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14.1 HiddenMarkovModel

Themost important problem inmachine learning is to estimate
and infer the valueofunknownvariables (e.g., class label) based
on the observed evidence (e.g., training samples). Probabilis-
tic models provide a framework that considers learning prob-
lems as computing the probability distributions of variables.
In probabilistic models, the process of inferring the distribu-
tions of unknown variables conditioned on known variables
is called inference. More specifically, let Y denote the set of

A learner makes inference when
it predicts the ripeness of
watermelon based on
information such as texture,
color, and root. However, the
inference is more than just
prediction. For example, when
we eat a ripe watermelon and try
to infer the shape of its root
reversely, it is also inference.

target variables, O denote the set of observable variables, and
R denote the set of other variables. Then, generative models
consider the joint distribution P(Y ,R,O), while discrimina-
tive models consider the conditional distribution P(Y ,R | O).
Given the values of a set of observedvariables, inference aims to
obtain the conditional probability P(Y | O) from P(Y ,R,O)

or P(Y ,R | O).
It is impractical to eliminate R by probability marginal-

ization since the computational complexity is prohibitive. For
example, it costs at least O(2|Y |+|R|) operations even if each
variable has just two possible values. Besides, the learning pro-
cess of probabilistic models, that is, estimating the parameters
of variable distributions fromthedata set, is not easy since there
are often complex relationships between variables. Hence, we
must develop a methodology to concisely represent the rela-
tionships between variables for the study of efficient learning
and inference.

Probabilistic Graphical Models (PGM) are a family of
probabilistic models that represent the relationships between
variables with graph structures, in which, each node (also
known as vertex) represents one or a set of random variables
and each link (also known as edge) between two nodes rep-
resents the probabilistic relationship between the variables.
Depending on the properties of edges, probabilistic graphical
models can be roughly divided into two categories. The first

Bayesian networks are often
used when explicit causal
relationships exist between
variables. Markov networks are
often used when correlations
exist between variables while
explicit causal relationships are
difficult to obtain.

category is called directed graphical models or Bayesian net-
works,which employDirectedAcyclicGraphs (DAG) to repre-
sent the dependence between variables. The second category is
called undirected graphicalmodels orMarkovnetworks,which
employ undirected graphs to represent the dependence between
variables.

The simplest dynamic Bayesian network is Hidden Markov
See Sect. 7.5 for static Bayesian
network.

Model (HMM), a well-known directed graphical model com-
monly used for modeling time-series data and has been widely
used in speech recognition and natural language processing.

As illustrated in . Figure 14.1, there are two sets of vari-
ables in an HMM. The first set of variables are state variables
{y1, y2, . . . , yn}, where yi ∈ Y represents the system state at

https://doi.org/10.1007/978-981-15-9460-1_7
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Fig. 14.1 The graph structure of HMM

the ith time point. The state variables are usually assumed to
be hidden and unobserved, hence they are also called hidden
variables. The second set of variables are observed variables
{x1, x2, . . . , xn}, where xi ∈ X represents the observation at the
ith time point. In HMM, the system changes between different
states {s1, s2, . . . , sN }, and hence the state space Y is usually a
discrete space with N possible values. The observed variables
xi , however, can be either discrete or continuous. For ease of
discussion, we assume that the observed variables are discrete,
i.e., X = {o1, o2, . . . , oM }.

The directed links in . Figure 14.1 represent the depen-
dence between variables. For each time point, the value of an
observed variable only depends on the state variable, that is,
xt is solely determined by yt. Meanwhile, the state yt at time
point t only depends on the state yt−1 at time point t − 1 and
is independent of the previous t − 2 states. Such a model is
known as Markov chain, in which the system state at the next
time point does not depend on any previous states but the cur-
rent state. Under this dependence setting, the joint probability

‘‘The future depends on what
you do today.’’—Mahatma
Gandhi.

of all variables is

P(x1, y1, . . . , xn, yn) = P(y1)P(x1 | y1)
n∏

i=2

P(yi | yi−1)P(xi | yi).

(14.1)

In addition to the structure information, anHMMhas three
more sets of parameters
5 State transitionprobabilities: theprobabilities that themodel

changes between states, usually denoted by matrix A =
[aij]N×N , where

aij = P(yt+1 = sj | yt = si), 1 � i, j � N

indicates the probability that the next state is sj when the
current state is si at time point t.

5 Outputobservationprobabilities: theprobabilities ofobser-
vations based on the current state, usually denoted by
matrix B = [bij]N×M , where
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bij = P(xt = oj | yt = si), 1 � i � N, 1 � j � M

indicates the probability of observing oj when the current
state is si at time point t.

5 Initial state probabilities: the probability of each state that
appears at the initial time point, usually denoted by π =
(π1,π2, . . . ,πN ), where

πi = P(y1 = si), 1 � i � N

indicates the probability that the initial state is si .

The above three sets of parameters together with the state
space Y and the observation space X determine an HMM, usu-
ally denoted by λ = [A,B,π]. Given an HMM λ, it generates
the observed sequence {x1, x2, . . . , xn} by the following pro-
cess:
(1) Set t = 1 and select the initial state y1 based on the initial

state probability π;
(2) Select the value of the observed variable xt based on the

state variable yt and the output observation probability
matrix B;

(3) Transition to the next state yt+1 based on the current state
yt and the state transition probability matrix A;

(4) If t < n, set t = t+1 and return to step (2); otherwise, stop.

yt ∈ {s1, s2, . . . , sN } and xt ∈ {o1, o2, . . . , oM } are the state and
observation at time point t, respectively.

Thereare three fundamental problemswhenapplyingHMM
in practice:

5 Given a model λ = [A,B,π], how can we effectively cal-
culate the probability P(x | λ) for generating the observed
sequence x = {x1, x2, . . . , xn}? In other words, how to eval-
uate the matching degree between a model and an observed
sequence?

5 Given amodel λ = [A,B,π] and an observed sequence x =
{x1, x2, . . . ,xn}, how can we find the best state sequence
y = {y1, y2, . . . , yn} that matches x? In other words, how to
infer the hidden states from the observed sequence?

5 Given an observed sequence x = {x1, x2, . . . , xn}, how can
we adjust the model parameter λ = [A,B,π] such that
the probability P(x | λ) of observing the given sequence is
maximized? In other words, how to train the model such
that it can better describe the observed data?

