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2.1 Empirical Error and Overfitting

In general, the proportion of incorrectly classified samples
to the total number of samples is called error rate, that is,
if a out of m samples are misclassified, then the error rate
is E = a/m. Accordingly, 1 − a/m is called accuracy, i.e.,

Accuracy is often expressed as
percentages: (1 − a

m ) × 100%.
accuracy = 1 − error rate. More generally, the difference
between the output predicted by the learner and the ground-
truth output is called error. The error calculated on the training

Here, the ‘‘error’’ refers to the
expectation of errors.

set is called training error or empirical error, and the error calcu-
lated on the new samples is called generalization error. Clearly,
we wish to have a learner with a small generalization error.
However, since thedetails of thenewsamples areunknowndur-
ing the trainingphase,we canonly try tominimize the empirical
error in practice. Quite often, we obtain learners that perform

Later chapters will introduce
different learning algorithms for
minimizing the empirical error.

well on the training set with a small or even zero empirical
error, that is, 100% accuracy. However, are they the learners
we need? Unfortunately, such learners are not good in most
cases.

The good learners we are looking for are those performing
well on the new samples. Hence, good learners should learn
general rules from the training examples such that the learned
rules apply to all potential samples. However, when the learner
learns the training examples ‘‘too well’’, it is likely that some
peculiarities of the training examples are taken as general prop-
erties that all potential samples will have, resulting in a reduc-
tion in generalization performance. In machine learning, this
phenomenon is knownas overfitting, and the opposite is known
as underfitting, that is, the learner failed to learn the general
properties of training examples.. Figure 2.1 illustrates the dif-
ference between overfitting and underfitting.

Fig. 2.1 An intuitive analogy of overfitting and underfitting
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Among many possible reasons, the overly strong learning
ability is a common cause for overfitting since such learners
can learn the non-general peculiarities of training examples.
By contrast, underfitting is usually due to weak learning abil-
ity. In practice, underfitting is relatively easy to overcome. For
example, we can do more branching in decision tree learning
or adding more training epochs in neural network learning.
However, as we will see later, overfitting is a fundamental diffi-
culty in machine learning, and almost every learning algorithm
has implemented some mechanisms to deal with overfitting.
Nevertheless, we should realize that overfitting is unavoidable,
and all we can do is to alleviate or reduce the risk of it. This
argument can be briefly justified as follows. Machine learn-
ing problems are often NP-hard or even harder, but practical
learning algorithms have to finish learning within polynomial
time. Hence, if overfitting is avoidable, then minimizing the
empirical error will lead to the optimal solution, and there-
fore we have a constructive proof of P=NP. In other words,
overfitting is unavoidable as long as we believe in P �=NP.

Inpractice, there are oftenmultiple candidate learning algo-
rithms, and even the same learning algorithmmay produce dif-
ferent models under different parameter settings. Then, which
learning algorithm should we choose, and which parameter
settings should we use? This problem is referred to as model
selection. The ideal solution is to evaluate all candidate models
and select the one with the smallest generalization error. How-
ever, as mentioned earlier, we cannot obtain the generalization
error directly,while the empirical error suffers fromoverfitting.
So, how can we evaluate and select models in practice?

2.2 EvaluationMethods

In general, we can evaluate the generalization error through
testing experiments. To do so, we use a testing set to estimate
the learner’s ability to classify the new samples, and use the
testing error as an approximation to the generalization error.

Here, we only consider the
generalization error, but in
real-world applications, we
often consider more factors such
as computational cost, memory
cost, and interpretability.

Generally, we assume that the testing samples are independent
and identically sampled from the ground-truth sample distri-
bution. Note that the testing set and the training set should be
mutually exclusive as much as possible, that is, testing samples
should avoid appearing in the training set or be used anyhow
in the training process.

Why should testing samples avoid appearing in the training
set? To understand this, let us consider the following scenario.
Suppose we use the same set of ten questions for both the exer-
cise and exam, then does the exam reflect students’ learning
outcomes? The answer is ‘‘no’’ because some students can get
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good grades even if they only know how to solve those ten
questions. Analogously, the generalization ability we wish the
model to have is the same as we want students to study and
master the knowledge. Accordingly, the training examples cor-
respond to the exercises, and the testing samples correspond to
the exam. Hence, the estimation could be too optimistic if the
testing samples are already seen in the training process.

However, given theonlydata set ofm samplesD = {(x1, y1),
(x2, y2), . . . , (xm, ym)}, how can we do both training and test-
ing? The answer is to produce both a training setS and a testing
set T from the data set D. We discuss a few commonly used
methods as follows.

2.2.1 Hold-Out

The hold-out method splits the data set D into two disjoint
subsets: one as the training set S and the other as the testing
set T , where D = S ∪ T and S ∩ T = ∅. We train a model
on the training set S and then calculate the testing error on the
testing set T as an estimation of the generalization error.

Taking binary classification problems as an example, let D
be a data setwith 1000 samples, andwe split it into a training set
S with 700 samples and a testing set T with 300 samples. After
being trained on S, suppose the model misclassified 90 samples
onT , then we have the error rate (90/300)×100% = 30%, and
accordingly, the accuracy 1 − 30% = 70%.

It is worthmentioning that the splitting shouldmaintain the
original data distribution to avoid introducing additional bias.
Taking classification problems as an example, we should try to
preserve the class ratio in different subsets, and the sampling
methods that maintain the class ratio are called stratified sam-
pling. For example, suppose we have a data set D containing
500 positive examples and 500 negative examples, and we wish
to split it into a training set S with 70% of the examples and a
testing set T with 30% of the examples. Then, a stratified sam-
pling method will ensure that S contains 350 positive examples
and 350 negative examples, and T contains 150 positive exam-
ples and 150 negative examples. Without stratified sampling,
the different class ratios in S and T can lead to biased error
estimation since the data distributions are changed.

However, even if the class ratios match, there still exist dif-
ferent ways of splitting the original data set D. For example,

See Exercise 2.1. we can sort the samples inD and then use the first 350 samples
for training with the rest for testing. Different ways of splitting
will result in different training and testing sets, and accordingly,
different model evaluation results. Therefore, a single trial of
hold-out testing usually leads to unreliable error estimation. In
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practice, we often perform the hold-out testing multiple times,
where each trial splits the data randomly, and we use the aver-
age error as the final estimation.For example,we can randomly
split the data set 100 times to produce 100 evaluation results
and then take the average as the hold-out error estimation.

We can also check other
statistical quantities such as
standard deviation.

The hold-out method splitsD into a training set and a test-
ing set, but the model we wish to evaluate is the one trained on
D. Hence, we have a dilemma. If we place most samples in the

The dilemma can be explained
with bias-variance which will be
discussed in Sect. 2.5. The
variance of the evaluation result
is large when the testing set is
small, and the bias of the
evaluation result is large when
the training set is small.

training set S, then the trained model is an excellent approxi-
mation to the model trained on D. However, the evaluation is
less reliable due to the small size of T . On the other hand, if
we place more samples in the testing set T , then the difference
between the model trained on S and the model trained on D
becomes substantial, that is, the fidelity of evaluation becomes
lower. There is no perfect solution to this dilemma, and we
must make a trade-off. One routine is to use around 2/3 to 4/5
of the examples for training and the rest for testing.

