
287 12

Computational Learning
Theory

Table of Contents

12.1 Basic Knowledge 288

12.2 PAC Learning 289

12.3 Finite Hypothesis Space 292

12.4 VC Dimension 295

12.5 Rademacher Complexity 300

12.6 Stability 306

12.7 Further Reading 309

References 313

© Springer Nature Singapore Pte Ltd. 2021
Z.-H. Zhou,Machine Learning,
https://doi.org/10.1007/978-981-15-1967-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1967-3_12&domain=pdf
https://doi.org/10.1007/978-981-15-1967-3_12


12

288 Chapter 12 · Computational Learning Theory

12.1 Basic Knowledge

As the name suggests, computational learning theory is about
‘‘learning’’ by ‘‘computation’’ and is the theoretical foundation
of machine learning. It aims to analyze the difficulties of learn-
ingproblems, provides theoretical guarantees for learningalgo-
rithms, and guides the algorithm design based on theoretical
analysis.

Given a data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)},
where xi ∈ X. In this chapter, we focus on binary classifica-
tion problems (i.e., yi ∈ Y = {−1,+1}) unless otherwise stated.
Suppose there is an underlying unknown distribution D over
all samples in X, and all samples inD are drawn independently
from the distribution D, that is, i.i.d . samples.

Let h be a mapping from X to Y, and its generalization error
is

E(h;D) = Px∼D(h(x) �= y). (12.1)

The empirical error of h over D is

̂E(h;D) = 1
m

m
∑

i=1

I(h(xi) �= yi). (12.2)

Since D contains i.i.d . samples drawn from D, the expec-
tation of the empirical error of h equals to the generalization
error. When it is clear from the context, we abbreviate E(h;D)

and ̂E(h;D) as E(h) and ̂E(h), respectively. The maximum
error we can tolerate for a learned model, also known as the
error parameter, is an upper boundofE(h), denotedby ε, where
E(h) � ε.

The rest of this chapter studies the gap between the empir-
ical error and the generalization error. A mapping h is said to
be consistent with D if the empirical error of h on the data set
D is 0. For any two mappings h1, h2 ∈ X → Y, their difference
can be measured by the disagreement

d(h1, h2) = Px∼D(h1(x) �= h2(x)). (12.3)

For ease of reference, we list a few frequently used inequal-
ities below
• Jensen’s inequality: for every convex function f (x), we have

f (E(x)) � E(f (x)). (12.4)
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• Hoeffding’s inequality (Hoeffding 1963): if x1, x2, . . . , xm
arem independent random variables with 0 � xi � 1, then,
for any ε > 0, we have

P

(

1
m

m
∑

i=1

xi − 1
m

m
∑

i=1

E(xi) � ε

)

� exp(−2mε2),

(12.5)

P

(∣

∣

∣

∣

∣

1
m

m
∑

i=1

xi − 1
m

m
∑

i=1

E(xi)

∣

∣

∣

∣

∣

� ε

)

� 2 exp(−2mε2).

(12.6)

• McDiarmid’s inequality (McDiarmid1989): ifx1, x2, . . . , xm
are m independent random variables, and for any 1 ≤ i ≤
m, the function f satisfies

sup
x1,...,xm,x′

i

∣

∣f (x1, . . . , xm) − f (x1, . . . , xi−1, x′
i, xi+1, . . . , xm)

∣

∣ � ci,

then, for any ε > 0, we have

P(f (x1, . . . , xm) − E(f (x1, . . . , xm)) � ε) � exp

(

−2ε2
∑

i c
2
i

)

,

(12.7)

P(|f (x1, . . . , xm) − E(f (x1, . . . , xm))| � ε) � 2 exp

(

−2ε2
∑

i c
2
i

)

.

(12.8)

12.2 PAC Learning

Probably Approximately Correct (PAC) learning theory
(Valiant 1984) is one of the most fundamental components of
computational learning theory.

Let c denote a concept, which provides a mapping from
the sample space X to the label space Y, and c determines the
ground-truth label y of the sample x. A concept c is said to be a
target concept if c(x) = y holds for every sample (x, y). The set
of all target concepts that we wish to learn is called a concept
class, denoted by C.

The set of all possible concepts for a given learning algo-
rithm L is called a hypothesis space, denoted by H. Since the

The hypothesis space of a
learning algorithm L is different
from the hypothesis space of the
learning problem as discussed in
Sect. 1.3.

ground-truth concept class is unknown to learning algorithms,
H and C are usually different. A learning algorithm constructsH
by collecting all concepts that are believed to be the target con-
cepts. Since it is unknown whether the collected concepts are
ground-truth target concepts, h ∈ H is referred to as a hypoth-
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esis, which provides a mapping from the sample space X to the
label space Y.

If c ∈ H, then H contains a hypothesis that can correctly
classify all instances, and such a learning problem is said to be
separable or consistent with respect to the learning algorithm
L. If c /∈ H, then H does not contain any hypothesis that can
correctly classify all instances, and such a learning problem
is said to be non-separable or inconsistent with respect to the
learning algorithm L.

Given a training set D, we wish the learning algorithm L

can learn a hypothesis h that is close to the target concept c.
Readers may wonder why not learn the exact target concept
c? The reason is that the machine learning process is subject to
many factors. For example, since the training setDusually con-
tains finite samples, there often exist many equivalent hypothe-
ses that cannot be distinguished by learning algorithms on D.