The above problems are critical in real-world applications.
For example, in many tasks, we need to estimate the most
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likely value of the current observation xn based on the pre-
viously observed sequence {x1, x2, . . . ,xn−1}; this problem can
be solved by finding P(x | λ), that is, the first listed problem.
In speech recognition problems, the observations are audio
signals, the hidden states are spoken texts, and the task is to
infer the most likely state sequence (i.e., spoken texts) based
on the observed sequence (i.e., audio signals), that is, the sec-
ond listed problem. In many applications, manually specifying
model parameters is becoming impractical, and hence model
parameters need to be learned fromdata, that is, the third listed
problem. Fortunately, thanks to the conditional independence
given in (14.1), all of the three listed problems can be solved
efficiently.

14.2 Markov Random Field

Markov Random Field (MRF) is a typical Markov network
and a well-known undirected graphical model. In MRF, each
node represents one or a set of variables, and the edges between
nodes represent the variable dependence. Besides, there is a set
of potential functions, also known as factors, which are non-
negative real-valued functions defined over variable subsets
mainly for defining probability distribution functions.

A simple MRF is illustrated in . Figure 14.2. A subset of
nodes in the graph is called a clique if there exists a link between
any twonodes.We say a clique is amaximal clique if adding any
extra node makes it no longer a clique; in other words, a maxi-
mal clique is a clique that is not contained in any other cliques.
For example, the cliques in. Figure 14.2 are {x1, x2}, {x1, x3},
{x2, x4}, {x2, x5}, {x2, x6}, {x3, x5}, {x5, x6}, and {x2, x5, x6},
which are also maximal cliques except {x2, x5}, {x2, x6}, and
{x5, x6}; {x1, x2, x3} is not a clique since there is no link between
x2 and x3. We notice that every node appears in at least one
maximal clique.

Fig. 14.2 A simple MRF
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In MRF, the joint probability of multiple variables can be
decomposed into the product of multiple factors based on the
cliques, and each factor corresponds to one clique. To be spe-
cific, let x = {x1, x2, . . . , xn} denote the set of n variables, C
denote the set of all cliques, and xQ denote the set of variables
in clique Q ∈ C, then the joint probability P(x) is defined as

P(x) = 1
Z

∏

Q∈C
ψQ(xQ), (14.2)

where ψQ is the potential function that captures the depen-
dence between variables in clique Q; Z = ∑

x
∏

Q∈C ψQ(xQ)

is the normalization factor that ensures P(x) is a properly
defined probability. In practice, it is often difficult to calcu-
late Z exactly, but we usually do not need the exact value.

When there aremanyvariables, thenumberof cliques canbe
quite large. For example, every pair of linked variables forms a
clique, and hence there will be many terms multiplied in (14.2),
leading to high computational cost. We notice that, if cliqueQ
is not amaximal clique, then it is contained in amaximal clique
Q∗ (i.e., xQ ⊆ xQ∗). Hence, the dependence between variables
xQ is not only encoded in the potential functionψQ, but also the
potential function ψQ∗ . Therefore, it is also possible to define
the joint probability P(x) based on the maximal cliques. Let C∗
denote the set of all maximal cliques, we have

P(x) = 1
Z∗

∏

Q∈C∗
ψQ(xQ), (14.3)

where Z∗ = ∑
x
∏

Q∈C∗ ψQ(xQ) is the normalization factor.
Taking. Figure 14.2 as an example, the joint probabilityP(x)
can be defined as

P(x) = 1
Z

ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ35(x3, x5)ψ256(x2, x5, x6),

where the potential function ψ256(x2, x5, x6) is defined over
the maximal clique {x2, x5, x6}. Since we have ψ256(x2, x5, x6),
there is no need to construct the potential functions for the
cliques {x2, x5}, {x2, x6}, and {x5, x6}.

How can we obtain conditional independence in MRF?
We still utilize the concept of separation. As illustrated in

See Sect. 7.5.1. . Figure 14.3, the path connecting a node in the node set A
to a node in node set B passes through the node set C, and we
say C is a separating set that separates A and B. For MRF, we
have the global Markov property: two subsets of variables are
conditionally independent given a separating set of these two
subsets.

https://doi.org/10.1007/978-981-15-9460-1_7
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Fig. 14.3 The node set C separates the node set A and the node set B

Taking . Figure 14.3 as an example, let xA, xB, and xC
denote the sets of variables forA,B, andC, respectively. Then,
xA and xB are conditionally independent given xC , denoted by
xA ⊥ xB | xC .

Now, let us do a simple verification. For ease of discussion,
let A, B, and C correspond to single variables xA, xB, and xC ,
respectively.Then,. Figure 14.3 is simplified to. Figure 14.4.

Fig. 14.4 A simplified version of. Figure 14.3

From (14.2), the joint probability of the variables in
. Figure 14.4 is given by

P(xA, xB, xC) = 1
Z

ψAC(xA, xC)ψBC(xB, xC). (14.4)

According to the definition of conditional probability, we have

P(xA, xB | xC ) = P(xA, xB, xC )

P(xC )
= P(xA, xB, xC )∑

x′
A

∑
x′
B
P(x′

A, x′
B, xC )

=
1
Z ψAC (xA, xC )ψBC (xB, xC )

∑
x′
A

∑
x′
B

1
Z ψAC (x′

A, xC )ψBC (x′
B, xC )

= ψAC (xA, xC )∑
x′
A

ψAC (x′
A, xC )

· ψBC (xB, xC )∑
x′
B

ψBC (x′
B, xC )

. (14.5)

P(xA | xC ) = P(xA, xC )

P(xC )
=

∑
x′
B
P(xA, x′

B, xC )
∑

x′
A

∑
x′
B
P(x′

A, x′
B, xC )

=
∑

x′
B

1
Z ψAC (xA, xC )ψBC (x′

B, xC )

∑
x′
A

∑
x′
B

1
Z ψAC (x′

A, xC )ψBC (x′
B, xC )

= ψAC (xA, xC )∑
x′
A

ψAC (x′
A, xC )

. (14.6)
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From (14.5) and (14.6), we have

P(xA, xB | xC) = P(xA | xC)P(xB | xC), (14.7)

that is, xA and xB are conditionally independent given xC .
From the global Markov property, we can derive the fol-

lowing two useful corollaries:
5 LocalMarkov property: a variable is conditionally indepen-

dent of other variables given its adjacent variables. For-
The set of parents, children, and
children’s parents is called the
Markov blanket of a variable.

mally, we have xv ⊥ xV\n∗(v) | xn(v), where V is the set of
all nodes in the graph, n(v) are the adjacent nodes of node
v in the graph, and n∗(v) = n(v) ∪ {v}.

