretion of thyroid hormones is under the control of pituitary thyroid-
stimulating hormone (TSH) which, in turn, is controlled by the hypothalamic secre-
tion of thyrotropin-releasing hormone (TRH). Thyroid hormones provide negative 
feedback inhibition to the hypothalamus and pituitary gland, inhibiting the secretion 
of TRH and TSH.

TSH concentration is critical for the distinction between primary and secondary 
thyroid dysfunction.

The synthesis of thyroid hormones requires iodine, which is taken up by the fol-
licular cells. Iodine required to maintain thyroid hormone synthesis; absorbed from 
dietary sources (iodised salt, seafood, plants).

In the circulation, thyroid hormones circulate predominantly (99%) bound to 
carrier proteins. Free T4 and T3 account for less than 1% of the total amount of thy-
roid hormone in the blood and represents the active form of both. The basic pro-
cesses regulated by thyroid hormones (Table 2.1).

2.4  �The Parathyroid Glands

The parathyroid glands are located on the posterior side of the thyroid.

Table 2.1  Physiologic effects of thyroid hormones

A target on The effect of thyroid hormones

Metabolism Acceleration of metabolic rate, oxygen consumption
Energy and heat production

Cardiovascular 
system

Cardiac inotropic and chronotropic effects
An increase in cardiac output and blood volume, a decrease in systemic 
vascular resistance

Digestive system Increased intestinal peristalsis
Endocrine system Supports the secretion and action of other hormones
Nervous system Essential for brain development and maturation
Fat tissue/muscles Catabolism
Bone Proper skeletal development and bone renewal

D. Kanikowska
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Parathyroid chief cells synthesise and secrete parathyroid hormone (PTH) that is 
important for the regulation of calcium homeostasis. A rise in serum calcium con-
centration inhibits the synthesis of PTH, but the production is restarted as soon as 
the concentration of serum calcium drops. The concentration of plasma calcium 
(Ca2+) is under the control of mainly:

	1.	 Parathyroid hormone (PTH)
	2.	 Calcitonin
	3.	 Vitamin D3 (1.25 dihydroxycholecalciferol [1.25 (OH)2D3])

But several other hormones, most notably thyroxin, cortisol and growth hormone, 
also contribute. PTH is related to the metabolism of vitamin D, the two of them 
working together to regulate calcium levels and its metabolism.

The main functions of PTH can be summarised as follows:

	1.	 Stimulation of bone resorption by osteoclasts, leading to a release of calcium and 
phosphate into the blood

	2.	 Stimulation of calcium reabsorption in the renal tubules
	3.	 Inhibition of phosphate reabsorption in the renal tubules
	4.	 Stimulation of renal production of 1,25 dihydroxy vitamin D3 (calcitriol)

Precursors of vitamin D, derived from food or formed in the skin, are hydroxyl-
ated in the liver and then again in the kidneys to produce the biologically active 
form of vitamin D; (1,25(OH)2D3 [calcitriol]). PTH and phosphate depletion act 
independently on the kidney to promote it to form calcitriol. Low serum calcium 
stimulates the production of PTH, which stimulates the hydroxylation of vitamin D 
in the kidney.

Vitamin D3 regulates:

	1.	 In the kidney reabsorption of calcium
	2.	 Intestinal absorption of calcium and phosphorus
	3.	 In the bones deposition of calcium and phosphorus

Calcitonin is secreted by C cells of the thyroid gland and is involved in the 
metabolism of calcium homeostasis. It is secreted in response to an increase in the 
concentration of ionised calcium in the blood and regulates:

	1.	 Transport and incorporation of calcium into bones
	2.	 Increase excretion of calcium in the kidney

2.5  �Adrenal Glands

The adrenal glands are two retroperitoneal organs located on the upper poles of the 
kidneys and consist of:

	1.	 Core (an inner part)
	2.	 Cortex (an outer part)

2  Endocrine System
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The adrenal cortex consists of three layers:

	1.	 Zona glomerulosa, in where are produced mineralocorticoids
	2.	 Zona fasciculate, in where are produced corticosteroids
	3.	 Zona reticularis, in where are produced androgens

In the adrenal core (medulla), the catecholamines are synthesised. The effects 
provoked by catecholamine are:

	1.	 Increase in the rate of the heartbeat and stronger myocyte contraction
	2.	 Vasoconstriction of blood vessels, but also vasodilation in muscle and liver vas-

culatures at low concentrations
	3.	 Stimulation of renin release
	4.	 Promote glycogenolysis in the liver
	5.	 Lipolysis of fat tissue
	6.	 Inhibition of intestine peristalsis
	7.	 Activation of sweating

The secretion of glucocorticoids and androgens is regulated by the hypothala-
mus and pituitary gland.

The hypothalamus produces the neuro-hormone corticotropin-releasing hor-
mone (CRH), which stimulates the secretion of corticotropin (ACTH) by the pitu-
itary cells. ACTH stimulates hormone receptors in the cortex of the adrenal gland.

Regulation of the hypothalamic–pituitary–adrenal axis takes place by negative 
feedback mechanisms.

The synthesis of mineralocorticoids is controlled by the renin–angiotensin–aldo-
sterone axis. The most important factors in triggering the secretion of aldosterone 
are angiotensin 2 and potassium ions.

Mineralocorticoids are necessary to maintain the correct concentrations of 
sodium and potassium, and the correct volume of extracellular fluid.

Aldosterone controls the reabsorption of sodium ions and excretion of potassium 
and hydrogen ions by the distal nephron. Excessive production of aldosterone leads 
to sodium and water retention and increased excretion of potassium and magne-
sium ions.

Cortisol is an important catabolic hormone, which regulates many metabolic 
processes that provide homeostasis and allows adaptation to stressful situations 
(Table 2.2).

Cortisol circadian rhythm shows a maximum concentration in the morning and a 
minimum around midnight (Fig. 2.2). The rhythm is regulated by the suprachias-
matic nucleus (SCN) which is located in the hypothalamus (Fig. 2.3).

2.6  �Endocrine Pancreas

The pancreas gland consisted of endocrine and exocrine cells. The products of the 
pancreatic endocrine cells are mainly insulin and glucagon.

D. Kanikowska
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The pancreatic endocrine mass constitutes of two endocrine cell types (beta and 
alpha). Insulin is the product of the beta cells. Glucagon is the product of the alpha 
cells. A small number of delta cells secrete somatostatin, and an even lower number 
of cells secrete pancreatic polypeptide.

Glucose is the principal stimulus for insulin release from the pancreatic beta 
cells. After a meal, insulin secretion is a multioscillatory process with ultradian 
oscillation of 50–120 min with secretory pulses intervales of about 10 min.

Insulin and glucagon release is regulated by glucose concentration and also by 
different hormones and metabolites, as well as hormones (glucagon-like peptide 1) 
and neurotransmitters (acetylcholine).

Insulin and glucagon have opposite metabolic effects. Insulin has a stimulating 
effect on the energy storage process, that is, anabolism and glucagon stimulated 
energy consumption, that is the catabolism.

Insulin has an anabolic effect on the liver, skeletal muscle and adipose tissue, and 
glucagon has a catabolic effect on the liver. Insulin secretion is reduced during fast-
ing and as a result of stress or injury.

Together, insulin and glucagon coordinate the metabolism of carbohydrates, lip-
ids and proteins.

Insulin has several functions:

	1.	 Supports fat synthesis and storage in adipose tissue
	2.	 Inhibits the release of fatty acids from the adipose tissue
	3.	 Promotes glucose transport into adipocytes
	4.	 Causes storage of fatty acids in fat cells

Table 2.2  Physiologic effects of glucocorticoids

A target on The effect of glucocorticoids

Carbohydrates Induce insulin resistance
Stimulation of gluconeogenesis in the liver

Proteins Stimulation of protein breakdown in muscles and protein synthesis in the 
liver

Lipids Stimulation of lipids breakdown
Appetite Increase of food intake
Water and 
electrolytes

Absorption of sodium and water by the kidneys

Immune system Inhibition of leukocyte migration and of proliferation of lymphocytes
Inhibition of pro-inflammatory cytokines synthesis

2  Endocrine System
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Chapter 3
Electrocardiogram (ECG)

Kiyoko Yokoyama

Abstract  The autonomic nervous system controls the fluctuation of the heartbeat 
interval. The autonomic nervous system consists of the sympathetic nervous system 
and the parasympathetic nervous system, and the sympathetic nervous system 
increases the activity of the whole body and increases heart rate and blood pressure. 
The parasympathetic nervous system stores energy, promotes gastrointestinal motil-
ity, and decreases heart rate and blood pressure. Since the autonomic nervous sys-
tem regulates internal organs, blood vessels, glands, etc., regardless of volition, and 
the heartbeat interval fluctuates under the control of the autonomic nervous system, 
heart rate variability, which quantifies the characteristics of the fluctuation of the 
heartbeat interval, has been studied as an evaluation indicator for the mental and 
physical condition.

In this chapter, the representative indicators of heart rate variability are intro-
duced in Sect. 3.2, maintaining and improving arousal by cardiorespiratory phase 
synchronization in Sect. 3.3, and examples of comparison between the indicators of 
heart rate variability obtained from wearable terminals whose use frequency is 
increasing in recent years and the indicators of heart rate variability calculated from 
the conventional R–R intervals are shown in Sect. 3.4.

Keywords  Heart rate variability · Autonomic nervous system · Mental and 
physical condition · Cardiorespiratory phase synchronization · Wristwatch-type 
heartbeat monitor
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3.1  �Introduction

The autonomic nervous system controls the fluctuation of the heartbeat interval. The 
autonomic nervous system consists of the sympathetic nervous system and the para-
sympathetic nervous system, and the sympathetic nervous system increases the 
activity of the whole body and increases heart rate and blood pressure. The para-
sympathetic nervous system stores energy, promotes gastrointestinal motility, and 
decreases heart rate and blood pressure. Since the autonomic nervous system regu-
lates internal organs, blood vessels, glands, etc., regardless of volition, and the 
heartbeat interval fluctuates under the control of the autonomic nervous system, 
heart rate variability, which quantifies the characteristics of the fluctuation of the 
heartbeat interval, has been studied as an evaluation indicator for the mental and 
physical condition [1].

Thayer et al. reported in their review article that autonomic imbalance is one of 
the risk factors for cardiovascular disease, and heart rate variability decreases [2]. 
Singh et al. reported that heart rate variability decreases in patients with hyperten-
sion compared with healthy subjects, and that heart rate variability may be used to 
assess risk [3]. Schroeder et al. clarified through cohort study that heart rate vari-
ability decreases in diabetes and metabolic syndrome patients [4]. Taelman et al. 
described that mental stress affects heart rate and heart rate variability [5]. Yamamoto 
et al. reported the effectiveness of heart rate variability as an evaluation indicator of 
chronic fatigue [6]. Park et al. use heart rate variability as a relaxation evaluation 
index [7]. As you can see, heart rate variability is used as an index for evaluating the 
mental and physical conditions in various situations.

3.2  �Heart Rate Variability Indicator

The time series of heart rate variability generally uses the time interval between 
the R waves of an electrocardiogram. When the autonomic nervous system activ-
ity index is calculated from the heart rate variability time series, it is desirable that 
the sampling frequency of the electrocardiogram be 200 Hz or higher [1]. The use 
of pulse waves is sufficient for the calculation of a heart rate time series at inter-
vals of several seconds, and the pulse waves can be measured from the fingertip or 
the wrist by a photoelectric conversion sensor. Pulse waves are used in heart rate 
measurements by smartwatches and smartphones. Section 3.2 outlines typical 
heart rate variability indices derived from ECGs. Figure 3.1 shows an example of 
(a) ECG and (b) R–R interval time series. The part marked R in (a) is called the R 
wave and corresponds to ventricular excitation. The time intervals between adja-
cent R waves are called R–R intervals, and an example of this time series is shown 
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in (b). The following indicators are often calculated over a time window of 
2–5 min.

	1.	 R–R mean value: In many cases, the value corresponding to heart rate is obtained 
by dividing 1 min by this mean value.

	2.	 Coefficient of variance (CVrr): The standard deviation of the R–R interval of 100 
beats divided by the mean, or the standard deviation of the R–R interval within a 
time window divided by the mean. It has been reported that CVrr was negatively 
correlated with PaCO2 and indicates respiratory insufficiency in patients with 
Duchenne muscular dystrophy [8].

	3.	 RMSSD: An index expressed by Eq. (3.1), which increases when parasympa-
thetic nervous system activity accelerates.
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	4.	 ARV: The ratio of the variance of the residual Z(t) to the variance of the time 
series shown in Eq. (3.3) by fitting the autoregressive model to the time series in 
Eq. (3.2)

	

RR RRt a j t j Z t
j

p

� � � � � �� � � � �
�
�

1 	
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where RR(t) of Eq. (3.2) is the R–R interval time series, a (j) is the linear predic-
tion coefficient of the autoregressive model, p is the order of the model, and Z(t) 
is the residual time series of the model. The ARV represented by Eq. (3.2) is a 
value obtained by dividing the variance (SZ

2) of the residual Z(t) by the variance 
(SR

2) of the RR(t), and it is 1 for a white noise time series and 0 for a regular time 
series, indicating the irregularity of time series.

	5.	 LF, HF, and LF/HF: We will calculate the frequency power spectrum from an 
R–R interval time series. Let LF be the area of the power spectrum between 0.04 
and 0.15 Hz and HF be the area of the power spectrum between 0.15 and 0.4 Hz. 
HF increases as parasympathetic activity accelerates, and LF/HF is widely used 
as an index related to sympathetic activity [9]. HF and RMSSD are highly cor-
related indices. For the calculation of the power spectrum, Fourier transforma-
tion, AR method, Maximum Entropy Method (MEM), and the like are used. The 
area of the power spectrum represents the variance of the fluctuation, and a value 
corresponding to the amplitude of the fluctuation can be calculated by taking the 
square root of this value.

3.3  �Maintaining and Improvement Arousal by 
Cardiorespiratory Phase Synchronization [10]

The heart rate variability index has generally been utilized for the evaluation of 
mental and physical conditions. In Sect. 3.3, we introduce a case in which heartbeat 
respiration phase synchronization is induced by consciously or unconsciously con-
trolling respiration, and as a result, maintenance and improvement effects of arousal 
are observed. Cardiorespiratory phase synchronization indicates that the phase of 
the timing of the heartbeat in one cycle of respiration becomes substantially con-
stant every breath [11]. Figure 3.2a shows a case in which cardiorespiratory phase 
synchronization occurs, and Fig. 3.2b shows a case in which phase synchronization 
does not occur. The figure shows a respiratory curve, an ECG, and a synchrogram. 
The synchrogram shows the phase of one cycle of respiration from 0 to 1 on the 
vertical axis. The horizontal axis represents time, and a point is plotted correspond-
ing to the heartbeat by using the time when the heartbeat occurs as the x-coordinate 
and the phase of respiration at that time as the y-coordinate. When the heartbeat 
occurs at the same phase of each breath as in (a), the dots are arranged in stripes. 
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When the phase synchronization shown in (b) does not occur, the y-coordinate of 
the plotted point becomes random. It has been reported that blood oxygen saturation 
increases due to the occurrence of cardiorespiratory phase synchronization [12]. It 
has also been reported that when the high blood oxygen saturation increases, the 
arousal level is high [13].

First, for a basic experiment, 16 male university students participated for 15 min. 
They rested for 5 min. Then, following sounds for 5 min, they engaged in respira-
tory control with inspiration for 2 sounds and expiration for 2 sounds. Finally, they 
had 5 min of electrocardiogram and respiration. Three types of rhythm were com-
pared: 1  s intervals, random intervals of 1  s on average, and heartbeat interval. 
Compared to the rest before and after, for each, cardiorespiratory phase 
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Fig. 3.2  Schematic diagram of the respiratory curve, ECG, and Synchrogram. Synchronization 
(a) Synchronization. (b) Asynchronization

Table 3.1  Increase in SpO2 
during resting during 
respiratory control

Respiratory control SpO2 increased rate comp. rest (%)

1 Hz 0.68 ± 0.8
Random 0.33 ± 0.7
Heartbeat 1.01 ± 0.6, p < 0.01 (comp. rest)

3  Electrocardiogram (ECG)
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synchronization was significant only when synchronized with heartbeat interval. 
For changes in blood oxygen saturation, Table 3.1 shows the increase in blood oxy-
gen saturation relative to rest during the three types of respiratory control described 
above. As a result of a corresponding t-test for oxygen saturation at rest and during 
respiratory control, oxygen saturation increased significantly at p < 0.01 only during 
respiratory control with the sound synchronized with heartbeat. Table 3.2 shows the 
amount of increase in oxygen saturation during respiratory control relative to rest, 
with respect to the three types of respiration rates: repeated exhalation and inspira-
tion for every 1 sound (1:1), repeated exhalation and inspiration for 2 sounds (2:2), 
and repeated exhalation and inspiration for 3 sounds (3:3). The paired t-test showed 
a significant increase in oxygen saturation during respiratory control than at rest 
only at 2:2, p < 0.01. From these, it has been confirmed that phase synchronization 
of the heartbeat respiration occurs by 2 heartbeats of respiration and 2 of expiration, 
and that blood oxygen saturation increases.

Next, during a 1-h driving operation using the driving simulator, at the time 
points of 30 min and 45 min after starting the driving, vibration stimulation was 
applied from the seat back for 1 min at timing synchronized with the heartbeat. The 
vibration was applied for 65 ms from the time point when the electrocardiogram R 
wave was observed. Sixteen male and female university students participated in the 
experiment. For the 32 cases (2 times each for 16 experimental participants, at 
30 min and 45 min point of time), the intensity and oxygen saturation of the cardio-
respiratory phase synchronization for 1  min immediately before the stimulation, 
1 min during the stimulation and 1 min after the stimulation showed a significant 
fluctuation in the one-way ANOVA. In the multiple tests, cardiorespiratory phase 
synchronization was significantly generated at the time of the stimulation compared 
to just before the stimulation, and the oxygen saturation significantly increased for 
1 min after the stimulation. In addition, subjective evaluation values for sleepiness 
significantly increased for 1 min before and 1 min after application of the stimulus, 
and sleepiness was significantly eliminated in objective evaluation based on facial 
expression. From the above, it was possible to attain the possibility of increasing the 
degree of oxygen saturation in the blood by applying vibratory stimulation at inter-
vals synchronized with the heartbeat. In this case, the instruction to intentionally 
perform the respiratory control was not given, and it is plausible that the vibration 
stimulation unconsciously controlled the respiration and generated the cardiorespi-
ratory phase synchronization. Therefore, biofeedback of heartbeat rhythm has the 
potential to be used as a method for maintaining and improving arousal to realize 
individual adaptation without making people feel stress during work and driving, 
which require concentration.

Table 3.2  Relationship 
between the timing of 
heartbeat synchronization 
sound for respiration 
and SpO2

Respiration timing SpO2 increased rate comp. rest (%)

1: 1 0.80 ± 0.9
2: 2 1.01 ± 0.6, p < 0.01 (comp. rest)
3: 3 0.68 ± 1.0
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3.4  �Heart Rate Variability Measured by Wearable Devices

Heart rate information measured by smartphones and smartwatches is generally 
based on pulse waves. Compared with the R wave of the electrocardiogram, the 
pulse wave has a smoother waveform and the calculation accuracy of the beat inter-
val is lower. In addition, compared with an electrocardiogram in which an electrode 
is attached to bare skin for measurement, a pulse wave does not require electrodes 
to be attached and is easy to measure, but on the other hand, noise reduction and 
data loss occur because the measurement position is not fixed. However, the ease of 
measurement and the ability to collect big data in the cloud make it very useful from 
the viewpoint of health management and preventive medicine.

Here, we describe the comparison results of heart rate variability indices mea-
sured from the electrocardiogram and the smartwatch, taking as an example the data 
obtained by simultaneously measuring the heart rate time series at 1-s intervals 
using an electrocardiogram and a smartwatch. Figure 3.3 is a graph showing the 
electrocardiogram R–R interval time series and the time series obtained by convert-
ing the heart rate at 1-s intervals measured simultaneously with a smartwatch into a 
value corresponding to the heartbeat interval. The time series measured with the 
smartwatch shown in blue versus the R–R interval shown in orange is a smoothed 
shape. The correlation coefficient between R–R interval and smartwatch measured 
data was calculated for each 19 samples, and it was distributed between 0.75 
and 0.41.

The mean values of mean heart rate, standard deviation, coefficient of variance, 
RMSSD, HF, LF, and LF/HF of 126 cases calculated at 2-min intervals from the 
ECG and smartwatch measurement data of 19 participants who were cooking for 
between 10 and 15 min in a standing position are shown in Table 3.3. The error rate 
is expressed as a percentage by dividing the absolute value of the difference between 
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the value calculated by the smartwatch and the value calculated from the R–R inter-
val by the value calculated from the R–R interval. As for the average heart rate, the 
correlation coefficient is 0.98 and the error rate is 1.9%, which shows that there is 
no problem in the data measured by the smartwatch. The standard deviation, the 
coefficient of variance, and the RMSSD, which are time-domain indicators, have a 
correlation coefficient of 0.74 or higher, which is higher than the LF, HF, and LF/
HF, which are frequency-domain indicators, suggesting that it is preferable to cal-
culate time-domain indicators when using smartwatches. The reason why the error 
rate is large in the RMSSD is considered to be that, as shown in Fig. 3.3, since the 
time series is smoothed compared with the R–R interval, the high-frequency com-
ponent is attenuated, and as a result, the amplitude of the high-frequency component 
is reduced.

3.5  �Conclusion

This chapter introduces a representative index of heart rate variability, which is an 
evaluation index of autonomic nervous activity balance and introduces the charac-
teristics of the heart rate variability index measured from wearable terminals, that 
the maintenance improvement of arousal effect can be obtained by utilizing bio-
feedback. The heart rate variability index can be widely used to estimate mental and 
physical conditions necessary for health management and disease prevention in 
daily life such as relaxation evaluation in addition to stress and fatigue evaluation. 
In addition to estimating mental and physical conditions, heart rate variability can 
be used for biofeedback as an effective interaction with the body for health manage-
ment and disease prevention. Furthermore, heart rate information measured with a 
wearable terminal can be easily measured without interfering with daily life, and 
big data can be easily collected. Therefore, by developing a new autonomic activity 
balance evaluation index that is different from those previously calculated from 
electrocardiograms, we believe we can greatly contribute to health management and 
disease prevention.
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Chapter 4
Electrogastrography

Kohki Nakane, Keita Ichikawa, Rentaro Ono, and Yasuyuki Matsuura

Abstract  Electrogastrography (EGG) is a noninvasive method of measuring gas-
tric electrical activity via cutaneous electrodes placed on the abdomen. Compared 
to other gastrointestinal motility measurement methods, such as the gastric-
emptying and internal pressure measurement techniques, the EGG is noninvasive 
and allows measurement with minimum restriction, thereby allowing prolonged 
measurements. In addition, since the EGG measures gastrointestinal electric activ-
ity, which cannot be quantified by other methods, it can be used to evaluate the state 
of the body and any pathological conditions, which might provide new insights into 
the prevention of gastrointestinal dysfunctions associated with various disorders. 
Assessment of the abnormal gastrointestinal activities in EGGs is particularly use-
ful for preventing disorders, such as functional dyspepsia and gastrointestinal motil-
ity disorder. Thus, the EGG has importance in public health, although its range of 
applications is still limited. Also, some novel methods such as nonlinear analysis 
and artificial intelligence (AI) are applied to the analysis of the EGGs.
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4.1  �Introduction

Electrogastrography (EGG) can help evaluate gastrointestinal (GI) motor function 
via measured electrical activities of the GI system as biological signals. The EGG is 
a method of measuring the electrical activities that control the movements of the 
digestive tract without restraining the subject. In 1921, Alvarez first attempted to 
record the electrical activity of the human stomach from the surface of the body [1]; 
this record was named the electrogastrogram. However, the EGG requires special 
equipment and is likely to be affected by the electromyogram (EMG) owing to the 
respiratory movements associated with the diaphragm and electrocardiogram 
(ECG); because the evoked potentials of the GI system detected on the abdominal 
walls are weak, research and development in this field has been long hampered. 
Recently, however, recording the electrical activity of the GI system has been facili-
tated by the development of new measurement devices and digital circuit technolo-
gies, leading to a notable increase in clinical research. In addition, the 
electrogastrogram designed exclusively for the EGG and electrogastroenterogram 
(EGEG), i.e., measurement of the motor functions of the stomach, small intestine, 
and colon, have been proposed as extensions of the EGG (intestinal movements 
have also been discussed as EGG).

Moreover, diseases associated with abnormal GI activities, such as constipation 
and functional dyspepsia (FD), have emerged as critical issues, which may cause 
lifestyle-related diseases. In particular, constipation is considered as a common 
complaint among patients with latent FD and elderly individuals, and this topic is 
also of interest with respect to hygiene.

Since the EGG can be performed noninvasively and without restrictions, com-
pared with other tests of the GI motor function, such as gastric-emptying and inter-
nal pressure measurement methods, measurements obtained in a state close to the 
physiological condition or over long durations of time are possible. In this chapter, 
therefore, the methods for the measurement and analyses of EGG are outlined. 
Further, the latest research trends in the EGG evaluations using artificial intelli-
gence (AI) are described, and the future prospects are discussed.

4.2  �Mechanism

4.2.1  �Physiological Mechanism of EGG

EGG involves percutaneous recording of the electrical activities of the stomach 
using electrodes attached to the abdominal surface on the body. Therefore, the EGG 
can be performed noninvasively without placing any restrictions on the subject, and 
the motor functions and autonomic activities of the upper digestive tract can be 
objectively evaluated by analyzing the obtained graphs.