Generally speaking, a testing set
should contain at least 30
samples (Mitchell 1997).

2.2.2 Cross-Validation

Cross-validation splits data set D into k disjoint subsets with
similar sizes, that is, D = D1 ∪ D2 ∪ · · · ∪ Dk , Di ∩ Dj =
∅(i �= j). Typically, each subsetDi tries tomaintain theoriginal
data distribution via stratified sampling. In each trial of cross-

There are special cases, such as
Leave-One-Out, which will be
discussed shortly.

validation, we use the union of k − 1 subsets as the training
set to train a model and then use the remaining subset as the
testing set to evaluate themodel.We repeat this process k times
and use each subset as the testing set precisely once. Finally, we
average over k trials to obtain the evaluation result. Since the
stability and fidelity of cross-validation largely depend on the
value of k, it is also known as k-fold cross-validation. Themost
commonly used value of k is 10, and the correspondingmethod
is called 10-fold cross-validation. Other common values of k
include 5 and 20. . Figure 2.2 illustrates the idea of 10-fold
cross-validation.

Fig. 2.2 10-fold cross-validation
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Like hold-out, there are different ways of splitting the data
set D into k subsets. To decrease the error introduced by split-
ting, we often repeat the random splitting p times and average
the evaluation results of p times of k-fold cross-validation. For
example, a common case is 10-time 10-fold cross-validation.

Both ‘‘10-time 10-fold
cross-validation’’ and ‘‘100-time
hold-out’’ run 100 evaluation
experiments.

For a data set D with m samples, a special case of cross-
validation is Leave-One-Out (LOO), which lets k = m. In such
a case, the random splitting does not matter since there is only
oneway of splitting them samples intom subsets. InLOO, each
subset contains a single sample, and the training set is only one
sample less than the original data setD; thus in most cases, the
evaluation from LOO is very close to the ideal evaluation of
training the model on D. Therefore, the results of LOO eval-
uations are often considered accurate. However, LOO has a
flaw that the computational cost of training m models could
be prohibitive for large data sets (e.g., 1 million samples imply
1 million models), and it can be even worse if we take parame-
ter tuning into consideration. Besides, LOO is not necessarily

See Exercise 2.2. more accurate than other evaluation methods since the NFL
theorem also applies to evaluation methods.

See Sect. 1.4 for the NFL
theorem.

2.2.3 Bootstrapping

What we want to evaluate is the model trained with D. How-
ever, no matter we use hold-out or cross-validation, the train-
ing set is always smaller than D. Hence, the estimation bias is
unavoidable due to the size difference between the training set
andD. We can reduce the bias by using LOO, but its computa-See Chap. 12 for more

information about the
relationship between the
complexity of samples and the
generalization ability.

tional complexity is often prohibitive. However, is it possible
to reduce the impact of the small training set while still be com-
putational efficient?

One solution is bootstrapping, which employs the bootstrapThe original meaning of
bootstrap is to remove the strap
of boots. The term comes from a
story in the eighteenth century
book Baron Munchausen’s
Narrative of his Marvellous
Travels and Campaigns in
Russia, in which Baron
Munchausen pulls himself out of
a swamp with his straps.
Bootstrapping is also called
repeatable sampling or sampling
with replacement.

sampling technique (Efron and Tibshirani 1993). Given a data
set D containing m samples, bootstrapping samples a data set
D′ by randomly picking one sample from D, copying it to D′,
and then placing it back to D so that it still has a chance to
be picked next time. Repeating this process m times results
in the bootstrap sampling data set D′ containing m samples.
Due to replacement, some samples in Dmay not appear in D′,
while others may appear more than once. Let us do a quick
estimation: the chance of not being picked in m rounds is (1 −
1
m )m, and hence taking the limit gives

e is Euler’s number.

lim
m→∞

(
1 − 1

m

)m

= 1
e

≈ 0.368, (2.1)
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whichmeans that roughly 36.8% of the original samples do not
appear in the data setD′. Then, we can useD′ as the training set
andD\D′ as the testing set such that both the evaluated model

‘‘\’’ is the subtraction of sets.and the actual model that we wish to evaluate onD are usingm
training examples. Besides, we still have a separate testing set
containing about 1/3 of the original examples that are not used
for training. The evaluation result obtained via this approach
is called out-of-bag estimate.

Bootstrapping is particularly useful when the data set is
small, or when there is no effective way of splitting training
and testing sets. Besides, bootstrapping can create multiple
data sets, which can be useful for methods such as ensem-
ble learning. Nevertheless, since the original data distribution

See Chap. 8 for ensemble
learning.

has changed by bootstrapping, the estimation is also biased.
Therefore, when we have abundant data, hold-out and cross-
validation are often used instead.

2.2.4 Parameter Tuning and Final Model

Most learning algorithms have parameters to set, and differ-
ent parameter settings often lead to models with significantly
different performance. Hence, the model evaluation and selec-
tion is not just about selecting the learning algorithms but also
about the configuration of parameters. The process of finding

Machine learning typically
involves two types of
parameters. The first one is the
algorithm parameters, also
known as hyper-parameters,
which are usually less than 10.
The other one is the model
parameters, which can be many,
e.g., large-scale deep learning
models can have more than 10
billion parameters. Both types
of parameters are tuned
similarly, that is, one generates
candidate models and then
selects via an evaluation
method. The difference is that
hyper-parameters are usually
configured manually, whereas
candidate models are generated
by learning, e.g., parameters of
neural networks that stop
training at different iterations.

the right parameters is called parameter tuning.
Readers may think there is no essential difference between

parameter tuning and algorithm selection: each parameter set-
ting leads to one model, and we select the one that produces
the best results as the final model. This idea is basically sound;
however, there is one issue: since parameters are often real-
valued, it is impossible to try all parameter settings. There-
fore, in practice, we usually set a range and a step size for each
parameter, e.g., a range of [0, 0.2] and a step size of 0.05, which
lead to only five candidate parameter settings. Such a trade-off
between computational cost and quality of estimation makes
the learning feasible, though the selected parameter setting is
usually not optimal. In reality, even after making such a trade-
off, parameter tuning can still be quite challenging. We can
make a simple estimation. Suppose that the algorithmhas three
parameters and each considers only five candidate values, then
we need to assess 53 = 125 models for each pair of training
and testing sets. Powerful learning algorithms often have quite
many parameters to be configured, resulting in a heavy work-
load of parameter tuning. The quality of parameter tuning is
often vital in real-world applications.
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We should note that the training process does not use all
data since part of the data is hold-out formodel evaluation and
selection. Therefore, after we have determined the algorithm
and parameters via model selection, the entire data set should
be used to re-train a model as the final delivery.

Last but not least, we should distinguish the data used for
model selection from the testing data encountered after model
selection. We often call the data set used in the model selection
a validation set. For example, we may split data into a training
set for trainingmodels, a validation set for model selection and
parameter tuning, and a testing set for estimating the general-
ization ability of models.

