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Abstract  Salt stress is a crucial barrier to crop growth, development, and produc-
tion and hence negatively affects food security globally. In addition, the current 
trends of climate change increase the frequencies and severities of drought and heat 
which accelerate and spread the processes of salt mobilization and accumulation 
within the upper horizons of arid and semiarid soil. Elevated salinization in arid and 
semiarid regions necessitates development of economic and environmentally 
friendly saline agriculture to be comparable with world population increase. As salt 
stress is a multi-factorial phenomenon caused by various factors or a combination 
of factors leading to a complex tolerance mechanism, the utilization of suited 
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halophytes as niche crops is one of the most promising approaches in this regard. 
Halophytes have the capability to combat various abiotic factors which occur in 
their surroundings, and they follow different mechanisms to stress adverse effects. 
Therefore, investigating halophyte can be useful as the processes by which halo-
phytes thrive and sustain productivity in saline water when understood help in mod-
ulating adaptation in crop plants. Further, exploring more halophytes to identify 
additional salt-responsive genes may also lead to the development of transgenic 
crops with high adaptation to salinity, which are suitable for sustainable salt soil 
agriculture. This review thus discusses an ecological integrative approach of halo-
phytes, which implies ecological observations in the field that are associated with 
halophyte development, physiology, and biochemistry. Halophyte utilization in 
remediation of polluted soils through their sequestration of absorbed harmful ions 
into their vacuoles as well as other mechanisms of salt resistance is reviewed.

There are also recommendations for current progress and future work on the use 
of halophytes to enhance crop quality on marginal and irrigated land.

Keywords  Anatomy · Bioremediation · Ecophysiology · Halophytes · Mineral 
nutrition · Salinity stress · Tolerance mechanisms · Water relations

Abbreviations

AKT	 K+ in channels
EC	 Electrical conductivity
HKT	 High-affinity K+ transporters
Ksat	 Saturated hydraulic conductivity
KUP/HAK/KT	 High-affinity K+-H+ symporters
NSCC	 Nonselective cation channels
PDD	 Predawn disequilibrium
PM	 Plasma membrane
ROS	 Reactive oxygen species
SOS	 Salt overly sensitive
TDS	 Total dissolved solids
TSA	 Total soluble anions
TSC	 Total soluble cations
USEPA	 United States Environmental Protection Agency
WUE	 Water-use efficiency
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7.1  �Introduction

The world population has doubled in less than 50 years which put a great pressure 
on world food reserves, fuel, soil, and biological and water resources. The United 
Nations (2001) predicts about 9.4 billion people worldwide by 2050. Furthermore, 
the World Health Organization reports 3.7 billion people are undernourished, and 
the problem of malnourished will be further increasing in the future. Also, food 
production since 1984 has been declining per capita because of elevating people 
number, energy shortage in crop production, and freshwater depletion (Pimentel 
and Pimentel 2008). It is reported that the problem of water supplies for humankind 
is one of the major threats that we currently have and appears to be more worse in 
the future (Cosgrove and Loucks 2015). Saline conditions not only reduce most 
crop production but also affect soil properties and the ecological balance (Hu and 
Schmidhalter 2002). The salinity effects also include reduced agricultural produc-
tivity, low economic yields, and soil erosion. Moreover, soils with low agricultural 
potential are often saline in the hot and dry regions of the world.

In these regions, most crops are grown under traditional irrigation which exacer-
bates the problem since this insufficient management of irrigation contributes to 
secondary salinization in 20% of irrigated land worldwide (Glick et  al. 2007). 
Consequently, both salinity abundance and freshwater depletion are serious envi-
ronmental problems affecting the food needs of the world’s population, and in turn 
this urges a need to create new productive areas from saline habitats. This situation 
necessitates development of economically and environmentally sustainable saline 
farming, which favors the utilization of suited halophytes as niche crops.

Plants that can withstand increased salinity are called halophytes, whereas agri-
cultural crops have a wide range of responses to salt stress. Halophytes follow dif-
ferent mechanisms to adjust to salinity adverse effects by the accumulation of salts 
in the vacuoles away from the chloroplast and cytosol, osmolyte biosynthesis, ion 
homeostasis, and ROS scavenging systems (Flowers and Colmer 2015). Different 
halophytic species have different strategies for dealing with high salinity. Tolerance 
to salinity in halophytes is due not only to physiological traits and their genetic 
modification (Vasquez et al. 2006) but also to compound ecological features in the 
plant rhizosphere and phyllosphere (Ruppel et al. 2013). Both latter strategies are 
ascribed to microorganisms inhabiting halophyte roots and leaves, which contribute 
significantly to halophyte salinity tolerance.

It is also established that inauguration of these mechanisms via short-term treat-
ment with low concentration of salts can enhance salt tolerance of plants (Meng 
et al. 2018), a process called salt acclimatization. In the current contribution, our 
goal is to suggest an ecological integrative approach of halophytes, which involves 
an attempt to correlate ecological observations gathered in the field with halophyte 
growth, anatomy, and physiological and biochemical data. Also, some halophytes 
have been shown to have the ability to remove soil pollutants, a strategy termed 
phytoremediation of contaminated soils (Manousaki and Kalogerakis 2011). We 
intend therefore in this contribution to get a comprehensive report of the relationships 
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between halophytes and corresponding environmental factors. Learning from 
halophyte mechanism to cope with high salt for the purpose of crop plants to with-
stand high soil salinity is also discussed.

7.2  �Causes of Soil Salinity

The causes of soil salinity may be natural (primary salinization) or man-made (sec-
ondary salinization).

7.2.1  �Primary Salinization

Primary salinization is a natural process in arid areas which refers to the deposition 
of salts as a result of lithological heritage or topography (Tanji 2002). Climatic 
effects and water management can also induce salinization. For example, evapo-
transpiration mainly contributes to the pedogenesis of saline and sodic soils in arid 
and semiarid areas. In addition, arid tropical countries are susceptible to high vapor-
ization which is higher than rainfall, and this leads to the rise of H2O to the surface 
soil where solutes accumulate and salinity happens (Smith et  al. 1995). Another 

Fig. 7.1  World map of arid and semiarid regions
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form of salinity occurs in marshes where the main cause is the intrusion of saline 
water into rivers or aquifers (Howard and Mullings 1996). Another natural source of 
soil salinity may include oceanic salt deposition in the coastal areas.

7.2.2  �Secondary Salinization

Secondary salinization is the term used to distinguish human-induced salinization 
from naturally salt-affected soils. This type of salinization is mostly found in the 
semiarid and arid areas where the mean annual precipitation is 25–500 mm (Pla-
Sentis 2005). Most of the arid areas globally range from 15 to 30° north and south 
of the equator (Fig. 7.1, Ustin et al. 2009). The secondary salinity of water and soils 
in arid regions is rising as a result of growth in mining, industry, and agriculture as 
well as water resource re-use. Irrigated agriculture is not only participating in the 
deterioration of water quality, but also it is a key player in the observed water quality 
deterioration of many rivers. Utilization of such impaired water quality is a future 
threat for soils with insufficient leaching (FAO 2009). Leaching of mineral salt from 
the local geology after rainfall and also mining and industrial contamination is con-
sidered an important cause for secondary salinization (Stark et  al. 2000). FAO 
(2009) indicated that “although soil salinity is easy to detect, most soil maps, par-
ticularly at small scales, show primary salinity because of its association with geo-
logical or geomorphological features, which facilitates mapping at such small 
scales. The mapping of secondary salinization is, however, more complicated 
because of high spatial and temporal variability and therefore reliable figures are 
hard to obtain.”