5 Pairwise Markov property: two non-adjacent variables are
conditionally independent given all other variables. For-
mally, we have xu ⊥ xv | xV\〈u,v〉 if 〈u, v〉 /∈ E, where u and
v are two nodes in the graph, andV andE are, respectively,
the set of all nodes and the set of all edges in the graph.

Now, let us take a look at the potential functions in MRF.
Apotential functionψQ(xQ) describes the dependence between
a set of variables xQ. It should be a non-negative function that
returns a large value when the variables take preferred values.
For example, suppose that all variables in . Figure 14.4 are
binary variables, and the potential functions are

φAC(xA, xC) =
{
1.5, if xA = xC ;
0.1, otherwise,

φBC(xB, xC) =
{
0.2, if xB = xC ;
1.3, otherwise,

then the model is biased towards xA = xC and xB 
= xC ,
that is, xA and xC are positively correlated, while xB and xC
are negatively correlated. From (14.2), we know that the joint
probability would be high when the variable assignments sat-
isfy xA = xC and xB 
= xC .

To satisfy thenon-negativity,weoftenuse exponential func-
tions to define potential functions

ψQ(xQ) = e−HQ(xQ). (14.8)

HQ(xQ) is real-valued function defined on variable xQ, usually
in the form of

HQ(xQ) =
∑

u,v∈Q,u 
=v

αuvxuxv +
∑

v∈Q
βvxv, (14.9)

where auv and βv are parameters. In (14.9), the first term con-
siders pairs of nodes and the second term considers individual
nodes.



14.3 Conditional Random Field
351 14

14.3 Conditional Random Field

Conditional Random Field (CRF) is a discriminative undi-
rected graphical model. In Sect. 14.1, we mentioned that gen-

We can regard CRF as MRF
with observed values, or as an
extension of logistic regression.
See Sect. 3.3.

erative models consider joint distributions, while discrimina-
tive models consider conditional distributions. The previously
introduced HMM and MRF are examples of generative mod-
els, and nowwe introduceCRFas an example of discriminative
models.

CRF aims to model the conditional probability of mul-
tiple variables given some observed values. To be specific,
CRF constructs a conditional probability model P(y | x),
where x = {x1, x2, . . . ,xn} is the observed sequence, and
y = {y1, y2, . . . , yn} is the corresponding label sequence. Note
that the label variable y can be structural, that is, there are
some correlations among its components. For example, in part-
of-speech tagging problems, the observations are natural lan-
guage sentences (i.e., sequences of words), and the labels are
sequences of part-of-speech tags, as shown in. Figure 14.5(a).
In syntactic analysis, the output labels are parse trees, as shown
in . Figure 14.5(b).

Fig. 14.5 The part-of-speech tagging problem and the syntactic analysis
problem in natural language processing

Let G = 〈V ,E〉 be an undirected graph in which each node
corresponds to one component in the label vector y, where yv is
the component corresponding to node v, and let n(v) denote the
adjacent nodes of node v. Then, we say (y, x) forms a CRF if
every label variable yv in graphG satisfies theMarkov property

P(yv | x, yV\{v}) = P(yv | x, yn(v)), (14.10)

Theoretically, the structure of graph G can be arbitrary as
long as it encodes the conditional independence between label
variables. In practice, however, especially whenmodeling label
sequences, the most common structure is the chain structure,

https://doi.org/10.1007/978-981-15-9460-1_3
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Fig. 14.6 The graph structure of chain-structured CRF

as illustrated in . Figure 14.6. Such a CRF is called chain-
structuredCRF, which is the focus of the rest of our discussions.

Similar to how joint probability is defined in MRF, CRF
defines conditional probabilityP(y | x) according to the poten-
tial functions and cliques in the graph structure. Given an
observed sequencex, the chain-structuredCRFin. Figure 14.6
mainly contains two types of cliques about label variables, that
is, one for single label variable {yi} and the other for adjacent
label variables {yi−1, yi}.With appropriate potential functions,
we can define conditional probability like (14.2). In CRF, by
using exponential potential functions and introducing feature
functions, the conditional probability is defined as

P(y | x) = 1
Z

exp

⎛

⎝
∑

j

n−1∑

i=1

λj tj(yi+1, yi, x, i) +
∑

k

n∑

i=1

μksk(yi, x, i)

⎞

⎠ ,

(14.11)

where tj(yi+1, yi, x, i) is the transition feature function defined
on two adjacent labels in the observed sequence, describing the
relationship between the two adjacent labels as well as measur-
ing the impact of the observed sequence on them; sk(yi, x, i)
is the status feature function defined on the label index i in
the observed sequence, describing the impact of the observed
sequence on the label variable; λj and μk are parameters; Z is
the normalization factor that ensures (14.11) to be a properly
defined probability.

We also need to define appropriate feature functions, which
are usually real-valued functions that describe empirical prop-
erties that are likely or expected to be held about the data.
Taking the part-of-speech tagging in . Figure 14.5 (a) as an
example, we can employ the following transition feature func-
tion:

tj(yi+1, yi, x, i) =
{
1, if yi+1 = [P], yi = [V ] and xi = ‘‘knock’’;
0, otherwise,
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which says the labels yi and yi+1 are likely to be [V ] and [P]
when the ith observation xi is the word ‘‘knock’’. We can also
employ the following status feature function:

sk(yi, x, i) =
{
1, if yi = [V ] and xi = ‘‘knock’’;
0, otherwise,

which says that the label yi is likely to be [V ] if the observation
xi is the word ‘‘knock’’.

By comparing (14.11) and (14.2), we can observe that both
CRF and MRF define the probabilities using potential func-
tions on cliques. The difference is that CRFmodels conditional
probabilities, whereas MRF models joint probabilities.

