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Abstract
Soil health indicators are a composite set of measurable physical, chemical, and
biological attributes which relate to functional soil processes and are being used
to evaluate soil health status. A range of soil health indicators have been devel-
oped to measure and asses changes in soil properties and functioning to under-
stand soil health as a tool for sustainability. The physical, chemical, and
biological indicators must be employed to verify soil status use and to undertake
remedial management measures within a desired timescale. Soil properties which
can change rapidly in response to natural or anthropogenic actions are considered
as good soil health indicators. Among the physical indicators, bulk density, soil
aggregate stability, and water holding capacity have been found ideal indicators.
Chemical indicators such as pH, EC, soil organic carbon, and soil nutrient status
are well established. However, most of them generally have a slow response, as
compared to the microbiological and biochemical properties, such as soil
enzymes, soil respiration, mycorrhiza, lipid profiling, and earthworms as they
change rapidly due to perturbation caused by different agricultural management
paradigm. Thus, systemic approaches based on different kinds of indicators
(physical, chemical, and biological) in assessing soil health are discussed in this
chapter.
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13.1 Introduction

Modern agricultural practices began to exploit soil by excessive use of chemical
fertilizers devoid of organic sources, nature of the soil such as high pH, CaCO3 and
low organic carbon content; extensive tillage with heavy machinery and closely
spaced cereal–cereal rotations. This has instead of created insert caused multifaceted
deleterious effect on soil health by reducing time required by the soil health
indicators (biological) to rejuvenate and perpetuate for maintaining ideal environ-
ment condition for crop growth without compromising on economic yield. More-
over, this situation has accelerated soil degradation process insidiously making roads
into weakening of soil health indicators to become unproductive soil (Katyal et al.
2016). At present, demand for sustainable agricultural management practices mount-
ing due to agricultural edges has already expanded near to the maximum all over the
world. Feeding ever increasing population with maintaining optimum soil health
indicators and sustainable environment is ever challenging task for present and
future generations to come. In addition, public awareness and thrust on the need of
environmental conservation, especially in the tropical region, claim for keeping
forests as reserve of biodiversity, provider of environmental services, and needs
for reclamation of degraded lands (Cardoso et al. 2013) is also a matter of great
concerns. Therefore, sustainable agricultural practices to maintain optimum soil
heath indicators with ideal soil fertility are needed for meeting the needs of the
present without compromising the productive potential for the next generations. The
rational soil use practices must allow economically and environmentally sustainable
yields, and also quality of produce which will only be reached with the maintenance
or recovery of the soil health indicators. Thus, a healthy soil has “the continued
capacity of soil to function as a vital living system, within ecosystem and land-use
boundaries, to sustain biological productivity, promote the quality of air and water
environments, and maintain plant, animal and human health” (Doran and Safley
1997). To assess the sustainability of a production system, changes in soil health
indicators (chemical, physical, and biological) and their effects on the soil’s capacity
to support plant growth and external environment functions must be monitored.
Hence, in this chapter an impetus has been given to discuss soil health indicators in
detail with methodologies to analyze them in the laboratory along with their poten-
tial applications in crop production and management aspects under field conditions.

13.2 General View of Soil Health Indicators

The soil consists of four major components such as air, water, mineral, and organic
matter that are described in terms of soil health indicators, which can provide an
assessment of how well the soil functions. Though the properties that constitute a
healthy soil are not the same in all situations and locations, there are some important
soil properties that indicate soil health. Soil health indicators are selected based on
soil characteristics, soil use, and environmental circumstances along with their
positive correlation with crop growth and yield under different management
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conditions (Cardoso et al. 2013). Some of the key soil health indicators for soil
quality assessment are provided in Table 13.1 and the inter relationship between
different soil health indicators are emphasized in Table 13.2. According to
Bünemann et al. (2018), the most commonly used and frequently proposed soil
health indicators by various authors across the globe are soil organic carbon and soil
pH (Fig. 13.1), followed by available phosphorus, indicators of water storage, and
bulk density. The soil texture, available potassium, and total nitrogen are also
frequently used (>40%). For soil reclamation point of view, the important soil
properties that indicate soil health could be physical, chemical, biological, or

Table 13.1 Soil health indicators selected based on certain criteria (modified from Arshad and
Coen 1992; Idowu et al. 2008; Kelly et al. 1999; Paoletti et al. 2010; Griffiths et al. 2018)

Soil health indicators Rationale for selection

Bulk density Plant root penetration, porosity, adjust analysis
to volumetric basis

Soil aggregate stability Soil structure, erosion resistance, crop
emergence an early indicator of soil
management effect

Water holding capacity/infiltration Runoff, leaching, and erosion potential

pH Nutrient availability, pesticide absorption and
mobility, process models

EC (electric conductivity) Defines crop growth, soil structure, water
infiltration; presently lacking in most process
models

CEC (cation exchange capacity) CEC represents the total amount of
exchangeable cations that soil can absorb

Soil organic carbon/organic matter Defines soil fertility and soil structure,
pesticide and water retention, and use in
process models

Soil nutrients status Availability of crops, leaching potential,
mineralization/immobilization rates, process
modeling, capacity to support plant growth,
environmental quality indicator

Suspected pollutants Plant quality, and human and animal health

Soil respiration Biological activity, process modeling; estimate
of biomass activity, early warning of
management effect on organic matter

Enzymes (dehydrogenase, β-glucosidase, acid
and alkaline phosphatase, microbial biomass,
and soil respiration)

Electron transferences in the respiratory chain
in living cells, C oxidation, organic
phosphorus cycling, source and/or drain of C
and nutrients, microbial mineralization of
organic carbon

Mycorrhiza Nutrient mobilization, soil aggregation

Trichoderma Residue decomposition

Lipid profiling Diversity and biomass

Earthworm Indicate relative change in soil structure,
nutrient recycling, regulate soil water, aeration,
and provide drainage
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biochemical within that average number of indicators selected based on their practi-
cal and economical feasibility as well as their relations with other indicators under all
the conditions are described in this chapter.

13.3 Soil Health Indicators and Their Analytical Techniques

13.3.1 Soil Physical Health Indicators

Soil physical health indicators provide information related to water and air move-
ment through soil, as well as conditions affecting germination, root growth, and
erosion processes. Thus, soil physical health indicators form the foundation for other
chemical and biological processes. Key soil physical indicators in relation to crop
production include soil aggregate stability, water holding capacity, bulk density and
are discussed below.