2.3 PerformanceMeasure

In order to evaluate the generalization ability of models, we
need not only practical and effective estimation methods but
also some performancemeasures that can quantify the general-
ization ability. Different performance measures reflect the var-
ied demands of tasks and produce different evaluation results.
In other words, the quality of a model is a relative concept that
depends on the algorithm and data as well as the task require-
ment.

See Chap. 9 for the performance
measures of clustering.

In prediction problems, we are given a data set D =
{(x1, y1), (x2, y2), . . . , (xm, ym)}, where yi is the ground-truth
label of the sample xi . To evaluate the performance of a learner
f , we compare its prediction f (x) to the ground-truth label y.

For regression problems, the most commonly used perfor-
mance measure is the Mean Squared Error (MSE):

E(f ;D) = 1
m

m∑
i=1

(f (xi) − yi)2. (2.2)

More generally, for a data distribution D and a probability
density function p(·), the MSE is written as

E(f ;D) =
∫
x∼D

(f (x) − y)2p(x)dx. (2.3)

The rest of this section will introduce some common per-
formance measures for classification problems.

2.3.1 Error Rate and Accuracy

At the beginning of this chapter, we discussed error rate and
accuracy, which are the most commonly used performance
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measures in classificationproblems, includingbothbinary clas-
sification andmulticlass classification. Error rate is the propor-
tion of misclassified samples to all samples, whereas accuracy
is the proportion of correctly classified samples instead. Given
a data set D, we define error rate as

E(f ;D) = 1
m

m∑
i=1

I(f (xi) �= yi), (2.4)

and accuracy as

acc(f ;D) = 1
m

m∑
i=1

I(f (xi) = yi) (2.5)

= 1 − E(f ;D).

More generally, for a data distribution D and a probability
density function p(·), error rate and accuracy can be, respec-
tively, written as

E(f ;D) =
∫
x∼D

I(f (x) �= y)p(x)dx, (2.6)

acc(f ;D) =
∫
x∼D

I(f (x) = y)p(x)dx (2.7)

= 1 − E(f ;D).

2.3.2 Precision, Recall, and F1

Error rate and accuracy are frequently used, but they are not
suitable for all tasks. Taking our watermelon problem as an
example, suppose we use a learned model to classify a new
batch of watermelons. The error rate tells us the proportion
of misclassified watermelons to all watermelons in this batch.
However, we may want to know ‘‘What percentage of the
picked watermelons are ripe?’’ or ‘‘What percentage of all ripe
watermelons were picked out?’’ Unfortunately, the error rate
is unable to answer such questions, and hence we need other
performance measures.

Such questions often arise in applications like information
retrieval andweb search.For example, in information retrieval,
we oftenwant to know ‘‘What percentage of the retrieved infor-
mation is of interest to users?’’and ‘‘Howmuch of the informa-
tion the user is interested in is retrieved?’’ For such questions,
precision and recall are better choices.

In binary classification problems, there are four combina-
tions of the ground-truth class and the predicted class, namely
true positive, false positive, true negative, and false negative,
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and we denote the number of samples in each case as TP, FP,
TN , and FN , respectively. Then, TP + FP + TN + FN =
total number of samples. The four combinations can be dis-
played in a confusion matrix, as shown in . Table 2.1. Then,
the precision P and the recall R are, respectively, defined as

P = TP
TP + FP

, (2.8)

R = TP
TP + FN

. (2.9)

. Tab. 2.1 The confusion matrix of binary classification

Ground-truth class
Predicted class

Positive Negative

Positive TP FN

Negative FP TN

Precision and recall are contradictory. Generally speaking,
the recall is often low when the precision is high, and the pre-
cision is often low when the recall is high. For example, to
pick more ripe watermelons, we can increase the number of
picked watermelons because, in an extreme case, if we pick
all watermelons, then all ripe watermelons are picked as well.
However, by doing so, the precision would be very low. On
the other hand, if we wish the proportion of ripe watermelons
to be high, then we should only pick watermelons that we are
sure of. However, doing so could miss many ripe watermelons,
and hence the recall becomes low. Typically, we can achieve
high precision and high recall at the same time only in simple
problems.

Quite often, we can use the learner’s predictions to sort the
samples by how likely they are positive. That is, the samples
that are most likely to be positive are at the top of the rank-
ing list, and the samples that are least likely to be positive are
at the bottom. Starting from the top of the ranking list, we

Taking information retrieval as
an example, the precision and
recall can be calculated by
sequentially returning each piece
of information that the user
might be interested in.

can incrementally label the samples as positive to calculate the
precision and recall at each increment. Then, plotting the pre-
cisions as y-axis and the recalls as x-axis gives the Precision-
Recall Curve (P-R curve). The plots of P-R curves are called
P-R plots. . Figure 2.3 gives an example of P-R curve.

Also called PR curve or PR plot.
P-R plots intuitively show the overall precision and recall

of learners. When comparing two learners, if the P-R curve of
one learner entirely encloses the curve of another learner, then
the performance of the first learner is superior. For example, in
. Figure 2.3, learnerA is better than learnerC.However,when
theP-Rcurves intersect, suchas curveAandcurveB,we cannot
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Fig. 2.3 P-R curve and break-even points

saywhich learner is generally better and canonly compare them
at a specific precision or recall.Nevertheless, people often insist
on finding out the best learner even if there exist intersections.
A reasonable solution is to compare the areas under the P-R
curves, which, to some extent, represent the proportion of cases
when both precision and recall are relatively high. However,
the areas are not easy to compute, and hence we often seek
alternative performance measures that consider precision and
recall simultaneously.

One alternative is Break-Even Point (BEP), which is the
value when precision and recall are equal. For example, in
. Figure 2.3, the BEP of learner C is 0.64, and learner A is
better than learner B, according to the BEP.

However, BEP could be oversimplified, and a more com-
monly used alternative is F1-measure:

F1 = 2 × P × R
P + R

= 2 × TP
total number of samples + TP − TN

.

(2.10)

F1 is the harmonic mean of
precision and recall:
1
F1 = 1

2 ·
(
1
P + 1

R

)
.

In some applications, the importance of precision and recall
are different. For example, precision is more critical in recom-
mender systems since it ismore desirable that the recommended
content is of interest to the user and disturbs the user as little
as possible. On the other hand, recall is more critical in crimi-
nal information retrieval systems since we wish to miss as few
criminals as possible. The general form of F1-measure is Fβ ,
which allows us to specify our preference over precision and
recall, and is defined as
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Fβ = (1 + β2) × P × R
(β2 × P) + R

, (2.11)Fβ is the weighted harmonic

mean: 1
Fβ

= 1
1+β2

·
(

1
P + β2

R

)
.

where β > 0 gives the relative importance of recall to pre-
cision (Van Rijsbergen 1979). When β = 1, it reduces to the

The Harmonic mean emphasizes
more on smaller values
compared to the arithmetic
mean (P+R

2 ) and the geometric
mean (

√
P × R).

standardF1;whenβ > 1, recall ismore important; whenβ < 1,
precision is more important.

Sometimes we may have multiple confusion matrices in
binary classification problems. For example, there is one con-
fusionmatrix for each roundof training and testing.Also, there
are multiple confusion matrices when we do training and test-
ing on multiple data sets to estimate the overall performance.
Besides, there is one confusion matrix for every class in multi-
class classification problems. In all of these cases, we need to
investigate the overall precision and recall on n binary confu-
sion matrices.