14.4 Learning and Inference

Given the joint probability distributions defined on proba-
bilistic graphical models, we can infer the marginal distribu-
tion or conditional distribution of the target variables. We have
encountered conditional distributions previously. For exam-
ple, in HMM, we infer the conditional probability distribution
of an observed sequence x given certain parameter λ. By con-
trast, marginal distribution refers to probabilities obtained by
summing out or integrating out irrelevant variables. Taking
Markov networks as an example, the joint distribution of vari-
ables is expressed as the product of maximal cliques’ potential
functions, and therefore, finding the distribution of variable x
given parameter � is equivalent to integrating out irrelevant
variables in the joint distribution, known as marginalization.

In probabilistic graphical models, we also need to deter-
mine the parameters of distributions by parameter estimation
(i.e., parameter learning), which is often solved via maximum
likelihood estimation or maximum a posteriori estimation. If
we consider the parameters as variables to be inferred, then the

The Bayesian school thinks that
unknown parameters are
random variables, just like all
other variables. Hence,
parameter estimation and
variable inference can be
performed within the same
inference framework. The
frequentist school disagrees.

parameter estimation process is similar to the inference pro-
cess, that is, it can be absorbed into the inference problem.
Hence, we mainly discuss the inference methods for the rest of
our discussions.

To be specific, suppose that the set of variables x = {x1, x2,
. . . , xN } in a graphical model can be divided into two disjoint
variable sets xE and xF , then the inference problem is about
finding themarginal probabilityP(xF )or the conditional prob-
ability P(xF | xE). From the definition of conditional proba-
bility, we have

P(xF | xE) = P(xE , xF )

P(xE)
= P(xE , xF )∑

xF P(xE , xF )
, (14.12)



14

354 Chapter 14 · Probabilistic Graphical Models

where the joint probabilityP(xE , xF ) can be obtained from the
probabilistic graphical model. Hence, the core of the inference
problem is how to efficiently compute the marginal distribu-
tion, that is

P(xE) =
∑

xF

P(xE , xF ). (14.13)

There are two types of inference methods for probabilistic
graphical models: exact inference methods and approximate
inferencemethods. Exact inferencemethods compute the exact
values of marginal distributions or conditional distributions.
However, such methods are often impractical since their com-
putational complexity increases exponentially to the number of
maximal cliques. By contrast, approximate inference methods
find approximate solutions with tractable time complexity and
are more practical in real-world applications. The rest of this
section introduces two representative exact inference methods,
and we will introduce approximate inference methods in the
next section.

14.4.1 Variable Elimination

Exact inference methods are essentially a kind of dynamic pro-
gramming methods. Such methods attempt to reduce the cost
of computing the target probability by exploiting the condi-
tional independence encoded by the graphical model. Among
them, variable elimination is the most intuitive one and is the
basis of other exact inference methods.

Wedemonstrate variable eliminationwith thedirectedgraph-
ical model in . Figure 14.7 (a).

Fig. 14.7 The process of variable elimination and message passing

Suppose that the inference objective is to compute the
marginal probability P(x5). To compute it, we only need to
eliminate the variables {x1, x2, x3, x4} by summation, that is
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P(x5) =
∑

x4

∑

x3

∑

x2

∑

x1

P(x1, x2, x3, x4, x5)

=
∑

x4

∑

x3

∑

x2

∑

x1

P(x1)P(x2 | x1)P(x3 | x2)P(x4 | x3)P(x5 | x3).

(14.14)

Using the conditional
independence encoded by the
directed graphical model.

By doing the summations in the order of {x1, x2, x4, x3}, we
have

P(x5) =
∑

x3

P(x5 | x3)
∑

x4

P(x4 | x3)
∑

x2

P(x3 | x2)
∑

x1

P(x1)P(x2 | x1)

=
∑

x3

P(x5 | x3)
∑

x4

P(x4 | x3)
∑

x2

P(x3 | x2)m12(x2), (14.15)

where mij(xj) is an intermediate result in the summation, the
subscript i indicates that the term is the summation result with
respect to xi , and the subscript j indicates other variables in the
term. We notice that mij(xj) is a function of xj . By repeating
the process, we have

P(x5) =
∑

x3

P(x5 | x3)
∑

x4

P(x4 | x3)m23(x3)

=
∑

x3

P(x5 | x3)m23(x3)
∑

x4

P(x4 | x3)

=
∑

x3

P(x5 | x3)m23(x3)m43(x3)

= m35(x5). (14.16)

m35(x5) is a function of x5 and only depends on the value of
x5.

The above method also applies to undirected graphical
models. For example, if we ignore the directions of the edges
in . Figure 14.7 (a) and consider it as an undirected graphical
model, then we have

P(x1, x2, x3, x4, x5) = 1
Z

ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ35(x3, x5),

(14.17)

whereZ is the normalization factor. The marginal distribution
P(x5) is given by

P(x5) = 1
Z

∑

x3

ψ35(x3, x5)
∑

x4

ψ34(x3, x4)
∑

x2

ψ23(x2, x3)
∑

x1

ψ12(x1, x2)

= 1
Z

∑

x3

ψ35(x3, x5)
∑

x4

ψ34(x3, x4)
∑

x2

ψ23(x2, x3)m12(x2)

= · · ·
= 1

Z
m35(x5). (14.18)
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By using the distributive law of multiplication to addition,
variable elimination converts the problem of calculating sum-
mations of products of multiple variables to the problem of
alternately calculating summations and products of some of
the variables. Doing so simplifies the calculations by restrict-
ing the summations and products to local regions that involve
only some of the variables.

Nevertheless, variable elimination has a clear disadvan-
tage: there is a considerable amount of redundancy in the
calculations of multiple marginal distributions. Taking the
Bayesian network in . Figure 14.7 (a) as an example, if we
compute P(x4) after computing P(x5), then the calculations of
m12(x2) and m23(x3) are repetitive when the summation order
is {x1, x2, x5, x3}.

14.4.2 Belief Propagation

The belief propagation algorithm avoid repetitive calculations
Also known as the sum-product
algorithm.

by considering the summation operations in variable elimina-
tion as a process of message passing. In variable elimination, a
variable xi is eliminated by the summation operation

mij(xj) =
∑

xi

ψ(xi, yj)
∏

k∈n(i)\j
mki(xi), (14.19)

where n(i) are the adjacent nodes of xi . In belief propagation,
however, the operation is considered as passing the message
mij(xj) from xi to xj . By doing so, the variable elimination pro-
cess in (14.15) and (14.16) becomes a message passing process,
as illustrated in . Figure 14.7 (b). We see that each message
passing operation involves only xi and its adjacent nodes, and
hence the calculations are restricted to local regions.