13.3.1.1 Water Holding Capacity and Bulk Density
Soil water holding capacity is the amount of water a given soil can hold for crop use.
How much water a soil can hold is very important for crop production point of view.
Soils which hold more water can support higher plant growth and development and
reduce leaching losses of nutrients and pesticides. Hence, water holding capacity of
soils is explained in terms of infiltration, soil available water and distribution. Soil
water infiltration, the rate at which water enters the soil surface and moves through
soil depth, is gaining increased interest (Dalal and Moloney 2000; Joel and Messing
2001). Since infiltration rate may change significantly with soil use, management,
and time, it has been included as an indicator of soil health for assessments of land
use change impacts (Arias et al. 2005; O’Farrell et al. 2010).

Bulk density is the weight of dry soil per unit of volume expressed in grams
cm�3. It is routinely assessed in agricultural systems to characterize the state of soil
compactness in response to land use and management (Håkansson and Lipiec 2000).
It has been considered as a useful indicator for the assessment of soil health with
respect to soil functions such as aeration, infiltration (Reynolds et al. 2009), rooting
depth/restrictions, available water capacity, soil porosity, plant nutrient availability,
and soil microorganism activities influencing the key soil processes and productivity

Table 13.2 Interrelationship of soil indicators (Laishram et al. 2012)

Selected indicator Other soil quality indicators

Aggregation Organic matter, microbial (especially, fungal) activity, texture

Water holding capacity/
infiltration

Organic matter, aggregation, electrical conductivity, exchangeable
sodium percentage (ESP)

Bulk density Organic matter, aggregation, topsoil-depth, ESP, biological activity

Microbial biomass Organic matter, aggregation, bulk density, pH, texture, ESP, and/or
respiration

Available nutrients Organic matter, pH, topsoil-depth, texture, microbial parameters
(mineralization and immobilization rates)
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(https://www.nrcs.usda.gov). Since bulk density in general is negatively correlated
with soil organic matter (SOM) or SOC content (Weil and Magdoff 2004), loss of
organic C from increased decomposition due to elevated temperatures (Davidson
and Janssens 2006) may lead to increase in bulk density and hence making soil more
prone to compaction through land management activities (Birkas et al. 2009). Bulk
density directly measures compaction, and generally does not vary with other soil
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properties because it is most often expressed on a dry soil basis (Tokunaga 2006). It
has been suggested by many researchers that soil bulk density from 1.3 to 1.7 mg
m�3 may limit root growth and decrease plant yield (Asady and Smucker 1989;
Bengough and Mullins 1990; Kuznetsova 1990). Maximum water holding capacity
of soil was assessed with Keen Raczkowski cup as per the method described by Piper
(1966). Bulk density of soil sample is determined by using core sampler technique
(Black 1965), recording the fresh weight of the sample in the field and dry weight of
the sample in the laboratory. Drying of soil can be done in hot air oven to constant
weight. Bulk density calculation was done as dry weight of soil per unit volume of
the core collect with core sampler in the field. The units are expressed as % and g cm-

3 for water holding capacity and bulk density, respectively.

13.3.1.2 Aggregate Stability
Aggregate stability is an indicator of organic matter content, biological activity, and
nutrient cycling in soil and is determined by soil structure as influenced by a range of
chemical and biological properties and management practices (Dalal and Moloney
2000; Moebius et al. 2007). It is considered as a useful soil health indicator since it is
involved in maintaining important ecosystem functions in soil including organic
carbon (C) accumulation, infiltration capacity, movement and storage of water, and
root and microbial community activity; it can also be used to measure soil resistance
to erosion and management changes (Moebius et al. 2007; Rimal and Lal 2009).
Aggregate stability is crucial for soil health which can be measured with the methods
proposed by Kemper and Chepil (1965) (a dry sieving and wet sieving), Bissonnais
(1996) and Six et al. (2000) (the method does not require the use of equipment to
mechanically submerge sieves, pre-sieving dry aggregates but rather is done by
hand). The most common method used for aggregate stability measurement is wet
sieving (Haynes 1993). The disadvantage of the method proposed by Bissonnais
(1996) is that aggregate stability is increased by sand particles that are not excluded
from the calculation of coefficient of vulnerability (Kv). On the other hand, a big
advantage of this method is distinguishing the particular mechanisms of aggregate
breakdown. Therefore, it can be used within a large range of soils. In the assessment
of water stable aggregate (WSA), only hexa-metaphosphate as a dispersing solution
was used, because sodium hydroxide was too aggressive to the aluminum cans. An
advantage of this method is that sand particles are excluded from the calculation of
WSA index.

13.3.2 Soil Chemical Health Indicators and Their Analytical
Techniques

Soil chemical health indicators are correlated with the capacity to provide nutrients
for plants and/or retaining chemical elements or compounds harmful to the environ-
ment and plant growth. Soil pH, electrical conductivity, cation exchange capacity
(CEC), soil organic carbon, and nutrient status are the main chemical indicators used
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in soil health assessment, especially when considering the soil capacity for
supporting high yield crops (Kelly et al. 1999).

13.3.2.1 Soil pH, Electrical Conductivity, and Cation Exchange Capacity
Soil pH is one of the most indicative measurements of the chemical properties of
soil. Whether a soil is acidic, neutral, or basic has much to do with solubility of
various compounds, the relative bonding of ions to exchange sites, and the various
microorganisms. Soil pH can be determined by an electrometric method (Jackson
1973) using a glass electrode pH meter in a 1:2 suspension of soil and water by using
buffer solutions at pH 4.0 and 7.0, the pH read on pH meter. Soil electrical
conductivity (EC), a measure of salt concentration, is considered an easily measured,
reliable indicator of soil quality/health (Arnold et al. 2005). It can inform trends in
salinity, crop performance, nutrient cycling (particularly nitrate), and biological
activity and, along with pH, can act as a surrogate measure of soil structural decline
especially in sodic soils (Dalal and Moloney 2000; Arnold et al. 2005). Electrical
conductivity has been used as a chemical indicator to indicate soil biological quality
in response to crop management practices (Vargas Gil et al. 2009). Clearly, there is a
need for a comprehensive assessment of soil EC as an important soil health indicator
in different ecosystems (Smith et al. 2002). Electrical conductivity of soil samples
can be determined by the method suggested by Piper (1966) using a conductivity
meter (Chemita 130) in 1:2 (soil:water ratio).

