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Preface

This is an introductory-level machine learning textbook. To make the content ac-
cessible to a wider readership, the author has tried to reduce the use of mathemat-
ics. However, to gain a decent understanding of machine learning, basic knowl-
edge of probability, statistics, algebra, optimization, and logic seems unavoidable.
Therefore, this book is more appropriate for advanced undergraduate or graduate
students in science and engineering, as well as practitioners and researchers with
equivalent background knowledge.

The book has 16 chapters that can be roughly divided into three parts. The first
part includes Chapters 1-3, which introduces the basics of machine learning. The
second part includes Chapters 4-10, which presents some classic and popular ma-
chine learning methods. The third part includes Chapters 11-16, which covers ad-
vanced topics. As a textbook, Chapters 1-9 and 10 can be taught in one semester at
the undergraduate level, while the whole book could be used for the graduate level.

This introductory textbook aims to cover the core topics of machine learning
in one semester, and hence is unable to provide detailed discussions on many im-
portant frontier research works. The author believes that, for readers new to this
field, it is more important to have a broad view than drill down into the very details.
Hence, in-depth discussions are left to advanced courses. However, readers who
wish to explore the topics of interest are encouraged to follow the further reading
section at the end of each chapter.

The book was originally published in Chinese and had a wide readership in the
Chinese community. The author would like to thank Dr. Shaowu Liu for his great
effort of translating the book into English and thank Springer for the publication.

Zhi-Hua Zhou
Nanjing, China
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2 Chapter 1 - Introduction

Mitchell (1997) provides a more
formal definition: “A computer
program is said to learn from
experience E for some class of
tasks 7" and performance
measure P, if its performance at
tasks in 7', as measured by P,
improves with experience E.”

E.g., Hand et al. (2001).

1.1 Introduction

Following a drizzling, we take a walk on the wet street. Feeling
the gentle breeze and seeing the sunset glow, we bet the weather
must be nice tomorrow. Walking to a fruit stand, we pick up
a green watermelon with curly root and muffled sound; while
hoping the watermelon is ripe, we also expect some good aca-
demic marks this semester after all the hard work on studies.
We wish readers to share the same confidence in their studies,
but to begin with, let us take an informal discussion on what is
machine learning.

Taking a closer look at the scenario described above, we
notice that it involves many experience-based predictions. For
example, why would we expect beautiful weather tomorrow
after observing the gentle breeze and sunset glow? We expect
this beautiful weather because, from our experience, the weather
on the following day is often beautiful when we experience such
a scene in the present day. Also, why do we pick the watermelon
with green color, curly root, and muffled sound? It is because
we have eaten and enjoyed many watermelons, and those sat-
isfying the above criteria are usually ripe. Similarly, our learn-
ing experience tells us that hard work leads to good academic
marks. We are confident in our predictions because we learned
from experience and made experience-based decisions.

While humans learn from experience, can computers do the
same? The answer is “yes”, and machine learning is what we
need. Machine learning is the technique that improves system
performance by learning from experience via computational
methods. In computer systems, experience exists in the form
of data, and the main task of machine learning is to develop
learning algorithms that build models from data. By feeding the
learning algorithm with experience data, we obtain a model
that can make predictions (e.g., the watermelon is ripe) on new
observations (e.g., an uncut watermelon). If we consider com-
puter science as the subject of algorithms, then machine learn-
ing is the subject of learning algorithms.

In this book, we use “model” as a general term for the out-
come learned from data. In some other literature, the term
“model” may refer to the global outcome (e.g., a decision tree),
while the term “pattern” refers to the local outcome (e.g., a
single rule).

1.2 Terminology

To conduct machine learning, we must have data first. Suppose
we have collected a set of watermelon records, for example,
(color = dark; root = curly; sound = muffled), (color =



1.2 Terminology

green; root = curly; sound = dull), (color = light; root =
straight; sound = crisp), ..., where each pair of parentheses
encloses one record and “="means “takes value”.

Collectively, the records form a data set, where each record
contains the description of an event or object, e.g., a water-
melon. A record, also called an instance or a sample, describes
some attributes of the event or object, e.g., the color, root,
and sound of a watermelon. These descriptions are often called
attributes or features, and their values, such as green and dark,
are called attribute values. The space spanned by attributes
is called an attribute space, sample space, or input space. For
example, if we consider color, root, and sound as three axes,
then they span a three-dimensional space describing watermel-
ons, and we can position every watermelon in this space. Since
every point in the space corresponds to a position vector, an
instance is also called a feature vector.

More generally, let D = {x1,x2,...,x,} be a data set
containing m instances, where each instance is described by
d attributes. For example, we use three attributes to describe
watermelons. Each instance x; = (x;1; xj2;...;X;g) € Xis a
vector in the d-dimensional sample space X, where d is called
the dimensionality of the instance x;, and x;; is the value of the
jth attribute of the instance x;. For example, at the beginning
of this section, the second attribute of the third watermelon
takes the value straight.

The process of using machine learning algorithms to build
models from data is called learning or training. The data used in
the training phase is called training data, in which each sample is
a training example, and the set of all training examples is called
a training set. Since a learned model corresponds to the under-
lying rules about the data, it is also called a hypothesis, and
the actual underlying rules are called the facts or ground-truth.
Then, the objective of machine learning is to find or approxi-
mate ground-truth. In this book, models are sometimes called
learners, which are machine learning algorithms instantiated
with data and parameters.

Nevertheless, the samples in our watermelon example are
not sufficient for learning a model that can determine the
ripeness of uncut watermelons. In order to train an effective
prediction model, the outcome information must also be avail-
able, e.g., ripe in ((color = green;root = curly; sound =
muffled), ripe). The outcome of a sample, such as ripe or
unripe, is often called a label, and a sample with a label is
called an example. More generally, we can write the ith sample
as (x;, y;), where y; € Yis the label of the sample x;, and Y is
the set of all labels, also called the label space or output space.

When the prediction output is discrete, such as ripe and
unripe, it is called a classification problem; when the prediction

The entire data set may also be
seen as a “sample” sampled from
the sample space, and therefore
depending on the context,
according to which a “sample”
can refer to either an individual
data instance or a data set.

A training example is also called
a training instance.

Learning algorithms often have
parameters, and different
parameter settings and training
data lead to different learning
outcomes.

If we consider the label as part
of the data sample, then example
and sample can be used
interchangeably.
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Also known as testing instances.

Otherwise, the labels directly
give the clusters; exceptions are
discussed in Sect. 13.6.

More precisely, unseen samples.

In practice, the size of a sample
space is often huge. For
example, given 20 variables each
of which has 10 possible values,
then the size of the sample space
is already as large as 1020,

output is continuous, such as the degree of ripeness, it is called
a regression problem. If the prediction output has only two
possible classes, then it is called a binary classification problem,
where one class is marked as positive and the other is marked as
negative. When more than two classes are present, it becomes a
multiclass classification problem. More generally, a prediction
problem is to establish a mapping f : X — Y from the input
space X to the output space Y by learning from a training set
{(x1,v1), (x2,¥2), ..., (Xm, ym)}. Conventionally, we let Y =
{—1,+1} or {0, 1} for binary classification problems, |y > 2
for multiclass classification problems, and ¥ = R for regression
problems, where R is the set of real numbers.

The process of making predictions with a learned model is
called testing, and the samples to be predicted are the resting
samples. For example, the label y of a testing sample x can be
obtained via the learned model y = f'(x).

Other than predictions, another type of learning is cluster-
ing. For example, we can group watermelons into several c/us-
ters, where each cluster contains the watermelons that share
some underlying concepts, such as light color versus dark
color, or even locally grown versus imported. Clustering often
provides data insights that form the basis of further analysis.
However, we should note that the concepts, such aslight color
orlocally grown, are unknown before clustering, and the sam-
ples are usually unlabeled.

Depending on whether the training data is labeled or not, we
can roughly divide learning problems into two classes: super-
vised learning (e.g., classification and regression) and unsuper-
vised learning (e.g., clustering).

It is worth mentioning that the objective of machine learn-
ing is to learn models that can work well on the new sam-
ples, rather than the training examples. The same objective also
applies to unsupervised learning (e.g., clustering) since we wish
the learned clusters work well on the samples outside of the
training set. The ability to work on the new samples is called
the generalization ability, and a well-generalized model should
work well on the whole sample space. Although the training set
is usually a tiny proportion of the sample space, we still hope
the training set can, to some extent, reflect the characteristics
of the whole sample space; otherwise, it would be hard for the
learned model to work well on the new samples. We generally
assume that all samples in a sample space follow a distribution
D, and all samples are independently sampled from this dis-
tribution, that is, independent and identically distributed (i.i.d.).
Generally speaking, the more samples we have, the more infor-
mation we know about the distribution D, and consequently,
the better-generalized model we can learn.
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1.3 Hypothesis Space

Induction and deduction are two fundamental tools of scientific
reasoning. Induction is the process from specialization to gen-
eralization, that is, summarizing specific observations to gen-
eralized rules. In contrast, deduction is the process from gener-
alization to specialization, that is, deriving specific cases from
basic principles. For example, in axiomatic systems of mathe-
matics, the process of deriving a theorem from a set of axioms is
deduction. By contrast, learning from examples is an inductive
process, also known as inductive learning.

In a broad sense, inductive learning is almost equivalent to
learning from examples. In a narrow sense, inductive learning
aims to learn concepts from training data, and hence is also
called concept learning or concept formation. The research and
applications on concept learning are quite limited because it is
usually too hard to learn generalized models with clear seman-
tic meanings, whereas in real-world applications, the learned
models are often black boxes that are difficult to interpret. Nev-
ertheless, having a brief idea of concept learning is useful for
understanding some basic concepts of machine learning.

The most fundamental form of concept learning is Boolean
concept learning, which encodes target concepts as Boolean val-
ues 1 or 0, indicating true or false. Taking the training data in
@ Table 1.1 as an example, suppose we want to learn the tar-
get concept of ripe, assume that the ripeness of a watermelon
entirely depends on its color, root, and sound. In other words,
whether a watermelon is ripe or not is determined once we
know the values of those three variables. Then, the concepts
to be learned could be “ripe is watermelon with color = X,
root = Y, and sound = Z”, or equivalently as the Boolean
expression “ripe <> (color =?) A (root =?) A (sound =?)”,
where the “?” marks are the values to be learned from training
data.

@ Tab. 1.1 A toy watermelon data set

ID color root sound ripe
1 green curly muffled true
2 dark curly muffled true
3 green  straight crisp false
4 dark slightly curly dull false

Readers may have recognized that the first row of @ Table
1.1 is already in the form of a concept for identifying ripe
watermelons, that is, ripe <> (color = green) A (root =
curly) A (sound = muffled). Though the concept is valid
for this particular watermelon, it does not generalize to other

More generally, we can use the
disjunctive normal form

(A A B)V (C A D) when
describing concepts.
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The approach of “memorizing”
training examples is called rote
learning (Cohen and
Feigenbaum 1983). See Sect. 1.5.

Here, we assume that there is no
noisy data in the training
examples and do not consider
negation —4, e.g., not green.
Note that the @ hypothesis
would not be applied as long as
the training set contains at least
one positive example.

The search strategy is flexible.
For example, we can
simultaneously search using the
top-down and bottom-up
strategies, and only remove
hypotheses that are inconsistent
with the positive examples.

unseen watermelons. If we just memorize all watermelons in
the training set, then for sure, we can classify any watermelon
that looks identical to those we have seen. However, what if an
unseen watermelon does not look like any watermelons that
we have seen before? For example, (color = light) A (root =
curly) A (sound = muffled).

We can think of machine learning as search in the hypoth-
esis space for a hypothesis that is consistent with the training
set, that is, the one that can correctly classify all watermelons
in the training set. The hypothesis space, along with its size, is
determined once its form is specified. In our watermelon prob-
lem, the hypothesis space is the collection of all hypotheses
in the form of (color =?) A (root =?) A (sound =?) for all
possible values of “?”. For example, color may take the value
green, dark, or light. Sometimes the value of color could be
arbitrarily assigned, denoted by the wildcard value “x”, such
as ripe <> (color = *) A (root = curly) A (sound = muffled),
which says that ripe is watermelon with any color, curly root,
and muffled sound. Besides, we should also consider some
extreme cases. For example, what if there were no ripe water-
melon in the universe, and such a concept did not exist at all? In
such cases, we use @ to represent the hypothesis. In the water-
melon problem, we have three possible values of color, three
possible values of root, and three possible values of sound,
resulting in a hypothesis space of size 4 x 4 x 4 + 1 = 65.
@ Figure 1.1 illustrates the hypothesis space of the watermelon
problem.

There are many strategies to search in the hypothesis space,
such as top-down, general-to-specific, bottom-up, and specific-
to-general. After filtering out all hypotheses that are inconsis-
tent with the training examples, we may end up with one or
more hypotheses that can correctly classify all training exam-
ples.

| (color=%*; root=4%; sound=sx) |

| (color=green; root=x; sound=x) | | (color=dark; root=5x; sound:*)l ------
| (color=green; root=curly; sound=x) | | (color=green; root=straight; sound=sx) | ------
| (color=green; root=curly; sound=mufﬂed)| | (color=green; root=curly; sound=dull) | »»»»»»

Fig. 1.1 The hypothesis space of the watermelon problem
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(color=x; root=curly; sound=x*) | | (color=x; root=+; sound=muffled)

| (color=x; root=curly; sound=muffled) |

Fig.1.2 The version space of the watermelon problem

In practice, however, the hypothesis space is often huge,
whereas the training examples are often finite. Consequently,
there could be a set of hypotheses that are all consistent with
the training examples, and we call such a set of hypotheses
a version space. For example, 8 Figure 1.2 shows the version
space corresponding to the training examples in @ Table 1.1.

1.4 Inductive Bias

Since each learned model corresponds to one hypothesis in
the version space, a potential problem arises here: different
models may predict the new samples differently, though all
hypotheses in 8 Figure 1.2 are consistent with the training
examples. For example, the hypothesis ripe <> (color =
%) A (root = curly) A (sound = ) classifies the unseen water-
melon (color = green) A (root = curly) A (sound = dull) as
ripe, whereas the other two hypotheses classify it as unripe. In
this case, which model (or hypothesis) should we use?

In fact, if the training examples are only those as shown in
@ Table 1.1, then none of the three hypotheses can be justified
better than the others. Nevertheless, a learning algorithm must
make a choice and produce a model. In such a situation, the
inductive bias of the learning algorithm plays a decisive role.
For example, if the learning algorithm prefers the model to be
“as specific as possible”, then it will choose ripe <> (color =
%) A (root = curly) A (sound = muffled); on the other hand,
if it prefers “as general as possible” and trusts root for some
reasons, then it will choose ripe <> (color = %) A (root =
curly) A (sound = *). The bias of a learning algorithm toward
a particular class of hypotheses is called the inductive bias or
simply bias.

Every effective learning algorithm must have its own induc-
tive bias; otherwise, it will get into trouble when multiple
hypotheses look the “same” on the training set, resulting in
uncertain learning outcomes. Suppose there is no inductive
bias, and the learned model randomly draws a hypothesis that
is consistent with the training examples, then sometimes it will

“As specific as possible” is to
minimize the number of
applicable situations; “as general
as possible” is to maximize the
number of applicable situations.

At first glance, it seems that the
choice between root and sound
is related to feature selection;
however, feature selection is
based on the analysis of the
training set, whereas the
inductive bias in our example
chooses root based on the
domain knowledge. See

Chap. 11 for more information
about feature selection.
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Fig. 1.3 There are infinite curves that are consistent with the finite training
set

classify the unseen watermelon (color = green) A (root =
curly) A (sound = dull) as ripe and sometimes unripe. Such
kinds of learning results are meaningless.

The regression problem in @ Figure 1.3 provides a more
intuitive illustration of the role played by the inductive bias.
In this example, each training example is shown as a point
(x, ), and the objective is to learn a curve passing through
all training examples. Since there are infinite qualified curves
for the finite training set, a learning algorithm must have its
inductive bias to learn the “correct” model. For example, if the
learning algorithm believes that similar samples should have
similar labels (e.g., watermelons with similar attributes should
have similar degrees of ripeness), then it is likely to prefer the
smooth curve A over the oscillating curve B.

We can regard inductive bias as the heuristic or value phi-
losophy of learning algorithms for search in potentially huge
hypothesis spaces. It is natural to wonder that, does a general
principle exist to help learning algorithms obtain the “correct”
inductive bias? A fundamental and widely used principle for
this question in natural science is the Occam’s razor principle,
which says that we should choose the simplest hypothesis when
there is more than one hypothesis consistent with the observa-
tions. Assuming that “smoother”is “simpler”, then the smooth
curve A in B Figure 1.3 is the preferred choice according to
the Occam’s razor principle. It turns out that the mathematical
form of curve A, which is y = —x? 4 6x + 1, is much simpler
than that of curve B.

Nevertheless, Occam’s razor is not the only available prin-
ciple, and even if we insist on using it, there are different under-
standings. Indeed, applying Occam’s razor is non-trivial. For
example, which of these two hypotheses ripe <> (color =
*) A (root = curly) A (sound = muffied) and ripe < (color =
*) A (root = curly) A (sound = ) is “simpler™? Answering this
question is not easy and needs additional domain knowledge.
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(a) A is better. (b) B is better.

Fig. 1.4 There is no free lunch (e are training samples; o are testing samples)

In fact, the inductive bias, which helps the algorithm choose
a hypothesis, corresponds to a hypothesis made by the learning
algorithm itself. That is, what kind of models are better than
the others? In practice, whether this hypothesis matches the
specific problem or not usually determines the performance of
the model.

Let us revisit the example in 8 Figure 1.3. Suppose that a
learning algorithm £, learns the curve A model while another
learning algorithm £, learns the curve B model. Since a smoother
curve, based on our intuition, is a simpler description, we expect
£4 to outperform £;. As expected, @ Figure 1.4a confirms that
curve A is doing better than curve B on the testing samples,
that is, curve A has better generalization ability.

Wait a moment! Though we hoped and expected ¢, to out-
perform £, is there any chance for the curve B model to be
better than the curve A model like the case in 8 Figure 1.4b?
Unfortunately, this is possible. In other words, if £, outper-
forms £, in some situations, then £, will outperform £, in
some other situations. Interestingly, this fact applies to any
algorithm, even if we let £, be an advanced algorithm and let
£ be just random guessing. Are you surprised? Let us have a
more in-depth look.

To simplify the discussion, let both the sample space & and
the hypothesis space # be discrete. Let P(h | X, £,) denote
the probability of getting the hypothesis / from the algorithm
£, based on the training set X, and let / be the ground-truth
target function that we wish to learn. Then, the out-of-sample
error of £4, that is, the error on all samples except those in the
training set, is

Eote(La | X.0) =) > P@IGhx) #fx)PC| X, La),
h xex—X

(1.1)

where I(-) is the indicator function that returns 1 for true and
0 otherwise.

We only use basic mathematical
knowledge here. However,
readers who have “math phobia”
can skip this part without
impacting the understanding of
the rest of this section, but only
need to trust the unconvincing
conclusion we arrived.
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If f is uniformly distributed,
then half of /' will predict x
differently from /(x).

A rigorous proof of the NFL
theorem is much more
complicated than our simplified
discussion here.

In binary classification problems, the target function could
be any function & — {0, 1} with a function space of {0, 1},
Summing the errors of / with respect to uniform distribution
gives

D Eote(La | X./)

DD D P@Ihx) #/x)PU| X, £a)

f f h xexX—=X
= Y P@Y PhIX, L)) Uh(x)#f(x)
xeX—X h f
1
=Y P(x)ZP(th,Ea)EZW
xeX—X h
1
=52 37 P Y PhIX.La)
xeX—X h
=21 3 Py -1 (1.2)
xeX—X

Equation (1.2) reveals an interesting fact: the sum of errors
is independent of the learning algorithm. Hence, for any two
learning algorithms £, and £;, we always have

Y Eoe(€a | X.f) =) Eote(Lh | X, /). (1.3)
f f

In other words, no matter how smart £, or how humble £, is,
their expected performance is always the same! This conclusion
is known as the No Free Lunch (NFL) theorem (Wolpert 1996;
Wolpert and Macready 1995).

Some readers may feel frustrated by the above conclusion
since if the expected performance of all learning algorithms
is comparable to random guessing, then why bother to learn
machine learning at all?

Indeed, we should note that the NFL theorem relies on the
critical assumption that all problems are equally likely to hap-
pen or are equally important. In practice, however, we only
focus on the current problem (e.g., a specific task) and do not
care whether the solution can apply to other problems or not,
even if they are very similar. For example, biking is an excel-
lent choice if we travel within our university campus, though
it would be a rather inconvenient choice for traveling between
cities.

The NFL theorem assumes that f is uniformly distributed,
which is rarely true in practice. For example, going back to our
watermelon problem, we have two hypotheses: H1 : ripe <
(color = *) A (root = curly) A (sound = muffled) and
H2 : ripe <> (color = %) A (root = curly) A (sound = x),
which are equally good according to the NFL theorem. At
first glance, this seems to be correct since H1 is better than
H2 on the example (ripe, (color = green) A (root = curly) A
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(sound = muffled)) and H2 is better than H1 on the exam-
ple (ripe, (color = dark) A (root = straight) A (sound =
crisp)). However, it turns out that ripe watermelons with
the attributes (root = straight) A (sound = muffled) are
more common, whereas ripe watermelons with the attributes
(root = straight) A (sound = crisp) are rare or do not exist
at all.

In summary, the wisdom we learned from the NFL theorem
is that debating “which learning algorithm is better” is mean-
ingless without considering the specific task, since all learning
algorithms are equally good considering all contexts. In other
words, we must consider the specific learning problem when
comparing different learning algorithms, and the learning algo-
rithms that perform well on one class of problems possibly per-
form poorly on another class of problems. Hence, whether the
inductive bias matches the specific problem or not is often the
decisive factor.

1.5 Brief History

We now proceed with a short overview of the development of
machine learning. Machine learning is an inevitable product
during the progress of artificial intelligence studies. Between
the 1950s and early 1970s, artificial intelligence research was
in the “reasoning age” when people thought a machine could
get intelligence if it can do logical reasoning. Seminal works in
that period include the Logic Theorist program developed by
A. Newell and H. Simon and later on the General Problem
Solving program. All of these works produced highly inspiring
results at that time. For example, in 1952, the Logic Theorist
program successfully proved 38 theorems in the famous book
Principia Mathematica written by A. F. Whitehead and B. Rus-
sell. Later on, in 1963, it proved all of the 52 theorems, and
people found the Proof of the Theorem 2.85 was even more
elegant than Whitehead and Russell’s. The research commu-
nity recognized the importance of this line of work, and hence
A. Newell and H. Simon received the Turing Award in 1975.
However, as the research was advancing, people started to
realize that having the ability of logical reasoning is still far
away from enabling artificial intelligence. A group of researchers
represented by E. A. Feigenbaum argued that machines must
acquire knowledge in order to be intelligent. A new phase
of development started in the mid of 1970s, where artifi-
cial intelligence research entered the so-called “knowledge
age”. In this period, researchers developed a large number of
expert systems with numerous successful applications in a wide
range of domains. E. A. Feigenbaum, who is often regarded
as the father of knowledge engineering, received the Turing

So-called “knowledge is power”.

In 1965, Feigenbaum and his
colleagues developed the first
expert system DENDRAL.
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See Sect. 1.7 for Samuel’s
checkers program.

IWML is the predecessor of the
International Conference on
Machine Learning (ICML).

Award in 1994. Nevertheless, researchers have soon reached
the “Feigenbaum’s knowledge acquisition bottleneck”, that is,
it is difficult to extract and summarize knowledge into a form
that computers can learn. Therefore, some researchers decided
to explore the possibility of letting machines learn knowledge
by themselves!

In fact, A. Turing had already mentioned the possibility of
machine learning in his Turing test paper published in 1950.
In the early 1950s, there were already some studies related
to machine learning, such as the famous computer checkers
program developed by A. Samuel. In the middle-late 1950s,
neural-network-based connectionism learning emerged, and
representative works include F. Rosenblatt’s Perceptron and
B. Widrow’s Adaline. Between the 1960s and 1970s, the logic-
representation-based symbolism learning has thrived, and rep-
resentative works include the structural learning system pro-
posed by P. Winston, the logic-based inductive learning system
proposed by R. S. Michalski et al., and the concept learning sys-
tem proposed by E. B. Hunt et al. Meanwhile, researchers also
developed the decision-theory-based learning and reinforce-
ment learning in this period, such as the learning machines
proposed by N. J. Nilsson. This period has also witnessed
some foundation works on the statistical learning theory, which
becomes extremely popular 20 years later.

In the summer of 1980, the First International Workshop
on Machine Learning (IWML) was held at Carnegie Mellon
University; in the same year, the International Journal of Policy
Analysis and Information Systems published three consecutive
special issues on machine learning. In 1983, Tioga press pub-
lished a book edited by R. S. Michalski, J. G. Carbonell, and
T. Mitchell called Machine Learning: An Artificial Intelligence
Approach, which summarized machine learning research in that
period. In 1986, Machine Learning, the first journal dedicated
to machine learning, was established. In 1989, Artificial Intel-
ligence, the leading journal in artificial intelligence research,
published a special issue on machine learning covering major
research works in that period; later on, the content of this spe-
cial issue appeared in the book Machine Learning: Paradigms
and Methods edited by Carbonell (1990) and published by MIT
press. To summarize, machine learning has become an indepen-
dent research field in the 1980s with diverse and active research
directions.

Michalski et al. (1983) divided machine learning methods
into several categories: rote learning and direct implanting of
new knowledge, learning from instruction, and learning from
observation and discovery. In The Handbook of Artificial Intel-
ligence (Volume I1T), E. A. Feigenbaum et al. divided machine
learning methods into rote learning, learning by being told,
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learning by analogy, and learning by induction. Rote learning,
also known as memorization-based learning, does not perform
any real learning but saves all input information as it is and
retrieves it when needed. Learning by being told and learn-
ing by analogy are similar to “learning from instruction” and
“learning from observation and discovery” by Michalski. Since
the 1980s, the most researched and applied approach is learn-
ing from examples (or in a broad sense, learning by induction),
such as supervised learning and unsupervised learning, which
form the majority content of this book. Next, let us take a quick
review of the evolution history of learning from examples.

In the 1980s, the mainstream of learning from examples is
symbolism learning, represented by decision trees and logic-
based learning. Decision trees rely on information theory to
simulate the tree-based decision process of humans by minimiz-
ing the information entropy. A representative work of logic-
based learning is Inductive Logic Programming (ILP) which is
an intersection between machine learning and logic program-
ming. ILP employs first-order logic (i.e., predicate logic) to rep-
resent knowledge, and induces data by updating and extending
the logic expressions, e.g., Prolog expressions.

The reason that symbolism learning becomes the main-
stream 1is closely related to the history of artificial intelligence.
As mentioned earlier, artificial intelligence research started
from the “reasoning age” in the 1950s and moved to the
“knowledge age” in the 1980s, where the “reasoning age” relied
on the symbolic knowledge representation for deductive rea-
soning, and the “knowledge age” also relied on the symbolic
knowledge representation for creating knowledge-based expert
systems. Given that the symbolic knowledge representation is
the underlying technology of the first two “ages”, it naturally
became the preferred choice in the early stage of the “learning
age”. In fact, decision trees, as a representative method of
symbolism learning, are still one of the most commonly used
machine learning techniques today. ILP has a great knowledge
representation ability and can easily encode complex data rela-
tionships together with domain knowledge. Therefore, it not
only can perform domain knowledge-assisted learning but also
can enhance domain knowledge through the learning process.
However, since the great representation ability leads to a huge
hypothesis space and model complexity, ILP isimpractical even
for moderately sized problems, and hence became less popular
since the late 1990s.

Until the middle 1990s, another mainstream technique of
learning from examples is the neural-network-based connec-
tionism learning. Though the research on connectionism learn-
ing had a big leap forward in the 1950s, it did not become the
mainstream since the research community still favors symbol-
ism learning in the early days. For example, the Turing Award

See Chap. 4 for decision trees.

It is actually the predecessor of
ILP.

See Chap. 15 for ILP.
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See Chap. 5 for the BP
algorithm.

See Chap. 6 for SVM and kernel
methods.

See Exercise 6.5.

winner H. Simon once said “A physical symbol system has the
necessary and sufficient means for general intelligent action.”
Besides, connectionism learning itself also encountered some
challenges at that time. For example, the Turing Award win-
ners M. Minsky and S. Papert pointed out in 1969 that neu-
ral networks (at that time) can only handle linearly separable
problems and cannot handle some simple problems such as
XOR. Connectionism learning did not gain attention until J. J.
Hopfield tackled the NP-hard “traveling salesman problem”
using neural networks in 1983. Later on, D. E. Rumelhart et
al. reinvented the renowned Backpropagating (BP) algorithm,
which has a far-reaching influence. Unlike symbolism learn-
ing, which produces explicit concepts, connectionism learning
produces black boxes, and this is clearly a weakness of connec-
tionism learning from the knowledge acquisition perspective.
Nevertheless, thanks to the effective BP algorithm, connection-
ism learning can still do an excellent job in many real-world
tasks. Nowadays, the BP algorithm is one of the most widely
used machine learning algorithms. A significant limitation of
connectionism learning is “trial and error”, that is, we need
to tune many parameters during the learning process, and the
parameter tuning is often manual and lacks principled guide-
lines. In many cases, a tiny difference in parameter tuning can
lead to significant differences in the learning outcome.

In the middle 1990s, statistical learning, represented by Sup-
port Vector Machine (SVM) (or kernel methods in a broader
sense), has emerged as a superstar and quickly became the
mainstream. However, the foundations of statistical learning
theory (Vapnik 1998) were laid more than 20 years earlier in
the 1960s—1970s. For example, V. N. Vapnik proposed the con-
cept of support vector in 1963, and later on, V. N. Vapnik and
A. J. Chervonenkis proposed the concept of VC dimension
in 1968 and the structural risk minimization principle in 1974.
Though the foundations were ready, statistical learning did not
become the mainstream until the middle 1990s. One reason was
that although SVM was proposed in the early 1990s, its supe-
riority was not recognized until its success in text classification
in the middle 1990s. Another reason was that the limitations
of connectionism learning were increasingly prominent at the
time, forcing researchers to turn their attention to statistical
learning techniques supported by statistical learning theory. In
fact, statistical learning and connectionism learning are closely
related. After the wide acceptance of SVM, kernel tricks have
been used almost everywhere in machine learning, and kernel
methods also become a fundamental content of machine learn-
ing.

Interestingly, connectionism came back to the stage in the
early twenty-first century leading a new trend called deep learn-
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ing. In a narrow sense, the so-called deep learning is simply
neural networks with many layers. Deep learning techniques
showed superior performance in many benchmarks and con-
tests, especially for those involving complex data types such
as audio and images. In the past, a profound understand-
ing of machine learning techniques is the key for its users
to achieve good performance in applications. Nevertheless,
with the extreme flexibility and complexity of deep learning
models, good performance can often be achieved after hard
work on parameter tuning. Therefore, deep learning is easy
to be accessed by machine learning practitioners, lowering the
knowledge requirement threshold for its users, though the the-
ory behind it is yet to be developed.

Given that deep learning works so well, why did it not
become popular earlier? There are two main reasons: the data
is getting massive, and so does the computation power. On
the one hand, the large number of parameters in deep learn-
ing can easily lead to overfitting when the data is insufficient.
On the other hand, given complex models and massive data,
learning would not be possible without sufficient computing
resources. Fortunately, we have entered the “big data era” in
which both the data storage and the computing hardware have
improved significantly, giving connectionism learning a new
chance. Interestingly, the popularity of neural networks in the
middle 1980s was also after the boom of computational power
and the data access boosted by the advancement of the Intel
x86 CPUs and memory devices. What is happening now to deep
learning is similar to what happened to neural networks in the
1980s.

We should note that machine learning has grown into a
broad research field, and what we have discussed in this section
only provides a sketch on this topic. After reading the entire
book, readers will gain a more comprehensive understanding
of machine learning.

1.6 Application Status

The past two decades have witnessed fast and significant
advances in the collection, storage, transmission, and process-
ing of data. Given that we have accumulated massive data cov-
ering all aspects of human life, effective and efficient methods
for utilizing the data are urgently needed. Hence, it is not a sur-
prise that machine learning has gained much attention since it
provides solutions for unleashing the power of massive data.
Nowadays, machine learning appears in different branches
of computer science, such as multimedia, graphics, network
communication, software engineering, and even architecture

See Sect. 5.6 for deep learning.

See Chap. 2 for overfitting.
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NASA-JPL stands for the
NASA Jet Propulsion
Laboratory, who developed
“Spirit” and “Opportunity”
robotic rovers landed on Mars.

DARPA stands for the Defense
Advanced Research Projects
Agency, who initiated the
development of the Internet and
Global Positioning System.

Machine learning provides data
analytics, clouding computing
provides data processing, and
crowdsourcing provides data
labeling.

and chipset design. Machine learning has also become one of
the most critical techniques in some “applied” areas, such as
computer vision and natural language processing.

Machine learning also provides support for interdisciplinary
research. For example, bioinformatics is a research field that
aims to employ information technology to understand biolog-
ical observations and patterns, and people are excited about
the human genome project and genomic medicine. In bioin-
formatics, the whole process, from biological observations to
pattern discovery, involves data collection, data management,
data analytics, and simulations. Among these tasks, data ana-
lytics is where machine learning shines, and researchers have
already successfully applied various machine learning tech-
niques to bioinformatics.

In fact, the research methodology of science is shifting
from “theory + experiment” to “theory + experiment + com-
putation”, and people even use the term “data science”. The
importance of machine learning is increasing since comput-
ing with data is the core of both data analytics and data sci-
ence. If we list the most current and eye-catching computer
science technologies, then machine learning must be one of
them. In 2001, scientists from NASA-JPL published an article
(Mjolsness and DeCoste 2001) in the Science magazine pointed
out that machine learning is playing an increasingly important
role in supporting scientific research and is crucial for technol-
ogy development. In 2003, DARPA started the PAL project,
which puts machine learning to the level of national security.
We see that the importance of machine learning is recognized
by both NASA and DARPA, who often promote the most
cutting-edge technologies in the U.S.

In 2006, Carnegie Mellon University founded the world’s
first school of machine learning, which is directed by Professor
T. Mitchell, one of the pioneers in machine learning research. In
March 2012, the Obama administration proposed the “big data
research and development initiative” followed by a reinforce-
ment project at UC Berkley led by the U.S. National Science
Foundation. The initiative puts emphasis on three essential
techniques: machine learning, cloud computing, and crowd-
sourcing. Clearly, machine learning is an essential technique in
the era of big data for a simple reason: the purpose of collect-
ing, storing, transmitting, and managing big data is to utilize
big data, and it will not be possible without machine learning.
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When we discuss data analytics, people may think about
data mining. Here, we give a brief discussion of the relation-
ship between data mining and machine learning. Data mining
research formed in the 1990s under the influence of many other
research fields, where the most important ones are database,
machine learning, and statistics (Zhou 2003). Data mining is
about knowledge discovering from massive data, and there-
fore it involves the managing and analyzing of massive data.
Roughly speaking, database research provides the data man-
agement facility for data mining, while machine learning and
statistics provide the facility of data analytics. Research out-
comes from statistics are often turned into practical learning
algorithms through machine learning research, and the learn-
ing algorithms are then used by data mining. From this per-
spective, statistics influences data mining via machine learning,
and therefore machine learning and data management are two
backbones of data mining.