In belief propagation, a node starts to pass messages after
receiving the messages from all other nodes. The marginal dis-
tribution of a node is proportional to the product of all received
messages, that is

P(xi) ∝
∏

k∈n(i)
mki(xi). (14.20)

Taking . Figure 14.7 (b) as an example, x3 must receive the
messages from x2 and x4 before it passes the message to x5,
and the message m35(x5) that x3 passes to x5 is exactly P(x5).

When there is no cycle in the graph, belief propagation can
compute marginal distributions of all variables via the follow-
ing two steps:
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Fig. 14.8 An illustration of the belief propagation algorithm

5 Select a root node, and then pass messages from all leaf
nodes to the root node until the root node has received
messages from all adjacent nodes;

5 Pass messages from the root node toward leaf nodes until
all leaf nodes have received messages.

Taking . Figure 14.7 (a) as an example, let x1 be the root
node, and x4 and x5 be the leaf nodes. The two steps ofmessage
passing are illustrated in . Figure 14.8, where each edge has
twomessages on itwith different directions. From themessages
and (14.20), we have the marginal probabilities of all variables.

14.5 Approximate Inference

Exact inference methods are usually computationally expen-
sive, and hence we often use approximate inference methods
in practice. Roughly speaking, there are two types of approxi-
mate inferencemethods, namely sampling, which accomplishes
approximationby stochasticmethods, anddeterministic approx-
imations, represented by variational inference.

14.5.1 MCMC Sampling

In many tasks, we are interested in probability distributions
just because we need them to calculate some expectations for
decision-making.Taking theBayesiannetwork in. Figure 14.7
(a) as an example, the goal of inference could be finding the
expectation of x5. It turns out that, sometimes, it can be more
efficient to calculate or approximate the expectations directly
without finding the probability distributions first.

The above idea motivates the sampling methods. Suppose
our objective is to find the expectation of the function f (x)with
respect to the probability density function p(x)

Replace integration with
summation if x is discrete.

Ep[f ] =
∫

f (x)p(x)dx. (14.21)
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We can approximate the objective expectation E[f ] by sam-
pling a set of samples {x1, x2, . . . , xN } from p(x) and then com-

Or a distribution related to p(x). pute the mean of f (x) on these samples

f̂ = 1
N

N∑

i=1

f (xi), (14.22)

According to the law of large numbers, we can obtain an accu-
rate approximation from the i.i.d . samples {x1, x2, . . . , xN }
by large-scale sampling. The problem here is how to sam-
ple? For example, in probabilistic graphical models, how can
we efficiently obtain samples from the probability distribution
described by the graphical model?

One of the most commonly used sampling techniques for
probabilistic graphical models is the Markov Chain Monte
Carlo (MCMC) method. Given the probability density func-
tion p(x) of a continuous variable x ∈ X , the probability that
x lies in the interval A is

P(A) =
∫

A
p(x)dx. (14.23)

If f : X �→ R, then the expectation of f (x) is given by

p(f ) = Ep[f (X )] =
∫

x
f (x)p(x)dx. (14.24)

However, the integration in (14.24) is not easy to computewhen
x is not univariate but a high-dimensionalmultivariate variable
x that follows a complex distribution.Hence,MCMCfirst con-
structs some i.i.d . samples x1, x2, . . . , xN that follow the dis-
tribution p, and then obtains an unbiased estimate of (14.24)
as

p̃(f ) = 1
N

N∑

i=1

f (xi). (14.25)

Nevertheless, constructing i.i.d . samples that follow the dis-
tribution p can still be difficult if the probability density func-
tion p(x) is complex. The key idea of MCMC is to generate
samples by constructing a ‘‘Markov chain with stationary dis-
tribution p’’. To be specific, by letting theMarkov chain run for
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a sufficiently long time (i.e., converged to a stationary distri-
bution), the generated samples approximately follow the dis-
tribution p. How do we know if the Markov chain has arrived
at a stationary state? We say a Markov chain T has arrived at
a stationary state with a stationary distribution p(xt) once the
following stationary condition is met at time point t:

p(xt)T (xt−1 | xt) = p(xt−1)T (xt | xt−1), (14.26)

whereT (x′ | x) is the state transition probability (i.e., the prob-
ability of transitioning from state x to state x′), and p(xt) is the
distribution at time point t.

In short,MCMCstarts by constructing aMarkov chain and
let it converge to the stationary distribution, which is exactly
the posterior distribution of the parameters to be estimated.
Then, it uses theMarkov chain to generate the desired samples
for further estimations. A vital step in this process is construct-
ing the state transition probabilities of the Markov chain, and
different construction methods lead to different MCMC algo-
rithms.

The Metropolis−Hastings (MH) algorithm is an important
The Metropolis−Hastings
algorithm is named after the
original authors Metropolis
et al. (1953) and Hastings (1970),
who extended the algorithm to a
general form afterwards.

representative of MCMC methods, which approximates the
stationary distribution p via reject sampling. The MH algo-
rithm is given in . Figure 14.1. In each round, the MH algo-
rithm draws a candidate state sample x∗ based on the sample
xt−1 of the last round, where x∗ has a certain probability of
being ‘‘rejected’’. Once x∗ converged to a stationary state, from
(14.26), we have

p(xt−1)Q(x∗ | xt−1)A(x∗ | xt−1) = p(x∗)Q(xt−1 | x∗)A(xt−1 | x∗),

(14.27)

where Q(x∗ | xt−1) is the user-specified prior probability,
A(x∗ | xt−1) is the probability of accepting x∗, and Q(x∗ |
xt−1)A(x∗ | xt−1) is the state transition probability from state
xt−1 to state x∗. To arrive at the stationary state, we just need
to set the acceptance probability to

A(x∗ | xt−1) = min

(
1,

p(x∗)Q(xt−1 | x∗)

p(xt−1)Q(x∗ | xt−1)

)
. (14.28)
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Algorithm 14.1 Metropolis−Hastings Sampling
Input: Prior probability Q(x∗ | xt−1).
Process:
1: Initialize x0;
2: for t = 1, 2, . . . do
3: Sample the candidate sample x∗ according to Q(x∗ | xt−1);
4: Sample the threshold u from range (0, 1) according to uniform

distribution;
5: if u � A(x∗ | xt−1) then
6: xt = x∗;
7: else
8: xt = xt−1.
9: end if
10: end for
11: return x1, x2, . . .
Output: A list of sampled samples: x1, x2, . . .