Cation exchange capacity (CEC) is also considered as an important determinant
of soil chemical quality, particularly the retention of major nutrient cations Ca, Mg,
and K and immobilization of potentially toxic cations Al and Mn; these properties
can thus be useful indicators of soil health, informing of a soil’s capacity to absorb
nutrients, as well as pesticides and chemicals (Dalal and Moloney 2000; Ross et al.
2008). Ion exchange capacity mostly affects soil cation exchange capacity (CEC)
binding to negative charge organic matter, clay, and soil colloid. CEC in soil can be
measured by ammonium acetate method (Schollenberger and Dreibelbis 1930) at pH
7 and the barium chloride-triethanolamine method (Mehlich 1938) at pH 8.2.

13.3.2.2 Soil Organic Carbon
Soil organic carbon is a key attribute in assessing soil health, generally correlating
positively with crop yield (Bennett et al. 2010). The soil organic carbon affects
important functional processes in soil like the storage of nutrients, mainly N, water
holding capacity, and stability of aggregates (Silva and SáMendonça 2007). In
addition, the soil organic carbon also affects microbial activity. Hence, this is a
key component of soil fertility, especially in tropical conditions, which interacts with
chemical, physical, and biological soil properties and must be considered in
assessments of soil health. Soil organic carbon content can be measured with help
of Walkley and Black method. The method involves the oxidation of potassium
dichromate solution in sulfuric acid medium and evaluating the excess of dichromate
with titration against ferrous ammonium sulfate (Yeomans and Bremner 1988). Weil
et al. (2003) reported a highly simplified method using slightly alkaline KMnO4 to
analyze oxidizable (active) forms of soil C. They showed that the active soil C
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measured was more sensitive to soil management practices than total organic C, and
more closely related to biologically mediated soil properties, such as respiration,
microbial biomass, and aggregation, than several other measures of soil organic C.

13.3.2.3 Available Nutrients (N, P, S, Zn, and Fe)
Available soil nutrients (N, P, K, S, Zn, and Fe) and their identification of basic soil
properties to meet requirements of indicators for screening soil health, Doran and
Safley (1997) proposed extractable nutrients as “they provide information on plant
available nutrients and potential loss from soil providing indication of productivity
and environment quality.” Measurement of extractable nutrients may provide indi-
cation of a soil’s capacity to support plant growth; conversely, it may identify critical
or threshold values for environmental hazard assessment (Dalal and Moloney 2000).
Nutrient cycling, especially N, is intimately linked with soil organic C cycling (Weil
and Magdoff 2004) and possibly the cycling of other plant available nutrients. The
mineralizable nitrogen in soil can be determined with help of alkaline permanganate
method (Subbiah and Asija, 1956) using a Kjeldahl distillation unit. The available
phosphorous can be extracted with Olsen’s reagent (0.5M NaHCO3, pH 8.5) in
neutral to alkaline soils (Olsen et al. 1954), whereas under acid soils Brays P-1
(0.03N NH4 F and 0.025N HCL) is widely followed (Bray and Kurtz 1945). The
major drawback with blue color development (Dickman and Bray 1940) is that color
starts fading soon and hence intensity has to be measured quickly. Therefore
ascorbic acid method (Watanabe and Olsen 1965) provides stable blue color and
therefore preferred over former methods to estimate available phosphorus in soil.
Available sulfur can be extracted by using Morgan’s universal extractant (pH 4.8)
and is determined by turbidimetric method (Chesnin and Yien 1950) using
UV/Visible spectrophotometer. For micronutrients extraction, neutral ammonium
acetate and chelating agents like EDTA and DTPA have been used for extraction of
Zn, Fe, Cu, and Mn from soil and the extracted amount is determined calorimetri-
cally. Zn determination dithizone method (Shaw and Dean 1952) has been very
popular until AAS become available. For those laboratories where AAS is not yet
available the alternative (colorimetric) methods as described by Jackson (1973) are
still employed. However, for rapid and accurate analysis of Zn, Fe, Cu, and Mn the
DTPA method (Lindsay and Norvell 2010) is most widely used to estimate
micronutrients.

13.3.3 Microbiological and Biochemical Health Indicators and Their
Analytical Techniques

Soil microbial activity and diversity play an important role in the sustainability by
keeping essential functions of soil health, involving carbon and nutrient cycling
(Jeffries et al. 2003; Izquierdo et al. 2005). Microbial indicators are more sensitive
than physical and chemical attributes to changes imposed to the environment like
soil use and management (Masto et al. 2009). Some of the commonly used soil
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biochemical/biological parameters which depict the soil quality status of a given soil
along with their analytical techniques are illustrated below:

13.3.3.1 Soil Microbial Biomass (Microbial Biomass Carbon (MBC)
and Microbial Biomass Nitrogen (MBN))

The soil microbial biomass (MBC and MBN) is the active component of the soil
organic pool and plays an important role in nutrient cycling, plant nutrition, and
functioning of different ecosystems. It is responsible for organic matter decomposi-
tion thus affecting soil nutrient content and, consequently, primary productivity in
most biogeochemical processes in terrestrial ecosystems (Gregorich et al. 2000;
Haney et al. 2001). In the last 30 years, relatively rapid assessment of soil microbial
biomass has been possible based on physiological, biochemical, and chemical
techniques (Horwath and Paul 1994) such as chloroform fumigation incubation
(CFI) (Jenkinson and Powlson 1976), chloroform fumigation extraction (CFE)
(Brookes et al. 1985; Vance et al. 1987), substrate-induced respiration (SIR)
(Anderson and Domsch 1978), and adenosine triphosphate (ATP) analysis
(Jenkinson et al. 1979; Eiland 1983; Webster et al. 1984). Microbial biomass has
even been proposed as a sensitive indicator of soil quality (Karlen et al. 1997) and
soil health (Sparling 1997). Of these, the first two methods have been widely used to
estimate microbial biomass in agricultural, pastoral, and forestry systems, rehabili-
tation of disturbed lands, and pesticide and heavy metals polluted soils. The methods
are used to analyze microbial biomass carbon and nitrogen as explained in detail
below.