7.3  �Salinity Composition and Measurement

Soluble salts are those inorganic chemicals that are more soluble than gypsum 
(CaSO4.2H2O), which has a solubility of 0.241  g per 100  mL of water at 0  °C 
(Essington 2005). Most soluble salt in saline soil are composed of cations (Na+, 
Ca2+, Mg2+) and anions (CI−, SO4

2−, HCO3). Usually smaller quantities of potassium 
(K+), ammonium (NH4

+), nitrate (NO3
−), and carbonate (CO3

2−) are also found as do 
many other ions. Among all these salts, the dominant anions are chloride (CI−) and 
sulfate (SO4

2−), and the dominant cations are Na+, Ca2+, and Mg2+ (Vargas et al. 2018).
Electrical conductivity (EC) is one of the measurements used to measure soil 

salinity. Electrical conductivity is reported as decisiemens/m (dS m−1) or millisie-
mens/cm (mS cm−1); the latter is equivalent to mmhos/cm. Second, total dissolved 
solids (TDS) are defined as mg/L or g/L, and multiplying the EC by 640 approxi-
mated it for solutions up to approximately 5 dS m−1. Meanwhile for high salty water 
and soil solutions, EC is multiplied by 800. Also, salinity could be measured through 
total soluble cations (TSC) and total soluble anions (TSA). Both TSC and TSA are 
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recorded as charge/L or meq/L.  Osmotic potential in MPa can be calculated by 
taking the product of EC multiplied by 0.00364. Further, if EC is multiplied by 
0.0127, ionic strength in ML−1 can be calculated (Tanji 2002). For plant response to 
salt stress, the USDA National Resources Conservation Service characterizes plant 
salinity tolerance as none (0–2 dS m−1), low (2.1–4 dS m−1), medium (4.1–8 dS m−1), 
and high (greater than 8 dS m−1) when plant growth is reduced by no more than 10% 
when plant presents in soil of the indicated soil salinity range.

7.4  �Halophytes

Halophytes are specialized plants which have been developed over a long period to 
tolerate salinity in their substrate than glycophytes can do (Flowers and Muscolo 
2015). They can also complete their life cycle under high salinity which is usually 
toxic to other plant species and causes damage to almost 99% of their population 
(Flowers and Colmer 2008). Halophytes are highly evolved organisms that can 
maintain their morphological, anatomical, and physiological characteristics even 
under high saline conditions (Flowers et al. 1977; Flowers and Colmer 2008).

The term halophyte derives from halophilous (salt-loving), which describes plant 
species that grow well under saline conditions like salt marches (Yense 2000). 
Although over 1400 genes are known to be involved in salt tolerance mechanism in 

Fig. 7.2  True close up views showing Tamarix passerinoides Del
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Fig. 7.3  Upper photo showing Suaeda vermiculata Forssk., the lower one of Sevada schimperi 
Moq.

Fig. 7.4  Early flowering Halopeplis perfoliata (Forssk.) Bge. ex Schweinf
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some halophytes, the exact mechanism whereby wild plants cope with saline 
environments is not very well understood despite the new genetic engineering 
approaches (Yancey et  al. 1982). Such genes and other enzyme systems as well 
most likely operate in concert not in a solo, and each halophytic species supposedly 
has its own orchestra to match its tolerance mechanism requirements (Flowers and 
Muscolo 2015). Halophytes (Figs.  7.2, 7.3, and 7.4) mainly belong to the 
Tamaricaceae (Tamarix spp.), Aizoaceae (total 52 species; Mesembryanthemum), 
Avicenniaceae (total 19 species; Avicennia), Brassicaceae (total 19 species; 
Thellungiella), Chenopodiaceae (total 281 species; Atriplex, Halopeplis, Sevada, 
Suaeda), Plumbaginaceae (total 60 species; Limonium), Poaceae (total 143 species; 
Distichlis, Leptochloa, Puccinellia, Thinopyrum, Spartina, Hordeum marinum), 
Rhizophoraceae (total 31 species; Rhizophora), and Zosteraceae (total 18 species; 
Zostera) families (Aronson 1989; Flowers and Colmer 2008).

7.4.1  �Classification of Halophytes

Halophyte classification depends on many factors such as ecological behavior, 
distribution, growth, and salt intake (Waisel 1972). Based on the interaction between 
salt and plant in different environments, Steiner (1934) classified halophytes to (a) 
salt-regulating types, which include managing by increasing succulence and dilut-
ing the concentration of salt in the cell sap (e.g., Haloxylon recurvum, Salsola 
baryosma, Sesuvium sesuviodes, Trianthema triquetra, Zygophyllum simplex); (b) 
salt excretion, which occurs through the salt glands in the desalting halophytes 
(e.g., Aeluropus lagopoides, Chloris virgata, Cressa cretica, Sporobolus helvolus, 
Tamarix spp.); and (c) regulation absent, which occurs in those leading to a constant 
but slow increase in the salt concentration during the vegetative periods (e.g., 
Juncus sp.). Another system of classification depending on the internal salt of the 
halophyte species where Ashraf et al. (2006) classified halophytes into (a) exclud-
ers: where salt concentration in the above ground plant parts are constantly low 
under various soil concentrations, and (b) includers: where salts are concentrated in 
above ground plant parts from low or high soil levels and (c) includers: where salts 
are concentrated in the shoots either in low or high soil salt contents. Furthermore, 
Walter (1961) classified the halophytes into (a) facultative halophytes, plants that 
grow and develop in natural soils (i.e., lacking salts) but can withstand certain lev-
els of soil salinity (Cyperaceae, Juncaceae, and Gramineae), and (b) euhalophytes, 
plants that show optimum growth with certain salt levels but do not grow in a vigor-
ous way (Mangroves). One more system of halophytes classification is adopted by 
Weber (2009) where halophytes are classified into (a) excretive (excretive plant 
species possess an excretive option called glandular cells which enable plants to 
excrete excess salt from their body in the form of salt crystals), and (b) succulents 
(in succulent halophytic plants, leaf surfaces have salt bladder which enable the 
plant to have high water content and thus avoid salt injurious impacts). Most of 
succulent halophytes inhabiting deserts belong to this category. Depending on the 
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different habitat of halophytic plants, Youssef (2009) classified halophytes into (a) 
hydro-halophytes (they are those which can grow in both aquatic and wet soils, 
such as salt marsh species and mangroves that inhabit costal lines), and (b) xero-
halophytes (they are mostly succulent plants where the soil is saline with low water 
content due to evaporation).