Repeat enough times to arrive at
the stationary distribution.

According to (14.28).

In practice, we often discard the
samples in the beginning of the
list since we wish to use samples
generated from the stationary
distribution.

Gibbs sampling is sometimes considered as a special case ofSee Sect. 7.5.3 for Gibbs
sampling. the MH algorithm, since it also obtains samples usingMarkov

chains with the target sampling distribution p(x) as the sta-
tionary distribution. Specifically, let x = {x1, x2, . . . , xN } be
the set of variables, and p(x) be the objective distribution, then
the Gibbs sampling algorithm generates samples by repeating
the following steps after initializing x:
(1) Select a variable xi either randomly or according to a cer-

tain ordering;
(2) Compute the conditional probability p(xi | xī), where xī =

{x1, x2, . . . , xi−1, xi+1, . . . , xN } is the current value of x
excluding xi ;

(3) Sample a new value of xi from p(xi | xī) and replace the
original value.

14.5.2 Variational Inference

Variational inference approximates complex distributions with
simple and known distributions. It restricts the type of the
approximate distribution, such that the approximate posterior
distribution is locally optimal with a deterministic solution.

Before introducing the details of variational inference, let us
see a conciseway of representing graphicalmodels—plate nota-
tion (Buntine 1994). Figure 14.9 gives an example.
. Figure 14.9 (a) shows that there areN variables {x1, x2, . . . ,
xN } dependent on the variable z. In. Figure 14.9 (b), the plate
notation compactly describes the same relationship, where
multiple variables independently generated by the same mech-
anism are placed in the same rectangle (plate), which allows
nesting, and there is a label N indicating the number of repeti-

https://doi.org/10.1007/978-981-15-9460-1_7
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Fig. 14.9 An example of plate notation

tions. Observable or known variables are usually shaded, e.g.,
x in . Figure 14.9. The plate notation provides a very concise
way of representing variable relationships in various learning
problems.

In . Figure 14.9 (b), the probability density function of all
observable variables x is

Approximate distributions used
in variational inference should
have nice mathematical
properties. They are usually
probability density functions of
continuous variables.

p(x | �) =
N∏

i=1

∑

z

p(xi, z | �), (14.29)

which has the corresponding log-likelihood function

ln p(x | �) =
N∑

i=1

ln

{
∑

z

p(xi, z | �)

}
, (14.30)

where x = {x1, x2, . . . ,xN }, � includes the parameters of the
distributions that x and z follow.

Generally speaking, the inference and learning task in
. Figure 14.9 ismainly estimating thehiddenvariable z and the
distribution parameter variable �, that is, finding p(z | x,�)

and �.
The parameters of graphical models are often estimated by

maximum likelihood estimation. For (14.30), we can apply the
EMalgorithm. In theE-step,we inferp(z | x,�t)by theparam-

See Sect. 7.6 for the EM
algorithm.

eter variable�t at time point t, and then compute the joint like-
lihood function p(x, z | �). In the M-step, we use the current
parameter�t obtained in the E-step to find the parameter�t+1

of the next time point by optimizing the function Q(�;�t)

�t+1 = argmax
�

Q(�;�t)

= argmax
�

∑

z

p(z | x,�t) ln p(x, z | �). (14.31)

where Q(�;�t) is actually the expectation of the joint log-
likelihood function ln p(x, z | �) with respect to the distribu-
tion p(z | x,�t). It approximates the log-likelihood function

https://doi.org/10.1007/978-981-15-9460-1_7
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when the distribution p(z | x,�t) equals to the ground-truth
posterior distribution of the hidden variable z. Hence, the EM
algorithm estimates not only the parameter � but also the dis-
tribution of the hidden variable z.

Note that p(z | x,�t) is not necessarily the ground-truth
distribution of z but only an approximate distribution. Let q(z)
denote the approximate distribution, we can derive

ln p(x) = L(q) + KL(q‖p), (14.32)

where

L(q) =
∫

q(z) ln
{
p(x, z)
q(z)

}
dz, (14.33)

KL(q‖p) = −
∫

q(z) ln
p(z | x)

q(z)
dz. (14.34)

See Appendix C.3 for the KL
divergence.

Inpractice, however, itmaybedifficult to findp(z | x,�t) in
the E-step due to the intractablemultivariate z, and this is when
variational inference comes in handy.We typically assume that
z follows the distribution

q(z) =
M∏

i=1

qi(zi). (14.35)

In other words, we assume that we can decompose the complex
multivariate variable z into a series of independentmultivariate
variables zi . With this assumption, the distribution qi can be

To make the notation
uncluttered, we abbreviate qi(zi)
as qi .

made simple or has a good structure. For example, suppose qi
is an exponential family distribution, then we have

L(q) =
∫ ∏

i

qi

{
ln p(x, z) −

∑

i

ln qi

}
dz

=
∫

qj

⎧
⎨

⎩

∫
ln p(x, z)

∏

i 
=j

qidzi

⎫
⎬

⎭ dzj −
∫

qj ln qjdzj + const

=
∫

qj ln p̃(x, zj)dzj −
∫

qj ln qjdzj + const, (14.36)

where

const is a constant.

ln p̃(x, zj) = Ei 
=j[ln p(x, z)] + const, (14.37)

Ei 
=j[ln p(x, z)] =
∫

ln p(x, z)
∏

i 
=j

qidzi . (14.38)

https://doi.org/10.1007/978-981-15-9460-1
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Sincewe are interested in qj , we canmaximize L(q)with qi 
=j
fixed. We notice that (14.36) equals to−KL(qj ‖ p̃(x, zj)), that
is, L(q) is maximized when qj = p̃(x, zj). Hence, the optimal
distribution q∗

j that the variable subset zj follows should satisfy

ln q∗
j (zj) = Ei 
=j[ln p(x, z)] + const, (14.39)

so we have

q∗
j (zj) = exp

(
Ei 
=j[ln p(x, z)])

∫
exp

(
Ei 
=j[ln p(x, z)]) dzj . (14.40)

In other words, with the assumption (14.35), (14.40) provides
the best approximation to the ground-truth distribution of the
variable subset zj .