Chloroform Fumigation Incubation (CFI)
In this method, a moist soil is fumigated with ethanol free chloroform for 24 h;
chloroform is then removed by repeated evacuation; the soil is reinoculated with a
small amount of unfumigated soil and then incubated at a constant temperature
(usually 22 or 25 �C) for 10 days at field capacity or 50% of its water holding
capacity (about �0.01 MPa). An additional soil sample is retained unfumigated and
used as a control. The CO2 evolved during incubation can be measured by gas
chromatography, as a continuous flow or by sorption in alkali followed by titrimet-
ric, conductometric, or colorimetric determination. As the net C mineralized as CO2

is only a proportion of the total microbial biomass C, a kC factor is used to calculate
total soil biomass C. As for as soil microbial biomass N determination, mineral N
(NH4-N and NO3-N) from both fumigated and unfumigated (control) samples are
extracted with 2Ml KCl after incubation. The mineral N in the extracts is then
determined colorimetrically or by steam distillation. As for microbial biomass N, a
kN factor is used to correct for incomplete mineralization of N from killed
microorganisms for calculating total biomass N. Soil microbial biomass C and N
are calculated from equations (1) and (2): Biomass C¼ (CO2-C fumigated� CO2-C
control)/kC (1), Biomass N ¼ (mineral N fumigated � mineral N control)/kN (2).
The widely accepted kC value is 0.41 at 22 �C (Anderson and Domsch 1978) or
0.45 at 25 �C (Jenkinson and Powlson 1976). However, kN varies from 0.30 to 0.68
(Smith and Paul 1990). Jenkinson (1988) suggested a kN value of 0.57 at 25 �C,
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which is about 0.50 at 22 �C. Two basic assumptions of the CFI method are: (1) that
CO2-C evolved or mineral N produced during incubation in fumigated soil must
exceed that from the corresponding unfumigated soil; and (2) that CO2-C evolved or
mineral N produced during incubation from the non-microbial source must be equal
in both fumigated and unfumigated soil samples (Jenkinson 1988). In soils with
relatively low microbial biomass but high respiration activity, subtraction of the CO2

evolved from an unfumigated sample (control) often leads to low or even negative
biomass estimates because unequal amounts of non-microbial biomass C is
mineralized (Horwath et al. 1996). To overcome this problem, Jenkinson and
Powlson (1976) suggested that CO2-C released during the 10–20 day incubation
rather than that from the initial 0–10 day incubation of unfumigated soil should be
subtracted from the CO2-C released from the fumigated soil. Horwath et al. (1996)
suggested that the proportion of CO2-C subtracted from the unfumigated (0–10 day
incubation) soil should vary as a function of the ratio of CO2-C fumigated/CO2

control. When the ratio is large the proportion of CO2-C subtracted from the
unfumigated soil should be large and vice versa. They also suggested that equation
(1) can be modified to: Biomass C ¼ (0.71 � CO2-C fumigated – 0.23 � CO2-C
controls)/kC. However, the modified equation needs to be validated for soils under
different land use and management and in different climates. The two basic
assumptions mentioned above do not hold for soils with pH <5, air-dried soils,
waterlogged soils, and soils that contain recently added organic materials or plant
residues. In acidic soils, the re-establishment of a C and N mineralizing microbial
population after fumigation and reinoculation is very slow. This causes a reduced
mineralization of the killed microorganisms which makes the usual kC and kN
factors invalid (Jenkinson 1988; Martens 1995). In air-dried soils, the amount of
already dead microorganisms may constitute most of the microbial biomass in both
fumigated and unfumigated soil samples, in addition to the less effective lysing of
microbial cells by chloroform (Sparling and West 1989). In waterlogged soils, CO2

and CH4 are produced under conditions that restrict diffusion of gases (Jenkinson
1988). In soils with recently added organic materials or plant residues, the second
assumption is not met since the mass of the re-established microbial population in
the fumigated and reinoculated soil sample corresponds to only 10–20% of the
original microbial biomass and consists mainly of bacteria. This can be avoided by
either careful removal of the amendments such as roots, or a sufficient preincubation
of at least 3 weeks (Martens 1995).

Chloroform Fumigation Extraction (CFE)
The above-mentioned limitations of the CFI method are mainly overcome by
extraction of C and N with 0.5 mol K2SO4/L from the chloroform fumigated and
the unfumigated soil samples. The proportions of C (kEC) and N (kEN) extracted
from the fumigated (killed microbial biomass) soil vary from 0.2 to 0.68 (Jenkinson
1988; Martens 1995). However, most frequently used kEC values are in the range
0.36–0.45, while the kEN values are in the range 0.49–0.62. Likely limitations of the
CFE method are differential extraction of released C from soils that differ in clay
content and clay mineralogy, and variable k values (Martens 1995). The CFE method
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has been successfully used to estimate soil microbial biomass P (Hedley and Stewart
1982) and S (Saggar et al. 1981). Inorganic P is extracted with 0.5 mol Na2HCO3/L
(pH 8.5) from both a fumigated and an unfumigated soil; the proportion of P is
extracted from the killed microbial biomass, and the kP value is taken as 0.4. The
allowance is also made for P sorption during fumigation and extraction by including
an internal P standard. For strong P retention soils such as Ferrosols, Bray extractant
(30 mmol NH4F/L + 25 mmol HCl/L) appears to be more appropriate than 0.5 mol
Na2HCO3/L extractant (Oberson et al. 1997). The procedure for microbial biomass S
determination is similar to that for microbial biomass P but 0.15% CaCl2 is used as
an extractant and determined using turbidimetric method, the most commonly used
kS value is 0.41 (Smith and Paul 1990).

Substrate-Induced Respiration (SIR)
An excess of substrate, usually glucose, is added to a soil, which is then incubated at
constant temperature and moisture, and the respiration rate, CO2 evolved per hour, is
measured during a 0.5–2.5 h period, before the microorganisms start proliferating
and actually increase microbial biomass (Anderson and Domsch 1978). Limitations
of this method are: (1) that the pattern of soil microbial response to glucose differs
between soils; (2) that only glucose responsive soil microbial biomass is measured;
(3) that soils recently amended with organic materials or plant residues contain a
large proportion of young cells, and, therefore, the conversion factor used, from mL
CO2/h to microbial biomass C of 40 (30 at 22 �C, Beck et al. 1997) for an average
population in soil, is not valid (Martens 1995); (4) it measures only microbial
activity which does not necessarily equate with microbial biomass; and (5) that
microbial biomass N, P, and S cannot be measured (Smith and Paul 1990).