Today, machine learning strongly influences our daily life.
For example, analyzing data collected from satellites and sen-
sors using machine learning has become essential in applica-
tions such as weather forecasts, energy exploration, and envi-
ronmental monitoring. In commercial applications, machine
learning is now helping us to analyze sales and customer data
for optimizing the inventory costs as well as designing sales
strategies for targeted customer cohorts. The followings are
some other aspects.

Search engines like Google Search have been changing
people’s lifestyles, such as searching for destination infor-
mation before traveling and looking for a suitable hotel or
restaurant. Newsweek once commented on Google Search as
“Positioning everyone a mouse-click away from the answers to
the most arcane questions.” Internet search locates the requested
information by analyzing data all over the network, and the
search process, from the input query to the output results,
relies on machine learning technologies to establish the map-
ping between input and output. In fact, machine learning has
made tremendous contributions to the development of Internet
search that we are enjoying today, and many advanced func-
tions, such as “search by photo”, are enabled by cutting-edge
machine learning techniques. All the leading technology com-
panies, such as Google, Microsoft, Facebook, and Amazon,
have their machine learning research teams or even research
centers named after machine learning. The decisions made by
these giant companies not only show the fast development and
application of machine learning but also influence the future
direction of the Internet industry.

Another notable application of machine learning is
autonomous vehicles, which, hopefully, can reduce traffic col-
lisions significantly, saving more than a million lives each year.

Data mining appeared in the
statistics community a long time
ago as a slightly negative term.
The reason is that traditional
statistics research focuses on
elegant theories and ignores the
practical utility. Recently,
however, statisticians have
started to investigate practical
problems and get involved in
machine learning and data
mining research.
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In the early 1990s, a
neural-network-based system
called ALVINN was developed
to control autonomous vehicles;
this project was discussed in
Sect. 4.2 of the classic machine
learning textbook (Mitchell
1997).

We expect autonomous vehicles to be safer since computer
drivers are always experienced and are not subject to fatigue
driving or drunk driving. Besides, autonomous vehicles are
also valuable to the military. The U.S. has started to explore
autonomous vehicles since the 1980s. The greatest difficulty
is that engineers are unable to consider all possible driving
situations and program them, and hence autonomous vehi-
cles must be able to make situational decisions by themselves.
If we consider the data received by sensors as input and let
the control of steering, brake, and accelerator as output, then
we can abstract self-driving to a machine learning problem.
In March 2004, the Stanford machine learning team led by
S. Thrun won the autonomous vehicle competition hosted by
DARPA. Their autonomous vehicle finished 132 miles of travel
in mountain and desert areas in Nevada in 6h and 53 min.
The road was rough, and driving in such conditions can be a
challenging task for experienced human drivers. Later on, S.
Thrun joined Google to lead its autonomous vehicle project. It
is worth mentioning that research on autonomous vehicles has
made some significant progress in recent years. It has attracted
large amounts of research funds from electric-automobile man-
ufacturers such as Tesla, as well as traditional automotive man-
ufacturers, such as General Motors, Volkswagen, and BMW.
In some places, we can already see autonomous vehicles on the
road. In June 2011, Nevada passed a bill and became the first
state of the U.S. permitting autonomous vehicles on the road,
followed by Hawaii and Florida. Hopefully, autonomous vehi-
cles, driven by machine learning technologies, will be widely
adopted in the near future.

Machine learning gained its public attention for its tremen-
dous contributions to intelligent data analytics. However, we
should also be aware of another important aspect of machine
learning, that is, assisting our understanding of “how humans
learn”. For example, when the Sparse Distributed Memory
(SDM) model (Kanerva 1988) was proposed by P. Kanerva in
the middle 1980s, there is no intentional imitation to the bio-
logical structure of the human brain. However, neuroscience
researchers figured out that the sparse encoding mechanism in
SDM widely exists in the cortex controlling vision, hearing, and
olfactory, thus inspiring more neuroscience research. The moti-
vation of conducting natural science research is fundamentally
due to human curiosity about the origin of the universe, the
essence of the matters, the characters of life, and the aware-
ness of humans ourselves. Undoubtedly, “how humans learn”
is an essential topic of our awareness. In some sense, machine
learning is not just crucial for information science, but also has
some sense of exploring the universe like natural science.



1.7 Further Reading

1.7 Further Reading

Mitchell (1997) is the first textbook dedicated to machine learn-
ing, and Duda et al. (2001), Alpaydin (2004), Flach (2012) are
also excellent introductory books. Hastie et al. (2009) is a good
intermediate level book, and Bishop (2006) is a great book for
reference, particularly for readers who favor Bayesian learning.
Shalev-Shwartz and Ben-David (2014) is suitable for readers
who wish to understand more about the underlying theories.
Witten et al. (2011) is an introductory book that binds with the
WEKA software, which is helpful for beginners in practicing
common machine learning algorithms through WEKA.

Machine Learning—an Artificial Intelligence Approach
(Michalski et al. 1983), which collected 16 articles contributed
by 20 scholars, was the most important literature in the early
days of machine learning. The publication of this book has
drawn much public attention, and Morgan Kaufmann Pub-
lishers published two subsequent volumes in 1986 and 1990.
The Handbook of Artificial Intelligence series was co-edited by
the Turing Award winner E. A. Feigenbaum and other schol-
ars; its third volume (Cohen and Feigenbaum 1983) discussed
machine learning and was an important literature in the early
days. Dietterich (1997) provided a review and envision of the
development of machine learning; this early literature is still
valuable today, and some discussed ideas could regain popular-
ity after the advancement of relevant technologies. For exam-
ple, the recent trend of transfer learning research (Pan and Yang
2010) is in the same flavor of learning by analogy after signifi-
cant development of statistical learning. In fact, the core idea
of the popular deep learning is not much more distinguished
than the neural network research back in the middle-late 1980s.

Though machine learning research on concept learning has
started in the very early days, many ideas developed at that
time have a continuing influence on the entire research field.
For example, decision tree learning, as a mainstream learn-
ing technique, was originated from tree-based concept forma-
tion (Hunt and Hovland 1963). The famous research work
“Blocks World” (Winston 1970) connected concept learning
with the generalization and specification-based search process.
The argument of “learning is about searching in hypothesis
space” was proposed in an early literature (Simon and Lea
1974). Later on, Mitchell (1977) proposed the concept of ver-
sion space. Concept learning literature also discusses a lot of
rule learning.

The principle of Occam’s razor suggests choosing the sim-
plest hypothesis that matches the observations, and this is a
fundamental principle widely adopted in natural science, such
as physics and astronomy. For example, one of the reasons

WEKA is a famous open-source
machine learning package
(written in JAVA) developed by
researchers from Waikato
University, New Zealand:

» http://www.cs.waikato.ac.nz/
ml/wekal/.

See Sect. 5.6 for deep learning.

See Chap. 15 for rule learning.


http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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See Chap. 8 for ensemble
learning.

that N. Copernicus believed the heliocentric system is because
itis simpler yet consistent with astronomical observations com-
pared to Ptolemy’s geocentric system. Occam’s razor also has
its followers in machine learning (Blumer et al. 1996). However,
how to define “simple” still confuses researchers, and the util-
ity of Occam’s razor in machine learning has always been con-
troversial (Webb 1996; Domingos 1999). We should note that
Occam’s razor is not the only available principle for hypothesis
selection. For example, the ancient Greek philosopher Epicu-
rus (341270 BC) proposed the “principle of multiple expla-
nations”, which advises that all hypotheses consistent with the
observations should be kept (Asmis 1984); this argument con-
curs with the research of ensemble learning.

The most important international conferences in the field
of machine learning include the International Conference on
Machine Learning (ICML), International Conference on Neu-
ral Information Processing Systems (NeurIPS, or NIPS before
2018), and Annual Conference on Learning Theory (COLT).
The most notable regional conferences include the European
Conference on Machine Learning (ECML) and Asian Con-
ference on Machine Learning (ACML). The most prestigious
journals are the Journal of Machine Learning Research and
Machine Learning. Machine learning papers are also regularly
seen in the venues of related fields: premier Al conferences,
such as the International Joint Conferences on Artificial Intelli-
gence (IJCAI) and AAAI Conference on Artificial Intelligence
(AAAI), and journals, such as Artificial Intelligence and Jour-
nal of Artificial Intelligence Research; premier data mining con-
ferences, such as the SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD) and IEEE International Con-
ference on Data Mining (ICDM), and journals, such as ACM
Transactions on Knowledge Discovery from Data and Data Min-
ing and Knowledge Discovery; premier computer vision confer-
ences, such as Conference on Computer Vision and Pattern
Recognition (CVPR), and journals, such as /IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. Top jour-
nals in the neural networks research community also publish
many machine learning papers, such as Neural Computation
and IEEE Transactions on Neural Networks and Learning Sys-
tems. Besides, top journals in statistics, such as Annals of Statis-
tics, also publish theoretical papers about statistical learning.
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Exercises

1.1 What is the version space if @ Table 1.1 contains only the
examples 1 and 4?

1.2 Compared to single conjunction, the disjunctive normal
form is more expressive. For example,

ripe <> ((color = %) A (root = curly) A (sound = x*))
V ((color = dark) A (root = %) A (sound = dull))

will classify both (color = green) A (root = curly) A (sound =
crisp) and (color = dark) A (root = straight) A (sound =
dull) as ripe. If we use at most k conjunction clauses to express
the hypothesis space of the watermelon classification prob-
lem in @ Table 1.1, then what is the total number of possible
hypotheses?

1.3 When the data contains noise, it is possible that no hypoth-
esis in the hypothesis space is consistent with all training exam-
ples. Design an inductive bias for selecting hypotheses in such
situations.

1.4 * The misclassification error rate was used when we dis-
cussed the NFL theorem in Sect. |.4. If we change it to a dif-
ferent performance measurement £, then (1.1) becomes

Eoe(€a | X./)=)_ Y P, fx)Ph| X, La).

h xex—X

Prove that the NFL theorem is still valid.

1.5 Describe the use of machine learning in different subcom-
ponents of Internet search.

2 1

Disjunctive normal form is the
disjunction of multiple
conjunction clauses.

Hint: pay attention to the cases
of redundancy, e.g.,

(A =a) Vv (4 = *) is equivalent
to (A = %).

That is, the error is unavoidable
for all hypotheses.
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This checkers program uses
reinforcement learning
techniques. See Chap. 16.

Break Time

Short Story: the naming of “machine learning”

In 1952, Arthur Samuel (1901-
1990) developed a checkers pro-
gram at IBM. The program pos-
sesses the learning ability to ana-
lyze past games such that it can
identify “good moves” and “bad
moves” given the current situation.
The program improved quickly
through self-learning and soon out-
performed Samuel himself. In 1956,
Samuel was invited by J. McCarthy
(“Father of Artificial Intelligence”
and the Turing Award winner in 1971) to introduce this work
at the Dartmouth workshop—this workshop is widely consid-
ered as the place where Artificial Intelligence was born. Samuel
invented the term “machine learning” and defined it as “field
of study that gives computers the ability to learn without being
explicitly programmed.” In 1959, Samuel published the paper
“Some studies in machine learning using the game of check-
ers” in IBM Journal. Later on, in 1961, Edward Feigenbaum
(“Father of Knowledge Engineering” and the Turing Award
winner in 1994) invited Samuel to provide the best game that
the checkers program has ever played to be included in his
renowned book Computers and Thoughts. Taking this opportu-
nity, Samuel challenged the Connecticut state checkers cham-
pion (ranked 4th nationwide) with his checkers program and
made a hit by winning the challenge.

Samuel’s checkers program significantly influenced not only
the field of artificial intelligence but also the development of
the entire field of computer science. Early literature in com-
puter science thought that computers could not accomplish
tasks without explicit programming. However, Samuel’s pro-
gram falsified this argument. Besides, the checkers program is
one of the first programs ever executed on computers for non-
numerical computation. The idea of logical instructions used in
this program has influenced the design of the instruction set of
IBM computers, which was soon adopted by other computer
manufacturers.
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Accuracy is often expressed as
percentages: (1 — %) x 100%.
Here, the “error” refers to the
expectation of errors.

Later chapters will introduce
different learning algorithms for
minimizing the empirical error.

2.1 Empirical Error and Overfitting

In general, the proportion of incorrectly classified samples
to the total number of samples is called error rate, that is,
if a out of m samples are misclassified, then the error rate
is E = a/m. Accordingly, 1 — a/m is called accuracy, i.e.,
accuracy = 1 — error rate. More generally, the difference
between the output predicted by the learner and the ground-
truth output is called error. The error calculated on the training
set is called training error or empirical error, and the error calcu-
lated on the new samples is called generalization error. Clearly,
we wish to have a learner with a small generalization error.
However, since the details of the new samples are unknown dur-
ing the training phase, we can only try to minimize the empirical
error in practice. Quite often, we obtain learners that perform
well on the training set with a small or even zero empirical
error, that is, 100% accuracy. However, are they the learners
we need? Unfortunately, such learners are not good in most
cases.

The good learners we are looking for are those performing
well on the new samples. Hence, good learners should learn
general rules from the training examples such that the learned
rules apply to all potential samples. However, when the learner
learns the training examples “too well”, it is likely that some
peculiarities of the training examples are taken as general prop-
erties that all potential samples will have, resulting in a reduc-
tion in generalization performance. In machine learning, this
phenomenon is known as overfitting, and the opposite is known
as underfitting, that is, the learner failed to learn the general
properties of training examples. 8 Figure 2.1 illustrates the dif-
ference between overfitting and underfitting.

Training samples of leaves New samples

Overfitted model: it is not a leaf
(the model thinks all leaves are serrated)

Underfitted model: it is a leaf

(the model thinks all green objects are leaves)

Fig.2.1 An intuitive analogy of overfitting and underfitting
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Among many possible reasons, the overly strong learning
ability is a common cause for overfitting since such learners
can learn the non-general peculiarities of training examples.
By contrast, underfitting is usually due to weak learning abil-
ity. In practice, underfitting is relatively easy to overcome. For
example, we can do more branching in decision tree learning
or adding more training epochs in neural network learning.
However, as we will see later, overfitting is a fundamental diffi-
culty in machine learning, and almost every learning algorithm
has implemented some mechanisms to deal with overfitting.
Nevertheless, we should realize that overfitting is unavoidable,
and all we can do is to alleviate or reduce the risk of it. This
argument can be briefly justified as follows. Machine learn-
ing problems are often NP-hard or even harder, but practical
learning algorithms have to finish learning within polynomial
time. Hence, if overfitting is avoidable, then minimizing the
empirical error will lead to the optimal solution, and there-
fore we have a constructive proof of P=NP. In other words,
overfitting is unavoidable as long as we believe in PNP.

In practice, there are often multiple candidate learning algo-
rithms, and even the same learning algorithm may produce dif-
ferent models under different parameter settings. Then, which
learning algorithm should we choose, and which parameter
settings should we use? This problem is referred to as model
selection. The ideal solution is to evaluate all candidate models
and select the one with the smallest generalization error. How-
ever, as mentioned earlier, we cannot obtain the generalization
error directly, while the empirical error suffers from overfitting.
So, how can we evaluate and select models in practice?

2.2 Evaluation Methods

In general, we can evaluate the generalization error through
testing experiments. To do so, we use a testing set to estimate
the learner’s ability to classify the new samples, and use the
testing error as an approximation to the generalization error.
Generally, we assume that the testing samples are independent
and identically sampled from the ground-truth sample distri-
bution. Note that the testing set and the training set should be
mutually exclusive as much as possible, that is, testing samples
should avoid appearing in the training set or be used anyhow
in the training process.

Why should testing samples avoid appearing in the training
set? To understand this, let us consider the following scenario.
Suppose we use the same set of ten questions for both the exer-
cise and exam, then does the exam reflect students’ learning
outcomes? The answer is “no” because some students can get

- 2

Here, we only consider the
generalization error, but in
real-world applications, we
often consider more factors such
as computational cost, memory
cost, and interpretability.



28  Chapter 2 - Model Selection and Evaluation

See Exercise 2.1.

good grades even if they only know how to solve those ten
questions. Analogously, the generalization ability we wish the
model to have is the same as we want students to study and
master the knowledge. Accordingly, the training examples cor-
respond to the exercises, and the testing samples correspond to
the exam. Hence, the estimation could be too optimistic if the
testing samples are already seen in the training process.

However, given the only data set of msamples D = {(x1, y1),
(x2,%2), ..., (Xm, ym)}, how can we do both training and test-
ing? The answer is to produce both a training set S and a testing
set T from the data set D. We discuss a few commonly used
methods as follows.

2.2.1 Hold-Out

The hold-out method splits the data set D into two disjoint
subsets: one as the training set S and the other as the testing
set T, where D = SUT and SN T = @. We train a model
on the training set S and then calculate the testing error on the
testing set 7" as an estimation of the generalization error.

Taking binary classification problems as an example, let D
be a data set with 1000 samples, and we splitit into a training set
S with 700 samples and a testing set 7" with 300 samples. After
being trained on S, suppose the model misclassified 90 samples
on 7', then we have the error rate (90/300) x 100% = 30%, and
accordingly, the accuracy 1 — 30% = 70%.

Itis worth mentioning that the splitting should maintain the
original data distribution to avoid introducing additional bias.
Taking classification problems as an example, we should try to
preserve the class ratio in different subsets, and the sampling
methods that maintain the class ratio are called stratified sam-
pling. For example, suppose we have a data set D containing
500 positive examples and 500 negative examples, and we wish
to split it into a training set S with 70% of the examples and a
testing set 7" with 30% of the examples. Then, a stratified sam-
pling method will ensure that S contains 350 positive examples
and 350 negative examples, and 7 contains 150 positive exam-
ples and 150 negative examples. Without stratified sampling,
the different class ratios in S and T can lead to biased error
estimation since the data distributions are changed.

However, even if the class ratios match, there still exist dif-
ferent ways of splitting the original data set D. For example,
we can sort the samples in D and then use the first 350 samples
for training with the rest for testing. Different ways of splitting
will result in different training and testing sets, and accordingly,
different model evaluation results. Therefore, a single trial of
hold-out testing usually leads to unreliable error estimation. In
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practice, we often perform the hold-out testing multiple times,
where each trial splits the data randomly, and we use the aver-
ageerror as the final estimation. For example, we can randomly
split the data set 100 times to produce 100 evaluation results
and then take the average as the hold-out error estimation.

The hold-out method splits D into a training set and a test-
ing set, but the model we wish to evaluate is the one trained on
D. Hence, we have a dilemma. If we place most samples in the
training set S, then the trained model is an excellent approxi-
mation to the model trained on D. However, the evaluation is
less reliable due to the small size of 7. On the other hand, if
we place more samples in the testing set 7', then the difference
between the model trained on S and the model trained on D
becomes substantial, that is, the fidelity of evaluation becomes
lower. There is no perfect solution to this dilemma, and we
must make a trade-off. One routine is to use around 2/3 to 4/5
of the examples for training and the rest for testing.

2.2.2 Cross-Validation

Cross-validation splits data set D into k disjoint subsets with
similar sizes, thatis, D = Dy U Dy U ---U Dy, D; N D; =
(i #j). Typically, each subset D; tries to maintain the original
data distribution via stratified sampling. In each trial of cross-
validation, we use the union of & — 1 subsets as the training
set to train a model and then use the remaining subset as the
testing set to evaluate the model. We repeat this process k times
and use each subset as the testing set precisely once. Finally, we
average over k trials to obtain the evaluation result. Since the
stability and fidelity of cross-validation largely depend on the
value of k, it is also known as k-fold cross-validation. The most
commonly used value of k is 10, and the corresponding method
is called 10-fold cross-validation. Other common values of k
include 5 and 20. @ Figure 2.2 illustrates the idea of 10-fold
cross-validation.

\ 13 |
(D[] D[ D] D] D] D, [ D] Dy D]

Training set Testing set
‘ D1[ Dz[ Dy [ D;[ D; [ D(;[ D7[ Dx[ D, — Testing result 1
‘ Dl[ Dz[ Da[ D,| Ds Evaluation

Dg [ D7[ Dy [ Dm‘ — Testing result 2

Averaging result

DRRRRRRDE

— Testing result 10

Fig.2.2 10-fold cross-validation
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We can also check other
statistical quantities such as
standard deviation.

The dilemma can be explained
with bias-variance which will be
discussed in Sect. 2.5. The
variance of the evaluation result
is large when the testing set is
small, and the bias of the
evaluation result is large when
the training set is small.

Generally speaking, a testing set
should contain at least 30
samples (Mitchell 1997).

There are special cases, such as
Leave-One-Out, which will be
discussed shortly.
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Both “10-time 10-fold
cross-validation” and “100-time
hold-out” run 100 evaluation
experiments.

See Exercise 2.2.

See Sect. 1.4 for the NFL
theorem.

See Chap. 12 for more
information about the
relationship between the
complexity of samples and the
generalization ability.

The original meaning of
bootstrap is to remove the strap
of boots. The term comes from a
story in the eighteenth century
book Baron Munchausen’s
Narrative of his Marvellous
Travels and Campaigns in
Russia, in which Baron
Munchausen pulls himself out of
a swamp with his straps.
Bootstrapping is also called
repeatable sampling or sampling
with replacement.

e is Euler’s number.

Like hold-out, there are different ways of splitting the data
set D into k subsets. To decrease the error introduced by split-
ting, we often repeat the random splitting p times and average
the evaluation results of p times of k-fold cross-validation. For
example, a common case is 10-time 10-fold cross-validation.

For a data set D with m samples, a special case of cross-
validation is Leave-One-Out (LOO), which lets k = m. In such
a case, the random splitting does not matter since there is only
one way of splitting the m samples into m subsets. In LOO, each
subset contains a single sample, and the training set is only one
sample less than the original data set D; thus in most cases, the
evaluation from LOO is very close to the ideal evaluation of
training the model on D. Therefore, the results of LOO eval-
uations are often considered accurate. However, LOO has a
flaw that the computational cost of training 7 models could
be prohibitive for large data sets (e.g., 1 million samples imply
1 million models), and it can be even worse if we take parame-
ter tuning into consideration. Besides, LOO is not necessarily
more accurate than other evaluation methods since the NFL
theorem also applies to evaluation methods.

2.2.3 Bootstrapping

What we want to evaluate is the model trained with D. How-
ever, no matter we use hold-out or cross-validation, the train-
ing set is always smaller than D. Hence, the estimation bias is
unavoidable due to the size difference between the training set
and D. We can reduce the bias by using LOO, but its computa-
tional complexity is often prohibitive. However, is it possible
to reduce the impact of the small training set while still be com-
putational efficient?

One solution is bootstrapping, which employs the bootstrap
sampling technique (Efron and Tibshirani 1993). Given a data
set D containing m samples, bootstrapping samples a data set
D' by randomly picking one sample from D, copying it to D',
and then placing it back to D so that it still has a chance to
be picked next time. Repeating this process m times results
in the bootstrap sampling data set D’ containing m samples.
Due to replacement, some samples in D may not appear in D,
while others may appear more than once. Let us do a quick
estimation: the chance of not being picked in m rounds is (1 —
%)m, and hence taking the limit gives

1\" 1
lim (1 — —) = — ~(.368,
e

m—00 m

@.1)
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which means that roughly 36.8% of the original samples do not
appear in the data set D’. Then, we can use D’ as the training set
and D\ D’ as the testing set such that both the evaluated model
and the actual model that we wish to evaluate on D are using m
training examples. Besides, we still have a separate testing set
containing about 1/3 of the original examples that are not used
for training. The evaluation result obtained via this approach
is called out-of-bag estimate.

Bootstrapping is particularly useful when the data set is
small, or when there is no effective way of splitting training
and testing sets. Besides, bootstrapping can create multiple
data sets, which can be useful for methods such as ensem-
ble learning. Nevertheless, since the original data distribution
has changed by bootstrapping, the estimation is also biased.
Therefore, when we have abundant data, hold-out and cross-
validation are often used instead.

2.2.4 Parameter Tuning and Final Model

Most learning algorithms have parameters to set, and differ-
ent parameter settings often lead to models with significantly
different performance. Hence, the model evaluation and selec-
tion is not just about selecting the learning algorithms but also
about the configuration of parameters. The process of finding
the right parameters is called parameter tuning.

Readers may think there is no essential difference between
parameter tuning and algorithm selection: each parameter set-
ting leads to one model, and we select the one that produces
the best results as the final model. This idea is basically sound;
however, there is one issue: since parameters are often real-
valued, it is impossible to try all parameter settings. There-
fore, in practice, we usually set a range and a step size for each
parameter, e.g., a range of [0, 0.2] and a step size of 0.05, which
lead to only five candidate parameter settings. Such a trade-off
between computational cost and quality of estimation makes
the learning feasible, though the selected parameter setting is
usually not optimal. In reality, even after making such a trade-
off, parameter tuning can still be quite challenging. We can
make a simple estimation. Suppose that the algorithm has three
parameters and each considers only five candidate values, then
we need to assess 5° = 125 models for each pair of training
and testing sets. Powerful learning algorithms often have quite
many parameters to be configured, resulting in a heavy work-
load of parameter tuning. The quality of parameter tuning is
often vital in real-world applications.

. 2

“\”is the subtraction of sets.

See Chap. 8 for ensemble
learning.

Machine learning typically
involves two types of
parameters. The first one is the
algorithm parameters, also
known as hyper-parameters,
which are usually less than 10.
The other one is the model
parameters, which can be many,
e.g., large-scale deep learning
models can have more than 10
billion parameters. Both types
of parameters are tuned
similarly, that is, one generates
candidate models and then
selects via an evaluation
method. The difference is that
hyper-parameters are usually
configured manually, whereas
candidate models are generated
by learning, e.g., parameters of
neural networks that stop
training at different iterations.
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See Chap. 9 for the performance
measures of clustering.

We should note that the training process does not use all
data since part of the data is hold-out for model evaluation and
selection. Therefore, after we have determined the algorithm
and parameters via model selection, the entire data set should
be used to re-train a model as the final delivery.

Last but not least, we should distinguish the data used for
model selection from the testing data encountered after model
selection. We often call the data set used in the model selection
a validation set. For example, we may split data into a training
set for training models, a validation set for model selection and
parameter tuning, and a testing set for estimating the general-
ization ability of models.

2.3 Performance Measure

In order to evaluate the generalization ability of models, we
need not only practical and effective estimation methods but
also some performance measures that can quantify the general-
ization ability. Different performance measures reflect the var-
ied demands of tasks and produce different evaluation results.
In other words, the quality of a model is a relative concept that
depends on the algorithm and data as well as the task require-
ment.

In prediction problems, we are given a data set D =
{(x1,y1), x2,¥2), ..., (Xm, ym)}, where y; is the ground-truth
label of the sample x;. To evaluate the performance of a learner
f, we compare its prediction f'(x) to the ground-truth label y.

For regression problems, the most commonly used perfor-
mance measure is the Mean Squared Error (MSE):

1 m
E(fi D)= —% (f(x) = y)*. 2.2)

i=1

More generally, for a data distribution D and a probability
density function p(-), the MSE is written as

E(f:D) = / () = s, 23)

The rest of this section will introduce some common per-
formance measures for classification problems.

2.3.1 Error Rate and Accuracy

At the beginning of this chapter, we discussed error rate and
accuracy, which are the most commonly used performance
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measures in classification problems, including both binary clas-
sification and multiclass classification. Error rate is the propor-
tion of misclassified samples to all samples, whereas accuracy
is the proportion of correctly classified samples instead. Given
a data set D, we define error rate as

1 m
E(f; D) = — 3 I/ (x)) # 1), (24)
i=1
and accuracy as
1 m
ace(f; D) = — gﬂ(ﬂxi) =) 2.5)
=1—-E(f; D).

More generally, for a data distribution D and a probability
density function p(-), error rate and accuracy can be, respec-
tively, written as

E(f:D) = [ 10 @) # ypids, 2.6)
acc(f; D) = / DH(f(x) = y)p(x)dx 2.7
—1-E(;D).

2.3.2 Precision, Recall, and F1

Error rate and accuracy are frequently used, but they are not
suitable for all tasks. Taking our watermelon problem as an
example, suppose we use a learned model to classify a new
batch of watermelons. The error rate tells us the proportion
of misclassified watermelons to all watermelons in this batch.
However, we may want to know “What percentage of the
picked watermelons are ripe?” or “What percentage of all ripe
watermelons were picked out?” Unfortunately, the error rate
is unable to answer such questions, and hence we need other
performance measures.

Such questions often arise in applications like information
retrieval and web search. For example, in information retrieval,
we often want to know “What percentage of the retrieved infor-
mation is of interest to users?” and “How much of the informa-
tion the user is interested in is retrieved?” For such questions,
precision and recall are better choices.

In binary classification problems, there are four combina-
tions of the ground-truth class and the predicted class, namely
true positive, false positive, true negative, and false negative,

33
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Taking information retrieval as
an example, the precision and
recall can be calculated by
sequentially returning each piece
of information that the user
might be interested in.

Also called PR curve or PR plot.

and we denote the number of samples in each case as TP, FP,
TN, and FN, respectively. Then, TP + FP + TN + FN =
total number of samples. The four combinations can be dis-
played in a confusion matrix, as shown in @ Table 2.1. Then,
the precision P and the recall R are, respectively, defined as

TP
P=— (2.8)
TP + FP
TP
R=— . 2.9
TP+ FN 29)

@ Tab.2.1 The confusion matrix of binary classification

Ground-truth class Predicted class

Positive Negative

Positive TP FN

Negative FP TN

Precision and recall are contradictory. Generally speaking,
the recall is often low when the precision is high, and the pre-
cision is often low when the recall is high. For example, to
pick more ripe watermelons, we can increase the number of
picked watermelons because, in an extreme case, if we pick
all watermelons, then all ripe watermelons are picked as well.
However, by doing so, the precision would be very low. On
the other hand, if we wish the proportion of ripe watermelons
to be high, then we should only pick watermelons that we are
sure of. However, doing so could miss many ripe watermelons,
and hence the recall becomes low. Typically, we can achieve
high precision and high recall at the same time only in simple
problems.

Quite often, we can use the learner’s predictions to sort the
samples by how likely they are positive. That is, the samples
that are most likely to be positive are at the top of the rank-
ing list, and the samples that are least likely to be positive are
at the bottom. Starting from the top of the ranking list, we
can incrementally label the samples as positive to calculate the
precision and recall at each increment. Then, plotting the pre-
cisions as y-axis and the recalls as x-axis gives the Precision-
Recall Curve (P-R curve). The plots of P-R curves are called
P-R plots. @ Figure 2.3 gives an example of P-R curve.

P-R plots intuitively show the overall precision and recall
of learners. When comparing two learners, if the P-R curve of
one learner entirely encloses the curve of another learner, then
the performance of the first learner is superior. For example, in
B Figure 2.3, learner A is better than learner C. However, when
the P-R curvesintersect, such as curve A and curve B, we cannot
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Precision

Recall

Fig.2.3 P-R curve and break-even points

say which learner is generally better and can only compare them
at a specific precision or recall. Nevertheless, people often insist
on finding out the best learner even if there exist intersections.
A reasonable solution is to compare the areas under the P-R
curves, which, to some extent, represent the proportion of cases
when both precision and recall are relatively high. However,
the areas are not easy to compute, and hence we often seek
alternative performance measures that consider precision and
recall simultaneously.

One alternative is Break-Even Point (BEP), which is the
value when precision and recall are equal. For example, in
B Figure 2.3, the BEP of learner C is 0.64, and learner A is
better than learner B, according to the BEP.

However, BEP could be oversimplified, and a more com-
monly used alternative is F'1-measure:

F1is the harmonic mean of

P+ R - total number of samples + TP — TN~ precision and recall:

210) Fi=1 (F+%)

2x P xR 2x TP
Fl =

In some applications, the importance of precision and recall
are different. For example, precision is more critical in recom-
mender systems since it is more desirable that the recommended
content is of interest to the user and disturbs the user as little
as possible. On the other hand, recall is more critical in crimi-
nal information retrieval systems since we wish to miss as few
criminals as possible. The general form of F'1-measure is Fjg,
which allows us to specify our preference over precision and
recall, and is defined as
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Fg is the weighted harmonic

11 1, p?
mean.F—ﬁ_m~(F+7).

The Harmonic mean emphasizes
more on smaller values
compared to the arithmetic
mean (#) and the geometric

mean (v P x R).

_(1+pHxPxR

(B2 xP)+R ° .11

where 5 > 0 gives the relative importance of recall to pre-
cision (Van Rijsbergen 1979). When § = 1, it reduces to the
standard F1; when 3 > 1, recall is more important; when 3 < 1,
precision is more important.

Sometimes we may have multiple confusion matrices in
binary classification problems. For example, there is one con-
fusion matrix for each round of training and testing. Also, there
are multiple confusion matrices when we do training and test-
ing on multiple data sets to estimate the overall performance.
Besides, there is one confusion matrix for every class in multi-
class classification problems. In all of these cases, we need to
investigate the overall precision and recall on # binary confu-
sion matrices.

A straightforward approach is to calculate the precision
and the recall for each confusion matrix, denoted by (P1, Ry),
(P2, Ry), ..., (Py, Ry). By taking the averages, we have the
macro-P, the macro-R, and the macro-F1:

1 n
macro-P = — ) " P;, (2.12)
i
1 n
macro-R = — Z R;, (2.13)
n
i=1
macro-F1 — 2 x macro-P x macro-R (2.14)

macro-P + macro-R

We can also calculate element-wise averages across the con-

fusion matrices to get TP, FP, TN, FN, and then take the aver-
ages to obtain the micro-P, the micro-R, and the micro-F1:

TP
micro-P = _, (215)
TP + FP
TP
micro-R = _, (216)
TP + FN
micro-Fl — 2 x @icro-P X micro-R @.17)
micro-P + micro-R
2.3.3 ROCand AUC

Since the predictions from learners are often in the form of real
values or probabilities, we can compare the predicted values
against a classification threshold, that is, classify a sample as
positive if the prediction value is greater than the threshold and
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classify it as negative otherwise. For example, typical neural
networks predict real values in the interval [0.0, 1.0] for testing
samples. We can compare the predicted values with 0.5, and
classify a sample as positive if its predicted value is greater than
0.5, and negative otherwise. Hence, the predicted real values
or probabilities directly determine the generalization ability.
In practice, we sort the testing samples by the predicted real
values or probabilities in descending order such that potential
positive samples are at the top of the list. After that, we put a
cut point in the sorted list and classify the samples above it as
positive and the rest as negative.

The position of the cut point depends on the specific appli-
cation. For example, we move the cut point toward the top
of the list if precision is more critical than recall, and move it
toward the bottom otherwise. Consequently, the ranking qual-
ity reflects the learner’s “expected generalization ability” for
different tasks or the generalization ability for “typical cases”.
The Receiver Operating Characteristics (ROC) curve follows
the above idea to measure the generalization ability of learners.