Rhythmic electrical activity consisting of alternating depolarizations and repo-
larizations are observed in the stomach and small intestine, similar to that in the 
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heart. The pacemaker of the electrical activity of the stomach is located on the 
greater curvature side of the upper third of the body of the stomach and discharges 
impulses at the rate of 3 times per minute (3 cycles per minute, cpm) toward the 
pylorus. This pacemaker is controlled by parasympathetic activities but spontane-
ously discharges periodically owing to a network of cells called the interstitial cells 
of Cajal (ICCs) [2, 3]. The ICCs were identified only recently as the pacemaker cells 
responsible for the movements of the digestive tract.

In 1998, the ICCs were directly observed to express rhythmic changes in electri-
cal currents and induce spontaneous contractions, which were used to confirm their 
role as the pacemaker cells of the digestive tract [4, 5]. Although the ICCs were 
shown to be involved in the spontaneous activities of the digestive tract and neural 
regulation of its movements, questions regarding the mechanism by which they 
generate rhythms and the cell structures that constitute the pacemaker remain unan-
swered, motivating research on these problems [6]. Electrophysiologically speak-
ing, the ICCs are present in the muscle layer of the digestive tract, which discharges 
rhythmic action potentials and contracts spontaneously; these determine the inten-
sity and frequency of the electrical activity of the stomach under the influence of 
neural and humoral factors [7, 8].

In the electrical activity of the stomach, periodic vibrations are generated in the 
excitation conducting network of smooth muscle cells, with modifications by the 
ICCs and nerve activities. However, peristaltic activities are not generated by the 
electric impulses discharged by the ICCs alone. Action potentials are generated 
when the electrical activities surpass the contraction thresholds during depolariza-
tion and produce peristaltic activities. There are two types of these electrical activi-
ties, namely electrical control activity (ECA) and electrical response activity (ERA). 
The ECA is characterized by regularly recurring electrical potentials from the ICCs. 
Further, the ECA is not associated with contractions of the stomach unless coupled 
with action potentials, which is then referred to as the ERA [9]. EGG is used to 
measure both the ECA and ERA but cannot distinguish between them; hence, it 
does not directly record the peristaltic activities [9, 10].

To determine whether EGG truly reflects the electrical activity of the stomach, 
Pezzolla and Homma performed EGG studies before and after a total gastrectomy 
in patients with stomach cancer. They observed the complete disappearance of the 
periodic activity post-surgery at 3 cpm, which is characteristic of the stomach [11, 
12]. This work established that the EGG could truly be a record of the electrical 
activity of the stomach.

In the small intestine, the ECA is known to be transmitted from the duodenal 
pacemaker toward the anus by gradual reduction of the frequency from 10 to 12 cpm 
in the duodenum to 8–10 cpm in the ileum [13, 14]. There have been reports that 
these intestinal electrical activities could be detected as signals with frequencies in 
the range of 8–12 cpm from the body surface, and using the EGEG; recording of the 
electrical activities of the stomach and small intestine by spectral analysis has been 
proposed, but the unlike the EGG, this method has not garnered wide support [13]. 
In addition, the frequency of potential changes due to respiration-induced abdomi-
nal wall movements is close to that of the electrical activity of the small intestine, 
and the frequency components based on respiration may be difficult to isolate. 
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Intestinal activities have been studied by some research groups; however, reports on 
these works are insufficient to establish their clinical utility.

4.2.2  �Methods of EGG

EGG is used to measure the electrical activities associated with GI movements as 
evoked potentials on the abdominal surface [15]. Therefore, the measurements are 
obtained by attaching electrodes to the abdominal surface near the stomach and 
intestine. These electrodes may be unipolar or bipolar, but the measurements 
obtained using unipolar electrodes are more common; three to five such electrodes 
are commonly attached to the abdomen, and an indifferent electrode is placed either 
on the abdomen or the back of the subject. With regard to bipolar electrodes, a pair 
of electrodes is attached to the abdomen, and an indifferent electrode is placed on 
the abdomen, back, or dorsum of the hand. Bipolar electrodes are generally placed 
near the gastric pacemaker. In their experiments, Okuno et al. and Imai et al. attached 
five electrodes to the abdomen and performed EGG using unipolar electrodes first 
before employing bipolar electrodes during analyses [16, 17].

The positions of the unipolar and bipolar electrodes are not fixed [18], but a few 
typical examples are presented herein. In the EGG using unipolar electrodes, four 
electrodes are attached to the abdomen for the Nipro Electrogastrograph EG [19], 
but Okuno et al. placed five electrodes in the abdominal region [16]. For the EGG 
using bipolar electrodes, the Handbook of Electrogastrography describes a method 
using three electrodes on the abdominal surface [20], and Kaneoke et al. placed two 
electrodes near the gastric pacemaker [13, 21].

EGG is more sensitive to changes in the DC (Direct Current) due to electrode 
resistance and depolarization because of the markedly lower frequencies of signals 
than the EEG or ECG. It is necessary to use electrodes with less potential changes 
and reduce the inter-electrode resistance by carefully wiping the skin using an alco-
hol disinfectant or skin pretreatment agent [22, 23].

EGG is usually performed in the supine position to avoid artifacts due to body 
movements; however, the seated position is also tolerated for certain measurements, 
such as those with meal loading. Since the amplitudes of the signals recorded by the 
EGG are of the order of 100–500 μV, they are likely to be affected by the abdominal 
muscle EMG and ECG, whose amplitudes are of the order of several millivolts, or 
even show baseline instabilities due to body movements. The stability of the 
acquired signals must be secured by eliminating the effects of sudden noise due to 
the simultaneous occurrence of these artifacts. A smoothing filter using a moving 
average scheme, followed by elimination of the abnormal values, is necessary to 
cope with the sudden noise due to interference by EMG.

The pulse variation in the measurements is 1 Hz, respiratory variation is 0.25 Hz, 
blood pressure variation is 0.1 Hz, and body fluid volume variation is 0.17 Hz. Here, 
as the frequencies of the pulse variations and body fluid volume variations differ 
from those of the EGG signals, and as the effects of the blood pressure variations are 
weak despite the presence of blood vessels at the electrode placement sites, no 
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problems are observed. Respiratory variations are then eliminated using a low-pass 
filter whose frequency is close to that of the intestinal electrical activity. In particu-
lar, during measurement in the supine position, the respiratory rate is likely to slow 
to 0.15–0.2 Hz. Therefore, the respiratory components must be eliminated by respi-
ration control or using low-pass filters. Generally, interferences from the ECG and 
respiration are prevented using a high-pass filter with a DC content of 0.032 Hz and 
a low-pass filter having a passband of 0.05–0.2 Hz for EGG.

4.3  �Methodology to Evaluate EGG Data

4.3.1  �Advantages and Limitations of EGG

Since the EGG is a noninvasive method and requires no restraint to be placed on the 
subject, there are no reported contraindications to its broad application; further, it 
can also be performed safely on children, disabled adults, and elderly people. EGG 
also causes very little additional stress before or after execution, such as prolonged 
fasting before endoscopy and the use of a laxative after barium radiography. The 
clinical applications of EGG are not broad, compared with those of the ECG and 
EEG, because the spectral analyses of the frequency and amplitude, by which EGG 
data are generally analyzed, do not yield much information. This restricts its appli-
cations as compared with the ECG and EEG.

Spectral analysis methods, including the fast Fourier transform (FFT), are usu-
ally employed to analyze EGG records [20], and instances using other complex 
analytical methods have been rarely reported. Using spectral analyses, evaluations 
can be obtained from measurements of length approximately 5 min because of the 
high temporal resolution [20]. However, while spectral analysis is useful for the 
evaluation of the characteristics of the electrical activity of the stomach, spectral 
analysis alone is presently considered insufficient, unlike spectral analysis of heart 
rate variations. Furthermore, in consideration of the complexities of biological 
activities, evaluations using complex systems analysis techniques, including chaos 
and nonlinear analyses, are considered indispensable. Finally, tests of linearity a 
previously proposed the surrogate method indicated that EGG may be nonlinear 
[24, 25].

4.3.2  �Analytical Methods for EGG

4.3.2.1  �Linear Analysis

EGG is known to reflect the transmissions of the electrical activity of the stomach 
and its rhythmic changes corresponding to the pacemaker frequency of the stomach, 
which is about 3  cpm. Therefore, time-series analysis of EGG is generally per-
formed using numerical data sampled from the frequency range of 0.5–2.0  Hz. 
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Further, the duration of the time window for time-series analysis of EGG is usually 
1–15 min.

Time-series analysis of the EGG data is primarily accomplished by spectral anal-
ysis, which is commonly performed using the Fourier transform or Wavelet analy-
sis. Spectral analysis of the EGG data is performed to analyze the temporal changes 
in the frequency and amplitude of the EGG waves. Analysis using FFT is performed 
every 256 or 512 s as the temporal resolution at this level is generally sufficient for 
clinical assessments; however, wavelet analysis is more suited for closer analysis of 
the temporal changes [26]. Moreover, in the spectral analysis of EGG, the spectra 
are segmented at fixed durations, and the segmented spectra are superimposed to 
visually evaluate changes in electrical activity of the stomach; this is an often-
employed method called the running spectrum analysis (RSA) [20, 27].

Other examples of spectral analyses include methods using autoregressive (AR) 
models [28] and the EGG analysis system using the minimum root-raised cosine 
spectral method [29]. At the research level, these attempts include extraction of only 
the EGG data using independent component analysis (ICA) [30].

4.3.2.2  �Nonlinear Analysis

Attractors can be reconstructed using dynamic equation systems, such as the Duffing 
equation, Henon map, and Lorenz differential equation. The attractor is constructed 
by means of embedding the time series data proposed by Takens in phase space 
[31]. It is therefore interesting to note that the structure of an attractor derived from 
time-series data obtained via EGG can also be represented in the phase space 
(embedding space). The form of the attractor is regarded as a subject of mathemati-
cal interest and can be measured using Wayland [32] and Rosenstein’s algorithm 
[33, 34].

The Lyapunov exponent is a quantity that indicates the mean divergence of two 
points on an attractor with time lapse and represents the widening behavioral devia-
tion derived from a very small divergence in the initial state [35, 36]. The maximum 
Lyapunov exponent (MLE) is denoted as λ; if this is positive, the time series may be 
chaotic, oscillation waveform may be more irregular, and trajectory may be more 
complex, owing to a larger value [37]. However, nonlinear analysis methods show 
poor temporal resolution compared to spectral analyses, and further developments, 
such as evaluation of the analytical techniques and proposal of indices using math-
ematical models, are awaited [38].

4.3.2.3  �Mathematical Model

While the precision of the EGG has been gradually improved, as noted above, it has 
been applied to the evaluations of various diseases in experiments that are mostly 
aimed at future clinical use. Creating precise models of normal EGG in healthy 
individuals may assist in the quantitative differentiation of EGG abnormalities 

K. Nakane et al.



39

associated with GI disorders. This increases the possibility of diagnosing asymp-
tomatic GI disorders, such as nonulcerative dyspepsia, by EGG and automatic EGG 
application to screening such disorders. EGG is therefore expected to contribute to 
the early detection and prevention of GI disorders associated with various diseases.

Nelsen and Sarna et al. described the electrical activity of the canine stomach 
using the Van der Pol equation, which explains self-oscillatory systems [39, 40]. 
However, the Van der Pol equation is a deterministic differential equation. In addi-
tion, other analyses using the Wayland algorithm showed that the actual EGG 
records were not necessarily composed of deterministic mathematical models [25]. 
Therefore, attempts are underway to describe such activity using stochastic differ-
ential equations [25, 38].

4.4  �EGG Analysis Using AI

In recent years, the technological developments in artificial intelligence (AI) have 
achieved remarkable progress, and deep learning has attracted substantial attention 
as it is particularly good for classifications of complex data. In this section, an 
example of the application for an autoencoder (AE) [41], which is one of the deep-
learning models, is demonstrated for classifying the EGG states. An AE is a type of 
artificial neural network that is used to learn efficient data coding in an unsupervised 
manner; it is one of the deep-learning models that specializes in dimensional com-
pression of data and comprises an encoder to compresses the input data and a 
decoder to restore the compressed data to their original forms [41].

The subjects were seven healthy males aged between 21 and 24  years 
(mean ± standard deviation: 22.71 ± 0.70 years) without arrhythmic or GI diseases 
or symptoms. They were instructed to avoid caffeine, spices, oily food, alcohol, 
smoking, and strenuous exercise on the day before the measurements. The subjects 
were fully briefed on the experiment in advance, and their written consent was 
obtained. The study protocols and procedures were approved by the Ethics 
Committee of the University of Fukui Graduate School of Engineering.

The experiments were conducted in a soundproofed laboratory, and the room 
temperature was set at 22–24 °C. The EGG data were measured for 90 min for each 
subject before and after lunch. The subjects ingested some balanced nutrition food 
(solid type) and water at lunch. After attaching the disposable electrodes to their 
chest and abdomen, the subjects were moved to a bed and the EGG data were 
recorded in the supine position excluding when they were eating. EGGs were 
obtained at 10  Hz by amplifying using a bio-amplifier (Inter cross, Japan) and 
recording with a recorder (LX-110; TEAC, Japan). The same measurements were 
obtained after lunch, at 0:30 pm. A high-pass filter with a treble cutoff frequency of 
0.05 Hz and a low-pass filter with a cutoff frequency of 0.15 Hz were applied to the 
obtained data to remove noise from the EMG and electronic devices.

In this experiment, five disposable electrodes (Vitrode M; Nihon Kohden Inc., 
Japan) were affixed to ch1–ch2 and “e,” as shown in Fig. 4.1. The electrode affixed 
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to “e” was the reference electrode. We used AE to classify the EGGs before and 
after lunch for data of 90 min durations. The training of the AE required two chan-
nels of the EGG data recorded in the experiments and a 14-channel noise signal. 
The purpose of using noise signals was to extract the EGGs from the noise contami-
nating the actual data and to investigate whether the EGGs could be classified as 
pre- or post-meal records using AI.  These time-series data were segmented into 
sequences of length 256 points and used as training and teacher data, respectively. 
In addition, we added the condition that the input time series should be a pre-meal 
or post-meal series to the teacher data, so that the number of neurons on the input 
side of the AE is 16  ×  256, and the number of neurons on the output side is 
16  ×  256  +  1. Further, the latent variable dimension was set to two dimensions 
(Fig. 4.2).

We trained the AE 100 times and assessed the distributions of the groups with the 
pre-meal and post-meal time series in the latent variable space. Thereafter, the 
unknown data that were not used for training were evaluated in the same manner, 
and we checked whether these were distributed in the latent variable space. At this 
point, the distribution of the unknown data was classified according to its proximity 
to the previously identified pre-meal or post-meal distributions to assess its similar-
ity to the previously identified distribution. From the experimental results, it was 
suggested that the AE could be used to classify pre- and post-prandial EGG 
(Fig. 4.3).

ch2 ch1
e

Fig. 4.1  Pasting position of EGG electrodes
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Chapter 5
Measurements for Visual Function, 
Including Gaze, and Electrooculography 
(EOG)

Kazuhiro Fujikake

Abstract  Humans obtain information from their five senses, which include vision. 
In recent decades, numerous displays have been developed as a result of technologi-
cal advancements, and such apparatuses can be used in daily life. The development 
of evaluation indicators for gaze data is a very important research topic in the 
hygiene field. In this chapter, we outline the types of eye movements, such as the 
saccade, smooth pursuit eye movement, vergence eye movement, optokinetic nys-
tagmus, vestibulo-ocular reflex, and rotational eye movement. Thereafter, we intro-
duce several methods for measuring eye movements, including the magnetic search 
coil method, pupil center corneal reflection method, limbus tracking meth-od, image 
analysis method, and electrooculography. Based on the eye movements measured 
by noncontact devices, indices are developed to evaluate the severity of visually 
induced motion sickness.

Keywords  Eye movements · Rotational eye movement · Visually induced motion 
sickness (VIMS) · Driving simulator (DS)

5.1  �Introduction

With the development of information technology, the accuracy and performance of 
measurement instruments for biological signals have improved, and new analysis 
methods have been presented [1]. Such measurement instruments are used exten-
sively in research and medical settings. For example, techniques such as electroen-
cephalography, functional MRI, and near-infrared spectroscopy (NIRS) are used in 
the field of brain physiology [2–4]. Electrocardiograms (ECGs) and electrogastro-
grams (EGGs), which measure action potentials in the body, are also carried out 
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using specialized equipment [5, 6]. Moreover, eye movements are an important type 
of biological signal data [7].

The eye perceives light energy from the outside world through the photorecep-
tors of the retina. The received information is transmitted through the nervous sys-
tem to the brain center, where it is perceived as vision. Two types of photoreceptor 
cells exist in the retina: rods and cones. The rods are a function of high sensitivity 
to light and operate while observing objects in the dark. The cones operate in bright 
areas and respond selectively to different light wavelengths. The three types of 
human cone cells are classified as the L-cone, M-cone, and S-cone, based on the 
longer light wavelengths that they absorb. Furthermore, an area of concentration of 
cones exists, which is known as the central fossa. Therefore, for a human to obtain 
a clear view of an object, the object must be captured in the central fossa. Six exter-
nal eye muscles, namely the external rectus, internal rectus, superior rectus, inferior 
rectus, inferior oblique, and superior oblique, move the eye to capture an object in 
the central fossa. Thus, eye movements occur based on the structure and function of 
the eye [8, 9].

The human gaze is controlled by the action of the external eye muscles that move 
the eye. In this chapter, we outline the types of eye movements. Moreover, we intro-
duce several methods for measuring eye movements.

5.2  �Types of Eye Movements

Eye movements can be categorized as saccade (saccadic eye movement), smooth 
pursuit eye movement, vergence (convergence and divergence) eye movement, 
optokinetic nystagmus (OKN), vestibulo-ocular reflex (VOR), and rotational eye 
movement [8, 9].

5.2.1  �Saccade (Saccadic Eye Movement)

The saccade is a rapid eye movement, whereby the maximum velocity increases 
with the amplitude (amplitude: 0.5°–40°, speed: 30–700°/s) [10, 11]. A saccade 
cannot be intentionally stopped once the exercise begins. In general, the saccade 
stops slightly ahead of the target, and in such cases, a small saccade (corrective sac-
cade) will eventually bring it to a halt at the target position. Furthermore, saccades 
require an interval of at least 200  ms if they occur consecutively, and no visual 
information is entered during the saccade.
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5.2.2  �Smooth Pursuit Eye Movement

Smooth pursuit eye movement is a smooth, gradual conjugate eye movement that 
captures and follows the target in the central fossa. Smooth pursuit eye movement 
is prominent in primates with developed fovea centralis, such as humans and mon-
keys. In humans, the eye can be moved smoothly up to approximately 50°/s. A 
visual object is constantly required for smooth pursuit eye movement to occur and 
the ratio (gain) of the eye velocity to the visual object velocity is 0.7–0.9 in humans. 
Moreover, the correction of the position is adjusted for saccades.

5.2.3  �Vergence (Convergence and Divergence) Eye Movement

Convergence is a condition in which the left and right eyes move close together, as 
when looking at a nearby object. Convergence is a reflexive and voluntary move-
ment. Divergence is shifting the point of the gaze from near to far. The reaction time 
of convergence/divergence eye movements is 160 ms and the maximum speed is 
20°/s, which is slower than the other eye movements.

Convergence/divergence eye movements differ from other eye movements in 
that the movements of both eyes exhibit an opposite directional component. When 
gazing at near and distant objects, parallax occurs in both limits. The fused conver-
gence eye movements attempt to eliminate the retinal shift of the gazing point. In 
contrast, another mechanism allows the retinal misalignment (parallax) outside the 
gaze point to be fused by processing in the brain. In general, the latter function is a 
major factor in stereopsis, whereas accuracy is not significantly involved in depth 
perception.

5.2.4  �OKN

One of the eye movements that fixates a moving visual target on the retina is the 
OKN. VOR also has a similar function of stabilizing the moving visual object on the 
retina. However, OKN fine-tunes the slip, which the VOR fails to compensate. The 
two components of the OKN eye movement are rapid and slow responses; the track-
ing of a moving visual target is typically achieved by a combination of slow and 
rapid movements [12].

5  Measurements for Visual Function, Including Gaze, and Electrooculography (EOG)
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5.2.5  �VOR

The VOR is an eye movement that automatically compensates for the change in the 
gaze direction when the head is rotated without tilting. Head and eye movements are 
linked to one another while observing an object, and the eyes can remain fixed on 
the object. The VOR also occurs while the eye is closed, but with a smaller amount 
of eye movement.

The VOR is controlled by a head movement sensor known as the semicircular 
canal in the ear and by a neural pathway known as the vestibule that controls the 
sense of balance. Moreover, signals from sensors that detect the stretching of mus-
cles in the neck and other parts of the body affect eye movement. The VOR is a 
reflex mechanism for rotational stimuli because the reflexes associated with the 
rotation of the head and body occur in response to input from the semicircular 
canals. When the head is tilted to the left or right, rotational eye movement occurs.

5.2.6  �Rotational Eye Movement

Rotational eye movement is the movement of the eye as it rotates around a gaze 
axis. It is generated by two types of stimuli: those from the vestibule (especially the 
otolithic organ) and visual stimuli.

Rotational eye movements that are generated by vestibular stimulation are 
referred to as vestibular counter-rolling (vestibular torsional counter-rolling). When 
the body (head) is tilted in either direction, the eyeball rotates in the opposite direc-
tion to that of the body (head) tilt, thereby preserving the vision [13].

Rotational eye movements are also a reflection of linear acceleration from the 
otolithic organ.

It has been suggested that ocular torsional counter-rolling occurs in motion sick-
ness, whereas a postural wobble occurs as a physical symptom of motion sick-
ness [14].

5.3  �Measurement of Eye Movement

The modern scientific observation and measurement of eye movements are believed 
to have started with Muller [15, 16]. The two methods used at the time were the 
direct observation method, which allowed the naked eye to observe the iris pattern 
in the cornea (black eye) and the movement of capillaries on the sclera (white eye), 
and the after-image method, which quantitatively measured the movement of the 
after-image generated on the retina by projecting it onto a screen. Subsequently, 
Huey covered the eye up to the sclera with a plaster contact and used a technique 
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that mechanically magnified the movement of the bar connected to the contact by 
using a lever and recorded the movement on paper [17].

At present, methods used to measure eye movements include the magnetic search 
coil method, pupil center corneal reflection (PCCR) method, limbus tracking 
method, image analysis method, and electrooculography (EOG). In this section, we 
introduce these methods and the related research.

5.3.1  �Magnetic Search Coil Method

In the magnetic search coil method, an external magnetic field is created, a contact 
lens-shaped coil is placed in close contact with the eye (usually the sclera), and the 
eye movement is measured as the potential induced by the coil [18, 19]. Therefore, 
it offers high accuracy and a wide measurement range. Furthermore, it exhibits the 
ability to measure the eye rotation motion [20, 21].

The magnetic search coil method is used in the diagnosis and measurement of 
pathological nystagmus owing to its high accuracy. For example, it is known that 
congenital nystagmus is a common cause of nystagmus in children and that the 
nystagmus diminishes over the natural course of time. The magnetic search coil 
method has been used to inspect nystagmus with high accuracy [22, 23]. In recent 
years, the magnetic search coil method has been used in virtual reality (VR) and 
augmented reality (AR) scenarios. VR and AR are used for eye tracking using wear-
ables, headsets, and other devices. Many of these techniques rely on optical track-
ing, with an accuracy of approximately 0.5°–1°. In contrast, devices for VR and AR 
using the magnetic search coil method can estimate the orientation of the eyes with 
an average accuracy of 0.094° [24].

5.3.2  �PCCR Method

In PCCR, a light source is shone onto the cornea to identify the light reflection point 
and pupil on the cornea, and the eye direction is calculated based on the light reflec-
tion point and other geometric features [7, 25, 26]. The PCCR method has been used 
for a long time owing to its large amount of reflected light, and it remains the most 
widely used method. In principle, when the cornea is irradiated by a light source, 
four reflection images (the first to fourth Purkinje images) appear. These images are 
reflected at the anterior surface of the cornea, posterior surface of the cornea, ante-
rior surface of the lens, and posterior surface of the lens. Among these, the reflectiv-
ity of the anterior surface of the cornea is large, at approximately 2.4%, making it 
the brightest reflection image. Compared to the reflected image on the anterior sur-
face of the cornea, the other reflected images are darker and therefore negligible in 
the measurement of eye movement. Furthermore, a “glint-free” method that does 
not use these Purkinje images has been proposed, but it is not yet at the practical 
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stage [27]. In recent years, instruments that are capable of capturing a wide range of 
corneal reflections have been developed to study the limiting points of corneal 
reflections and to derive the movement range of the camera and light source to cap-
ture the cornea [28], which is expected to expand the use of the system further.

5.3.3  �Limbus Tracking Method

The limbus tracking method is a technique in which a light source is irradiated on 
the cornea (black eye) and sclera (white eye), and the eye movement is detected 
based on the difference in reflectivity between the two [7, 29].

The limbus is the boundary between the cornea and sclera. The reflectivity from 
the cornea and sclera is significantly greater than the reflectivity from the sclera. 
When infrared light is shone near the limbus, the amount of reflected light also 
changes as the ratio of the area covered by the cornea to that covered by the sclera 
changes owing to the movement of the eyeball. The eye movement is detected by 
the Limbus tracking method according to the amount of change.

The limbus tracking method uses infrared light instead of visible light to avoid 
glare for the subject. The infrared light is irradiated below the center of the cornea 
and the amount of reflected light is measured. Therefore, the limbus tracking method 
mainly focuses on horizontal eye movements, and it can also measure rapid move-
ments such as saccades.

A study using the limbus tracking method assessed the level of arousal based on 
the measurement of eye movements of reading horizontal text strings [30]. The 
results of this study are expected to be developed for the assessment of driver arousal 
levels in automated driving. Research has also been conducted on security systems 
using eye gaze measurement technology [31].

5.3.4  �Image Analysis Method

The accuracy of image analysis has improved dramatically with the development of 
technologies and methods relating to data science. The image analysis technique is 
also commonly used to measure eye movements by capturing a photograph of the 
eye and analyzing the image with a computer [32, 33].