Adenosine Triphosphate Analysis (ATP)
Adenosine triphosphate is a universal constituent of living microbial cells. Although
ATP can occur in dead microbial cells and extracellularly in soil, it is rapidly
degraded by microorganisms. Therefore, ATP concentration in soil can be used to
estimate the amount of living microbial biomass. It is usually extracted with acid
reagents from moist, preincubated soil, and estimated by the luciferin–luciferase
system. The C: ATP ratio is about 200 although it varies from 120 to 240 (Jenkinson
et al. 1979; Eiland 1983; Martens 1995). The limitations of the ATP method are:
(1) that ATP is decomposed by enzymatic and chemical hydrolysis during the
extraction process; (2) after its release from microbial cells, ATP is strongly sorbed
by soil constituents (Martens 1995); (3) biomass C: ATP ratio changes substantially
over time in response to soil amendments such as organic materials and plant
residues (Tsai et al. 1997); and (4) it cannot measure microbial biomass N, P, and
S in soil (Smith and Paul 1990).

Phospholipid Fatty Acids
Phospholipid fatty acids with a chain length of <20 C atoms are considered to be of
mainly bacterial origin (Harwood and Russel 1984). However, 18-C chain phospho-
lipid fatty acid, 18: 2ω6 fatty acid constitute on average 43% of the total
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phospholipid fatty acid in soil fungi (Federle et al. 2010). Since ergosterol is specific
to the fungal membrane (Seitz et al. 1979), the fungal biomass can be estimated from
the correlation between the amounts of 18:2ω6 fatty acid and the ergosterol content.
Frostegard and Baath (1996) observed a close correlation between the amounts of
18:2ω6 fatty acid and the ergosterol in soil (r ¼ 0.92), thus, indicating that this
phospholipid fatty acid can be used to estimate fungal biomass. The ratio of 18: 2ω6
fatty acid:bacterial phospholipid fatty acids is then used as a fungal:bacterial biomass
ratio (Frostegard and Baath 1996). Phospholipid fatty acids can be extracted from
soil with a one-phase mixture of chloroform, methanol, and citric acid buffer,
fractionated into neutral, glyco- and phospholipids on columns containing silicic
acid, methylated into fatty acid methyl esters, and then measured on a gas chromato-
graph/mass spectrometer. The advantage of the phospholipid fatty acid method,
compared with other methods to estimate the microbial biomass of individual
communities, is that both fungal and bacterial biomass can be estimated by the
same technique in a single soil extract (Frostegard and Baath 1996). Currently PLFA
analysis in soil and roots are being analysed using high throughput method, where
PLFA is being eluted through 5:5:1 (chloroform, methanol, water) through column
chromatography and eluted PLFA were transesterified and FAME profiles were
identified using the MIDI PLFAD1 calibration mix and peak naming table through
MIDI (MIDI, Inc., Newark, DE) system attached with GC (Buyer and Sasser 2012;
Sharma and Buyer 2015). Although high throughput method is rapid, cost effective,
and has added technical advantages than conventional method. However, its uses are
limited due to high instrumentation costs and technical skills.

Ninhydrin Reaction Method
Amato and Ladd (1988) proposed to use ninhydrin reactive C and N compounds
released during fumigation incubation as a measure of biomass. They specifically
determined that fumigated soils retained protease but lost dehydrogenase activity
required to decompose glucose and immobilize NH4-N during the incubation period.
They proposed to quantify ninhydrin reactive N compounds released in CFI (10 days
incubation at 25 �C, extraction with 2N KCl) and determine biomass N by using a
multiplication factor of 21. Thus the method differs from original CFI in which
ninhydrin reactive C and N compounds rather than NH4-N (or total mineral N) and
CO2 are taken into consideration while calculating biomass. Ocio and Brookes
(1990) considered the ninhydrin method suitable for freshly amended soils (CFI
gives unreliable results for such soils) and found good correlation with CFE and SIR.
Sparling (1997) concluded that the ninhydrin method can give a reliable estimate of
biomass in organic as well as mineral soils. Van Gestel et al. (1993) also determined
biomass C indirectly by multiplying ninhydrin reactive extractable N of fumigated
soils with 21 (Amato and Ladd 1988); they used 2N KCl for extraction. As compared
with original CFI, the ninhydrin reaction method is less preferred due to its long
processing time (at least 10 days is required for obtaining biomass values), never-
theless it has advantages due to its reliability in results particularly for freshly
amended soils or soils rich in easily oxidizable C.
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Microcalorimetry
Sparling (1981) proposed microcalorimetry as a method to assess microbial metab-
olism in soil on the pretext that the heat produced depends only on the initial and
final energy states of the system and is independent of the types of organisms or
reaction pathway. In addition, the total catabolic activity in the soil is closely related
to the heat production; anabolic processes normally contribute a little to the heat.
Sparling (1981) studied heat output from 12 soils and compared the results with CFI
and SIR, ATP, dehydrogenase and amylase, and basal respiration. The rate of heat
output from soil is closely related with the rate of respiration. Heat is found to be less
correlated with most of parameters used. Hence, microcalorimetry method has not
achieved popularity to a significant extent.

Microwave Irradiation
Microwave irradiation is an effective biocide treatment of soil which kills weeds,
nematodes, and microorganisms; the effect on microorganisms being probably
entirely thermal (Vela and Wu 1979), fungi being more susceptible (Wainwright
et al. 1980). Spier et al. (1986) were probably the first to use microwave radiation for
soil treatment to measure microbial biomass, an approach akin to CHCl3 fumigation.
In spite of its simplicity, this method has not gained widespread acceptability.

13.3.4 Comparison of Different Methods to Estimate Soil Microbial
Biomass

Currently, all methods used to analyze soil microbial biomass have some limitations
since these were developed for soils with microbial biomass in a relatively steady
state. The soil microbial biomass has been measured through various methods in
which values are variable due to having different k factors, soils at different moisture
contents, different incubation temperatures, soils containing variable amounts of
organic materials or plant residues, and different instrumentation and analytical
techniques. Therefore, it is difficult to compare and get reproducible soil microbial
biomass values obtained by different methods in different laboratories (Dalal 1998;
Azam et al. 2003).

13.3.5 Soil Enzymes

Soil enzymes play a key role in the energy transfer through decomposition of soil
organic matter and nutrient cycling, and hence play an important role in agriculture.
Soil enzymes, being necessary catalysts for organic matter recycling, strongly
influence on soil fertility and agronomic productivity (Rao et al. 2014). Soil enzymes
are highly sensitive and quickly respond to any changes in soil management
practices and environmental conditions. Their activities are closely related to
physio-chemical and biological properties of the soil. Hence, soil enzymes are
used as sensors for soil microbial status, for soil physio-chemical conditions, and
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for the influence of soil treatments or climatic factors on soil fertility. Understanding
the possible roles of different soil enzymes in maintaining soil health can help in the
soil health and fertility management, particularly in agricultural ecosystems (Rao
et al. 2017). Some of the frequently analyzed soil enzymes for soil health point of
view are discussed.