A straightforward approach is to calculate the precision
and the recall for each confusion matrix, denoted by (P1,R1),

(P2,R2), . . . , (Pn,Rn). By taking the averages, we have the
macro-P, the macro-R, and the macro-F1:

macro-P = 1
n

n∑
i=1

Pi, (2.12)

macro-R = 1
n

n∑
i=1

Ri, (2.13)

macro-F1 = 2 × macro-P × macro-R
macro-P + macro-R

. (2.14)

We can also calculate element-wise averages across the con-
fusionmatrices to getTP, FP,TN , FN , and then take the aver-
ages to obtain the micro-P, the micro-R, and the micro-F1:

micro-P = TP

TP + FP
, (2.15)

micro-R = TP

TP + FN
, (2.16)

micro-F1 = 2 × micro-P × micro-R
micro-P + micro-R

. (2.17)

2.3.3 ROC and AUC

Since the predictions from learners are often in the form of real
values or probabilities, we can compare the predicted values
against a classification threshold, that is, classify a sample as
positive if the prediction value is greater than the threshold and
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classify it as negative otherwise. For example, typical neural
networks predict real values in the interval [0.0, 1.0] for testing
samples. We can compare the predicted values with 0.5, and

See Chap. 5 for neural networks.classify a sample as positive if its predicted value is greater than
0.5, and negative otherwise. Hence, the predicted real values
or probabilities directly determine the generalization ability.
In practice, we sort the testing samples by the predicted real
values or probabilities in descending order such that potential
positive samples are at the top of the list. After that, we put a
cut point in the sorted list and classify the samples above it as
positive and the rest as negative.

The position of the cut point depends on the specific appli-
cation. For example, we move the cut point toward the top
of the list if precision is more critical than recall, and move it
toward the bottom otherwise. Consequently, the ranking qual-
ity reflects the learner’s ‘‘expected generalization ability’’ for
different tasks or the generalization ability for ‘‘typical cases’’.
The Receiver Operating Characteristics (ROC) curve follows
the above idea tomeasure the generalization ability of learners.

The ROC curve was initially developed for radar detection
of enemy aircraft in World War II and then introduced to psy-
chology andmedical applications in the 1960s−1970s. Later on,
it was introduced to machine learning (Spackman 1989). Simi-
lar to the P-R curve discussed in Sect. 2.3.2, we sort the samples
by the predictions and then obtain two measures by gradually
moving the cut point from the top toward the bottom of the
ranked list. Using those twomeasures as x-axis and y-axis gives
the ROC curve. Unlike precision and recall in P-R curves, the
y-axis in ROC curves is True Positive Rate (TPR), and the
x-axis is False Positive Rate (FPR). Reusing the notations in
. Table 2.1, these two measures are, respectively, defined as

TPR = TP
TP + FN

, (2.18)

FPR = FP
TN + FP

. (2.19)

The plot showing ROC curves is called an ROC plot.
. Figure 2.4a gives an example of an ROC plot in which the
diagonal corresponds to the ‘‘random guessing’’ model, and
the point (0, 1) corresponds to the ‘‘ideal model’’ that places all
positive samples before negative samples.

In practice, we only have finite pairs of (FPR,TPR) coor-
dinates for drawing the ROC plot since the testing samples are
finite. Hence, the ROC curve may not look smooth like the
one in . Figure 2.4a but is only an approximation, like the

The same problem occurs when
drawing P-R plots, but we
deferred the discussion until now
to facilitate the introduction of
calculating AUC.

one shown in. Figure 2.4b. The plotting process is as follows:
given m+ positive samples and m− negative samples, we first
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Fig. 2.4 An illustration of ROC curve and AUC

sort all samples by the learner’s predictions, and then set the
threshold to maximum, that is, predicting all samples as neg-
ative. At this moment, both TPR and FPR are 0, so we mark
at coordinate (0, 0). Then, we gradually decrease the threshold
to the predicted value of each sample along the sorted list, that
is, the samples are classified as positive successively. Let (x, y)
denote the previous coordinate, we put a mark at (x, y + 1

m+ )

if the current samples are true positive, and we put a mark at
(x + 1

m− , y) if the current samples are false positive. By con-
necting all adjacent marked points, we have the ROC curve.

Like P-R plots, we say learner A is better than learner B
if A’s ROC curve entirely encloses B’s ROC curve. However,
when there exist intersections, no learner is generally better
than the other. One way of comparing intersected ROC curves
is to calculate the areas under the ROC curves, that is, Area
Under ROC Curve (AUC), as shown in . Figure 2.4.

By its definition, AUC can be calculated by integrating
the areas under the steps of ROC curve. Suppose that the
ROC curve is obtained by sequentially connecting the points
{(x1, y1), (x2, y2), . . . , (xm, ym)}, where x1 = 0 and xm = 1.
Then, as illustrated in . Figure 2.4b, the AUC is estimated as

AUC = 1
2

m−1∑
i=1

(xi+1 − xi) · (yi + yi+1). (2.20)

AUC is closely related to ranking errors since it considers
the ranking quality of predictions. Let m+ denote the number
of positive samples,m− denote the number of negative samples,
D+ denote the set of positive samples, and D− denote the set
of negative samples. Then, the ranking loss is defined as

�rank = 1
m+m−

∑
x+∈D+

∑
x−∈D−

(
I(f (x+) < f (x−)) + 1

2 I(f (x
+) = f (x−))

)
.

(2.21)
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For eachpair of positive sample x+ andnegative sample x−, the
ranking loss applies a penalty of 1 if the predicted value of the
positive sample is lower than that of the negative sample, and
a penalty of 0.5 applies when the predicted values are equal.
Suppose (x, y) is the coordinate of a positive sample on the
ROCcurve, thenx is theproportionof negative samples ranked
above this positive sample (i.e., FPR). Hence, the ranking loss
�rank corresponds to the area above the ROC curve, that is,

AUC = 1 − �rank. (2.22)

2.3.4 Cost-Sensitive Error Rate and Cost Curve

In some problems, the consequences of making different errors
are not the same. Taking medical diagnosis as an example,
according toour earlier discussions,we receive the sameamount
of penalty for misclassifying someone as healthy or unhealthy.
However, it turns out that misclassifying a sick patient as
healthy is more serious since it risks the life of the patient.
Another example is the access control system in which denying
the access of normal users leads to unpleasant user experience
while allowing intruders to enter causes security breach. In such
cases, we need to assign unequal costs to different errors.

For binary classification problems, we can leverage domain
knowledge to design a cost matrix, as shown in . Table 2.2,
where costij represents the cost of misclassifying a sample of
class i as class j. In general, costii = 0, and cost01 > cost10
if misclassifying class 0 as class 1 costs more than the other
way around. The larger the difference between the costs is, the
larger the difference between cost01 and cost10 will be.

Normally, we care more about
the cost ratios rather than the
absolute values, e.g.,
cost01 : cost10 = 5 : 1 is
equivalent to
cost01 : cost10 = 50 : 10.