The ROC curve was initially developed for radar detection
of enemy aircraft in World War II and then introduced to psy-
chology and medical applications in the 1960s—1970s. Later on,
it was introduced to machine learning (Spackman 1989). Simi-
lar to the P-R curve discussed in Sect. 2.3.2, we sort the samples
by the predictions and then obtain two measures by gradually
moving the cut point from the top toward the bottom of the
ranked list. Using those two measures as x-axis and y-axis gives
the ROC curve. Unlike precision and recall in P-R curves, the
y-axis in ROC curves is True Positive Rate (TPR), and the
x-axis is False Positive Rate (FPR). Reusing the notations in
@ Table 2.1, these two measures are, respectively, defined as

TP

TPR = ——, (2.18)
TP + FN
FP
FPR = — . (2.19)
TN + FP

The plot showing ROC curves is called an ROC plot.
B Figure2.4a gives an example of an ROC plot in which the
diagonal corresponds to the “random guessing” model, and
the point (0, 1) corresponds to the “ideal model” that places all
positive samples before negative samples.

In practice, we only have finite pairs of (FPR, TPR) coor-
dinates for drawing the ROC plot since the testing samples are
finite. Hence, the ROC curve may not look smooth like the
one in B Figure2.4a but is only an approximation, like the
one shown in @ Figure 2.4b. The plotting process is as follows:
given m* positive samples and m~ negative samples, we first

- 2

See Chap. 5 for neural networks.

The same problem occurs when
drawing P-R plots, but we
deferred the discussion until now
to facilitate the introduction of
calculating AUC.
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(a) ROC curve and AUC. (b) ROC curve and AUC with finite samples.

Fig.2.4 An illustration of ROC curve and AUC

sort all samples by the learner’s predictions, and then set the
threshold to maximum, that is, predicting all samples as neg-
ative. At this moment, both TPR and FPR are 0, so we mark
at coordinate (0, 0). Then, we gradually decrease the threshold
to the predicted value of each sample along the sorted list, that
is, the samples are classified as positive successively. Let (x, y)
denote the previous coordinate, we put a mark at (x, y + #)
if the current samples are true positive, and we put a mark at
(x + m% y) if the current samples are false positive. By con-
necting all adjacent marked points, we have the ROC curve.

Like P-R plots, we say learner A is better than learner B
if A’s ROC curve entirely encloses B’s ROC curve. However,
when there exist intersections, no learner is generally better
than the other. One way of comparing intersected ROC curves
is to calculate the areas under the ROC curves, that is, Area
Under ROC Curve (AUC), as shown in 8 Figure 2.4.

By its definition, AUC can be calculated by integrating
the areas under the steps of ROC curve. Suppose that the
ROC curve is obtained by sequentially connecting the points
{1, yD)s (2, ¥2)5 -+, (Xims Ym)}, where x; = 0 and x;,, = 1.
Then, as illustrated in @ Figure 2.4b, the AUC is estimated as

m—1

1
AUC = 3 Z(x[+l —xi) - i +yit1). (2.20)

i=1

AUC is closely related to ranking errors since it considers
the ranking quality of predictions. Let m™ denote the number
of positive samples, m~ denote the number of negative samples,
D™ denote the set of positive samples, and D~ denote the set
of negative samples. Then, the ranking /oss is defined as

tank = 7= X X (106D <f@) + 10 =),
xteDt x—eD~
(2.21)
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For each pair of positive sample x ™ and negative sample x —, the
ranking loss applies a penalty of 1 if the predicted value of the
positive sample is lower than that of the negative sample, and
a penalty of 0.5 applies when the predicted values are equal.
Suppose (x, y) is the coordinate of a positive sample on the
ROC curve, then x is the proportion of negative samples ranked
above this positive sample (i.e., FPR). Hence, the ranking loss
£rank corresponds to the area above the ROC curve, that is,

AUC = 1 — Lyank. (2.22)

2.3.4 Cost-Sensitive Error Rate and Cost Curve

In some problems, the consequences of making different errors
are not the same. Taking medical diagnosis as an example,
according to our earlier discussions, we receive the same amount
of penalty for misclassifying someone as healthy or unhealthy.
However, it turns out that misclassifying a sick patient as
healthy is more serious since it risks the life of the patient.
Another example is the access control system in which denying
the access of normal users leads to unpleasant user experience
while allowing intruders to enter causes security breach. In such
cases, we need to assign unequal costs to different errors.

For binary classification problems, we can leverage domain
knowledge to design a cost matrix, as shown in 8 Table 2.2,
where cost;; represents the cost of misclassifying a sample of
class i as class j. In general, cost; = 0, and costy; > costjg
if misclassifying class 0 as class 1 costs more than the other
way around. The larger the difference between the costs is, the
larger the difference between cost(; and costyg will be.

B Tab.2.2 Cost matrix of binary classification

Ground-truth class Predicted class

Class 0 Class 1

Class 0 0  costy

Class 1 costyg 0

Almost all performance measures we discussed so far implic-
itly assumed equal-cost. For example, error rate (2.4) counts
the number of errors without considering the different conse-
quences. With unequal costs, however, we no longer minimize
the counts but the total cost. For binary classification prob-
lems, we can call class 0 as the positive class and class 1 as the

39

Normally, we care more about
the cost ratios rather than the
absolute values, e.g.,

costyy :costjg=5:11is
equivalent to

costgp : costjg = 50 : 10.
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See Exercise 2.7.

Normalization is the process of
mapping values from different
ranges to a fixed range, e.g.,
[0, 1]. See Exercise 2.8.

negative class. Let D™ and D~ denote, respectively, the set of
positive samples and the set of negative samples. Then, based
on @ Table 2.2, the cost-sensitive error rate is defined as

E(f; D; cost) = n%( Z I(f (xi) # yi) x cost

x,-eD*

+ Z I(f (x;) # yi) x costm). (2.23)

xieD~

Similarly, we can also define the distribution-based cost-
sensitive error rate and the cost-sensitive version of accuracy.
Itis also possible to define cost-sensitive performance measures
for multiclass cases by allowing i and j of cost;; to take values
other than 0 and 1.

With unequal costs, we find the expected total costs of learn-
ers from cost curves rather than ROC curves. The x-axis of cost
curves is the probability cost of positive class:

P X costyp
p x costo; + (1 — p) x costyp’

P(+)cost = (2.24)

where p € [0, 1] is the probability of a sample being positive.
The y-axis is the normalized cost which takes values from [0, 1]:

FNR x p x costg; + FPR x (1 — p) x costyg
COSthorm = s
p X costo; + (1 — p) x costyg

(2.25)

where FPR is the false positive rate defined in (2.19) and
FNR = 1 — TPR is the false negative rate. We can draw a
cost curve as follows: since every point (FPR, TPR) on the
ROC curve corresponds to a line segment on the cost plane, we

A

1.0
@
)
Q
i FNR
= 0sf
<
g Cost curve
3
Z

FPR Expected total cost
L >
0 0.5 1.0

Positive probability cost

Fig.2.5 The cost curve and expected total cost
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can calculate the FNR and draw a line segment from (0, FPR)
to (1, FNR). Then, the area under the line segment represents
the expected total cost for the given p, FPR, and TPR. By con-
verting all points on the ROC curve to line segments on the
cost plane, the expected total cost is given by the area under
the lower bound of all line segments, as shown in @ Figure 2.5.

2.4 Comparison Test

It seems straightforward to compare learners using evaluation
methods and performance measures. For example, we use an
evaluation method to measure the performance of learners
and then compare them. However, how should we make the
“comparison™ Should we check which of the measured values
is better? Performance comparisons are indeed far more com-
plicated than we thought due to the following reasons. Firstly,
we wish to compare the generalization performance of learners,
but evaluation methods only measure performance on testing
sets, that is, the comparisons may not reflect the actual gener-
alization performance. Secondly, testing performance depends
on the choice of the testing set, e.g., the results on two different-
sized testing sets, or two equal-sized sets but with different
samples, could be different. Finally, many machine learning
algorithms have some build-in random behavior, which means
that we may obtain different results even for the same param-
eter settings and testing set. Then, what is the appropriate way
of comparing the performance of learners?

Hypothesis testing is one of the techniques to compare the
performance of learners. Suppose that we observe learner A
outperforms learner B on a testing set. Then, hypothesis test-
ing can help us check whether the generalization performance
of learner A is better than that of learner B in the statistical
sense and how significant it is. In the following discussions,
we introduce two basic hypothesis tests and several methods
to compare learners’ performance. For ease of discussion, the
rest of this section assumes error rate, denoted by e, to be the
default performance measure.

2.4.1 Hypothesis Testing

In hypothesis testing, a hypothesis is a statement or assumption
about the learner’s generalization error rate distribution, e.g.,
“e = ¢”. In practice, however, we only have the testing error
rate € but not the generalization error rate e. Though € and €
may not be identical, they are, intuitively, likely to be close.

41

See Wellek (2010) for more
information about hypothesis
testing.
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Common values of « include
0.05 and 0.1. We use a large « in
O Figure 2.6 for illustration
purposes.

Hence, we can use the testing error rate distribution to infer
the generalization error rate distribution.

A generalization error rate of e means that the learner has a
probability of e to make an incorrect prediction. A testing error
rate of € means that the learner misclassified € x m samples in a
testing set of m samples. Suppose the testing samples are drawn
i.i.d. from the population distribution. Then, the probability
that a learner with a generalization error rate of € misclassifies
m' samples and correctly classifies the rest is (”)e” (1 — )"~
Consequently, for a learner with a generalization error rate of
€, the probability of misclassifying ¢ x m samples, which is also
the probability that the testing error rate being ¢ on a testing
set of m samples, is

P e) = (é )’:/lm)E%xm(l _ E)m—éxm_ (2.26)

By solving 0P (€; €)/0e = 0 with the testing error rate, we
observe that P(€; €) is maximized when ¢ = ¢, and P(; €)
decreases as |e —€ | increases. The observation follows the bino-
mial distribution, and, as shown in 8 Figure 2.6, the learner is
most likely to misclassify 3 samples out of 10 samples when
e=0.3.

We can use binomial test to verify hypotheses such as “e <
0.3”, that is, the generalization error rate is not greater than 0.3.
More generally, for the hypothesis “e < €7, (2.27) gives the
maximum observable error rate within a probability of 1 — a.
The probability is also known as confidence, corresponding to
the non-shaded part of @ Figure 2.6.

025t [ ]
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O
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Number of misclassified samples

Fig.2.6 Binomial distribution (m = 10, ¢ = 0.3)
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€ = mine s.t. (2.27)

Z (r:l)ef)(l —e)" <.

i=exm+1

If the testing error rate € is greater than the critical value €,
then, according to the binomial test, the hypothesis “e < ¢)”
cannot be rejected at the significance level of a, that is, the
learner’s generalization error rate is not greater than ¢ at the
confidence level of 1 — «; otherwise, we reject the hypothesis,
that is, the learner’s generalization error rate is greater than ¢
at the significance level of «.

We often obtain multiple testing error rates from cross-
validation or by doing multiple hold-out evaluations. In such
cases, we can use f-test. Let €1, €2, ..., ¢, denote the k testing
error rates, then the average testing error rate p and variance

o2 are, respectively,

k
1 .
M= % Zl €, (228)
1=
1 k
o’ = 1 D @ - (2.29)
i=1

We can regard these k testing error rates as i.i.d. samples
of the generalization error rate ¢y, and hence the variable

_ V(i — o)

g

(2.30)

Tt

follows a ¢-distribution with k — 1 degrees of freedom, as shown
in @ Figure 2.7.

Probability density | 0.

-10 =5 10

Fig.2.7 ¢-distribution (k = 10)

. 2

“s.t.” stands for “subject to”,
indicating that the expression on
the right-hand side must be met
while solving the expression on
the left-hand side.

We can compute the critical
value with the assistance of
gbinom(l — a, m, () in R or
icdf(’Binomial’,l — «, m, €() in
MATLAB.

R is an open-source scripting
language for statistical
computing. See

» http://www.r-project.org.
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The critical values 7,5 can be
computed by qt(l — a/2,k — 1)
inRoricdf('T/, 1 —a/2,k—1)
in MATLAB.

For the hypothesis “ 1 = €y” and significance level a, we can
calculate the maximum observable error rate (i.e., the critical
value) within a probability of 1 — «a, where ¢ is the average
testing error rate. Here, we employ a two-tailed hypothesis,
and there are «/2 shaded areas at both tails of the distribu-
tion, as shown in @ Figure 2.7. Let (—o00, f_,/2] and [#4/2, 00)
denote the ranges of the two shaded areas, respectively. If 7; is
within the critical value range [7_,/2, fo /2], then the hypothesis
“u = €o” cannot be rejected, that is, the generalization error
rate is € at the confidence level of 1 — «; otherwise, we reject
the hypothesis, that is, the generalization error rate is signifi-
cantly different from ¢y at this confidence level. 0.05 and 0.1
are commonly used significance levels, and 8 Table 2.3 shows
some commonly used critical values for ¢-test.

B Tab.2.3 Commonly used critical values for two-tailed z-test

k

2 5 10 20 30

0.05 12.706 2.776 2.262 2.093 2.045

0.10 6.314 2.132 1.833 1.729 1.699

Both methods introduced above compare the generaliza-
tion performance of a single learner. In the following section,
we discuss several hypothesis testing methods for comparing
the generalization performance of multiple learners.

2.4.2 Cross-Validated t-Test

For two learners A and B, let e’l“, ef, . ..,e,f and ef, eZB, o

ef denote their testing error rates obtained from k-fold cross-
validation, where i indicates the ith fold. Then, we can use k-
fold cross-validated paired 7-tests to compare the two learners.
The basic idea is that if the performance of the two learners is
the same, then the testing error rates should be the same on the
same training and testing sets, that is, ef = ef .

To be specific, for the k pairs of testing error rates obtained
from the k-fold cross-validation, we calculate the difference
of each pair of results as A; = el.A — elB . Then, the mean of
the differences should be zero if the two learners have the
same performance. Consequently, based on the differences
A1, Ag, ..., A, we perform a z-test on the hypothesis “learner
A and learner B have the same performance”. We calculate the
mean £ and variance o2 of the differences, and if
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2.31)

Tt =

Vikp
ag

is less than the critical value 7,5 x—1 at the significance level of
«, then the hypothesis cannot be rejected, that is, there is no
significant difference in the learners’ performance; otherwise,
these two learners have significantly different performance, and
the one with the lower mean error rate is superior. Here, 7,2 1
is the critical value of a r-distribution with & — 1 degrees of
freedom and a tail of «/2.

The above hypothesis test assumes the testing error rates
are i.i.d. samples of the generalization error rate. However,
due to the finite training data, the training sets of different
rounds are often overlapped in evaluation methods such as
cross-validation. Therefore, the testing error rates are indeed
not independent, resulting in an overestimated probability for
the hypothesis to be true. To alleviate the problem, we can use
“5 x 2 cross-validation” (Dietterich 1998).

As the name suggests, 5 x 2 cross-validation repeats two-
fold cross-validation five times, where the data is randomly
shuffled before each two-fold cross-validation such that the
data splitting is different in the five rounds of cross-validations.
For example, for two learners A and B, we obtain their testing
error rates of the ith two-fold cross-validation. Then, we cal-
culate the difference between their error rates of the first fold,
denoted by A }, and the difference between their error rates of
the second fold, denoted by AIZ. To alleviate the dependency of
testing error rates, we calculate the variance of each two-fold
cross-validation as 07 = [ Al — ﬁ + (A2 - #) ;
however, only the mean of the first two-fold cross-validation
is calculated as . = O.S(A{ + A%). The variable

_r
V0230, o

follows a z-distribution with five degrees of freedom, where its
two-tailed critical value 72,5 is 2.5706 when a@ = 0.05, and
2.0150 when o = 0.1.

(2.32)

Tt =

2.4.3 McNemar's Test

For binary classification problems, the hold-out method esti-
mates not only the testing error rates of both learner A and
learner B, but also the classification difference of the two learn-
ers, that is, the numbers of both correct, both incorrect, and
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Since e(] + e is often small, we
need the continuity correction,
that is, —1 in the numerator.

The critical values x2 can be
computed by

qchisq(l — o,k —1)inR or
icdf('Chisquare’, | —a, k — 1)
in MATLAB, where k = 2 is
the number of algorithms being
compared.

one correct while the other incorrect. These numbers form a
contingency table, as shown in @ Table 2.4.

O Tab.2.4 The contingency table of two learners

. Algorithm A
Algorithm B __€0THM
Correct Incorrect
Correct €00 €01
Incorrect ero er

If the performance of the two learners are the same, then
we should have e¢g; = ejo. The variable |eg; — ejo| follows a
Gaussian distribution. McNemar’s test considers the variable

. (leor — e1ol — 1)?

2.33
ep1 + ero ( )

X
which follows a chi-square distribution with one degree of free-
dom, that is, the distribution of the sum of squared standard
normal random variables. At the significance level of «, the
hypothesis cannot be rejected if the variable is less than the crit-
ical value X(ZI, that is, there is no significant difference between
the performance of those two learners; otherwise, the hypoth-
esis is rejected, that is, the performance of those two learners
is significantly different, and the learner with smaller average
error rate is superior. The critical value of x? test with one
degree of freedom is 3.8415 when o = 0.05 and 2.7055 when
a=0.1.

2.4.4 Friedman Test and Nemenyi Post-hoc Test

Both the cross-validated z-test and McNemar’s test compare
two algorithms on a single data set. However, in some cases,
comparisons are made for multiple algorithms on multiple data
sets. In such cases, we can compare each pair of algorithms on
each data set using a cross-validated 7-test or a McNemar’s test.
Alternatively, we can use the following ranking-based Fried-
man test to compare all algorithms on all data sets at once.
Suppose that we are comparing algorithms A, B, and C on
four data sets D, Dy, D3, and D4. We first use either hold-out
or cross-validation to obtain each algorithm’s testing result on
each data set. Then, we sort the algorithms on each data set by
their testing performance and assign the ranks 1, 2, . . ., accord-
ingly, where the algorithms with the same testing performance
share the averaged rank. For example, as shown in 8 Table
2.5, on data sets D; and D3, A is the best, B is the second, and
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Cis the last; on data set D5, A is the best, and B and C have the
same performance. After collecting all the ranks, we calculate
the average rank of each algorithm as the last row of @ Table
2.5.

@ Tab.2.5 The ranking table of algorithms

Dataset  Algorithm A Algorithm B Algorithm C

D 1 2 3
D, 1 25 25
D3 1 2 3
Dy 1 2 3
Average rank 1 2.125 2.875

According to the Friedman test, the algorithms with the
same performance should have the same average rank. Let k
denote the number of algorithms, N denote the number of data
sets, and r; denote the average rank of the ith algorithm. Here,
we ignore the ties to simplify our discussion. Then, the mean
and the variance of r; are (k 4+ 1)/2 and (k> — 1)/12N, respec-
tively. The variable

k—1 12N & k+1)\2
e P U
i=1

12N 232 Mk+D2
1)

Tkt D (239

follows a x? distribution with & — 1 degrees of freedom when
k and N are large.

The “original Friedman test” described above is too conser-
vative, and hence the following variable is often used instead:

(N — 7}

Nk —1) =72’ (239

TF =
where 7,2 is given by (2.34). 77 follows a F-distribution with
k—1and (k—1)(N —1) degrees of freedom. @ Table 2.6 shows
some commonly used critical values for F-test.
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The “original Friedman test”
requires a large k (e.g., > 30),
and tends to return no
significant difference when £ is
small.
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The critical values for F-test can
be computed by qf(1 — a, k — 1,
(k —1)(N — 1)) in R or icdf('F/,
l—a,k—1, (k=1 %N —1))
in MATLAB.

qq 1s the critical value of Tukey
distribution, which can be
computed by qtukey(l — «, k,
inf) / sqrt(2) in R.

O Tab.2.6 Commonly used critical values for F-test

a=0.05

k
2 3 4 5 6 7 8 9 10

4 10.128 5.143 3.863 3.259 2.901 2.661 2.488 2.355 2.250
5 7.709 4.459 3.490 3.007 2.711 2.508 2.359 2.244 2.153
8 5.591 3.739 3.072 2.714 2.485 2.324 2.203 2.109 2.032
10 5.117 3.555 2.960 2.634 2.422 2.272 2.159 2.070 1.998
15 4.600 3.340 2.827 2.537 2.346 2.209 2.104 2.022 1.955
20 4.381 3.2452.766 2.492 2.310 2.179 2.079 2.000 1.935

N

a=0.1

k
2 3 4 5 6 7 8 9 10

4 5.538 3.463 2.813 2.480 2.273 2.130 2.023 1.940 1.874
5 4.545 3.113 2.606 2.333 2.158 2.035 1.943 1.870 1.811
8 3.589 2.726 2.365 2.157 2.019 1.919 1.843 1.782 1.733
10 3.360 2.624 2.299 2.108 1.980 1.886 1.814 1.757 1.710
15 3.102 2.503 2.219 2.048 1.931 1.845 1.779 1.726 1.682
20 2.990 2.448 2.182 2.020 1.909 1.826 1.762 1.711 1.668

N

The performance of algorithms is significantly different
if the hypothesis “algorithms’ performance is the same” is
rejected. Then, we use a post-hoc test to further distinguish the
algorithms. A common choice is the Nemenyi post-hoc test,
which calculates the critical difference CD of the average rank
difference as

CD = qm/l%. (2.36)

@ Table 2.7 shows some commonly used values of ¢, for
a = 0.05 and o = 0.1. If the average rank difference of
two algorithms is greater than the critical difference, then the
hypothesis “algorithms’ performance is the same” is rejected at
the corresponding confidence level.

0 Tab.2.7 Commonly used values of ¢, for Nemenyi test

k

«

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Taking the data in @ Table 2.5 as an example, we first cal-
culate 77 = 24.429 according to (2.34) and (2.35). Then, from
@ Table 2.6, we realize 7F is greater than the critical value 5.143
when a = 0.05. Hence, the hypothesis “algorithms’ perfor-
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Critical difference

Algorithm A | = ®

T

Average rank

Algorithm B

Algorithm C — ——

1.0 2.0 3.0

Fig.2.8 The plot of the Friedman test

mance is the same” is rejected. We proceed with the Nemenyi
post-hoc test. From @ Table 2.7, we find gg o5 = 2.344 for
k = 3, and hence the critical difference is CD = 1.657 accord-
ing to (2.36). Based on the average ranks in @ Table 2.5, neither
the difference between algorithms A and B nor the difference
between algorithms B and C is greater than the critical differ-
ence, that is, there is no significant difference between their
performance. However, the test confirms that the performance
of algorithms A and C are significantly different since their
difference is greater than the critical difference.

We can use a plot to illustrate the Friedman test, e.g.,
@ Figure 2.8 illustrates the Friedman test for @ Table 2.5,
where the y-axis shows the algorithms, and the x-axis shows the
average ranks. The dots mark the average ranks of algorithms,
and the line segments centered at the dots are the corresponding
critical difference. The performance of the two algorithms is not
significantly different if their line segments overlap; otherwise,
their performance is significantly different. From @ Figure 2.8,
we can easily observe that there is no significant difference
between algorithms A and B since their line segments over-
lap. On the other hand, algorithm A is better than algorithm
C since their line segments do not overlap while A has a higher
rank.

2.5 Bias and Variance

In addition to estimating the generalization performance of
learning algorithms, people often wish to understand “why”
learning algorithms have such performance. An essential tool
for understanding the generalization performance of algo-
rithms is the bias-variance decomposition, which decomposes
the expected generalization error of learning algorithms.

For different training sets, the learning outcomes are often
different, although the training samples are drawn from the
same distribution. Let x be a testing sample, yp be the label
of x in the data set D, y be the ground-truth label of x, and
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Potential noise may lead to
yp #-
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Since the noise does not rely on
f, the last term equals to 0
according to (2.37).

The last term equals to 0 since
the expectation of noise is 0.

f(x; D) be the output of x predicted by the model f trained on
D. Then, in regression problems, the expected prediction of a
learning algorithm is

f@&) =Ep[f(x; D)]. (2.37)

The variance of using different equal-sized training sets is
var(x) = Ep [(f (v: D) = f0))?]. (238)
The noise is
2 =Ep |00 -»?]. (2.39)

The difference between the expected output and the ground-
truth label is called bias, that is,

bias*(x) = (f(x) - y)z. (2.40)

For ease of discussion, we assume the expectation of noise
is zero, i.e., Ep[yp — y] = 0. By expanding and combining
the polynomial, we can decompose the expected generalization
error as follows:

E(f: D) =Ep[(/(x: D) - yp)’]

i - - 2
=Ep | (fe: D) ~f @) +f(x) = »p) }
—Ep [ (re )~ Feo) |+ 2 [ () - J’D>2]

(F@r -rp)]

+Ep :(/;(x) - J’D>2:|

+Ep [2 (f(x; D) —F(x)
-

~—

=Ep _(f(x; D)~ 7))
- . 27
=Ep|(fo: D) —F )

+Ep :(f(x) -y+y —yo)z]

= Ep [ (1 )~ F) | + 2 [ (e —y)z]
+Ep [0 =yp)?] + 2Ep [(f®) = ») 0 =)
1+ (e —») + 20 [0n -7
i (2.41)

—Bp| (i D) —Fo)

That is,
E(f; D) = bias®(x) + var(x) + £, (2.42)

which means the generalization error can be decomposed into
the sum of bias, variance, and noise.
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Bias (2.40) measures the difference between the learning
algorithm’s expected prediction and the ground-truth label,
that is, expressing the fitting ability of the learning algorithm.
Variance (2.38) measures the change of learning performance
caused by changes to the equal-sized training set, that is,
expressing the impact of data disturbance on the learning out-
come. Noise (2.39) represents the lower bound of the expected
generalization error that can be achieved by any learning algo-
rithms for the given task, that is, the inherent difficulty of
the learning problem. The bias-variance decomposition tells
us that the generalization performance is jointly determined
by the learning algorithm’s ability, data sufficiency, and the
inherent difficulty of the learning problem. In order to achieve
excellent generalization performance, a small bias is needed by
adequately fitting the data, and the variance should also be
kept small by minimizing the impact of data disturbance.

Generally speaking, bias and variance are conflicted with
each other, and this is known as the bias-variance dilemma.
@ Figure 2.9 gives an illustrating example. Given a learning
problem and a learner, suppose we can control the degree of
training. If we limit the degree of training such that the learner
is undertrained, its fitting ability is limited, and hence the data
disturbances have a limited impact on the learner, that is, bias
dominates the generalization error. As the training proceeds,
the learner’s fitting ability improves, and hence the learner
starts to learn the data disturbances, that is, variance starts
to dominate the generalization error. After a large amount of
training, the fitting ability of the learner becomes very strong,
and hence slight disturbances in the training data will cause sig-
nificant changes to the learner. At this point, the learner may
start to learn the peculiarities of the training data, and hence
overfitting occurs.

—— Generalization error
—— Bias
------ Variance

Error

Degree of training

Fig.2.9 Relationships between generalization error, bias, and variance
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Many learning algorithms allow
users to control the degree of
training, such as the number of
levels in decision trees, the
number of training epochs in
neural networks, and the
number of base learners in
ensemble learning methods.
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Section 2.3.4 only discussed the
class-based misclassification
cost.

2.6 Further Reading

Bootstrap sampling has crucial applications in machine learn-
ing, and a detailed discussion can be found in
Efron and Tibshirani (1993).

ROC curve was introduced to machine learning in the late
1980s (Spackman 1989), and AUC started to be widely used in
the field of machine learning since the middle 1990s (Bradley
1997). However, using the area under the ROC curve to evalu-
ate the expected performance of models has already been done
much earlier in medical diagnosis (Hanley and McNeil 1983).
Hand and Till (2001) extended the ROC curve from binary
classification problems to multiclass classification problems.
Fawcett (2006) surveyed the use of the ROC curve.

Drummond and Holte (2006) invented the cost curve. Other
than the misclassification cost, there are many costs involved
in the machine learning process, such as the testing cost, label-
ing cost, and feature cost. The misclassification cost can also
be further divided into the class-based misclassification cost
and sample-based misclassification cost. Cost-sensitive learn-
ing (Elkan 2001; Zhou and Liu 2006) is a research topic for
learning under unequal cost settings.

Dietterich (1998) pointed out the risk of using the regu-
lar k-fold cross-validation method, and proposed the 5 x 2
cross-validation method. Demsar (2006) discussed the hypoth-
esis testing methods for comparing multiple algorithms.

Geman et al. (1992) proposed the bias-variance-covariance
decomposition for regression problems, which was later short-
ened as bias-variance decomposition. Though bias and vari-
ance reveal the internal factors of errors, we can only derive
the elegant form of (2.42) for regression problems based on
MSE. For classification problems, however, deriving the bias-
variance decomposition is difficult since the 0/1 loss function
is discontinuous. There exist many empirical methods for esti-
mating bias and variance (Kong and Dietterich 1995; Kohavi
and Wolpert 1996; Breiman 1996; Friedman 1997; Domingos
2000).



Exercises

Exercises

2.1 Given a data set of 1000 samples, where 500 samples are
positive and 500 samples are negative. To perform a hold-out
evaluation, we split the data set into a training set with 70% of
the samples and a testing set with 30% of the samples. Estimate
the total number of possible splittings.

2.2 Given a data set of 100 samples, where the positive and
negative samples are half-half. Suppose that the model pro-
duced by a learning algorithm predicts every new sample as
the majority class in the training set (random guessing if dif-
ferent classes have the same number of samples). Calculate the
error rates of this model evaluated by 10-fold cross-validation
and hold-out, respectively.

2.3 Given that the F'1 value of learner A is greater than that of
learner B, find out whether the BEP value of A is also greater
than that of B.

2.4 Describe the relationships among TPR, FPR, Precision,
and Recall.

2.5 Prove (2.22).

2.6 Describe the relationship between error rate and ROC
curve.

2.7 Prove that every ROC curve has a corresponding cost
curve, and vice versa.

2.8 The min-max normalization and z-score normalization are
two commonly used normalization methods. Let x and x’
denote the variable value before and after normalization, xpi,
and xmax denote the minimum and maximum value before nor-
malization, x| . and x,,, denote the minimum and maximum
value after normalization, X denote the unnormalized mean,
and o, denote the standard deviation. Then, the min-max nor-
malization and z-score normalization are, respectively, defined
in (2.43) and (2.44). Discuss the pros and cons of each method.

= X — Xmin ’ /
— “‘min

(2.43)

Xmax — Xmin

X' = . (2.44)

2.9 Describe the process of x? test.

2.10 * Describe the difference between using (2.34) and using
(2.35) in the Friedman test.
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In 1954, the Guinness
corporation started to publish
Guinness World Records.

Break Time

Short Story: t-Test, Beer, “Student”, and William Gosset

In 1899, William Gosset (1876—
1937), who majored in chemistry
at the University of Oxford, joined
Guinness Brewery in Dublin, Ire-
land after graduation and wished
to apply his biology and chemistry
knowledge to the brewing process.
Gosset proposed 7-test to reduce
the cost of quality control of brew-
ing, and published this work in
Biometrika in 1908. In order to pre-
vent the leak of the trade secret,
the paper was published under the
pseudonym of “Student”, and this
leads to the method’s name “Student’s #-test”.

As a visionary corporation, Guinness Brewery grants its
technical staff “sabbatical leave” just like in universities such
that its staff can maintain a high level of technical skills. For
this reason, Gosset had a chance to visit the lab led by Profes-
sor Karl Pearson (1857-1936) at University College London
(UCL) in 1906-1907. Since t-test was published shortly after
the visit, it is hard to tell whether it was developed at Guinness
Brewery or during the visit at UCL. Nevertheless, the connec-
tion between “Student” and Gosset was found by statisticians
from UCL, and this is not a surprise since Professor Pearson
happened to be the editor-in-chief of Biometrika.
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Chapter 3 - Linear Models

3.1 Basic Form

Letx = (x1; x2; ...; x4) be a sample described by d variables,
where x takes the value x; on the ith variable. A linear model
aims to learn a function that makes predictions by a linear
combination of the input variables, that is,

fx) =wix; +waxo+---+wyxg + b, (3.1
or commonly written in the vector form
f@ =w'x+b, (3.2)

where w = (w; wy; ...; wg). The model is determined once w
and b are learned.

Despite its simple form and ease of modeling, the basic lin-
ear model covers some important and fundamental ideas of
machine learning. In fact, many powerful nonlinear models
can be derived from linear models by introducing multi-layer
structures or high-dimensional mapping. Besides, the learned
weights w transparently indicate the importance of each input
variable, and provide the linear model with excellent compre-
hensibility. For example, suppose the linear model learned in
our watermelon problem is fripe(x¥) = 0.2 - xcolor + 0.5 -
Xroot + 0.3 - Xgoung + 1, which indicates that the ripeness
of a watermelon can be determined by considering its color,
root, and sound information. From the coefficients, we know
that root is the most important variable, and sound is more
important than color.

The rest of this chapter introduces some classic linear mod-
els, starting with the regression problems followed by binary
classification and multiclass classification problems.

3.2 Linear Regression

Given a data set D = {(x1, y1), (x2,¥2), ..., (X, Vim)}, Where
x; = (xi1; Xp2; ...; xig) and y; € R. Linear regression aims to
learn a linear model that can accurately predict the real-valued
output labels.

We start our discussion with the simplest case of a single
input variable. To simplify the notation, we omit the subscript
of variables, that is, D = {(x;, y;)}/,, where x; € R. For dis-
crete variables, they can be converted into real-valued variables
when an ordinal relationship naturally exists between values.
For example, the values tall and short of height can be con-
verted into {1.0,0.0}; the values high, medium and low of
altitude can be converted into {1.0, 0.5, 0.0}. When no ordi-
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nal relationship exists, we often convert the discrete variable
with k possible values into a k-dimensional vector, e.g., for
the variable cucurbits, its values watermelon, pumpkin, and
cucumber can be converted into (0, 0, 1), (0, 1, 0),and (1, 0, 0),
respectively.

Linear regression aims to learn the function

f(x) =wx+b, suchthat f(x;) ~y;,i=1,...,m. (3.3)

To determine w and b, the key is to measure the difference
between f (x) and y. For this purpose, the MSE (2.2) introduced
in Sect. 2.3 is one of the most commonly used metrics. We can
minimize MSE, that is,

argmin ) (f(x;) = yi)’*

N

w*, b*)

m
= argmin Z i —wx; — b)?.
(w,b)

(3.4)

i=1

MSE corresponds to the Euclidean distance and has an intu-
itive geometrical interpretation. A general method to minimize
MSE is the least squares method. For linear regression, the least
squares method attempts to find a straight line such that the
total Euclidean distance from all samples to the line is mini-
mized.

The process of searching for w and b that minimize E,, 5y =
S (i — wx; — b)? is called least squares parameter estima-
tion of linear regression. To be specific, we can calculate the
derivatives of E, 5 with respect to w and b, respectively:

8E( b) m m

w,b) 2 ) )

e =2 w;xi - ;(yl —b)xi |, (3.5)
OEy e

% =2|mb-— ;(yi — WXj) (3.6)

By setting (3.5) and (3.6) equal to 0, we have the closed-form
solutions of w and b:

Yo yilxi — X)

W= — —. (3.7
Do xl_z - % (Zi=l xi)
1 m

b= — ;(yi —wx;), (3.8)

where X = L 3™ | x; is the arithmetic mean of x.
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We should avoid converting
categorical variables into
continuous variables; otherwise,
the incorrectly introduced
ordinal relationships can
mislead subsequent calculations
such as distance calculations.
See Sect. 9.3.

Also known as square loss.

w* and b* denote the solutions
to w and b, respectively.

The least squares method has a
wide range of applications other
than linear regression.