Phosphomonoesterase, i.e., acid and alkaline phosphatase activity in rhizosphere
soil sample is determined using the procedure of Tabatabai (1994) with the follow-
ing modification as suggested by Schinner et al. (1996). Arylsulfatase activity is
measure by adopting the method of Sarathchandra and Perrott (1981). ß-Glucosidase
is determined using p-nitrophenyl-ß-D-glucopyranoside (PNG, 0.05M) as substrate.
This assay is based on the release and detection of p-nitrophenol (PNP) (Tabatabai
1982). Dehydrogenase activity is measure with reduction of 2,3,5-triphenyl-tetrazo-
lium chloride (TTC) to triphenyl formazan (TPF) using colorimetric procedure of
Tabatabai (1994). Fluorescein diacetate (FDA) hydrolysis is determined by the
method of Schnürer and Rosswall (1982) and Aseri and Tarafdar (2006). Urease
activity (urea amidohydrolase) is determined by the non-buffer method of Zantua
and Bremner (1975).

13.3.6 Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi (AMF) establish a symbiotic relationship with more
than 80% of terrestrial plants (Brundrett 2002). In order to establish a new mycor-
rhizal association, AMF forms infectious propagules such as spores, extraradical
phase consisting of hyphae that develops into the soil, and intraradical phase
consisting of arbuscules and vesicles (Linderman 1997) where its colonizing ability
varies from species to species (Klironomos and Hart 2002). Spores proved efficient
for infecting roots for Gigaspora and Scutellospora species whereas for Glomus and
Acaulospora all inoculum forms were found to be equally efficient (Klironomos and
Hart 2002). Several factors come into play while shaping the AMF community
composition such as agricultural management practice (Jansa et al. 2006; Oehl et al.
2010; Curaqueo et al. 2011); soil type (Oehl et al. 2010); and concentration of
nutrients (Gosling et al. 2013) and host species (Lovelock et al. 2003; Gosling et al.
2013), etc. AMF draws nutrients from the soil with the help of its extraradical
hyphae for the use of the plant and receives photosynthates from plant in the root
cortex as well as in the rhizospheric region (Smith and Read 2008). AMF together
with fibrous roots facilitates the formation of sticky string bag where it mechanically
binds soil aggregates together forming macroaggregates (Miller and Jastrow 2000).
Practices such as tillage cause the mechanical disruption of hyphae (Boddington and
Dodd 2000). AMF has also been credited with the production of heat-stable glyco-
protein called glomalin (Wright and Upadhyaya 1996). Glomalin acts a soil particle
cementing agent and its concentration strongly relates with soil aggregate stability
(Wright and Upadhyaya 1998). Hence AMF are integral component of plant rhizo-
sphere where array of microbial activities are taking place. The stabilized crop and
soil conservation practices enhance AMF biomass (Sharma et al. 2012). Therefore
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AMF can be used as potential indicator to assess the sustainability of long-term
farming systems. The AMF biomass can be determined through microscopic and
biochemical methods in terms of spore’s density (Gerdemann and Nicolson 1963),
root colonization (Phillips and Hayman 1970), and 16:1ω5cis PLFA and NLFA as
AMF signature fatty acids (Sharma and Buyer 2015; Olsson 1999). Signature fatty
acid analysis provides a more promising approach over the conventional methods.
Glomalin has also been used as an indicator of AMF (Krivtsov et al. 2004). In the
following sections we have provided a comprehensive assessment of techniques
used for the quantification of AMF biomass. Quantification of AMF biomass has
mainly been done through microscopic methods (Gerdemann and Nicolson 1963;
Phillips and Hayman 1970).

13.3.6.1 Microscopic Methods of AMF Quantification
The quantification of AMF biomass is performed conventionally through extracting
spores by wet sieving and decantation method (Gerdemann and Nicolson 1963). The
suspension obtained can be observed directly or filtered through a filter paper disc
and spores are counted under a microscope. For the assessment of root colonized by
AMF, the techniques used include the root staining (Phillips and Hayman 1970)
followed by quantification using the gridline intersect method (Giovannetti and
Mosse 1980) that provides an estimate of root length colonized by AMF. Other
important parameters include the measurement of hyphal dry weight and micro-
scopic examination of stained hyphae for the study of extraradical hyphal length and
hyphal connections (Miller et al. 1995; Mosse 2009).

13.3.6.2 Signature Fatty Acid Analysis
The intensity of response unveiled by the membrane lipids to instabilities/
disturbances is highest (Denich et al. 2003). For the quantification of AMF signature
fatty acid PLFA 16:1ω5cis has been extensively used (Olsson et al. 1995). Phospho-
lipid 16:1ω5cis is a reflection of AMF extraradical hypha length and neutral lipid
16:1ω5cis portrays storage lipids that include spore copiousness (Olsson et al. 1997).
Ester-linked fatty acids (ELFAs) include all the three major classes of lipids such
as phospholipid, neutral lipid, and glycolipids (Sharma and Buyer 2015). ELFA
16:1ω5cis and 18:1ω5cis have also been used to study AMF dynamics (Grigera et al.
2007). Lipids are extracted through the Bligh–Dyer extraction method (Bligh and
Dyer 1959) which is followed by division of lipids into phospholipids, neutral lipids,
and glycolipids, which are later exposed to mild alkaline methanolysis and analyzed
on a gas chromatograph (Frostegard et al. 1993). The use of solid phase extraction
(SPE) technique by means of column chromatography further improves the extrac-
tion efficiency (Zelles et al. 1992; Zelles 1999). To advance further, a high through-
put method was introduced that permitted the analysis of a batch of 96 samples
within 48 h (Buyer and Sasser 2012). This high throughput technique implicates the
Bligh–Dyer extraction of overnight dried samples and subsequent drying and disso-
lution of samples in chloroform followed by extraction using a 96 well solid phase
extraction column. Elution of phospholipids is performed using 5:5:1 methanol:
chloroform: H2O in a 96 well format glass vial microplate after which drying,
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transesterification, and GC analysis are performed subsequently (Buyer and Sasser
2012). For the elution of neutral lipids, chloroform fraction obtained from the SPE
column is used (Sharma and Buyer 2015). This method is applicable for both soil
and roots (Buyer and Sasser 2012; Sharma and Buyer 2015). The biochemical
method analyzing signature fatty acids provides an edge over the error-prone
methods such as microscopic visualization of AMF structures. Nevertheless, the
incidence of PLFA 16:1ω5cis in bacteria (Nichols et al. 1986) necessitates the need
for confirmation of results using microscopic and molecular methods as well.