. Tab. 2.2 Cost matrix of binary classification

Ground-truth class
Predicted class

Class 0 Class 1

Class 0 0 cost01

Class 1 cost10 0

Almost all performancemeasureswediscussed so far implic-
itly assumed equal-cost. For example, error rate (2.4) counts
the number of errors without considering the different conse-
quences. With unequal costs, however, we no longer minimize
the counts but the total cost. For binary classification prob-
lems, we can call class 0 as the positive class and class 1 as the
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negative class. Let D+ and D− denote, respectively, the set of
positive samples and the set of negative samples. Then, based
on . Table 2.2, the cost-sensitive error rate is defined as

E(f ;D; cost) = 1
m

( ∑
xi∈D+

I(f (xi) �= yi) × cost01

+
∑

xi∈D−
I(f (xi) �= yi) × cost10

)
. (2.23)

Similarly, we can also define the distribution-based cost-
sensitive error rate and the cost-sensitive version of accuracy.
It is also possible to define cost-sensitive performancemeasures
for multiclass cases by allowing i and j of costij to take values
other than 0 and 1.

Withunequal costs,we find the expected total costs of learn-
ers from cost curves rather thanROC curves. The x-axis of cost

See Exercise 2.7. curves is the probability cost of positive class:

P(+)cost = p × cost01
p × cost01 + (1 − p) × cost10

, (2.24)

where p ∈ [0, 1] is the probability of a sample being positive.
The y-axis is the normalized costwhich takes values from [0, 1]:

Normalization is the process of
mapping values from different
ranges to a fixed range, e.g.,
[0, 1]. See Exercise 2.8.

costnorm = FNR × p × cost01 + FPR × (1 − p) × cost10
p × cost01 + (1 − p) × cost10

,

(2.25)

where FPR is the false positive rate defined in (2.19) and
FNR = 1 − TPR is the false negative rate. We can draw a
cost curve as follows: since every point (FPR,TPR) on the
ROC curve corresponds to a line segment on the cost plane, we

Fig. 2.5 The cost curve and expected total cost
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can calculate the FNR and draw a line segment from (0,FPR)

to (1,FNR). Then, the area under the line segment represents
the expected total cost for the given p, FPR, and TPR. By con-
verting all points on the ROC curve to line segments on the
cost plane, the expected total cost is given by the area under
the lower bound of all line segments, as shown in. Figure 2.5.

2.4 Comparison Test

It seems straightforward to compare learners using evaluation
methods and performance measures. For example, we use an
evaluation method to measure the performance of learners
and then compare them. However, how should we make the
‘‘comparison’’? Should we check which of the measured values
is better? Performance comparisons are indeed far more com-
plicated than we thought due to the following reasons. Firstly,
wewish to compare the generalization performance of learners,
but evaluation methods only measure performance on testing
sets, that is, the comparisons may not reflect the actual gener-
alization performance. Secondly, testing performance depends
on the choice of the testing set, e.g., the results on two different-
sized testing sets, or two equal-sized sets but with different
samples, could be different. Finally, many machine learning
algorithms have some build-in random behavior, which means
that we may obtain different results even for the same param-
eter settings and testing set. Then, what is the appropriate way
of comparing the performance of learners?

Hypothesis testing is one of the techniques to compare the
See Wellek (2010) for more
information about hypothesis
testing.

performance of learners. Suppose that we observe learner A
outperforms learner B on a testing set. Then, hypothesis test-
ing can help us check whether the generalization performance
of learner A is better than that of learner B in the statistical
sense and how significant it is. In the following discussions,
we introduce two basic hypothesis tests and several methods
to compare learners’ performance. For ease of discussion, the
rest of this section assumes error rate, denoted by ε, to be the
default performance measure.

2.4.1 Hypothesis Testing

In hypothesis testing, a hypothesis is a statement or assumption
about the learner’s generalization error rate distribution, e.g.,
‘‘ε = ε0’’. In practice, however, we only have the testing error
rate ε̂ but not the generalization error rate ε. Though ε̂ and ε
may not be identical, they are, intuitively, likely to be close.
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Hence, we can use the testing error rate distribution to infer
the generalization error rate distribution.

A generalization error rate of εmeans that the learner has a
probability of ε tomake an incorrect prediction. A testing error
rate of ε̂means that the learner misclassified ε̂×m samples in a
testing set ofm samples. Suppose the testing samples are drawn
i.i.d . from the population distribution. Then, the probability
that a learner with a generalization error rate of ε misclassifies
m′ samples and correctly classifies the rest is

(m
m′

)
εm

′
(1−ε)m−m′

.
Consequently, for a learner with a generalization error rate of
ε, the probability of misclassifying ε̂×m samples, which is also
the probability that the testing error rate being ε̂ on a testing
set of m samples, is

P(ε̂; ε) =
(

m
ε̂ × m

)
εε̂×m(1 − ε)m−ε̂×m. (2.26)

By solving ∂P(ε̂; ε)/∂ε = 0 with the testing error rate, we
observe that P(ε̂; ε) is maximized when ε = ε̂, and P(ε̂; ε)
decreases as

∣∣ε − ε̂
∣∣ increases. The observation follows the bino-

mial distribution, and, as shown in . Figure 2.6, the learner is
most likely to misclassify 3 samples out of 10 samples when
ε = 0.3.

We can use binomial test to verify hypotheses such as ‘‘ε �
0.3’’, that is, the generalization error rate is not greater than 0.3.
More generally, for the hypothesis ‘‘ε � ε0’’, (2.27) gives the
maximum observable error rate within a probability of 1 − α.
The probability is also known as confidence, corresponding to
the non-shaded part of . Figure 2.6.

Common values of α include
0.05 and 0.1. We use a large α in
. Figure 2.6 for illustration
purposes.

Fig. 2.6 Binomial distribution (m = 10, ε = 0.3)
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ε̄ = min ε s.t.
m∑

i=ε×m+1

(
m
i

)
εi0(1 − ε0)

m−i < α. (2.27) ‘‘s.t.’’ stands for ‘‘subject to’’,
indicating that the expression on
the right-hand side must be met
while solving the expression on
the left-hand side.If the testing error rate ε̂ is greater than the critical value ε,

We can compute the critical
value with the assistance of
qbinom(1 − α,m, ε0) in R or
icdf(’Binomial’,1 − α,m, ε0) in
MATLAB.

then, according to the binomial test, the hypothesis ‘‘ε � ε0’’
cannot be rejected at the significance level of α, that is, the
learner’s generalization error rate is not greater than ε0 at the
confidence level of 1 − α; otherwise, we reject the hypothesis,
that is, the learner’s generalization error rate is greater than ε0
at the significance level of α.

R is an open-source scripting
language for statistical
computing. See
7 http://www.r-project.org.

We often obtain multiple testing error rates from cross-
validation or by doing multiple hold-out evaluations. In such
cases, we can use t-test. Let ε̂1, ε̂2, . . . , ε̂k denote the k testing
error rates, then the average testing error rate μ and variance
σ2 are, respectively,

μ = 1
k

k∑
i=1

ε̂i, (2.28)

σ2 = 1
k − 1

k∑
i=1

(ε̂i − μ)2. (2.29)

We can regard these k testing error rates as i.i.d . samples
of the generalization error rate ε0, and hence the variable

τt =
√
k(μ − ε0)

σ
(2.30)

follows a t-distributionwith k−1 degrees of freedom, as shown
in . Figure 2.7.