The most convenient image analysis method is detecting and recording the cen-
ter position of the pupil. Because the pupil area is dark, and only needs to be bina-
rized by the thresholding and calculation of the center of gravity coordinates, it is 
also possible to measure the eye movements in real time. Moreover, if the center of 
the pupil and corneal reflection image are analyzed simultaneously, it is possible to 
cancel the movement of the head. Previous studies have measured the ocular rota-
tional movements by including the pattern of photophores in the acquisition 
data [34].
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5.3.5  �EOG

EOG is a method for recording the electrical phenomena related to eye movements. 
The eye is positively charged on the corneal side and negatively charged on the reti-
nal side. In EOG, the potential difference between the cornea and retina is measured 
by stretching electrodes around the eye [35, 36].

People with disabilities, particularly total paralysis, are often unable to use bio-
logical communication channels such as voice and gestures, resulting in the need 
for digital communication channels. These methods for assisting people include the 
acquisition of eye movement and gaze data by EOG, and communication by input-
ting information to information devices [37]. Certain studies have specifically 
addressed the real-time measurement of cancer through uvula motion and gaze data 
by EOG [38, 39].

5.4  �Development of an Index for Evaluating VIMS Using 
Gaze Data

In the following sections, we introduce studies on the development of an evaluation 
index for visually induced motion sickness (VIMS) using eye gaze data.

VIMS is considered as a type of agitation illness that is thought to be caused by 
the disharmony between visual information and the vestibular system, such as the 
tricuspid canal. Therefore, the eye movement control system is expected to be 
involved. The physical symptoms of VIMS include feeling unwell, nausea (upset 
stomach), dizziness, and vertigo when standing up. The indices used to evaluate 
VIMS are the results of simulator sickness questionnaires (SSQs), which are the 
main evaluation method, and measurements of the gravity center sway of the par-
ticipants while standing [40, 41]. It is also known that if motion sickness causes 
unsteadiness, rotational eye movement will occur in the direction opposite to the 
unsteadiness, so that the individual’s eyes do not tilt the field of view [14]. This 
rotational eye movement can be used as a physiological index of VIMS, and evalu-
ations have been carried out based on electromyographic data from near the eyes. 
Furthermore, a method for evaluating nausea based on EGG measurements is cur-
rently being studied as a new physiological index. However, studies using physio-
logical indices have not obtained consistent results for the complex changes that 
occur with the progression of motion sickness. As electrodes must be attached to 
test participants and specialized equipment must be used to obtain electromyograms 
or EGGs, these options are only feasible in limited circumstances. Although SSQ-
based introspective reports permit evaluations with a considerable amount of lib-
erty, in certain cases where the symptoms of VIMS have progressed to the point of 
subjective assessment, such symptoms persisted for approximately a week.
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5.4.1  �VIMS in Driving Simulator

With the increasing number of elderly drivers on roads, the prevention of accidents 
involving elderly drivers has become a serious challenge. Research on elderly driv-
ers includes studies on their visual and cognitive functions as well as their driving 
characteristics to help them to drive more safely. While research on elderly drivers 
primarily involves actual vehicles on ordinary roads, several studies using driving 
simulators (DSs) exist. The merits of experiments using DSs include a low risk of 
accidents or other operational problems, easy setting and reproduction of specific 
conditions and situations, and the ability to adjust the experimental conditions. In 
contrast, the demerits of using DSs include the occurrence of VIMS, lack of a sense 
of reality, and high cost. In recent years, the performance of DS hardware has 
improved and its cost has decreased; thus, the reality and cost problems are gradu-
ally being resolved, but an effective VIMS prevention measure has not yet been 
developed. Inversely, as the field of view expands, the symptoms of VIMS are inten-
sified. Therefore, as display screens become larger, the risk of VIMS may also 
increase. When a DS experiment is performed, it is necessary to detect VIMS pre-
cursors promptly before the symptoms become severe.

The use of a noncontact eye-tracking system is considered a low burden method 
for measuring biological signals. The goal of this study was to develop a VIMS 
evaluation index that uses a noncontact eye-tracking system for DS experiments.

As rotational eye movement is caused by unsteadiness resulting from VIMS, the 
following hypotheses are presented.

Hypothesis 1: VIMS symptoms occur; the locus of the eye-tracking data lengthens.
Hypothesis 2: VIMS symptoms occur; the eye-tracking data are diffused.

The participants were nine elderly people who had visual and balance functions 
that did not interfere with their daily life. The gaze data were measured at rest before 
and after DS driving (5 min of driving, 5 trials). The resting gaze data were obtained 
by the participants gazing at the center of the DS screen for 1 min during the mea-
surement. SSQs were conducted before and after the start and end of the experiment.

The instrument used for measuring the gaze data and the analysis software were 
the Tobii Pro X2–30 (sampling rate: 60 Hz) and Tobii Pro Studio (ver. 3.3.2), respec-
tively. The gaze data were plotted corresponding to the resolution (640 × 480 pixels) 
of the scene camera (Logitech HD Webcam C270).

The participants were divided into two groups based on the SSQ results. One 
group experienced VIMS during the DS driving (4 people, average of 79.0 years 
old). The other group did not experience VIMS during the DS driving (5 people, 
average of 71.2 years old).
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5.4.2  �Evaluation of VIMS Using Gaze Data

Figure 5.1 presents the calculation results of the total locus length for each partici-
pant based on the eye-tracking data at rest to determine the average for each case of 
“no previous or previous experience” of VIMS before and after (pre-/post-) DS driv-
ing. The total locus length results indicate that, for both the pre-DS and post-DS 
driving, the total locus length data were longer for those with than for those without 
previous experience of VIMS. Furthermore, among those without previous experi-
ence, no difference was observed between the total locus lengths of the pre-DS and 
post-DS driving. However, among those with previous experience, the total locus 
length tended to be longer for the post-DS driving (p < 0.1).

Similar to the total locus length, the sparse density was calculated based on the 
eye-tracking data to obtain the average for each set of experimental conditions, as 
illustrated in Fig. 5.2. The sparse density is a quantification index that is represented 
by a scatterplot of the data on a plane, and the diffusion of the data increases its 
value. In the sparse density results, the post-trial value was higher than the pre-trial 
value for both the participants with and without experience of VIMS. Among those 
without any experience of VIMS, no difference was observed in the sparse density 
between the pre-DS and post-DS driving results. Among those with previous expe-
rience of VIMS, the sparse density value was significantly higher after the DS driv-
ing (p < 0.05).

The two hypotheses concerning the results of VIMS symptoms were confirmed: 
the loci of the eye-tracking data were lengthened and the eye-tracking data were 
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diffused. Moreover, the experiments demonstrated the usefulness of sparse density 
as a quantification index for eye-tracking data in evaluating VIMS (Fig. 5.2).

The results of the total locus length in the eye-tracking data revealed that the 
locus was longer after the DS driving in the group with previous VIMS experience, 
suggesting that among elderly people who are susceptible to VIMS, the unsteadi-
ness of the line of vision may have been normalized.

Regarding the application of the findings of this study, it is believed that if an 
eye-tracking data-based VIMS evaluation index can be used, it will be easier to 
detect VIMS caused by DS operations, thereby permitting detection of the symp-
toms while they are still at the developmental stage. Furthermore, by coding the 
VIMS evaluation index algorithm into a program, it will be possible to develop a 
real-time automatic VIMS detection system to help to reduce the load on partici-
pants after viewing stereoscopic motion images or while wearing head-mounted 
display devices. Moreover, the findings will not be limited to VIMS; they can also 
be applied to the treatment of disorders relating to rotational eye movements 
(nystagmus).

5.5  �Conclusions

The prevention of VIMS and the treatment of nystagmus disorders are important 
topics in the field of hygiene. In this chapter, we have outlined the types of eye 
movements and have introduced several methods for measuring eye movements. 
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The use of gaze data is a highly effective method for acquiring biological signals. In 
the next step, gaze data are expected to be used for evaluating the performance of 
new human–machine interface devices as in VR and AR.
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Chapter 6
Electroencephalography (EEG): EEG 
as a Tool to Improve QOL and Maintain 
Healthy Brain

Ryohei P. Hasegawa

Abstract  This chapter reviews the recent progress in EEG technologies. We 
focused on EEG-based brain–machine/computer interfaces, especially the use of 
the event-related potential (ERP) as a Mind Switch for communication aid as well 
as cognitive assessment/training.

Keywords  Brain–Machine/Computer Interface · Event-related potential  
Communication aid · Cognitive assessment · Cognitive training

6.1  �Introduction

Recently, there has been a worldwide interest in the development of neurotechnol-
ogy. One of the representative fields of study is the brain–machine/computer inter-
face (BMI/BCI), a device that translates neuronal information into commands 
capable of controlling external devices. With the use of BMI, telepathy and psycho-
kinesis are no longer science fiction at this date.

The big movement in BMI research was triggered by advancements in invasive 
BMI that controlled prosthetic devices such as robot arms by the signals from the 
multielectrode arrays inside the brain [1, 2]. Non-invasive BMIs, on the other hand, 
are expected to accelerate the practical implications of BMI [3]. The most typical 
non-invasive BMI uses scalp electroencephalography (EEG). Although EEG-based 
BMIs widely share the accumulated knowledge and experience from basic and clin-
ical studies, they also import new ideas and technologies from developing fields 
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such as AI, robot technologies, and IoT. Here, we discuss the effectiveness of imple-
menting EEG-based BMIs to address current social problems.

6.2  �Social Problems

One of the implementations of EEG-based BMI is a device for patients in need of 
communication aid. People with motor dysfunctions have difficulty not only in 
activities of daily living but also in conveying their thoughts through words and 
gestures (Fig. 6.1). Cerebrovascular diseases (Strokes), traumatic brain/neck inju-
ries, and motor neuron diseases are the main causes of most motor disorders. If the 
dysfunction of the patient is severe and specific to motor function, they can be in the 
locked-in syndrome, or locked-in state (LS).

LS is a catastrophic condition, in which a patient is conscious but cannot com-
municate due to paralysis of voluntary muscles [4]. In some cases, LS patients with 
brainstem injury can barely communicate through eye movements and blinking, but 
most have no such abilities. Therefore, LS patients are often misdiagnosed as coma 
or vegetative.

Such an example was well described in the autobiography “Ghost Boy: The 
Miraculous Escape of a Misdiagnosed Boy Trapped Inside His Own Body” by 
Martin Pistorius. The author was diagnosed as vegetative at the age of 12, and 
doctors and his parents thought he was totally unconscious for years. But in fact, for 
13 long years, he was in the LS; he was conscious, unable to let the outside world 

Fig. 6.1  Communication needs of people with severe disabilities
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know that he was actually there. In his TED talk, he says “people abused me physi-
cally, verbally and sexually… My mother turned to me and told me that I should 
die.” Such cases like Martin’s are nothing so rare. As a matter of fact, some studies 
even show that up to 43% of patients diagnosed as vegetative were reassessed as 
having a certain level of consciousness [5]. The critical problem lies in the method-
ology of the current diagnosis that is dependent on the subject’s motor ability.

Owen and his coworkers have been focusing on patients who have been diag-
nosed as vegetative or minimally conscious. They used functional magnetic reso-
nance imaging (fMRI) to monitor the brain activity of these patients in order to 
examine the activity patterns of imagination [6, 7]. The patients were tested on their 
capability to answer yes-or-no questions by imagining playing tennis for yes, navi-
gating the house for no. In addition, Owen’s group has extended their fMRI meth-
ods to EEG, in which motor imagery was shown by reductions in the power of μ 
(about 7–13  Hz) or β (about 13–30  Hz) frequency bands over topographically 
appropriate areas of the motor cortex [8].

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), are a group 
of progressive neurological disorders that selectively degenerate motor neurons in 
the brain and/or spinal cord. Patients of these diseases also require communication 
aid, as they often develop the totally locked-in state (TLS) after the minimal com-
munication state (MCS) [9, 10].

Augmentative and alternative communication (AAC) has been implemented 
mainly with MCS patients for decades. A typical example of AAC is an analog com-
munication board that consists of letters, words, phrases, and pictograms. Patients 
without verbal communication skills use this by physically pointing to one of the 
desired options on the board. On the other hand, recent computer-based communi-
cation boards allow severer patients with less motor ability to use a single button 
switch to satisfy the same purpose. Although these AACs offer an effective com-
munication tool for MCS patients to socially interact with the community, they are 
not available for some patients. TLS patients need a totally body-free technology, 
where a switch can be elicited just by thinking. This is where the BMI technology 
we call the “Mind Switch” comes in handy.

6.3  �Communication Aid by the EEG

The concept of the Mind Switch is a BMI communication tool for TLS patients. 
This device should allow the user to control a high-tech communication board in the 
auto-scanning mode, just by intention in their brain. EEG is an effective neural sig-
nal for the use in noninvasive BMI (Fig. 6.2). Although oscillatory EEG activity 
(basic rhythms) is widely used in clinical and academic fields, we focused on a 
time-locked EEG activity called event-related potential (ERP) [11] as the 
Mind Switch.

ERP is a small potential change in the scalp that can be recorded using EEG. This 
phenomenon appears aligned to the onset of an event such as a sensory stimulus or 
a motor act. ERPs reflect cognitive processes, especially a temporal change in 
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attention. This means that the Mind Switch can be intentionally be “pushed” by 
using ERP to operate the AAC system.

One of the most famous examples of BMI systems using ERP is the “P300 
speller” [12, 13]. The P300 speller is a virtual typewriter that uses the cognitive 
component of the ERP called P300 [14], derived from characters that flash ran-
domly in a matrix of 6 × 6 filled with letters and commands. When the correspond-
ing row or column with the target cell is highlighted, a P300 signal will be elicited. 
The original study with healthy volunteers suggested that subjects can communicate 
at the speed of 12.0 bits (2.3 characters per minute).

So far, many studies using a variety of experimental and analytical methods have 
been conducted to improve the performance of the system. Patient studies have also 
been conducted with ERP-based BMI [15–23]. However, it is difficult for such sys-
tems to leap out of the lab [24, 25], and the potential end-users and their families 
cannot benefit from the systems in their daily life.

6.4  �Development of the Neurocommunicator

Recently the author and the colleagues have extended the techniques not only of the 
P300 speller but also our analytical methods in neurophysiology [26–28] to develop 
the “Neurocommunicator®” (NC), which was designated to become a practical BMI 
system (press released at 2010/03/29) (Fig. 6.3) [29]. The users focus on one of the 

Fig. 6.2  Mind Switch enables locked-in patients to respond to others

R. P. Hasegawa



61

eight pictograms (simplified drawings of medical, nursing care, etc.) in a 3  ×  3 
matrices (excluding the center) on a monitor. After the system starts, each picto-
gram is flashed at 8 Hz, displaying four Japanese characters (e.g., “Ko-Re-Ka-Na”), 
which means “This one?” in English. An ERP response will be observed when the 
user intentionally reacts to the flashed target in their mind. After some repetitions, 
the target pictogram will be decoded from the EEG data.

The chosen message is friendly and clearly conveyed by the animated CG avatar, 
which can be selected from several types depending on the generation and the gen-
der of the user. Although the traditional AAC system expresses the message only by 
artificial voice, we believe that the CG avatar has a positive effect on reminding the 
existence of the personality and dignity of the MCS and TLS patients. We have 
extended the system so that a small humanoid robot can express the message by its 
dynamic gesture and artificial voice [30]. The robot avatar can also work, on behalf 
of the users, for using tools for example.

There are three core technologies that highlight the NC: (a) “Neurorecorder”, (b) 
“Virtual Decision Function,” and (c) “Hierarchical Message Generation System.” 
The details are as follows:

	(a)	 Neurorecorder is one of the basic hardware of the NC to obtain the EEG data. 
The Neurorecorder consists of a custom-made plastic headgear, a small EEG 
amplifier attached to the headgear, the electrodes connected with the amplifier 
via lead cables, and the shield cover to remove electrical noise. The headgear 
localizes the electrode positions around the top of the head; eight signal elec-
trodes (ID1@FC1, ID2@FC2, ID3@C3, ID4@Cz, ID5@C4, ID6@CP1, 

Fig. 6.3  ERP-based BMI, “Neurocommunicator” that uses Mind Switch

6  Electroencephalography (EEG): EEG as a Tool to Improve QOL and Maintain…



62

ID7@CP2, and ID8@Pz) and one earth (ground) electrode (@CPz) were 
selected in the 10% (10–10) system (Refs). A common reference electrode is 
positioned on a neutral point (earlobe). While conductive gels are used for the 
eight signal electrodes (special structure patented in Japan) and the earth elec-
trode, a disposable electrode with solid gel is used for the reference. It usually 
takes about 5 min to set the system to start recording, and another 5 min for 
calibration.

	(b)	 Virtual Decision Function (VDF) is a basic analytical method of the NC for 
high-speed and high-accuracy decoding. The VDF was originally designed to 
reflect the continuous progress of binary decisions on a single trial basis of 
neuronal activities of the superior colliculus in the primate brain [26–28]. We 
have applied the VDF to the EEG signals to develop a high-speed version of 
the Neurocommunicator with the same level of accuracy. The VDF scores 
were obtained by multiplication of the success rate in the training/calibration 
session and the accumulative linear discriminant analysis scores in each block 
of the test (real-time) session. The pictogram with the VDF score that first 
reached the threshold is regarded as the target (user’s choice). The advantage 
of this method is to end the session early by flashing the minimum number of 
pictograms.

	(c)	 Hierarchical Message Generation System is an example of applications for 
the NC.  This system enables the user to convey various messages quickly. 
Although the number of pictograms for the single choice is restricted to eight, 
the user can choose as many as 512 pictograms by three consecutive selec-
tions. First, the user selects the big categories of the messages they want to 
convey. Second, the user selects small categories of the messages under the 
selected big category. Finally, the user selects the concrete message under the 
selected small category. We are recently attempting to facilitate this process 
by introducing an AI system. By letting the AI narrow down possible choices 
of pictograms from the recognition of questions given by the caretakers or 
family members, this Hierarchical Message Generation System could become 
more efficient.

When conducting evaluation tests for the NC, we sometimes encountered 
cases where the ERP response was too weak for detection, especially when the 
subjects (mainly ALS patients) were either elderly or long-term bedridden. As 
previous tests showed that NC’s accuracy on decoding the target was sufficiently 
high in healthy people, we suspected the involvement of a cognitive decline. In 
fact, the decoding accuracy was very low in patients who could not count the 
number of flashes (“This one?”). In the initial stage of development, we over-
looked to confirm if the low decoding accuracy was a result of motor dysfunction 
or another disorder. It is now clear that the risk of dementia should be present in 
any elder patient, and that the risk of disuse syndrome should be present in any 
long-term bedridden patient. Therefore, the difficulty exists not only in develop-
ing the communication aid itself but also in understanding the user’s cognitive 
ability.
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6.5  �Necessity of Cognitive Assessment

In developed countries that have become a super-aging society, the problem of 
dementia such as Alzheimer’s disease is becoming more serious, affecting eco-
nomic costs and societal burden. World Alzheimer Report 2015 estimated that 74.7 
million people around the world will be living with dementia by the year 2030 [31]. 
At this stage, where the prospects for the development of definitive treatments have 
not yet materialized, cognitive assessment is also required for the early diagnosis of 
dementia from a viewpoint of its preventive intervention as soon as possible.

Mild cognitive impairment (MCI) is a clinical condition between normal cogni-
tion and dementia, causing a slight but noticeable and measurable decline in cogni-
tive abilities. While people in MCI have an increased risk of developing dementia, 
some never get worse and eventually get better. Although presently available objec-
tive diagnostic resources such as volumetric magnetic resonance imaging (MRI), 
positron emission tomography (PET), molecular imaging (amyloid and tau PET) 
have been regarded as potential biomarkers for MCI, these markers are relatively 
insensitive, expensive, and/or invasive. Therefore, EEG analysis may be a good can-
didate for this purpose, at least, in terms of low cost, non-invasiveness, and wide-
spread availability [32]. A cognitive assessment system that does not require motor 
response can also be useful for people with severe motor deficits because they were 
exempt from existing neuropsychological tests that require answers by language or 
physical response [33, 34]. Of a variety of EEG systems to detect cognitive decline, 
we focused on the ERP methods below.

Most previous studies on the relationship between ERP and dementia reported 
increased latency in AD and MCI patients compared to age-matched healthy con-
trols [35, 36]. Besides, lower amplitudes have also been found in patient groups 
[37–39]. Instead of these evidence, the EPR assessment procedures are not stan-
dardized and not included in clinical routine, probably because of the great vari-
ability of sensitivity and specificity of ERP measurements.

6.6  �Development of the Neurodetector

When we noticed a cognitive decline in patients with severe motor deficits, we 
started thinking to turn the NC’s disadvantage into an advantage; our idea is to use 
the decoding accuracy as an indicator of cognitive function, especially selective 
attention. Biomarker of selective attention, which is reflected by the ERP response 
to the target, should be sensitive to the cognitive decline in the MCI patients too. 
Therefore, we started the development of the EEG-based cognitive assessment sys-
tem called the “Neurodetector” (ND). NC’s core technologies are compatible with 
the ND (Fig. 6.4). Furthermore, the market size of ND is bigger than that of NC, 
which may facilitate the implementation of the NC under the influence of the 
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ND. The ND will also contribute to the judgment and adjustment of the introduction 
of the NC to new patients.

We have always tried to make the decoding accuracy in the NC as close to a 
100% to develop a reliable communication system. On the other hand, the indicator 
of cognitive assessment in the ND is not necessarily close to the highest score for 
people with averaged cognitive abilities. Therefore, we focused on a single ERP 
response instead of accumulating multiple responses.

As a standard set of the ND, we prepared a test battery with three cognitive tasks 
that allow us to analyze the detailed attentional processes in each subject. In the 
main task “target selection task,” the subject was required to respond to the appear-
ance of the target, which was sequentially presented, mixed with seven kinds of 
non-targets. We also used control tasks, the “target only task” without any non-
targets, and the “oddball target task” with a single kind of frequent non-target (the 
popular paradigm for ERP studies). Unlike the target-only task, the subject was 
requested to discriminate the target from the distractors in the oddball target and the 
target-selection tasks. Besides, the target-selection task requires top-down attention 
with a higher concentration while the oddball task does not necessarily require 
much concentration because the subject can find the target by the bottom-up atten-
tion automatically drawn by a sudden change of the environment. Therefore, the 
task is in an order of difficulty, from the target-only task, oddball-target task, and 
target-selection task.

Fig. 6.4  Application of the “Mind Switch” against dementia
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We have observed 86 healthy subjects and the differentials of ERP responses 
between the three types of tasks. Although the ERP seemed to be different among 
tasks, it was difficult to evaluate how strongly the ERP responded based on its wave-
form. On the other hand, the change of decoding accuracy based on a single ERP 
response indicated the gradual increase of task difficulty. This implies that the ERP 
responses within a subject were dependent on their confidence level of the task. 
These results suggest that the individual difference between subjects of the decod-
ing accuracy might be a good indicator of the level of cognitive performance reflect-
ing individual differences.

Our future plan is to compare the decoding accuracy between patients and 
healthy volunteers. As stated above, some previous studies have shown that the 
average of the peak latencies, as well as the peak values were different among 
groups of healthy elderlies, elderly with MCI, and patients with AD. Although these 
studies did not examine the possibility of the categorization of each subject into 
groups (perhaps because of the excess overlap of peak values and peak latencies), 
the decoding accuracy by the ND might have the potential to predict the groups the 
subjects belong to.

6.7  �Development of the Neurotrainer

There have been efforts to develop intervention methods to maintain or improve 
cognitive function in healthy elderly and MCI patients [40, 41]. One of the possibili-
ties to address these issues is cognitive training [42]. This idea is dependent upon 
the hypothesis that exercising is good not only for the body but for the brain. 
Although this hypothesis is not fully supported with scientific evidence [43], the 
field of cognitive interventions is growing. Especially, the computerized cognitive 
training can be directed to a specific cognitive function; continually adjusted to 
individual user’s performance; be highly immersive and enjoyable; and provide 
instant quantitative feedback [44].

We focused on the feasibility of ERP-based cognitive training to prevent demen-
tia in elderly people. As the first step, we attempted to develop the “Neurotrainer” 
(Fig. 6.4) that utilized ERP responses as a Mind Switch to conduct cognitive tasks. 
We recorded the ERP data from 11 healthy non-elderly adult subjects during the 
oddball task with a game-like flashcard, giving feedback to the players depending 
on their level of ERP. All players produced strong ERPs and performed well at the 
level of about 83% success rate.

We also recorded the ERP data from 30 normal adults, including elderly people, 
for our research. Subjects performed a cognitive task as a competition with a paired 
player to select one of the eight gestures presented as the pictures on the PC moni-
tors as soon as possible. The correct prediction was linked to the feedback of the 
robot gesture such as shooting a basketball. Players produced strong ERPs and per-
formed well at about 85% success rate, regardless of their generation or gender. 
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These results suggest that the Neurotrainer could be a good candidate for cognitive 
training, which we plan to eventually commercialize as “bSports (brain-Sports).”

6.8  �Summary

As discussed so far, neurotechnology such as an EEG-based BMI has a large poten-
tial to facilitate the maintenance/improvement of brain health. Neuroscience is now 
evolving from the basics to innovative industries—Neurotechnology. 
Neurotechnology will soon be available in a variety of fields, including medical, 
personal health care, entertainment, marketing [30], and authentication [45]. For 
this future advancement, convenient systems to record and decode brain signals are 
crucial, and we believe that EEG will lead this field with its unique advantages.
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Chapter 7
Electromyography and Performance

Tomoki Shiozawa and Hiroki Takada

Abstract  Many people are staying home to prevent the spread of COVID-19 infec-
tions. The exercise is expected to prevent locomotive syndrome and enhance health 
promotion. Incidentally, the motion is driven by contraction/relaxation of muscles, 
which can be evaluated by the motion capture system and/or the surface 
Electromyography (sEMG). Now, the sEMG is known to be a noninvasive, uncon-
strained measurement that can be recorded simultaneously with the other bio-signal. 
In this chapter, a statistical procedure is herein introduced to evaluate the sEMG 
during the biofeedback training (BFT). We believe that the mathematical methods 
in this chapter will contribute to one of the nature and/or the basic techniques of the 
neuro-biofeedback and its training.