7.4.2  �Ecophysiological Characteristics of Halophytes

7.4.2.1  �Plant Growth, Morphology, and Anatomy

In the tropical and subtropical areas, a large number of halophytes are shrubs. 
However, a small percentage of them are annuals like Acanthus ilicifolius. As a 
result of their cymosely branching, most of halophytic shrubs have a dome-shaped 
appearance. The majority of species examined had most biomass increase under low 
salinity conditions, while their growth was slow down by high seawater concentra-
tion (Kelly et al. 1982; Glenn and O’Leary 1984; Gorham 1996). Other works report 
this growth trend of halophytes: as the salt concentration in the growth milieu 
increases above a critical threshold, depending on halophytic species, the growth 
decreases gradually in most species (Harrouni et al. 1999, 2001; Daoud et al. 2001). 
One important indicator that reflects the effect of the growing conditions in the root 
system is the growth parameter root/shoot ratio. Under moderate drought stress con-
ditions, the growth of the root system increases in order to enable the plant to 
increase its capacity for water uptake from the growing medium (Harrouni 1989). In 
saline environments up to a specific limit, the impact of the salinity on root system 
growth can be matched to that of water stress as salt behaves more like an osmoti-
cum rather than a toxic substance. Increased large root system would therefore seem 
to be of adaptive significant for plants and their yields as such root system is capable 
to penetrate more soil layers and thus can absorb greater amount of water and nutri-
ents (Vamerali et al. 2003; Franco et al. 2011). Conversely, another study has dem-
onstrated that halophytic species with other root characteristics, e.g., small roots, 
can be highly beneficial for greater shoot growth and development as few roots in 
moist soil can easily uptake enough water independent of the root number (Ma et al. 
2010). A consequent response is the root hydraulic conductance in plants irrigated 
with poor-quality water decreases because the root length and surface area are 
reduced by such low water quality (Ma et al. 2010).

In mangrove species, root proliferation varies with species and growth condi-
tions such as soil compaction, water capacity, wind speed, and wave direction, 
which have impacts on the tree stability (Mickovski and Ennos 2003; Ong et al. 
2004; Alongi 2009).

To avoid such deleterious conditions, some mangrove species modify to aerial 
roots, stilt roots/prop roots, and buttress roots instead of tap root systems (Ong et al. 
2004; Duke 2011). Such root modifications improve the mangrove tree stability in 
poor mud along shorelines, which supports them to withstand tides and winds.  
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For example, Rhizophora mangle has prop roots and trunk originated flying 
buttresses, and both adaptations protect the trees against storm waves (Bayas et al. 
2011; Ohira et al. 2013; Mendez-Alonzo and Moctezuma 2015). Besides the sup-
porting function of buttress roots, they act as a conducting system for the transport 
of water, nutrients, and metabolites for long distances (Tomlinson 1986; Day et al. 
2010). Also, the root shape tends to become more oval in weaker soils, which helps 
them to spread horizontally and ultimately cover a large area of the soil and in turn 
collect more nutrients from the soil surface (Nicoll and Ray 1996; Clair et al. 2003; 
Dupuy et al. 2005; Mendez-Alonzo and Moctezuma 2015). However, Srikanth et al. 
(2015) indicate that other species of mangrove trees that grow in drier soils do not 
need such root adaptations for their support.

Concerning stem growth in halophytes, several halophytes have been shown to 
develop succulent stems, which is associated with plant salt tolerance, and the suc-
culence degree is a good indicator of the plant ability to live in saline conditions 
(Repp et  al. 1959). For instance, Salicornia herbacea and Suaeda maritima are 
familiar examples for succulence feature where their succulence is developed after 
ion accumulation in their organs is elevated above a threshold (Joseph et al. 2013). 
It is noteworthy that salinity stress has been shown to enhance conditions which are 
suited for succulence: salts inhibit cell division and cell elongation which are typical 
features for succulence. On the contrary, submerged marine angiosperms are of few 
halophytes that do not develop succulence, and temperate halophytes are herba-
ceous, while the tropical halophytes are mostly bushy and exhibit heavily cymosis 
(Khan and Qaiser 2006). As for the halophyte leaves, they are mostly small, succu-
lent, thick, entire, and glassy in appearance, whereas some species have no leaves 
(Parida et  al. 2016). Additional mode of adaptation is found in aerohalophytes 
where there stems and leaves are heavily covered with trichomes (Parida et  al. 
2016). Furthermore, submerged marine halophyte leaves are thin, with green epi-
dermis, and their vascular system is not well developed, and hence they can directly 
absorb water and nutrients from their growth medium directly (Srikanth et al. 2015).

Other adaptive mechanisms and features in the morpho-anatomy have been 
developed in plants inhabiting coastal areas to help them to survive under unfavor-
able conditions (Grigore and Toma 2007; Hameed et al. 2009; Ashraf and Harris 
2013). For example, salinity increases the epidermal thickness to improve the plant 
water-use efficiency (WUE) and provide more space for Na+ sequestration in the 
leaf epidermis as well (Shabala et al. 2012). At high salinity (750 mM NaCl), how-
ever, the thickness of the epidermis decreased to the value observed in the leaves 
treated with 250 mM NaCl, which was attributed to the decline in cell division as 
well as growth under high saline condition (Carcamo et al. 2012). Also, at 250 mM 
NaCl, the thickness of palisade tissue of Salvadora persica leaves raised; mean-
while, at 500 mM NaCl, it declined to the control level and disappeared when plants 
were treated with 750 mM NaCl (Parida et al. 2016). The significance of palisade 
tissue decline at high salinity might be of an adaptive value to this halophyte to 
reduce the use of photosynthetic energy under extreme salinity. In contrast, in semi-
mangrove Myoporum bontioides, a rise in the palisade tissue thickness was observed 
under high salinity (Xu et al. 2014). Furthermore, in Spartina species, the spongy 

A. A. Morsy et al.



209

tissue thickness also elevated with increasing salinity which might help in leaf water 
content, succulence, and turgor maintenance under high salt stress (Maricle et al. 
2009). The study of Maricle et al. (2009) also illustrated that the stomatal density 
and stomatal aperture diameter declined on lower and upper leaf surfaces by salin-
ity. The decrement in the stomatal number under saline conditions has been simi-
larly indicated in other halophytes such as Bruguiera parviflora (Parida et al. 2004), 
Nitraria retusa and Atriplex halimus (Boughalleb and Denden 2011), and 
Chenopodium quinoa (Shabala et  al. 2012, 2013). Conversely, stomatal index in 
Salvadora persica did not change significantly under saline conditions, which was 
interpreted to be due to elevated both leaf succulence and pavement cell size, thus 
improving its WUE and offering extra space for sequestration of Na+ in the leaf 
epidermis (Shabala et al. 2012, 2013; Adolf et al. 2013). Based on the above results, 
it seems that these changes are fundamental mechanisms to enable halophytic spe-
cies to survive and cope with saline conditions.