See Sect. 1.4. Also, there exists some randomness when sampling D from D,
In general, the fewer the training
samples, the higher the
randomness.

and hence the hypotheses learned from different equal-sized
training sets could be different. Therefore, instead of learning
the exact target concept c, we wish to learn a hypothesis h with
an error bounded by a given value with high confidence, that
is, a hypothesis that is probably approximately correct (i.e.,
PAC). Let 1− δ denote the confidence, and we have the formal
definition as follows:

Definition 12.1 (PAC Identify) A learning algorithm L is said
to PAC identify the concept class C from the hypothesis space
H if, for any c ∈ C and distribution D, and ε, δ ∈ (0, 1), the
learning algorithm L outputs a hypothesis h ∈ H satisfying

P(E(h) � ε) � 1 − δ. (12.9)

Such a learning algorithm L has a probability of at least
1− δ of learning an approximation of the target concept c with
an error of at most ε. FollowingDefinition 12.1, we can further
define the following:

Definition 12.2 (PACLearnable) A target concept class C is said
to be PAC learnable with respect to the hypothesis space H if
there exists a learning algorithm L such that, for any ε, δ ∈
(0, 1) and distribution D, the learning algorithm L can PAC
identify the concept class C from the hypothesis space H for
any m � poly(1/ε, 1/δ, size(x), size(c)), where poly(·, ·, ·, ·) is
a polynomial function and m is the number of i.i.d . training

The sample size m is related to
the error ε, the confidence 1 − δ,
the complexity of data size(x),
and the complexity of target
concept size(c). samples drawn from the distribution D.
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For learning algorithms, it is necessary to consider the run-
ning time complexity. Hence, we further define:

Definition 12.3 (PAC Learning Algorithm) A concept class C is
said to be efficiently PAC learnable by its PAC learning algo-
rithm L if C is PAC learnable by L within a polynomial time
poly(1/ε, 1/δ, size(x), size(c)).

Suppose the learning algorithm L processes each sample
with a constant time, then the running time complexity is equiv-
alent to the sample complexity, and we could focus only on the
sample complexity:

Definition 12.4 (Sample Complexity) The sample complexity of
a PAC learning algorithm L is the smallest sample size m �
poly(1/ε, 1/δ, size(x), size(c)) required by L.

PAC learning provides a formal framework for describing
the learning ability of learning algorithms, andmany important
questions can be discussed theoretically under this framework.
For example, what are the requirements for learning a good
model for a given learning problem? What are the conditions
for an algorithm to learn effectively? How many training sam-
ples are required to learn a good model?

A hypothesis space H includes all possible output hypothe-
ses of a learningalgorithmL, andakey elementofPAC learning
is the complexity of H. If the hypothesis space is the same as
the concept class (i.e.,H = C), then C is said to be properly PAC
learnable with respect to H. Intuitively, it means the ability of
the learning algorithm properly matches the learning problem.
However, it is impractical to assume that H = C since we do
not know the concept class for real problems, let alone some
learning algorithm L with H is exact C. Therefore, it is more
realistic to study the cases when the hypothesis space and the
concept class are different (i.e., H �= C). In general, a larger H
is more likely to contain the target concept we are looking for,
though the larger hypothesis space also makes it more difficult
to find the target concept. H is called a finite hypothesis space
if |H| is finite, and an infinite hypothesis space otherwise.
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12.3 Finite Hypothesis Space

12.3.1 Separable Case

In separable cases, the target concept c is in the hypothesis
space H (i.e., c ∈ H). Then, given a training set D with size m,
how can we find a hypothesis from H satisfying the constraint
of a given error parameter?

It is natural to come upwith the following learning strategy.
Since the labels of the samples in D are assigned by the target
concept c ∈ H, any hypotheses that misclassify any samples in
Dmust not be the target concept c. Hence, we simply eliminate
all hypotheses that are inconsistent with D and keep the rest.
When the training set D is sufficiently large, we can keep elim-
inating inconsistent hypotheses from H until there is only one
hypothesis left, which must be the target concept c. In practice,
however, since the training data is usually limited, we may end
upwithmore than one hypothesis that is consistent withD, and
we cannot distinguish them without additional information.

Given that the training data is limited, how many samples
dowe need to learn a good approximation of the target concept
c? For PAC learning, we say a training set D is sufficient for
a learning algorithm L if L can find an ε-approximation of the
target concept with a probability of at least 1 − δ.

We first estimate the probability of having a hypothesis that
performs perfectly on the training set but still with a general-
ization error greater than ε. Suppose the generalization error
of a hypothesis h is greater than ε, then, for any i.i.d . sample
(x, y) drawn from the distribution D, we have

P(h(x) = y) = 1 − P(h(x) �= y)

= 1 − E(h)

< 1 − ε. (12.10)

Since D contains m samples independently drawn from D, the
probability that h and D are consistent is given by

P((h(x1) = y1) ∧ . . . ∧ (h(xm) = ym)) = (1 − P(h(x) �= y))m

< (1 − ε)m. (12.11)

Though we do not know which hypothesis h ∈ H will be
the output by the learning algorithm L, we only need to ensure
that the total probability of having any hypotheses that are
consistent with D and have generalization errors greater than
ε is not greater than δ. That is, ensuring the total probability
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P(h ∈ H : E(h) > ε ∧ ̂E(h) = 0) < |H| (1 − ε)m

< |H| e−mε (12.12)

is not greater than δ, that is,

|H| e−mε � δ. (12.13)

Hence, we have

m � 1
ε
(ln |H| + ln

1
δ
), (12.14)

which shows that every finite hypothesis space H is PAC learn-
able, and the required sample size is given by (12.14). As the
number of samples increases, the generalization error of the
output hypothesis h converges toward 0 at a convergence rate
of O( 1

m ).