13.3.6.3 Glomalin
Glomalin is a thermostable glycoprotein formed on the hyphal walls of arbuscular
mycorrhizal fungi (Wright and Upadhyaya 1996; Driver et al. 2005). Large quantity
of glomalin remains attached to the hyphae and spores and as small as 20% becomes
a part of the released fraction (Driver et al. 2005). Upon its release into the soil, it
becomes a component of the stable organic matter (Wright and Upadhyaya 1996).
Apparently, glomalin exists in two pools. Easily extractable glomalin is believed to
be newly formed fraction belonging to young hyphae (Wright and Upadhyaya 1996,
1998; Wright 2000) whereas total glomalin fraction is considered to be a relatively
recalcitrant fraction and is often referred to as older glomalin (Lovelock et al. 2004).
As it is difficult to extract glomalin from the soil in pure form, Rillig (2004)
recommended a new terminology for it, where it was called “glomalin-related soil
protein” or “GRSP.”

13.3.6.4 Prominence of Glomalin
It plays a key role in soil carbon sequestration as a constituent of the soil organic
carbon pool (Rillig et al. 2001) and indirectly by enhancing soil aggregation by
acting as a soil particle binding agent (Rillig et al. 2002; Wilson et al. 2009). It has
been used as a proficient indicator to elucidate the effect of land use management
(Rillig et al. 2003); soil quality and agricultural management approaches (Fokom
et al. 2012); assessment of variations in AMF biomass (Krivtsov et al. 2004).

13.3.6.5 Extraction from Soil
Easily extractable glomalin fraction is extracted with 20 mM sodium citrate and
30–60 min autoclaving followed by centrifugation at 5000 xg, and total glomalin
fraction is extracted with 50 mM sodium citrate and 60–90 min autoclaving followed
by centrifugation at 5000 xg (Wright and Upadhyaya 1996, 1998). Bradford protein
assay (Bradford 1976) is extensively used for the quantification of glomalin. The
immunoreactive fraction of glomalin is quantified using ELISA (Wright and
Upadhyaya 1996).The current extraction protocol rests on the fact that the harsh
conditions of temperature and pressure employed for glomalin extraction destroy the
vast majority of protein except for glomalin and to get higher recovery depending on
soil types, samples may require many cycles of extraction (Agnihotri et al. 2015).
The persistence of polyphenols (Whiffen et al. 2007), added glycoproteins and
proteins from plant sources (Rosier et al. 2006) in glomalin extracts and their
successive binding to Bradford reagent Coomassie brilliant blue G-250 (CBB)
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during quantification questions the presently used procedures of its extraction and
quantification (Koide and Peoples 2013). Intraradically produced glomalin has been
efficaciously used as a signal of AMF root colonization (Rosier et al. 2008).

13.3.7 Earth Worm

Earthworms belong to macrofauna (4–200 mm in size) but some species can reach
the dimension attributed to megafauna (>200 mm) (Bachelier, 1986) and are
considered soil engineers, as they are able to modify soil structure and features by
their etho-physiological action (Gavinelli et al. 2018). Earthworm sampling should
preferably be carried out during cool and wet seasons; sampling of dry soils (dry
seasons) or of frozen soils should always be avoided. In temperate areas, sampling
studies in autumn, spring, and some of the winter months give the best results
(Paoletti 1999). Earthworm sampling can be done by hand sorting. It is the tradi-
tional method, in which active collection of earthworms from standard soil volumes
advocated (Valckx et al. 2011). In detail, this technique consists of extracting a soil
bulk (30 � 30 � 20 cm) with a spade fork (Paoletti 1999; Fusaro et al. 2018).
Afterwards, a visual examination of soil bulk takes place for 15 min upon a white
cloth and each earthworm is picked up. In order to collect deep burrower species, an
effective recommendation is the use of an irritant suspension (Bouché 1972; Lee
1985) poured into the soil. The mustard powder water suspension (30 g L�1) acts as
an expellant for earthworms and it is a natural substance without toxic or dangerous
consequences for the operator and the environment (Pelosi et al. 2009; Valckx et al.
2011). In the humid tropical forests some species are arboriculous and live in
suspended soils, such as the soil that accumulates in the leaves rosette of bromeliads,
in the tree canopy. These earthworms can be collected by photo-eclectors, a special
trap that catches all moving invertebrates on the surface of trunks (Adis and Righi
1989).

13.4 Applications of Soil Health Indicators

Soil health encompasses the physical, chemical, and biological features, but the use
of biological indicators is the least well advanced (Griffiths et al. 2018). Hence, for
sustainable crop production, the application of different soil health indicators and
their analytical techniques used have paramount significance. Lists of application of
these indicators along with their analytical methods used in different laboratories are
enlisted in Table 13.3.
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13.5 Strategies for Management of Health Indicators

The different strategies employed to manage soil health indicators are varied with
location, climate, soil type, and land use. But several general principles that focus on
sustainable soil health management practices may suit in most of the situations to
bring significant improvement in soil health indicators which are increased organic
matter, decreased erosion, better water infiltration, more water holding capacity, less
subsoil compaction, and less leaching of agrochemicals to groundwater (Rosa and
Sobral 2008). The detailed management strategies are listed in Table 13.4.