Here, E(,, p) is a convex
function of w and b. The optimal
solutions of w and b are
obtained when the derivatives of
E(,p) with respect to both w
and b are zero.

A function £ is said to be a
convex function on the interval
[a, b] if there is
f(xl‘;xZ) < f(xl)‘sz(xﬂ

for any
x1 and x, on the interval.
Functions with a U-shaped
curve are usually convex
functions, e.g., f(x) = x2.

We can determine the convexity
of a function defined over the
real numbers by its second
derivative: the function is convex
on an interval if its second
derivative is non-negative on the
interval; the function is strictly
convex on an interval if its
second derivative is greater than
0 at all points on the interval.
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For example, genetic circuit data
in bioinformatics are often with
thousands or even more
attributes but only hundreds of
samples.

More generally, samples are described by d attributes, like
the data set D at the beginning of this section. In such cases,
the model becomes

f(x):wa—i—b, such that f(x;)) >~ y;,i=1,...,m,

which is known as multivariate linear regression.

Similarly, the parameters w and b can be estimated using
the least squares method. For ease of discussion, we rewrite w
and b as w = (w; b). Accordingly, the data set D is represented
as an m by (d + 1) matrix X, where each row corresponds to
one sample with the first d elements to be the values of the d
variables and the last element always to be 1, that is,

-
X11 X12 ... X1q 1 xlrl
X21 X220 ... Xpq 1 x, 1
Xml Xm2 -+ Xmd 1 x,; 1

Vectorizing the labels to y = (y1; y2; ... ; Ym), then, similar

to (3.4), we have

w* = argmin(y — X@) ' (y — Xi). (3.9

w

Letting Eg = (y—Xw) ' (y—X) and finding the derivative
with respect to w, we have

E
OFa _ 2XT(Xw — y).

o = (3.10)

The closed-form solution of w can be obtained by making (3.10)
equal to 0. However, due to the matrix inverse operation, the
calculation is more complicated than that of the single variable
case. We provide a brief discussion as follows.
When XX is a full-rank matrix or a positive definite
matrix, letting (3.10) equal to 0 gives
= X"X)"'XTy, (3.11)
where (XTX)~! is the inverse of X TX. Letting £; = (x;; 1), the
learned multivariate linear regression model is
fG) =& XTX)7XTy. (3.12)
Nevertheless, X " X is often not full-rank in real-world appli-
cations. In practice, the number of variables can be large or even
larger than the number of samples, that is, more columns than
rowsin X. In such cases, X ' X is not full-rank, which means that
there is more than one w that can minimize the MSE. Then,
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the choice of @ is a matter of the inductive bias of the learn-
ing algorithm, e.g., some algorithms introduce a regularization
term.

Linear models are simple but diverse. Taking (x, ),y € R
as an example, by approximating the ground-truth label y with
a linear model, we obtain the linear regression model, which
can be compactly written as

y=w'x+b. (3.13)

Is it possible to let the predicted value approximate a vari-
able derived from y? For instance, suppose the output label
changes on the exponential scale, then the logarithm of the
output label can be used for approximation, that is,

Iny=w'x+b. (3.14)

This is called log-linear regression which approximates y with
ew'x+b, Though (3.14) is still in the form of linear regression,
it is indeed searching for a nonlinear mapping from the input
space to the output space, as shown in 8 Figure 3.1. The loga-
rithm function links the predictions of linear regression to the
ground-truth labels.

More generally, for a monotonic differentiable function

g()n
y=g 'w x+b) (3.15)

is called generalized linear model, where the function g(-) is the
link function. We see that log-linear regression is a special case
of generalized linear models when g(-) = In(-).

Fig.3.1 Log-linear regression
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See Sect. 1.4 for inductive bias.
See Sects. 6.4 and 11.4 for
regularization.

g(-) is continuous and smooth.

Parameter estimation of
generalized linear models is
usually performed through
weighted least squares or
maximum likelihood methods.
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Also called Heaviside function.

3.3 Logistic Regression

The previous section discussed the use of linear models in
regression problems, but how can we solve classification prob-
lems? The answer lies in the generalized linear model (3.15): we
just need to find a monotonic differentiable function g(-) that
links the predictions of linear regression to the ground-truth
labels of the classification problem.

For binary classification with output label y € {0, 1}, the
real-valued predictions of the linear regression model z =
w ' x 4 b need to be converted into 0/1. Ideally, the unit-step
function is desired:

0, z<0;
y=105, z=0; (3.16)
1, z>0,

which predicts positive for z greater than 0, negative for z
smaller than 0, and an arbitrary output when z equals to 0.
The unit-step function is plotted in @ Figure 3.2.

Nevertheless, 8 Figure 3.2 shows that the unit-step func-
tion is not continuous, and hence it cannot be used as g~ (-) in
(3.15). Therefore, we need to find a monotonic differentiable
surrogate function to approximate the unit-step function, and
a common choice is the logistic function:

. 1
T4

y (3.17)

From @ Figure 3.2, we can see that the logistic function is a
type of sigmoid function which converts z to y that is either
close to 0 or 1, and the output value has a steep change near
z = 0. Substituting ¢~ () into (3.15), we have

y A
1
1, z>0;
0.5, z=0;
0 z <0
*{0 16 Z=

Fig.3.2 Unit-step function and logistic function
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1
Similar to (3.14), (3.18) can be transformed into
y T
In =w x+b. (3.19)
-y

Let y be the likelihood of x being a positive sample and 1 — y
be the likelihood of being a negative sample, then the ratio

—_ (3.20)
-y
is called the odds, indicating the relative likelihood of x being

a positive sample. Taking the logarithm of odds gives the log
odds (i.e., logit)

y

In .
l—y

(3.21)

It turns out that (3.18) is using linear regression predictions
to approximate the log odds of true labels. As such, the corre-
sponding model is called logistic regression, also known as logit
regression. It should be noted that logistic regression is indeed a
classification model despite the term “regression” in its name.
Logistic regression has several nice properties. For example,
it directly models the label probability without requiring any
prior assumptions on the data distribution and hence avoids
issues such as inappropriate hypothetical data distributions.
Also, it predicts labels together with associated probabilities,
which is essential for tasks that use probability to aid decision-
making. Finally, the objective function of logistic regression, as
we will see later on, is a convex function having derivatives of
all orders with many useful mathematical properties, and con-
vexity makes it solvable with numerical optimization methods.

Now we turn our attention to the estimation of w and b in
(3.18). If we consider y in (3.18) as the posterior probability
p(»y = 1] x), then (3.19) can be rewritten as

o= _ 5
py=0]x)

and consequently,

x+b, (3.22)

w'x+b
py=1|x)= m, (3.23)
=0 = ! 3.24
py=0]x)= TfowTxib’ (3.24)
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See Sect. 7.2 for the maximum
likelihood method.

Considering y; € {0, 1}.

See Appendix B.4 for the
gradient descent method.

To maximize the posterior probability, we can apply the
maximum likelihood method to estimate w and b. Given a data
set {(x;, y)}L,, the log-likelihood to be maximized is

m

tw.b) = "Inp(y; | x;;w, b), (3.25)

i=1

i.e., maximizing the probability of each sample being predicted
as the ground-truth label. For ease of discussion, we rewrite
w'x +bas 8%, where B = (w; b) and ¥ = (x; 1). Also,
letting p1(%; 8) = p(y = 1 | ¥;B) and po(x; B) = p(y = 0 |
x; B8) =1 — p1(x; B), then the likelihood term in (3.25) can be
rewritten as

pilxiiw,b) =yip1(xi; B) + (1 —ydpoXi; B).  (3.26)

Substituting (3.26) into (3.25), then, from (3.23) and (3.24),
we know that maximizing (3.25) is equivalent to minimizing

0B) = i (—y,ﬁchi +In (1 + eﬂ”f)) . (3.27)

1=

Because (3.27) is a higher order differentiable convex func-
tion with respect to 3, the solutions, according to the convex
optimization theory (Boyd and Vandenberghe 2004), can be
found via classic numerical optimization methods such as the
gradient descent method or even Newton’s method. Hence, we
have

B* = argmin £(3). (3.28)
g

Taking Newton’s method as an example, the update rule at
the (¢ + 1)th iteration is

e\ o
gl =p - (aga(?) aiaﬁ)’ (3.29)

where the first- and second-order derivatives with respect to 3
are, respectively,

m

868;5) =—Y &(yi—p(%:8), (3.30)
i=1

d%¢
868(52 Zf %, p1 (25 8) (1 —p1 (2 8)).- (3.31)
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A . . . . ~
T2 Projection direction of w

As “far” as possible As “close” as possible

~

As “close” as possible

0] €

Fig.3.3 A two-dimensionalillustration of LDA. “4”and “—"denote positive
samples and negative samples, respectively. The ellipses are the boundaries of
clusters; the dashed lines represent projections; the solid red dot and triangle
are the centers of the projections

3.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classic linear method,
also known as Fisher’s Linear Discriminant (FLD) since it
was initially proposed by Fisher (1936) for binary classifica-
tion problems.

The idea of LDA is straightforward: projecting the training
samples onto a line such that samples of the same class are
close to each other, while samples of different classes are far
away from each other. When classifying new samples, they are
projected onto the same line and their classes are determined by
their projected locations. @ Figure 3.3 gives a two-dimensional
illustration.

Given a data set D = {(x;, y)}.,, yi € {0, 1}, let X, p;,
and X; denote, respectively, the sample set, mean vector, and
covariance matrix of the ith class (i € {0, 1}). After projecting
data onto the line w, the centers of those two classes samples
are w' o and w " p1, respectively. The covariances of the two
classes samples are w' Low and w' X w, respectively. Since
the line is a one-dimensional space, w ' po, w " g1, w ' Tow, and
w' X w are all real numbers.

To make the projection points of similar samples as close as
possible, we can make the covariance of the projection points
of similar samples as small as possible, that is, minimizing
w'Xow + w' Xjw. To make the projection points of exam-
ples from different classes as far away as possible, we can make
the distance between the class centers as large as possible, that
is, maximizing ||[w puo — w ' p1||. Putting them together, we
have the objective to be maximized:
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Strictly speaking, LDA and
FLD are slightly different,
where LDA assumes equal and
full-rank class covariances.
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If w is a solution, then aw is also
a solution of (3.35) for any
constant a.

See Appendix B.1 for the
method of the Lagrange
multipliers.

(o — p21) T w is a scalar.

2

_ e —w il

w Tow+wl Tiw
_w ' (po — ) (po — 1) "w

w (Tp+ZpDw (3.32)
By defining the within-class scatter matrix
Sy =X0+ X
=) (x—p)x—po) + Y x—p)E—p)’
xeXp xeX;
(3.33)
and the between-class scatter matrix
Sp = (o — p1)(po — 1) T, (3.34)
we can rewrite (3.32) as
T
J= ;‘)’T;’zz (3.35)

which is the objective of LDA to be maximized, that is, the
generalized Rayleigh quotient of Sp and S,,.

Then, how can we determine w? Since the numerator and
denominator in (3.35) are both quadratic terms of w, the
solution of (3.35) is independent of the magnitude of w but
only about its direction. Without loss of generality, letting
w'S,,w = 1, then maximizing (3.35) is equivalent to

min —w'Spw

v (3.36)
st w'S,w=1.

Using the method of the Lagrange multipliers, which helps find
the extremum of a function subject to equality constraints, the
above equation is equivalent to

Syw = \S,,w, (3.37)

where ) is the Lagrange multiplier. Since the direction of Spw
is always pg — p1, we can let

Spw = A(po — p1), (3.38)

and substitute it into (3.37), which gives

w=S." (o — ). (3.39)
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In order to achieve the stability of numerical solutions, singular
value decomposition is often applied to S,, in practice, that is,
S, = UXVT, where ¥ is a real diagonal matrix and its diagonal
elements are the singular values of S,,. Then, we calculate S; 1
asS;l =vz-luT.

Itis worth mentioning that LDA can also be explained from
the aspect of Bayesian decision theory, and it can be proved that
we have the optimal solution of LDA when both classes follow
Gaussian distribution with the same prior and covariance.

We can extend LDA to multiclass classification problems.
Suppose that there are N classes and the ith class has m; sam-
ples. First, we define the global scatter matrix

S, =Sy +S.
m
=> @i—-wai—pw', (3.40)

i=1

where p is the mean vector of all samples. We redefine the
within-class scatter matrix S,, as the sum of scatter matrices of
each class, that is,

N
Sw = ZSW," (3.41)
i=1
where
Swi= ) (x—p)x—p). (3.42)
xeX;

From (3.40) to (3.42), we have

Sp=S,—S,

N
= mipi— i — )" (3.43)
i=1

Multiclass LDA can be implemented in different ways by
choosing any two from S, S,,, and S;. A common implemen-
tation is to optimize the objective

tr(W 'S, W)

max , 3.44
W tr(W'S,,W) (344)

where W € R*V=D ‘and tr(.) is the trace of matrix. Equation

(3.44) can be solved as a generalized eigenvalue problem:

SpW = \S,,W. (3.45)
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See Appendix A.3 for singular
value decomposition.

See Exercise 7.5.
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There are at most N — 1
non-zero eigenvalues.

See Chap. 10 for dimensionality
reduction.

For example, the extension of
LDA discussed in the previous
section.

Classification learners are often
called classifiers.

See Chap. 8 for the ensemble of
multiple classifiers.

OVR is also known as One
versus All (OvA), but calling it
OVA is not very accurate since
we should not consider “all
classes” as the negative class.

We can also ensemble the
classifiers based on information
such as their confidence of
predictions. See Sect. 8.4.

Concatenating the eigenvectors corresponding to the d’ largest
non-zero eigenvalues of S!S, leads to the closed-form solu-
tion of W, where d’ < N — 1.

If we consider W as a projection matrix, then multiclass
LDA projects samples onto an d’-dimensional space, where d’
is often much smaller than the number of original features d.
Since the projection reduces the data dimension while consid-
ering the class information, LDA is also considered as a classic
supervised dimensionality reduction technique.

3.5 Multiclass Classification

In practice, we often encounter multiclass classification prob-
lems. Some binary classification methods can be directly extended
to accommodate multiclass cases. However, a more general
approach is to apply some strategies to solve multiclass classi-
fication problems with any existing binary classification meth-
ods.

Without loss of generality, given N classes Cy, C», ..., Cy,
the basic idea of multiclass learning is decomposition, that
is, dividing the multiclass classification problem into several
binary classification problems. We begin by decomposing the
problem, and then train a binary classifier for each divided
binary classification problem. In the testing phase, we ensem-
ble the outputs collected from all binary classifiers into the
final multiclass predictions. In this process, the key questions
are how to divide multiclass classification problems and how to
ensemble multiple classifiers. The rest of this section focuses on
introducing three classic dividing strategies, namely One versus
One (OvO), One versus Rest (OvR), and Many versus Many
(MvM).

Given a data set D = {(x1,»1), (x2,2), ..., Xm, Vm)},
where y; € {Cy, Ca,..., Cy}. OvO puts the N classes into
pairs, resulting in N(N — 1)/2 binary classification problems.
For example, OvO trains a classifier to distinguish class C; and
C;, where it regards C; as positive and C; as negative. During
testing, a new sample is classified by all classifiers, resulting
in N(N — 1)/2 classification outputs. The final prediction can
be made via voting, that is, the predicted class is the one that
received the most votes. 8 Figure 3.4 gives an illustration of
OvO.

OvVR trains N classifiers by considering each class as pos-
itive in turn, and the rest classes are considered as negative.
During testing, if there is only one classifier that predicts the
new sample as positive, then it is the final classification result,
as shown in @ Figure 3.4. However, if multiple classifiers pre-
dict the new sample as positive, then the prediction confidences



3.5 Multiclass Classification

Samples of class Cy
—

ovO J \10VR

Traim'ng samples Training samples

Classifiers Predictions Classifiers Predictions

([DE)-i-a] (Eea)-i--]

(DD =r~a| ([ EGa) s
() =s—a | e ([E] GGl s | 7"
(Cedled)=a-a (] ey =n—
([c][e])=s-c
([l =s—c]

Fig.3.4 [Illustration of OvO and OvR
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are usually assessed, and the class with the highest confidence
is used as the classification result.

Since OVR needs N classifiers while OvO needs N (N —1)/2
classifiers, the memory and testing time costs of OvO are often
higher compared to that of OVR. However, each OvR classifier
uses all training samples, whereas each OvO classifier uses only
samples of two classes. Hence, the computational cost of train-
ing OvO is lower compared to that of OvR, especially when
there are many classes. As for the prediction performance, it
depends on the specific data distribution, and in most cases,
the two methods have similar performance.

MvM conducts multiple trials, and each trial puts several
classes as positive and several classes as negative. Note that
both OvO and OvR are special cases of MvM. The construction
of positive and negative classes in MvM should be carefully
designed. Here we introduce one of the most commonly used
MvM techniques: Error Correcting Output Codes (ECOC).

ECOC (Dietterich and Bakiri 1995) introduces the idea of
encoding into the dividing of classes and maintains error tol-
erance in the decoding step. ECOC has two main steps:
= Encoding: split the N classes M times, where each time

splits some classes as positive and some classes as negative.

In this way, a total of M training sets are generated, and M

classifiers can be trained.
== Decoding: use the M classifiers to predict a testing sample

and combine the predicted labels into a codeword. Then, the
distances between the codeword and the base codeword of
each class are calculated. The class with the shortest distance
is returned as the final prediction.
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(a) Binary ECOC coding. (b) Ternary ECOC coding.
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Fig.3.5 Illustration of ECOC encoding. “+” and “—" represent the positive
and negative classes predicted by the learner f;. “0” in ternary coding indicates
that the class is not used by f;

The coding matrix determines how classes are partitioned.
There are different designs of the coding matrix, and commonly
used designs are binary coding (Dietterich and Bakiri 1995) and
ternary coding (Allwein et al. 2000). Binary coding puts each
class as either positive or negative, while ternary coding adds
an additional “excluded class”. @ Figure 3.5 gives an example.
In @ Figure 3.5a, classifier f> considers C1 and C3 as positive
and considers C, and Cy as negative. On the other hand, clas-
sifier f4 in @ Figure 3.5b considers C; and Cy as positive and
C3 as negative. In the decoding step, the predictions from all
classifiers jointly generate the codeword for the testing sample.
Then, the distances between the codeword and the base code-
word of each class are calculated. The class with the shortest
distance is returned as the final prediction. For example, in
@ Figure 3.5a, the prediction is C3 when using the Euclidean
distance.

Why is it called “Error Correcting Output Codes™ Because
the ECOC codeword has the error tolerance and correction
ability in the testing phase. For example, in @ Figure 3.5a, the
correct codeword for the testing sampleis (—1, +1, +1, —1, +1).
Suppose that classifier f, has made a mistake, and the code-
word becomes (-1, —1, +1, —1, +1), but this codeword can
still make the correct prediction Cz. In general, for the same
problem, a longer ECOC codeword produces better correction
ability. Nevertheless, a longer codeword implies more classi-
fiers to be trained and consequently increased computation and
memory costs. Besides, since class combinations are finite for
finite classes, the extra length of codeword becomes meaning-
less when it reaches the limit.

In theory, the correction ability of a fixed length code-
word increases as the distances between classes increase. Fol-
lowing this principle, the theoretically optimal codeword can
be calculated when the codeword length is short. However,
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it becomes an NP-hard problem to find the optimal for long
codewords. Fortunately, non-optimal codewords are often suf-
ficient in practice, and the optimal codeword is rarely neces-
sary. Besides, better theoretical properties are not necessarily
associated with better classification performance since machine
learning involves many factors. For example, when multiple
classes are divided into two “class subsets”, the different divid-
ing methods lead to different class subsets with different clas-
sification difficulties. Therefore, we have two codewords: one
has a nice theoretical property of error correction but leads to
difficult binary classification problems, and the other one has
the weaker error correction ability but leads to easier binary
classification problems. It is hard to tell which codeword is
better.

3.6 Class Imbalance Problem

The classification methods introduced so far have made a com-
mon assumption: there is no significant difference in the num-
ber of samples in each class. Generally, the impact of a small
difference is limited, but a large difference becomes trouble in
the learning process. For example, suppose there are 998 nega-
tive samples but only two positive samples, then a learner can
easily achieve 99.8% accuracy by predicting every new sample
as negative. Apparently, such a learner is useless since it cannot
identify any positive samples.

The scenario described above is called class imbalance,
which refers to the classification problems with a significantly
different number of samples for each class. Without loss of gen-
erality, this section assumes that the positive class is the minor-
ity, and the negative class is the majority. Class imbalance is
common in practice. For example, even if the original data set
is class-balanced, it is still possible that the binary classification
problems made by OvR or MvM are class-imbalanced. There-
fore, it is necessary to understand the basic approach to class
imbalance issues.

It is easy to understand from the perspective of linear clas-
sifiers. When we use y = w ' x + b to classify a new sample x,
we are actually comparing the predicted value with a thresh-
old value, e.g., positive if y > 0.5 and negative otherwise. The
value y represents the likelihood of being positive, and the odds
l%y represent the ratio of likelihoods for being positive over
negative. Setting the threshold to 0.5 implies that the classifier
assumes the probabilities of a sample being positive or negative
are equal. The decision rule of the classifier is
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Since OvR and MvM do the
same process for each class, the
effects of class imbalance in
binary classifications will cancel
each other, and no special
treatment is needed.
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y

If I > 1 then predict as a positive. (3.46)
When the classes are imbalanced, let m™ and m~ denote the

number of positive and negative samples, respectively. Then,

the observed class ratio ”m7—f represents the ground-truth class

ratio since the training set is assumed to be an unbiased sam-

3 pling. Therefore, a new sample is classified as positive if the

Unbiased sampling means the predicted odds are higher than the observed odds, i.e,
ground-truth class ratio is
maintained in the training set. y mT
If > — then predict as a positive. (3.47)
o

-y

However, since our classifier makes decisions via (3.46), it
is necessary to adjust its prediction value so that when making
a decision based on (3.46), it is actually executing (3.47). To do
this, we can use
/ _
y __ry .n (3.48)
1—y 11—y wmt
This gives a basic strategy for handling class imbalance learning—
rescaling.

Also known as rebalance. Though the idea of rescaling is simple, its implementation
is non-trivial since the assumption “the training set is an unbi-
ased sampling” often does not hold in practice. In other words,
the ratio inferred from the training set may not be accurate.
Overall, there are three major rescaling approaches. The first
approach is to perform undersampling on the negative class,
that is, some negative samples are selectively dropped so that
the classes are balanced. The second approach is to perform
oversampling on the positive class, that is, increase the number
of positive samples. The third approach is threshold-moving,

Undersampling is also known as  which uses the original training set for learning but uses (3.48)

'downsampling and oversampling in the decision process.

is also known as upsampling. Since undersampling discards negative samples, its compu-
tational cost is much lower compared to oversampling, which
increases the number of positive samples. It is worth mention-
ing that oversampling is not simply duplicating existing sam-
ples; otherwise, serious overfitting will happen. A represen-
tative oversampling method is SMOTE (Chawla et al. 2002),
which generates synthetic samples by interpolating neighbor-
hood samples of the positive class. For undersampling, we may
lose valuable information if the negative samples are discarded
randomly. EasyEnsemble (Liu and Zhou 2009) is a represen-
tative undersampling algorithm, which utilizes the ensemble
learning mechanism. EasyEnsemble divides negative samples
into several smaller subsets for different learners such that
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undersampling is performed for each learner, but overall there
is little loss of information.

Rescaling is also the basis for cost-sensitive learning, in
which m~/m™ in (3.48) is replaced with cost™/cost™, where
cost™ is the cost of misclassifying positive as negative and cost™
is the cost of misclassifying negative as positive.

3.7 Further Reading

Sparse representation has gained attention in recent years.
However, finding the solution with optimal sparsity is not
easy, even for simple models like multivariate linear regres-
sions. Essentially, the sparsity problem corresponds to the
Lo norm optimization, which is typically NP-hard. LASSO
(Tibshirani 1996) approximates the Lo norm with the L norm,
and is an important technique for finding the sparse solution.

Allwein et al. (2000) showed that OvO and OvR are spe-
cial cases of ECOC. It was hoped that there exists a general
codeword for all problems, but Crammer and Singer (2002)
argued that codeword design should be problem-dependent
and proved that the searching for the optimal discrete coding
matrix is an NP-complete problem. Since then, many problem-
dependent ECOC coding methods were proposed, generally
by identifying representative binary classification problems to
encode (Pujol et al. 2006, 2008). An open-source ECOC library
was developed by Escalera et al. (2010).

ECOC is not the only implementation of MvM. For exam-
ple, (Platt et al. 2000) used Directed Acyclic Graph (DAG)
to divide classes into a tree structure, where each node cor-
responds to a binary classifier. Some efforts have been made
on solving the multiclass problem directly without convert-
ing it into binary classifications, e.g., multiclass support vector
machines (Crammer and Singer 2001; Lee et al. 2004).

The class-based misclassification cost (e.g., the cost matrix
in @ Table 2.2) is the most widely studied topic in cost-sensitive
learning. In this book, cost-sensitive learning is used on default
to refer to the studies on misclassification cost, except as oth-
erwise stated. Elkan (2001) proved that the optimal solution of
binary classification problems could be obtained via rescaling.
However, (Zhou and Liu 2006a) showed that closed-form solu-
tions only exist under certain conditions for multiclass classifi-
cation problems. Though both cost-sensitive learning and class
imbalance learning can leverage the rescaling technique, they
are essentially different (Zhou and Liu 2006b). Note that the
cost of the minority class is often higher; otherwise, no special
treatment is needed.
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See Chap. 11.
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Though there are multiple classes in multiclass classifica-
tion, each sample belongs to a single class. If more than one
label is to be assigned, then it turns into multi-label learning . For
example, a picture can be labeled as blue sky, cloud, sheep,
and natural scene at the same time. Multi-label learning is a
vigorous research area in recent years. Readers interested in this
topic can find more information in Zhang and Zhou (2014).



Exercises

Exercises

3.1 Analyze in what situations the bias term b is not needed in
(3.2).

3.2 Prove that with respect to the parameter w, the objective
function (3.18) of logistic regression is non-convex, but its log-
likelihood function (3.27) is convex.

3.3 Implement and run logistic regression on the watermelon
data set 3.0c.

3.4 Choose any two data sets from UCI, and compare the error
of logistic regression obtained from 10-fold cross-validation
and hold-out.

3.5 Implement and run linear discriminant analysis on the
watermelon data set 3.0a.

3.6 Linear discriminant analysis only works well for linearly
separable data. Design an improved version that can perform
reasonably well on nonlinearly separable data.

3.7 Let the length of codeword be nine and the number of
classes be four. Find the theoretically optimal ECOC binary
coding under the Hamming distance and prove its optimality.

3.8 * The correction function of ECOC makes the important
assumption that errors are independently incurring at each
codeword position with similar probabilities. For the binary
classifier obtained from ECOC coding, analyze the possibility
that it satisfies the above assumption and the impact of such a
possibility.

3.9 OvR and MvM decompose multiclass problems into binary
problems. Analyze why no treatment is needed for them even
when the binary problems are class imbalance.

3.10 * Derive the conditions for obtaining the theoretically
optimal solution via rescaling in multiclass cost-sensitive learn-
ing (consider only class-based cost).
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The watermelon data set 3.0« is
in @ Table 4.5.

UCI data sets can be found at
» http://archive.ics.uci.edu/ml/.

Linearly separable means there
exists at least one linear
hyperplane that can separate
samples of different classes. See
Sect. 6.3.
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The other two are Lagrange and
Laplace. Since the surnames of

them all start with the letter “L”,
they are called “3L” at that time.

Break Time

Short Story: About the Least Squares Method

In 1801, Ceres, the
first discovered aster- | ccesieeosis
oid, was observed by
the [talian astronomer
Piazzi. However, after
being tracked for 40
days, Ceres disappeared
behind the sun. Many (Gauss on a 1993 Deutsche Mark banknote)
astronomers have tried

to recover its posi-

tion but all failed. This

drew the attention of the German mathematician Gauss (1777—
1855), who developed a method and managed to calculate
the position of Ceres using the observation data from Piazzi.
With the predicted position and time, Gauss and the German
astronomer Olbers recovered Ceres. In 1809, Gauss published
his method, which is the method of least squares, in his book
Theory of the Motion of the Heavenly Bodies Moving about the
Sun in Conic Sections.

In 1805, New Methods for the Determination of Comet Orbits
was published by the French mathematician Legendre (1752—
1833), who have made numerous contributions to elliptic inte-
gral, number theory, and geometry. In this book, the least
squares method was found in the appendix. In the eighteenth
and nineteenth centuries, Legendre was one of the three pio-
neers in the French mathematics community, and was a fellow
of French Academy of Sciences. However, Legendre’s book
did not discuss the error analysis of the least squares method,
which was covered in Gauss’s book in 1809. The error analysis
is of great importance for statistics and even machine learning.
In addition to this contribution, Gauss claimed that he started
using least squares in 1799, and therefore the invention of the
least squares method is often attributed to Gauss. Those two
mathematicians had some debates at that time, and there is yet
no conclusion after the efforts made by historians of mathe-
matics.
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Chapter 4 - Decision Trees

4.1 Basic Process

Decision trees are a popular class of machine learning meth-
ods. Taking binary classification as an example, we can regard
the task as deciding the answer to the question “Is this instance
positive?” As the name suggests, a decision tree makes decisions
based on tree structures, which is also a common decision-
making mechanism used by humans. For example, in order to
answer the question “Is this watermelon ripe?” we usually go
through a series of judgments or sub-decisions: we first con-
sider “What is the color?” If it is green then “What is the shape
of root?” If it is curly then “What is the knocking sound?”
Finally, based on the observations, we decide whether the
watermelon is ripe or not. Such a decision process is illustrated
in @ Figure4.1.

The conclusions at the end of the decision process corre-
spond to the possible classifications, e.g., ripe or unripe. Every
question asked in the decision process is a test on one feature,
e.g.,color =? or root =?. Every test leads to either the conclu-
sion or an additional test conditioned on the current answer.
For example, if the current decision is color = green, the next
test root =? considers only green watermelons.

Typically, a decision tree consists of one root node, multiple
internal nodes, and multiple leaf nodes. The leaf nodes corre-
spond to the decision outcomes, and every other node corre-
sponds to a feature test. The samples in each node are divided
into child nodes according to the splitting results of features.
Each path from the root node to the leaf node is a decision
sequence. The goal is to produce a tree that can generalize to
predict unseen samples. The construction of decision trees fol-
lows the divide-and-conquer strategy, as shown in @ Algorithm
4.1.

Fig.4.1 A decision tree of the watermelon problem
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Algorithm 4.1 Decision Tree Learning

Input: Training set D = {(x1, y1), (x2,2), -, (X, Vi) };
Feature set A = {aj, a2, ..., ay}.
Process: Function TreeGenerate(D, A4)
1. Generate node i;
. if All samples in D belong to the same class C then
Mark node i as a class C leaf node; return
. end if
. if A = @ OR all samples in D take the same value on 4 then
Mark node i as a leaf node, and its class label is the majority class
in D; return
7. end if
8: Select the optimal splitting feature a, from A4;
9: for each value ), in a, do
10: Generate a branch for node i; Let D, be the subset of samples
taking value @} on a,;
11: if D, is empty then
12: Mark this child node as a leaf node, and label it with the major-
ity class in D; return
13: else
14: Use TreeGenerate(D,, A\{a4}) as the child node.
15: end if
16: end for
Output: A decision tree with root node i.

S v oA W

As shown in @ Algorithm 4.1, the tree is generated recur-
sively, and the recursion stops in any of the following three
cases: (1) all samples in the current node belong to the same
class, that is, no further splitting is needed; (2) the current fea-
ture set is empty, or all samples have the same feature values,
that is, not splittable; (3) there is no sample in the current node,
that is, not splittable.

In case (2), we mark the current node as a leaf node and
set its label to the majority class of its samples. In case (3), we
mark the current node as a leaf node but set its label to the
majority class of the samples in its parent node. Note that the
two cases are different: case (2) uses the posterior probability
of the current node, whereas case (3) uses the class probability
of the parent node as the prior probability of the current node.

4.2 Split Selection

The core of the decision tree learning algorithm is the line 8 of
O Algorithm 4.1, that is, selecting the optimal splitting feature.
Generally speaking, as the splitting process proceeds, we wish
more samples within each node to belong to a single class, that
is, increasing the purity of each node.

. 4

Recursive return, case (1).

Recursive return, case (2).

We will discuss the optimal split
selection in the next section.

Recursive return, case (3).

Exclude a4 from A.
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In the calculation of entropy,
plogy p=0whenp=0.

The minimum of Ent(D) is 0
and the maximum is logy |V|.

The term ID in ID3 stands for
Iterative Dichotomiser.

4.2.1 Information Gain

One of the most commonly used measures for purity is informa-
tion entropy, or simply entropy. Let p; denotes the proportion
ofthe kthclassin the current data set D, wherek = 1,2, ..., |)].
Then, the entropy is defined as

B

Ent(D) = — Zpk log, pk. 4.1)
k=1

The lower the Ent(D), the higher the purity of D.

Suppose that the discrete feature ¢ has ¥ possible values
{a',a%, ..., a"}. Then, splitting the data set D by feature
produces V' child nodes, where the vth child node D" includes all
samples in D taking the value a” for feature a. Then, the entropy
of DY can be calculated using (4.1). Since there are different
numbers of samples in the child nodes, a weight |D"|/|D] is
assigned to reflect the importance of each node, that is, the
greater the number of samples, the greater the impact of the
branch node. Then, the information gain of splitting the data
set D with feature a is calculated as

V
Gain(D, a) = Ent(D) — Z

v=1

|D"|

1D

Ent(D"). 4.2)

In general, the higher the information gain, the more purity
improvement we can expect by splitting D with feature a. There-
fore, information gain can be used for split selection, that is,
using a, = argmax as the splitting feature on the line 8

aeAGain(D,a)
of @ Algorithm 4.1. The well-known decision tree algorithm
ID3 Quinlan (1986) takes information gain as the guideline for
selecting the splitting features.

Let us see a more concrete example with the watermelon
data set 2.0 in @ Table 4.1. This data set includes 17 training
samples, which are used to train a decision tree classifier for
predicting the ripeness of uncut watermelons, where |y = 2.
In the beginning, the root node includes all samples in D, where
plL= % of them are positive and p) = % of them are negative.
According to (4.1), the entropy of the root node is

2

8 8 9 9
Ent(D) = — Zpk logy pi = — <ﬁ logy 7 + 17 logy ﬁ) =0.998.
k=1

Then, we need to calculate the information gain of each
feature in the current feature set {color, root, sound, tex-
ture, umbilicus, surface}. Suppose that we have selected color,
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B Tab.4.1 The watermelon data set 2.0
ID color root sound texture umbilicus  surface ripe
1 green curly muffled clear hollow hard true
2 dark curly dull clear hollow hard true
3 dark curly muffled clear hollow hard true
4 green curly dull clear hollow hard true
5 light curly muffled clear hollow hard true
6 green slightly curly muffled clear slightly hollow soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
8 dark slightly curly muffled clear slightly hollow hard true
9 dark slightly curly dull slightly blurry slightly hollow hard false
10 green  straight crisp clear flat soft false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear slightly hollow soft false
16 light curly muffled blurry flat hard false
17 green curly dull  slightly blurry slightly hollow hard false

which has three possible values {green, dark, light}. If D is split
by color, then there are three subsets: D! (color = green), D>

(color = dark), and D? (color = light).