Salinity also induces significant alternations in the stem anatomy of halophytes. 
In S. persica, anatomical alterations have been reported: in response to high salinity, 
the epidermal cells’ diameter and thickness of cortex were lowered, whereas thick-
ness of hypodermal layer, diameter of hypodermal cell, pith area, and pith cell 
diameter were raised (Parida et al. 2016). Also, salt stress impacts root anatomy 
where an increase in epidermal thickness and a decrease in the epidermal cell diam-
eters and conducting tissues were observed, which may have an adaptive signifi-
cance under salinity (Parida et al. 2016). This decrease in cortical cell thickness was 
also demonstrated in several halophytes mainly due to degradation of the cortical 
cells, the feature that might be adaptive to conserve essential energy for survival in 
response to severe salinity (Alam et al. 2015; Nawaz et al. 2016). Although xylem 
vessel diameters in the stem of S. persica did not significantly change, they were 
declined in many other plants which results in a reduction in water and mineral 
absorption under high salinity (Sandalio et  al. 2001; Ortega et  al. 2006; Rewald 
et al. 2012; Atabayeva et al. 2013). It is therefore proposed that in S. persica this 
response may be an adaptive mechanism to maintain continuous water and mineral 
ion absorption and transport to the shoot.

As plant roots are the first structure directly faced with soil salinity, they may 
have a dual mechanism acting as the first line of defense or damage (Rewald et al. 
2012). Opposite to the shoot system, the root vascular bundle diameter reduced with 
salinity, an adaptation to decrease the hydraulic conductivity in order to protect the 
vessel with considerable conductivity during the stress period (Junghans et  al. 
2006). It appears that the reduction in the root vessel diameter leads to water uptake 
declining and consequently decreases plant growth and metabolism under high 
salinity. Also, a decrease in the size of the vascular cylinder of Prosopis tamarugo 
was reported by Serrato-Vlenti et al. (1991), while Hajibagher et al. (1985) found an 
increase in the root stelar diameter of the halophyte Suaeda maritima in response to 
salinity. The reduced conducting tissues might explain the decrease in the total 
growth in several species with increasing salinity (de Villiers 1993). Abd Elhalim 
et al. (2016) reported that the woody tissues of the old root of halophytes are placed 
and surrounded by lignified cells for support and to protect water columns from 
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embolism and balance the high osmotic pressure that the halophytes facing in their 
rhizosphere (Grigore and Toma 2007). Similarly, Jacobsen et al. (2005) indicate that 
presence of much lignified cells in the old root is crucial for providing rigidity and 
also contributes to cavitation resistance. Another root adaptive response is provided 
by the fact that an increase in the root cortical cells and epidermal thickness was 
found in crynohalophyte shrubs Nitraria retusa and Atriplex halimus under saline 
conditions (Boughalleb et  al. 2009), suggestive of participation in ion diffusion 
reduction into the roots. Furthermore, the phellem which is the outer part of the root 
could slow down the water absorption, and hence the salts pass with difficulty in the 
root, but when they penetrate within the root, they spread in it and become diluted 
and cause less damage to the plants (Grigore and Toma 2007). Such leaf, stem, and 
root modifications in response to salt stress are primarily adaptive in order to enable 
the halophytes to withstand the stress conditions, and some of these changes appear 
to be species specific.

7.4.3  �Water Relations and Mineral Nutrition

Saline habitats have been conducted on natural systems inhabited by plants that can 
withstand low soil water potential, adapt to the adverse effects of Na+ ions, and thus 
tolerate their high concentration (Munns 2002; Richards et  al. 2005; Bazihizina 
et al. 2012). Salt-stressed plants have been found to upregulate their xylem sap Na+ 
concentration to maximize hydraulic ability (Munns 1985; López-Portillo et  al. 
2005, 2014), although no references demonstrated the negative effect of salinity on 
xylem hydraulics in leaves. However, it is supposed that the effect of salt level of 
xylem sap on hydraulic efficiency is through its impact on membrane permeability 
(Zwieniecki et al. 2001; Nardini et al. 2011; van Doorn et al. 2011; Santiago et al. 
2013). Another important parameter in water relations of halophytes is predawn 
disequilibrium (PDD) in water balance between water potential of the soil (Ψw) and 
plant. Predawn plant Ψw is used to indicate the abundance of soil moisture to plants 
and hence is utilized to express an array of ecophysiological measurements like 
ultimate stomatal conductance and transpiration (Reich and Hinckley 1989; 
AmeÂglio and Archer 1996; Mediavilla and Escudero 2003), plant growth (Mitchell 
et al. 1993), and differences in root proliferation, adaptation to stress, and habitat 
sharing between different species (Davis and Mooney 1986; Donovan and Ehleringer 
1994; Peuke et al. 2002; Filella and Penuelas 2003). For many halophytes, even at 
night time and well-watered soils, water loss from the root and shoot is reduced, and 
PDD can still be of importance (0.2–1.6 MPa) (Donovan et al. 2001, 2003). These 
authors proposed an explanation that may participate to the significant PDD in halo-
phytes as due to the high solute content in the leaf apoplast. It is noteworthy that 
water relation studies point to the notion that in absence of low apoplastic Ψs, pre-
dawn turgor pressure may reach a level that otherwise induces cell damage (Ritchie 
and Hinckley 1975; Passioura 1991; Boyer 1995). It is therefore suggested that low 
predawn apoplastic Ψs could be an effective strategy to modulate Ψs in plants that 
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have high solute levels or when they are grown in soils with fluctuating water avail-
ability (James et  al. 2005). Furthermore, inconsistences present in PDD among 
halophytes: although Slatyer (1967) indicates that predawn plant Ψw will balance 
with soil Ψw, a lot of evidence propose that predawn plant Ψw can be markedly 
lower (i.e., more negative) than Ψw of the rooting zone in various plant species 
(Ourcival and Berger 1995; Donovan et al. 2001, 2003; Bucci et al. 2004; James 
et al. 2005). Explanations for absence of plant and soil Ψw equilibration at night 
have been indicated. They include low hydraulic conductance, night loss of water 
by the canopy or root system, high capacitance, and diversity in the soil moisture 
(Blake and Ferrell 1977; Richards and Caldwell 1987; Ourcival and Berger 1995; 
Sellin 1999). Further, Donovan et al. (2001, 2003) proposed a mechanism that may 
play role in the large PDD in halophytes which is high level of osmotica in the leaf 
apoplast, which is documented by the fact that high solute level in the leaf apoplast 
has been shown during daily transpiration in both glycophytes and halophytes 
(Meinzer and Moore 1988; Canny 1993). It is obvious that further research is needed 
to better understand the strategies driving PDD and unmask the adaptive signifi-
cance and ecophysiological importance of PDD.