12.3.2 Non-separable Case

For difficult learning problems, the target concept c is usually
not in the hypothesis spaceH. SupposêE(h) �= 0 for any h ∈ H,
that is, every hypothesis in H misclassifies at least one training
example, then, from Hoeffding’s inequality, we have:

Lemma 12.1 Let D be a training set containing m samples inde-
pendently drawn from a distribution D. Then, for any h ∈ H and
0 < ε < 1, we have

P(̂E(h) − E(h) � ε) � exp(−2mε2), (12.15)

P(E(h) − ̂E(h) � ε) � exp(−2mε2), (12.16)

P
(∣

∣E(h) − ̂E(h)
∣

∣ � ε
)

� 2 exp(−2mε2). (12.17)

Corollary 12.1 LetDbe a training set containingm samples inde-
pendently drawn from a distribution D. Then, for any h ∈ H and
0 < ε < 1, the following holds with a probability of at least 1− δ:

̂E(h) −
√

ln(2/δ)
2m

� E(h) � ̂E(h) +
√

ln(2/δ)
2m

. (12.18)

Corollary 12.1 shows that, for a largem, the empirical error
of h is a good approximation to its generalization error. For
finite hypothesis spaces, we have

Theorem 12.1 Let H be a finite hypothesis space. Then, for any
h ∈ H and 0 < δ < 1, we have
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P

(

∣

∣E(h) − ̂E(h)
∣

∣ �
√

ln |H| + ln(2/δ)
2m

)

� 1 − δ. (12.19)

Proof Let h1, h2, . . . , h|H| denote the hypotheses in H, and we
have

P(∃h ∈ H : ∣

∣E(h) − ̂E(h)
∣

∣ > ε)

= P
((∣

∣Eh1 − ̂Eh1

∣

∣ > ε
) ∨ . . . ∨ (∣

∣Eh|H| − ̂Eh|H|
∣

∣ > ε
))

�
∑

h∈H
P(

∣

∣E(h) − ̂E(h)
∣

∣ > ε).

From (12.17), we have
∑

h∈H
P(

∣

∣E(h) − ̂E(h)
∣

∣ > ε) � 2 |H| exp(−2mε2),

which proves (12.19) by letting δ = 2 |H| exp(−2mε2). �

A learning algorithm L cannot learn an ε-approximation of
the target concept c if c /∈ H. However, for a given hypothesis
space H, the hypothesis h ∈ H with the smallest generaliza-
tion error is still a reasonably good target. In other words,

That is to find the best
hypothesis inH.

instead of targeting at c, we find an ε-approximation of h, i.e.,
argminh∈H E(h). This approach generalizes PAC learning to
agnostic learning in which c /∈ H. Accordingly, we define

Definition 12.5 (Agnostic PAC learnable) A hypothesis spaceH
is said to be agnostic PAC learnable if there exists a learning
algorithm L such that, for any ε, δ ∈ (0, 1) and distribution D,
the learning algorithm L outputs a hypothesis h ∈ H satisfying

P(E(h) − min
h′∈H

E(h′) � ε) � 1 − δ, (12.20)

for any m � poly(1/ε, 1/δ, size(x), size(c)), where m is the
number of i.i.d . training samples drawn from the distribution
D.

Similar to PAC learnable, a hypothesis spaceH is said to be
efficiently agnostic PAC learnable by its agnostic PAC learn-
ing algorithm L if H is agnostic PAC learnable by L within
a polynomial time poly(1/ε, 1/δ, size(x), size(c)). The sample
complexity of the learning algorithm L is the smallest sample
size m satisfying the above requirements.



12.4 VC Dimension
295 12

12.4 VC Dimension

Hypothesis spaces in real-world applications are usually infi-
nite, such as all intervals in the real domain and all hyperplanes
in the R

d space. To study the learnability of such cases, we
need to measure the complexity of hypothesis spaces. A gen-
eral approach is to consider the Vapnik−Chervonenkis dimen-
sion (VCdimension) (Vapnik andChervonenkis 1971).We first
introduce three concepts: growth function, dichotomy, and shat-
tering.

Given a hypothesis space H and a set of instances D =
{x1, x2, . . . , xm}, where each hypothesis h ∈ H can label every
instance in D. The labeling result is denoted by

h|D = {(h(x1), h(x2), . . . , h(xm))},
any element of which is called a dichotomy. The number of
dichotomies generated by the hypotheses inH overD increases

For example, in binary
classification problems, there
are at most 4 dichotomies given
2 instances, and 8 dichotomies
given 3 instances.

as m increases.

Definition 12.6 For m ∈ N , the growth function �H(m) of a
N is the natural number domain.hypothesis space H is defined as

�H(m) = max{x1,...,xm}⊆X
|{(h(x1), . . . , h(xm)) | h ∈ H}| .

(12.21)

The growth function �H(m) gives the largest number of
dichotomies that the hypothesis space H can generate over
m instances. The more dichotomies, the more representation
power, that is, the better adaptability to learning problems.
The growth function describes the representation power of a
hypothesis space H, which also reflects the complexity of the
hypothesis space.We can now use a growth function to present
the relationship between the empirical error and the general-
ization error:

Theorem 12.2 For any m ∈ N, 0 < ε < 1, and h ∈ H, we have

P
(∣

∣E(h) − ̂E(h)
∣

∣ > ε
)

� 4�H(2m) exp

(

−mε2

8

)

. (12.22)

The proof can be found
in Vapnik and Chervonenkis
(1971).

Different hypotheses in H may generate identical or different
dichotomies overD. The number of dichotomies could be finite
even for an infinite hypothesis spaceH; for example, there are at
most 2m dichotomiesoverm instances.We say that ahypothesis
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space H can shatter a data set D if H can generate all possible
dichotomies of D, that is, �H(m) = 2m.

We can now formally define the VC dimension as follows:

Definition 12.7 The VC dimension of a hypothesis space H is
the size of the largest instance set D shattered by H:

VC(H) = max{m : �H(m) = 2m}. (12.23)

VC(H) = d says that there exists an instance set D of size
d that can be shattered by H. However, it does not mean every
instance setDof size d can be shattered byH. Some readersmay
have recognized that the definition of the VC dimension does
not involve the underlying data distribution D! In other words,
the VC dimension of a hypothesis space H can be calculated
even if the data distribution is unknown.