Subset D! includes six samples {1, 4, 6, 10, 13, 17}, in which
P = % of them are positive and py = % of them are negative.
Subset D? includes six samples {2, 3, 7, 8, 9, 15}, in which p; =
% of them are positive and p, = % of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p; = % of
them are positive and py = % of them are negative. According

to (4.1), the entropy of the three child nodes are

Ent(D') = — <
4 2 2
Ent(D?) = — (— log, 3 + —log, —) = 0.918,

Ent(D?) = — (

Then, we use (4.2) to calculate the information gain of splitting

by color as

3
6
4
6
1
5

6

5

']

6

3 3 3
10g2 6 + 8 10g2 g) = 1000,

1 4 4
10g2 g + - 10g2 g =0.722.

3
Gain(D, color) = Ent(D) — Z }—Ent(D")

=0.998 — <

=0.109.

D
|D|

v=1

s x 1.000 + s x 0.918 + 2 x 0.722

17

17

17

)
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texture is no longer a candidate
splitting feature.

texture=7?

clear blurry
slightly blurry

[ {1,2,3,4,5,6, 8, 10, 15}] {{77 9,13, 14, 17} } [ {11, 12, 16}]

Fig.4.2 Splitting the root node by texture

Similarly, we calculate the information gain of other fea-
tures:

Gain(D, root) = 0.143; Gain(D, sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D, umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest information
gain, it is chosen as the splitting feature. @ Figurc 4.2 shows
the result of splitting the root node by texture.

Then, each child node is further split by the decision tree
algorithm. For example, the first child node (i.e., texture =
clear) includes nine samples: D! = {1,2,3,4,5,6,8, 10, 15},
and the available feature set is {color, root, sound, umbilicus,
surface}. We calculate the information gains of these candidate
features on D!:

Gain(D!, color) = 0.043;  Gain(D!, root) = 0.458;
Gain(D!, sound) = 0.331;  Gain(D!, umbilicus) = 0.458;
Gain(Dl, surface) = 0.458.

Since root, umbilicus, and surface lead to the highest infor-
mation gains, any of them can be chosen as the splitting feature.
Repeating this process for every node, we can obtain the final
decision tree, as shown in @ Figure4.3.

4.2.2 Gain Ratio

The process described above intentionally ignored the column
ID. If we consider ID as a candidate splitting feature, then,
from (4.2), we know its information gain is 0.998, which is
much higher than that of any other features. This is reasonable
since ID produces 17 child nodes, and each node has only a
single sample with maximum purity. However, such a decision
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texture=7?

clear

Fig.4.3 The information gain-based decision tree generated from B Table
4.1

tree does not have generalization ability and cannot effectively
predict new samples.

It turns out that the information gain criterion is biased
toward features with more possible values. To reduce this bias,
the renowned decision tree algorithm C4.5 (Quinlan 1993)
employs gain ratio to select features instead of employing infor-
mation gain. Using a notation similar to (4.2), the gain ratio of
feature a is defined as

Gain(D,
Gain_ratio(D, a) = %, (4.3)
where
v
|D”| |D”|
V@) ==Y ——log, — 4.4
(@) Z|D| & 7 (4.4)

v=1

is called the intrinsic value of feature a (Quinlan 1993). IV(a) is
large when feature ¢ has many possible values (i.e., large V).
Taking the watermelon data set 2.0 as an example, we have:
IV (surface) = 0.874 (V' = 2), IV(color) = 1.580 (V' = 3), and
IV(ID) = 4.088 (V = 17).

It should be noted that, in contrast to information gain, the
gain ratio is biased toward features with fewer possible values.
For this reason, the C4.5 algorithm does not use gain ratio
directly for selecting the splitting feature, but uses a heuristic
method (Quinlan 1993): selecting the feature with the highest
gain ratio from the set of candidate features with an informa-
tion gain above the average.
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CART stands for Classification
and Regression Tree, which is a
well-known decision tree
algorithm applicable to both
classification and regression.

See Sect. 2.1 for overfitting.

4.2.3 GiniIndex

CART Breiman et al. (1984) employs the Gini index for select-
ing the splitting feature. Using a notation similar to (4.1), the
Gini value of data set D is defined as

]
Gini(D) = > > pupie
k=1k'#k
Y

=1-> . 4.5)

k=1

Intuitively, Gini(D) represents the likelihood of two sam-
ples we randomly selected from data set D belonging to differ-
ent classes. The lower the Gini(D), the higher the purity of data
set D.

Using a notation similar to (4.2), the Gini index of feature
a is defined as

Vv |

D
Gini_index(D, a) = Z ||D|
v=1

Gini(D"). (4.6)

Given a candidate feature set A4, we select the feature with
the lowest Gini index as the splitting feature, that is, a, =
arg min, ,Gini_index(D, a).

4.3 Pruning

Pruning is the primary strategy of decision tree learning algo-
rithms to deal with overfitting. To correctly classify the train-
ing samples, the learner repeats the split procedure. However,
if there are too many branches, then the learner may be misled
by the peculiarities of the training samples and incorrectly con-
sider them as the underlying truth. Hence, we can prune some
of the branches to reduce the risk of overfitting.

The general pruning strategies include pre-pruning and post-
pruning (Quinlan 1993). Pre-pruning evaluates the improve-
ment of the generalization ability of each split and cancels a
split if the improvement is small, that is, the node is marked as
aleaf node. In contrast, post-pruning re-examines the non-leaf
nodes of a fully grown decision tree, and a node is replaced with
a leaf node if the replacement leads to improved generalization
ability.

How do we know if the generalization ability has been
improved? We can use the performance evaluation methods
introduced in Sect. 2.2. For example, we can use the hold-out
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umbilicus=7

hollow flat

slightly hollow

color="7 unripe

Fig.4.4 The unpruned decision tree generated from @ Table 4.2

method to reserve part of the data as a validation set for per-
formance evaluation. Given the watermelon data set 2.0 in
@ Table 4.1, suppose the samples are randomly partitioned
into a training set {1, 2, 3, 6, 7, 10, 14, 15, 16, 17} and a valida-
tion set {4, 5, 8,9, 11, 12, 13}, as shown in @ Table 4.2.

0 Tab. 4.2 Splitting the watermelon data set 2.0 into a training set (above
the double dividing line) and a validation set (below the double dividing line)

ID color root sound texture umbilicus  surface ripe
1 green curly muffled clear hollow hard true
2 dark curly dull clear hollow hard true
3 dark curly muffled clear hollow hard true
6 green slightly curly muffled clear slightly hollow soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
10 green  straight crisp clear flat soft false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear slightly hollow soft false
16 light curly muffled blurry flat hard false
17 green curly dull  slightly blurry slightly hollow hard false
ID color root sound texture umbilicus  surface ripe
4 green curly dull clear hollow hard true
5 light curly muffled clear hollow hard true
8 dark slightly curly muffled clear slightly hollow hard true
9 dark slightly curly dull slightly blurry slightly hollow hard false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false

Suppose we use the information gain criterion described in
Sect. 4.2.1 for deciding the splitting features, then 8 Figure 4.4
shows the decision tree trained on the data set in @ Table 4.2.
For ease of discussion, we numbered some nodes in the figures.
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When there is more than one
class with the largest number of
samples, we randomly select one
of the classes.

validation accuracy
before splitting: 42.9%
after splitting: 71.4%
decision by pre-pruning: split

1 “‘umbilicus="7"

umbilicus=7?

validation accuracy validation accuracy
before splitting: 71.4%
after splitting: 71.4%

decision by pre-pruning: don’t split

before splitting: 71.4%
after splitting: 57.1%
decision by pre-pruning: don’t split

“color="7" “root="?"

Fig.4.5 The pre-pruned decision tree generated from @ Table 4.2

4.3.1 Pre-pruning

Let us take a look at pre-pruning first. According to the infor-
mation gain criterion, umbilicus should be chosen to split
the training set into three branches, as shown in 8 Figure4.5.
However, shall we proceed with this split? Pre-pruning decides
by comparing the generalization abilities before and after split-
ting.

Prior to splitting, all samples are in the root node. When
no splitting is performed, this node is marked as a leaf node
according to line 6 of @ Algorithm 4.1, and its label is set to
the majority class (i.e., ripe). By evaluating this single-node
decision tree using the validation set in @ Table 4.2, we have the
samples {4, 5, 8} correctly classified and the other four samples
misclassified. Then, the validation accuracy is % x 100% =
42.9%.

After splitting the root node by umbilicus, the samples
are placed into three child nodes, as shown in @ Figure4.5:
node @ with the samples {1, 2, 3, 14}, node ® with the samples
{6,7, 15,17}, and node @ with the samples {10, 16}. We mark
these 3 nodes as leaf nodes and set the labels to the majority
classes, that is, @ is ripe, @ is ripe, and @ is unripe. Then, the
validation accuracy is % x 100% = 71.4% > 42.9%. Since the
validation accuracy is improved, the splitting using umbilicus
is adopted.

After that, the decision tree algorithm moves on to split
node @, and color is chosen based on the information gain
criterion. However, since the sample {5} in the validation set is
misclassified, the validation accuracy drops to 57.1%. Hence,
the pre-pruning strategy stops splitting node @. For node 3,
the best feature to split onis root. However, since the validation
accuracy after splitting remains the same as 71.4%, pre-pruning
strategy stops splitting node ®. For node @, no splitting is
needed since all samples belong to the same class.
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Finally, the pre-pruning decision tree constructed based on
the data in @ Table 4.2 is given in 8 Figure4.5, and its vali-
dation accuracy is 71.4%. Because there is only one splitting,
such a decision tree is also called a decision stump.

By comparing @ Figures4.5 and 8 4.4, we can see that
applying pre-pruning reduces the branches of the decision tree,
which reduces not only the risk of overfitting but also the com-
putational cost of training and testing. On the other hand,
although some branches are prevented by pre-pruning due to
little or even negative improvement on generalization ability,
it is still possible that their subsequent splits can lead to sig-
nificant improvement. These branches are pruned due to the
greedy nature of pre-pruning, and it may introduce the risk of
underfitting.

4.3.2 Post-pruning

Post-pruning allows a decision tree to grow into a complete
tree, e.g., @ Figure 4.4 shows a fully grown decision tree based
ondatain @ Table4.2. The validation accuracy of this decision
tree is 42.9%.

In @ Figure 4.4, node ® is the first one examined by post-
pruning. If the subtree led by node ® is pruned and replaced
with aleaf node, then it includes the samples {7, 15} and its label
is set to the majority class ripe. Since the validation accuracy
increases to 57.1%, the pruning is performed, resulting in the
decision tree, and the result is shown in @ Figure 4.6.

Next, post-pruning examines node . If the subtree led by
node ® is replaced by a leaf node, then it includes the samples
{6, 7, 15} and its label is set to the majority class ripe. Since the
validation accuracy remains at 57.1%, no pruning is performed.

If the subtree led by node @ is replaced by a leaf node, then
it includes the samples {1, 2, 3, 14} and its label is set to the
majority class ripe. Since the validation accuracy increases to
71.4%, the pruning is performed.

For nodes ® and @, replacing them as leaf nodes gives
the validation accuracies 71.4% and 42.9%, respectively. Since
there is no improvement in both cases, the nodes remain
unchanged.

Finally, the post-pruning decision tree constructe
using data in @ Table 4.2 is given in @ Figure 4.6, and its vali-
dation accuracy is 71.4%.

By comparing 8 Figs. 4.6 and 8 4.5, we can see that post-
pruning keeps more branches than pre-pruning. In general,
post-pruning is less prone to underfitting and leads to better
generalization ability compared to pre-pruning. However, the
training time of post-pruning is much longer since it takes a

89 4

Although the accuracy of the
validation set is not improved in
this case, according to Occam’s
razor principle, the model would
be better after pruning. In fact,
the actual decision tree
algorithm usually needs pruning
in this case. For the convenience
of drawing, this book adopts a
conservative strategy of not
pruning.



90 Chapter 4 - Decision Trees

The split point can be set to the

maximum observed Jyalue of this
. 7 g 1 .

feature in | @, ¢ +g . Doing

so ensures that all split points
are the values appeared in the
training set (Quinlan 1993).

bottom-up strategy to examine every non-leaf node in a com-
pletely grown decision tree.

4.4 Continuous and Missing Values

4.41 Handling Continuous Values

Our discussions so far are limited to discrete features. However,
since continuous features are also common in practice, it is
necessary to know how to incorporate continuous features into
decision trees.

We cannot directly split nodes with continuous features
since their values are infinite. The discretization techniques
come in handy in such cases. The most straightforward dis-
cretization strategy is bi-partition, which is used by C4.5 deci-
sion tree (Quinlan 1993).

Given a data set D and a continuous feature a, suppose n
values of a are observed in D, and we sort these values in ascend-
ing order, denoted by {a',d?, ..., a"). Witha split point ¢, D is
partitioned into the subsets D; and D", where D, includes the
samples with the value of a not greater than ¢, and D includes
the samples with the value of a greater than ¢. For adjacent fea-
ture values ¢’ and a'*!, the partitions are identical for choosing
any ¢ in the interval [¢, a’t1). As a result, for continuous fea-
ture a, there are n — 1 elements in the following set of candidate
split points:

i i+1
T, = %ugign—l , 4.7)

. . iy i+l . . . .
where the midpoint % is used as the candidate split point
for the interval [¢/, a't!). Then, the split points are examined in
the same way as discrete features, and the optimal split points

umbilicus=?

unripe
original branch —
“ o —
ToOt="
validation accuracy
before pruning: 57.1%
afiter pruning: 71.4%
decision by post-pruning: pruning original branch
“texture=7"
validation accuracy

.99

A — before prunin,

after pruning: 5
decision by post-pruning: pruning

Fig.4.6 The post-pruned decision tree generated from @ Table 4.2
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are selected for splitting nodes. For example, we can modify
(4.2) as

Gain(D, a) = max Gain(D, a, t)

teT,
= max Ent(D) — Z |D—;\|Ent(D)‘) (4.8)
= e, D] SO

Ae{—,+}

where Gain(D,a,t) is the information gain of
bi-partitioning D by ¢, and the split point with the largest
Gain(D, a, t) is selected.

For illustration, we create the watermelon data set 3.0 in
@ Table 4.3 by adding two continuous features density and
sugar to the watermelon data set 2.0. Now, we build a decision
tree using this new data set.

B Tab.4.3 The watermelon data set 3.0

ID color root sound texture umbilicus  surface density sugar ripe
1 green curly muffled clear hollow hard 0.697 0.460 true
2 dark curly dull clear hollow hard 0.774 0.376 true
3 dark curly muffled clear hollow hard  0.634 0.264 true
4 green curly dull clear hollow hard 0.608 0.318 true
5 light curly muffled clear hollow hard 0.556 0.215 true
6 green slightly curly muffled clear slightly hollow soft  0.403 0.237 true
7 dark slightly curly muffled slightly blurry slightly hollow soft  0.481 0.149 true
8 dark slightly curly muffled clear slightly hollow hard 0.437 0.211 true
9 dark slightly curly dull slightly blurry slightly hollow hard 0.666 0.091 false
10 green  straight crisp clear flat soft  0.243 0.267 false
11 light straight crisp blurry flat hard 0.245 0.057 false
12 light curly muffled blurry flat soft  0.343 0.099 false
13 green slightly curly muffled slightly blurry hollow hard 0.639 0.161 false
14 light slightly curly dull slightly blurry hollow hard  0.657 0.198 false
15 dark slightly curly muffled clear slightly hollow soft ~ 0.360 0.370 false
16 light curly muffled blurry flat hard 0.593 0.042 false
17 green curly dull  slightly blurry slightly hollow hard 0.719 0.103 false

At the beginning, all 17 training samples have different
density values. According to (4.7), the candidate split point
set includes 16 values: Tgensity = {0.244,0.294, 0.351, 0.381,
0.420,0.459,  0.518,0.574, 0.600, 0.621, 0.636, 0.648, 0.661,
0.681, 0.708, 0.746}. According to (4.8), the information gain
of density is 0.262, and the corresponding split point is 0.381.

For the feature sugar, its candidate split point set includes
16 values: Tsugar = {0.049, 0.074, 0.095, 0.101, 0.126, 0.155,
0.179, 0.204, 0.213, 0.226, 0.250, 0.265, 0.292, 0.344, 0.373,
0.418}. Similarly, the information gain of sugar is 0.349 accord-
ing to (4.8), and the corresponding split point is 0.126.

Combining the results from Sect.4.2.1, the information
gains of features in @ Table 4.3 are
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For example, using

density < 0.381 in a parent
node does not forbid the use of
density < 0.294 in a child node.

Gain(D, color) = 0.109; Gain(D, root) = 0.143;
Gain(D, sound) = 0.141; Gain(D, texture) = 0.381;
Gain(D, umbilicus) = 0.289; Gain(D, surface) = 0.006;
Gain(D, density) = 0.262; Gain(D, sugar) = 0.349.

Since splitting by texture has the largest information gain,
it is selected as the splitting feature for the root node. The split-
ting process proceeds recursively, and the final decision tree is
shown in B Figure4.7.

Unlike discrete features, a continuous feature can be used
as a splitting feature more than once in a decision sequence.

4.42 Handling Missing Values

In practice, data is often incomplete, that is, some feature values
are missing in some samples. Taking medical diagnosis data as
an example, feature values such as HIV test results could be
unavailable due to privacy concerns. Sometimes we may have
alarge number of incomplete samples, especially when there are
many features. Though we can simply discard the incomplete
samples, it is a huge waste of data. For example, 8 Table 4.4
shows a watermelon data set with missing values. If we discard
the incomplete samples, then we will have only four samples
{4, 7, 14, 16} left for training. Apparently, we need a method
to utilize incomplete samples.

Learning from incomplete samples raises two problems: (1)
how to choose the splitting features when there are missing
values? (2) how to split a sample with the splitting feature value
missing?

Given a training set D and a feature a, let D be the sub-
set of samples in D that has values of a. For problem (1), we
can simply use D to evaluate a. Let {al, a, ..., aV} denote the
V possible values of a, D denote the subset of samples in D

texture=7

Fig. 4.7 The information gain-based decision tree generated from @ Table
4.3
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O Tab.4.4 The watermelon data set 2.0«

ID color root sound texture umbilicus  surface ripe
1 - curly muffled clear hollow hard true
2 dark curly dull clear hollow - true
3 dark curly - clear hollow hard true
4 green curly dull clear hollow hard true
5 - curly muffled clear hollow hard true
6 green slightly curly muffled clear - soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
8 dark slightly curly muffled - slightly hollow hard true
9 dark - dull  slightly blurry slightly hollow hard false
10 green  straight crisp - flat soft false
11 light straight crisp blurry flat - false
12 light curly - blurry flat soft false
13 - slightly curly muffled slightly blurry hollow hard false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear - soft false
16 light curly muffled blurry flat hard false
17 green - dull  slightly blurry slightly hollow hard false

taking the value «*, and D;, denote the subset of samples in D
belonging to the kth class, where k = 1,2, ..., |Y|. Then, we
have D = UEil Dy and D = |J!_, D". We assign a weight w,
to each sample x, and define

er[) Wx
p = xed¥x (4.9)
erD Wy
n W
i = Lrch; A<k <D, (4.10)
eri) Wy
D L 4.11)
erf) Wx

Intuitively, for the feature @, p represents the proportion of
samples without missing values, p; represents the proportion
of the kth class in all samples without missing values, and 7, rep-
resents the proportion of samples taking the feature value a” in

all samples without missing values. Then, we have Z‘k)il =1

and Y/ 7 = 1.
With the above definitions, we extend the information gain
(4.2) to

Gain(D, a) = p x Gain(D, a)
V
— px | Ent (Z)) — 3 FEnt (DV) . (412
v=Il

where, according to (4.1),
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At the beginning of decision tree
learning, the weights are
initialized to 1 for all samples in
the root node.
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1)

Ent(D) = — ) p log; pi.
k=1

For problem (2), when the value of @ is known, we place the
sample x into the corresponding child node without changing
its weight w,. When the value of « is unknown, we place the
sample x into all child nodes, and set its weight in the child
node of value a" to 7, - wy. In other words, we place the same
sample into different child nodes with different probabilities.

The above solution is employed by the C4.5 algorithm (Quin-
lan 1993), and we will use it to construct a decision tree for
@ Table 4.4.

In the beginning, the root node includes all of the 17 samples
in D, and all samples have the weight of 1. Taking color as
an example, the set of samples without missing values of this
feature includes 14 samples {2, 3,4, 6,7, 8,9, 10, 11, 12, 14, 15,
16, 17}, denoted by D. The entropy of D is calculated as

2
Ent(D) = — ) _ i logs pi
k=1
6 6 8 8
— (1o = + S logy — ) = 0.985.
(14 o827yt g o8 14)

Let D', D?, and D? be the subsets of samples with color =
green, color = dark, and color = light, respectively. Then, we
have

~ 2 2 2 2
El’lt(Dl) = — (Z log2 Z + Z 10g2 Z) = 1.000,

- 4 4 2 2
Ent(Dz) = — <g logz 8 + g logz 8) = 0.918,
- 0 0 4 4
Ent(D?) = — ( - log, — + — log, — | = 0.000.
nt(D”) <4 og24+4 og24> 0.000

The information gain of color for subset D is

3
Gain(D, color) = Ent(D) — » 7 Ent(D")

v=1
4 6 4
=0.985 — <ﬁ x 1.000 + I x 0.918 + 1 X 0.000)

= 0.306.

The information gain of color for data set D is
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texture=?7

slightly blurry blurry

color=7

Fig. 4.8 The information gain-based decision tree generated from @ Table
4.4

- 14
Gain(D, color) = p x Gain(D, color) = 7 x 0.306 = 0.252.

Similarly, we can calculate the information gain of all fea-
tures for D:

Gain(D, color) = 0.252; Gain(D, root) = 0.171;
Gain(D, sound) = 0.252; Gain(D, texture) = 0.424;
Gain(D, umbilicus) = 0.289; Gain(D, texture) = 0.006.

Since splitting by texture has the largest information gain,
itis selected for splitting the root node. Specifically, the samples
{1,2,3,4,5,6, 15} are placed into the child node of texture =
clear, the samples {7,9, 13, 14, 17} are placed into the child
node texture = slightly blurry, and the samples {11, 12, 16}
are placed into the child node of texture = blurry. The weights
of these samples (i.e., 1) remain unchanged in the child nodes.
However, since the value of texture is missing for the sample
{8}, the sample is placed into all of the three child nodes with
different weights: %, %, and 1—35 The sample {10} is processed
similarly. The splitting process proceeds recursively, and the
final constructed decision tree is shown in B8 Figure 4.8.

4.5 Multivariate Decision Trees

If we regard each feature as a coordinate axis in the coordinate
space, a sample with d features corresponds to a point in the
d-dimensional space. Classifying samples is then about finding
the decision boundaries in this space to separate the samples
of different classes. For decision trees, the decision boundaries
have a distinct characteristic: axis-parallel, that is, the decision
boundaries are multiple segments parallel to the axes.
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The watermelon data set 3.0« is
a copy of the watermelon data
set 3.0 excluding discrete
features.

O Tab.4.5 The watermelon data set 3.0«

ID density sugar ripe
1 0.697 0.460 true
2 0.774 0.376 true
3 0.634 0.264 true
4 0.608 0.318 true
5 0.556 0.215 true
6 0.403 0.237 true
7 0.481 0.149 true
8 0.437 0.211 true
9 0.666 0.091 false
10 0.243 0.267 false
11 0.245 0.057 false
12 0.343 0.099 false
13 0.639 0.161 false
14 0.657 0.198 false
15 0.360 0.370 false
16 0.593 0.042 false
17 0.719 0.103 false

Fig.4.9 The decision tree generated from B Table 4.5

For example, @ Figure 4.9 shows the decision tree trained
on the watermelon data set 3.0ac in 8 Table 4.5, and the corre-
sponding decision boundaries are shown in 8 Figure 4.10.

From B Figure4.10, we can observe that every segment
is parallel to the axis. Since every segment corresponds to
a specific value of a feature, such decision boundaries make
the learning outcome easy to interpret. In practice, the deci-
sion boundaries often need many segments for good approxi-
mations, e.g., @ Figure4.11. However, such complex decision
trees are often slow to make predictions since they contain

many feature tests.
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Fig.4.10 The decision boundaries of the decision tree in 8 Figure 4.9

yA + ripe
— unripe

o X

Fig.4.11 The piecewise approximation of complex decision boundaries

If we can make the decision boundaries oblique, as shown
by theredlinein @ Figure4.11, then the decision tree model can
be significantly simplified. Multivariate decision tree enables
oblique partitions or even more complicated decision bound- ~ Also known as oblique decision
aries. With oblique boundaries, each non-leaf node isno longer ~ ¢¢:
a test for a particular feature but a linear combination of
features. In other words, each non-leaf node is a linear clas-
sifier in the form of Z?:] wia, = t, where w; is the weight of
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See Chap. 3 for linear classifier.

{ —0.800 X density — 0.044 X sugar < —O.BlS?J

true false
[ —0.365 X density + 0.366 X sugar < —0.1587 J @
true false

Fig.4.12 The multivariate decision tree generated from 8 Table 4.5

A
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Fig.4.13 The decision boundaries of the decision tree in @ Figure 4.12

feature a;, and w; and ¢ are learned from the data set and feature
set of the node. Unlike the traditional univariate decision tree,
the learning process of multivariate decision tree does not look
for an optimal splitting feature but tries to establish a suitable
linear classifier. @ Figure 4.12 shows the multivariate decision
tree learned from the watermelon data set 3.0«, and the corre-
sponding decision boundaries are shown in 8 Figure4.13.

4.6 Further Reading

Representative decision tree learning algorithms include 1D3
(Quinlan 1979, 1986), C4.5 (Quinlan 1993), and CART (Breiman
et al. 1984). Murthy (1989) surveyed decision tree techniques.
C4.5Rule (Quinlan 1993) is an algorithm that converts C4.5
decision trees into symbolic rules by rewriting each split as a
rule. The converted rule set may possess even better general-
ization ability compared to the original decision tree due to
the merge, addition, and subtraction operations on the rules
during the conversion process.



4.5 Multivariate Decision Trees

Apart from the information gain, gain ratio, and Gini index,
many criteria have been developed for split selection. Empiri-
cal studies (Mingers 1989b) showed that different criteria have
a limited impact on the generalization ability, though they
often lead to decision trees with different sizes. A theoreti-
cal study (Raileanu and Stoffel 2004) also showed that the
information gain and Gini index are only different in 2% of
cases. The general strategies for pruning decision trees were dis-
cussed in Sect. 4.3. Empirical studies (Mingers 1989a) showed
that pruning could lead to even a 25% improvement of the
generalization ability for noisy data.

Representative multivariate decision tree learning algo-
rithms include OC1 (Murthy et al. 1994) and a series of algo-
rithms proposed in Brodley and Utgoff (1995). The OC1 algo-
rithm starts with a greedy search of the optimal weight for each
feature, and then, on top of local optimization, performs ran-
dom manipulation on the decision boundaries to find poten-
tially better decision boundaries; by contrast, Brodley and
Utgoff (1995) directly introduced the least squares method of
linear classifiers. There are also algorithms trying to embed
neural networks into leaf nodes to take advantage of both
learning mechanisms. For example, Perceptron tree (Utgoff
1989b) trained a perceptron at each leaf node, and (Guo and
Gelfand 1992) embedded multi-layer neural networks into leaf
nodes.

Some decision tree learning algorithms support incremen-
tal learning, that is, adjusting the learned model using newly
received samples without re-training with the whole data set.
The main idea is to partially restructure the decision tree by
reordering the features along paths, and representative algo-
rithms include ID4 (Schlimmer and Fisher 1986), IDSR (Utgoff
1989a), and ITI (Utgoff et al. 1997). Incremental learning can
effectively reduce the computational cost of training upon
receiving new samples, but the model after multiple steps of
incremental learning could be considerably different from a
model re-trained with the whole data set.
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Any feature selection methods
can be used for selecting the
splitting features. See Chap. 11
for feature selection.

See Chap. 5 for Perceptron and
Neural Networks.
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UCI data sets are available at
» http://archive.ics.uci.edu/ml/.

See Sect. 2.4 for statistical
hypothesis test.

The watermelon data set 3.0 is in
8 Table 4.3.

Exercises

4.1 Prove that if the training set contains no conflicting data
(i.e., same feature vector but different labels), then there must
exist a decision tree that is consistent with the training set (i.e.,
training error is 0).

4.2 Analyze the disadvantages of using minimizing training
error as the splitting criterion for decision tree learning.

4.3 Implement a decision tree algorithm with entropy as its
splitting criterion, and generate a decision tree using the data
set in @ Table 4.3.

4.4 Implement a decision tree algorithm with the Gini index
as its splitting criterion, and generate a decision tree using the
data set in @ Table 4.2.

4.5 Implement a decision tree algorithm with logistic regression
as its splitting criterion, and generate a decision tree using the
data set in @ Table 4.3.

4.6 Choose four data sets from UCI, and conduct empirical
comparisons on the unpruned, pre-pruned, and post-pruned
decision trees generated by the decision tree algorithms in the
above three exercises. Apply an appropriate statistical hypoth-
esis test.

4.7 Since @ Algorithm 4.1 is a recursive algorithm, the depth of
decision trees learned from massive data can easily cause stack
overflow. Try to use the queue data structure to implement
the decision tree algorithm, and add a parameter MaxDepth to
control the depth of decision trees.

4.8 * Rewrite the decision tree algorithm in Exercise 4.7 such
that breadth-first search is used instead of depth-first search,
and add a parameter MaxNode to control the number of nodes.
Analyze which of the two decision tree algorithms is easier to
control the memory cost.

4.9 Extend the method of handling missing values in Sect. 4.4.2
to the calculation of the Gini index.

4.10 Download or implement a multivariate decision tree learn-
ing algorithm, and investigate its results on the watermelon
data set 3.0.


http://archive.ics.uci.edu/ml/

Exercises

Break Time

Short Story: Decision Tree and John Ross Quinlan

Speaking of decision trees, we must
talk about the Australian computer
scientist John Ross Quinlan (1943-).

The initial decision tree algo-
rithm originated from the Concept
Learning System (CLS) proposed
by the American psychologist and
computer scientist E. B. Hunt in
1962. The CLS algorithm, which was
developed for studying the concept
learning process of humans, estab-
lished the divide-and-conquer strat-
egy in decision tree learning. Under the supervision of Hunt,
Quinlan obtained his doctoral degree from the University of
Washington in 1968 and started a carcer at the University of
Sydney. In 1978, he visited Stanford University during his sab-
batical leave and enrolled in an engrossing graduate course
taught by D. Michie, who was the assistant of A. Turing. In
this course, there was an assignment asking students to imple-
ment a program to determine whether a given chess endgame
will finish in two moves. Quinlan developed a program that is
similar to the CLS algorithm but introduced the information
gain criterion. In 1979, he published this work, which is the
ID3 algorithm.

In 1986, Quinlan was invited to republish the ID3 algo-
rithm in the first issue of Machine Learning journal, and this
started a research trend of decision tree learning. In a few years,
numerous decision tree algorithms were proposed, and names
like ID4 and IDS5 have soon been taken. Quinlan had to name
his own successor of ID3 as C4.0, and later on the well-known
C4.5. Quinlan modestly claimed that C4.5 is only a slightly
improved version of C4.0, and hence is called the 4.5th gener-
ation classifier. The commercialized successor is called C5.0.

101

C4.0 stands for Classifier 4.0.

The implementation of C4.5 in
WEKA is called J4.8.
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In this book, neural networks
refer to artificial neural
networks rather than biological
neural networks.

This is the definition given by T.
Kohonen in the first issue of
Neural Networks journal in
1988.

Neuron is also known as unit.

Threshold is also known as bias.

Also known as the transfer
function.

Step function is a variant of the
unit-step function. The logistic
function is a representative

sigmoid function. See Sect. 3.3.

For example, for 10 pairwise
linked neurons, there are 100
parameters, including 90
connection weights and 10
thresholds.

“Simulation of biological neural
networks” is an analogous
interpretation of neural
networks made by cognitive
scientists.

5.1 Neuron Model

Research on neural networks started quite a long time ago,
and it has become a broad and interdisciplinary research field
today. Though neural networks have various definitions across
disciplines, this book uses a widely adopted one: “Artificial
neural networks are massively parallel interconnected net-
works of simple (usually adaptive) elements and their hierar-
chical organizations which are intended to interact with the
objects of the real world in the same way as biological nervous
systems do” (Kohonen 1988). In the context of machine learn-
ing, neural networks refer to “neural networks learning”, or in
other words, the intersection of machine learning research and
neural networks research.

The basic element of neural networks is neuron, which is the
“simple element” in the above definition. In biological neural
networks, the neurons, when “excited”, send neurotransmitters
to interconnected neurons to change their electric potentials.
When the electric potential exceeds a threshold, the neuron is
activated (i.e., “excited”), and it will send neurotransmitters to
other neurons.

In 1943, (McCulloch and Pitts 1943) abstracted the above
process into a simple model called the McCulloch—Pitts model
(M-P neuron model), which is still in use today. As illus-
trated in @ Figure 5.1, each neuron in the M-P neuron model
receives input signals from # neurons via weighted connections.
The weighted sum of received signals is compared against the
threshold, and the output signal is produced by the activation
Sfunction.

The ideal activation function is the step function illus-
trated in @ Figure 5.2a, which maps the input value to the
output value “0” (non-excited) or “1” (excited). Since the step
function has some undesired properties such as being discon-
tinuous and non-smooth, we often use the sigmoid function
instead. @ Figure 5.2b illustrates a typical sigmoid function
that squashes the input values from a large interval into the
open unit interval (0, 1), and hence also is known as the squash-
ing function.

A neural network is derived by connecting the neurons into
a layered structure. From the perspective of computer science,
we can simply regard a neural network as a mathematical model
with many parameters , and put aside whether it simulates the
biological neural networks or not. The model consists of multi-
ple functions, e.g., nesting y; = f'(3_, wix; — ;) multiple times.
Effective neural network learning algorithms are often sup-
ported by mathematical proofs.
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Fig.5.1 The M-P neuron model
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Fig.5.2 Typical neuron activation functions

5.2 Perceptron and Multi-layer Network

Perceptron is a binary classifier consisting of two layers of neu-
rons, as illustrated in @ Figure 5.3. The input layer receives
external signals and transmits them to the output layer, which
is an M-P neuron, also known as threshold logic unit.

Perceptron can ecasily implement the logic operations
“AND”, “OR”, and “NOT”. Suppose the function f in y =
SO wix; — 0) is the step function shown in @ Figure 5.2, the
logic operations can be implemented as follows:

Output layer

Input layer
1 L2

Fig.5.3 A perceptron with two input neurons
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x; corresponds to the value of
the ith input neuron.

7 is typically set to a small
positive number, e.g., 0.1.

“Nonlinearly separable” means
that no linear hyperplane can
separate data from different
classes.

= “AND” (x; A x3): lettingw; = wy = 1,0 = 2, then y =
fd-x1+1-xp—2),and y =1 if and only if x; = xp = 1;

= “OR” (x1 V x3): letting w; = wy = 1,0 = 0.5, then y =
fA-x1+1-x—0.5),andy=1whenx; =lorx; =1;

= “NOT” (—x1): letting w; = —0.6,wy = 0,6 = —0.5, then
y=f(—=0.6-x14+0-x2+0.5),and y = 0 when x; = 1 and
y =1whenx; =0.