Keywords  Electromyography (EMG) · Sensor output evaluation (SOE) system · 
Biofeedback training (BFT) · Functional near-infrared spectroscopy (fNIRS)

7.1  �Introduction

The Italian physician L. Galvani showed the relationship between electricity and 
muscle contraction that occurs in the electric fluid that is carried to the muscles by 
the nerves. He coined the term animal electricity to describe the force that activates 
the muscles. One hundred fifty years after he determined their activation as being 
generated by an electric fluid that is carried by the nerves to the muscles [1], the 
mathematician N.  Wiener studied an artificial hand controlled by an electrical 
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current in the muscles. He proposed cybernetics [2], which focused on the myoelec-
tric (ME) potential of about −90 mV recorded as electromyograms. The ME poten-
tial in skeletal muscles is often measured and recorded. The bio-signals are known 
to be generated by the following mechanism [3, 4]:

	1.1.	 Form: Both ends of skeletal muscles are adhered to bones through tendons. 
Muscle fibers are 50–100 μm in diameter and are aligned longitudinally in a 
muscle cell. The fibers consist of muscular fibrils that are 1–2 μm in diameter 
and are composed of two types of filaments. A sarcomere is a unit of a muscle 
fiber in morphology; it is the region between disc-like Z bands that partition off 
the fibrils into two portions.

	1.2.	 Route: The (efferent) nerve impulse (action potential) from the primary motor 
cortex (M1) cooperates with the premotor area and is transferred to α-motor 
neurons in the spinal cord through pyramidal tracts, extrapyramidal tracts, and 
the brainstem. Moreover, it arrives at the motor endplate through the terminal 
axon and results in muscle cell membrane excitation. This excitation of the 
muscle cell membrane transforms both sides of the muscle fiber. The mem-
brane current is generated by the depolarization of the muscle membrane. 
Changes in the electrical potential (7–20 Hz) occur in the membrane current 
through the surrounding volume conductor. Muscular motion follows the 
above-mentioned bio-signal process.

ME potentials are induced by changes in nerve impulse firing patterns. Several 
muscle fibers controlled by a motor nerve are collectively called a motor unit (MU), 
several of which can be excited by nerve impulses, causing an MU action potential. 
The MU action potential measured on the skin’s surface is the surface ME potential 
and is observed at a site that is spatially distant from the local region where the MU 
action potential waves are generated. Moreover, the larger is the MU, the faster is its 
contraction speed and its fatigue accumulation [3]. Electromyography (EMG) is 
clinically employed to detect an anomalous MU.

Several electromyographic methods are currently used, but needle electromyog-
raphy (nEMG) and surface electromyography (sEMG) are most often applied. To 
physiologically evaluate electromyographic wave patterns for the detection of 
abnormalities, wave patterns obtained with nEMG or sEMG have been macroscopi-
cally examined, and subjectively judged by physicians.

	2.1.	 nEMG findings are used to classify a disorder as neurogenic or myogenic. In 
the case where a disorder is both neurogenic and myogenic, nEMG findings 
provide important information about whether the disorder is acute, sub-acute, 
or chronic [5]. However, a needle electrode probe is used, which is percutane-
ously inserted into the muscular tissue.

	2.2.	 sEMG findings are used for various evaluations, such as the classification of 
trembling for the diagnosis of involuntary motion, the diagnosis or differential 
diagnosis of dystonia and spasm, and the identification of involuntary constric-
tor muscles [4].

	2.3.	 sEMG is also used for the determination of the electric potential through a 
nerve conduction examination (this procedure is called evoked EMG). In 
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evoked EMG, the electrostimulation of peripheral nerves is performed percu-
taneously (Kimura, 1989). Nerve conduction study (often called a nerve con-
duction examination) (Fig. 7.1) can reveal several findings (Appendix).

The examination methods described, except for method (2.2), are invasive and 
cause severe pain in patients. “Smoothing” and “integration” refer to two ways of 
quantifying EMG energy over time. Smoothing refers to continuously averaging out 
the peaks and valleys of a changing electrical signal, and integration refers to mea-
suring the area under a curve over a period of time. These methods are used to 
examine the relative degree of muscular contraction and are also employed to pro-
vide parameters for the evaluation of muscular training conditions [6]. However, the 
results obtained are affected by the location of the measuring electrodes and the 
shape and size of the probes. As described above, this means that no algorithm for 
the quantification of the degree of muscular abnormalities or recovery has been 
established although EMG findings are macroscopically and subjectively evaluated. 
In this study, we applied the measurement parameters that have been developed for 
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Fig. 7.1  Nerve conduction study of the median nerve. M waves obtained from the abductor pol-
licis brevis muscle by stimulating the wrist and elbow joints. Motor conduction velocity = D/t

7  Electromyography and Performance



72

evaluating the average rectified sEMG (ARS) data obtained from perineal muscles 
during biofeedback training (BFT) for the treatment of dysuria [7] and evaluated the 
effects of this training [8, 9].

7.2  �Biofeedback Training

Kegel (1948; 1951) was the first to use BFT for the treatment of urinary inconti-
nence (UI), and it was observed that if the pelvic floor muscles were hypotonic, 
bladder suspension surgery was less effective for treating stress-related inconti-
nence [10, 11]. In order to improve the contractibility of the pubococcygeus portion 
of the levator ani muscle, Kegel invented the pressure perineometer [10, 11]. In the 
USA, at least 13 million community-living adults and more than 50% of all resi-
dents in nursing facilities suffer from UI [12]. The direct medical expenditure 
incurred for the care of these people is estimated to be >$15 billion annually, in 
addition to the $35.2 billion incurred annually for nursing home residents [13]. 
There is a consensus that in most cases, behavioral treatment modalities, including 
biofeedback, should be used before invasive modalities such as surgery.

7.2.1  �Instrument

A biofeedback instrument has three tasks to perform [13]:

	3.1.	 To monitor (in some way) a physiological process of interest
	3.2.	 To measure (objectify) what is monitored
	3.3.	 To present what is monitored or measured as meaningful information

EMG and biofeedback are often used simultaneously to handle movement during 
the procedure. Edmund Jacobsen commenced research at Harvard in 1908, and 
throughout the 1920s and 1930s worked to develop progressive muscle relaxation as 
an effective behavioral technique for the alleviation of neurotic tensions and many 
functional medical disorders [14]. He used crude electromyographic equipment to 
monitor the levels of muscle tension in his patients during the course of treatment. 
The classification of and historical perspectives on biofeedback applications can be 
found in reports by [15–17].

Temporal data are obtained using sEMG whose data is generally recorded by a 
computer at 2 kHz. The integral calculation was performed every 0.1 s. The average 
rectified sEMG (ARS) is calculated in real time and outputted. The subject is told to 
observe the outputted wave patterns and instruction signals, for instance the rectan-
gular waves with constant-second period, superimposed on the same display, and 
then intermittently and continuously contract the target muscles. Transient periods 
were also added to this rectangular wave before constant amplitudes as necessary 
[18, 19].
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7.2.2  �Training

The following outline summarizes the training steps:

	4.1.	 Exercise motion and posture were instructed.
	4.2.	 Away from the center of the target muscles, AMG electrodes were placed at 

intervals of a few centimeters, and subjects were asked to perform their maxi-
mum voluntary contraction. The average integral waveform of the surface 
EMG was calculated for this period of muscle contraction and muscular activ-
ity corresponding to α = 75% (third quartile) of maximum voluntary contrac-
tion was then estimated.

	4.3.	 Muscular activity corresponding to α% of maximum voluntary contraction 
was shown to the subject as the instruction signal and five cycles of intermit-
tent signals were provided for 5–40 s of contraction (gradual build-up during 
the first 0–20 second), hereafter referred to as the “transient period (TP),” fol-
lowed by 5–20 s of constant muscle activity, hereafter referred to as the “mus-
cle contraction period (MCP)” and then 5–40 s of relaxation (the first 5–20 s 
are referred to as the pre-rest and the last 5–20 s as post-rest).

These series of flows were carried out eight times in a row. The surface EMGs 
were not recorded for the first two or three periods of these series as a practice.

As above-mentioned, the EMG waveforms were rectified and smoothed in real 
time at 0.1 s intervals of integration. These integral waveforms were then shown to 
subjects in addition to the instruction signals (teacher signal). Noise was removed 
from the surface EMG by inserting an AC removal filter whose cut-off frequency for 
the high range cutoff filters were set at 1 kHz. The evaluation was performed through 
the following “sensor output signal evaluation system.”

7.2.3  �Evaluation

The sensor output evaluation (SOE) system, developed in 2006 [20], can evaluate 
the fitness of the teacher signal in BFT whose aim is not the completion of mere 
muscular training but is to enhance muscle control. The ARS were analyzed accord-
ing to the following mathematical algorithms of the sensor output signal evaluation 
system. Taking a mean of the ARS (MARS) as a threshold:

	5.1.	 The MARS value during the muscular relaxation period and the measurement 
parameters in the following terms (5.2)–(5.4) indicating the ARS shape were 
determined every cycle, and the ARS values obtained from the target muscles 
were evaluated.

	5.2.	 The maximum amplitude value was extracted and recorded.
	5.3.	 The continuous muscular contraction duration (time between the first and last 

maximal values in a cycle exceeding the MARS) was measured.
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	5.4.	 The time constant of the exponential decay curve fit to the maximal points dur-
ing the muscular contraction period in the BFT (all maximal values between 
the first and last maximal values exceeding the MARS in a cycle; β) were 
extracted as {xm(t)} and fit to the exponential decay curve

	
ˆ exp .x t C tm ( ) = -[ ]b

	

The numerical sequences of the four measurement parameters were calculated 
for each period in the teacher signals. However, a significant age correlation has 
been found in the parameter β determined at a certain repetition period [9, 21]. The 
relationship between the age of the subjects who had undergone sEMG and the 
values estimated in the seventh cycle were statistically examined to evaluate corre-
lations between parameter and age measurements.

7.3  �Visualization for Motion Performance

The motion is driven by the contraction/relaxation of muscles. Now, postural change 
and the performance can be evaluated by the simultaneous measurement of video 
cameras and the EMGs during the motion. We can note the visualization of the 
contraction/relaxation of muscles driving the motion performance [22, 23]. A part 
of these works, especially in [22], will be explained in the Chap. 10  in detail. 
Synchronous visualization of motion and cardiovascular performance indicators 
can reveal the relationship between changes in cardiovascular performance and 
motion during daily activities. In their visualization schematics, the motion is mea-
sured by the motion capture which is synchronized with the sEMG and 
Electrocardiogram. Here, we focus on the other visualization of the brain activity to 
control the motion performance.

7.3.1  �Brain Activity During the BFT

One technique for the noninvasive measurement of brain activity that has been 
developed in recent years is brain functional imaging using near-infrared spectros-
copy (fNIRS). With developments such as the miniaturization of diagnostic equip-
ment, brain science is developing rapidly and a variety of brain activities are being 
defined [24–26]. The fNIRS is less constraining to the subject than the other mea-
surement methods, such as functional magnetic resonance imaging (fMRI) and 
positron emission tomography (PET). In fact, previous work by the authors demon-
strated the possibility that specific “local movement” (masticatory movement in this 
case) stimulates activity of the prefrontal cortex [27].
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In conjunction with the last step (4.3), the optical brain function imaging device 
LABNIRS (Shimadzu Corporation, Kyoto) was used to measure Oxy-Hb concen-
tration (Co) and Deoxy-Hb concentration (Cd) at a sampling frequency of 17.5 Hz 
[18, 19]. A holder was placed on the subject’s head, with light-emitting/receiv-
ing probes.

Biometric data were obtained for the femoral rectus muscle in ten healthy young 
individuals (24.7 ± 4.5 years) with no abnormalities in the extremities and no past 
medical history of ear or nervous system disease. All subjects were about average 
size, and their body mass index (BMI) was distributed from 18 to 25 kg/m2. The 
experiment was fully explained to the subjects beforehand, and written consent was 
obtained. The experiment was approved by the Ethics Committee of the Department 
of human and artificial intelligent systems, Graduate School of Engineering 
University of Fukui (No. 2).

Subjects were asked to sit back on a chair (with four fixed legs) and to kick with 
their dominant leg against a belt, attached to the lower part of the chair (Fig. 7.2). In 
this example, femoral rectus muscles were target to evaluate the 
BFT.  Electromyography of examinees’ rectus femoris muscles and near-infrared 
spectroscopy were simultaneously conducted to investigate the relationship between 
BFT and local cerebral blood flow. It was found that the change in Co during the 
MCP was greater than that during the pre-rest. The influence of a kicking motion on 
brain functioning was confirmed. These findings suggest that BFT is effective in 
activating working memory. Also, the time series of the changes in the CBF during 

Belt

Electrodes

fNIRS
Fig. 7.2  An experiment 
image for Biofeedback 
training (BFT). In this 
case, the target muscle is 
set to be the femoral rectus 
muscles. Disposable 
electrodes are applied at an 
interval of several 
centimeters to the center of 
the femoral rectus muscles 
in the dominant leg
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the BFT showed a distribution that deviated significantly from the normal distribu-
tion [18].

7.3.2  �Mathematical Design for Bandpass Filters of the CBF

The BFT is also known as a countermeasure for patients with intractable epilepsy 
and a reduction method for mental stress [28–36]. However, a method for objec-
tively evaluating does not have been established yet whereas subjective evaluation 
and findings were stated in the previous study. Also, there is no study to evaluate the 
cerebral hemodynamics and investigate the cerebral blood flow regulation during 
the BFT. According to our previous consideration in the bio-signal, it is necessary 
to evaluate a robust bio-system by using mathematical models because the changes 
in the system can be hardly found out. Moreover, it is important to set the cut-off 
frequency to denoise in the bio-signal, especially in the brain function analysis. 
However, there is no prior research that defined the cut-off frequency, based on the 
mathematical consideration. Therefore, we herein focused on the mathematical 
design of the cut-off frequency f0 in the low-pass filtering.

The authors analyzed time sequences of the Co. The time series were smoothed 
by the low-pass filtering [19]. We can {xt}. Translation errors Etrans, measuring the 
degree of determinism for the mathematical model of the time series [37], were 
herein estimated for each time series in addition to sequences of their temporal dif-
ferences by the Double Wayland algorithm [38, 39]. Also, we compared Etrans for the 
abovementioned time series with their surrogate sequences that were generated by 
the Fourier shuffle (FS) algorithm [40, 41]. Setting the cut-off frequency to be 
1 ≥ f0 ≥ 0.3 Hz, we have succeeded in findings that the mathematical model of the 
cerebral blood flow is regarded as a stochastic differential equation. Setting the cut-
off frequency in the low-pass filtering to be less than 0.2 Hz, noise reduction is 
considered to be more effective than the other cases mentioned above. Also, we 
have succeeded in findings of the nonlinearity for hemodynamics in the cerebral 
blood flow on the frontal lobe during the muscle contraction and the post-rest. 
However, the cerebral blood flow in the frontal lobe is not always generated by the 
stochastic process as in f0 ≤ 0.2 Hz.

We believe that the mathematical methods in this chapter will contribute to one 
of the nature and/or the basic techniques of the neuro-biofeedback and its training 
[42, 43]. It is expected that this neuro biofeedback technique is applied to mindful-
ness meditation, which is introduced in the last chapter. Mind, body, and brain in 
humans are inseparable systems, and mental hygiene, which will be discovered in 
the future, is an uncharted territory.
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�Appendix

	1.	 Decay of nerve conduction velocity (demyelination)
	2.	 Attenuated amplitude of evoked electromyogram (axonal motor neuropathy)
	3.	 Attenuated amplitude of sensory nerve action potential (axonal sensory 

neuropathy)
	4.	 Temporal dispersion of electromyogram (existence of demyelinating disorder)
	5.	 Attenuation (myasthenia gravis) or amplification (Lambert–Eaton myasthenic 

syndrome) of evoked potential due to repetitive stimulation
	6.	 Conduction block (demyelination)
	7.	 Delay of central motor conduction time (motor conduction disturbance of central 

nervous system)
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Chapter 8
Polysomnography

Fumiya Kinoshita, Masumi Takada, and Meiho Nakayama

Abstract  Polysomnography (PSG) is a polygraph test that simultaneously records 
multiple biometric information such as brain waves, eye movements, electromyo-
grams, respiration, and electrocardiograms during sleep over time. PSG is used in 
the diagnosis of sleep disorders and measurements on treatment effects as it can 
comprehensively and objectively evaluate changes in sleep stages and physiological 
phenomena during the course of overnight sleep. Current PSG inspection equip-
ment can automatically evaluate accompanying events such as sleep stage or respi-
ratory events. However, currently, evaluations from automatic analysis are not 
reliable, and inspection decisions are required. In this chapter, we present our efforts 
toward implementing automatic REM sleep without atonia (RWA) decisions with 
REM sleep behavior disorder (RBD).

Keywords  Polysomnography (PSG) · REM sleep behavior disorder (RBD) · REM 
sleep without atonia (RWA) · Automatic analysis · Support vector machine (SVM)  
Convolutional neural network (CNN)
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8.1  �Introduction

Sleep is not just an activity that allows recovery from fatigue but also essential 
for maintaining physical and mental health. Several research studies have reported 
interesting associations between sleep and health [1–7]. Studies involving various 
generations, from newborns to the elderly, have consistently reported that sleep is 
influenced by developmental stages and individual internal/external environments, 
and that sleep duration actually decreases with age once we reach adulthood [8].

Scientific studies have classified sleep into two major types: REM and non-REM 
sleep. Eugene Aserinsky and Nathaniel Kleitman, at the University of Chicago, 
first discovered REM sleep when they conducted experiments that measured the 
brain waves and eye movements during sleeping [9]. Prior to the discovery of REM 
sleep, the prevailing belief on the sleeping mechanism was that the sleeping state 
in humans and animals was uniform throughout the night. Hence, the discovery 
of REM sleep was a breakthrough that overturned conventional wisdom. Subjects 
in this experiment exhibited brain waves similar to a wakeful state and rapid eye 
movement (REM) during sleep, despite appearing to be a deep sleep. As a result, 
the sleep during this state was termed as REM sleep. Shortly thereafter, it was dis-
covered that two types of sleep were experienced by humans and animals: REM and 
non-REM. Further investigations found that sleep as an activity actually consisted 
of alternate and cyclical appearances of these two forms of sleep. Non-REM sleep 
occurs immediately after falling asleep, and only after approximately 1 h of deep 
non-REM sleep does REM sleep appear. Non-REM and REM sleep subsequently 
alternate. This cycle is referred to as the sleep cycle, and it lasts approximately 
80–100  min [10]. The percentage of REM sleep in the total sleep duration was 
approximately 50% in newborns, but it became roughly equivalent to those in adults 
(approximately 20%) by the age of 3 years.

Age-related mental, physical, and environmental changes increase the risk of 
insomnia and sleep disorders [11]. Neural mechanism disorders associated with 
REM sleep often underlie parasomnia, which frequently occurs in old age, and 
there is a concern that a serious central nervous system disease may be present 
in the background. Here, one such parasomnia includes REM sleep behavior dis-
order (RBD) [12, 13]. Body movement normally cannot occur during REM sleep 
owing to the behavioral characteristics of the muscle tone suppression mechanism. 
However, dysfunction of the muscle tone suppression mechanism along with RBD 
can cause complex and violent movement, such as swinging the wrists, punching, 
and kicking, despite being in REM sleep. Patients who are immediately awoken 
after the appearance of RBD immediately become conscious and can talk in detail 
about their dream experiences; hence, it is believed that RBD manifests itself as 
movements based on events during their dreams. Such abnormal behaviors are often 
violent, and there is a risk that they may hit furniture and hurt themselves or be a 
risk to their families or partners. For these reasons, RBD requires quick treatment. 
Polysomnography (PSG) is a method for objectively evaluating the sleep state. PSG 
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allows the capturing of the depth and course of overnight sleep. It also records vari-
ous biometric information while capturing autonomous nervous functions and other 
accompanying phenomena during the sleep cycle.

8.2  �Polysomnography

PSG is a polygraph test that simultaneously records multiple biometric information 
such as brain waves, eye movements, electromyograms, respiration, and electrocar-
diograms during sleep over time. PSG is the gold standard for diagnostic inspec-
tions of sleep-related diseases in sleep medicine and treatment [14, 15]. PSG is also 
used in the diagnosis of sleep disorders and measurements on treatment effects as 
it can comprehensively and objectively evaluate changes in sleep stages and physi-
ological phenomena during the course of overnight sleep [16, 17].

Routinely performed PSG currently records brain waves, electrooculograms, 
mentalis muscle electromyograms, electrocardiograms, bilateral anterior tibial 
muscle electromyograms, respiration, snoring, body position, and arterial oxygen 
saturation. The standard PSG inspection methods and sleep-stage evaluations were 
standardized by Rechtschaffen and Kales in 1968 and became widespread [18], but 
the scoring manual created by the American Academy of Sleep Medicine (AASM) 
in 2007 has also witnessed widespread use in recent years [19].

Records of brain waves, electrooculograms, and mentalis muscle electromyo-
grams are needed for sleep-stage evaluation, according to the latest AASM scoring 
manual [20]. Sleep stage is classified across five stages, with the notations of stage 
W (wake), stage N1, stage N2, stage N3, and stage R (REM). Evaluations are con-
tinuously performed every 30 s from the first section (epoch) at the start of inspec-
tion, and one of the sleep stages is assigned to each epoch. Sleep stages that occupy 
a larger proportion within the epoch are assigned when there are two or more sleep 
stages in a single epoch.

Current PSG inspection equipment can automatically evaluate accompanying 
events such as sleep stage or respiratory events. However, currently, evaluations 
from automatic analysis are not reliable, and inspection decisions are required. 
Meanwhile, there may be cases where variation in the results may occur according 
to the clinical laboratory technician in charge of inspection decisions, which can be 
problematic as these decisions require large amounts of time and experience.

8.3  �RBD Evaluations Based on PSG Findings

One of the defining features of RBD is the occurrence of REM sleep without atonia 
(RWA). This is believed to be caused by the inhibition of muscle activity suppression 
for some unconfirmed reasons during REM sleep. Historically and traditionally, it 
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was believed that responsible lesions tend to exist in the brain’s stem, which is the 
part of the brain that controls human arousal and sleep, and it has been indicated that 
its progression is related to the progression of Parkinson’s disease and Lewy body 
dementia [21]. The confirmation of abnormal behavior during video monitoring in 
PSG and the frequency of RWA occurrence during REM sleep based on physiologi-
cal indicators are essential diagnostic items in the diagnosis of RBD. Muscle activ-
ity caused by RWA is normally classified into two types: continuous muscle activity 
(tonic activity) and excessive transient muscle activity (phasic activity) [20]. The 
AASM scoring manual recommends the evaluation of RWA according to the fol-
lowing definitions:

•	 Tonic activity: When the amplitude of chin-EMG is continuously higher than the 
minimum amplitude during non-REM sleep for at least 50% of the total time in 
one REM sleep epoch.

•	 Phasic activity: When one REM sleep epoch is divided into ten consecutive small 
epochs lasting 3 s, with excessive transient muscle activity bursts included in at 
least five (50%) small epochs. The excessive transient muscle activity bursts 
mentioned here refer to those whose duration is 0.1–5.0 s and amplitude is more 
than four times that of background EMG activity.

The recorded results are generally read and interpreted during inspection deci-
sions by clinical laboratory technicians when PSG is used to diagnose sleep disor-
ders. However, no clear criteria have been established for these decision methods, 
and many decision criteria other than those of the AASM scoring manual have been 
proposed [22, 23], with no internationally unified rules having been established. 
Given that the decision criteria are not clear, RWA decision software is also not 
commercially available, and clinical laboratory technicians must conduct inspection 
decisions in actual clinical settings. RWA is not only considered to be an RBD-
specific finding but also one that reflects the progression of pathological conditions.

8.4  �Efforts Toward Automatic Analysis

We seek to develop an RWA decision program that simulates clinical laboratory 
technicians by considering the inspection decisions by clinical laboratory techni-
cians and the decision results from the proposed automated algorithms. Thus far, we 
have compared and investigated the two machine learning methods of support vec-
tor machine (SVM) and convolutional neural network (CNN) for RWA decisions 
[24, 25]. In the following sections, we present our efforts toward implementing 
automatic RWA decisions.
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8.4.1  �Acquisition of Experimental Data

We used the measurement data on 12 men and women (average age ± standard devi-
ation: 72.7 ± 1.7 years) who have visited the Nagoya City University Hospital Sleep 
Treatment Center for PSG inspection owing to suspected REM sleep behavioral 
disorders. The Philips Respironics Alice 5 was used as the measurement device, 
and each physiological indicator was measured at a sampling frequency of 200 Hz. 
The chin-EMG during REM sleep measured from the PSG of the 12 subjects was 
used as the experimental data. The chin-EMG during REM sleep was divided into 
30  s intervals, and RWA decisions were taken based on visual inspection by an 
individual clinical laboratory technician. The total acquired number of epochs of 
the chin-EMG during REM sleep was 2094 epochs (total of 1047 min). Figure 8.1 
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Fig. 8.1  Example of epochs labeled based on inspection decisions. (a) No abnormalities, (b) tonic 
activity, and (c) phasic activity
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presents an example of the results of the RWA inspection decisions made by the 
clinical laboratory technician. Muscle activity was not observed in the electromyo-
graphic waveforms where RWA was not expressed, whereas the electromyographic 
waveforms where RWA was expressed exhibited intense muscle activity, even dur-
ing REM sleep. Next, a breakdown of the epochs labeled by the clinical laboratory 
technician are shown in Table 8.1.