In general, we can calculate the VC dimension of H as fol-
lows: the VC dimension of H is d if there exists an instance set
of size d shattered by H while there is no instance set of size
d + 1 shattered by H. We illustrate the calculation of the VC
dimension with the following two examples:

Example 12.1 (Interval [a, b] in the real domain)LetH = {h[a,b] :
a, b ∈ R, a � b} denote the set of all closed intervals in the real
domain X = R. For every x ∈ X, we have h[a,b](x) = +1
if x ∈ [a, b]; otherwise, h[a,b](x) = −1. Letting x1 = 0.5
and x2 = 1.5, then, {x1, x2} is shattered by the hypotheses
{h[0,1], h[0,2], h[1,2], h[2,3]} fromH, hence the VCdimension ofH
is at least 2. However, there is no hypothesis h[a,b] ∈ H that can
generate the dichotomy {(x3,+), (x4,−), (x5,+)} for a data
set containing any 3 instances {x3, x4, x5}, where x3 < x4 < x5.
Hence, the VC dimension of H is 2.

Example 12.2 (Linear separators in the2-dimensional real plane)
LetHdenote the set of all linear separators in the 2-dimensional
real plane X = R

2. From . Figure 12.1 we see that there exists
a data set of size 3 shattered by H, whereas there is no instance
set of size 4 shattered by H. Hence, the VC dimension of the
hypothesis spaceH of all linear separators in the 2-dimensional
real plane is 3.

From Definition 12.7, we see the following relationship
between the VC dimension and the growth function (Sauer
1972):

Lemma 12.2 If the VC dimension of a hypothesis space H is d,
then, for any m ∈ N, we have
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Fig. 12.1 The VC dimension of the hypothesis space of all linear separators
in the 2-dimensional real plane is 3

�H(m) �
d

∑

i=0

(

m
i

)

. (12.24)
Also known as Sauer’s Lemma.

Proof We will proceed by induction. The theorem holds when
m = 1, and d = 0 or d = 1. Hypothesizing that the the-
orem holds for (m − 1, d − 1) and (m − 1, d). Letting D =
{x1, x2, . . . , xm} and D′ = {x1, x2, . . . , xm−1}, we have

H|D = {(h(x1), h(x2), . . . , h(xm)) | h ∈ H},
H|D′ = {(h(x1), h(x2), . . . , h(xm−1)) | h ∈ H}.

Since every hypothesis h ∈ H classifies xm as either +1 or −1,
every sequence appeared in H|D′ will appear in H|D once or
twice. Let HD′|D denote the set of sequences from H|D′ that
appear twice in H|D, that is,

HD′ |D = {(y1, y2, . . . , ym−1) ∈ H|D′ | ∃h, h′ ∈ H,

(h(xi) = h′(xi) = yi) ∧ (h(xm) �= h′(xm)), 1 � i � m − 1}.

Since the sequences in HD′|D appear twice in H|D but once in
H|D′ , we have

∣

∣H|D
∣

∣ = ∣

∣H|D′
∣

∣ + ∣

∣HD′|D
∣

∣ . (12.25)

For the data set D′ of size m − 1, we have, from the induction
assumption,

∣

∣H|D′
∣

∣ � �H(m − 1) �
d

∑

i=0

(

m − 1
i

)

. (12.26)

Let Q denote the set of instances shattered by HD′|D. From
the definition ofHD′|D, we know thatH|D can shatterQ∪{xm}.
Since theVCdimensionofH isd , the largest possibleVCdimen-
sion of HD′|D is d − 1. Therefore, we have
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∣

∣HD′|D
∣

∣ � �H(m − 1) �
d−1
∑

i=0

(

m − 1
i

)

. (12.27)

From (12.25)−(12.27), we have

∣

∣H|D
∣

∣ �
d

∑

i=0

(

m − 1
i

)

+
d−1
∑

i=0

(

m − 1
i

)

=
d

∑

i=0

((

m − 1
i

)

+
(

m − 1
i − 1

))

=
d

∑

i=0

(

m
i

)

.

(m−1
−1

) = 0.

From the arbitrariness of data set D, Lemma 12.2 follows.
�

FromLemma12.2, we can calculate the upper bound of the
growth function:

Corollary 12.2 If the VC dimension of a hypothesis space H is d,
then, for any integer m � d, we have

�H(m) �
(e · m

d

)d
. (12.28)e is Euler’s number.

Proof

�H(m) �
d

∑

i=0

(

m
i

)

�
d

∑

i=0

(

m
i

)

(m
d

)d−i

=
(m
d

)d d
∑

i=0

(

m
i

) (

d
m

)i

�
(m
d

)d m
∑

i=0

(

m
i

) (

d
m

)i

=
(m
d

)d
(

1 + d
m

)m

�
( e · m

d

)d
.

�

m � d .
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From Corollary 12.2 and Theorem12.2, we have the gen-
eralization error bound in terms of the VC dimension, also
known as the VC bound:

Theorem 12.3 If the VC dimension of a hypothesis space H is d,
then, for any m > d, δ ∈ (0, 1), and h ∈ H, we have

P

⎛

⎝

∣

∣E(h) − ̂E(h)
∣

∣ �

√

8d ln 2em
d + 8 ln 4

δ

m

⎞

⎠ � 1 − δ.

(12.29)

Proof Setting 4�H(2m) exp(−mε2

8 ) � 4( 2emd )d exp(−mε2

8 ) =
δ, we have

ε =
√

8d ln 2em
d + 8 ln 4

δ

m
,

which completes the proof by substituting the above equation
into Theorem12.2. �

From Theorem12.3, the generalization error bound in
(12.29) is dependent only on the sample size m and converges
toward 0 at a convergence rate ofO( 1√

m
). Since the VC bound

is independent of the data distribution D and the data set D, it
is distribution-free and data-independent.