It is established that both cations (Ca2+, Na+, Mg2+) and anions (Cl−, SO4
2−, 

HCO3
−, CO3) are available in saline soil but vary in concentration, and usually the 

proportion of sodium ion cannot exceed the available cations. Meanwhile, if the 
concentration of Mg2+ increased in the soil, it may be toxic because the elevated 
concentration will be accompanied by decreased absorption of Ca2+ and K+ (Gil 
et al. 2014). Such effect could be decreased through the presence of high concentra-
tion of Ca2+. However, Anosheh et al. (2016) suggested that the relation between 
calcium accumulation in plants and salinity level is inversely proportion. For min-
eral relations, many studies measured ion and osmolyte contents in different halo-
phytes growing in the same conditions and thus make it possible to compare between 
the responses of different species at the same habitat (Albert and Popp 1977; 
Gorham et al. 1980; Briens and Larher 1982; Popp and Polania 1989; Tipirdamaz 
et al. 2006). In monocot halophytes, mechanism of salt tolerance depends on Na+ 
and Cl− exclusion from the plant green parts and at the same time maintains cellular 
K+/Na+ ratios relative to dicot halophytes (Flowers and Colmer 2008). In such case, 
compatible solutes are accumulated in the cytosol for osmotic balance (Albert and 
Popp 1977; Gorham et al. 1980; Briens and Larher 1982; Rozema 1991; Gil et al. 
2014). On the contrary, the dicot halophytes are mainly accumulating Na+ and Cl− 
ions in the plant aerial parts and hence decreasing K+/Na+ ratios (Acosta-Motos 
et al. 2017). However, in dicots it is also crucial to minimize Na+ content in the 
cytosol and cellular organelles (Flowers and Colmer 2008). Therefore, the salt toler-
ance mechanism is apparently based on sequestration of toxic ions into the vacuole 
to avoid toxicity of the cytoplasm. Adjustment of osmotic balance between the cyto-
plasm and vacuole depends on gradual gathering of innocent osmotic molecules in 
the cytoplasm to prevent dehydration of the cytoplasm (Gorham et al. 1980; Briens 
and Larher 1982; Tipirdamaz et al. 2006; Gil et al. 2014).

High concentrations of cytosolic K+ are needed to adjust the plant metabolism 
(Leigh and Wyn Jones 1984) because K+ has an essential role in plant growth, 

7  Coping with Saline Environment: Learning from Halophytes



212

reproduction, photosynthesis, stress resistance, stomatal movement, osmoregulation, 
enzyme activation, nitrogen uptake, and protein synthesis (Prajapati and Modi 2012). 
It is also reported that chloroplasts and mitochondria contain high potassium concen-
trations (Flowers and Colmer 2008). Despite the key roles of K+, halophytic species 
such as Atriplex mannifera (Temel and Surmen 2018), Suaeda maritima (Clipson 
1987), Salicornia europaea (Ushakova et  al. 2005), Rhizophora mangle, and 
Laguncularia racemosa (Medina et al. 1995) showed K+ content decline in response 
to salt stress. In addition to K+, calcium plays a crucial role in retaining plasma mem-
brane integrity (Mansour 1995) and thus regulates selective transport of K+ under 
high salt, which enable a plant to be more salt tolerant (Epstein 1998). Despite exog-
enous supplying of Ca2+, salt stress declined its content in Aegiceras corniculatum 
(Shindle and Bhosale 1985), Rhizophora mucronata, Avicennia officinalis (Bhosale 
and Malik 1991), Allenrolfea occidentalis (Bilquees et  al. 2000), and Atriplex 
griffithii (Khan and Ungar 2000), but no change has been found in Ca2+ content in 
Suaeda nudiflora (Joshi and Iyengar 1987). It is obvious that ion homeostasis is a 
crucial trait for stress resistance under high salinity, and some studies however 
showed that it is species specific.

7.5  �Using Halophytes as Bioremediators

Sustainment of crop productivity needs good strategies to cultivate the unused and 
marginal lands. One of the most important struggles is the desalination and saline 
soil recovery. Over the past two decades, improvement of the conditions of both 
saline and sodic soils was performed through using chemical amendments. Because 
of over-demands of these amendments by developed countries, the costs are continu-
ing to increase (Qadir et al. 2007). The disadvantage of using chemical amendments 
for the treatment of saline soils necessitates using phytoremediation techniques 
which has been proven to be an effective improvement strategy (Qadir et al. 1996). 
Phytoremediation using halophytic species is a promising approach to reduce salt 
contents in the saline soils. Phytoremediation is a strategy in which living plants are 
utilized to cleanse contaminated soil, air, and water from dangerous contaminants 
that otherwise damage plant life (Salt et al. 1998). For instance, Akhter et al. (2003) 
indicate that salt-tolerant species are an effective means to address both climate and 
amendment costs. The authors demonstrate the phytoremediation ability of 
Leptochloa fusca (kallar grass, salt-tolerant species) as this species has the potential-
ity to leach salts from surface (0–20 cm) to lower depths (>100 cm) resulting in 
decrement of soil salinity, sodicity, and pH. The soil pH was declined by both release 
of CO2 and solubilization of CaCO3 by kallar grass roots. Additionally, it is impor-
tant to note that in the first 3  years, kallar grass showed an improvement in soil 
chemical environment, and further grass growth up to 5 years restored and main-
tained soil fertility, highlighting the contention that growing salt-tolerant plants can 
avoid depletion of saline barren lands. Recently, using phytoremediation as a low-
cost, solar energy-driven cleanup approach to manage the salinity problem has been 
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introduced (Kumar 2017). In support, several reports indicate that reclamation of 
salt-affected soils was operated by cultivated halophytic species (Chaudhri et  al. 
1964; Ravindran et al. 2007). In addition, the possibility of using halophytic species 
as oil seed crops and as forage has also been reported (Glenn et al. 1999). Evidence 
confirming the beneficial usage of halophytic species as bioremediators comes from 
the following findings. In Pakistan, Chaudhri et al. (1964) working on Suaeda fruti-
cosa showed the ability of this species to accumulate sodium and other salts in their 
leaves. Also, Ravindran et al. (2007) found that both Suaeda maritima and Sesuvium 
portulacastrum have the ability to accumulate salts in their tissue and reduce salts 
from saline soil. Both halophytes have the ability to eliminate 504 and 474 kg of 
NaCl, respectively, from 1 ha of the saline soil in a 4-month period. Moreover, due 
to using the phytoremediation technique to remove salts from saline soils, the farm-
ers’ economy will not only increase from salt-affected land treatment, but also they 
get industrial raw material, food, fodder, and fuel wood. The advantages of utilizing 
the phytoremediation approach may include the following: (1) we will not need to 
pay for chemical amendments, (2) we will not only improve the land with halo-
phytes, but also we will get money as a result, (3) amelioration of physical properties 
of soil (stability, macropores) as well as rapid increasing number of roots, (4) avail-
ability of nutrient in soil after phytoremediation, (5) improvement of soil profile, and 
(6) environmental issues as far as carbon sequestration is concerned in the post-
amelioration lands (Hasanuzzaman et al. 2014).

Further evidence for using halophytes as phytoremediators is given in this sec-
tion. For example, Boyko (1966) demonstrated that both saline soil and water could 
be desalinated using halophytes. Also, Zahran and Abdel Wahid (1982) used Juncus 
rigidus and Juncus acutus to reclaim badly drained soils in Egypt. The authors 
report that the EC of soil had a 50% saturation decrease in a single growth period. 
Further, Helalia et  al. (1992) showed that saline-sodic soil could be remediated 
using Echinochloa stagnina through reducing sodium level at the soil surface layer. 
Another study indicated approximately 20 tons of dry weight per hectare have 3–4 
tons of salt produced by Suaeda salsa (Ke-Fu 1991). Interestingly, Portulaca olera-
cea had salt uptake of 497 kg ha−1 accompanied with 3948 kg ha−1 biomass produc-
tion (Hamidov et al. 2007). Rabhi et al. (2010) consistently report that Arthrocnemum 
indicum, Suaeda fruticosa, and Sesuvium portulacastrum seedlings grown in salty 
soil greatly decreased the soil salinity and EC via up taking Na+ ions. The authors 
also observed that Sesuvium portulacastrum accumulate almost 30% of Na+ content 
in the shoots over 170  days. Similarly, when three salt accumulator halophytes, 
namely, Tamarix aphylla, Atriplex nummularia, and Atriplex halimus, were used to 
remediate saline-sodic soil in Jordan Valley, a remarkable decrease in soil salinity 
was recorded (Al Nasir et al. 2010). Based on the above evidence, it is obvious that 
salinity problem could be resolved by environmentally safe and clean technique 
such as introducing salt-accumulating plants in order to regulate salinity and con-
serve farmland sustainability.