8.4.2  �Pre-processing of Time-Series Data

It is desirable that the data used have no individual differences between subjects 
when discriminating between time-series data using machine learning. However, as 
the data used in this experiment were time-series data of surface electromyograms, 
the amplitude fluctuations were influenced by muscle mass, subcutaneous fat thick-
ness, and electrical resistance of the skin. Hence, the preprocessing method that we 
implemented for the time-series data is shown below:

	 I.	 The epoch with the smallest variance in the non-REM sleep period was extracted 
and then normalized by subtracting the average value.

	II.	 A value that was twice the standard deviation of the epoch extracted from I was 
calculated.

	III.	 Each epoch during REM sleep was normalized by subtracting the average value.
	IV.	 The time-series data for each epoch during REM sleep was divided by the value 

calculated in II.

A typical example of the epoch waveform before and after pre-processing is 
presented in Fig. 8.2. An example of the pre-processing applied to that shown in 
Fig. 8.2a is presented in Fig. 8.2b, and an example of the pre-processing applied to 
that shown in Fig. 8.2c is presented in Fig. 8.2d.

Furthermore, an average rectified value (ARV) is often used for the pre-processing 
of surface electromyograms. ARV is a waveform that is obtained by taking the abso-
lute value from the signal amplitude and smoothening it by integrating (or apply-
ing a low-pass filter) over a given time range. A particular benefit of ARV lies in 
the fact that the muscle activity occurring in the surface electromyogram is more 
directly expressed than in the original waveform. This may make the characteristics 
of phasic activity more prominent during its evaluation. Hence, we also investigated 
cases where ARV processing was performed on each epoch with a window width of 

Table 8.1  Breakdown of 
epochs labeled by a clinical 
laboratory technician

Decision result Epoch number

No abnormalities 1233
Tonic activity 664
Phasic activity 197
Total 2094
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0.2 s. A typical example of an epoch waveform before and after ARV is presented in 
Fig. 8.3. An example of an ARV applied to Fig. 8.3a is presented in Fig. 8.3b, and 
an example of an ARV applied to Fig. 8.3c is presented in Fig. 8.3d.

8.4.3  �SVM and CNN Parameter Settings

We focused on the basic statistics of the time-series data for the feature extraction 
used in SVM. The following 10 items were calculated for the basic statistics of each 
epoch during REM sleep: mean value, sample variance, sample standard deviation, 
median value, mode, kurtosis, skewness, minimum value, maximum value, and 
total value. The parameters that need to be adjusted when using SVM were deter-
mined through Bayesian optimization [26], and the number of parameter searches 
was set to 200 (Table 8.2).

Each epoch during REM sleep was converted to grayscale image data for the 
feature extraction in the CNN. The size of the image data was set at 64 × 98 pix-
els (6272 dimensions), and the vertical axis, horizontal axis, and axis labels were 
excluded from the image data. Parameters that needed to be adjusted when using 
CNN were determined through Bayesian optimization, and the number of param-
eter searches was set to 200 (Table 8.3).
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The SVM and CNN discrimination accuracy was calculated by extracting a sin-
gle subject as a test case and setting the remaining 11 subjects as learning cases to 
perform cross-validation with all the subjects, with each acting as a test case once. 
The RWA discrimination accuracy (recall ratio, precision, and F value) calculated 
from each subject when using SVM is presented in Table  8.4. The F value was 
the maximum when using the basic statistics after ARV as feature values in RWA 

Table 8.2  Search range of SVM parameters based on Bayesian optimization

Parameter Search range

C (Misjudgment tolerance) 10−2, 10−1, 1, 10, 102, 103

γ (Weight on individual learning data) 10−2, 10−1, 1, 10, 102, 103

Table 8.3  Search range of 
CNN parameters based on 
Bayesian optimization

Parameter Search range

Number of filters Integer value from 10 to 50
Filter size Integer value from 10 to 50
Mini-batch size 32, 64, 128
Dropout ratio Real number between 0.1 and 0.9
Optimization algorithm Momentum SGD, Adam, MSVAG, 
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discrimination using SVM. Next, the RWA discrimination accuracy calculated from 
each subject when using CNN is presented in Table 8.5. The F value was also the 
maximum when using the image data after ARV as feature values in RWA discrimi-
nation using CNN.

8.4.4  �RBD Prevalence Using Discriminant Analysis

Discriminant analysis was utilized to estimate prevalence. It involved assessing 
whether the data of the patient and non-patient group could be accurately classified 
using the evaluation indices of the two machine learning methods. Discriminant 
analysis is a method that estimates the group to which an unknown sample belongs 
when the group to which a certain sample belongs is already known. Discriminant 
analysis derives discriminants based on the distribution of known samples and esti-
mates the most likely group to which the sample to be estimated belongs by applying 
its attribute values to the discriminant. The RWA occurrence frequency in subjects 
diagnosed with RBD was calculated using each RWA discriminator with the maxi-
mum F value for SVM and CNN (Fig. 8.4). Next, a similar index was calculated 
for the 13 subjects for whom PSG was implemented but RBD was not diagnosed, 
and discriminant analysis was conducted using the Mahalanobis distance measure 
[27]. The discriminant analysis results are presented in Table 8.6. Estimates of RBD 
prevalence using SVM resulted in the misjudgment of one subject in the patient 
group and two subjects in the non-patient group. Meanwhile, estimates of RBD 
prevalence using CNN resulted in misjudgment of zero subjects in the patient group 
and two subjects in the non-patient group.

Table 8.4  RWA discrimination accuracy by SVM (Average ± SD)

Recall ratio (%) Precision (%) F value (%)

Tonic activity Basic statistics 72.8 ± 28.1 61.0 ± 27.4 57.6 ± 27.3
Basic statistics (ARV) 74.7 ± 20.9 70.1 ± 29.4 65.5 ± 21.8

Phasic activity Basic statistics 29.6 ± 33.4 34.9 ± 37.0 27.2 ± 29.0
Basic statistics (ARV) 44.0 ± 33.7 41.9 ± 34.2 38.1 ± 27.6

Table 8.5  RWA discrimination accuracy by CNN (Average ± SD)

Recall ratio 
(%)

Precision 
(%)

F value 
(%)

Tonic 
activity

Electromyographic waveform image 85.0 ± 13.7 77.0 ± 22.6 78.1 ± 16.2
Electromyographic waveform image 
(ARV)

78.4 ± 14.0 82.4 ± 17.2 78.7 ± 11.6

Phasic 
activity

Electromyographic waveform image 56.0 ± 30.2 63.4 ± 33.9 54.6 ± 25.5
Electromyographic waveform image 
(ARV)

69.3 ± 22.1 74.0 ± 25.8 67.1 ± 18.6
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8.5  �Conclusions

Because PSG requires specialized staff and large-scale equipment, there is a limited 
number of facilities that can implement it. However, we could extract extremely 
meaningful information from the PSG very well by attempting to understand sleep 
physiology and pathophysiology and interpreting PSG data with the appropriate 
methods. When PSG is used for the diagnosis of sleep disorders, the reading and 
interpretation of recorded data are performed by clinical laboratory technicians. 
However, there may be variation in the results obtained by the clinical laboratory 
technicians in charge of inspection decisions, and these decisions also require large 
amounts of time and experience. In this chapter, we introduced the automatic PSG 
analysis methods that we have implemented, with a focus on RBD, a form of para-
somnia. Methods that used CNN, which is a type of deep learning, resulted in the 
misjudgment of zero and two individuals in the patient and non-patient groups, 
respectively, when estimating the prevalence of RBD in 25 individuals. The preva-
lence estimation based on our proposed automated algorithm is thought to be effec-
tive as a form of primary screening for RBD. Patients require hospitalization for 2 
days and one night when conducting PSG at a sleep center, and expenses can be high. 
Furthermore, as very expensive measurement equipment is needed for PSG, there 
are a limited number of people who can be examined at a single time. Advances in 
automated algorithms are believed to be beneficial for the estimation of RBD preva-
lence at home as well, and we expect that these algorithms will be applied to simple 
PSG results that will be measured using wearable devices in the next step.
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Chapter 9
Stabilometry

Hiroki Takada, Rentarou Ono, Kohki Nakane, Fumiya Kinoshita, 
and Meiho Nakayama

Abstract  It had taken a long while for the stabilometry to be established for the 
measurement of the center of gravity of the body and its motion process. The stabi-
lometry is of interest not only in the otolaryngology but also in various scientific 
fields such as the rehabilitation studies, the sports science, and the space medicine. 
In this chapter, the application and the theoretical description are also given to show 
the future possibility. Moreover, the generative adversarial network (GAN) is also 
introduced to conduct the numerical analysis of the body sway, and we propose a 
new type of the diagnostic assistance technology and a novel method with use of the 
artificial intelligence (AI) and deep learning in these fields.

Keywords  Stabilometry · Righting reflex · Stabilometer · Statokinesigram (SKG)  
Stabilogram · Stochastic differential equation (SDE)

9.1  �Introduction

In the Chap. 2, Electrocardiogram (ECG) is introduced in detail, however, Willem 
Einthoven W., who was a Dutch physiologist, invented the first practical ECG in 
1895. He received the Nobel Prize in Physiology or Medicine in 1924 for the dis-
covery of the mechanism of the electrocardiogram [1, 2]. It was known that the 
beating of the heart produced electrical currents, but the instruments of the time 
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could not accurately measure this phenomenon without placing electrodes directly 
on the heart. Development for the bioinstrument became a footprint in our human 
history.

Stabilometry is known to be a test for the equilibrium function, which is useful 
for overall evaluation of the stability in the standing posture and diagnosis of the 
equilibrium function disorder. The postural sway is observed during the stabilome-
try included in the medical treatment fee as a test method to diagnose vertigo, diz-
ziness, and imbalance. A body equilibrium function test procedure, termed 
stabilometry, is considered useful in comprehensively evaluating the equilibrium 
function. Stabilometry is typically performed with a subject involuntary standing in 
Romberg’s posture, in which the feet are together. Sways of the CoP are measured 
for 60 s at a time with their eyes closed after the test with their eyes open. It is an 
unstable standing position because the base of support is narrow, so body sway 
becomes marked, and a reduced equilibrium function is likely to be evident in stato-
kinesigrams (SKGs)/stabilograms. In our previous study, we often investigate the 
control system under unstable conditions. We have developed an apparatus for 
adjusting the tilt angle on the slope on which the body sway is recorded. As a side 
note, otolaryngologists distinguish between SKGs and stabilograms that are defined 
in the Sect. 9.3.

The stabilometer has been developed as a clinical device for evaluating body bal-
ance function [3], but its history is long. In 1380, the center of gravity (CoP) in 
human was statically recorded by Borreli [4], who measured where the CoP was by 
putting a corpse on a board [5]. In the twentieth century, the motion process of the 
CoP was tried to measure as scale weight fluctuations with standing upright, on 
spring scales. Whereas Basler had been succeeded in measuring one-dimensional 
motion process of the CoP in 1928 [6], Travis has been reported simultaneous mea-
surement of the lateral and the anterior/posterior [7]. The pressure sensor (strain 
gauge) currently used for measuring the CoP has been developed in 1964 [8]. Now 
that the pressure can be measured electrically, the body sway can be displayed on 
the oscilloscopes. In recent years, the development of highly precise electrical 
devices has advanced body balance function tests [9]. Regarding stabilometers for 
evaluating static body balance, many analysis methods have been improved as a 
result of progress in device accuracy and computer software.

Motion process of the CoP is important not only on clinical diagnosis [10] but 
also elucidation of the human system to control a standing upright as a two-legs 
robot [11]. The body sway is observed with his/her upright posture which can be 
involuntarily kept by the iteration of reflexes. This posture is originally in defiance 
of gravity, and it is easy to fall down, however, the righting reflex, also known as the 
labyrinthine righting reflex, corrects the body deviation when it is taken out of its 
normal upright position. The head will be resulted to move back into position as the 
rest of the body follows. Measurement methods and analytical indices of SKGs 
have been proposed to increase the diagnostic value of stabilometry [12]. The ana-
lytical indices include the total length of body sway and the locus length per unit 
area. The latter is considered to represent micro changes in postural control and to 
serve as a scale of proprioceptive postural control.
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As mentioned above, the stabilometry is basically conducted with subjects’ eyes 
open and their eyes closed. Compared to the Romberg test (RT), our equilibrium 
function and/or system to control the upright posture can be evaluated more quanti-
tatively in detail since this condition is performed by the same way as in the RT 
[13]. The method of the stabilometry is indicated in the following Appendix as a test 
guide of the Japanese Society for Equilibrium Research.

In the past, it was defined how many centimeters on a recording paper should be 
recorded as the deviation of 1 cm in the center of gravity. For X–Y recording, it is 
appropriate that displacement on the SKG is consistent with the deviation of 1 cm. 
Thus, calibrations and/or accuracy of the stabilometer are required to measure the 
body sway in the clinical test and the research for the equilibrium function. For 
instance, stabilometers made by Anima Co. Ltd. (Fig. 9.1) are reliable inspection 
devices that were confirmed to Japanese Industrial Standards (JIS) with high accu-
racy. The stabilometer is a clinical device currently used for the stabilometry with 
insurance indication. A certain accuracy is required in order to use the stabilometers 
in clinical tests. Therefore, stabilometers were registered Japanese Industrial 
Standards (JIS) as T-1190-1987 in 1987 by the Japanese Society for Equilibrium 
Research (JSER) [14], and the stabilometry was authorized as stabilometer exami-
nation in 1994. A medical stabilometer came to be used as an apparatus for the 
stabilometry widely afterward in the clinical fields and posted in a medical fee table 
in Japan. According to the JIS, the stabilometers are required to measure in the fol-
lowing conditions:

	1.	 A subject with a weight of 10 kg to 150 kg.
	2.	 Within ±1 mm as an error of the center of gravity.
	3.	 The free vibration frequency > 20 Hz.
	4.	 Within ±1 mm as drift characteristics after 30 and/or 60 min.

In 2015, the Japanese society for equilibrium research reported on the accuracy 
of the clinical gravicorder [15]. At that time, the calibration device made by the 
abovementioned company is also used to survey the accuracy of stabilometers.

As stated above, SKGs are recorded in Romberg’s posture, which is an upright 
posture with the feet placed together. This posture is unstable with a small support 
area so that deterioration in the equilibrium function can be detected. Static stabi-
lometry has been applied to the following instability involved in the system to con-
trol upright postures in their natural standing.

	1.	 In the body tracking test (BTT), dynamic equilibrium function is qualitatively 
evaluated by the blindfolded vertical writing and stepping tests for directional 
deviation, which is also called Unterberger-Fukuda [16] stepping test. Compared 
with the Gait Test, this clinical way is also widely conducted in Japan today 
because it saves space. The deviation of direction is ascertained more easily by it 
than by other static standing tests such as Romberg’s, Mann’s, or Flounier’s tests. 
Yasuda and Utamura (1970) have found that its greater sensitivity to deviation 
phenomenon in comparison with that of the other tests. They also observed 
remarkable deviation to the opposite side of the canal paresis (CP) [17]. 
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a

b

Fig. 9.1  Gravicorders; gravicorders made by Anima Co. Ltd. (Tokyo, Japan) (a), experimental 
landscape (b)
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Moreover, the BTT using visual stimulation has been developed as a new method 
for stimulus evaluation using a stabilometer for dynamic body balance evalua-
tions [9, 18, 19].

	2.	 The Galvanic body sway test (GBST) can also be performed as a vestibular stim-
ulus evaluation. Typical electrode arrangements are illustrated in [20]. By plac-
ing an electrode on each mastoid (one positive and one negative), medial-lateral 
sway and horizontal/torsional eye movement can be produced by stimulating 
both labyrinths in opposite directions simultaneously. An alternate electrode 
configuration allows the method to assess each labyrinth separately, which can 
now be accomplished only with caloric testing. Galvanic vestibular stimulation 
(GVS) is performed by applying small electrical currents to the vestibular laby-
rinth using electrodes while recording either eye movements [21] or postural 
sway [22–24]. In most cases, subjects stand with their eyes closed. It is easy to 
observe the response to the GSV by averaging the outputs from the stabilograms 
because their variations in the body sway are small. Using the monopolar rectan-
gular wave and the bipolar rectangular wave, DC stimulations are applied to 
subjects. In our experiments, the later electrical stimulation was used [25–28]. 
SKGs of the elderly were compared with those of the young stimulated by the 
electrical stimulation [25, 26], and we examined whether deterioration of the 
equilibrium function with advancing age could be simulated by applying the 
electrical stimulation to subjects. Theoretical expression has been stated in [28], 
which is corresponding to the Sect. 9.3.

9.2  �Stereopsis

When users viewed moving pictures on liquid crystal displays (LCDs), they experi-
enced a visually induced motion sickness that was caused by a disagreement 
between the visual stimulation and the stimulation of the inner ear [29]. The blurred 
images on the LCDs sometimes induced “image sickness” in viewers, which is an 
unpleasant feeling that is similar to motion sickness. Significant increases in the 
postural sway were observed during the image sickness induced by simulator [30]. 
We have studied several contents of the instability of human control system [31]. 
Physiological mechanism of the motion sickness had been explained in detail [31] 
in addition to the evidence of the possibility to evaluate the severity of the motion 
sickness by conducting the stabilometry.

9.2.1  �Our Discovery in Previous Studies

We have reported on some findings obtained by comparing fixation distances 
between accommodation and convergence in young and middle-aged subjects while 
they viewed 2D and 3D video clips [31]. In these studies, measurements were made 
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by our combination of apparatuses, and 2D and 3D video clips were presented 
through a liquid crystal shutter system. As a result, subjects’ accommodation and 
convergence were found to change the diopter value periodically when viewing 3D 
images. An important result is that, when subjects are young, accommodative power 
while viewing 3D images is similar to the distance of convergence, while subjects 
are middle-aged, their accommodation is weak. This result denies the hypothesis 
that the motion sickness induced by 3D video clips is caused by the sensory conflict 
as a disagreement between convergence and visual accommodation. The motion 
sickness induced by 3D video clips might be caused by the sensory conflict as a 
disagreement between visual and vestibular inputs. However, this disagreement 
should be examined more carefully in future studies.

The motion sickness induced by 3D video clips might be caused by the sensory 
conflict as a disagreement between visual and vestibular inputs as follows. We have 
reported that the VIMS could be detected with the total locus length and sparse 
density, which were used as analytical indices of SKGs. We showed an analysis of 
the severity of motion sickness induced by 3D video clips on an LCD compared to 
that induced by viewing the video clips on an head-mounted display (HMD), and 
discussed on the body sway models [32]. We measured the body sway in the con-
trolled trial and during exposure to a conventional 3D film on an LCD and an 
HMD. Friedman’s tests showed the main effects in the above-mentioned indices for 
the SKGs. Multiple comparisons revealed that viewing the 3D film on the HMD 
significantly affected the body sway, despite a large visual distance. Hence, there 
are factors of stereoscopic images inducing motion sickness except for the size of 
displays.

We could not evaluate the severity of the VIMS while viewing 3D video clip but 
have succeeded in observing significant instability after the tests with their eyes 
open. On the detection stand of a stabilometer (G5500; Anima Co., Ltd.) in the 
Romberg posture, we measured body sway quantitatively during the controlled trial, 
exposure to a 3D movie on an LCD, and that on an HMD, which is widely spread in 
use due to advantages of being individually wearable, and providing views of a wide 
visual angle [31].

9.2.2  �Effects of Low/High-Definition Stereoscopic Video Clips

We investigated the effects of low/high-definition 3D video clips on the human 
body. In this experiment, we measured the body sway and recorded a SKG from 
which the severity of the VIMS could be estimated. The brain function, especially 
in the hemodynamics in the CBF, was also measured.

Biometric data were obtained for the center of pressure (CoP), heart rate vari-
ability, and hemodynamics on the surface of the cerebrum in 11 healthy young 
individuals (mean ± standard deviation: 22.6 ± 1.0 years) with no abnormalities in 
the extremities and no past medical history of ear or nervous system disease. 
Moreover, the visual acuity of subjects with the naked eye and/or contact lenses had 
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to be greater than 0.8 and capable of stereoscopic vision. The experiment was fully 
explained to the subjects beforehand, and written consent was obtained. In this 
study, subjects wore a head-mounted display (HMD) GOOVIS G2 (Lets-co.jp, 
Nagoya), and the following video clips (VCs) were projected to the HMD:

VC1) stereoscopic video clip with a resolution of 1080p.
VC2) stereoscopic video clip with a resolution of 360p.

The displayed content was supplied by Sky Crystal (Olympus Memory Works 
Ltd. Co., Tokyo), which was modified with the company’s permission and was used 
as the visual stimulus in this experiment. A sphere was ambulated in a video clip in 
a complex manner.

Biometric data such as the SKG, electrocardiogram (ECG), and oxy-/deoxygen-
ated hemoglobin concentrations on the cerebrum blood flow were recorded while 
the participant viewed high-resolution video clip VC1 and low-resolution video clip 
VC2. Each sway of the CoP was recorded at a sampling frequency of 100 Hz. The 
subjects were instructed to maintain the Romberg posture during the duration of the 
trials. The subjects were asked to use peripheral vision for VC1 for the first 60 s and 
VC2 for the next 60 s, and to stand when there were no images (resting state). The 
stabilometry was conducted by using a Wii balance board (Nintendo, Kyoto). This 
trial was repeated five times.

Fig. 9.2  Comparison of sway values while viewing VCs for each trial; total locus length (a), area 
of sway (b), total locus length per unit area (c), and sparse density S2 (d), Changes in oxygenated 
hemoglobin concentration in the cerebrum blood flow recorded while viewing the VC2 compared 
to that while viewing the VC1 (e). *Statistical significant difference (p < 0.1), **Statistical signifi-
cant difference (p < 0.05)
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For NIRS, the LABNIRS (Shimadzu, Kyoto) was used. Channels were arranged 
as follows: 1–12 ch on the frontal lobe, 13–24 ch on the left temporal lobe, 25–36 
ch on the right temporal lobe, and 37–48 ch on the occipital lobe (Fig. 9.2a). Results 
would be stated in the next section.

9.2.3  �Simultaneous Measurement with fNIRS

Sway values such as the area of sway, total locus length, total locus length per unit 
area, and sparse density [33, 34] were estimated from the SKGs. By using the 
Wilcoxon signed-rank test, we compared the sway values while viewing the VCs for 
a trial as follows. The statistical significance was herein set to be 0.05.
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Fig. 9.2  (continued)
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As shown in Fig. 9.2a–d, there was no statistical significance in the difference 
between the sway values while viewing the VCs during the trials except for Fig. 9.2c. 
In the third trial, the total locus length per unit area while viewing VC1 tended to be 
different from that while viewing VC2 (p < 0.1). For the total locus length (Fig. 9.2a), 
area of sway, and sparse density (Fig. 9.2d), the sway values for the n-th trial (n = 3, 
4, 5) were significantly greater than those for the first trial while viewing VC1 
(p < 0.05). In addition, all sway values for the n-th trial (n = 3, 4, 5) were signifi-
cantly greater than those for the first trial while viewing VC2 (p < 0.05).

No statistical differences were observed between the sway values while viewing 
the high-resolution video clip (VC1) and those while viewing the low-resolution 
video clip (VC2). The VIMS did not result from differences between the resolutions 
in this study. In addition, there was a statistical significance between the sway val-
ues of the n-th trial and those of the first trial (n = 3, 4, 5) while viewing any video 
clip. The changes in the sway values were considered to be owing to acclimatization 
in the upright posture.

The oxygenated hemoglobin concentration in the cerebrum blood flow recorded 
while viewing VC2 was compared to that while viewing VC1. Significant changes 
were observed in the frontal lobe, temporal lobe, and upper occipital lobe (Fig. 9.2e).

According to the fNIRS measurement, significant changes were observed in the 
temporal lobe and upper occipital lobe that corresponded to the ventral and dorsal 
streams, respectively [35, 36]. It is difficult to recognize the visual objects and 
motion processes owing to the low resolution of the video clip. Activity in the ven-
tral and dorsal streams was enhanced, and their cooperativeness might be expected 
to be found in the next step.

9.3  �Mathematical Model

Stabilograms are graphs of time series data that are obtained from the projection of 
the motion process on the SKG to each X- or Y-axis. In the SKG, variables x and y 
are regarded to be independent [37]. The linear stochastic differential equation 
(Brownian motion process) has been proposed as a mathematical model to describe 
body sway [38–40]. To describe the individual body sway, we especially show that 
it is necessary to extend the following nonlinear stochastic differential equations:

	

�
� �

�
�
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t x
U x w tx x xd

� ,
	

(9.1)

	

�
� �

�
�
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t y
U y w ty y yd

� ,
	

(9.2)

where wx(t) and wy(t) represent the white noise [41]. We can herein consider the 
physiological reason why the noise terms are included in these equations. It might 
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be caused by the stereocilia and especially the kinocilium pointing in random direc-
tions on the otoliths (Fig. 9.3). The following formula describes the relationship 
between the distribution in each direction, Gx(x), Gy(y), and the temporal averaged 
potential constituting the stochastic differential equations (SDEs):

	
U x G xx

x
x� � � � � � �� 2

2
ln .,const

	
(9.3)

	
U y G yy

y
y� � � � � � �

� 2

2
ln .const

	
(9.4)

3

1.5

0

–1.5

y 
[c

m
]

x [cm]

–3
–3 –1.5 0 1.5 3

1

0.5

0

–0.5

y 
[a

rb
. u

ni
t]

x [arb. unit]

–1
–1 –0.5 0 0.5 1

2

1

0

–1

y 
[a

rb
. u

ni
t]

x [arb. unit]

–2
–2 –1 0 1 2

a b

c d

Fig. 9.3  Evidence and results in numerical simulations of the body sway; electron micrograph of 
hair cells on the sensory epithelium of the otolithic organ (a), a typical SKG observed a young 
healthy man (b), a typical result of the numerical simulation derived from the Gaussian white noise 
(c), a typical result of the numerical simulation derived from the pink noise (d)
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The variance of stabilograms generally depends on the temporal averaged poten-
tial function (TAPF) with several minimum values when it follows the Markov pro-
cess without abnormal dispersion. SDEs can represent movements within local 
stability with a high-frequency component near the minimal potential surface, 
where a high density at the measurement point is expected.