More generally, the weight w; (i = 1,2, ..., n) and thresh-
old 0 can be learned from training data. If we consider the
threshold € as a dummy node with the connection weight wy, |
and fixed input —1.0, then the weight and threshold are uni-
fied as weight learning. The learning of perceptron is simple:
for training sample (x, y), if the perceptron outputs , then the

weight is updated by
wi < w; + Aw;, (5.1
Awi =n(y — P)xi, (5.2)

where 1 € (0, 1) is known as the learning rate. From (5.1) we
can see that the perceptron remains unchanged if it correctly
predicts the sample (x, ) (i.e., = ). Otherwise, the weight is
updated based on the degree of error.

The learning ability of perceptrons is rather weak since
only the output layer has activation functions, that is, only
one layer of functional neurons. In fact, the “AND”, “OR”,
and “NOT” problems are all linearly separable problems. Min-
sky and Papert (1969) showed that there must exist a lin-
ear hyperplane that can separate two classes if they are lin-
early separable. This means that the perceptron learning pro-
cess is guaranteed to converge to an appropriate weight vector
w = (Wy; w2; ...; Wyt1), asillustrated in 8 Figure 5.4a—c. Oth-
erwise, fluctuation will happen in the learning process, and no
appropriate solution can be found since w cannot be stabilized.
For example, perceptron cannot even solve simple nonlinearly
separable problems like “XOR?”, as shown in 8 Figure 5.4d.

In order to solve nonlinearly separable problems, we can
use multi-layer functional neurons. For example, the simple
two-layer perceptron illustrated in @ Figure 5.5 can solve the
“XOR” problem. In B Figure 5.5a, the neuron layer between
the input layer and the output layer is known as the hidden
layer, which has activation functions like the output layer does.

@ Figure 5.6 illustrates two typical multi-layer neural net-
work structures, in which the neurons in each layer are fully
connected with the neurons in the next layer. However,
neurons within the same layer or from non-adjacent layers are
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Fig.5.5 A two-layer perceptron that solves the “XOR” problem

not connected. Neural networks following such a structure are
known as multi-layer feedforward neural networks, in which
the input layer receives external signals, the hidden and out-
put layers process the signals, and the output layer outputs the
processed signals. In other words, the input layer has no pro-
cessing function but only receives the input, whereas the hidden
and output layers have functional neurons. Since only two lay-
ers are functional, the neural network in @ Figure 5.6a is often
called “two-layer neural network”. To avoid ambiguity, we call
it “single hidden layer neural network” in this book. For neu-
ral networks with at least one hidden layer, we call them multi-
layer neural networks. The learning process of neural networks
is about learning from the training data to adjust the connec-
tion weights among neurons and the thresholds of functional
neurons. In other words, the “knowledge” learned by neural
networks is in the connection weights and thresholds.
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“Feedforward” does not mean
signals cannot be transmitted
backward but refers to no
recurrent or circular
connections. See Sect. 5.5.5.

That is, the weights of the
connections between neurons.
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Discrete attributes require
pre-processing. If there is an
ordinal relationship between
attribute values, the attribute
can be easily converted to
continuous values. Otherwise it
is usually converted into a
k-dimensional vector, where k is
the number of attribute values.
See Sect. 3.2.

It is a logistic function. See
Sect. 3.3.

(a) Single hidden layer.

Fig.5.6 Muti-layer feedforward neural networks

5.3 Error Backpropagation Algorithm

The learning ability of multi-layer neural networks is much
stronger than single-layer perceptrons. Nevertheless, strong
learning ability requires more powerful learning algorithms
rather than the simple method of (5.1). Among them, the error
Backpropagation (BP) algorithm is a representative and by far
the most successful neural network learning algorithm, which
trained most neural networks in real-world applications. The
BP algorithm can train not only feedforward neural networks
but also other types of neural networks, such as recurrent neu-
ral networks (Pineda 1987). However, “BP neural networks”
usually refer to feedforward neural networks trained with the

BP algorithm.
Next, let us take a closer look at the BP algorithm. Given a
training set D = {(x1, y1), (x2,¥2), ..., (X1, ym)}, where x; €

R, y; € R/, thatis, the input sample is described by d attributes
and the output is an /-dimensional real-valued vector. For ease
of discussion, 8 Figure 5.7 shows a multi-layer feedforward
neural network with d input neurons, / output neurons, and ¢
hidden neurons. Let ¢; denote the threshold of the jth neuron
in the output layer, -, denote the threshold of the 4th neuron
in the hidden layer, v;; denote the connection weight between
the ith neuron of the input layer and the Ath neuron of the
hidden layer, wy,; denote the connection weight between the 4th
neuron of the hidden layer and the jth neuron of the output
layer, oy = Z?:l vipxi denote the input received by the ith
neuron in the hidden layer, and §; = ZZ:] wpiby;, denote the
input received by the jth neuron in the output layer, where b;,
is the output of the / neuron in the hidden layer. Suppose the
neurons in both the hidden layer and output layer employ the
sigmoid function, which was given in @ Figure 5.2b.
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1

Input layer

Fig.5.7 Notations of BP neural networks

For training sample (x, y;), suppose the neural network
outputs y, = @’f,j/z‘, - ,)75‘), that is,

=1 -0, (5.3)
then the MSE of the neural network on sample (x, y) is
1 ! ~k ) Adding 1/2 is for the
By = 2 Z(y (/O (54) convenience of subsequent
J=1 calculations.

The neural network in 8 Figure5.7 has (d + 1 + 1)q +
| parameters to be determined, including d x ¢ connection
weights from the input layer to the hidden layer, ¢ x / con-
nection weights from the hidden layer to the output layer, ¢
thresholds of the hidden layer neurons, and / thresholds of the
output layer neurons. BP is an iterative learning algorithm, and
each iteration employs the general form of perceptron learning
rule to estimate and update the parameter, that is, similar to
(5.1), the update rule of any parameter v is

v <— v+ Av. (5.5)

Next, we take the connection weight wy; as an example to
demonstrate the derivation.

The BP algorithm employs the gradient descent method and ~ See Appendix B.4 for the
tunes the parameters toward the direction of the negative gra- &radient descent method.
dient of the objective. For the error Ej in (5.4) and learning
rate 7, we have

OE}

. 5.6
n iy (5.6)

AW}U' = —
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Note that wy; firstinfluences the input value 3; of the jth output
layer neuron, then the output value j/;‘ , and finally, the error
E;.. Hence, we have '

The “Chain rule”. OE,  OEj aj/jk 0p;
=— oL 5.7
3Whj ayj aﬁj 8w;,j
From the definition of 3;, we have
a6;
I = by, (5.8)

ow, hj

The sigmoid function in @ Figure 5.2 has the following nice
property:

1) =)0 = f ). (5.9)
Hence, from (5.4) and (5.3), we have

- OE, 0¥
YT ok o
=—0) — /(5 =)
=PF=PH0F =), (5.10)
By substituting (5.10) and (5.8) into (5.7), and then into
(5.6), we have the update rule of wy; as

Awy; = ngiby. (5.11)

Similarly we can derive

Ab; = —ng;, (5.12)
Avy, = nepx;, (5.13)
Ay = —ney, (5.14)
where
o — OE;, 0Oby
T

~ OE. 05,
= 12: 5 'abhf (an —vn)
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I
= > wigif (an — W)

J=1

!
= by(1 = bp) D wyg. (5.15)
j=1

The learning rate n € (0, 1) controls the step size of the
update in each round. An overly large learning rate may cause
fluctuations, whereas a too small value leads to slow conver-
gence. For fine-tuning purposes, we can use 7; for (5.11) and
(5.12) and np, for (5.13) and (5.14), where 7 and 7, could take
different values.

The workflow of the BP algorithm is illustrated in
B Algorithm 5.1. For each training sample, the BP algorithm
executes the following operations: feeding each input sample to
the input layer neurons, and then forwarding the signals layer
by layer until the output layer produces results; then, the error
of the output layeris calculated (lines 4-5) and propagated back
to the hidden layer neurons (line 6) for adjusting the connection
weights and thresholds (line 7). The BP algorithm repeats the
above operations until the termination condition is met, e.g.,
a small training error. @ Figure 5.8 shows the BP algorithm
running on a watermelon data set with five samples and two
features. It shows how the parameters and decision boundaries
change in different rounds.

Algorithm 5.1 Error Backpropagation
Input: Training set D = {(xx, yo)}}_ s
Learning rate 7).

Process:

1: Randomly initialize connection weights and thresholds from (0, 1)

2: repeat

3 for all (x, yx) € D do

4 Compute the output y, for the current sample according to the current parameters
and (5.3);

5 Compute the gradient term g; of the output layer neuron according to (5.10);

6 Compute the gradient term e;, of the hidden layer neurons according to (5.15);

7: Update connection weights wy;, vy, and thresholds 6, v, according to (5.11)=(5.14).

8 end for

9: until The termination condition is met
Output: A feedforward neural network with determined connection weights and thresholds.

The BP algorithm aims to minimize the accumulated error
on the training set D

1 m
E=— Ey. 5.16
me:% 2 (5.16)
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n = 0.1 is a typical choice.

The termination condition
relates to the strategy of dealing
with overfitting.
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A full scan of the training set is
called one round of learning,
also known as one epoch.

The difference between the
standard BP algorithm and the
accumulated BP algorithm is
similar to the difference between
the stochastic gradient descent
(SGD) algorithm and the
standard gradient descent
algorithm.

umbilicus root

root

umbilicus

umbilicus

o

umbilicus

umbilicus

o 1
root
(a) 25th iteration.

0 1
root
(b) 50th iteration.

0 1
root
(c) 100th iteration.

Fig.5.8 The changes of parameters and decision boundaries of a BP neural
network running on a watermelon data set with five samples and two features

However, the “standard BP algorithm” introduced above uses
only one training sample at a time to update the connection
weights and thresholds. In other words, the update rules in
@ Algorithm 5.1 are derived from the error Ej of individual
samples. If we use a similar method to derive the update rules
of minimizing the accumulated error, then we have the accu-
mulated error backpropagation algorithm. Both the standard
and accumulated BP algorithms are commonly used in prac-
tice. Generally speaking, the parameters in the standard BP
algorithm are updated frequently since each update uses one
sample, and hence the updates of different samples may “offset”
each other. As a result, the standard BP algorithm often needs
more iterations to achieve the same minimum error as the
accumulated BP algorithm does. By contrast, the accumulated
BP algorithm minimizes the accumulated error directly, and it
tunes parameters less frequently since it tunes once after a full
scan of the training set D. However, in some tasks, especially
when the training set D is large, the accumulated BP algorithm
can become slow after the accumulated error decreases to a cer-
tain level. In contrast, the standard BP algorithm can achieve
a reasonably good solution quicker.

Hornik et al. (1989) proved that a feedforward neural net-
work consisting of a single hidden layer with sufficient neu-
rons could approximate continuous functions of any complex-
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ity up to arbitrary accuracy. However, there is yet no princi-
pled method for setting the number of hidden layer neurons,
and trial-by-error is usually used in practice.

Along with the strong expressive power, BP neural net-
works suffer from overfitting, that is, the training error
decreases while the testing error increases. There are two gen-
eral strategies to alleviate the overfitting problem of BP neu-
ral networks. The first strategy is early stopping: dividing the
data into a training set and a validation set, where the train-
ing set is for calculating the gradient to update the connection
weights and thresholds, and the validation set is for estimating
the error. Once the training error decreases while the validation
error increases, the training process stops and returns the con-
nection weights and thresholds corresponding to the minimum
validation error. The other strategy is regularization (Barron
1991, Girosi et al. 1995): the main idea is to add a regulariza-
tion term to the objective function, describing the complexity
of neural network (e.g., the sum of squared connection weights
and thresholds). Let Ej denote the error on the kth training
sample and w; denote the connection weights and thresholds,
then the error objective function (5.16) becomes

1 m
E:)\E; I:Ek+(1—>\) Z:wf, (5.17)
= 1

where A € (0, 1) is a trade-off between the empirical error and
the complexity of neural network. The value of A is usually
estimated by cross-validation.

5.4 Global Minimum and Local Minimum

Since E represents the training error of the neural network, it is
a function of the connection weights w and thresholds 8. From
this perspective, the training process of neural networks is a
parameter optimization process, that is, searching for the set
of parameters in the parameter space that minimizes E.

We often talk about two types of optimality: the local min-
imum and the global minimum. We say (w*; %) is a local min-
imum solution if there exists € > 0 such that

E(W; 0) > E(W*;0%), V (W; 0) € {(w; 0) | ||(w; 0) — (w"; 0%)] <e}.

On the other hand, (w*; 8*) is the global minimum solution
if E(w; 0) > E(w*; 8*) holds for any (w; ) in the parameter
space. Intuitively, a local minimum solution refers to a point in
the parameter space that has an error smaller than the errors
of the points in its neighborhood. By contrast, the global min-
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Neural networks with
regularization are very similar to
SVM, which will be introduced
in Chap. 6.

The regularization term makes
the training process biased
toward smaller connection
weights and thresholds so that
the output becomes “smoother”
and the model is less prone to
overfitting.

Our discussions here also apply
to other machine learning
models.
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The update rules of perceptron
(5.1) and BP (5.11)=(5.14) are
based on the gradient descent
method.

\”;;"l 7
7

Fig.5.9 The global minimum and local minimum

imum solution refers to the point with an error smaller than
that of any other points in the parameter space. The errors
E(w*; %) of these two minimums are called the local mini-
mum value and global minimum value of the error function.

In the parameter space, any point with a zero gradient is
a local minimum if its error is smaller than the error of any
point in its neighborhood. Though there may exist multiple
local minimum values, the global minimum value is always
unique. In other words, the global minimum must be a local
minimum, but not vice versa. For example, 8 Figure 5.9 shows
two local minimums, but only one of them is the global min-
imum. The objective of parameter optimization is to find the
global minimum.

The most widely used parameter optimization methods are
gradient-based search methods. These methods start from an
initial solution and search for the optimal parameters itera-
tively. In each round, the search direction at the current point
is determined by the gradient of the error function. For exam-
ple, the gradient descent method takes steps in the direction of
the negative gradient since this is the direction that the func-
tion value decreases the most. When the gradient turns zero,
the search reaches a local minimum and stops since the update
term becomes zero. This local minimum is the global minimum
if the error function has only one local minimum. On the other
hand, if there is more than one local minimum, the solution we
found might not be the global minimum, and the parameter
optimization is stuck at the local minimum, which is undesir-
able.

Inreal-world applications, we often use the following strate-
gies to “jump out” from the local minimum to get closer to the
global minimum:
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== We can use different sets of parameters to initialize mul-
tiple neural networks and take the one with the smallest
error. Since the search starts from different initial points,
we obtain multiple local minimums, and the smallest one
among them is a closer estimation of the global minimum.

= We can use the simulated annealing technique (Aarts and
Korst 1989), which accepts a worse solution at a certain
probability, and hence it can jump out from the local
minimum. To maintain the algorithm’s stability, we pro-
gressively decrease the probability of accepting suboptimal
solutions as the search proceeds.

== We can use the stochastic gradient descent method, which
introduces random factors to the gradient calculations
rather than the exact calculations used in the standard gra-
dient descent method. With random factors, the gradient
may not be zero even if it is a local minimum, that is, there
is a chance to jump out from the local minimum.

Besides, the genetic algorithm (Goldberg 1989) is also fre-
quently used to train neural networks to better approximate the
global minimum. Note that the above techniques for jumping
out from local minimums are mostly heuristic methods without
theoretical guarantees.

5.5 Other Common Neural Networks

Due to space limitations, we are unable to cover the numerous
neural network models and algorithms, so only several com-
monly used neural networks are introduced in the rest of this
section.

5.5.1 RBF Network

Radial Basis Function (RBF) networks (Broomhead and Lowe
1988) are feedforward neural networks with single hidden layer.
It employs the radial basis function as the activation function
for hidden layer neurons, and the output layer computes a lin-
ear combination of the outputs from the hidden layer neurons.
Suppose that the input is a d-dimensional vector x and the out-
put is a real value, then the RBF network can be expressed as

q
p(x) =Y wip(x, c), (5.18)
i=1

where ¢ is the number of hidden layer neurons, and ¢; and
w; are, respectively, the center and the weight of the ith hid-
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However, it may also cause a
jump out from the global
minimum.

Using multiple hidden layers is
also theoretically feasible, but
typical RBF networks use single
hidden layer.
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Pattern class can be regarded as
the “sub-class” of a class.

The “winner-take-all” principle.

den layer neuron. p(x, ¢;) is the radial basis function, which
is a radially symmetric scalar function, generally defined as a
monotonic function based on the Euclidean distance between
the sample x and the data centroid ¢;. The commonly used
Gaussian radial basis function is in the form of

p(x, ¢;) = e~ Pilx—eil®, (5.19)

Park and Sandberg (1991) proved that an RBF network with
sufficient hidden layer neurons can approximate continuous
functions of any complexity up to arbitrary accuracy.

RBF networks are typically trained with two steps. The
first step is to identify the neuron center ¢; using methods such
as random sampling and clustering, and the second step is to
determine the parameters w; and (; using BP algorithms.

5.5.2 ART Network

Competitive learning is a commonly used unsupervised learning
strategy in neural networks. In this strategy, the neurons com-
pete with each other, and only one of them will be the winner
who can be activated while others become inactivated. Such a
mechanism is also known as the “winner-take-all” principle.

Adaptive Resonance Theory (ART) networks (Carpenter
and Grossberg 1987) are an important representative of com-
petitive learning. An ART network consists of four major com-
ponents, namely the comparison layer, the recognition layer,
the reset module, and the recognition threshold (a.k.a. vigi-
lance parameter). Among them, the comparison layer accepts
input samples and passes information to the recognition layer
neurons. Each neuron in the recognition layer corresponds to
a pattern class, and the number of neurons can be dynamically
increased in the training process to incorporate new pattern
classes.

After receiving a signal, the recognition layer neurons com-
pete with each other to become the winner neuron. The sim-
plest way of competition is to calculate the distance between
the input vector and the representation vector of the pattern
class in each recognition layer neuron. The winner neuron is
the one with the shortest distance, and it suppresses the acti-
vation of other neurons in the recognition layer by sending
them signals. When the similarity between the input sample
and the representation vector of the winner neuron exceeds the
recognition threshold, the input sample is classified as the class
of the representation vector. In the meantime, the connection
weights are updated such that this winner neuron is more likely
to win future input samples that are similar to the current sam-
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ple. However, if the similarity does not exceed the recognition
threshold, then the reset module will create a new neuron in
the recognition layer and initialize the representation vector of
it to the input vector.

The recognition threshold has a significant impact on the
performance of ART networks. When the recognition thresh-
old is large, the input samples are divided into more fine-
grained pattern classes. On the other hand, a small recognition
threshold leads to fewer and coarse-grained pattern classes.

ART networks offer a solution to the stability-plasticity
dilemma in competitive learning, where plasticity refers to the
ability to learn new knowledge, and stability refers to the abil-
ity to maintain existing knowledge. This property gives ART
networks an important advantage to be able to perform incre-
mental learning and online learning.

ART networks in the early days can only handle input
data of Boolean type. Later on, ART networks evolved into
a family of algorithms, such as ART2 networks that can han-
dle real-valued inputs, FuzzyART networks that incorporate
fuzzy processing, and ARTMAP networks that can perform
supervised learning.

5.5.3 SOM Networks

Self-Organizing Map (SOM) networks (Kohonen 1982) are
unsupervised neural networks based on competitive learning.
An SOM network can map high-dimensional input data to low-
dimensional space (typically two-dimensional) while preserv-
ing the topological structure of the data in high-dimensional
space, that is, mapping samples that are similar in the high-
dimensional space to neighborhood neurons in the output
layer.

As illustrated in @ Figure 5.10, neurons in the output layer
are placed like a matrix in the two-dimensional space. Each
neuron has a weight vector that is used to determine the winner
neuron based on the input vector, that is, the neuron with the

Output layer

Input layer

Fig.5.10 SOM network
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Incremental learning refers to
the learning of new samples
after a model has already been
trained. In other words, the
model can update incrementally
with the new samples without
re-training the whole model, and
the useful information that has
been previously learned will not
be overridden. Online learning
refers to the learning of new
samples one by one. Online
learning is a special case of
incremental learning, and
incremental learning can be
regarded as batch-mode online
learning.

Also known as Self-Organizing
Feature Map and Kohonen
Network.
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The ART network introduced in
Sect. 5.5.2 is also a constructive
network since its recognition
neurons are dynamically added.

highest similarity wins. The objective of SOM training is to find
the appropriate weight vector for each neuron in the output
layer such that the topological structure is preserved.

The training process of SOM is simple: upon the arrival of
a new sample, each neuron in the output layer computes the
distance from its weight vector to the sample vector, and the
neuron with the shortest distance (i.e., the best matching unit)
wins. Then, the weight vectors of the best matching unit and its
surrounding neurons will be updated toward the current input
sample. This process repeats until converge.

5.5.4 Cascade-Correlation Network

Typical neural networks have fixed network structures, and the
purpose of training is to determine the appropriate parameters
such as connection weights and thresholds. Constructive net-
works, however, consider the construction of network struc-
ture as one of the learning objectives, that is, identifying the
best network structure that fits the training data. A represen-
tative constructive network is the Cascade-Correlation Net-
work (Fahlman and Lebiere 1990).

Cascade-Correlation networks have two major components,
namely “Cascading” and “Correlation”. Cascading refers to
the establishment of a hierarchy with hierarchical connections.
At the beginning of training, the network has the minimum
topology, that is, only an input layer and an output layer. As
the training progresses, as shown in @ Figure 5.11, new hidden
neurons are gradually added to create a hierarchy. When a new
hidden layer neuron is added, its input connection weight will
be fixed. Correlation refers to training-related parameters by
maximizing the correlation between the output of new neurons
and network errors.

Since there is no configuration of the number of layers and
the number of hidden neurons, cascade-correction networks

Fig.5.11 The training process of a Cascade-Correlation network starts with
the initial state and gradually adds the first and the second hidden neurons.
When adding a new hidden neuron, the weights shown in red are updated by
maximizing the correlation between the new hidden neuron’s output and the
network error
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Fig.5.12 Elman network

are faster to train than typical feedforward neural networks.
However, cascade-correction networks are prone to overfitting
on small data sets.

5.5.5 Elman Network

Unlike feedforward neural networks, Recurrent Neural Net-
works (RNN) permit circular structures, in which the neurons
can take output feedback as input signals. Hence, the network’s
output at time ¢ not only depends on the input at time ¢ but also
the network status at time ¢ — 1. Due to this behavior, recurrent
neural networks are capable of modeling temporal dynamics.

One of the most widely used recurrent neural networks
is the Elman network (Elman 1990), which, as illustrated in
B Figure 5.12, has a similar structure to multi-layer feedfor-
ward networks. However, the difference is that the outputs
from hidden neurons are reused as the input to hidden neurons
at the next iteration, together with signals from input neurons.
Typically, hidden neurons in the Elman networks employ sig-
moid activation functions, and the networks are trained with
generalized BP algorithms (Pineda 1987).

5.5.6 Boltzmann Machine

One type of neural network model defines an energy for the
state of the network. The network reaches the ideal state when
the energy is minimized, and training such a network is to min-
imize the energy function. One representative of energy-based
models is the Boltzmann Machine (Ackley et al. 1985). As illus-
trated in @ Figure 5.13a, a typical structure of the Boltzmann
machines has two layers: the visible layer and the hidden layer.
The visible layer is for representing data input and output,
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Also known as Recursive Neural
Networks.

B Figure 5.13a shows that the
Boltzmann machines are
recurrent neural networks.
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The Boltzmann distribution is
also known as equilibrium or
stationary distribution.

while the hidden layer is understood as the intrinsic represen-
tation of the data. Neurons in the Boltzmann machines are
Boolean-typed, thatis, 0 for inactivated and 1 for activated. Let
s € {0, 1}" denote the states of n neurons, w;; denote the con-
nection weight between neuron i and neuron j, and 6; denote
the threshold of neuron i. Then, the energy of the Boltzmann
machine corresponding to the state vector s is defined as

E(s) = Z Z WiSiSj — Zesl (5.20)

i=1 j=i+1

If the neurons are updated in arbitrary order independent
of the inputs, then the network will eventually reach a Boltz-
mann distribution, in which the probability of having the state
vector s is solely determined by its energy and the energies of
all possible state vectors:

o E®

e o

Then, the training of a Boltzmann machine is to regard each
training sample as a state vector and maximize its probability.
Since the standard Boltzmann machines are fully connected
graphs with high complexity, they are impractical to use in
real-world applications. In practice, we often use the restricted
Boltzmann machines instead. As illustrated in @ Figure 5.13b,
a restricted Boltzmann machine keeps only the connections
between the visible layer and the hidden layer and simplifies
the network structure to a bipartite graph.

The restricted Boltzmann machines are often trained using
the Contrastive Divergence (CD) algorithm (Hinton 2010). Let
d denote the number of visible neurons, ¢ denote the number
of hidden neurons, and v and & denote the state vectors of the
visible layer and the hidden layer, respectively. Since there is

P(s) = (5.21)

Hidden layer

Visible layer

(a) Boltzmann machine. (b) Restricted Boltzmann machine.

Fig.5.13 Boltzmann machine and restricted Boltzmann machine
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no connection within the same layer, we have

d
P(v| k) =]]Pwilh), (5.22)
i=1
q
P(h|v)=[]Ph|v. (5.23)
j=1

For each training sample v, the CD algorithm first computes
the probability distribution of hidden neurons using (5.23) and
then obtains i by sampling from this distribution. Thereafter,
similarly, v’ is generated from A according to (5.22), and k' is
further generated from v’. Then, the connection weight can be
updated by

Aw =1 (th - v’h’T> . (5.24)

5.6 Deep Learning

In theory, a model with more parameters has a larger capacity
and, consequently, is more capable of handling complex learn-
ing tasks. In practice, however, complex models are not favored
since they are often slow to train and are prone to overfitting.
Fortunately, since we have entered the age of cloud computing
and big data, the significant improvement of computing power
has enabled efficient training, while the big data reduces the
risk of overfitting. Since the major barriers of complex models
are alleviated, complex models, represented by deep learning,
have begun to attract attention.

Typically, a deep learning model is a neural network with
many layers. For neural networks, a simple method of increas-
ing the model capacity is to add more hidden layers, which
corresponds to more parameters such as connection weights
and thresholds. The model complexity can also be increased
by simply adding more hidden neurons since we have seen pre-
viously that a multi-layer feedforward network with a single
hidden layer already has very strong learning ability. How-
ever, to increase model complexity, adding more hidden layers
is more effective than adding hidden neurons since more layers
not only imply more hidden neurons but also more nesting of
activation functions. Multi-hidden layers neural networks are
difficult to train directly with classic algorithms (such as the
standard BP algorithm), because errors tend to diverge and
fail to converge to a stable state when backpropagating within
the multi-hidden layers.
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The threshold can be updated
similarly.

See Chap. 12 for the capacity of
learners.

Large-scale deep learning model
can contain tens of billions of
parameters.

Here, “multi-hidden layers”
refer to three or more hidden
layers. Deep learning models
typically have eight or nine, or
even more hidden layers.
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Recently, the sigmoid activation
function in CNN is often
replaced with the linear rectifier
function

0, ifx<0;
f) = {x, otherwise,
and such neurons are called
Rectified Linear Unit (ReLU).
Besides, the typical operations in
the pooling layer are “max” and
“mean”, which are similar to the
operations in ensemble learning.
See Sect. 8.4.

One effective method of training neural networks with
multi-hidden layers is unsupervised layer-wise training, in which
the hidden layers are trained one by one, that is, the outputs
of the previous hidden layer are used as the inputs to train the
current hidden layer, and this process is known as pre-training.
Following pre-training, fine-tuning is performed on the whole
network. For example, in a Deep Belief Network (DBN) (Hin-
ton et al. 2006), each layer is a restricted Boltzmann machine,
thatis, the network is a stack of multiple RBM models. In unsu-
pervised layer-wise training, the first hidden layer is trained
in the same way as in the standard RBM training. Then, the
pre-trained neurons of the first hidden layer are used as the
input neurons for the second hidden layer, and so on. Once
pre-training is completed for each layer, the entire network is
trained with BP algorithms.

We can view “pre-training + fine-tuning” as splitting the
parameters into groups and then optimizing the parameters
in each group locally. The locally optimized parameters are
then joint together to search for the global optimum. This
approach reduces the training cost without sacrificing the free-
dom offered by a large number of parameters.

Another strategy for saving the training cost is weight shar-
ing, in which a set of neurons share the same connection weight.
This strategy plays an important role in Convolutional Neu-
ral Networks (CNN) (LeCun and Bengio 1995, LeCun et al.
1998). To demonstrate the idea, let us take a look at how
CNN is applied to the task of handwritten character recog-
nition (LeCun et al. 1998). As illustrated in 8 Figure 5.14, the
inputisa 32 x 32 image of a handwritten digit, and the output is
the recognition result. A CNN combines multiple convolutional
layers and pooling layers to process the input signals and ends
the mapping to the output result with the fully connected lay-
ers. Each convolutional layer contains multiple feature maps,
where each feature map is a “plane” consisting of multiple neu-
rons. We can regard a feature map as a convolutional filter that
performs convolution operations on the input matrix to extract
convolved features. For example, the first convolutional layer
in @ Figure 5.14 consists of six feature maps, where each fea-
ture map is a 28 x 28 matrix of neurons, and each neuron is
responsible for extracting the local feature of a 5 x 5 region
using the convolutional filter. The function of pooling layers
is to use local correlations to perform sampling such that the
data volume is reduced while useful information is preserved.
For example, the first pooling layer in 8 Figure 5.14 contains
six feature maps with the size of 14 x 14, where each neuron on
the feature map computes its output using a 2 x 2 region on the
feature map of the previously convolutional layer. The original
image is mapped into a 120-dimensional feature vector through
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Input layer L Pooling layer
32x32

Pooling layer COMORuton layer
Convolution layer Y 120
6@14x14 16@10x10 16@5x5

Convolution layer
28x2

Fig.5.14 Handwritten character recognition using CNN (LeCun et al. 1998)

combinations of convolutional layers and pooling layers, and
finally, a connection layer composed of 84 neurons and an out-
put layer are connected to complete the recognition task. CNN
can be trained using BP algorithms. However, in both convolu-
tional layers and pooling layers, each set of neurons (i.e., each
“plane” in @ Figure 5.14) shares the same connection weights
so that the number of parameters is significantly reduced.

There is another perspective to understand deep learning.
No matter it is a DBN or a CNN, the mechanisms are the
same, that is, using multiple hidden layers to process infor-
mation layer by layer. This mechanism can be viewed as pro-
gressively converting the original input representation, which
is not closely related to the targeted output, into a representa-
tion that is closely related to the targeted output. By doing so,
the mapping task of the final output layer, which used to be
difficult, becomes feasible. In other words, through multi-layer
processing, the low-level feature representations are converted
into the high-level feature representations, which can be used
by simple models for complex classifications. Therefore, deep
learning can also be viewed as feature learning or representation
learning.

In the past, real-world applications often require human
experts to design features, known as feature engineering.
Though the features, good or bad, are vital for the general-
ization ability, it is often not easy to design good features even
for human experts. As feature learning can produce good fea-
tures via machine learning, we are one more step toward “fully
automated data analytics”.

5.7 Further Reading

Haykin (1998)is a good textbook for studying neural networks,
and Bishop (1999) is an alternative which puts more emphasis
on machine learning and pattern recognition. Notable jour-
nals in the field of neural networks include Neural Compu-
tation, Neural Networks, and IEEE Transactions on Neural
Networks and Learning Systems. Notable international con-
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If we consider the layers at the
front are working on the feature
representations, and only the
last layer is working on the
“classification”, then the
classification is using a simple
model.

Was named IEEE Transactions
on Neural Networks prior to
2012.
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NeurIPS has put more emphasis
on machine learning in recent
years.

LMS is also known as the
Widrow—Hoff rule or § rule.

ferences include International Conference on Neural Informa-
tion Processing Systems (NeurIPS, or NIPS prior to 2018) and
International Joint Conference on Neural Networks (IJCNN).
Notable regional conferences include the Europe-based Inter-
national Conference on Artificial Neural Networks (ICANN)
and Asia Pacific-based International Conference on Neural
Information Processing (ICONIP).

Though M-P neuron is the most widely used neuron model,
there are other neuron models, such as the spiking neuron
model (Gerstner and Kistler 2002) which considers the tempo-
ral information of spike potentials rather than only the accu-
mulated electric potentials.

The BP algorithm was initially proposed by Werbos (1974)
and then reinvented by Rumelhart et al. (1986a, b). Essentially,
the BP algorithm is a generalization of the Least Mean Square
(LMS) algorithm. LMS aims at minimizing the MSE of the
network output and can be used in Perceptron learning when
the neuron activation function is differentiable. Generalizing
LMS to differentiable nonlinear activation function leads to
the BP algorithm. For this reason, the BP algorithm is also
called generalized § rule (Chauvin and Rumelhart 1995).

MacKay (1992) proposed a method that can automatically
determine the regularization parameter under the Bayesian
framework. Goriand Tesi (1992) provided a detailed discussion
on the local minimum problem of BP networks. Yao (1999) sur-
veyed the use of evolutionary computation techniques, such as
the genetic algorithm, to generate neural networks. There are
many studies on the improvement of BP algorithms. For exam-
ple, in order to speed up, the learning rate can be adaptively
reduced during training, that is, the larger learning rate is used
first and then gradually reduced. More “tricks” can be found
in Reed and Marks (1998), Orr and Miiller (1998).

Schwenker et al. (2001) provided detailed information about
the training of RBF networks. Carpenter and Grossberg (1991)
provided an introduction to the family of ART algorithms.
SOM networks (Kohonen 2001) have been widely used in appli-
cations like clustering, high-dimensional data visualization,
and image segmentation. Goodfellow et al. (2016) discussed
recent progress on deep learning.

Neural networks are black boxes which are difficult to inter-
pret. Some attempts have been made to improve the inter-
pretability of neural networks by extracting easy-to-understand
symbolic rules (Tickle et al. 1998, Zhou 2004).
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Exercises

5.1 Describe the drawbacks of using the linear function f'(x) =

w7 x as the activation function for neurons.

5.2 Describe the relationship between the logistic regression
and the neuron using the activation function as shown in
@ Figure 5.2b.

5.3 For vj, in @8 Figure 5.7, derive its update rule (5.13) in the
BP algorithm.

5.4 Describe the impact of the learning rate in (5.6) on the
training process of neural networks.

5.5 Implement the standard BP algorithm and the accumulated
BP algorithm. Use the algorithms to train single hidden layer
networks on the watermelon data set 3.0 and make a compar-
ison.

5.6 Design and implement an improved BP algorithm that can
dynamically adjust the learning rate to speed up the conver-
gence. Compare the improved BP algorithm against the stan-
dard BP algorithm on two UCI data sets.

5.7 Based on (5.18) and (5.19), construct a single-layer RBF
neural network that can solve the XOR problem.

5.8 Download or implement an SOM network, and then inves-
tigate its results on the watermelon data set 3.0a.

5.9 * Derive the BP algorithm for the Elman network.