With the assumption (14.35), we can often find a closed
form solution to Ei 
=j[ln p(x, z)] by properly partitioning vari-
able subsets zj and selecting the distribution that qi follows;
hence the hidden variable z can be inferred efficiently by
(14.40). From (14.38), we observe that the estimation of the dis-
tribution q∗

j of zj not only considers zj but also zi 
=j . Since this is
achieved by finding the expectation of the joint log-likelihood
function ln p(x, z) with respect to zi 
=j , such a method is also
called the mean field method.

‘‘mean’’ refers to expectation and
‘‘field’’ refers to distribution.

When applying variational inference in practice, the most
important thing is to find the proper hidden variable decompo-
sition and the proper distribution hypothesis of each subset of
hidden variables. With the hidden variable decomposition and
distribution hypotheses, the parameter estimation and infer-
ence of probabilistic graphical models can be made by the EM
algorithm and the consideration of (14.40). Clearly, the per-
formance of variational inference is subject to the quality of
hidden variable decomposition and distribution hypotheses.

14.6 Topic Model

Topic model is a family of generative directed graphical models
mainly used for modeling discrete data, e.g., text corpus. As
represented by Latent Dirichlet Allocation (LDA), topic mod-
els have been widely used in information retrieval and natural
language processing.

There are three key concepts in topic models, namely word,
document, and topic. A word is the basic discrete unit in the
data, e.g., an English word in text processing. A document is a
data object, such as a paper or a Web page, containing a set
of words without considering the ordering of words. Such a
representation is known as bag-of-words. Topic models apply

We can describe an image using
bag-of-words by considering the
small blocks in the image as
words, and then topic models
are applicable.
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Fig. 14.10 An illustration of the document generation process of LDA

to any data objects that can be described by bag-of-words.
A topic describes a concept represented by a series of related
words together with the probabilities that they appear in the
concept.

. Figure 14.10provides an intuitive exampleof topicmodel.
A topic is like a box containing those words with high proba-
bility to appear under the concept of the topic. Suppose that we
have a data set of T documents onK topics, where all words in
the documents are from a dictionary of N distinct words. The
data set (i.e., collection of documents) is denoted by T × N-
dimensional vectors W = {w1,w2, . . . ,wT }, where wt,n (i.e.,
the nth component of wt ∈ R

N ) is the frequency of the word
n appeared in the document t. The topics are denoted by K
N-dimensional vectors βk (k = 1, 2, . . . ,K ), where βk,n (i.e.,
the nth component of βk ∈ R

N ) is the frequency of the word n
in the topic k.

In practice, we can obtain the word frequency vectors wi
(i = 1, 2, . . . ,T ) by counting the words in documents, though

Some words are usually
excluded, such as stop words.

we do not know which topic is mentioned in which document.
LDAassumes that eachdocument containsmultiple topics that
can be modeled by a generative model. More specifically, let
�t ∈ R

K denote the proportion of each topic in document t,
and�t,k denote the proportion of topic k in document t. Then,
LDA assumes a document t is ‘‘generated’’ by the following
steps:
(1) Randomly draw a topic distribution �t from a Dirichlet

distribution with parameter α;
See Appendix C.1.6 for Dirichlet
distribution.

(2) Generate N words for document t by the following steps:
(a) Obtain a topic assignment zt,n according to topic dis-

tribution �t for each word n in document t;

https://doi.org/10.1007/978-981-15-9460-1
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Fig. 14.11 The plate notation of LDA

(b) Generate a word through random sampling according
to the word frequency distribution βk corresponding
to topic assignment zt,n.

The above document generation process is illustrated in
. Figure 14.10. Note that a generated document will have dif-
ferent proportions of topics (step 1), and each word in the doc-
ument comes from a topic (step 2b) generated according to the
topic distribution (step 2a).

The plate notation in . Figure 14.11 describes the rela-
tionships between variables, where word frequency wt,n is the
only observed variable that depends on topic assignment zt,n
and the corresponding word frequency distribution βk . The
topic assignment zt,n depends on topic distribution �t, which
depends on a parameterα. Theword frequency distributionβk
depends on a parameter η. Then, the probability distribution
of LDA is

p(W, z, β, � | α, η) =
�∏

t=1

p(�t | α)

K∏

i=1

p(βk | η)

⎛

⎝
N∏

n=1

P(wt,n | zt,n,βk)P(zt,n | �t)

⎞

⎠ ,

(14.41)

where p(�t | α) is usually set to a K -dimensional Dirichlet
distribution with a parameter α, and p(βk | η) is usually set to
an N-dimensional Dirichlet distribution with a parameter η.
For example

p(�t | α) = �(
∑

k αk)∏
k �(αk)

∏

k

�
αk−1
t,k , (14.42)

where �(·) is the Gamma function. Clearly, α and η in (14.41)
See Appendix C.1.5 for Gamma
function.

are the model parameters to be determined.
Given a data set W = {w1,w2, . . . ,wT }, the parameters

The word frequencies in training
documents.

of LDA can be estimated by maximum likelihood estimation,
that is, finding α and η by maximizing the log-likelihood

https://doi.org/10.1007/978-981-15-9460-1
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LL(α,η) =
�∑

t=1

ln p(wt | α,η). (14.43)

However, it is difficult to solve (14.43) directly since p(wt |
α,η) is not easy to compute. In practice, we often use varia-
tional inference to find an approximate solution.

Once α and η are found, we can use word frequency wt,n
to infer the topic structure of a document, that is, inferring �t,
βk , and zt,n by solving

p(z,β,� | W,α,η) = p(W, z,β,� | α,η)

p(W | α,η)
. (14.44)

Similarly, (14.44) is hard to solve since p(w | α,η) is not easy to
compute. In practice, Gibbs sampling or variational inference
is often employed to find an approximate solution.

14.7 Further Reading

Koller and Friedman (2009) is a book dedicated to prob-
abilistic graphical models. Pearl (1982) initialized the study
on Bayesian networks, and (Pearl 1988) summarized relevant
studies in the early days. Geman and Geman (1984) proposed
Markov random fields, which are often used together with
Bayesian networks in real-world applications. HiddenMarkov
model and its application to speech recognition can be found
in Rabiner (1989). Lafferty et al. (2001) proposed conditional
random fields, and more information can be found in Sutton
and McCallum (2012).