Let h denote the hypothesis output by a learning algorithm
L. Then, we say L satisfies the Empirical Risk Minimization
(ERM) principle if

̂E(h) = min
h′∈H

̂E(h′). (12.30)

Then, we have the following theorem:

Theorem 12.4 Every hypothesis space H with a finite VC dimen-
sion is (agnostic) PAC learnable.

Proof Suppose L is a learning algorithm satisfying the ERM
principle, and h is the hypothesis output by L. Let g be the
hypothesis with the smallest generalization error in H, that is,

E(g) = min
h∈H

E(h). (12.31)

Letting

δ′ = δ

2
,
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√

(ln 2/δ′)
2m

= ε

2
. (12.32)

From Corollary 12.1, the following holds with a probability of
at least 1 − δ/2:

̂E(g) − ε

2
� E(g) � ̂E(g) + ε

2
. (12.33)

Setting
√

8d ln 2em
d + 8 ln 4

δ′
m

= ε

2
, (12.34)

then, from Theorem12.3, we have

P
(

E(h) − ̂E(h) � ε

2

)

� 1 − δ

2
. (12.35)

Hence, the following holds with a probability of at least 1− δ:

E(h) − E(g) � ̂E(h) + ε

2
−

(

̂E(g) − ε

2

)

= ̂E(h) − ̂E(g) + ε

� ε.

We can solve m from (12.32) and (12.34). Then, from the arbi-
trariness of H, we have Theorem12.4. �

12.5 Rademacher Complexity

From Sect. 12.4, we see that the VC bound is distribution-free
and data-independent (i.e., it is valid for any data distribu-
tion), which makes the analysis of generalization error bound
‘‘universal’’. However, since it does not take the data set into
account, the VC bound is generally loose, especially for ‘‘poor’’
data distributions that are far from the typical situation in
learning problems.

Rademacher complexity presents another characterization
Rademacher complexity is
named after the German
mathematician H. Rademacher
(1892−1969).

of the complexity of the hypothesis space, and the difference
from the VC dimension lies in consideration of data distribu-
tion in some sense.

Given a data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the
empirical error of a hypothesis h is given by
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̂E(h) = 1
m

m
∑

i=1

I(h(xi) �= yi)

= 1
m

m
∑

i=1

1 − yih(xi)
2

= 1
2

− 1
2m

m
∑

i=1

yih(xi), (12.36)

where 1
m

∑m
i=1 yih(xi) represents the consistency between the

predicted values h(xi) and the ground-truth labels yi . It takes
the maximum value 1 if h(xi) = yi for all i ∈ {1, 2, . . . ,m}. In
other words, the hypothesis with the smallest empirical error is

argmax
h∈H

1
m

m
∑

i=1

yih(xi). (12.37)

In practice, however, the data set may have been corrupted
by some noises, that is, the label yi of sample (xi, yi) is affected
by some random factors and is no longer the ground-truth label
of xi . In such cases, sometimes it is better to select a hypothesis
that has considered the influence of random noises, rather than
the best hypothesis over the training set.

We introduce the Rademacher random variable σi , which
takes value +1 or −1 with an equal probability of 0.5. With σi ,
we rewrite (12.37) as

sup
h∈H

1
m

m
∑

i=1

σih(xi). (12.38)

We consider all hypotheses in H and take the expectation over

It is likely that we cannot find
the maximum value sinceH is
infinite. Hence, we replace the
maximum by the supremum.

(12.38) as

Eσ

[

sup
h∈H

1
m

m
∑

i=1

σih(xi)

]

, (12.39)

where σ = {σ1, σ2, . . . , σm}. Equation (12.39) takes value in
[0, 1] and expresses the representation power of the hypothesis
H. For example, (12.39) equals to 0 when |H| = 1, that is, there
is only one hypothesis in H; (12.39) equals to 1 when |H| = 2m

and H shatters D, that is, for any σ , there exists a hypothesis
such that h(xi) = σi (i = 1, 2, . . . ,m).

Let F : Z → R be a real-valued function space, and Z =
{z1, z2, . . . , zm} be a set of i.i.d . instances, where zi ∈ Z. By
replacing X and H in (12.39) with Z and F, respectively, we
have



12

302 Chapter 12 · Computational Learning Theory

Definition 12.8 The empirical Rademacher complexity of a
function space F with respect to Z is defined as

̂RZ(F) = Eσ

[

sup
f ∈F

1
m

m
∑

i=1

σi f (zi)

]

. (12.40)

The empirical Rademacher complexity measures the corre-
lation between the function space F and the random noise in
the data setZ. To analyze the correlation between F andD over
Z, we can take the expectation over the data set Z withm i.i.d .

samples drawn from D:

Definition 12.9 TheRademacher complexityof a function space
F with respect to a distribution D over Z is defined as

Rm(F) = EZ⊆Z:|Z|=m
[

̂RZ(F)
]

. (12.41)

Based on the Rademacher complexity, we can define the
generalization error bound of function space F (Mohri et al.
2012):

Theorem 12.5 LetF : Z → [0, 1] be a real-valued function space,
and Z = {z1, z2, . . . , zm} be a set of i.i.d . samples drawn from
D over Z. Then, for any δ ∈ (0, 1) and f ∈ F, the following holds
with a probability of at least 1 − δ:

E [f (z)] � 1
m

m
∑

i=1

f (zi) + 2Rm(F) +
√

ln(1/δ)
2m

, (12.42)

E [f (z)] � 1
m

m
∑

i=1

f (zi) + 2̂RZ(F) + 3

√

ln(2/δ)
2m

. (12.43)

Proof Letting

̂EZ(f ) = 1
m

m
∑

i=1

f (zi),

�(Z) = sup
f ∈F

E[f ] − ̂EZ(f ),

and let Z′ be another data set that is the same as Z except for
one instance. Suppose that zm ∈ Z and z′m ∈ Z′ are the two
different instances. Then, we have



12.5 Rademacher Complexity
303 12

�(Z′) − �(Z) =
(

sup
f ∈F

E[f ] − ̂EZ′ (f )
)

−
(

sup
f ∈F

E[f ] − ̂EZ(f )

)

� sup
f ∈F

̂EZ(f ) − ̂EZ′ (f )

= sup
f ∈F

f (zm) − f (z′m)

m

� 1
m

.