Several researchers similarly indicate that hyperaccumulating plants tend to 
accumulate enormous salt quantities from saline soils in their aboveground biomass 
(Purakayastha et al. 2017; Suska-Malawska et al. 2019). These authors indicate that 
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one of the environmental and economic solutions in phytoremediation is the use of 
salt-accumulating halophytes which own a multifunction role in the remediation of 
saline soils, animal fodder, and organic composts. The ability of halophytic species 
to remove salts is therefore very crucial particularly when no enough precipitation 
in arid and semi-arid regions to leach the high salt concentration in the root area. It 
is noteworthy that cleaning up contaminated soils and underground water at large 
scale utilizing phytoremediation approaches needs plants with greater rate of salt 
uptake, tolerance to more than one environmental threat, as well as large biomass. 
De Souza et al. (2012) studied growth patterns and anatomical changes in Atriplex 
nummularia Lindl and found that this species is a promising halophyte that assists 
under different conditions such as water deficit, sodic, or saline soil, and hence this 
halophyte has an important role in managing soil and water quality in semiarid 
regions. Despite the large evidence presented in this regard, the effectiveness of 
phytoremediation has some restrictions that should be solved to have a common 
usage. First, it takes several growing seasons to decrease the level of soil contamina-
tion, and therefore it can be time-consuming. Second, it works only in certain soil 
depths that are associated to rooting zone. Third, remediation of high salinity soil is 
not easy task since salinity greatly inhibits the germination and growth of several 
plant species, and therefore selecting suitable plant species for remediation is very 
crucial. Forth, the plant species must also have a deep and robust root growth as well 
as enough aerial biomass production for exploring and accumulating more salts 
(Pajević et al. 2009). Accordingly, it is recommended that halophytes with higher 
biomass of shoots and root roots should be mainly chosen for remediation. Highly 
salt-tolerant, food, and fodder plant species are very useful in this connection. 
Despite the obvious discussed evidence, it seems that using halophytes for soil rec-
lamation needs more research for good utilization of these precious species.

7.6  �Mechanisms of Salt Tolerance

High levels of Na+ in the cells cause salt toxicity which impacts enzymes and 
impairs cellular metabolism (Hasegawa et al. 2000). High salinity also disturbs K+ 
absorption and content, despite the fact that K+/Na+ ratio has been reported as a key 
determinant of plant salt tolerance (Hasegawa et al. 2000). Maintenance of cyto-
solic Na+ and Cl− ions in a low concentration with adequate K+ is a key tolerance 
feature in halophytes, and thus ion homeostasis is an urgent mechanism. Halophytes 
complete their life cycle at external salts more than 200 mM and accumulate more 
than 500 mM in their shoot (Flowers et al. 2015; Zhang et al. 2015; Santos et al. 
2016). Understanding the mechanism of Na+ transport in halophytes and how they 
deal with high Na+ content at cellular and molecular levels is thus needed. It is 
reported that halophytes have distinct integration of different adaptive mechanisms 
mainly physiological rather than morphological or anatomical (Shabala 2011). 
Halophytes tolerate high concentration of salt via strategies working at cellular 
level which results in evolved defense mechanisms (Flowers and Colmer 2008). 
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These mechanisms include osmotic adjustment (tissue tolerance), ion homeostasis 
involving PM and vacuolar membrane transport systems, antioxidant defense 
systems either enzymatic or nonenzymatic, and alterations of the membrane 
components (Mansour and Salama 2019). Ion homeostasis mainly includes ion 
compartmentation in includer halophytes and ion exclusion in excluder halophytes 
(Hasanuzzaman et  al. 2014). Understanding these strategies greatly facilitates 
developing tolerant plant species/cultivars to saline conditions, which allows utili-
zation of salt and marginal lands (Hasanuzzaman et al. 2014).

7.6.1  �Tissue Tolerance

Tissue tolerance is the plant capability to maintain tissue activity through accumu-
lating high Na+ in older leaves, rather than in younger leaves, where leaf senescence 
appears first. In addition, salinity induces osmotic action which affects plant growth 
due to lowered water potential in the surrounding medium. In order to keep continu-
ous water absorption, the cellular water potential needs to be reduced, relative to 
that of the soil solution, in order to provide water potential gradient between the soil 
and plant. This water potential gradient drives water entrance to the plant that helps 
in maintaining the cell turgor and elongation, which eventually promotes growth. 
Halophytes decline their cellular water potential through absorption and storage of 
toxic ions (Na+ and Cl−) in the vacuole to avoid cytoplasmic toxicity; compartmen-
tation of ions in the vacuole is regarded as one mechanism of tissue tolerance 
(Munns and Tester 2008). The solute potential of the cytosol is adjusted and balanced 
to that of the vacuole by elevation of K+ and compatible osmolytes or innocent 
solutes in the cytoplasm (Mansour and Salama 2019). It is well established that 
halophytes synthesized and accumulate compatible osmolytes, such as proline, 
glycine betaine, polyphenols, and soluble sugars, under saline conditions (Bartels 
and Dinakar 2013); this accumulation of organic solutes is also one facet of tissue 
tolerance. Accumulation of inorganic ions and organic innocent solutes in response 
to high salinity counterbalances the osmotic action of salinity as such mechanism 
keeps water absorption going on. In addition to their involvement in osmotic adjust-
ment, these compatible solutes also participate in the protection of cellular macro-
molecules, ROS scavenging, nitrogen and carbon storage, and chaperones (Munns 
and Tester 2008; Mansour et al. 2015; Mansour and Salama 2019).

7.6.2  �Salt Includers and Excluders

Transport of ions in halophytes can clarify the way by which plants avert the injuri-
ous impacts of salt on cellular metabolism. It is worth mentioning that halophytes 
can tolerate high levels of salts in their cytoplasm. The mechanisms or strategies by 
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which plants get rid of toxic ions are crucial for better plant performance under high 
salinity. Halophytes that accumulate large amounts of Na+ ions (i.e., includers) 
pump Na+ into the vacuoles by specific transporters (detailed below) in order to 
avert accumulation of ions in the cytoplasm which is illustrated to be a cellular 
adaptation response leading to tissue tolerance in halophytes (Munns and Tester 
2008). It is important to note that the vacuoles of the halophytes are proposed to 
remodel the composition of their membrane lipids to avoid Na+ flow back into the 
cytoplasm (Bartels and Dinakar 2013). Another strategy to keep a reasonable cyto-
solic concentration of Na+ is found in recretrohalophytes; this type of halophytes 
excludes Na+ out through special structures (Yuan et al. 2016). Also, some other 
types of halophytes prevent intracellular Na+ ion accumulation (i.e., excluders) 
through maintaining Na+ in their roots and prevent its transport to the aerial green 
shoot or retrieve it from the shoot to the roots through xylem (Bartels and Dinakar 
2013). Flowers et al. (2010) confirm the regulation of ion transport from root to 
shoot as a vital strategy for halophytes to cope with adverse effects of salinity. In a 
recent review by Flowers et al. (2019), the transport of toxic ions via transport pro-
tein (channels and transporters) and vesicles (exo- and endocytosis) is shown in 
Fig. 7.5 and discussed below.