Histograms of the stabilograms were obtained from each stabilogram. Mean of 
each stabilogram was set to (0, 0) by statistical processing. We compared histo-
grams that were composed of all subjects’ stabilograms with eyes open. The TAPFs 
in viewing 2D and 3D video clips were determined from the histograms using

	
U x a x b x c x d xx x x x x
 � � � � � �4 3 2 ,

	
(9.5)

	
U y a y b y c y d yy y y y y
 � � � � � �4 3 2 .

	
(9.6)

The TAPFs were herein regressed by these polynomials of degree 4. SDEs 
were derived from Eqs. (9.1) and (9.2), the mathematical model of the body sway, 
into which was substituted the Eqs. (9.5) and (9.6), respectively. These SDEs 
were rewritten into the difference equations, and numerical solutions were 
obtained with the Runge–Kutta formula as the numerical calculus. The pseudo-
random numbers (mean ± standard deviation, 1 ± 1) were generated by Mersenne 
Twister method [42]. Box-Muller transformation was performed to substitute the 
white Gaussian noise into the second terms, the noise terms, on the right-hand 
side of the difference equations [43]. Moreover, we have performed inverse 
Fourier-transformation of 1/f-like power spectrum to generate the pink noise, 
which is considered to be appropriate to the numerical simulation of the body 
sway because 1/f-like fluctuation has been also found in the biosignal [44–47]. 
This pink noise was substituted for the noise terms instead of the white Gaussian 
noise as described previously.

The noise amplitude μ and time step Δt were set to be every 0.1 step from 0.1 to 
1.0 and 0.01 step from 0.05 to 0.40, respectively. Numerical analysis was employed 
for 11,200 steps, and the first 10,000 steps of the numerical solutions were dis-
carded due to dependence of the initial value (x, y) = (0, 0). Any pseudo numbers 
were standardized so that their means and standard deviations became 0 and 1, 
respectively.

In our previous research, numerical solutions were evaluated using the area of 
sway, total locus length, and the statistical indices for the distribution of the dis-
placement x or y such as the standard deviation, the skewness, and the kurtosis [31, 
48]. The numerical solutions were herein evaluated using the following nonlinear 
analysis:

	1.	 According to the Wayland algorithm, translation error (Etrans) is calculated in 
these numerical solutions. We can measure the degree of the determinism 
involved in the mathematical model generating the time series. Translation error 
(E′trans) is also calculated in sequences of the temporal differences of the numeri-
cal solutions. Low frequency and/or trend components are expected to be 
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removed by the mathematical operation of the temporal difference. In fact, it has 
been shown that sensitivity to detect the noise component and/or the stochastic 
variations is enhanced by using the translation error E′trans [49].

	2.	 The following error is now defined to evaluate the numerical solutions that are 
compared to the original time series data of each component in the 
stabilograms:

	
 � �� � � � � �� �E E E Es r s r

trans trans trans trans

2 2
,
	

(9.7)

where the superscript s means the value estimated from the numerical solution, and 
r means that from the time series data.

	3.	 The average values of the error (8.7) are obtained from ten numerical solutions 
for each parameter μ and Δt.

	4.	 The combination of μ and Δt with the smallest error was defined as an optimum 
solution.

According to this method, we could obtain the optimum solutions to Eqs. (9.1)–
(9.2). Observed SKG (Fig. 9.3b) was compared to simulative ones (Fig. 9.3c–d). 
Figure 9.3c, d was generated by substituting the white Gaussian noise and the pink 
noise into terms of the noise terms of the difference equations, respectively. As a 
result, the components of high frequency in the numerical solutions were enhanced 
in the increase of each parameter μ and Δt, respectively. The range distributed by the 
Gaussian white noise was less than half of those in the SKGs data and about half of 
those derived from the pink noise. Based on the discussion of calculation accuracy, 
digits in the evaluation value ϵ could be coarse-grained in these numerical simula-
tions. In this numerical analysis, rich optimum solutions were expected to be derived 
from the pink noise. Moreover, the following qualitative property could be found in 
the results of these numerical simulations (Fig. 9.3c–d). The motion process derived 
from the pink noise tended to be persistent (Fig.  9.3d) whereas that from the 
Gaussian white noise looked like drunken stagger (random walk) as shown in 
Fig. 9.3c. As for the stabilometry findings, the SKG was closer to Fig. 9.3c rather 
than Fig. 9.3d. In the SKG as in Fig. 9.3b, we could extract cusp-shape trajectories 
where the righting reflex would be occurred.

9.4  �New Models of Body Sway Described by AI

Sequences can be generated as similar as possible to actual data by the Generative 
Adversarial Network (GAN). Using the GAN, it is also possible to conduct the 
numerical analysis of the stochastic process as the body sway. In this section, we 
introduce numerical solutions to GANs as models describing the body sway during 
exposure to the 3D video films. Moreover, severity of the motion sickness is induced 
to the GAN as an endogenous variable. We have succeeded in extracting 
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characteristic form obtained from high percentage in the contribution of the endog-
enous variable to the severity of the motion sickness.

9.4.1  �Definition of GANs

In recent years, the development of artificial intelligence has been remarkable, espe-
cially in machine learning models using deep learning, and results exceeding the 
correct recognition rate by humans have been confirmed in the field of image recog-
nition [50]. It refers to the 1000-class image classification with labels such as birds, 
cats, ships, etc. In addition, this deep learning is attracting attention not only in the 
field of classification and regression, but also in the field of image generation. 
Among them, Generic Advertising Network (GAN) is known as a generation 
model [51].

In the GANs, a generator (G) and a discriminator (D) are used as shown in [51, 
52]. Random sequences are input into the former neural network G, which outputs 
simulative arrangements to be as similar as possible to actual data. On the other 
hand, generated data and the actual data are input into the later neural network D, 
which distinguishes whether the simulative data can be regarded as actual data.

Based on the error from the correct answer to these output results, we conducted 
machine learning for each network G and D. After the output of D, the discriminator 
D was learned as follows; the correct answer to the was given to D whether the data 
input to D had been generated by G. In the next step, the weights of D were updated 
so that the error between the output of D and the correct answer became small. Also, 
the weights of G were updated so that the error between the back propagation from 
D and the correct answer became small. However, a value opposite to the correct 
answer abovementioned in D is herein given as a back propagation because the cor-
rect answer for D is incorrect for G. In this way, G learns to cheat D, and D learns 
to find G out, respectively. By repeating this machine learning, G gradually gener-
ates simulative arrangements close to actual data. As an example, we herein show a 
new model expression to conduct the numerical simulation of the body sway with 
the use of the GANs. As a side note, the mathematical model of the body sway has 
been described by stochastic differential equations, which was introduced in the last 
section.

9.4.2  �Model of Body Sway Described by GANs

Two hundred and thirty eight health young volunteers participated in this study. 
They stood in the Romberg’s posture on the stabilometer. The body sway was 
recorded as a SKG while viewing 3D video clips for 60 s, where the sampling fre-
quency was set to be 20 Hz [53, 54]. In order to employ the numerical simulation of 
the body sway, these SKGs were referred to as the machine learning for the GANs. 
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The simulative arrangements were generated by the generator G.  The degree of 
determinism in the sequences was evaluated by calculating the translation error 
using the Wayland algorithm. The values of the translation errors obtained from the 
SKG data were compared with those for the simulative SKGs in detail [53]. As a 
result of evaluating the similarity between the data and the numerical simulations 
from the viewpoint of degree of the determinism, it is possible for the GANs to 
describe the body sway.

In the previous studies, the random noise is only used as the input of the genera-
tor G. In [54], the conditions of the input array have been expressed as endogenous 
variables to substitute to an input node of G and output from an end node of 
D. Therefore, it is possible to control the generation of simulative arrangements 
from the GANs. We have succeeded in applying to employ the numerical simulation 
of the body sway influenced by the VIMS. The degree of motion sickness can be 
obtained from subjects that stand with the upright posture [31]. In [55], we have 
already classified 3D video clips that remarkably affect the equilibrium function in 
accordance with observations on the SKGs and the sway values while/after viewing 
the video clips.

Also, the machine learning stated in the last section was performed using the 
SKGs as image data while/after viewing the video clips. For this machine learning, 
we tried to control the simulative arrangements generated by inputting the informa-
tion for the video clips, that is, severity of the VIMS (high/low) into the generator 
G. In addition to discriminating whether the input image for the discriminator D is 
a SKG data or a simulative arrangement, D was also trained to discriminate high/
low severity of motion sickness. These estimations were finally output from two 
nodes. In other words, it is concentrated in a small number of artificial neurons close 
to the output layer, however, they depend on the output of artificial neurons in many 
intermediate layers. Superimposing the weights of those artificial neurons close to 
the output layer on the image array, the partial trajectories could be extracted from 
the image array input to D. It is possible to visualize characteristic form of the par-
tial trajectories. We have considered that the size and the number of the trajectories 
depend on the output of D, the discrimination of the severity of the VIMS.

In the SKGs, we have succeeded in visualizing the form which is regarded as a 
characteristic of the VIMS (Fig. 9.4). This shows the contribution rate to the endog-
enous variable that indicates the severity of motion sickness, and the part with the 
high contribution rate is shown in warm colors. As a part with a high contribution 
rate, we extracted cusp-shaped trajectories where the righting reflex would be 
occurred. Form of these trajectory is very similar to those derived from the pink 
noise of use in the numerical solution to the SDEs in the last section. We believe that 
it is important for the studies of the AI to be implicated by the mathematical analysis 
and the numerical analysis of the mathematical model in parallel.
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Fig. 9.4  A characteristic of the VIMS in SKGs; a typical SKG observed a young healthy subject 
without the motion sickness (a), a typical SKG observed a young healthy subject with the motion 
sickness (b)
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Appendix Standards
Do not talk or give instructions during recording.

	 1.	 Clinical laboratory: A silent and evenly lit room, under the condition that 
body deviation for subjects does not occur due to sound or visual 
stimulations.

	 2.	 Arrangement for the stabilometry: Match the reference point on the stabi-
lometer with the reference point on the charts.

	 3.	 Definition in the recording: In X–Y recording, the representation point of 
the CoP would move toward the upward (Y) and right (X) directions in 
stabilograms if the CoP deviated to the anterior and to the right, respec-
tively. The anterior and the right directions are herein defined as positive 
in their axes that span Euclidian XY-plane. Subjects’ center of gravity is 
projected onto this two-dimensional XY-plane. In the graphs of time 
course of the CoP for each component (Stabilogram), the representation 
point would move toward the upward if the CoP deviates forward and to 
the right.

	 4.	 Upright posture: Both upper limbs should be on each body side. 
Stabilometry should be performed in a natural standing posture. On the 
stabilometer, stand so that the center of subject’s soles coincides with the 
reference point on the stabilometer.

	 5.	 Subjects would be instructed to close their eyes on the morrow of the 
stabilometry with their eyes open.

	 6.	 Visual target: The subjects with their eyes open are instructed to gaze at 
the visual target set at their front and their eye level in the stabilometry. 
The target should be put at a distance of 1–3 m from the stabilometer. 
Subjects with their eyes closed should keep their posture without circling 
their head as well as in the stabilometry with their eyes open. At this time, 
subjects had been instructed in advance to imagine that they were still 
gazing at the target.

	 7.	 Take off your footwear and inspect on their bare feet, but you can leave it 
as it is if it is thin socks.

	 8.	 Foot position: Subjects stand upright with feet together. Subjects would 
be asked to take a wide stance with feet parallel or to stand with both 
heels in contact if it were difficult to keep upright posture with feet 
together. In these cases, it is necessary to note the distance between feet 
or the angle between the semimajor axes of both feet.

	 9.	 Onset of recording: Recording can be started about 10 to 15 s after sub-
jects stood on the stabilometer when the body sway has been stabilized. 
SKGs and stabilograms should be recorded except for transient processes.

	10.	 Recording duration: SKGs and stabilograms are basically recorded for 
60 s. In the case where it is difficult to stand upright for 60 s, recording is 
performed for 30  s. Chart lasting time (recording duration) should be 
noted only if it were other than 60 s.
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Chapter 10
Motion Capture

Kiyoko Yokoyama

Abstract  Frailty prevention is an important social problem for healthy life exten-
sion in an aging society. It is useful to continue daily exercise to augment muscular 
strength, maintain the sense of balance, and prevent motor function deterioration 
with aging. Motion analysis is being carried out as one method of diagnosing frailty. 
This chapter introduces an optical motion capture system suitable for high-precision 
measurement of motion, and describes methods for visualizing body condition in 
synchronization with motion. In the first method, the motion measured by motion 
capture is expressed by the animation of a 3D computer graphics character, and the 
color and motion of the muscle and heart of the character are synchronously 
changed. The second method focuses on a specific part of the body and superim-
poses velocity, acceleration, and muscle activity on the locus of the coordinates.

Keywords  Optical motion capture system · Visualizing physiological condition · 
Visualizing velocity and acceleration · Motion analysis · Integrated visualization 
of motion and biological signals

10.1  �Introduction

Frailty prevention is an important social problem for healthy life extension in an 
aging society. It is useful to continue daily exercise to augment muscular strength, 
maintain the sense of balance, and prevent motor function deterioration with aging. 
Motion analysis is being carried out as one method of diagnosing frailty [1, 2]. An 
optical motion capture system is a piece of equipment that achieves motion analysis 
with high precision. This chapter introduces a technique of synchronous visualiza-
tion with human motion in a three-dimensional space using optical motion capture 
and biological signals such as electromyograms (EMGs) and electrocardiograms 
(ECGs) and a technique of visualizing motion that aims for application in the study 
of motion.
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10.2  �Optical Motion Capture System

An optical motion capture system is a device for measuring and recording the three-
dimensional coordinates of a single marker photographed by multiple cameras. To 
enable high-precision measurement for motion analysis or the like, a method of 
radiating infrared rays from a camera and photographing an infrared reflecting 
marker image is generally used. The maximum frame rate of 200 to 300 fps and 
some models offer 810 fps. In the latest models, it is also possible to measure and 
record markerlessly, in other words, using multiple video cameras to film a person 
in everyday clothes in a three-dimensional space. Optical motion capture systems 
have a wide range of applications, from the entertainment field including 3D com-
puter graphics animation production [3], character motion production in virtual 
reality [4], game production [5], and media art [6] to utilization in motion analysis 
such as analyzing workers’ labor [7], measuring the effect of rehabilitation [8], 
treatment in sports medicine and failure prevention [9].

As illustrated in Fig. 10.1, about 30–40 markers are attached mainly to joints for 
measurement of whole-body movement. The three-dimensional coordinates of the 
markers are recorded as time series. When reproducing motion as an animation of 
an object, the shape of the object is modeled using 3D computer graphics software 
or the like. The modeled object is connected with the measured marker positions. In 
the case of motion analysis, the joint angles and movement speed, acceleration, and 
momentum of parts are calculated from the measured three-dimensional coordi-
nates. Figure 10.2 shows a scene of measurement in the studio and the measurement 
screen of the motion capture system.
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Fig. 10.1  Example of marker positions
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10.3  �Integrated Visualization of Motion 
and Biological Signals

Motions measured with motion capture and biological signals such as EMGs and 
ECGs that reflect the state inside an organism are synchronously visualized using 
character animation [10]. The training effect of exercise can be evaluated by simul-
taneously expressing the movement of the body and EMG.  It is also possible to 
apply it to the workload of labor and the usability evaluation of products. 
Synchronous visualization of motion and cardiovascular performance indicators 
can reveal the relationship between changes in cardiovascular performance and 
motion during daily activities [11]. As shown in the visualization schematics in 
Fig. 10.3, motion is measured by motion capture and synchronized with EMG and 
ECG.  EMGs calculate the integrated EMGs after full-wave rectification and 
expresses the magnitude of the integrated EMGs by the brightness of the color of 
the muscle at the measurement site. In the case of red, the color of the muscle is 
black when the value of integrated EMG is small, in other words, the force exerted 
by the muscle is small, and bright red when the force exerted by the muscle is large 
and the value of the integrated EMG is large. Since the waveform of the ECG is 
generated in synchronization with the contraction motion of the heart, the CG heart 
model is displayed in a small size in synchronization with the R wave that appears 
as a sharp wave in the figure, and is gradually expanded until the next R wave 
occurs. In this way, the CG heart model in animation beats in synchronization with 

Fig. 10.2  Scene of measurement in the studio and the measurement screen of the motion cap-
ture system
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Fig. 10.3  Schematic diagram of motion and biological signals integrated visualization system

a

b

Fig. 10.4  An example of 
visualizing an 
electromyographic heart 
rate and a motion 
simulating (a) active 
assistance and (b) passive 
assistance
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measured ECG. The instantaneous heart rate, which is obtained by converting the 
heartbeat interval into a heart rate, can be calculated from the ECG, and is expressed 
by the color of the heart. When the heart rate is fast, it is red, when medium, it is 
yellow, and when slow, it is green.

Figure 10.4 shows an example of visualizing an electromyograph, heart rate, and 
motion simulating active assistance (a) and passive assistance (b). The action is 
assistance standing up from a chair. In active assistance, the person stands upon his 
or her own as much as possible, with the caregiver helping them move. In passive 
assistance, the person leaves all movements to the caregiver and stands up with the 
help of the caregiver alone. When (a) and (b) are compared, the color of the care-
taker’s heart is yellow in active assistance, but becomes orange close to red in pas-
sive assistance, indicating that the caretaker’s exercise burden in passive assistance 
is large. As for the color of the muscles of the cared person, both the upper arm and 
the back during passive assistance were red and orange, suggesting that force was 
applied to the whole body.

Figure 10.5 shows the posture at the time of posture change from the sitting posi-
tion to standing up and the balance of autonomic nervous activity at that time. The 
color of the heart indicates the heart rate, and the size of the rings around the heart 
indicates the autonomic nerve activity balance. A small ring indicates increased 
sympathetic nerve activity; a large ring indicates increased parasympathetic nerve 
activity. The autonomic nerve activity balance is based on the fact that parasympa-
thetic nerve activity is enhanced when the amplitude of the high-frequency compo-
nent (HF) of the heart rate variability time series is large [12], and the size of the 
ring is determined in relation to the value of HF calculated with a 30  s window 

0 [sec] 3 [sec] 4 [sec]

7 [sec] 9 [sec] 12 [sec]

Fig. 10.5  Examples of visualization of the posture and the balance of autonomic nervous activity 
while posture change from sitting to standing. The color of the heart indicates the heart rate, and 
the size of the rings around the heart indicates the parasympathetic nerve activity
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width. In the sitting position, the heart is green and has large rings, indicating 
increased parasympathetic activity and a low heart rate. On the other hand, immedi-
ately after standing up (time point 7 s), the heart rate increases and the color of the 
heart turns orange. The result of visualization intuitively shows that the rings 
become smaller and the sympathetic nerve activity increases in the standing position.

10.4  �Visualization of Motion Loci, Velocity and Acceleration, 
and Muscle Activity

This visualization method is intended to be used to support motion education. It can 
be applied to sports education, handing traditional performing arts, and learning 
work movements with less physical load. It presents the trajectory, velocity, and 
acceleration of a specific part at the same time.

The motion locus is drawn with spheres. Velocity and acceleration visualization 
relates velocity to the radius of the sphere and acceleration to the color. The greater 
the speed, the thicker the locus, and the slower, the thinner the locus. When accel-
eration is positive, the color changes to green, yellow, and red as the value increases. 
When acceleration is negative (deceleration), it changes to light blue, blue, and 
purple, corresponding to an increase in the absolute value. For visualization of mus-
cle activity, the integrated EMG values calculated by full-wave rectification of the 
EMG are related to the radius of the sphere on which the locus is drawn. When the 
muscle is exerting a large force, the locus is thick, and when the force is small, the 
locus is thin. Color is drawn only when the muscle activity is larger than the thresh-
old value, and it is drawn in red when the muscle activity is large and the accelera-
tion is positive, and in blue when the muscle activity is large and the acceleration is 
negative. It is designed to distinguish whether the subject is trying to accelerate or 
slow down.

Figure 10.6 shows an example of visualization using data obtained by measuring 
motion capture when a skilled painter paints a 910 mm × 1820 mm board with a 
roller brush and simultaneous measurement of the EMG of the biceps brachii. In (a), 
the radius and color of the sphere, which the locus is drawn with, respectively, rep-
resent the velocity and acceleration of the marker on the back of the hand holding 
the roller brush. In (b), as in (a), the locus is the coordinates of the marker on the 
back of the hand holding the roller brush, and the radius of the sphere, which the 
locus is drawn with, is the muscle activity of the biceps brachii, and the color is 
drawn in red and blue depending on whether the acceleration calculated from the 
time series of the marker on the back of the hand is positive or negative. The upper 
part and the lower part are painted separately, and the characteristics of the painting 
motion of the expert are intuitively conveyed, such as that the upper arm is used for 
downward direction change, the upper arm is not used for upward direction change, 
and the thickness of the locus does not change except for direction change and the 
painting is done at a constant speed.

K. Yokoyama
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10.5  �Conclusion

This chapter introduces an optical motion capture system suitable for high-precision 
measurement of motion, and describes methods for visualizing body state in syn-
chronization with motion. In the first method, the motion measured by motion 

a b

Fig. 10.6  An example of visualization of painting motion by a skilled painter. (a) Radius and color 
of the sphere, which the locus is drawn with, respectively, represent the velocity and acceleration 
of the marker on the back of the hand holding the roller brush. (b) The locus is the coordinates of 
the marker on the back of the hand holding the roller brush, and the radius of the sphere, which the 
locus is drawn with, is the muscle activity of the biceps brachii, and the color is drawn in red and 
blue depending on whether the acceleration calculated from the time series of the marker on the 
back of the hand is positive or negative

10  Motion Capture
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capture is expressed by the animation of a 3D computer graphics character, and the 
color and motion of the muscle and heart of the character are synchronously 
changed. This method makes it possible to evaluate the work load accompanied by 
physical movement and to visualize the effect on the body part accompanied by 
movement, and it can contribute to the prevention of health impairment caused by 
work and sports. It is also possible to visualize cardiovascular dynamics in response 
to movements in daily life and to contribute to the prediction of dangerous condi-
tions such as sudden changes in blood pressure in response to movements. The 
second method focuses on a specific part of the body and superimposes velocity, 
acceleration, and muscle activity on the locus of the coordinates. This method can 
be used as an auxiliary teaching material for explaining exercise methods for frailty 
prevention, etc., and as educational support using example work motions with less 
physical burden on skilled workers.
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Chapter 11
A Development of Physical Feedback 
Structure for Virtual Rehabilitation 
System Using Air Pressure

Kouki Nagamune and Shinto Nakamura

Abstract  With the aging society, a rehabilitation system using Virtual Reality (VR) 
technology that can be easily performed at home without limiting the place and time 
is being developed. In recent years, research on tactile sensation in VR has been 
conducted, and various wearable devices have been developed, but there are few 
reports on the effects of tactile sensation and reality in VR rehabilitation. In this 
study, we developed a device that can obtain feedback information of tactile sensa-
tion and observed the effect of the presence or absence of tactile sensation stimula-
tion in VR rehabilitation.

For the rehabilitation system, Box and Block Test, which is one of the upper limb 
function tests, was created on Unity, which is a game engine, and automated. We 
also aimed to develop a compact pneumatic system using an air pump and latex bal-
loon for tactile stimulation. In the experiment, the distances between the index fin-
ger and thumb, and the middle finger and thumb were measured, and the difference 
in score and distance was calculated in the Box and Block Test on Unity with and 
without tactile information.

Keywords  Virtual Reality (VR) · VR rehabilitation · Training system · Physical 
feedback · Tactile sensation
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11.1  �Introduction

Currently, Japan is aging with the development of medical care. As of September 
2020, the ratio of elderly people (65 years old and over) to the total population of 
Japan is 28.7%, which is the highest ratio in the world [1]. As the population ages, 
the number of elderly people with disabilities is expected to increase, such as an 
increase in cases of falls and strokes due to decreased activities of daily living 
(ADL), and an increase in the number of elderly people with disabilities due to 
sequelae of strokes. Therefore, it is necessary to improve the movement by nursing 
care and rehabilitation, but there are various problems. Currently, the number of 
days that medical insurance can be used for maintenance rehabilitation is fixed for 
each disease. In addition, there is a shortage of care workers such as physical thera-
pists (PTs), and occupational therapists (OTs), and there are cases where the situa-
tion worsens without receiving sufficient rehabilitation [2].

In recent years, rehabilitation systems using Virtual Reality (VR) technology 
have been developed to solve these problems. By using VR technology, continuous 
rehabilitation at home becomes easy because it can be done at any time and place. 
In addition, depending on the program, it is possible to reproduce various environ-
ments and give it a game-like character, which has the advantage of maintaining 
motivation [3].

However, the presentation of information to sensations other than sight and hear-
ing is still insufficient, and it is possible that the immersive feeling and effectiveness 
of the actual upper limb function test are reduced. There are many parts that have 
not yet been elucidated regarding the sense of tactile force. Previous research has 
been conducted by various presentation methods to reproduce, but it is inevitable to 
increase the number of devices to present more complicated information. In addi-
tion, the number of reports of VR rehabilitation used is small, and the importance of 
tactile force sensation information in VR rehabilitation is uncertain.

In this study, we focus on the effect generated by giving tactile sensation stimula-
tion using an air pressure system and obtaining feedback information by sensation 
other than visual information. The Box and Block Test, which is one of the upper 
limb function tests, is performed on the screen of a personal computer (PC) to evalu-
ate the effect and importance of the presence or absence of tactile feedback informa-
tion in VR rehabilitation.

11.2  �Preliminary

11.2.1  �Tactile Sensation

Tactile sensation is a sensation caused by each receptor on the body surface by 
interaction with an object, and can feel pressure, temperature, and pain.