Similarly, we have

�(Z) − �(Z′) � 1
m

,

∣

∣�(Z) − �(Z′)
∣

∣ � 1
m

.

According toMcDiarmid’s inequality (12.7), for any δ ∈ (0, 1),
the following holds with a probability of at least 1 − δ:

�(Z) � EZ[�(Z)] +
√

ln(1/δ)
2m

, (12.44)

where the upper bound of EZ[�(Z)] is given by

EZ [�(Z)] = EZ

[

sup
f ∈F

E[f ] − ̂EZ(f )

]

= EZ

[

sup
f ∈F

EZ′
[

̂EZ′ (f ) − ̂EZ(f )
]

]

� EZ,Z′
[

sup
f ∈F

̂EZ′ (f ) − ̂EZ(f )

]

= EZ,Z′

⎡

⎣sup
f ∈F

1
m

m
∑

i=1

(f (z′i) − f (zi))

⎤

⎦

= Eσ ,Z,Z′

⎡

⎣sup
f ∈F

1
m

m
∑

i=1

σi(f (z
′
i) − f (zi))

⎤

⎦

� Eσ ,Z′

⎡

⎣sup
f ∈F

1
m

m
∑

i=1

σi f (z
′
i)

⎤

⎦ + Eσ ,Z

⎡

⎣sup
f ∈F

1
m

m
∑

i=1

−σi f (zi)

⎤

⎦

= 2Eσ ,Z

⎡

⎣sup
f ∈F

1
m

m
∑

i=1

σi f (zi)

⎤

⎦

= 2Rm(F).

Using Jensen’s inequality (12.4)
and the convexity of the
supremum function.

σi and −σi follow the same
distribution.

The above gives the proof of (12.42). FromDefinition 12.9,
we know that changing one instance inZ will change the value
of ̂RZ(F) at most 1/m. According to McDiarmid’s inequal-
ity (12.7), the following holds with a probability of at least
1 − δ/2:
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Rm(F) � ̂RZ(F) +
√

ln(2/δ)
2m

. (12.45)

Then, from (12.44), the following holds with a probability of
at least 1 − δ/2:

�(Z) � EZ[�(Z)] +
√

ln(2/δ)
2m

.

Hence, the following holds with a probability of at least 1− δ:

�(Z) � 2̂RZ(F) + 3

√

ln(2/δ)
2m

. (12.46)

The above gives the proof of (12.43). �

Since F in Theorem12.5 is a real-valued function over the
interval [0, 1], Theorem12.5 is applicable to regression prob-
lems only. For binary classification problems, we have the fol-
lowing theorem:

Theorem 12.6 Let H : X → {−1,+1} be a hypothesis space and
D = {x1, x2, . . . , xm} be a set of i.i.d . instances drawn from D
over X. Then, for any δ ∈ (0, 1) and h ∈ H, the following holds
with a probability of at least 1 − δ:

E(h) � ̂E(h) + Rm(H) +
√

ln(1/δ)
2m

, (12.47)

E(h) � ̂E(h) + ̂RD(H) + 3

√

ln(2/δ)
2m

. (12.48)

Proof LetHbeahypothesis spaceof binary classificationprob-
lems. By letting Z = X × {−1,+1}, h ∈ H can be transformed
to

fh(z) = fh(x, y) = I(h(x) �= y), (12.49)

which transforms thehypothesis spaceHwithanoutputdomain
of {−1,+1} to a function space FH = {fh : h ∈ H} with an out-
put domain of [0, 1]. From Definition 12.8, we have
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̂RZ(FH) = Eσ

[

sup
fh∈FH

1
m

m
∑

i=1

σi fh(xi, yi)

]

= Eσ

[

sup
h∈H

1
m

m
∑

i=1

σiI(h(xi) �= yi)

]

= Eσ

[

sup
h∈H

1
m

m
∑

i=1

σi
1 − yih(xi)

2

]

= 1
2
Eσ

[

1
m

m
∑

i=1

σi + sup
h∈H

1
m

m
∑

i=1

(−yiσih(xi))

]

= 1
2
Eσ

[

sup
h∈H

1
m

m
∑

i=1

(−yiσih(xi))

]

= 1
2
Eσ

[

sup
h∈H

1
m

m
∑

i=1

(σih(xi))

]

= 1
2
̂RD(H). (12.50)

−yiσi and σi follow the same
distribution.

Taking the expectation of (12.50) gives

Rm(FH) = 1
2
Rm(H). (12.51)

From(12.50), (12.51), andTheorem12.5,wehaveTheorem12.6
proved. �

Theorem12.6 gives the generalization error boundbased on
the Rademacher complexity, also known as the Rademacher
bound. In comparison with Theorem12.3, the VC bound is
distribution-free and data-independent, whereas the
Rademacher bound depends on the distribution D in (12.47)
and the data set D in (12.48). In other words, the Rademacher
bound depends on the data distribution of the specific learning
problem. The Rademacher bound is generally tighter than the
VC bound since it is ‘‘tailored’’ for the specific learning prob-
lem.