Fig. 7.5  The plasma and vacuolar membrane transport proteins as well as Na+ vesicular transport 
participating in ion homeostasis and salt tolerance. (Adapted from Mansour and Salama (2019) 
and Flowers et al. (2019) with modifications)
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7.6.3  �PM and Vacuolar Transport Proteins

As no Na+ pumps have been characterized in plant, uptake of the toxic ions takes 
place passively via using secondary active transport (Pedersen and Palmgren 2017). 
PM transport systems operate to either include or exclude Na+ ions into the cyto-
plasm, whereas tonoplast transport systems sequester Na+ in the vacuoles. For sec-
ondary transport systems (ion channels and transporters) to work, plasma and 
vacuolar membrane proton pump activity is required to establish and maintains the 
electrochemical potential gradient (the proton gradient and membrane potential) 
across the membrane (Mansour 2014). Membrane channels and transporters 
involved in the secondary active transport can couple this electrochemical potential 
gradient to movement of ions against their concentration gradients (Flowers et al. 
2010; Mansour 2014). A detailed review by Mansour (2014) presents evidence for 
the involvement of high-affinity K+ transporter, AKT1-type channel, and Na+/H+ 
antiporter in the regulation of Na+ uptake and exclusion under salt stress. Increased 
activity and expression of PM H+-ATPase in different halophytes and tolerant gly-
cophytes under high salinity points to the important of this pump in salt tolerance 
(Bose et al. 2014). In addition, the crucial role of vacuolar ATPase and pyrophos-
phatase in plant resistance to salt stress is reported by Mansour and Salama (2019). 
In support to the involvement of plasma and vacuolar transport systems in salt resis-
tance is the finding that expression and activity of plasma membrane and vacuolar 
membrane H+-ATPase significantly increased in Suaeda salsa in response to NaCl 
treatment (Chen et al. 2010; Yang et al. 2010).

Halophytes control the cytosolic concentration of Na+ within 100–200 mM via 
Na+/H+ antiporters or ion channels of PM and vacuole to keep the crucial high ratio 
of K+/Na+ in the cytosol (Flowers et al. 2019). Transporting Na+, Cl−, and K+ into the 
halophyte cells is proposed to involve 18 or more transporters (Flowers and Colmer 
2008). These transporters include low-affinity cation transporter 1 (LCT1), AKT-
type ion channels, K+ transporters from the KUP/HAK/KT family, members of the 
HKT1 and HKT2 classes of transporters, as well as nonselective cation channels 
that possibly participate in Na+ transport across the PM (Wang et al. 2007; Almeida 
et al. 2013; Wu 2018). So far, the only characterized antiporter that dumps Na+ from 
the cytosol to outside the cells is SOS1, and it is located at the PM (Wu 2018). 
Inhibition of SOS1 activity increased salt sensitivity in the halophytic Arabidopsis; 
the finding confirms the important role of the SOS1 Na+/H+ antiporter in plant salt 
tolerance. In addition, during Na+ compartmentalization, vacuolar Na+/H+ exchang-
ers (NHX) play also crucial roles in Na+ and K+ transport and homeostasis: vacuolar 
Na+/H+ antiporter overexpression has been illustrated to enhance tolerance to high 
salinity in various plant species (Silva and Gerós 2009). It is noteworthy that 
although membrane ATPase and ion transporters have been reported to have a prime 
role in salt tolerance of halophytes, the specific mechanism whereby Na+ and Cl− 
enter and leave the cells needs further elucidation (Meng et al. 2018).
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7.6.4  �Vesicular Transport

Vesicular transport of ions is widespread among eukaryotes with the mechanism of 
exo- and endocytosis being conserved (Cucu et al. 2017). Recently, Flowers et al. 
(2019) reviewed the mechanism of ion transport via vesicles which participate in 
exporting ions into salt glands. In endocytosis, vesicles formed by the Golgi appa-
ratus are combined with the PM, surround the ion, and export it to salt glands. 
Vesicle-mediated transport systems may also be produced from the vacuole to the 
PM in order to carry solutes from the vacuole through tonoplast vesicles into apo-
plast. Exocytosis acts to the recovery of membrane material from the PM. Ion trans-
port through vesicle is different from that by transporters or ion channels (Flowers 
et al. 2019) where vesicular ion transport depends on ion concentration near form-
ing vesicle and electrical charge of vesicular membrane, whereas transport via 
intrinsic proteins is determined by its structure. Vesicular traffic of Na+ and Cl− is 
considered as a part of salt resistance in halophytes (Flowers et al. 2019). Further 
investigations at the molecular, cellular, and whole plant are needed to prove the 
role and the way of vesicular transport in halophytes.

Specialized salt glands are well-known tolerance trait in several halophytes to 
control toxic ion levels under high salt stress (Flowers and Colmer 2015; Yuan et al. 
2016; Santos et al. 2016). Recretohalophytes are the groups that have a specific salt 
execratory structure originating from the epidermis (Yuan et  al. 2016). The salt 
exclusion mechanisms differ among recretohalophytes species according to the 
structure of salt excluder. In Aizoaceae and Amaranthaceae, toxic ions are depos-
ited in bladder cell vacuole and thus accumulated in the bladders (Agarie et  al. 
2007; Park et al. 2009). The bladder cells are next ruptured and ions are accumu-
lated on the surface of the epidermis. Such mechanism to compartmentalize salts in 
the vacuoles of the bladder cells is similar to that utilized by several halophytes and 
glycophytes where salt is sequestered in the vacuoles of the mesophyll cells of the 
succulent leaves (Park et al. 2009). Agarie et al. (2007) indicated that toxic ions are 
sequestered into the epidermal bladder cells of the common ice plant 
(Mesembryanthemum crystallinum) maintaining ion homeostasis suitable for green 
active tissues and thus contributing to plant tolerance to saline conditions.

Other species of halophytes exclude Na+ via bicellular salt gland as chloridoid 
grasses (Amarasinghe and Watson 1988). However, multicellular glands were also 
found in Limonium bicolor (Feng et al. 2014) and in Aeluropus littoralis (Barhoumi 
et  al. 2008). Multicellular glands are composed of basal accumulating cells and 
secretory cells (Thomson et al. 1988). The collecting cells are supposedly to main-
tain a downhill gradient to accumulate ions from surrounding mesophyll cells and 
then transport them to the secretory cells (Faraday and Thomson 1986). Tan et al. 
(2013) report that for the secretory cells to prevent leakage of ions back to the sur-
rounding cells, they are surrounded by a cuticle except the connection between 
them and the basal collecting cells. The basal collecting cells may partially be con-
nected with plasmodesmata; thus, salt is most likely transported actively from the 
collecting cells into the secretory cells and eventually to outside the cell through the 
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pores in the cuticle (Faraday and Thomson 1986). It is obvious that understanding 
the mechanism of salt secretion via the salt gland performance can enable us to 
develop salt-tolerant crops which makes it possible to cultivate non-used saline lands.