Fig. 2.7 t-distribution (k = 10)

http://www.r-project.org
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For the hypothesis ‘‘μ = ε0’’and significance levelα, we can
calculate the maximum observable error rate (i.e., the critical
value) within a probability of 1 − α, where ε0 is the average
testing error rate. Here, we employ a two-tailed hypothesis,
and there are α/2 shaded areas at both tails of the distribu-
tion, as shown in . Figure 2.7. Let (−∞, t−α/2] and [tα/2,∞)

denote the ranges of the two shaded areas, respectively. If τt is
within the critical value range [t−α/2, tα/2], then the hypothesis
‘‘μ = ε0’’ cannot be rejected, that is, the generalization error
rate is ε0 at the confidence level of 1 − α; otherwise, we reject
the hypothesis, that is, the generalization error rate is signifi-
cantly different from ε0 at this confidence level. 0.05 and 0.1
are commonly used significance levels, and . Table 2.3 shows
some commonly used critical values for t-test.

The critical values tα/2 can be
computed by qt(1 − α/2, k − 1)
in R or icdf(′T′, 1 − α/2, k − 1)
in MATLAB. . Tab. 2.3 Commonly used critical values for two-tailed t-test

α
k

2 5 10 20 30

0.05 12.706 2.776 2.262 2.093 2.045

0.10 6.314 2.132 1.833 1.729 1.699

Both methods introduced above compare the generaliza-
tion performance of a single learner. In the following section,
we discuss several hypothesis testing methods for comparing
the generalization performance of multiple learners.

2.4.2 Cross-Validated t-Test

For two learners A and B, let εA1 , εA2 , . . . , εAk and εB1 , εB2 , . . . ,

εBk denote their testing error rates obtained from k-fold cross-
validation, where i indicates the ith fold. Then, we can use k-
fold cross-validated paired t-tests to compare the two learners.
The basic idea is that if the performance of the two learners is
the same, then the testing error rates should be the same on the
same training and testing sets, that is, εAi = εBi .

To be specific, for the k pairs of testing error rates obtained
from the k-fold cross-validation, we calculate the difference
of each pair of results as �i = εAi − εBi . Then, the mean of
the differences should be zero if the two learners have the
same performance. Consequently, based on the differences
�1,�2, . . . ,�k , we perform a t-test on the hypothesis ‘‘learner
A and learner B have the same performance’’. We calculate the
mean μ and variance σ2 of the differences, and if
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τt =
∣∣∣∣∣
√
kμ

σ

∣∣∣∣∣ (2.31)

is less than the critical value tα/2,k−1 at the significance level of
α, then the hypothesis cannot be rejected, that is, there is no
significant difference in the learners’ performance; otherwise,
these two learnershave significantlydifferentperformance, and
theonewith the lowermeanerror rate is superior.Here, tα/2,k−1
is the critical value of a t-distribution with k − 1 degrees of
freedom and a tail of α/2.

The above hypothesis test assumes the testing error rates
are i.i.d . samples of the generalization error rate. However,
due to the finite training data, the training sets of different
rounds are often overlapped in evaluation methods such as
cross-validation. Therefore, the testing error rates are indeed
not independent, resulting in an overestimated probability for
the hypothesis to be true. To alleviate the problem, we can use
‘‘5 × 2 cross-validation’’ (Dietterich 1998).

As the name suggests, 5 × 2 cross-validation repeats two-
fold cross-validation five times, where the data is randomly
shuffled before each two-fold cross-validation such that the
data splitting is different in the five rounds of cross-validations.
For example, for two learners A and B, we obtain their testing
error rates of the ith two-fold cross-validation. Then, we cal-
culate the difference between their error rates of the first fold,
denoted by �1

i , and the difference between their error rates of
the second fold, denoted by�2

i . To alleviate the dependency of
testing error rates, we calculate the variance of each two-fold

cross-validation as σ2
i =

(
�1

i − �1
i +�2

i
2

)2

+
(

�2
i − �1

i +�2
i

2

)2

;

however, only the mean of the first two-fold cross-validation
is calculated as μ = 0.5(�1

1 + �2
1). The variable

τt = μ√
0.2

∑5
i=1 σ2

i

(2.32)

follows a t-distribution with five degrees of freedom, where its
two-tailed critical value tα/2,5 is 2.5706 when α = 0.05, and
2.0150 when α = 0.1.

2.4.3 McNemar’s Test

For binary classification problems, the hold-out method esti-
mates not only the testing error rates of both learner A and
learner B, but also the classification difference of the two learn-
ers, that is, the numbers of both correct, both incorrect, and
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one correct while the other incorrect. These numbers form a
contingency table, as shown in . Table 2.4.

. Tab. 2.4 The contingency table of two learners

Algorithm B
Algorithm A

Correct Incorrect

Correct e00 e01

Incorrect e10 e11

If the performance of the two learners are the same, then
we should have e01 = e10. The variable |e01 − e10| follows a
Gaussian distribution. McNemar’s test considers the variable

τχ2 = (|e01 − e10| − 1)2

e01 + e10
, (2.33)

which follows a chi-square distribution with one degree of free-

Since e01 + e10 is often small, we
need the continuity correction,
that is, −1 in the numerator.

dom, that is, the distribution of the sum of squared standard
normal random variables. At the significance level of α, the

The critical values χ2
α can be

computed by
qchisq(1 − α, k − 1) in R or
icdf(′Chisquare′, 1 − α, k − 1)
in MATLAB, where k = 2 is
the number of algorithms being
compared.

hypothesis cannot be rejected if the variable is less than the crit-
ical value χ2

α, that is, there is no significant difference between
the performance of those two learners; otherwise, the hypoth-
esis is rejected, that is, the performance of those two learners
is significantly different, and the learner with smaller average
error rate is superior. The critical value of χ2 test with one
degree of freedom is 3.8415 when α = 0.05 and 2.7055 when
α = 0.1.

2.4.4 Friedman Test and Nemenyi Post-hoc Test

Both the cross-validated t-test and McNemar’s test compare
two algorithms on a single data set. However, in some cases,
comparisons aremade formultiple algorithms onmultiple data
sets. In such cases, we can compare each pair of algorithms on
each data set using a cross-validated t-test or aMcNemar’s test.
Alternatively, we can use the following ranking-based Fried-
man test to compare all algorithms on all data sets at once.

Suppose that we are comparing algorithms A, B, and C on
four data sets D1, D2, D3, and D4. We first use either hold-out
or cross-validation to obtain each algorithm’s testing result on
each data set. Then, we sort the algorithms on each data set by
their testing performance and assign the ranks 1, 2, . . ., accord-
ingly, where the algorithms with the same testing performance
share the averaged rank. For example, as shown in . Table
2.5, on data sets D1 and D3, A is the best, B is the second, and



2.4 Comparison Test
47 2

C is the last; on data setD2, A is the best, and B and C have the
same performance. After collecting all the ranks, we calculate
the average rank of each algorithm as the last row of . Table
2.5.