13.6 Effects of Crop and Soil Management Practices on Soil
Health Indicators: Previous Reports

The key crop and soil management practices such as crop rotation, nutrient manage-
ment, and tillage practices influence the soil physical, chemical, and biological
health indicators (Sharma et al. 2010). Crop rotation is a very ancient cultural
practice (Howard 1996) that has a strong influence on soil structure, organic matter,
and microbial communities (Janvier et al. 2007). Traditionally, it has been used to
disrupt disease cycles (Curl 1963) and fix atmospheric nitrogen by legumes for
subsequent non-leguminous crops (Pierce and Rice 1998). Sharma et al. (2012)
showed the importance of including maize in rotation with soybean under conven-
tional reduced tillage that helped in enhancing soybean yield, AM inoculum load,
and organic carbon. Studies on tillage indicate that many critical soil quality
indicators and functions can be improved by decreasing tillage intensity (Govaerts
et al. 2007a). Compared to conventional tillage, reduced tillage practices offer not
only long-term benefits to soil stability, reducing erosion, but also enhance soil
microbial diversity (Welbaum et al. 2004; Govaerts et al. 2008). No till practices
combined with crop residue retention increase soil organic matter content in the
surface layer, improve soil aggregation, and preserve the soil resources better than
conventional till practices (Govaerts et al. 2007b). Increased soil organic matter
content associated with no till practices not only improves soil structure and water
retention but also serves as a nutrient reservoir for plant growth and a substrate for
soil microorganisms. Sharma et al. (2012) evaluated the impact of tillage practices
and crop sequences on AM fungal propagules and soil enzyme activities in a 10-year
long-term field trial in vertisols of soybean–wheat–maize (S–W–M) cropping sys-
tem where S–M–W or S–W–M–W rotations under reduced-reduced tillage system
showed higher soil dehydrogenase activity and fluorescein diacetate hydrolytic
activity compared to other combinations. The inclusion of maize in the rotation
irrespective of tillage systems showed comparatively higher mycorrhizal and higher
phosphatase activities and organic carbon and maintained higher soybean yield.
Organic amendments cover a wide range of inputs, including animal manure, solid
waste, and various composts, and often improve soil health indicators and produc-
tivity. Girvan et al. (2004) and Melero et al. (2006) showed that these amendments,
as well as crop residues, resulted in significant increases in total organic carbon
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Table 13.4 Strategies of soil health management as per NRCS-USDA (2016)

Management strategies What does it do? How does it do?

(I) Conservation crop rotation

Growing a diverse number of crops
in a planned sequence in order to
increase soil organic matter and
biodiversity in the soil

– Increases nutrient cycling
– Manages plant pests

(weeds, insects, and diseases)
– Reduces sheet, rill, and

wind erosion and holds soil
moisture
– Adds diversity so soil

microbes can thrive

– Improves nutrient
use efficiency
– Decreases use of

pesticides
– Improves water

quality
– Conserves water

improves plant
production

(II) Cover crop

An un-harvested crop grown as part
of planned rotation to provide
conservation benefits to the soil

– Increases soil organic
matter
– Prevents soil erosion and

conserves soil moisture
– Increases nutrient cycling
– Provides nitrogen for

plant use, suppresses weeds,
and reduces compaction

– Improves water
quality and crop
production
– Conserves water

and improves nutrient
use efficiency
– Decreases use of

pesticides
– Improves water

efficiency

(III) No till

A way of growing crops without
disturbing the soil through tillage

– Increases organic matter
and improves water holding
capacity of soils
– Reduces soil erosion and

energy use
– Decreases soil

compaction

– Conserves water
and improves water
quality and efficiency
– Improves air

quality and crop
production
– Saves renewable

resources
– Increases

productivity

(IV) Mulch tillage

Using tillage methods where the soil
surface is disturbed but maintains a
high level of crop residue on the
surface

– Reduces soil erosion
from wind and rain
– Increases soil organic

matter, moisture and reduces
energy use

– Improves water
quality
– Conserves water
– Saves renewable

resources
– Improves air

quality and crop
production

(V) Mulching

Applying plant residues or other
suitable materials to the soil surface
to compensate for loss of residue
due to excessive tillage

– Reduces erosion from
wind and rain and moderates
soil temperatures
– Increases soil organic

matter and conserve soil
moisture

– Conserves water,
improves air and water
quality
– Improves crop

productivity
– Increases crop

production

(continued)
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(TOC), Kjeldahl-N, available-P, soil respiration, microbial biomass, and enzyme
activities (e.g., protease, urease, and alkaline phosphatase). Microbial diversity and
crop yields also increased as compared to conventional management. Khan et al.
(2017) reported that integrated nutrient management practices (NPK+FYM) signifi-
cantly increased soil organic matter and available water holding capacity but
decreased the soil bulk density, creating a good soil condition for enhanced crop
growth. Microbial population (bacteria, fungi, and actinomycetes) were very respon-
sive to organic manure application. The long-term application of organic manures in
rice-brown sarson cropping system increased the index value because it increased
the nutrient index (NPKS and micronutrients), microbial index, and crop index of
soils. Chemical indicators (pH, EC, and CEC) also improved with integrated nutrient
management practices. The use of only chemical fertilizers in the rice–brown sarson
cropping system resulted in poor soil microbial index and crop index. Soil pH
decreased significantly over the initial values due to the application of organic
manures in combination with chemical fertilizers. The lowering of soil pH toward
the neutral range favors the availability of different major and micronutrients, viz. N,
P, K, Fe, Cu, Mn, Zn, etc. which helps in optimum growth of plants. The highest
organic carbon content (0.88%) found in 4 t ha�1 manure+ NPK and Zinc at
0.5 kg ha�1 applied plot. Hence, there was a great role of INM in augmenting the
soil fertility build-up with respect to both major and micronutrients as well as in
maintaining soil health indicators (Sur et al. 2010). Crop residue retention along with
application of 50% recommended dose of potassium plus seed inoculation of
potassium solubilizing bacterial has brought significant improvement in soil physi-
cal, chemical, and biological indicators under zero till maize–wheat cropping system
and that intern helped in increasing productivity of maize and wheat crops
(Raghavendra et al. 2018).

Table 13.4 (continued)

Management strategies What does it do? How does it do?

– Reduces dust and control
weeds

– Reduces pesticide
usage

(VI) Nutrient management

Managing soil nutrients to meet crop
needs while minimizing the impact
on the environment and the soil

– Increases plant nutrient
uptake
– Improves physical,

chemical, and biological
properties of soil
– Budgets, supplies, and

conserves nutrients for plant
production

– Improves water
quality
– Improves plant

production
– Improves air

quality
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13.7 Conclusion

Soil health indicators are key elements required for maintaining the soil quality. The
soil health indicators are dynamic in nature; some of soil health indicators (biological
and chemical) are more prone to change in a shorter period whereas some (physical)
may take longer period to change due to its management practices. Developing
sustainable soil health indicators management practices by using a systematic
approach that integrates soil physical, chemical, and biological principles into
management practices will help in optimizing the sustainable crop production.
There is a need for developing critical levels for some of the soil health indicators
to which information is limited. Our research experiments should be planned in such
a way that must include three aspects such as soil health indicators restoration,
improvement, and maintenance. Systematic research is needed to study soil health
indicators for diversity of edaphic, climatic, and management conditions. Conserva-
tion agricultural practices such as zero tillage, residue recycling, soil cover manage-
ment, appropriate crop rotations, and integrated nutrient management practices along
with addition of organic amendments have shown the proven benefit to improve soil
health indicators.
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