7.6.5  �Antioxidant Defense Systems

High salinity induced the formation of reactive oxygen species (ROS) which are 
produced from the electron or energy transfer in the mitochondria and chloroplasts 
and hence cause oxidative stress in plants (Das and Kumar 2016; Meng et al. 2018). 
The ROS cause oxidation and damage of cellular macromolecules such as protein, 
membrane lipid, and nucleic acids leading to impairing their functions (Mansour 
and Ali 2017). To detoxify ROS, plant increases the activity, expression, and biosyn-
thesis of antioxidant systems to protect cells from oxidative damage (Mansour and 
Salama 2019). It is therefore crucial that the plant cell produces antioxidant defense 
systems to combat the deleterious impacts of ROS. The antioxidant defense systems 
include either enzymatic or nonenzymatic species, targeted as tissue tolerance 
mechanism. In several halophytes, antioxidant enzymes have been identified to play 
crucial roles in the protection against ROS damage, such as glutathione transferases 
from Salicornia brachiata (Jha et  al. 2011), ascorbate peroxidases from Suaeda 
salsa and Populus tomentosa (Li et al. 2012; Cao et al. 2017), superoxide dismutases 
from Tamarix (Wang et  al. 2010), and monodehydroascorbate reductase from 
Avicennia marina (Kavitha et al. 2010). Consistently, when Salicornia brachiata 
metallothionein gene sbMT-2 is overexpressed in tobacco, transgenic plants showed 
enhance salt tolerance with elevated superoxide dismutase expression, peroxidase, 
and ascorbate peroxidases, confirming antioxidant enzymes’ role in ROS detoxifi-
cation and eventually salt resistance (Chaturvedi et al. 2014). Together with antioxi-
dant enzymes, increased contents of nonenzymatic antioxidants including ascorbic 
acid, glutathione, polyphenols, tocopherols, and flavonoids have been illustrated in 
several halophytes under high salinity and have been found to greatly participate in 
their salt resistance (Ben Amor et al. 2006; Ivan and Oprică 2013). In agreement 
with that, the importance of nonenzymatic antioxidants in halophyte salt tolerance 
is emphasized as a powerful system acting against the damaging effects of hydroxyl 
radicals on cellular macromolecules (Bose et al. 2014).

7.6.6  �Membrane Lipid Modeling

Alteration in the membrane structure and composition is an evolved strategy in salt 
tolerance mechanism (Mansour and Salama 2019). The structure and composition 
of PM highly affect the fluidity, permeability, stability of membrane, and membrane 
transport system activities (Mansour 2013; Mansour et al. 2015; Meng et al. 2018; 
Mansour and Salama 2019). The pivotal roles of the PM constituents in plant 
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adaptation to high salinity and the relationship between PM lipid modulations and 
tolerance to saline conditions are detailed in a recent review by Mansour et  al. 
(2015). The membrane changes in halophytes were always in the positive and sus-
tainable direction to retain membrane integrity and transport system activity, and 
therefore these changes are correlated with salt tolerance under saline conditions. 
For example, membrane lipid alterations have shown to relate with type of salt accu-
mulation and resistance in ten wild halophytes (Rozentsvet et al. 2014). In the halo-
phyte Thellungiella halophile, Sui and Han (2014) found high phosphatidylglycerol 
content as well as greater unsaturated fatty acids under high salt stress. The study 
revealed that these alterations enhanced the resistance of photosystem II to high 
salinity. In addition, PM different lipid and phospholipid species were altered in 
Zygophyllum album and Zygophyllum coccineum as a result of soil pollution with 
the increase in saturation/unsaturation ratio of both species (Morsy et  al. 2010), 
which also contributed to stress tolerance. In the same trend, PM lipid changes in 
salt marsh grass (Spartina patens) under saline environments were found to be cor-
related with salt resistance (Wu et al. 2005). In agreement with these findings, intro-
ducing the Suaeda salsa gene encoding enzyme catalyzed phosphatidylglycerol 
synthesis in Arabidopsis resulted in transgenic plants with enhanced resistance to 
high salinity (Sui et al. 2017). Additionally, increased unsaturated fatty acid con-
tents in membrane lipids preserve photosystems I and II which improves salt resis-
tance in Suaeda salsa and tomato (Sun et al. 2010; Sui et al. 2010). Also, when 
Leach et al. (1990) studied isolated vacuoles from the halophyte Suaeda maritime, 
it turns out that the vacuolar membrane lipids as well as the degree of fatty acid satu-
ration have a key role in NaCl compartmentation in the vacuole. Similarly, PM high 
sterol content and high unsaturated fatty acids are related to salt resistance in the 
halophyte Cakile maritime (Chalbi et  al. 2015). The importance of modeling of 
membrane lipids under high salinity comes from the fact that this modeling ensures 
presence of certain lipid species required for maintenance of membrane integrity as 
well as for proper functioning of membrane transport proteins involved in ion 
homeostasis under high salinity (Chalbi et al. 2015; Mansour et al. 2015). Further, 
the role of membrane lipids as intracellular mediators in signaling pathways in plant 
environmental responses is documented (Ruelland et al. 2015). Despite the clear 
association between membrane lipid remodeling and salt resistance, more research 
is needed at the molecular level to further examine and document the role of certain 
lipid classes in salt tolerance mechanism.

7.7  �Future Perspectives

Increasing population will bring certainly increased demands for food all over the 
world. There is every reason to believe that challenge to produce more and better 
food at lower cost will be met. Therefore, long-term studies are urgently needed to 
demonstrate the viability of halophyte crop production and its economic prospects 
for potential farmers.
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Real benefits can be achieved if concerted efforts are made to investigate 
species-specific regulation during abiotic stress, expand genetic capital, and exploit 
mechanisms of stress tolerance in crops.

In this regard, several studies have shown that the genes cloned from halophytes 
promote stress tolerance when expressed in glycophytes.

Future research should also work on identifying additional salt-responsive genes 
by exploring more suitable halophytes that help us better understand the mecha-
nisms of salt tolerance and apply the findings to the production of high salinity 
transgenic crops. Moreover, halophytic crops should undergo the same process 
undergone by conventional agricultural crops such as breeding to improve their 
agricultural traits, and thus during short time spans, economically profitable and 
consumer-acceptable products can be attained. For example, halophytic crops have 
been indicated to possess economic importance, such as vegetable, forage, and oil-
seed crops, and also can be used as resource for the future to reduce the water crisis 
(Koyro et al. 2011).

More use of halophytes is supported by the notion that halophytes are an impor-
tant plant species with high soil salinity and saline water irrigation, thus having the 
potential for desalination (phytoremediation) and saline soil restoration. As for long 
term, a promising issue will be raised and can be a must by then which is the halo-
phyte biofuel production costs will be lower than other alternative energy resources 
and advancing halophyte cultivation will be an ultimate goal.
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