. Tab. 2.5 The ranking table of algorithms

Data set Algorithm A Algorithm B Algorithm C

D1 1 2 3
D2 1 2.5 2.5
D3 1 2 3
D4 1 2 3

Average rank 1 2.125 2.875

According to the Friedman test, the algorithms with the
same performance should have the same average rank. Let k
denote the number of algorithms,N denote the number of data
sets, and ri denote the average rank of the ith algorithm. Here,
we ignore the ties to simplify our discussion. Then, the mean
and the variance of ri are (k + 1)/2 and (k2 − 1)/12N , respec-
tively. The variable

τχ2 = k − 1
k

· 12N
k2 − 1

k∑
i=1

(
ri − k + 1

2

)2

= 12N
k(k + 1)

⎛
⎝ k∑

i=1

r2i − k(k + 1)2

4

⎞
⎠ (2.34)

follows a χ2 distribution with k − 1 degrees of freedom when
k and N are large.

The ‘‘original Friedman test’’described above is too conser-
The ‘‘original Friedman test’’
requires a large k (e.g., > 30),
and tends to return no
significant difference when k is
small.

vative, and hence the following variable is often used instead:

τF = (N − 1)τ2χ
N(k − 1) − τ2χ

, (2.35)

where τχ2 is given by (2.34). τF follows a F -distribution with
k−1 and (k−1)(N−1) degrees of freedom.. Table 2.6 shows
some commonly used critical values for F -test.
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. Tab. 2.6 Commonly used critical values for F -test

α = 0.05

N
k

2 3 4 5 6 7 8 9 10

4 10.128 5.143 3.863 3.259 2.901 2.661 2.488 2.355 2.250
5 7.709 4.459 3.490 3.007 2.711 2.508 2.359 2.244 2.153
8 5.591 3.739 3.072 2.714 2.485 2.324 2.203 2.109 2.032
10 5.117 3.555 2.960 2.634 2.422 2.272 2.159 2.070 1.998
15 4.600 3.340 2.827 2.537 2.346 2.209 2.104 2.022 1.955
20 4.381 3.245 2.766 2.492 2.310 2.179 2.079 2.000 1.935

α = 0.1

N
k

2 3 4 5 6 7 8 9 10

4 5.538 3.463 2.813 2.480 2.273 2.130 2.023 1.940 1.874
5 4.545 3.113 2.606 2.333 2.158 2.035 1.943 1.870 1.811
8 3.589 2.726 2.365 2.157 2.019 1.919 1.843 1.782 1.733
10 3.360 2.624 2.299 2.108 1.980 1.886 1.814 1.757 1.710
15 3.102 2.503 2.219 2.048 1.931 1.845 1.779 1.726 1.682
20 2.990 2.448 2.182 2.020 1.909 1.826 1.762 1.711 1.668

The performance of algorithms is significantly different

The critical values for F -test can
be computed by qf(1 − α, k − 1,
(k − 1)(N − 1)) in R or icdf(′F′,
1 − α, k − 1, (k − 1) ∗ (N − 1))
in MATLAB.

if the hypothesis ‘‘algorithms’ performance is the same’’ is
rejected. Then, we use a post-hoc test to further distinguish the
algorithms. A common choice is the Nemenyi post-hoc test,
which calculates the critical difference CD of the average rank
difference as

CD = qα

√
k(k + 1)

6N
. (2.36)

. Table 2.7 shows some commonly used values of qα for
qα is the critical value of Tukey
distribution, which can be
computed by qtukey(1 − α, k,

inf) / sqrt(2) in R.

α = 0.05 and α = 0.1. If the average rank difference of
two algorithms is greater than the critical difference, then the
hypothesis ‘‘algorithms’performance is the same’’ is rejected at
the corresponding confidence level.

. Tab. 2.7 Commonly used values of qα for Nemenyi test

α
k

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Taking the data in . Table 2.5 as an example, we first cal-
culate τF = 24.429 according to (2.34) and (2.35). Then, from
. Table 2.6, we realize τF is greater than the critical value 5.143
when α = 0.05. Hence, the hypothesis ‘‘algorithms’ perfor-
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Fig. 2.8 The plot of the Friedman test

mance is the same’’ is rejected. We proceed with the Nemenyi
post-hoc test. From . Table 2.7, we find q0.05 = 2.344 for
k = 3, and hence the critical difference is CD = 1.657 accord-
ing to (2.36). Based on the average ranks in. Table 2.5, neither
the difference between algorithms A and B nor the difference
between algorithms B and C is greater than the critical differ-
ence, that is, there is no significant difference between their
performance. However, the test confirms that the performance
of algorithms A and C are significantly different since their
difference is greater than the critical difference.

We can use a plot to illustrate the Friedman test, e.g.,
. Figure 2.8 illustrates the Friedman test for . Table 2.5,
where the y-axis shows the algorithms, and the x-axis shows the
average ranks. The dots mark the average ranks of algorithms,
and the line segments centered at the dots are the corresponding
critical difference.Theperformanceof the twoalgorithms is not
significantly different if their line segments overlap; otherwise,
their performance is significantly different. From. Figure 2.8,
we can easily observe that there is no significant difference
between algorithms A and B since their line segments over-
lap. On the other hand, algorithm A is better than algorithm
C since their line segments do not overlap while A has a higher
rank.

2.5 Bias and Variance

In addition to estimating the generalization performance of
learning algorithms, people often wish to understand ‘‘why’’
learning algorithms have such performance. An essential tool
for understanding the generalization performance of algo-
rithms is the bias-variance decomposition, which decomposes
the expected generalization error of learning algorithms.

For different training sets, the learning outcomes are often
different, although the training samples are drawn from the
same distribution. Let x be a testing sample, yD be the label
of x in the data set D, y be the ground-truth label of x, and

Potential noise may lead to
yD �= y.
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f (x;D) be the output of x predicted by the model f trained on
D. Then, in regression problems, the expected prediction of a
learning algorithm is

f̄ (x) = ED [f (x;D)] . (2.37)

The variance of using different equal-sized training sets is

var(x) = ED

[
(f (x;D) − f̄ (x))2

]
. (2.38)

The noise is

ε2 = ED

[
(yD − y)2

]
. (2.39)

The difference between the expected output and the ground-
truth label is called bias, that is,

bias2(x) =
(
f̄ (x) − y

)2
. (2.40)

For ease of discussion, we assume the expectation of noise
is zero, i.e., ED[yD − y] = 0. By expanding and combining
the polynomial, we can decompose the expected generalization
error as follows:

E(f ;D) = ED

[
(f (x;D) − yD)2

]

= ED

[(
f (x;D) − f̄ (x) + f̄ (x) − yD

)2]

= ED

[(
f (x;D) − f̄ (x)

)2] + ED

[(
f̄ (x) − yD

)2]

+ ED

[
2

(
f (x;D) − f̄ (x)

) (
f̄ (x) − yD

)]

= ED

[(
f (x;D) − f̄ (x)

)2] + ED

[(
f̄ (x) − yD

)2]

= ED

[(
f (x;D) − f̄ (x)

)2] + ED

[(
f̄ (x) − y + y − yD

)2]

= ED

[(
f (x;D) − f̄ (x)

)2] + ED

[(
f̄ (x) − y

)2]

+ ED

[
(y − yD)2

]
+ 2ED

[(
f̄ (x) − y

)
(y − yD)

]

= ED

[(
f (x;D) − f̄ (x)

)2] +
(
f̄ (x) − y

)2 + ED

[
(yD − y)2

]
.