Pearl (1986) proposed the belief propagation algorithm
as an exact inference method, and it was derived into many
approximate inference methods. For typical cyclic graphs, the
initialization andmessage passingmechanisms of belief propa-
gation need to be modified, resulting in the Loopy Belief Prop-
agation algorithm (Murphy et al. 1999). Its theoretical prop-
erties are still unclear, though some progress can be found in
Mooij and Kappen (2007), Weiss (2000). Some cyclic graphs
can be described by factor graphs (Kschischang et al. 2001), and
then converted into factor trees for belief propagation. There
are attempts (Lauritzen and Spiegelhalter 1988) to enable belief
propagation for arbitrary graph structures. Recent advances
in parallel computing motivated studies on parallelized belief
propagation. For example, Gonzalez et al. (2009) proposed the
concept of τε approximate inference and designed a multi-core
parallelized belief propagation algorithmwith a time complex-
ity decreasing linearly to the number of cores.
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The modeling and inference techniques, particularly vari-
ational inference, for graphical models became mature in the
middle 1990s, and (Jordan 1998) summarized the major out-
comes in that period. See (Wainwright and Jordan 2008) for
more information about variational inference.

An advantage of graphical models is that we can intuitively
and quickly define models for specific learning problems. A
prominent representative of such methods is LDA (Blei et al.
2003), which hasmany variants (Blei 2012). One research direc-
tion of probabilistic graphicmodels is tomake themodel adap-
tive to the data (i.e., non-parametric methods), such as Hierar-

Non-parametric means
parameters, such as assumptions
on data distribution, are not
required to be specified, and this
is an important advancement of
Bayesian learning. See Sect. 7.7
for Bayesian learning.

chical Dirichlet Processes (Teh et al. 2006) and Infinite Latent
Feature Model (Ghahramani and Griffiths 2006).

Not all topic models are Bayesian learning methods. For
example, Probabilistic Latent SemanticAnalysis (PLSA) (Hof-
mann 2001) is a probabilistic extension of Latent Semantic
Analysis (LSA).

LSA is a variant of SVD for
textual data.

Monte Carlo methods are a family of numerical methods

See ‘‘Break Time’’ of Chap. 11
for Monte Carlo methods.

developed in the 1940s based on random numbers, and prob-
ability and statistical theory. MCMC is the combination of
Markov chains and theMonte Carlo method, and (Pearl 1987)
introduced it to Bayesian network inference. See Neal (1993)
for more information about applying MCMC to probabilistic
inference. SeeAndrieu et al. (2003), Gilks et al. (1996) formore
information about MCMC.

https://doi.org/10.1007/978-981-15-9460-1_7
https://doi.org/10.1007/978-981-15-9460-1_11
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Exercises

14.1 Use plate notation to represent conditional random field
and naïve Bayes classifier.

14.2 Prove the local Markov property in graphical models: a
variable is conditionally independent of other variables given
the adjacent variables.

14.3 Prove the pairwise Markov property in graphical mod-
els: two non-adjacent variables are conditionally independent
given all other variables.

14.4 Explain why the potential functions are only needed for
the maximal cliques in Markov random field.

14.5 Discuss the similarities and differences between condi-
tional random field and logistic regression.

14.6 Prove that the computational complexity of the variable
elimination method increases exponentially to the number of
maximal cliques in graphical models, but does not necessarily
increase exponentially to the number of nodes.

14.7 Gibbs sampling can be seen as a special case of the
Metropolis−Hastings algorithm, but it does not take the reject
sampling strategy. Discuss the advantages of doing so.

14.8 Mean field is an approximate inference method. Consid-
ering (14.32), discuss the difference between the approximated
problemsolvedby themean fieldmethodand theoriginal prob-
lem, and discuss how to select the prior probability of variables
in practice.

14.9 *Download or implement the LDA algorithm, and apply
it to a novel book (e.g., Robinson Crusoe) to see how the topics
evolve over chapters.

14.10 * Design an improved LDA algorithm that does not
require the predefined number of topics.
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Break Time

Short Story: Judea Pearl—Pioneer of Probabilistic Graphical
Models

We must mention the Israeli-
American computer scientist Judea
Pearl (1936−) when talking about
graphical probabilisticmodels. Pearl
was born in Tel Aviv. After obtain-
ing his B.S. degree from the Tech-
nion in 1960, Pearl emigrated to the
United States to continue his study
at theNewarkCollege of Engineer-
ing and received his Ph.D. degree
in Electrical Engineering from the
Polytechnic Institute of Brooklyn
in 1965. After graduation, he worked at RCA Research Lab-
oratories on superconductive amplifiers and storage devices,
and later on, in 1970, he joined the University of California,
Los Angeles.

Research on artificial intelligence in the early days focused
on symbolism learning and logic reasoning, which can hardly

See Sect. 1.5.process and represent uncertainties in a quantitative manner.
In the 1970s, Pearl introduced probabilistic methods into arti-
ficial intelligence and invented a series of techniques, includ-
ing Bayesian network and Belief propagation, which led to
the framework of probabilistic graphical models. By using
Bayesian networks as a tool, Pearl created a new research
area known as causal inference. Pearl received theACM/AAAI
Allen Newell Award in 2003, and later on, the Turing Award

The ACM/AAAI Allen Newell
Award is presented to people for
career contributions that have
breadth within computer
science, or that bridge computer
science and other disciplines.
The award is named after Allen
Newell (1927−1992), who is a
Turing Award winner and a
pioneer in the field of artificial
intelligence. The second
recipient of this award from the
field of machine learning is
Michael Jordan, who received
the award in 2009.

in 2011 for his fundamental contributions to artificial intelli-
gence through the development of a calculus for probabilistic
and causal reasoning. ACM commented that ‘‘Pearl’s work not
only revolutionized the field of artificial intelligence, but also
became an important tool for many other branches of engineer-
ing and the natural sciences.’’ In 2011, Pearl also received the
Lakatos Award, which is the most prestigious award in the
philosophy of science.

https://doi.org/10.1007/978-981-15-9460-1_1
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