5.10 Download or implement a convolutional neural network,
and then test it on the MNIST handwritten digit data set.
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The watermelon data set 3.0 is in
B Table4.3.

UCI data sets can be found at
» http://archive.ics.uci.edu/ml/.

The watermelon data set 3.0« is
in @ Table4.5.

The MNIST data set can be
found at » http://yann.lecun.
com/exdb/mnist/.


http://archive.ics.uci.edu/ml/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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The book provides many
insights about neural networks,
but its important conclusion
hindered the subsequent
development of neural networks
and even artificial intelligence.
For this reason, the book has
been criticized after the come
back of neural networks. When
the book was reprinted in 1988,
Minsky added some
clarifications as an additional
chapter.

Minsky received the Turing
Award in 1969.

Break Time

Short Story: The Rises and Falls of Neural Networks

Following the development of the M-P
neuron model and the Hebb learning rule
in the 1940s, a series of researches, rep-
resented by Perceptron and Adaline, have
emerged in the 1950s, and this is the first
golden age of neural networks. Unfortu-
nately, in the 1969 book Perceptrons, the
MIT computer science pioneers Marvin
Minsky (1927-2016) and Seymour Papert
pointed out that single-layer neural net-
works cannot solve nonlinear problems,
and it is unknown whether it is possible to have effective algo-
rithms to train multi-layer networks. This conclusion directly
pushed neural network research into an “ice age”, and both the
United States and the former Soviet Union stopped funding
neural network research. Neural network researchers around
the world had to change their research topics, and only a few
research groups insisted. In 1974, when Paul Werbos from Har-
vard University presented the BP algorithm, it did not receive
the deserved attention since neural network research was still
in the ice age.

In 1983, John Hopfield, a physicist from Caltech, has made
a sensation by tackling the NP-hard “traveling salesman prob-
lem” using neural networks. Later on, the PDP group, led by
David Rumelhart and James McClelland, published the book
Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, in which the BP algorithm was reinvented.
Following the excitement of Hopfield’s work, the BP algorithm
has soon become popular, and it marks the second golden age
of neural networks. In the middle 1990s, statistical learning the-
ory and Support Vector Machine have emerged, while neural
networks were suffering from the lacking of theories, heav-
ily relying on trial-and-error, and full of “tricks”. As a result,
researchers turned their attention to statistical learning, and
neural network research entered another “winter”. Ironically,
the NeurIPS conference, which was named with neural net-
works, accepted few neural network research papers for several
years in that period.

Around 2010, neural networks took advantage of the sig-
nificant advancements of computing power and big data and
came back with a new name of “deep learning”. Neural net-
works regained its reputation by winning competitions (e.g.,
ImageNet) and attracted massive research funding from indus-
try, entering its third golden age.
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See Exercise 6.1.

6.1 Margin and Support Vector

Given a training set D = {(x1, 1), (x2,2),--., Xm, Ym)},
where y; € {—1, +1}. The basicidea of classification is to utilize
the training set D to find a separating hyperplane in the sample
space that can separate samples of different classes. However,
there could be multiple qualified separating hyperplanes, as
shown in @ Figure 6.1, which one should be chosen?

Intuitively, we should choose the one right in the middle
of two classes, that is, the red one in @ Figure 6.1, since this
separating hyperplane has the best “tolerance” to local data
perturbation. For example, the samples not in the training set
could be closer to the decision boundary due to the noises or
limitations of the training set. As a result, many separating
hyperplanes that perform well on the training set will make
mistakes, whereas the red hyperplane is less likely to be affected.
In other words, this separating hyperplane has the strongest
generalization ability and the most robust classification results.

A separating hyperplane in the sample space can be expressed
as the following linear function:

wlx+b=0, (6.1)

where w = (wq; wo; ...; wy) is the normal vector which con-
trols the direction of the hyperplane, and b is the bias which
controls the distance between the hyperplane and the origin.
The normal vector w and the bias b determine the separating
hyperplane, denoted by (w, b). The distance from any point x
in the sample space to the hyperplane (w, b) can be written as

B ‘wa + b’

wll (2

€2

0 €y

Fig.6.1 More than one hyperplanes can separate the training samples
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Fig.6.2 Support vectors and margin

Suppose the hyperplane (w, b) can correctly classify the
training samples, that is, for (x;, y;) € D, thereisw x;+b >0
when y; = +1,and w'x; + b <0 when y; = —1. Let

wix;i+b< -1, yi=—1. (6.3)

{wai+b >+1,  yi=+I1,

As illustrated in @ Figure 6.2, the equality in (6.3) holds for
the sample points closest to the hyperplane, and these sample
points are called support vectors. The total distance from two
support vectors of different classes to the hyperplane is

2

Y=y

, (6.4)
Iwll

which is called margin.

Finding the separating hyperplane with the maximum mar-
gin 1s equivalent to finding the parameters w and b that maxi-
mize «y subject to the constraints in (6.3), that is

2

ax
wb lwll
s.t. yi(wai +b) > 1,

(6.5)
i=1,2,...,m.
The margin can be optimized by maximizing ||w|~!, which
is equivalent to minimizing [w||?. Hence, we can rewrite (6.5)
as
1
min = |w|?
wbh 2 (6.6)
s.t. y,-(wa,- +b) =1, i=12,..

., m.

This is the primal form of Support Vector Machine (SVM).
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If the hyperplane (w’, b’) can
correctly classify the training
samples, then there always exists
a scaling transformations

sw +— w' and ¢b — b’ such that
(6.3) holds.

Each sample point corresponds
to a feature vector.

It appears that the margin only
depends on w, but b also
implicitly changes the margin by
influencing w through the
constraints.
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6.2 Dual Problem

We wish to solve (6.6) to obtain the maximum margin separat-
ing hyperplane model

f(x)=w'x+b, (6.7)

where w and b are the model parameters. (6.6) is a convex
quadratic programming problem, which can be solved with
existing optimization packages. However, there are more effi-
cient methods.
Applying Lagrange multipliers to (6.6) leads to its dual prob-
See Appendix B.1 for the lem. To be specific, introducing a Lagrange multiplier «;; > 0
Lagrange multiplier method. to each constraint in (6.6) gives the Lagrange function

1 m
Low,by) = 2 [wl? + ) _ai(l—yiwTxi +0),  (638)

i=1

where a = (aq; aa; .. .; ). Setting the partial derivatives of
L(w, b, o) with respect to w and b to 0 gives

m
W= Z QGYiXi, (6.9)
i=1
m
0=> awi (6.10)
i=1

Substituting (6.9) into (6.8) eliminates w from L(w, b, o). Then,
with the constraint (6.10), we have the dual problem of (6.6) as

m 1 m m
T
mgx Zai — 5 Z Za,-ozjy,-iji Xj
i=1

i=1 j=I

m
s.t. Z a;y; =0,
i=1

6.11)

By solving this optimization problem, we obtain «, and subse-
quently w and b. Then, we have the desired model

fx)=w'x+b
m
= aiyix;x +b. (6.12)
i=1

The variable «; solved from the dual problem (6.11) is
the Lagrange multiplier in (6.8), corresponding to the train-
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ing sample (x;, y;). Since (6.6) is an optimization problem
with inequality constraints, it must satisfy the Karush—-Kuhn—
Tucker (KKT) conditions

o; = 0;
yif (i) =12 0; (6.13)
ai(yif (x;) — 1) =0.

Hence, for any training sample (x;, y;), we either have o; = 0
or y;f (x;) = 1. When «; = 0, the sample is not included in the
summation in (6.12) and consequently has no impact on f(x).
On the other hand, when «; > 0, we have y;f(x;) = 1, and the
sample point lies on the maximum-margin hyperplanes, that is,
it is a support vector . This observation reveals an important
property of support vector machines: once the training com-
pleted, most training samples are no longer needed since the
final model only depends on the support vectors.

How can we solve (6.11)? This quadratic programming
problem can be solved with quadratic programming algo-
rithms. However, the computational cost is often high since the
complexity is seriously affected by the number of training sam-
ples. To overcome this limitation, researchers proposed many
efficient algorithms by exploiting the structure of the optimiza-
tion problem. Among them, Sequential Minimal Optimization
(SMO) (Platt 1998) is a celebrated representative.

The basicidea of SMO is to iteratively find the local optimal
solutions of «; by fixing all the other parameters as constants.
Due to the constraint Zf"zl «a;y; = 0, a; can be derived from
other fixed variables. Hence, in each iteration, SMO selects two
variables «; and o; and fixes other parameters. After initializ-
ing the parameters, SMO repeats the following two steps until
convergence:

== Select two variables to be updated: o; and ay;
== Fix all the parameters and solve (6.11) to update o; and «;.

The objective value will increase iteratively once any of the
selected a; and q; violates the KKT conditions (6.13) (Osuna
et al. 1997). Intuitively, the larger the magnitude of the KKT
conditions being violated, the larger the possible magnitude of
the increase of the objective value after updating. Following
this idea, SMO should select the most violated variable as the
first variable and select the one leading to the fastest increase
of the objective value as the second variable. However, since it
is computationally expensive to compare the increases of the
objective values of variables, SMO takes a heuristic approach:
select the two variables whose corresponding samples have the
largest distance. Intuitively, since these two variables are very

133 6

See Appendix B.1.

As pointed out in (Vapnik 1999),
the naming of support vector
reflects the fact that finding the
solution using support vectors is
the key to such learners. This
also implies that the model
complexity mainly depends on
the number of support vectors.

See Appendix B.2 for quadratic
programming.
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different from each other, they are more likely to lead to a
significant update to the objective value compared to those
two variables that are similar to each other.

The efficiency of the SMO algorithm is a result of the effi-
cient optimization of two variables by fixing the others. To be
specific, if we only consider «; and o;, then we can rewrite the
constraints in (6.11) as

aiyi oy =c¢, o = 0, o = 0, (6.14)
where
C = — Z OékJ’k (615)
ki

is a constant such that Y /" ; a;y; = 0 holds. Eliminating the
variable «; from (6.11) with

Q;yi + oy =c (6.16)

leads to a univariate quadratic programming problem, in which
the only constraint is «; > 0. Since this kind of quadratic pro-
gramming problems have closed-form solutions, no numerical
optimization algorithm is needed to get the new «; and «;.

How can we determine the bias term »? We notice that there
is ysf (x5) = 1 for every support vector (xy, ys), that is

Vs (Z ayix] x5 + b) =1, (6.17)

ieS

where S = {i | o; > 0,i = 1,2, ..., m} is the index set of all
support vectors. Theoretically, we can find b by substituting
any support vectors to (6.17). In practice, a more robust method
is taking the average of b obtained from all support vectors

_ S (L oS T
b_|S|Z<yS > aipix; xs). (6.18)

seS ieS

6.3 Kernel Function

Previous discussions in this chapter assumed the training sam-
ples are linearly separable, that is, there exist hyperplanes
that can classify all training samples correctly. However, this
assumption often does not hold in practice. For example,
the exclusive disjunction (i.e., XOR) problem, as shown in
@ Figure 6.3, is not linearly separable.

In such cases, we can map the samples from the origi-
nal feature space to a higher dimensional feature space. That
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Fig.6.3 The XOR problem and non-linear mapping

way the samples become linearly separable. For example, in
@ Figure 6.3, a qualified hyperplane can be found after map-
ping the 2-dimensional space to a 3-dimensional space. For-
tunately, if the original feature space has a finite number of
features, then there must exist a higher dimensional feature
space in which the samples are linearly separable.

Let ¢(x) denote the mapped feature vector of x, then
the separating hyperplane model in the feature space can be
expressed as

fx)=wl o)+ b, (6.19)

where w and b are the model parameters. Similar to (6.6), we
have

o1 5
min — ||w||
w,b 2

(6.20)
s.t. yi(wT(jJ(xi) +b)y>=1, i=12,...,m.
Its dual problem is
m L .
max ; ai =3 ;E aicyyiyid (i) o(x))
(6.21)

m
s.t. Z a;y;i =0,
i=1

Solving (6.21) involves the calculation of ¢ (x;) T ¢ (x 1), which
is the inner product of the mapped feature vectors of x; and x;.
Since the mapped feature space can have very high or even infi-
nite dimensionality, it is often difficult to calculate ¢ (x i)Tgb(x i)
directly. To avoid this difficulty, we suppose there exists a func-
tion in the following form:
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See Chap. 12.
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Kk(xi, X)) = (0(x), (x))) = d(x) " d(x;), (6.22)

which says the inner product of x; and x; in the feature space
can be calculated in the sample space using the function (-, -).

This is called kernel trick. With such a function, we no longer need to calculate the inner
product in the feature space and can rewrite (6.21) as

m m m
1
max Eloz,-— 3 E E a;yiyik(Xi, X;)
i=

i=1 j=1
(6.23)

s.t. Z ;i =0,
i=1

Solving it gives
S =wlox) +b

=Y aid(x) ¢(x)+b
i=1
=Y aiyir(x, x;) + b, (6.24)

i=1

where (-, -) is the kernel function. From (6.24), we see that
the optimal solution can be expanded by training samples with
the kernel functions, and this is known as the support vector
expansion.

We can derive the kernel function (-, -) if we know the
details of the mapping ¢(-). However, ¢(-) is often unknown
in practice. Then, how do we know if there is a proper kernel
function? What kind of functions are valid kernel functions?
Let us see the following theorem:

Theorem 6.1 (Kernel Function) Let X denote the input space,
See (Scholkopf and Smola 2002)  gnd k(-, -) denote a symmetric function defined in X x X. Then, k
for the proof. is a kernel function if and only if the kernel matrix K is positive

semidefinite for any data set D = {x1,x2, ..., X}

KXy, Xx1) .. k1, X5) .. KX, X)
K=| rx,x1) ... s(x;,x;) ... £(xi,%m)

KXp, X1) oo 6(Xmy X7) oo K(Xgmy X )

Theorem 6.1 says that every symmetric function with a pos-
itive semidefinite kernel matrix is a valid kernel function. For
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every positive semidefinite kernel matrix, there is always a cor-
responding mapping ¢. In other words, every kernel function
implicitly defines a feature space known as the Reproducing
Kernel Hilbert Space (RKHS).

Since we wish the samples to be linearly separable in the
feature space, the quality of the feature space is vital to the
performance of support vector machines. However, we do not
know which kernel functions are good because we do not know
the feature mapping. Therefore, the “choice of kernel” is the
biggest uncertainty of support vector machines. A poor ker-
nel will map the samples to a poor feature space, resulting in
poor performance. Some common kernel functions are listed
in @ Table 6.1.

B Tab.6.1 Some common kernel functions

Name Expression Parameters
Linear kernel K(xj, xj) = x;rxj
Polynomial kernel r(x;, x;) = (xlij)d d > listhedegree of the
polynomial
2
=i

) o > 0is the width of the
Gaussian kernel

Gaussian kernel K(xj, xj) = exp (— 3
k 20

sl

Laplacian kernel  s(x;, xj) =exp(—

Sigmoid kernel K(xj, x7) = tanh ([ﬁxiij +6) tanh is the hyperbolic
tangent function, 3 > 0,
0<0

Besides, we can construct kernel functions by function com-
position, e.g.
== For any positive numbers -] and 7», if k1 and «; are kernel
functions, then their linear combination

V1K1 + V2K2 (6.25)

is also a kernel function;
== [f k] and k are kernel functions, then their direct product

K1 ® K2(x, z) = K1(x, 2)K2(xX, 2) (6.26)

is also a kernel function;
== [f k1 is a kernel function, then, for any function g(x),

k(x,2) = g(x)r1(x, 2)9(2) (6.27)

is also a kernel function.
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There are some rules of thumb,
such as using linear kernels for
textual data since the data is
already high-dimensional, and
using the Gaussian kernel when
the situation is unclear.

It reduces to linear kernel when
d=1.

Gaussian kernel is also called
RBF kernel.
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D)

0 Z1

Fig.6.4 Soft margin. The samples in red violate the constraints

6.4 Soft Margin and Regularization

Our discussions so far assumed the samples to be linearly sep-
arable in either the sample space or the feature space. How-
ever, it is often difficult to find an appropriate kernel function
to make the training samples linearly separable in the feature
space. Even if we do find such a kernel function, it is hard to
tell if it is a result of overfitting.

One way of alleviating this situation is to allow a support
vector machine to make mistakes on a few samples. This idea
is implemented by the concept of soft margin, as shown in
@ Figure 6.4.

To be specific, the previously introduced support vector
machines are subject to the constraints (6.3), that is, the hard
margin requires all samples to be correctly classified. The soft
margin, however, allows the violation of the constraint

yiow'x; +b) > 1. (6.28)

Of course, the number of samples violating the constraint
should be minimized while maximizing the margin. Hence, the
optimization objective can be written as

) 1 m
min = [wl? + C Y Lop (iwxi +b) = 1), (6.29)
’ i=1

where C > 0 is a constant, and £¢, is the 0/1 loss function

1, ifz<0;
Lo/1(2) = { (6.30)

0, otherwise.

When C is infinitely large, (6.29) forces all samples to obey the
constraint (6.28), and (6.29) is equivalent to (6.6), that is, the
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Chinge(2) = max(0,1 — 2)

élog (Z) = log ( 1+ eXP( - Z))

Fig. 6.5 Three surrogate losses, namely, hinge loss, exponential loss, and
logistic loss

hard margin. On the other hand, some samples may violate the
constraint when C takes a finite value.

Solving (6.29) directly is difficult since £y has poor math-
ematical properties, that is, non-convex and discontinuous.
Therefore, we often replace £o;; with some other functions,
known as surrogate loss functions, which have nice mathemat-
ical properties, e.g., convex, continuous, and are upper bound
of £o/1. @ Figure 6.5 illustrates three commonly used surrogate
loss functions:

hinge loss: £hinge(z) = max(0, 1 — z); (6.31)
exponential loss: £exp(z) = exp(—z); (6.32)
logistic loss: £1og(2) = log(1 4 exp(—2)). (6.33)

When hinge loss is used, (6.29) becomes

1 “
min > wli* + €Y max(0, 1 — yiw'x; +5).  (6.34)

i=1

By introducing slack variables &; > 0,(6.34) can be rewritten
as

D R “
min = ] +CZ&
i=l (6.35)
s.t. y,-(wa,- +b)>1-¢
&>0, i=1,2,....,m

which is the commonly used Soft Margin Support Vector
Machine.

In (6.35), each sample has a corresponding slack variable
indicating the degree to which the constraint (6.28) is violated.
Similar to (6.6), this is again a quadratic programming prob-
lem. Hence, we apply the Lagrange multipliers to (6.35) to
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The logistic loss is a
transformation of the logistic
function. See Sect. 3.3.

Since the logistic loss is often
written as £1og(+), (3.15) rewrites
In(+) in (6.33) to log(-).
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obtain the Lagrange function

m

1
Low.bov & )= WP +C) &

i=1
+ Y il =& —yiw xi+b) = Y ik,

i=1 i=1
(6.36)

where o; > and p; > 0 are the Lagrange multipliers.
Setting the partial derivatives of L(w, b, a, &, p) with respect
tow, b, and &; to 0 gives

m
w = Zaiyixi’ (637)
i=1
m
0= Z Q;Yi, (6.38)
i=1
C=a; + . (6.39)
Substituting (6.37)—<6.39) into (6.36) gives the dual problem of
(6.395)

m m m

max Y a;— % DD ciojyiyx xj
i=1

i=1 j=1

m
s.t. Z a;y;i =0,
i=1

0oy <C, i=1,2,....,m.

(6.40)

Comparing (6.40) with the dual problem (6.11) of hard mar-
gin, we observe that the only difference is the constraint on dual
variables: 0 < o; < C for soft margin and «; > 0 for hard mar-
gin. Hence, (6.40) can be solved in the same way as we did in
Sect. 6.2. By introducing kernel function, we obtain the support
vector expansion the same as we had in (6.24).

Similar to (6.13), the KKT conditions for soft margin sup-
port vector machines are

a;=20, p =0,

yif (x) —14+& >0,
ai(yif (xi)) =14+ &) =0,
& 20, w&=0.

(6.41)
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Hence, for each training sample (x;, y;), we either have a;; = 0
or yif (x;) = 1 — &. When «; = 0, this sample has no impact
on f(x). When o; > 0, y;f(x;) = 1 — &, that is, this sample
is a support vector. From (6.39), we know that if o; < C then
wi > 0 and subsequently & = 0, that is, this sample point lies
on the maximum-margin hyperplanes. When «; = C, we have
ui = 0, which means the sample falls inside the margin if §; < 1
and it is incorrectly classified if £ > 1. This shows that the final
model of soft margin support vector machine only depends on
the support vectors, that is, the sparseness is preserved after
using the hinge loss.

Can we use other surrogate loss functions for (6.29)? In fact,
if we replace the 0/1 loss function of (6.29) by the logistic loss
function £, then we end up with a model that is almost the
same as the logistic regression (3.27). Since the optimization
objectives of support vector machine and logistic regression
are similar, their performance is also similar in many cases.
The main advantage of logistic regression is its output natu-
rally carries probability meanings, that is, each predicted label
comes with a probability. By contrast, the predictions of sup-
port vector machines do not associate with probabilities, and
probabilities can only be obtained with additional process-
ing (Platt 2000). Besides, the logistic regression can be directly
applied to multiclass classifications, whereas the support vec-
tor machine requires extensions (Hsu and Lin 2002). On the
other hand, from @ Figure 6.5, we can see there is a “flat zero
region” for hinge loss, which makes the solution of support vec-
tor machines sparse. The logistic loss, which is a smooth and
monotonically decreasing function, cannot derive the concept
like support vectors, and hence relies on more training samples,
and its prediction cost is also higher.

We can obtain other learning models by replacing the 0/1
loss function of (6.29) with other surrogate functions. The
obtained models depend on the choice of the surrogate func-
tions, but they have one thing in common: the first term in the
objective function represents the “margin” size of the separat-
ing hyperplane and the other term >, €(f(x;), y;) represents
the error on the training set. Hence, we can rewrite the loss in
a more general form as

H}in QU+ CY_U(f (xi). yi), (6.42)

i=1

where Q (f') is known as structural risk, representing some prop-
erties of the model /. The second term Y ;—; £(f (x;), y;) is
known as the empirical risk, which describes how well the model
matches the training data. The constant C makes a trade-off
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Typically, structural risk refers
to the whole risk after
incorporating the model
structure factor. In this book,
however, structural risk refers to
the part corresponding to model
structure in the total risk so that
its meaning is more intuitive,
and its connection to other
mechanisms of machine learning
becomes more apparent. See
Page 169.
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We can regard regularization as
a penalty function method which
applies penalties to undesired
outcomes such that the
optimization is biased towards
the desired outcome. From the
Bayesian inference point of
view, the regularization term can
be seen as a prior to the model.

See Sect. 11.4 for Ly and L,
regularization.

The slackness of two sides can
be different.

between these two risks. From the perspective of minimizing
the empirical risk, € () represents what kind of properties we
would like the model to have (e.g., prefers a model with low
complexity), which provides a way for incorporating domain
knowledge and user’s requirements. On the other hand, Q(f) is
also helpful for reducing the hypothesis space, which reduces
the overfitting risk of minimizing the training error. From this
point of view, (6.42) is a regularization problem, where Q (f) is
the regularization term, and C is the regularization constant. A
typical regularization term is the L, norm, where the L, norm
|w]|, is biased towards balanced weightsw, i.e., a dense solution
with many non-zero weights. On the other hand, the Ly norm
lwllo and the L norm ||w||; are biased towards making w have
sparse elements, that is, with only a few non-zero elements.

6.5 Support Vector Regression

Now let us consider regression problems. Given a training set
D = {(x1,y1), (x2,2), ..., (Xm, ym)}, where y; € R. Suppose
we wish to learn a regression model in the form of (6.7) such
that f'(x) and y are as close as possible, where w and b are the
parameters to be learned from data.

The loss in traditional regression models is calculated from
the difference between the model output f'(x) and the ground-
truth output y, and the loss is 0 if and only if f(x) equals to
y. By contrast, Support Vector Regression (SVR) allows an
error € between f(x) and y, that is, a loss incurs only if the
difference between f(x) and y exceeds e. We can consider it as
establishing a band buffer region surrounding /' (x) with a width
of 2e. Training samples falling within this buffer region are
considered as correctly predicted, thatis, no loss (@8 Figure 6.6).

Formally, the SVR problem can be written as

1 LN
min. = wl?+C Y e/ (x) =y, (6.43)

i=1

where C is the regularization constant, and £, as illustrated in
@ Figure 6.7, is the e-insensitive loss function

if [z] <€
0u(z) = 0, if |z] <e

|z] — e,

i (6.44)
otherwise.

With slack variables & and fi, (6.43) can be rewritten as
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(0] T

Fig.6.6 Support vector regression. The samples that fall into the red e-region
do not incur any loss

0(2)4
0(z) =22
0.(2) = 0, if [2| <€
. |z| — €, otherwise.
0 z

Fig.6.7 The e-insensitive loss function

1 = »
min_ —wl + C Y (& + &)

w.b.61.i i1
st f(xi) —yi<e+& (6.45)
yi—f) e+,

§>056>0, i=1,2...,m

Similar to (6.36), applying the Lagrange multipliers p; > 0,
;i = 0,; > 0,and &; > 0to (6.45) gives its Lagrange function

L(W, b1 a9 dv Sv év IJ‘v I:\L)
1 m R m m R
=5 WP+ CY (G +E) = ki — D ki
i=1 i=1 i=1

+ Y i () —yi—e— &)+ Y Gy —f(x) — e —&).
i=1 i=1

(6.46)
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Substltutlng (6.7) and setting the partial derivatives of L(w, b,
a, &g, E u, ) with respect tow, b, &;, and f, to 0, gives

m
W= Z(@i — o)X, (6.47)
m
C =i + i, (6.49)
C =&+ i (6.50)
Substituting (6.47)—6.50) into (6.46) gives the dual problem of
SVR as

m

max Zy,(a, — o) — e(& + o)
i=1

m m
) Z D (@i — ai (@) — apx]x;

=45 (6.51)

m
s.t. Z(dl — ;) =0,
i=1
0< a0 <C.
For SVR, the KKT conditions are

ai(f(x) —yi—e—=¢&) =0,
&i(yi — f(xi) —e— &) =0,
a;iq; =0, && =0,
C—an& =0, (C—a&=0.

(6.52)

From (6.52), we see that «; isnon-zero if and only if /' (x;) — y; —
e—&; = 0,and ¢&; isnon-zero if and only if y; —f(xl-)—e—é,- =0.
In other words, a; and &; take non-zero values if and only
if the sample (x;, y;) falls outside of the e-insensitive region.
Moreover, since the constraints f(x;) — y; — ¢ — & = 0 and
yi — f(x;) — e — & = 0 cannot be true at the same time, «; or
&; must be zero.

Substituting (6.47) into (6.7), we have the solution of SVR
as

m

f(x) =Y (& —apx/x +b. (6.53)

i=1
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In (6.53), the samples are the support vectors of SVR if
(&; — aj) # 0, and they fall outside the e-insensitive region.
The solution of SVR is sparse since the support vectors are
only a subset of the training samples.

The KKT conditions in (6.52) show that each sample (x;, y;)
satisfies (C — ;)& = 0 and «; (f (x;) — yi — e — &) = 0. Hence,
& =01f0 < ; < C, and consequently

m
b=yi+e— Y (& —apx]xi. (6.54)
j=1
Therefore, after obtaining «; by solving (6.51), we can find
b by substituting any «; satisfying 0 < «; < C into (6.54).
In practice, a more robust method is taking the average of b
obtained from multiple or all «; satisfying 0 < o; < C.
Similar to (6.19), after mapping to the feature space, (6.47)
becomes

m
W= (& — a)d(x)). (6.55)
i=1
By substituting (6.55) into (6.19), SVR can be expressed as

m

fx) =) (G — ap)k(x, x;) +b. (6.56)

i=1

where k(x;, x;) = d)(x,-)T¢(xj) is the kernel function.

6.6 Kernel Methods

By revisiting (6.24) and (6.56), we see that if we do not consider
the bias term b, then both the SVM and the SVR models can
be expressed as linear combinations of the kernel functions
k(x, x;). In fact, there is a more generalized conclusion known
as the representer theorem.

Theorem 6.2 (Representer Theorem) Let H denote the repro-
ducing kernel Hilbert space associated to the kernel function k,
and ||h||g denote the norm of h in the space H. Then, for any
monotonically increasing function Q : [0, 00] +— R and any
non-negative loss function £ : R™ +— [0, o], the solution to the
optimization problem

géiﬁ F(h) = Qlhllg) +€ (h(x1), h(x2), ..., h(xpm)) (6.57)

can always be written in the form of
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All samples fall inside of the
e-insensitive region satisfy
0%} =Oandd,— =0.

The proof can be found in
(Scholkopf and Smola 2002),
with the use of Mercer’s
theorem.
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See Sect. 3.4 for linear
discriminant analysis.

B (x) = aik(x, x)). (6.58)
i=1

The representer theorem has few restrictions on the loss
function, and the regularization term €2 is only required to
be monotonically increasing, not even necessary to be convex.
This implies that, for typical loss functions and regularization
terms, the optimal solution /*(x) for the optimization problem
(6.57) can always be expressed as a linear combination of the
kernel functions x(x, x;). This observation exhibits the great
power of kernel functions.

By utilizing kernel functions, researchers developed a series
of learning methods known as kernel methods. A typical
approach is to extend linear learners to non-linear learners
by kernelization, that is, introducing kernel functions. Next,
we demonstrate how to apply kernelization to the linear dis-
criminant analysis to obtain its non-linear extension, that is,
Kernelized Linear Discriminant Analysis (KLDA).

Suppose there is a mapping ¢ : X — [F that maps sam-
ples into a feature space I, and we perform linear discriminant
analysis in I to get

h(x) =w' d(x). (6.59)
Similar to (3.35), the learning objective of KLDA is
wTwa

G‘; 9
wlS,w

max J(w) =
w

(6.60)

where SZ and S?V are, respectively, the between-class scatter
matrix and the within-class scatter matrix of training samples
in the feature space F. Let X; denote the set of m; samples of
the ith (i € {0, 1}) class, and m = my + m; denote the total
number of samples. Then, the mean of the ith class samples in
the feature space F is

o_ L
M= > s, (6.61)

xeX,-

and the two scatter matrices are

Sy =] = mH Wy —p)’, (6.62)
1

SO =33 (6) — u))(6x) — )T (6.63)

i=0 xeX;
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Typically, the exact form of the mapping ¢ is unknown,
and hence we use the kernel function s(x, x;) = #(x;) T H(x)
to implicitly express the mapping ¢ and the feature space F.
Using J(w) as the loss function £ in (6.57) and letting 2 = 0,
then, according to the representer theorem, the function /(x)
can be written as

m
h(x) = aik(x, x), (6.64)
i=1
and, from (6.59), we have

W= ap(x)). (6.65)

i=1

Let K € R™*™ denote the kernel matrix associated to the
kernel function x, where (K); = r(x;, x;). Let 1; € {1, o<1
denote the indicator vector of the ith class samples, that is, the
jthelement of 1; is 1 if and only if x; € X, and the jth element
of 1; is 0 otherwise. Letting

1
fro = —XKlo, (6.66)
mg
1
f = —KI1j, (6.67)
mi
M = (frg — fu) (g — 1) |, (6.68)
1
N=KK' — Zmi,}ia?. (6.69)
i=0

Then, (6.60) is equivalent to

a"Ma

max J = —.
a (@) a"Na

(6.70)
which can be solved in the same way as in the linear discrimi-
nant analysis. With the solution «, the mapping function /(x)
can be obtained using (6.64).
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See Sect. 3.4 for linear
discriminant analysis.
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Till now, SVM with a linear
kernel is still the preferred
method for text classifications.
An important possible reason is
that it is already a very high
dimensionality feature space
with high information
redundancy if we consider each
word as a feature. The
representation power is strong
enough to “shatter” different
text documents. See Sect. 12.4
for shattering.

m is the number of samples.

6.7 Further Reading

SVM was officially published in 1995 (Cortes and Vapnik
1995). Because of its outstanding performance in text classifi-
cation tasks (Joachims 1998), SVM has soon become the main-
stream of machine learning and has contributed to the boom of
the statistical learning around 2000. However, the concept of
support vectors already appeared in the 1960s, and the founda-
tion of the statistical learning theory was set in the 1970s. Stud-
ies on kernel functions even go back a longer time. For example,
Mercer’s theorem (Cristianini and Shawe-Taylor 2000) can be
traced back to 1909, and the RKHS has already been studied in
the 1940s. However, the kernel trick did not become a general
machine learning technique until the statistical learning gained
its popularity. There are many books and introductory arti-
cles for support vector machines and kernel methods, including
(Burges 1998, Cristianini and Shawe-Taylor 2000, Scholkopf
etal. 1999, Scholkopfand Smola 2002). The statistical learning
theory can refer to (Vapnik 1995, 1998, 1999).

Solutions to SVM are often found via convex optimiza-
tion techniques (Boyd and Vandenberghe 2004). A critical
research topic on SVM is how to improve its efficiency for
large-scale data. There are already considerable research out-
comes for linear kernels. For example, the SVMPf which is
based on the cutting plane algorithm, has achieved linear com-
plexity (Joachims 2006); the Pegasos method (Shalev-Shwartz
et al. 2011), which is based on stochastic gradient descent, is
even faster, and the coordinate descent method is highly effi-
cient on sparse data (Hsieh et al. 2008). Theoretically, the time
complexity of SVM with non-linear kernels is no less than
O(m?), and hence researchers mainly focus on designing effi-
cient approximation methods, such as the CVM model (Tsang
et al. 2006) based on sampling, the Nystrom method (Williams
and Seeger 2001) based on low-rank approximation, and the
random Fourier features method (Rahimi and Recht 2007).
Recent studies show that the Nystrom method is superior to
the random Fourier features method when a large difference
between the eigenvalues of the kernel matrices exists (Yang
et al. 2012).

Since support vector machines are originally designed for
binary classifications, an extension is required for multiclass
classifications (Hsu and Lin 2002) and structured output vari-
ables (Tsochantaridis et al. 2005). The study of support vector
regressions started in (Drucker et al. 1997), and a comprehen-
sive introduction is given in (Smola and Scholkopf 2004).

The choice of kernel functions directly decides the perfor-
mance of support vector machines and kernel methods. Unfor-
tunately, the kernel function selection is still an unsolved prob-
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lem. Multiple kernel learning employs multiple kernel func-
tions and aims to find the best convex combination of the ker-
nels as the final kernel function (Bach et al. 2004, Lanckriet
et al. 2004), and this is indeed taking advantages of ensemble
learning.

Surrogate loss functions are widely used in machine learn-
ing. However, how do we know if the solution via a surrogate
loss function is still the solution to the original problem? This
is known as the “consistency” problem in theoretical studies.
(Vapnik and Chervonenkis 1991) gave the necessary and suf-
ficient conditions of consistency when using the surrogate loss
for empirical risk minimization. (Zhang 2004) proved the con-
sistency of several common convex surrogate loss functions.

There are many software packages implementing SVM,
suchas LIBSVM (Changand Lin2011) and LIBLINEAR (Fan
et al. 2008).
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See Chap. 8 for ensemble
learning.
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LIBSVM is available at

» http://www.csie.ntu.edu.tw/
~cjlin/libsvm/.

The watermelon data set 3.0« is
in @ Table 4.5.

UCI data sets are available at
» http://archive.ics.uci.edu/ml/.