(2.41)

That is,

Since the noise does not rely on
f , the last term equals to 0
according to (2.37).

The last term equals to 0 since
the expectation of noise is 0.

E(f ;D) = bias2(x) + var(x) + ε2, (2.42)

which means the generalization error can be decomposed into
the sum of bias, variance, and noise.
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Bias (2.40) measures the difference between the learning
algorithm’s expected prediction and the ground-truth label,
that is, expressing the fitting ability of the learning algorithm.
Variance (2.38) measures the change of learning performance
caused by changes to the equal-sized training set, that is,
expressing the impact of data disturbance on the learning out-
come. Noise (2.39) represents the lower bound of the expected
generalization error that can be achieved by any learning algo-
rithms for the given task, that is, the inherent difficulty of
the learning problem. The bias-variance decomposition tells
us that the generalization performance is jointly determined
by the learning algorithm’s ability, data sufficiency, and the
inherent difficulty of the learning problem. In order to achieve
excellent generalization performance, a small bias is needed by
adequately fitting the data, and the variance should also be
kept small by minimizing the impact of data disturbance.

Generally speaking, bias and variance are conflicted with
each other, and this is known as the bias-variance dilemma.
. Figure 2.9 gives an illustrating example. Given a learning
problem and a learner, suppose we can control the degree of
training. If we limit the degree of training such that the learner

Many learning algorithms allow
users to control the degree of
training, such as the number of
levels in decision trees, the
number of training epochs in
neural networks, and the
number of base learners in
ensemble learning methods.

is undertrained, its fitting ability is limited, and hence the data
disturbances have a limited impact on the learner, that is, bias
dominates the generalization error. As the training proceeds,
the learner’s fitting ability improves, and hence the learner
starts to learn the data disturbances, that is, variance starts
to dominate the generalization error. After a large amount of
training, the fitting ability of the learner becomes very strong,
and hence slight disturbances in the training data will cause sig-
nificant changes to the learner. At this point, the learner may
start to learn the peculiarities of the training data, and hence
overfitting occurs.

Fig. 2.9 Relationships between generalization error, bias, and variance
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2.6 Further Reading

Bootstrap sampling has crucial applications in machine learn-
ing, and a detailed discussion can be found in
Efron and Tibshirani (1993).

ROC curve was introduced to machine learning in the late
1980s (Spackman 1989), and AUC started to be widely used in
the field of machine learning since the middle 1990s (Bradley
1997). However, using the area under the ROC curve to evalu-
ate the expected performance of models has already been done
much earlier in medical diagnosis (Hanley and McNeil 1983).
Hand and Till (2001) extended the ROC curve from binary
classification problems to multiclass classification problems.
Fawcett (2006) surveyed the use of the ROC curve.

DrummondandHolte (2006) invented the cost curve.Other
than the misclassification cost, there are many costs involved
in the machine learning process, such as the testing cost, label-
ing cost, and feature cost. The misclassification cost can also
be further divided into the class-based misclassification cost

Section 2.3.4 only discussed the
class-based misclassification
cost.

and sample-based misclassification cost. Cost-sensitive learn-
ing (Elkan 2001; Zhou and Liu 2006) is a research topic for
learning under unequal cost settings.

Dietterich (1998) pointed out the risk of using the regu-
lar k-fold cross-validation method, and proposed the 5 × 2
cross-validation method. Demsar (2006) discussed the hypoth-
esis testing methods for comparing multiple algorithms.

Geman et al. (1992) proposed the bias-variance-covariance
decomposition for regression problems, which was later short-
ened as bias-variance decomposition. Though bias and vari-
ance reveal the internal factors of errors, we can only derive
the elegant form of (2.42) for regression problems based on
MSE. For classification problems, however, deriving the bias-
variance decomposition is difficult since the 0/1 loss function
is discontinuous. There exist many empirical methods for esti-
mating bias and variance (Kong and Dietterich 1995; Kohavi
and Wolpert 1996; Breiman 1996; Friedman 1997; Domingos
2000).
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Exercises

2.1 Given a data set of 1000 samples, where 500 samples are
positive and 500 samples are negative. To perform a hold-out
evaluation, we split the data set into a training set with 70% of
the samples and a testing set with 30% of the samples. Estimate
the total number of possible splittings.

2.2 Given a data set of 100 samples, where the positive and
negative samples are half-half. Suppose that the model pro-
duced by a learning algorithm predicts every new sample as
the majority class in the training set (random guessing if dif-
ferent classes have the same number of samples). Calculate the
error rates of this model evaluated by 10-fold cross-validation
and hold-out, respectively.

2.3 Given that the F1 value of learner A is greater than that of
learner B, find out whether the BEP value of A is also greater
than that of B.

2.4 Describe the relationships among TPR, FPR, Precision,
and Recall.

2.5 Prove (2.22).

2.6 Describe the relationship between error rate and ROC
curve.

2.7 Prove that every ROC curve has a corresponding cost
curve, and vice versa.

2.8 Themin-max normalization and z-score normalization are
two commonly used normalization methods. Let x and x′
denote the variable value before and after normalization, xmin
and xmax denote theminimumandmaximumvalue before nor-
malization, x′

min and x′
max denote the minimum and maximum

value after normalization, x denote the unnormalized mean,
and σx denote the standard deviation. Then, the min-max nor-
malization and z-score normalization are, respectively, defined
in (2.43) and (2.44). Discuss the pros and cons of each method.

x′ = x′
min + x − xmin

xmax − xmin
× (x′

max − x′
min), (2.43)

x′ = x − x̄
σx

. (2.44)

2.9 Describe the process of χ2 test.

2.10 * Describe the difference between using (2.34) and using
(2.35) in the Friedman test.
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Break Time

Short Story: t-Test, Beer, ‘‘Student’’, and William Gosset

In 1899, William Gosset (1876−
1937), who majored in chemistry
at the University of Oxford, joined
Guinness Brewery in Dublin, Ire-

In 1954, the Guinness
corporation started to publish
Guinness World Records.

land after graduation and wished
to apply his biology and chemistry
knowledge to the brewing process.
Gosset proposed t-test to reduce
the cost of quality control of brew-
ing, and published this work in
Biometrika in 1908. In order to pre-
vent the leak of the trade secret,
the paper was published under the
pseudonym of ‘‘Student’’, and this
leads to the method’s name ‘‘Student’s t-test’’.

As a visionary corporation, Guinness Brewery grants its
technical staff ‘‘sabbatical leave’’ just like in universities such
that its staff can maintain a high level of technical skills. For
this reason, Gosset had a chance to visit the lab led by Profes-
sor Karl Pearson (1857−1936) at University College London
(UCL) in 1906−1907. Since t-test was published shortly after
the visit, it is hard to tell whether it was developed at Guinness
Brewery or during the visit at UCL. Nevertheless, the connec-
tion between ‘‘Student’’ and Gosset was found by statisticians
from UCL, and this is not a surprise since Professor Pearson
happened to be the editor-in-chief of Biometrika.
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