For the Rademacher complexity and the growth function,
we have

SeeMohri et al. (2012) for proof.Theorem 12.7 TheRademacher complexityRm(H)and thegrowth
function �H(m) of a hypothesis space H satisfy

Rm(H) �
√

2 ln�H(m)

m
. (12.52)

From (12.47), (12.52), and Corollary 12.2, we have
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E(h) � ̂E(h) +
√

2d ln em
d

m
+

√

ln(1/δ)
2m

. (12.53)

In other words, we can derive the VC bound from the
Rademacher complexity and the growth function.

12.6 Stability

The generalization error bound, based on either the VC dimen-
sion or Rademacher complexity, is independent of the specific
learning algorithm. Hence, the analysis applies to all learning
algorithms and enables us to study the nature of learning prob-
lemswithout considering specific designof learningalgorithms.
However, if we wish the analysis to be algorithm-dependent,
then we need to take a different approach, and one direction is
stability analysis.

As the name suggests, the stability of an algorithm concerns
about whether a minor change of the input will cause a signif-
icant change in the output. The input of learning algorithms is
a data set, so we need to define the changes on data sets.

Givenadata setD = {z1 = (x1, y1), z2 = (x2, y2), . . . , zm =
(xm, ym)}, where xi ∈ X are i.i.d . instances drawn from dis-
tribution D and yi ∈ {−1,+1}. Let H : X → {−1,+1} be a
hypothesis space, and LD ∈ H be the hypothesis learned by a
learning algorithm L on the training set D. Then, we consider
the following changes on D:
• Let D\i denote the set D with the ith sample zi excluded,

that is,

D\i = {z1, z2, . . . , zi−1, zi+1, . . . , zm},
• LetDi denote the setDwith the ith sample zi replaced with

z′i , that is,

Di = {z1, z2, . . . , zi−1, z
′
i, zi+1, . . . , zm},

where z′i = (x′
i, y

′
i), and x′

i follows distribution D and is
independent of D.

A loss function �(LD(x), y) : Y × Y → R
+, abbreviated

as �(LD, z), characterizes the difference between the predicted
label LD(x) and the ground-truth label y. We now introduce
several typesof losswith respect to thehypothesisLD as follows:

• Generalization loss:

�(L,D) = Ex∈X,z=(x,y) [�(LD, z)] ; (12.54)
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• Empirical loss:

̂�(L,D) = 1
m

m
∑

i=1

�(LD, zi); (12.55)

• Leave-one-out loss:

�loo(L,D) = 1
m

m
∑

i=1

�(LD\i , zi). (12.56)

We define the uniform stability as follows:

Definition 12.10 A learning algorithm L is said to satisfy the
β-uniform stability with respect to loss function � if, for any
x ∈ X and z = (x, y), L satisfies

∣

∣�(LD, z) − �(LD\i , z)
∣

∣ � β, i = 1, 2, . . . ,m. (12.57)

If a learning algorithm L satisfies the β-uniform stability
with respect to a loss function �, then

∣

∣�(LD, z) − �(LDi , z)
∣

∣

�
∣

∣�(LD, z) − �(LD\i , z)
∣

∣ + ∣

∣�(LDi , z) − �(LD\i , z)
∣

∣

� 2β,

which means that the stability of excluding an instance implies
the stability of replacing an instance.

If the loss function � is bounded as 0 � �(LD, z) � M for all
D and z = (x, y), then, we have [Bousquet and Elisseeff (2002)]

See Bousquet and Elisseeff
(2002) for proof.

Theorem 12.8 Given a data set D with m i.i.d . instances drawn
from the distribution D. If a learning algorithm L satisfies the β-
uniform stability with respect to a loss function � upper bounded
by M, then, for any m � 1 and δ ∈ (0, 1), the following holds
with a probability of at least 1 − δ:

�(L,D) �̂�(L,D) + 2β + (4mβ + M)

√

ln(1/δ)
2m

, (12.58)

�(L,D) � �loo(L,D) + β + (4mβ + M)

√

ln(1/δ)
2m

.

(12.59)

Theorem12.8 shows the generalization error bound of the
learning algorithm L derived from the stability analysis. From
(12.58), we see the convergence rate between the empirical error
and the generalization error is β

√
m.When β = O( 1

m ), the con-
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vergence rate becomes O( 1√
m

), which is consistent with those
of VC bound and Rademacher bound in comparisons with
Theorems 12.3 and 12.6.

The stability analysis of learning algorithm focuses on
|̂�(L,D) − �(L,D)|, whereas the complexity analysis of the
hypothesis space considers suph∈H|̂E(h)−E(h)|. Inotherwords,
the stability analysis doesnotnecessarily consider everyhypoth-
esis in H, but only analyzes the generalization error bound of
the output hypothesis LD based on the properties (stability) of
L. So, what is the relationship between stability and learnabil-
ity?

Toensure thegeneralizationabilityof a stable learningalgo-
rithm L, we must assume β

√
m → 0, that is, the empirical loss

converges to the generalization loss; otherwise, learnability can
hardly be discussed. For ease of computation, letting β = 1

m
and substituting into (12.58), we have

�(L,D) �̂�(L,D) + 2
m

+ (4 + M)

√

ln(1/δ)
2m

. (12.60)

Given a loss function �, a learning algorithm L is an ERM
Minimizing empirical error and
minimizing empirical loss are
sometimes different since there
exist some poor loss functions �

such that minimizing the loss
does not minimize the empirical
error. For ease of discussion,
this chapter assumes that
minimizing the loss always
minimizes the empirical error.

learning algorithm satisfying the ERM principle if its output
hypothesis minimizes the empirical loss.We have the following
theorem on stability and learnability:

Theorem 12.9 If an ERM learning algorithm L is stable, then the
hypothesis space H is learnable.

Proof Let g be thehypothesiswith theminimumgeneralization
loss in H, that is,

�(g,D) = min
h∈H

�(h,D).