K. Nagamune and S. Nakamura
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The skin is divided into three layers: Epidermis, dermis, and subcutaneous tis-
sue, each of which has receptors that respond to various stimuli. From the epidermis 
to the dermis, the Meissner corpuscle and the Merkel corpuscle are located, and 
from the dermis to the subcutaneous tissue, the Pacinian corpuscle and the Ruffini 
ending are located, and the adaptation speed and frequency characteristics differ for 
each receptor. In addition, the structure changes depending on the hairy and hairless 
parts and age.

In addition, there are two-point discrimination ability and spatial localization 
ability in the sensory distinction on the skin. The two-point discrimination ability 
indicates whether two points on the skin can be clearly distinguished as two points 
when they are stimulated at the same time, and the minimum distance between the 
two points is defined as the two-point discrimination threshold. Call. Spatial local-
ization ability is the ability to recognize the stimulus position by stimulating one 
point, and is expressed by the magnitude of the error. Receptors for these tactile 
stimuli, especially touching feeling and pressure, are densely distributed in the fin-
gertips and nose and have high ability. Therefore, there are many previous studies 
targeting fingertips when reproducing tactile stimuli.

11.2.2  �Box and Block Test

The Box and Block Test is one of the upper limb function tests, and the outline of 
the procedure and scoring is specified by Matiowetz et al. (1985) [4]. It is simple 
and can be inspected in a short time, and the dexterity of one hand is measured. It 
can be used in various patients with brain injury. Table 11.1 shows the equipment 
required for the inspection.

The inspection procedure is as follows. Prepare a box bisected by a partition on 
the table.

	1.	 Put all 150 wooden cube blocks with a side of 25 mm into the box compartment 
on the patient’s dominant hand side.

	2.	 The patient moves the block to the other compartment in 60 s. It is evaluated 
according to the number of blocks moved.

In addition, there are some points to note when performing the inspection. The 
observer of the examination sits facing the patient and observes whether the patient’s 
fingertips are moving across the partition. Blocks that are confirmed to have crossed 
the partition are counted and dropped or bounced in the other section. Even if two 

Table 11.1  Equipment 
required for box and 
block test

1 Box 537 [mm] × 254 [mm] × 85 [mm] (W × D × H)
2 Partition to sperate the box 254 [mm] × 254 [mm]
3 Block 25 [mm] × 25 [mm] × 25 [mm] (W × D × H)
4 Stopwatch

11  A Development of Physical Feedback Structure for Virtual Rehabilitation System…
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or more are moved at the same time, they are counted as one block. The evaluation 
is performed after paying attention to these points. The higher the score, the better 
the dexterity of the hand. The evaluation sheet for entering the score has columns 
for entering the patient’s dominant hand, examination date, score of the dominant 
hand, and score of the nondominant hand.

11.3  �Method

The outline of the system in this study is shown in Fig. 11.1. The information of the 
fingers obtained by Leap Motion Controller [5–7] is displayed on the monitor, and 
Box and Block Test is performed in the virtual space. When contact is detected 
between the virtual hand and the virtual object, the air pump is driven through the 
microcontroller and a tactile sensation is given to the fingertips. The drive of the air 
pump is controlled by the PWM (Pulse Width Modulation) signal, and the latex bal-
loon, which is the tactile force presentation part, is inflated step by step.

11.3.1  �Box and Block Test on Unity

The Box and Block Test is reproduced using the development platform Unity 
(Ver.2020.1.12f1 Personal) (Fig. 11.2). Tables 11.2 and 11.3 show the sizes of boxes 
and blocks. The box is the same size as the actual size, and the block is set to a cube 
with a side of 100 mm, which is slightly larger than the actual size. This is to make 

Display
Leap Motion

Controller Real Hand

Air Pump

Micro

Controller Tactile Device

Fig. 11.1  Overview of the system
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it easier to determine whether there is a difference between the ease of grasping and 
the presence or absence of tactile information. In addition, blocks are displayed one 
by one in the box on the dominant hand side, and the next block is set to be gener-
ated as soon as the movement to the other box is completed.

11.3.2  �Microcontroller

The KKHMF UNO R3 development board (Apple Trees E-commerce co., LTD) is 
a development board compatible with the Arduino UNO R3 which is one of the 
microcontrollers. The air pump is flexibly driven by performing serial communica-
tion with Unity and changing the value of the PWM signal according to the signal. 
The PWM signal can be used with digital pins numbered 3, 5, 6, 9, 10, and 11, and 
the value changes between 0 and 255 depending on the degree of interference 
between the virtual hand and the virtual object. Arduino IDE is used as the develop-
ment environment. The main specifications are shown in Table 11.4.

Fig. 11.2  Box and block 
test on unity

Table 11.2  Box scale 
on unity

Depth 290 [mm]
Width 580 [mm]
Height 185 [mm]

Table 11.3  Block scale 
on unity

Depth 40 [mm]
Width 40 [mm]
Height 40 [mm]
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11.3.3  �Physical Feedback System with Pump

Figure 11.3 shows a panoramic view of the pneumatic system. The air sent out by 
the air pump (D2028, SparkFun Electronics) passes through the tube and inflates the 
balloon, which is the tactile force presentation part. Balloons are attached to finger 
supporters and are attached by wrapping the finger supporters around each finger. 
The recognition rate was improved by attaching a white tape to the finger supporters.

11.3.4  �Distance Measurement Between Block and Fingertip

As a method for observing the effect of the presence or absence of tactile sensation, 
the distance between the thumb and index finger, and the thumb and middle finger 
when grasping a virtual object is measured. In addition, the distance between the 
three fingertips of the thumb, index finger, and middle finger and the midpoint of the 
virtual object is measured, and the PWM signal is controlled according to the dis-
tance. The PWM signal can be set from 0 to 255. The midpoint coordinates of each 
fingertip and virtual object. The distance between each fingertip and the midpoint of 
the virtual object is calculated by the following formula:

Table 11.4  Specification of 
KKHMF UNO R3 
development board

Digital I/O 0–13
Analog I/O 0–5
Output voltage DC 5 [V], DC 3.3 [V]
Input voltage 5–9 [V] (AC Adapter)
Size 73 [mm] × 52 [mm]

Fig. 11.3  Overview of 
physical feedback system 
with air pump
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Distance � �� � � �� � � �� �Fx Mx Fy My Fz Mzn n n

2 2 2

	
(11.1)

where Fxn, Fyn, and Fzn, are the position of the fingertip at the time n, respectively. 
Mx, My, and Mz are the midpoint position of the virtual object.

At this time, the coordinate deviation between Unity and Leap Motion Controller 
is corrected by multiplying the z-axis coordinate value of each fingertip by −1.

Next, the setting of the PWM signal value will be explained. First, the virtual 
hand and virtual object are set to slip through. At this time, each time the virtual 
object is touched, the distance between the touched fingertip and the midpoint of the 
virtual object is measured and saved. Assuming that the distance is 100%, if the 
subjects move their fingertip closer to the midpoint of the virtual object after touch-
ing it, the PWM value will change in five steps according to the distance. Table 11.5 
shows the change in PWM value according to the distance. This is applied with each 
finger, and the air pump is driven according to the PWM value.

11.4  �Experiment

The following experiments were performed on two subjects (male, 23.5 ± 0.5 years 
old, right-handed). This study was performed on the dominant hand side, and the 
number of blocks moved to the other section in 60 s was counted in the same way 
as the actual Box and Block Test. To get used to the operation feeling, the experi-
ment was conducted according to the following flow after setting a practice time 
of 30 s:

	1.	 Display blocks one by one in the section on the dominant hand side.
	2.	 Grab the block and move it over the partition to the other section.
	3.	 When a block touches the floor of the other section, the count is increased, and 

the block is erased.
	4.	 Regenerate a new block in the dominant handed section.

The above flow was performed twice for 60 s, with and without gloves. The order 
was no gloves, yes, no, and yes. The blocks that went out of the compartment were 
deleted without counting, and a new block was generated again on the dominant 

Table 11.5  Transition of 
PWM value according to the 
distance between the virtual 
fingertip and the 
virtual object

Distance [%] PWM value

100–80 100
80–60 135
60–40 170
40–20 205
20–0 240
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hand side. In addition, when generating blocks, by setting them to be generated at 
random positions in the dominant hand side section, it was possible to prevent the 
blocks from becoming accustomed to repeated operations.

During the experiment, the distances between the index finger and thumb, and 
the distance between the middle finger and thumb, both with and without gloves, 
were measured and the data were compared. In addition, the air pump was not 
driven in five steps by the PWM value, and the measurement was performed in two 
steps of the PWM value of 180 and 0 in this study.

The experimental environment is shown in Fig. 11.4. Considering the perfor-
mance of the Leap Motion Controller, install it at a position 100 mm lower than the 
monitor. Also, by matching the height of the table on which the monitor is placed 
with the actual desk, it is reproduced as if the Box and Block Test is being per-
formed on the desk.

11.5  �Results

The distance between the fingertips in subject # 1 is shown (Figs. 11.5 and 11.6). 
Horizontal axis (s) is time, and vertical axis is distance (m). Box and Block Test 
scores were 12 and 20 points, respectively. The longest distance was about 100 mm. 

Display

750(mm)

450(mm)

700(mm)

600(mm)

Leap Motion

Subject

400(mm)

Fig. 11.4  Experimental setup
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Then, the shortest distance was about 20 mm. Since one side of the block is 40 mm, 
it can be seen that the subject is holding it.

11.6  �Discussions

In both the subjects, the distance between the fingertips while grasping the block 
in the case of wearing the glove is shorter than that in the case of not wearing the 
glove. In addition, in subject # 2, when the glove was not attached, the distance 
was slightly separated from the moment when the block was grasped, but when 
the glove was attached, the distance from when the block was grasped to when it 
was released changed. The amount was small. From these, it is considered that 
when the glove is attached, it is trying to grasp more due to the tactile stimulus. In 
addition, it is thought that it recognizes the grip of a virtual object and tries to 
maintain that distance. When humans grip an object, they tend to apply a force 
between 1.2 and 1.4 times the minimum required gripping force, so they could 
play a sufficient role as a tactile stimulus. The score of the Box and Block Test was 
higher than the score with the glove attached and without the glove. However, it is 
hard to say that the order of the presence or absence of gloves has no effect, so it 
is necessary to increase the number of subjects and the number of repetitions and 
continue measurement.
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Fig. 11.5  A distance between fingers without the glove
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Fig. 11.6  A distance between fingers with the glove
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11.7  �Conclusion

In this study, we developed a system for measuring the effect of the presence or 
absence of tactile feedback information in a rehabilitation system using VR technol-
ogy. For the rehabilitation system, Box and Block Test, which is one of the upper 
limb function tests, was created on Unity, which is a game engine, and automated. 
We also aimed to develop a compact pneumatic system using an air pump and latex 
balloon for tactile stimulation. In the experiment, the distances between the index 
finger and thumb, and the middle finger and thumb were measured, and the differ-
ence in score and distance was calculated in the Box and Block Test on Unity with 
and without tactile information.

As a result, it was found that the distance between fingertips became shorter in 
the presence of tactile information. It is considered that this is because the virtual 
object is being grasped more firmly by the tactile information. In addition, the score 
also improved, which is related to the ease of grasping. However, due to the small 
number of data and the characteristics of how to grasp the block depending on the 
individual, it is necessary to continue measurement. In addition, we believe that the 
reliability of the data can be improved by performing various measurements such as 
increasing the size of the block and changing the shape.

The experimental environment needs to be more like the original Box and Block 
Test experimental environment. In this study, when the Box and Block Test was 
displayed on the monitor, the viewpoint was projected on the monitor as if it were 
an actual Box and Block Test. However, in the experimental environment, the exper-
iment was conducted while stretching the arms and looking at the boxes and blocks 
displayed on the monitor, and there was a discrepancy between the actual line of 
sight and the line of sight in the monitor, so it is necessary to correct it. In terms of 
giving a more immersive feeling, it is easy to suppress the deviation of the view-
point by using a head-mounted display or AR technology. In addition, since there 
are ways to grip blocks not only with the fingertips but also with the entire hand, the 
prospect is to create a device that can give tactile stimuli over a wider range, such as 
the palm side or the dorsal side of the palm.
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Chapter 12
Artificial Intelligence for Medical Imaging 
and Hygiene

Akihiro Sugiura

Abstract  Artificial Intelligence (AI) is commonly defined as machine intelligence 
that is programmed to think like humans and emulate their behavior or simply the 
technology of developing AI. People receive great benefits from services based on 
AI technology without even realizing it. One of the technologies that underlie AI is 
machine learning, and deep learning is a new type of machine learning. Mathematical 
models of deep learning usually employ a neural network model that imitates the 
human brain neural network, and a deep neural network has some middle layers to 
solve the highly difficult issues. A Convolutional Neural Network (CNN), which is 
a type of deep learning network, can analyze an image directly. In the field of medi-
cal imaging and diagnosis, deep learning is already being used to solve numerous 
difficult issues. Systems have been developed using CNNs and have achieved prac-
tical medical application. This chapter focuses in detail on the relationship between 
deep learning, medical imaging, and hygiene. In particular, it contains an explana-
tion and technical summary of machine learning, the application of deep learning in 
medical imaging, and the association of the Coronavirus disease 2019 (COVID-19) 
infection with hygiene and deep learning.
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12.1  �Introduction

In recent years, Artificial Intelligence (AI) has attracted a significant amount of 
attention. It has already been utilized in numerous fields owing to its vast potential 
for technological innovation. People are already receiving great benefits from some 
services based on AI without even realizing it. For example, image recognition tech-
nology such as auto-detection or auto-classification techniques can recognize com-
ponents (e.g., humans, background, or structural objects such as vehicles) and their 
positions in a picture or image, using image analysis. There is also the auto-
recognition of handwriting characters, and voice recognition that can recognize 
spoken words, which can then be converted to text. Virtual assistance services such 
as Siri™ and Google Assistant™ use embedded AI.

AI is commonly defined as machine intelligence that is programmed to “think” 
like humans and emulate their behavior, or simply the technology of developing AI, 
although AI does have some other similar interpretations. One of the technologies 
underlying AI is machine learning, and there is a new type of machine learning 
called deep learning, which is the core technology behind the current third wave of 
AI development. Specific technologies for AI are depicted hierarchically in Fig. 12.1 
(and explained in detail in the next section). In the second wave of AI that continued 
into the late 1990s, some feature amounts of a target object such as an image or 
voice were manually extracted. Then, the target object was categorized by machine 
learning using the extracted feature amounts. In contrast, the use of deep learning 
proposed by Hilton et al. was to extract a set of feature amounts; however, this was 
done automatically (Fig. 12.2) [1, 2]. Thus, deep learning has a better performance 
and is easier to apply than conventional machine learning. Generally, a huge volume 
of data is required for training a deep learning network. Expansion of the Internet 
has enabled the accumulation of data and knowledge (e.g., images and documents). 
Much of the data for deep learning possessed by online businesses and institutions 
has also become available at no cost. In addition, drastic increases in processing 
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capabilities of computers has enabled the use of deep learning. Consequently, sev-
eral researchers now use deep learning to address their research problems.

In the field of medical imaging and diagnosis, deep learning has been used to 
address challenging issues. Some systems with practical medical applications have 
also been developed. This chapter focuses on the relationship between deep learn-
ing, medical imaging, and hygiene. In particular, this chapter provides a technical 
summary of machine learning, the application of deep learning in medical imaging, 
and also its application with the Coronavirus disease 2019 (COVID-19) infection 
and hygiene.

12.2  �Basis for Deep Learning in Medical Imaging

Machine learning, which is one of the fundamental technologies for AI, requires 
that the machine identifies regularity or patterns in underlying data. Humans or 
machines need to manually or automatically extract the characteristics of the input 
data as mathematical values, then classify the input data or predict the output from 
the input data. In some cases, they also find new knowledge or interpret the mathe-
matical framework associated with the input data. To perform classification or pre-
diction, supervised learning is applied wherein the labeled data is used as input data 
during training. In this case, “labeled” may be used to refer to attributed, grouped, 
or known output values (i.e., a known relationship between x and f(x) in a function). 
The mathematical model in machine learning is optimized during training using 
these labeled datasets to find the most optimized state yielding the minimum error. 
After training, the unlabeled data are used as input to the trained mathematical 
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model, to obtain new classification or prediction results. Alternatively, to test and 
model the mathematical structure of datasets, unsupervised learning is required 
wherein unlabeled data are used as input. Here, “unlabeled” may be used to refer to 
unattributed, ungrouped, or unknown output values. Unsupervised learning defines 
criteria that classify such uncategorized data. More specifically, in unsupervised 
learning, the amounts of the features that can represent the mathematical framework 
of the dataset, are extracted from each of the datasets. Next, a mathematical model 
of the feature amounts is constructed to group each set of data into clusters. Finally, 
each group is named (to give it a meaning).

One of the mathematical models in the field of machine learning is the neural 
network model that imitates the neural network of the human brain. In the human 
brain, brain neurons propagate action potential to a few adjacent neurons in sequence 
through the synapses of the dendrite segment. During the propagation action poten-
tial, signal transfer is weighted depending on the importance of the information. 
These mechanisms are the basis of an artificial neural network model. The neural 
network generally has a hierarchical architecture called multilayer perceptron (at 
least three or more layers including both input and output layers). Figure 12.3 shows 
a schematic of a neural network model. The white circles represent the nodes (arti-
ficial neurons), and the neural network has multiple layers: input layer, middle (hid-
den) layers, and output layer. The input data in the input layer propagates, and the 
parameters for weighting of the middle layer are adjusted to obtain the calculation 
results in the output layer. During training, the weighting factor of each edge is 
adjusted as the model is tuned to obtain the minimum error, which is the gap between 
the model output from the label and the actual output from the optimized model. 
The backpropagation method proposed by Hinton is also frequently applied during 
model tuning [3].

The neural network model that has a number of middle layers is called a deep 
neural network [1, 2]. Compared to the traditional neural network, a deep neural 
network can overcome poor optimization problems, which are attributed to multi-
middle-layer models, e.g., the vanishing gradient problem [4]: which does not ade-
quately correct the weighting factor of the edge near the input layer in the multilayer 
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neural network. Various types of deep learning models have been developed so far. 
One of these models is the Convolutional Neural Network (CNN) [5, 6], which has 
usually been associated with human vision sense. The CNN can input an image 
directly. In addition, as an example of the CNN as depicted in Fig. 12.4, the CNN 
can extract some feature values from unstructured data such as images, by a set of 
convolutional layers and a pooling layer in the middle layers. The convolutional 
layers create feature maps made from brightness or outline information by convolu-
tional operation. Then, a pooling layer decreases in the feature maps by down-sam-
pling to be more robust to changes in the position of the feature in the image and a 
decrease in processing costs. A fully connected layer recognizes input data, such as 
image classification, from these feature maps. The CNN is frequently utilized in 
image classification, target object detection, image segmentation, and regression 
tasks. The major CNN architectures are listed in Table 12.1. The conventional neu-
ral network is used to solve the regression task and a CNN is used in the case of 
addressing the regression task for an image.

One of the unsupervised learning models is the Generative Adversarial Network 
(GAN) proposed by Goodfellow in 2014 [18]. The GAN generates virtual data simi-
lar to real data or performs data conversion by learning the features of real datasets. 
This unique deep learning model has recently attracted public attention owing to its 
potentially wide application. Figure  12.5 shows an outline drawing of a typical 
GAN. The GAN composed of different neural networks: one is the generator and 
the other the discriminator, both of which are antagonistically connected. The gen-
erator creates an artificial image similar to a real image by creating the generated 
image added noise components. In contrast, the discriminator distinguishes whether 
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Fig. 12.4  Processing flow and construction of the convolutional neural network

Task Network architecture

Classification Lenet [5], AlexNet [2], VGGnet [7], GoogleNet [8], ResNet [9]
Detection R-CNN [10], Fast R-CNN [11], Faster R-CNN [12], SSD [13]
Segmentation FCN [14], SegNet [15], U-Net [16], V-Net [17]

Table 12.1  Major CNN architecture
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the image is real or generated, by comparing the generated image to a real one. The 
discriminator and generator are trained in an alternative manner (model optimiza-
tion). During discriminator training, the model is optimized to determine that the 
real training image is true, and the generated image is false. In contrast, during 
generator training the model is optimized to determine that the generated image is 
true. In this way, the repeated adversarial learning generates an identical generated 
image. The original type of GAN has a problem in that the generated image poten-
tially blurs [19]. However, the deep convolutional GAN (DCGAN) [19], which is a 
modified version of the GAN, generates a clear image because DCGAN improves 
this problem by correcting the model architecture and changing the method for the 
weighting factor adjustment.

12.3  �Application of Artificial Intelligence in Medical Imaging

On July 14, 2020, a search of PubMed returned 15,037 hits for the words “Deep 
learning”, and 9,467 hits for the words “Convolutional Neural Network” or “CNN.” 
In addition, the number of published papers has increased exponentially since 
2014—the numbers in 2014, 2017, and 2018 were less than 1,000, 2,000, and 4,000 
respectively, and in 2019 alone it was over 7,000. In annual medical meetings of the 
Radiological Society of North America, the number of registered abstracts for 
machine learning has also drastically increased. This situation indicates that machine 
learning (especially deep learning) is the center of the research target in medical 
imaging and diagnosis fields. As described earlier, the CNN can carry out image 
classification, target object detection, and image segmentation. The next three sec-
tions present application cases for each of these technologies.

Real
images

Fake image

Generator
Network

Noise

Discriminator
Network

Determine

Alternately connectAlternately connect

Alternately optimize each model with backpropagation
based on calculated error

Fig. 12.5  Generating real-fake images by the generative adversarial network
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12.3.1  �Classification

The classification task in medical imaging is to clearly separate normal and abnor-
mal images. Only doctors with specialist knowledge can perform this type of task as 
a diagnosis. In the current medical system, machine learning is expected to support 
the doctors in this type of task (classification). The feature of supervised learning is 
that classification by machine learning follows the doctor’s diagnostic criteria 
because the label (supervisor) of the training data is absolutely the doctor’s diagno-
sis. The following describes particular cases in past studies on the classification of 
medical images.

•	 Yasaka et  al. reported the differentiation of liver images using dynamic com-
puted tomography (CT) (plain, enhanced arterial phase, and enhanced late-
phase) [20]. Many cases were diagnosed according to five categories (category 
A, classic hepatocellular carcinomas (HCCs); category B, malignant liver tumors 
other than classic and early HCCs; category C, indeterminate masses or mass-
like lesions and rare benign liver masses other than hemangiomas and cysts; 
category D, hemangiomas; and category E, cysts). In the training phase, 55,536 
images (including data augmentation) were used for training. A total of 100 
images were categorized in the testing phase. As a result, the median diagnostic 
accuracy and area under curve (AUC) in receiver operating characteristic (ROC) 
[21] analysis were 0.84 and 0.92, respectively.

•	 Abiyev et al. reported that they demonstrated the feasibility of classifying typical 
chest pathologies in chest X-rays [22]. The chest X-rays were divided into 12 
image findings: atelectasis, cardiomegaly, consolidation, edema, effusion, 
emphysema, fibrosis, infiltration, mass, nodule, pneumonia, and pneumothorax. 
In the training phase, 84,084 images (70% of 120,120 images available) were 
used for training. A total of 36,036 images (30% of 120,120 images available) 
were classified in the testing phase. As a result, the diagnostic accuracy of the 
proposed network was 0.924, and the prediction accuracy of the mass was 
approximately 0.95.

•	 Gorji et al. reported that they classified mild cognitive impairment (MCI) from 
brain images scanned with magnetic resonance imaging (MRI) (sagittal, axial, 
and coronal view) [23]. Brain MRI images were divided into three groups 
according to the diagnostic level (normal, early MCI, and late MCI). In the train-
ing phase, this study used 8,400 images (70% of 12,000 images available (includ-
ing data augmentation)) in each view. A total of 3,600 images (30% of 12,000 
images available (including data augmentation)) were classified in the testing 
phase. As a result, diagnostic accuracy and the AUC between the normal group 
and the late MCI group in the sagittal view were 0.9454 and 0.994, respectively 
(best result). In addition, results between the early MCI and late MCI, and 
between the normal and the early MCI were also highly accurate: diagnostic 
accuracy was 0.93 and 0.9396, and AUC was 0.981 and 0.988, respectively.

•	 Liu et al. reported the differentiation of nodule patch images extracted from lung 
CT images [24]. The nodule patches were separated into three groups (benign, 
primary malignant, and metastatic malignant). This study used 47,716 images 
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(including data augmentation) and ran 10-fold cross validation five times. In 
addition, patch images from an original multi-view CNN (which extracted some 
patches from one nodule using different matrix sizes) were applied as input data 
to reduce the error rate. As a result, their model achieved an error rate of 0.139 
for ternary classifications.

•	 Esteva et al. reported that they demonstrated classification of skin lesions [25]. 
The skin lesion images were divided into three groups (benign lesions, malignant 
lesions, and nonneoplastic lesions). In the training, this study used 127,463 
images including 757 types of diseases and ran a 10-fold cross validation. In 
addition, they utilized a GoogleNet Inception v3 [26] architecture trained using 
transfer learning. A total of 1,942 images were classified in the testing phase. As 
a result, the average accuracy of the CNN was 0.721, and two dermatologists 
attained 0.6556 and 0.66, respectively. As can be seen, the CNN achieved a high 
accuracy for the classification task.

12.3.2  �Detection

The detection task in medical imaging is to locate and detect suspected abnormal 
image findings. This type of task is also exclusively performed by doctors. There is 
a fear that oversight may occur due to the diagnostic reading environment or differ-
ences in the skill level of reading. Thus, machine learning is expected to support the 
prevention of oversight as a safety net. The following are particular cases in related 
studies on detection.

•	 Zhang et al. proposed a system that detected lung tumor candidates in positron 
emission tomography (PET) images [27], based on the Mask R-CNN (modified 
R-CNN) [28]. This system consisted of three different Mask R-CNN’s in terms 
of a multi-scale input image. Images with three different scales were used to 
produce three kinds of training data with resolutions of 512 × 512, 768 × 768, 
and 1,024  ×  1,024, respectively. Moreover, these three Mask R-CNN models 
were then integrated using a weighted voting strategy to diminish the false-posi-
tive outcomes. This study used 594 images of lung cancer in the training phase. 
Then, 134 images were employed as the test set in the test phase. The precision, 
recall, and F-value of the system were 0.90, 1, and 0.95, respectively.