Letting

ε′ = ε

2
,

δ

2
= 2 exp

(

−2m(ε′)2
)

,

then, from Hoeffding’s inequality (12.6), the following holds
with a probability of at least 1 − δ/2 when m � 2

ε2
ln 4

δ
:

∣

∣�(g,D) −̂�(g,D)
∣

∣ � ε

2
.

For (12.60), by setting
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2
m

+ (4 + M)

√

ln(2/δ)
2m

= ε

2
,

we have m = O( 1
ε2

ln 1
δ
). Hence, the following holds with a

probability of at least 1 − δ/2:

�(L,D) �̂�(L,D) + ε

2
.

Therefore, the following holds with a probability of at least
1 − δ:

�(L,D) − �(g,D) �̂�(L,D) + ε

2
−

(

̂�(g,D) − ε

2

)

�̂�(L,D) −̂�(g,D) + ε

� ε,

which proves Theorem12.9. �

Readers may wonder, why we can derive the learnability of
a hypothesis space from the stability of a learning algorithm.
Learning algorithm and hypothesis space are very different
things. However, it is worth noting that stability is not irrel-
evant to hypothesis space as they are indeed connected by a
loss function � according to the definition of stability.

12.7 Further Reading

Valiant (1984) proposed PAC learning, which motivated a
branch of machine learning research known as Computational
Learning Theory. A good introductory textbook on this topic
is Kearns and Vazirani (1994). The most important academic
conference in this field is the Conference on Learning Theory
(COLT).

Vapnik and Chervonenkis (1971) proposed the VC dimen-
sion, whichmakes it possible to study the complexity of infinite

The VC dimension is named
after the surnames of the two
authors.

hypothesis spaces. Sauer’s Lemma is named after Sauer (1972),
while the same result was also derived in Vapnik and Chervo-
nenkis (1971), Shelah (1972), respectively. This chapter mainly
focuses on binary classification problems, and as for multiclass
classification problems, the VC dimension can be extended to
the Natarajan dimension (Natarajan 1989; Ben-David et al.
1995).

Rademacher complexity was introduced to machine learn-
ing by Koltchinskii and Panchenko (2000) and received more
attention after Bartlett and Mendelson (2002). Bartlett et al.
(2002) proposed the local Rademacher complexity, which can
derive a tighter generalization error bound for noisy data.
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Bousquet and Elisseeff (2002) introduced the stability anal-
ysis ofmachine learning algorithms, andmotivatedmany stud-
ies on the relationship between stability and learnability. For
example, Mukherjee et al. (2006), Shalev-Shwartz et al. (2010)
showed the equivalence of ERM stability and ERM learnabil-
ity. Since not all learning algorithms satisfy the ERMprinciple,
Shalev-Shwartz et al. (2010) further studied the relationship
between stability and learnability with respect to Asymptotical
Empirical Risk Minimization (AERM).

This chaptermainly focuses on deterministic learning prob-
lems, that is, there is a deterministic label y for each sample x.
Though most supervised learning problems are deterministic,
there are also stochastic learning problems in which the label
of an instance does not firmly belong to a single class but is
decided by a posterior probability function conditioned on fea-
ture values. See Devroye et al. (1996) for more discussions on
the generalization error bound in stochastic learning problems.
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Exercises

12.1 Prove Jensen’s inequality (12.4).

12.2 Prove Lemma12.1.

12.3 Prove Corollary 12.1. Hint: letting δ = 2e−2mε2 .

12.4 Prove that the hypothesis space consisting of all linear
hyperplanes in R

d has a VC dimension of d + 1.

12.5 Calculate the VC dimension of the hypothesis space of
decision stumps.

12.6 Prove that the VC dimension of the hypothesis space of
decision tree classifiers can be infinite.

12.7 Prove that the VC dimension of the hypothesis space of
k-nearest neighbors classifiers can be infinite.

12.8 Prove that the Rademacher complexity of the constant
function c is 0.

12.9 Given function spaces F1 and F2, prove that Rm(F1 +
F2) � Rm(F1) +Rm(F2), where Rm(·) is the Rademacher com-
plexity.

12.10 * Considering Theorem12.8, discuss the rationality of
estimatinganalgorithm’s generalizationability via cross-validation.
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Break Time

Short Story: Leslie G. Valiant—The Father of Computational
Learning Theory

TheoreticalComputerScience (TCS)
is an intersection of computer sci-
ence and mathematics that focuses
onmathematical topics of comput-
ing. A famous TCS problem is the
‘‘P versus NP problem’’.

Computational learning the-
ory, as a subfield of machine learn-
ing, is the intersection of machine
learning and TCS. If we are talk-
ing about computational learning
theory, we have to talk about the
British computer scientist Leslie G. Valiant (1949−). Valiant
studied at King’s College, Cambridge, Imperial College Lon-
don, and theUniversity ofWarwick, where he earned his Ph.D.
degree in 1974. Before he became a professor at Harvard Uni-
versity in 1982, he taught at Carnegie Mellon University, the
University of Leeds, and the University of Edinburgh. In 1984,
Communications of the ACM published Valiant’s paper titled
‘‘A theory of the learnable’’, in which PAC learning theory was
proposed and laid the foundations of computational learning
theory. In 2010, Valiant received the TuringAward for his sem-
inal contributions to PAC learning theory, the complexity of
enumeration and of algebraic computation, and the theory of
parallel and distributed computing. The ACM Turing Award
committee pointed out that Valiant’s paper published in 1984
created a new research area known as computational learning
theory that puts machine learning on a sound mathematical
footing. ACMComputing News also published an article titled
‘‘ACM Turing Award Goes to Innovator in Machine Learn-
ing’’ to emphasize the contributions of this first Turing Award
recipient from machine learning.
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