•	 Chiao et al. proposed a system that included detection, segmentation, and dif-
ferentiation functions (benign or malignant) of breast cancer ultrasound images 
based on the Mask R-CNN [29]. In the training phase, 246 images (80% of 307 
images available) were used. In testing the proposed system, 61 images (20% of 
307 images available) were used. The mean average precision accuracy of lesion 
detection/segmentation was 0.75. In addition, the accuracy in this test of benign–
malignant classification of breast cancers was 0.85.

•	 Ribli et al. proposed a detection system for breast cancer mammograms based on 
the Faster R-CNN [30]. The system detected and classified malignant or benign 
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lesions on mammograms. This study in the training phase used 2620 images. In 
addition, their system utilized transfer learning using 1.2 million images from 
the ImageNet as pre-training. A total of 115 images (of which 8 images were 
excluded) were detected and classified in the testing phase. The results of the test 
were that the system achieved 0.95 of AUC, and was able to detect 90% of the 
malignant lesions with only 0.3 false-positive marks per image.

•	 Couteaux et al. reported classifying MRI images of the knee with respect to the 
presence of tears in the knee menisci, meniscal tear location, and meniscal tear 
orientation by using the Mask R-CNN [31]. In the training, 1,124 images were 
used (excluding poor quality images), including normal cases and tears in vari-
ous directions. A total of 700 images were used to test the proposed method. 
Consequently, the weighted average of the AUC considering the detection task, 
the tear localization task, and the orientation classification task, was 0.906.

As mentioned above, many detection tasks have achieved high precision by 
employing R-CNN and its improvement methods. In addition, as one can see from 
the case examples, the system simulated image diagnosis process was usually devel-
oped because the system combined both the detection and the classification 
functions.

12.3.3  �Segmentation

For the segmentation task, a high accuracy of automatic area extraction is required 
compared to the detection task. In medical imaging, targets of segmentation are 
frequently the organs or affected areas. Further, accurate segmentation has many 
advantages, such as accurate understanding of treatment area, acquisition of qualita-
tive data, and exclusion of unwanted areas. The following describes particular cases 
in related studies on segmentation:

•	 Bai et  al. reported the auto-analysis of cardiac functions with cardiovascular 
MRI images by using a fully convolutional network (FCN), which is a type of 
neural network that can predict pixel-wise image segmentation by applying a 
number of convolutional filters onto an input image [32]. In this study, 3975 
images were used for the training, 300 for the validation, and 600 for the testing. 
The performance of the automated method was evaluated in two ways: (a) using 
commonly used metrics for segmentation accuracy assessment, including the 
Dice metric (Dice coefficient) [33], mean contour distance and Hausdorff dis-
tance, and (b) using clinical heart function measures derived from segmenta-
tions, including ventricular volume and mass. The results indicated that an 
automated method achieves a performance on par with human experts in analyz-
ing images and deriving clinically relevant measures.

•	 Cui et al. presented a fully automatic segmentation method for five types of brain 
MRI images containing brain gliomas [34]. Their approach could not only local-
ize the entire tumor region, but could also accurately segment the intra-tumor 
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structure according to classes (necrosis, edema, non-enhancing tumor, and 
enhancing tumor). Their proposed system was based on a cascaded deep convo-
lutional neural network consisting of two subnetworks: a tumor localization net-
work based on the FCN with transfer learning, and an intra-tumor classification 
network based on the CNN. The training in the tumor localization used 240 cases 
and a 10-fold cross validation was run. Training in the intra-tumor classification 
used 4,700,000 image patches labeled into four classes. They conducted quanti-
tative evaluations of three different tumor regions: complete tumor region 
(including all four tumor subregions), core tumor region (including all tumor 
structures except edema), and enhancing tumor region (only including the 
enhanced tumor structure). As a result, the dice metrics for complete, core, and 
enhancing tumors using the proposed approach were 0.89, 0.77, and 0.8, respec-
tively. These results were comparable and in general better than other methods 
reported in the literature.

•	 Shahedi et al. developed an automatic, three-dimensional (3-D) prostate segmen-
tation algorithm based on a customized U-Net, which is a type of FCN [35]. In 
the training phase, abdominal CT images of 69 patients (75% of all images avail-
able) were used and applied that of 23 patients (25% of all images) in the test 
phase. A feature of their study was that both two doctors segmented the prostate 
per image. In each phase, being training, validation, and testing, they also veri-
fied the difference in methods used for annotation. In addition, the effect of the 
image artifact on the segmentation of the prostate was also evaluated. In particu-
lar, the latter evaluation is worthy of a special mention because the difference in 
the dice metric between images with and without artifacts was only 1.2%.

12.3.4  �Secure Medical Images for Deep Learning

Generally, research or development on medical imaging with deep learning requires 
a huge quantity of images for training to optimize the network model. The medical 
images are different from general pictures in terms of strict ethical requirements and 
the difficulty of obtaining these images without any conditions. Moreover, as men-
tioned earlier, although tasks with supervised learning, such as classification, detec-
tion, and segmentation, require work for labeling and annotation in each data, only 
doctors can practically perform these tasks. Hence, research or development on 
medical imaging with deep learning tends to require huge costs and takes a lot of 
time. To overcome this hindrance, medical image databases with labels or annota-
tions have been constructed on a worldwide scale [36–39]. This kind of database is 
now publicly available for research or development if certain conditions are met. 
The advantage of utilizing a public medical image database is not only a decrease in 
the various costs for obtaining a huge quantity of medical images with labels or 
annotations, but also that it is easy to directly compare the work with related studies 
that apply the same database. Hence, constructing a public database for medical 
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images is as important as the design and development of the deep learning neural 
network.

The training in deep learning has increased in learning accuracy due to data aug-
mentation using processed images or virtual images [2, 7–9, 40, 41]. The image 
processing includes such techniques as image rotation, flipping horizontally, and 
changes in image contrast. In the case of lack of images for training, data augmenta-
tion with image processing has been utilized because this method is generally 
accepted. Alternatively, studies with virtual images have used the GAN that gener-
ates many similar images for training. This method also achieves the desired result 
[42, 43].

12.4  �Artificial Intelligence and Hygiene

Recently, the Coronavirus disease 2019 (COVID-19) infection has spread world-
wide. The outbreak was first identified in December 2019 in the city of Wuhan in 
China [44]. As of July 8, 2020, the number of COVID-19 infected patients is 
11,761,578, and the number of deaths is 543,259. Since World War II, COVID-19 
has been one of the gravest threats to humanity, but the spread of the disease has also 
been attributed to various reasons such as delay in the detection of latent carriers 
and those with no symptoms, poor activity restriction, and improper quarantine. To 
restrict the spread of COVID-19, strict rules are currently being implemented with 
regard to hygiene.

Major CT scan findings of COVID-19 infections are as follows bilateral and 
peripheral distribution, ground glass opacity, consolidation, and air bronchogram 
and so on [45, 46] (Fig. 12.6). These CT findings are not specific to COVID-19 
infections, because they are similar to those found with virus pneumonia. Hence, it 
is suggested that diagnostic CT imaging alone should not be used for COVID-19 

Fig. 12.6  Typical chest CT images of patients with COVID-19. Used with permission from 
“COVID-CT-Dataset: A CT Image Dataset about COVID-19 by X. Yang, X. He, J. Zhao, Y. Zhang, 
S. Zhang & P. Xie, published in June 2020”
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primary diagnosis and screening. It is considered more useful to rather follow the 
pulmonary and recovery processes [46]. Accumulation of CT findings in COVID-19 
infections following the recent increase in cases can contribute to an understanding 
of the details of the lesion by the creation of a large amount of data. Studies on 
COVID-19 using deep learning are already being conducted using this enormous 
amount of data. Until now, most attempts have been aimed at differentiating chest 
CT images with COVID-19 pneumonia or its detection [47–54]. The ultimate com-
mon goal of the studies thus conducted using deep learning is to support the medical 
staff with the overwhelming number of COVID-19 cases.

12.5  �Conclusion

In this chapter, a technical summary and description of the application of deep 
learning, which is the main technology used for analyzing medical images was pre-
sented. Various related studies were reviewed. In addition, the present status of the 
COVID-19 disease and characteristics of its CT images were explained. Furthermore, 
the role of deep learning in medical imaging was discussed. Hardware and deep 
learning applications that are being practically used in the medical field already 
exist. It is only a matter of time before these systems can achieve universal preva-
lence. We look forward to future developments using deep learning. If additional 
professional and technical information is required, the reader should consult spe-
cialized books on deep learning.
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Chapter 13
Meditation

Koshin Mihashi, Hiroyuki Sakamoto, and Hiroki Takada

Abstract  It is important for us to cope with stress in modern society. Research over 
the past two decades broadly supports the claim that mindfulness meditation prac-
ticed widely for the reduction of stress and health promotion exerts beneficial 
effects on physical/mental health and cognitive performance. In this chapter, we 
introduce the novel principle of “Anjodaza-Ho” which was originally proposed as a 
method for meditation to sustain stable sitting by Tempu Nakamura in 1919  in 
Japan. In fact, this method of meditation is owed to ancient Yoga training in India. 
Physical activity has been observed during this meditation. It has been shown that 
there are remarkable changes in the brain activity and the autonomic nervous sys-
tem compared to the control group. We also discuss the perspective of the new 
meditation method using auditory stimulus.
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13.1  �Introduction

In this decade, mindfulness in the Western country is also learned during the medi-
tation of daily life. Consciousness is a function of the mind, which might be mea-
sured as a brain activity, especially on our cerebral cortex. Because the cerebral 
cortex has been acquired in the process of evolution on the earth. Human beings can 
only conduct the mindful attention which makes us be able to look at our mind both 
from the inside and the outside.

Anjo-daza Ho [1] has been found and originated by Dr. Tempu NAKAMURA 
1919  in JAPAN [2], which is often described as Anjo-daza way in this chapter. 
Stable sitting can be sustained in conformity with the Anjo-daza way (Fig. 13.1). 
One of the basic forms of meditation is “concentration meditation,” in which sus-
tained attention is focused on the sound of a Buzzer. Two techniques as follows are 
required to conduct this meditation; (1) the first technique is called “TOTAL-
BREATH,” which is known as a special way to control our respirations. Also, this 
technique has been derived from Kendo which is one of the traditional Japanese 
cultures of martial arts. (2) The second technique is called “KHUMVACCA” [3], 
which is a method to control the constant activity of rectus abdominis and/or exter-
nal anal sphincter muscles and incorporates yoga technique. Skilled persons have 

Fig. 13.1  Stable sitting 
sustained in conformity 
with the Anjo-Daza-Ho
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been instructed to strain the abdomen by relaxing their shoulders. It is said that this 
technique also affects the activities of lumbar muscles and the diaphragm. In this 
connection, biofeedback training has been focused on the constipation and the fecal 
incontinence [4]. Two-channel EMG provides a visual display of electrical activity 
of rectus abdominis and external anal sphincter muscles simultaneously [5]. This 
Anjo-daza-Way in the present study is composed of the following procedure:

Procedure of “ANJO-DAZA” Ho
	1.	 Straighten your back and close your eyes.
	2.	 You wait listening.
	3.	 <Buzzer : ON> You listen to the sound carefully, for a while.
	4.	 <Buzzer : OFF> You listen “Soundless-Sound with your mental-ear.”
	5.	 Put your mind out of the Space. And do not mind your senses.
	6.	 Keep your mind still and clearer in the Soundless world.
	7.	 <at intervals, Buzzer. ON> Keep your mind still and clearer in the sound-

less world.
	8.	 === repeat several times ===

At the end, Clap your Hands and Awake!
In the beginning, sounds are accompanied by time fluctuation. Instead of focus-

ing on the space with their eyes open, they are made devote themselves to hearing 
sounds, that is, finding the flow of time, which is corresponding to their following 
experience; Many skilled people said that they would feel the passage of time seems 
to be short only if their meditation were deepened in accordance with the Anjo-
daza-ho. The space as visual information distracts their attention because the visual 
information occupies most of the processing in the brain.

The interval at which the buzzer sounds have been set randomly because it is 
necessary to attain a perfect serenity of mind in order to concentrate relentlessly 
during the meditation. However, the buzzer was set to sound at a certain interval 
(see Table 13.1) due to the analysis of the time series data (arithmetic mean). Also, 
a skilled person in the Anjo-daza way is able to focus his attention and deepen his 
meditation in accordance with this experimental protocol. Targets of bio-
measurement in this chapter are for activities in the autonomic nerve system [6, 7] 

Table 13.1  Experimental protocol

With eyes closed Sound load Rest (Remarks) Accumulate time

– 90 s (Pre, Term 1) 90 s
0 Beep 30 s 60 s (Term 2) 180 s
1 Beep 15 s 75 s (Term 3) 270 s
2 Beep 15 s 75 s (Term 4) 360 s
3 Beep 15 s 75 s (Term 5) 450 s
4 Beep 15 s 75 s (Term 6) 540 s
5 Gong 15 s 75 s (Term 7) 630 s
6 Beep 15 s 75 s (Term 8) 720 s
7 Hand clap 15 s 75 s (Term 9) 810 s
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and the cerebral blood flow (CBF), especially on the frontal lobe [8]. According to 
the psychological experiments, there were evidences that self-control works on the 
prefrontal cortex [9, 10]. Construction of the prefrontal cortex is also argued, which 
is not one unified blob of gray matter, i.e., it has three key regions that divvy up of I 
will, I will not, and I want. One region, near the upper left side of the prefrontal 
cortex, specializes in “I will” power [11]. There were several case studies involved 
in the medical fields as in [12].

It is obvious that the system of the self-control in the prefrontal cortex relates to 
the autonomic nervous system, which is enhanced by the exercise [13] and the med-
itation in the Western style [14]. It has been reported that regular meditators have 
more gray matter in the prefrontal cortex, as well as region of the brain support self-
awareness [9, 14].

Science is discovering that self-control is a matter of physiology, not just psy-
chology. It is a temporary state of both mind and body that gives us the strength and 
calm to override our impulses. In particular, meditation enhances the parasympa-
thetic nerve activity because of the respiration control. It has been shown that the 
meditation increases the heart rate variability (HRV) [15]. Studies also show that 
people with higher HRV are better at ignoring distraction, delaying gratification, 
and dealing with stressful situations [7]. These findings have led psychologists to 
call HRV the body’s “reserve” of willpower [9], a physiological measure of our 
capacity for self-control. Methods including recording and the analysis are stated in 
the following section.

13.2  �Autonomic Nervous System during Meditation

In this section, we focus on the activity in the autonomic nervous system, which is 
composed of sympathetic nerve and parasympathetic nerve. The activity of the later 
is known to be affected by the respiration.

Based on the biological rhythm, analysis of the neural function to control cardio-
vascular system has recently attracted attention as a new approach to the patho-
physiology of cardiovascular diseases such as coronary artery disease, cardiac 
insufficiency, arrhythmia, and hypertension [16, 17]. A time-series analysis of the 
HRV is a typical example. According to the noninvasive evaluation of cardiac para-
sympathetic nerve function, it has been shown that parasympathetic dysfunction is 
a remarkable risk factor for coronary artery disease and sudden death [18–20]. The 
principle of the evaluation method for the autonomic nervous function is based on 
the fact that the sympathetic and the parasympathetic functions are reflected in the 
HRV in the following specific frequency bands, respectively [21–23]. There are 
peaks in the low-frequency band (0.04–0.14  Hz) and high-frequency band 
(0.15–0.40 Hz) in the power spectrum of the HRV, which are the LF component and 
the HF component, respectively. The latter is corresponding to the respiratory band. 
Now, this kind of time-frequency analysis and the advanced analytical algorithms 
are used as the demand for applying the analysis of the HRV to the study of 
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activities on the autonomic nervous system under various mental stresses or relaxes 
[23–25]. In this connection, both the sympathetic nerve and the parasympathetic 
nerve activity are reflected in the LF component, however, the ratio of the amplitude 
of the LF component to the HF component (LF/HF) has been proposed as a level of 
sympathetic nerve activity [21].

Four healthy volunteers participated in this study, who are composed of three 
skilled persons (40,55,60 years) and one non-skilled person (27 years). Before the 
measurement in this section, the aim of this study and the experimental protocol 
(see Table 13.1) were explained to all the subjects. The subject consented to partici-
pate in this experiment which can be stopped at any time in accordance with the 
subjects’ will.

Electrocardiograms (ECGs) were recorded during the following experimental 
protocol (Table 13.1). The time required for this experiment is 900 s (15 min). Using 
WEB 10000 (Nihon Koden, Tokyo), the ECGs were measured with sampling fre-
quency 1 kHz. R-R intervals were extracted from the ECGs during the meditation in 
order to analyze their HRV. Figure 13.2 shows time course of the R-R intervals for 
each subject. Findings in the ECGs were included as follows:

	1.	 Periodic HRV could be seen in the ECGs of the skilled person (55 M) at regular 
intervals (Fig. 13.2a) while they were in the meditation called Anjo-Daza. We 
could not see this kind of anomalous ECGs during sleep/waking state. This HRV 
might be generated by the particular cardiovascular system during the meditation.

	2.	 Stable HRV could be seen in the ECGs of the skilled person (60F) at almost 
constant intervals (Fig. 13.2b). In that case, the parasympathetic nervous activity 
might be dominant, and/or the HRV seemed as mild as during sleep.

	3.	 Irregular variations in Fig. 13.2c constructs 1/f-distribution in the power spec-
trum, which is often found in the ECG of a healthy person during awakening.

13.3  �Brain Activity During Meditation

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging 
technique that measures changes in hemoglobin (Hb) concentrations within the 
brain by means of the characteristic absorption spectra of Hb in the near-infrared 
range [26–28]. This technique has been applied to various scientific fields [29–31]. 
We have herein measured the brain activity during the mindfulness meditation and 
succeeded in findings of the changes in the brain activity during the mindfulness 
meditation.

The brain activity, especially on the cerebral cortex, is taken attention in this sec-
tion because the cerebral cortex was acquired by human beings as primates during 
the process of evolution, and is most likely to be related to consciousness [9, 11] and 
its function, the mind. Variations of the concentrations in oxyhemoglobin (oxyHb), 
deoxyhemoglobin (deoxyHb), and these summations, total Hb, on the frontal, the 
left temporal, the right temporal, and the occipital lobe (Fig. 13.3a) were measured 
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by using fNIRS LABNIRS (Shimazu, Kyoto). The measured data was standardized 
for each term based on Term 1. Using the standardized data, the integrated values of 
the CBF were calculated for each component, oxyHb, deoxyHB, and total HB in 
each term. Especially on the frontal lobe, a significant increase of the oxyHB was 
observed in red boxes (Fig. 13.3b) of the skilled persons (p < 0.05) whereas no 
remarkable changes were obtained from the non-skilled persons (Fig. 13.3c).

Neurovascular coupling (NVC) refers to the relationship between local neural 
activity and subsequent changes in the CBF [32]. Tight temporal and amplitudinal 
linkage between neuronal activity and CBF delivery has been observed for over 
120 years [33–35]. The magnitude and spatial location of blood flow changes are 
tightly linked to changes in neural activity through a complex sequence of coordi-
nated events involving neurons, glia, and vascular cells. According to the previous 
studies [36–38], the regional blood flow is likely controlled by multiple 
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Fig. 13.2  Time series data of the R-R intervals. R-R intervals were extracted from the ECGs of a 
skilled man (55 years old) (a), a skilled woman (60 years old) (b), and a non-skilled man (27 years 
old) (c)
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Fig. 13.3  Probe-arrangement and a typical result for the fNIRS measurement. Probe-arrangement 
for the measurement in the Sect. 13.3 (a) the probe-arrangement at which remarkable increase was 
obtained in the brain blood flow on cerebral cortex for the skilled person (b) and the non-Skilled 
person (c) in Term 3

front

right

back

left

a

mechanisms such as the feedforward involving neural signaling via neurotransmit-
ters, and the function to mediate neurovascular coupling, in addition to the feedback 
mechanisms that are sensitive to variations in the concentration of ionic and molec-
ular metabolic by-products. The last one is known to be as a classical description 
that energy supply is controlled by the energy demand. Many vascular-based func-
tional brain imaging techniques, such as fNIRS and fMRI, rely on this coupling to 
infer changes in neural activity.

In this section, a remarkable increase of the CBF was observed in the skilled 
person. Especially on the frontal lobe, this is a clear phenomenon from the early 
term compared to the Pre-rest (Term 1). As shown in Fig. 13.4, the number of the 
probe-channel at which remarkable increase was also obtained in the CBF on the 
cerebral cortex for the skilled person (in blue) and the non-skilled person (in red). 
The channel at which remarkable increase was distributed around the frontal lobe. 
If we assumed the NVC, the brain activity in the frontal lobe would be enhanced 
during the meditation. It is suggested that neurons in the consciousness are distrib-
uted mainly on the cerebral cortex of the frontal lobe, which is a hot topic in this 
field [9, 39, 40]. Perhaps the form of consciousness is beginning to appear. It does 
not mean that there is no appearance in the no skilled person, but it also appears in 
the no skilled person along with the passing of the time.
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Fig. 13.3  (continued)
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13.4  �Perspective of New Meditation Method Using 
Auditory Stimulous

Figures 13.2 shows R-R intervals in minute plotted. We can find that the skilled 
person has stable of his heart rate variability at regular intervals (Fig. 13.2a). In 
addition, the second case of a skilled person shows she looks like sleeping during 
the meditation (Fig. 13.2b). On the other hand, typical HRV during the arousal can 
be seen in Fig. 13.2c, which was obtained from the non-skilled person. Amplitude 
of the variations in the R-R intervals were tended to be larger than those of the 
skilled person (Fig. 13.2). Moreover, spectral analysis of these R-R intervals has 
been also conducted. As a result, peaks in both frequency bands, i.e., LF 
(0.04–0.15 Hz) and HF (0.15–0.40 Hz) were simultaneously observed in the skilled 
persons, which was seldom seen in the non-skilled persons during the arousal/sleep.

Regarding the result of fNIRS, in terms of the CBF, the increase of the oxyHb 
was observed in the skilled person, especially on the frontal lobe (Fig.  13.3b), 
which might be caused by the particular breathing method, TOTAL-BREATH. This 
is a clear phenomenon from the early term. Assuming the NVC, we could observe 
the increase of the CBF on the frontal lobe during the meditation introduced in 
this chapter. The brain activity on the frontal lobe is enhanced by the conscious 
attention, which is induced by the “SINSINTOITSU-Do,” new autoregressive 
model of the meditation (Fig.  13.5); what makes oneself is oneself. Oneself is 
composed of three elements: brain, mind, and body in particular. In adolescents, 
problem behaviors are occasionally found because the mind and the body usually 
develop separately. Coherence between the mind and the body is required to 
evolve the brain promoting conscious attention. The coherence between the body 
and the mind does not combine plasticity. Beginners cannot perform the 
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Fig. 13.4  The number of the probe-channel at which remarkable increase was obtained in the 
brain blood flow on cerebral cortex for the skilled person (in blue) and the non-Skilled person (in 
red) in the darkroom
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coherence. Dr. Tempu suggested that at first, you should concentrate on the audi-
tory system to listen the sound without noticing your environment. Secondly, you 
listen “Soundless-Sound with your mental-ear. Lastly, put your mind out of the 
space and do not mind your senses (Appendix). Gratitude constitutes belief, which 
supports oneself. The meditation directly contributes to what the mind and the 
body cohere.

<Motto>.

•	 -Be not in anger, nor in fear nor in grief.
•	 -Live preciously your life of the very present moment,

In honest and kindness and with cheerfulness.

Brain Scientists often discuss about the physicality to understand the intelli-
gence. There is no strategy without some exception as in this case to understand the 
mind. In this chapter, bioinformation during the meditation was obtained from the 
point of view, which was based on two axes: degree of voluntary/involuntary and 
that of arousal. Based on this frame, we can pursuit what is consciousness and mind, 
which is regarded as a function of the consciousness. For instance, both degrees are 
considered to be high during the meditation. Therefore, our state during the medita-
tion is completely different from that during the sleep. However, suggesting oneself 
before the sleep, it is easy to interact with our involuntary attention. 

Breed your MIND & BODY

Raise your BRAIN

Combination of 3 ESOTERIC MEANS

Fig. 13.5  Composition of new mindfulness meditation: SIN-SIN-TOHITSU-DO. The recurrence 
system is composed of three esoteric means: ANJO-DAZA-HO, TOTAL-BREATH, and 
KHUMVACCA
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“SINSINTOITSU-Do” to perform the coherence has been proposed, which is com-
posed of the following three; “TOTAL-BREATH,” “KHUMVACCA,” and 
“ANJODAZA-Ho.” These are interrelated with each other.

13.5  �Conclusion

Dr. Tempu described in his TEXT “MAXIM” as follows:

	1.	 As the ANJODAZA-Ho is the absolute and esoteric means to draw a right con-
sideration, you must make efforts to practice it for such a purpose, on every 
occasion.

	2.	 To be a “Real Man,” it is necessary to practice good cleansing of his mind inces-
santly. It is because the mind is the basis for the actual realization of his 
whole life.

�Appendix Foreword To: Dr. Tempu’s Book

Everyone living today in the turmoil, strife, and worldwide tension requires an 
anchor to one’s thoughts.

If for no other reason but that we hold to spiritual and lasting values as an avenue 
by which to explore the future and forget the past, and with full confidence that if 
we adhere to these basic values, rewards will come to us commensurate with 
our effort.

Dr. Tempu has outlined to us this Pathway. It is one of spirituality, truth, honesty, 
and integrity.

If, we but follow this philosophy of living, one cannot help but go forward to the 
rewards of achievement, success, and contentment.

David E, Beatty
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