Exercises

6.1 Prove that (6.2) is the distance from every point x in the
sample space to the hyperplane (w, b).

6.2 Run LIBSVM on the watermelon data set 3.0cv and build
two SVM models using the linear kernel and the Gaussian ker-
nel. Compare their support vectors.

6.3 Choose two UCI data sets and build two SVM models
using the linear kernel and the Gaussian kernel. Compare the
performance against BP neural networks and C4.5 decision
trees.

6.4 Discuss under what conditions the linear discriminant anal-
ysis and the support vector machine with linear kernel are

equivalent.

6.5 Discuss the relationship between the SVM with the Gaus-
sian kernel and the RBF neural network.

6.6 Analyze the reason of why the SVM is sensitive to noises.
6.7 Write down the full KKT conditions of (6.52).

6.8 Use LIBSVM to train an SVR on the watermelon data set
3.0a, where the input is density and the output is sugar.

6.9 Use kernel trick to extend the logistic regression to the ker-
nelized logistic regression.

6.10 * Design a method to significantly reduce the number of
support vectors without sacrificing much generalization ability.


http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://archive.ics.uci.edu/ml/

Break Time

Break Time

Short Story: Vladimir N. Vapnik—father of the statistical learn-
ing theory

Vladimir N. Vapnik (1936-) is an
outstanding mathematician, statis-
tician, and computer scientist. He
was born in the former Soviet Union
and obtained his master’s degree
in mathematics from the Uzbek
State University in 1958. In 1964,
he obtained his Ph.D. degree in
statistics at the Institute of Con-
trol Sciences in Moscow, and then
worked there and eventually became
the head of the computer science
research department. In 1990, one
year before the dissolution of the former Soviet Union, he
moved to the United States and joined the AT&T Bell Labs in
New Jersey. In 1995, he and his colleagues published the semi-
nal paper of SVM. Since neural networks were groundbreaking
at that time, the paper was published under the name “Support
Vector Networks” as requested by the Machine Learning jour-
nal.

In fact, Vapnik has already proposed the concept of sup-
port vectors in 1963. In 1968, Vapnik and another former
Soviet Union mathematician A. Chervonenkis proposed the
concept of V'C dimension named after their surnames. Later on,
in 1974, the principle of structural risk minimization was pro-
posed. These works established the statistical learning theory
in the 1970s. However, most of these works were published in
Russian, and hence relevant research did not gain attention
from the western academia until Vapnik moved to the United
States. At the end of the twentieth century, the statistical
learning theory, support vector machines, and kernel methods
became the superstars in machine learning.

In 2002, Vapnik left the AT&T Bell Labs and joined NEC
Laboratories in Princeton. In 2014, Vapnik joined Facebook
Al Research. He has also held professorship at the University
of London and Columbia University since 1995. There is a very
well-known quote of Vapnik: “Nothing more practical than a
good theory.”
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Actually, the SVM does have
close connections to neural
networks: setting the number of
hidden neurons to the number
of training samples and letting
each sample corresponds to a
neuron center, then, an RBF
network (see Sect. 5.5.1) using
Gaussian radial basis function
has the same form as the
prediction function of SVM
with the Gaussian kernel.
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In decision theory, the expected
loss 1s known as the risk.

The misclassification rate
corresponds to the 0/1 loss
function in Chap. 6.

7.1 Bayesian Decision Theory

Bayesian decision theory is a fundamental decision-making
approach under the probability framework. In an ideal situa-
tion when all relevant probabilities were known, Bayesian deci-
sion theory makes optimal classification decisions based on the
probabilities and costs of misclassifications. In the following,
we demonstrate the basic idea of Bayesian decision theory with
multiclass classification.

Let us assume that there are N distinct class labels, that is,
Y ={c1,¢c2,...,cy}. Let A denote the cost of misclassifying
a sample of class ¢; as class ¢;. Then, we can use the posterior
probability P(c; | x) to calculate the expected loss of classifying
a sample x as class ¢;, that is, the conditional risk of the sample
x:

N
R(ci | x) =Y NjP(cj | x). (7.1)
j=1

Our task is to find a decision rule 4 : X — Y that minimizes the
overall risk

R(h) = Ex [R(h(x) | x)]. (7.2)

The overall risk R(%) is minimized when the conditional risk
R(h(x) | x) of each sample x is minimized. This leads to the
Bayes decision rule: to minimize the overall risk, classify each
sample as the class that minimizes the conditional risk R(c | x):

h*(x) = argmin R(c | x), (7.3)
cey

where i* is called the Bayes optimal classifier, and its associated
overall risk R(#*) is called the Bayes risk. 1 — R(h*) is the best
performance that can be achieved by any classifiers, that is,
the theoretically achievable upper bound of accuracy for any
machine learning models.

To be specific, if the objective is to minimize the misclassi-
fication rate, then the misclassification loss );; can be written
as

0, ifi=yj;

Aj = ]
1, otherwise,

(7.4)

and the conditional risk is

R(c|x)=1-=P(c|x), (7.5)
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Then, the Bayes optimal classifier that minimizes the misclas-
sification rate is

h*(x) = argmax P(c | x),
cey

(7.6)

which classifies each sample x as the class that maximizes its
posterior probability P(c | x).

From (7.6), we can see that the Bayes decision rule relies
on the posterior probability P(c | x), which is often difficult to
obtain. From this perspective, the task of machine learning is
then to accurately estimate the posterior probability P(c | x)
from the finite training samples. Generally speaking, there are
two strategies. The first strategy is to predict ¢ by estimating
P(c | x) directly, and the corresponding models are known as
discriminative models. The second strategy is to estimate the
joint probability P(x, ¢) first and then estimate P(c | x), and
the corresponding models are called generative models. The
models introduced in earlier Chapters are all discriminative
models, including decision trees, BP neural networks, and sup-
port vector machines. For generative models, we must evaluate

P(x,c)
X) = .
P(x)

According to Bayes’ theorem, P(c | x) can be written as

P(c|

(1.7)

pretx) = TOPELD

: (7.8)
where P(c) is the prior probability of ¢, P(x | ¢) is the class-
conditional probability, also known as the likelihood, of the sam-
ple x with respect to class ¢, and P(x) is the evidence factor for
normalization. Given x, the evidence factor P(x) is indepen-
dent of the class, and thus the estimation of P(c | x) is trans-
formed to estimating the prior P(c¢) and the likelihood P(x | ¢)
from the training set D.

The prior probability P(c) represents the proportion of each
class in the sample space. Based on the law of large numbers,
P(c) can be estimated by the frequency of each class in the
training set as long as there are sufficient i.i.d. samples.

It is difficult to calculate the class-conditional probability
P(x | ¢) directly since the calculation involves the joint proba-
bility of all features of x. For example, suppose that there are
d binary features in each sample, then there are 2¢ possible
combinations in the sample space. In practice, the number of
training samples 2 is usually much smaller than 2¢, and there-
fore, many combinations have never appeared in the training
set. Hence, estimating P(x | ¢) directly by the frequencies in the
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Note that this is just for the
understanding of machine
learning under the probabilistic
framework. In fact, many
machine learning techniques can
perform accurate classifications
without estimating the posterior
probabilities.

P(x) is the same for all classes.

For ease of discussion, we
assume all features to be
discrete. For continuous
features, we can replace the
probability mass function P(-)
by the probability density
function p(-).

See Sect. 7.3.
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p(x | ¢) for continuous
distribution.

The ongoing debate between the
Frequentist school and the
Bayesian school started around
the 1920s and the 1930s. These
two schools have different views
on many important questions
and even the interpretation of
probability itself. Readers who
are interested in this can find
more information in Efron
(2005), Samaniego (2010).

Also known as the Maximum
Likelihood Method.

training set is infeasible since “unobserved” and “zero proba-
bility” are generally different.

7.2 Maximum Likelihood Estimation

A general strategy of estimating the class-conditional proba-
bility is to hypothesize a fixed form of probability distribution,
and then estimate the distribution parameters using the train-
ing samples. To be specific, let P(x | ¢) denote class-conditional
probability of class ¢, and suppose P(x | ¢) has a fixed form
determined by a parameter vector .. Then, the task is to esti-
mate 6, from a training set D. To be precise, we write P(x | ¢)
as P(x | 6,).

The training process of probabilistic models is the process
of parameter estimation. There are two different ways of think-
ing about parameters. On the one hand, the Bayesian school
thinks that the parameters are unobserved random variables
following some distribution, and hence we can assume prior
distributions for the parameters and estimate posterior distri-
bution from observed data. On the other hand, the Frequen-
tist school supports the view that parameters have fixed values
though they are unknown, and hence they can be determined
by some approaches such as optimizing the likelihood function.
The remaining of this section discusses the Maximum Likeli-
hood Estimation (MLE), which comes from the Frequentist
school and is a classic method of estimating the probability
distribution from samples.

Let D, denote the set of class ¢ samples in the training set
D, and further suppose the samples are i.i.d. samples. Then,
the likelihood of D, for a given parameter 6, is

P(D:|6)= [] Px160). (7.9)

xeD,

Applying the MLE to 6, is about finding a parameter value 6,
that maximizes the likelihood P(D, | 6.). Intuitively, the MLE
aims to find a value of 8, that maximizes the “likelihood” that
the data will present.

Since the product of a sequence in (7.9) can casily lead to
underflow, we often use the log-likelihood instead:

LL@®.) =logP(D. |0,
=Y logP(x | 6,),

xeD,

(7.10)

and the MLE of 9. is
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éc = argmax LL(6.). (7.11)

0.

For example, suppose the features are continuous and the
probability density function follows the Gaussian distribution
p(zx | ¢) ~ N(pae, o-%), then the MLE of the parameters p, and
o are

) 1
fro="—->"x, (7.12)
[Dc| aeD,
N 1 . N
67 = X D= fie)x = fue) T (7.13)
¢ xeD,

In other words, the estimated mean of Gaussian distribution
obtained by the MLE is the sample mean, and the estimated
variance is the mean of (x — fi.)(x — fi.) " ; this conforms to
our intuition. Conditional probabilities can also be estimated
similarly for discrete features.

Such kind of parametric methods simplify the estimation
of posterior probabilities, but the accuracy of estimation heav-
ily relies on whether the hypothetical probability distribution
matches the unknown ground-truth data distribution. In prac-
tice, a “guessed” probability distribution could lead to mis-
leading results, and hence we often need domain knowledge
to help hypothesize a good approximation to the ground-truth
data distribution.

7.3 Naive Bayes Classifier

When estimating the posterior probability P(c¢ | x) with the
Bayesrule (7.8), there is a difficulty: itis not easy to calculate the
class-conditional probability P(x | ¢) from the finite training
samples since P(x | ¢) is the joint probability on all attributes.
To avoid this, the naive Bayes classifier makes the “attribute
conditional independence assumption” given any known class,
assume all attributes are independent of each other. In other
words, we assume each attribute influences the prediction result
independently.

With the attribute conditional independence assumption,
we rewrite (7.8) as

d
P(oPx|c) P(o) 1—[
= = P(xi| o), (7.14)
i=1

Pl =—505" =P
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Nis the Gaussian distribution.
See Appendix C.1.7.

Computing the joint probability
with finite training samples
suffers from the combinatorial
explosion problem in
computation and the data
sparsity problem in data. The
more attributes there are, the
severer the problems are.
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Strictly speaking, x; is an
“attribute-value” pair, e.g.,
color=green. For ease of
discussion, when the context is
clear, x; may either represent the
ith attribute (e.g., color) or the
value of x on the ith attribute

(e.g., green).

The watermelon data set 3.0 is in
B Table4.3.

where d is the number of attributes and x; is the value taken
on the ith attribute of x

Since P(x) is the same for all classes, from the Bayes decision
rule (7.6), we have

d
hnp(x) = argmax P(c) l—[P(x,- | 0, (7.15)
ce)y

i=1

which is the formulation of the naive Bayes classifier.

To train a naive Bayes classifier, we compute the prior prob-
ability P(c) from the training set D and then compute the con-
ditional probability P(x; | ¢) for each attribute.

Let D. denote a subset of D containing all samples of class
¢. Then, given sufficient i.i.d. samples, the prior probability
can be easily estimated by

|D|
|D|

P(c) = (7.16)
For discrete attributes, let D, x; denote a subset of D, contain-
ing all samples taking the value x; on the ith attribute. Then,
the conditional probability P(x; | ¢) can be estimated by

| De.i]

|De|

P(xi|c)= (7.17)
For continuous features, suppose p(x; | ¢) ~ M., 062,’1. ,

where p.; and 0'3 ; are, respectively, the mean and variance
of the ith feature of class ¢ samples. Then, we have

1 (xi — phe z')2
) — _ i Fel ). 7.18
pli|e) = 7 exp ( 202 7.19)

c,i

Now, let us train a naive Bayes classifier using the water-
melon data set 3.0 and classify the following watermelon T1:

ID color root sound texture umbilicus surface density sugar ripe

T1 green curly muffled clear hollow hard 0.697 0.460 2

First, we estimate the prior probability P(c):

8
P(ripe = true) = T ~ 0.471,

9
P(ripe = false) = 7 ~ (0.529.
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Then, we estimate the conditional probability of each fea-

ture P(x; | ¢): The toy watermelon data set 3.0

is for demonstration purposes.

3 . . .
Pgreeniirue = P(color = green | ripe = true) = = = 0.375, In practice, we need SLl.ffICICnt
8 samples to make meaningful
3 ili . .
Pgreenlfalse = P(color = green | ripe = false) = 6 ~ 0.333, probabl ity estimations.
5
Pcurly\true = P(root = curly | ripe = true) = g = 0.625,
3
Pcurlylfalse = P(root = curly | ripe = false) = 6 ~ 0.333,
5
Pmuﬁied\true = P(sound = muffled \ ripe = true) = g = 0.625,
4
Pryufied|talse = P(sound = muffied | ripe = false) = § ~ 0.444,
7
Pclear\true = P(texture = clear | ripe = true) = g = 0.875,
2
Pclearlfalse = P(texture = clear | ripe = false) = § ~ 0.222,
5
Phollow\true = P(umbilicus = hollow | ripe = true) = g = 0.625,
2
Phollowlfalse = P(umbilicus = hollow | ripe = false) = § ~ 0.222,
6
Phard\true = P(surface = hard | ripe = true) = § = 0.750,
6
Phard|false = P(surface = hard | ripe = false) = § ~ 0.667,

Pdensity:0.697|true = P(density = 0.697 | ripe = true)

1 . (0.697 — 0.574)2 1959
= X — ~ |. N
V27 -0.129 P 2.0.1292
Pdensity:0.697|false = p(density = 0.697 | ripe = false)
(0697 - 04962 .
= o 0195 2.0.1952 T
Psugar:0.460|true = p(density = 0.460 | ripe = true)
(0.460 — 0.279)2
~ ().788,
«/ -0.101 exp( 2.0.1012 )
Psugar:0.460|false = P(density = 0.460 | ripe = false)
(0.460 — 0.154)2
~ (.066.
= 0108 ( 2-0.1082 )

Hence, we have

P(ripe = true) X Pgreenltrue X Pcu.rly\true X Pmuﬂied\true
X Pclear\true X Phollow\true X Phardltrue

X Pdensity:0.697|true X Psugar:0.460|true ~ 0.052,

P(ripe = false) X Pgreenlfalse S Pcurly\false X Pmuffied|false In practice, we often use

X Pclear\false X Phollow\false X Phard\false IOgatlthms_tO C(?nvert th_e_
multiplications into additions to

~ -5
X Pdensity:0.697|false X Psugar:0.460|false ~ 6.80 x 107, avoid numerical underflow.
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Since 0.052 > 6.80 x 107>, the naive Bayes classifier classi-
fies the testing sample T'1 as ripe.

What if a feature value has never appeared together with a
particular class? In such cases, it becomes problematic to use
the probability (7.17) for predicting the class with (7.15). For
instance, given a testing sample with sound=crisp, the naive
Bayes classifier trained on the watermelon data set 3.0 will
predict

0
Pcrispitrue = P(sound = crisp | ripe = true) = 3= 0.

Since the product of the sequence in (7.15) gives a probabil-
ity of zero, the classification result will always be ripe=false
regardless of the values of other features, even if it is obviously
a ripe watermelon. Such a behavior is unreasonable.

To avoid “removing” the information carried by other fea-
tures, the probability estimation requires “smoothing”, and a
common choice is the Laplacian correction. To be specific, let
N denote the number of distinct classes in the training set D, N;
denote the number of distinct values the ith feature can take.
Then, (7.16) and (7.17) can be, respectively, corrected as

5 |Dc|+1
Plc) = ———, 7.19
@ DI+ N (7.19)
A Doy, | +1

Taking the watermelon data set 3.0 as an example, the prior
probabilities can be estimated as

8+1

IAD(ripe = true) = 712 ~ (0.474.

n 9+1

P(ripe = false) = ——— ~ (0.526.
(ripe alse) 1742

Similarly, Pgreenjtrue and Pgreen|false can be estimated
as

3+1

Pgreemtrue = P(color = green | ripe = true) = 3 ~ 0.364,
; bcol ine — fal 341
Pgreen|false = P(COlOT = green | ripe = false) = 5—— ~ 0.333.

Also, the probability Pcrisptrue, Which was zero, is now esti-
mated as
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o . 0+1
crispitrue = P(crisp = true | ripe = true) = 513 ~ 0.091.

P

The Laplacian correction avoids the problem of zero probabil-
ities caused by insufficient training samples. The prior intro-
duced by the correction will become negligible as the size of
training set increases.

There are different ways of using a naive Bayes classifier
in practice. For example, if the speed of prediction is impor-
tant, then a naive Bayes classifier can pre-calculate all relevant
probabilities and save for later use. After that, the prediction
can be made by looking up the saved probability table. On the
other hand, if the training data changes frequently, then we
can take a lazy learning approach, in which the probabilities
are estimated once a prediction request is received, that is, no
training before prediction. If we keep receiving new training
samples, then we can enable incremental learning by updating
only the probabilities that are related to the new samples.

7.4 Semi-Naive Bayes Classifier

To overcome the difficulty of computing P(c | x) in Bayes’
theorem, the naive Bayes classifier makes the attribute condi-
tional independence assumption, which often does not hold in
practice. Hence, semi-naive Bayes classifiers are developed to
relax this assumption to some extent.

The basic idea of semi-naive Bayes classifiers is to consider
some strong dependencies among features without calculat-
ing the complete joint probabilities. A general strategy used
by semi-naive Bayes classifiers is One-Dependent Estimator
(ODE). As the name suggests, “one-dependent” means each
feature can depend on at most one feature other than the class
information, that is,

d
P(c|x) o< P() [ [ P(xi | ¢, pai). (7.21)

i=1

where x; depends on pa;, and pa; is called the parent feature
of x;. For each feature x;, if the parent feature pa; is known,
then P(x; | ¢, pa;) can be estimated in a similar manner as
in (7.20). Hence, the key problem becomes determining the
parent features, and different approaches will lead to different
one-dependent classifiers.

The most straightforward approach is called Super-Parent
ODE (SPODE), which assumes that all features depend on just
one feature called the super-parent. SPODE selects the super-
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The Laplacian correction
essentially assumes that the
feature values and classes are
evenly distributed. This is an
extra prior on the data
introduced in the process of
naive Bayesian learning.

See Sect. 10.1 for lazy learning.

See Sect. 5.5.2 for incremental
learning.
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See Chap. 8 for ensemble
learning.

(a) NB. (b) SPODE. (c) TAN.

Fig.7.1 Feature dependencies of naive Bayes and semi-naive Bayes classifiers

parent feature using model selection methods such as cross-
validation. For example, in @ Figure 7.1b, x1 is a super-parent
feature.

Tree Augmented naive Bayes (TAN) (Friedman et al. 1997),
which is based on maximum weighted spanning trees (Chow
and Liu 1968), simplifies feature dependencies into a tree struc-
ture, as shown in 8 Figure 7.1c, by the following steps:

(1) Compute the conditional mutual information for each pair
of features

P(xi,xj | ¢)
I(xi, x| y) = P(xi,xj | o)log —— 2
Goxi = > P&ix|0 % Bl [ PO [0

Xi,Xj;C€EY

(7.22)

(2) Construct a complete undirected graph in which the nodes
are features. Set /(x;, x; | ») as the weight of the edge
between x; and x;;

(3) Construct a maximum weighted spanning tree and select a
root feature. Set the direction of each edge outward from
the root feature;

(4) Add a class node y and add direct edges from y to other
feature nodes.

The mutual information /(x;, x; | y) describes the correla-
tion between x; and x; given the class information. Hence, via
the maximum weighted spanning tree algorithm, TAN keeps
only the dependencies among highly correlated features.

Averaged One-Dependent Estimator (AODE) (Webb et al.
2005) is a more powerful one-dependent classifier, which takes
advantage of ensemble learning. Unlike SPODE, which selects
a super-parent feature via model selection, AODE tries to use
each feature as a super-parent to build multiple SPODE models
and then integrates those supported by sufficient training data,
that is,
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d d
Pelx)yoc > Ple.x)[[PG&le.xi), (7.23)

i=1 =1
‘Dxi [=m'

where Dy, is the subset of samples taking the value x; on the
ith feature, and ' is a threshold constant. AODE needs to
estimate P(c, x;) and P(x; | ¢, x;). Similar to (7.20), we have

. |De| +1
Ple,x;) = =8l T 7.24
(¢, xi) D[+ N x N; ( )

. Deyxi| +1
P(xj e, x) = % (7.25)

|De.x;| + N

where N is the number of distinct classes in D, N; is the number
of distinct values the ith feature can take, D, ,, is the subset
of class ¢ samples taking the value x; on the ith feature, and
D¢y, x; 1s the subset of class ¢ samples taking the value x; on
the ith feature while taking the value x; on the jth feature. For
example, for the watermelon data set 3.0, we have

i)true,mufﬁed = P(ripe = true, sound = muffled)

. 6+1
T 17+43x2
Phollowwtrue,mufﬁed = P(umbilicus = hollow | ripe = true,

= 0.304,

sound = muffled)
341

2T 0444
6+3

Similar to naive Bayes classifiers, the training process of
AODE is also about “counting” the number of training sam-
ples satisfying some conditions. AODE does not require model
selection, and hence it supports quick predictions with pre-
calculations, lazy learning, and incremental learning.

Since relaxing the attribute conditional independence assump-

tion to one-dependent assumption leads to better generaliza-
tion ability, is it possible to make further improvement by con-
sidering higher order dependencies? In other words, we extend
ODE to the kDE by replacing the feature pa; in (7.21) with
a feature set pa; containing k features. It is worth mentioning
that the number of samples required for an accurate estimation
of P(x; | y, pa;) increases exponentially as k increases. Hence,
improving the generalization performance requires abundant
data; otherwise it would be difficult to calculate higher order
joint probabilities.

1o 7

By default, n7’ is set to 30 (Webb
et al. 2005).

“Higher order dependency”
refers to dependency among
multiple features.



166 Chapter 7 - Bayes Classifiers

The Bayesian network is a
classic probabilistic graphical
model. See Chap. 14 for
probabilistic graphical models.

For ease of discussion, this
section assumes discrete
features. For continuous
features, the CPT can be
generalized to probability
density functions.

The continuous feature sugar in
the watermelon data set is
converted to the discrete feature
sweetness.

n
s O straight [curly
7 £ highl 01 09
@ o [Tow[ 07 03
Gateoton) :
n

Fig.7.2 The Bayesian network structure of the watermelon problem together
with the conditional probability table of root

7.5 Bayesian Network

Bayesiannetworks, also known as belief networks, utilize Directed
Acyclic Graphs (DAG) to represent dependencies among fea-
tures and build Conditional Probability Tables (CPT) to describe
the joint probabilities of features.

To be specific, a Bayesian network B consists of structure
G and parameter ©, denoted by B = (G, ®). The structure
G is a DAG in which each node corresponds to a feature. In
the graph, two features with a direct dependency are connected
by an edge, and, collectively, these dependencies are encoded
by the parameter ©. Let m; denote the parent node set of the
feature x; in G, then © includes the CPT 0, = Pg(x; | m;) of
each feature.

Forexample, @ Figure 7.2 shows a Bayesian network struc-
ture and the CPT of the feature root. From the network struc-
ture, we see that color directly depends on ripe and sweetness,
while root directly depends on sweetness. From the CPT, we
can further obtain a quantified dependency of root on sweet-
ness, €.g2., P(root = straight | sweetness = high) = 0.1.

7.5.1 Network Structure

The Bayesian network structure effectively expresses the con-
ditional independence among features. Given the sets of parent
nodes, the Bayesian network assumes each feature is indepen-
dent of its all non-descendant features. Hence, B = (G, ®)

defines the joint probability of the features xq, x3, ..., x4 as
d d
Pp(x1,x7,...,xq) = 1_[ Pp(x; | m) = 1_[ Ox;m; - (726)
i=1 i=1

Taking @ Figure 7.2 as an example, the joint probability is
defined as

P(x1, x2, x3, X4, x5) = P(x1) P(x2) P(x3 | x1)P(x4 | X1, x2) P(x5 | X2).
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(a) Common parent.  (b) V-structure. (c) Cascade.

Fig. 7.3 Typical feature dependencies in Bayesian networks

We can see that x3 and x4 are independent given the value of
x1 (l.e., x3 L x4 | x1). Also, x4 and x5 are independent given
the value of x; (i.e., x4 L x5 | x2).

@ Figure 7.3 shows three typical cases of dependencies
among three variables, and two of them have already appeared
in (7.26).

In the common parent structure, x3 and x4 are conditionally
independent given the value of their parent node xi. In the
cascade structure, y and z are conditionally independent given
the value of x. In the V-structure, x| and x; are dependent given
the value of x4. Interestingly, when the value of x4 is unknown
in the V-structure, x; and x; are independent of each other.
We can make a simple validation as follows:

P(x1,x2) = ) P(x1, X2, X4)

X4

= ZP(M | x1, x2)P(x1)P(x2)

X4

= P(x))P(x2). (7.27)

Such independence is called marginal independence, denoted by
X1dLx).

In the V-structure, the independence between two variables
is subject to the presence of a third variable. However, this may
also be the case in other structures. For example, the condi-
tional independence x3 L x4 | x1 exists in the common parent
structure, but x3 and x4 are not independent when the value
of x1 is unknown, that is, x3_l x4 does not hold. In the cascade
structure, y L z | x, but yIl z does not hold.
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Not all conditional
independence relationships are
enumerated here.

Calculating the integration or
summation of a variable is
called marginalization.
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“d” stands for “directed”.

The discovery of common
parent structure, cascade
structure, and V-structure
together with the proposal of
d-separation have promoted the
research on causal discovery.
See Pearl (1988).

We usually prune the graph first
and keep only x, y, z, and all of
their ancestor variables.

T9 (sweetness)

Fig.7.4 The moral graph of Fig. 7.2

We can use d-separation to analyze the conditional indepen-
dence among variables in a directed graph. First, we convert
the directed graph into an undirected graph:
== Find all V-structures in the directed graph and then add an

undirected edge between the common parents if they share

the same child node;
== Change all directed edges to undirected edges.

The undirected graph produced by this process is called a moral
graph, and the process of connecting common parents is called
moralization (Cowell et al. 1999).

With a moral graph, the conditional independence between
variables can be intuitively and efficiently located. Suppose we
have a moral graph containing the variables x and y and a
variable set z = {z;}. We say x and y are d-separated by z (i.e.,
x L y | z)if x and y can be separated by z, that is, x and
y belong to separated subgraphs after dropping z. For exam-
ple, the moral graph corresponding to 8 Figure 7.2 is given
in @ Figure 7.4, from which we can easily find all conditional
dependencies: x3 L x4 | x1, x4 L x5 | X2, x3 L x2 | x1,
x3 L x5 | x1,x3 L x5 | X2, and so on.

7.5.2 Learning

When the network structure is known (i.e., the dependencies
between variables are given), learning a Bayesian network is
relatively easy as we only need to count the training samples to
estimate the CPT of each node. In practice, the network struc-
ture is rarely known in advance, and hence the primary task
of Bayesian network learning is to find the most “appropriate”
Bayesian network. A common method to solve this problem is
score-and-search. To be specific, we first define a score function
to evaluate the fitness between a Bayesian network and a train-
ing set, and then use this score function to find the most optimal
Bayesian network. The score function, which can be designed
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in different ways, carries the inductive bias of a Bayesian net-
work.

Typical score functions are based on the information the-
ory principle, which considers the learning problem as a data
compression task. Then, the task is to find a model that can
describe the training data with the minimum coding length.
The coding length includes the bit length required to describe
the model itself and the bit length required by the model to
describe the data. For Bayesian network learning, the model
is a Bayesian network that describes a probability distribution
of the training data. According to the Minimum Description
Length (MDL) principle, we search for the Bayesian network
with the shortest combined code length.

Given a training set D = {xy, x2, ..., X;;}, the score func-
tion of a Bayesian network B = (G, ®) on D can be written as

s(B|D)=f()|B| — LL(B | D), (7.28)

where | B is the number of parameters of the Bayesian network,
f(0) is the coding length required to describe the parameter 6,
and the log-likelihood of the Bayesian network B is

LL(B| D) =) log Pp(x). (7.29)
i=1

In (7.28), the first term is about the coding length required for
describing the Bayesian network, and the second term is about
how well the probability distribution Pp describes the data D.
Hence, the learning task becomes an optimization task, that is,
searching for a Bayesian network B that minimizes the score
function s(B | D).

If £(0) = 1, that is, each parameter is described by 1 coding
bit, then we have the Akaike Information Criterion (AIC) score
function

AIC(B | D) = |B| — LL(B | D). (7.30)

Iff(0) = %log m, that is, each parameter is described by

%logm coding bits, then we have the Bayesian Information
Criterion (BIC) score function

BIC(B | D) = 10% |B| — LL(B | D). (7.31)

If £(0) = 0, that is, the number of bits for describing the
Bayesian network is not considered in the calculation, then
the score function is reduced to the negative log-likelihood,
and consequently, the learning task reduces to the maximum
likelihood estimation.
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See Sect. 1.4 for inductive bias.

Here, the class is also considered
as a feature, that is, x; is a vector
containing a sample and its
class.

In the view of statistical
learning, these two terms
correspond to the structural risk
and the empirical risk,
respectively.
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That is, the frequency of an
event in a training set.

For example, TAN (Friedman
et al. 1997) limits the network
structure to be a tree structure
(we can consider semi-naive
Bayes classifiers as a special case
of Bayesian networks).

The class can also be regarded as
a feature.

Chapter 14 provides more
discussions on inferences.

The variational inference is also
frequently used. See Sect. 14.5.

For a Bayesian network B = (G, ©), if the network struc-
ture G is fixed, then the first term of the score function s(B | D)
is a constant. Hence, minimizing s(B | D) is equivalent to the
maximum likelihood estimation with respect to ®. From (7.29)
and (7.26), we know that each parameter 6,r; can be obtained
by an empirical estimation based on the training set D, that is,

Oxiim; = Pp(x; | 1), (7.32)
where ?D(~) is the empirical distribution from D. Therefore, to
minimize the score function s(B | D), we only need to search in
the candidate network structures instead of parameters, since
the optimal parameters of a candidate can be directly calculated
from the training set.

Unfortunately, searching for the optimal Bayesian network
structure in all network structures is an NP-hard problem,
which cannot be solved efficiently. There are two general strate-
gies to find approximate solutions within finite time. The first
strategy is to use greedy methods. For example, starting with
a network structure and gradually updating each edge (add,
delete, or change direction) until the score function does not
decrease any more. The second strategy is adding constraints
to reduce the size of the search space (e.g., limiting the network
structure to a tree structure).

7.5.3 Inference

A trained Bayesian network can answer “queries”, thatis, infer-
ring the values of other features from observed feature values.
For example, we may want to know the ripeness and sweet-
ness of a watermelon after observing color = green, sound =
muffled, and root = curly. The process of inferring the value
of a queried feature from the observed feature values is called
inference, where the observed feature values are called evidence.

Ideally, we wish to use the joint probability distribution
defined by the Bayesian network to compute the exact poste-
rior probabilities. Unfortunately, such an exact inference is NP-
hard (Cooper 1990). In other words, exact inferences are dif-
ficult when the network contains many nodes with dense con-
nections. In such cases, we often leverage approximate inference
methods to obtain approximate solutions within a finite time
by sacrificing some accuracy. A typical approximate inference
method for Bayesian networks is the Gibbs sampling, which is
a type of random sampling method. Now, let us take a closer
look at the Gibbs sampling.
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Let Q = {01, 0>, ..., Oy} denote the query variables, E =
{E1, E», ..., E;} denote the evidence variables, whose values
are e = {ey, e, ..., ¢;}. The task is to compute the posterior
probability P(Q = q | E = e), where q = {q1,¢2, ..., qn} 1s
a set of values of the query variables. For instance, the query
variables could be Q = {ripe, sweetness}, and the evidence
variables are E = {color, sound, root} with the values e =
{green, muffled, curly}. Then, the target values of the query are
q = {true, high}, that is, how likely this is a ripe watermelon
with a high level of sweetness.

The Gibbs sampling algorithm, asshown in @ Algorithm 7.1,
starts with a randomly generated sample q° with random val-
ues assigned to non-evidence variables. Its evidence variables,
however, are assigned the same values as the query sample (i.e.,
E = e). Then, at each step, it generates a new sample by modi-
fying the non-evidence variables of the current sample, e.g., it
generates q' from q°. More generally, at the rth step, the algo-
rithm first sets q' = q'~! and then modifies the value of each
non-evidence variable one by one via sampling. The sampling
probability of each value is computed using the Bayesian net-
work B and the current values of other variables (i.e., Z = z).
Suppose we sampled 7" times and obtained n, samples that are
consistent with the query q, then the posterior probability can
be approximated as

P(Q:q|E:e):n7q. (7.33)

For the joint state space of all variables in the Bayesian
network, the Gibbs sampling is actually a random walk in the
subspace that is consistent with the evidence E = e. Since every
step only depends on the state of the previous step, the sampling
generates a Markov chain. Under certain conditions, the state
distribution always converges to a stationary distribution as
t — oo, regardless of the initial starting point. The converged
distribution by Gibbs sampling happens to be P(Q | E = e).
Hence, the Gibbs sampling with a large 7" approximates a sam-
pling from P(Q | E = e), and consequently ensures that (7.33)
convergesto P(Q=q | E =e).

Note that the convergence speed of the Gibbs sampling
algorithm is usually slow since it often takes a long time for the
Markov chain to converge to a stationary distribution. Besides,
if the Bayesian network contains extreme probabilities like “0”
or “1”, then a stationary distribution is not guaranteed by the
Markov chain, and consequently, Gibbs sampling will produce
an incorrect estimation.
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See Sect. 14.5 for more
information about Markov
chain and Gibbs sampling.
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Algorithm 7.1 Gibbs Sampling

Input: Bayesian network B = (G, ©);
Number of samplings T';
Evidence variables E and their values e;
Query variables Q and their values q.
Process:
1: ng =0;
2: q° = assign random initial values to Q;
3: fort=1,2,..., T do

4 for Q; € Qdo
All variables excluding Q;. 5: Z =EUQ\{0};
6 z=eUq \{g/'};
7: Compute distribution Pg(Q; | Z = z) according to B;
8 g} = Q; sampled from Pp(Q; | Z = z);
9: q' = ¢! with ¢'~! replaced by ¢;
10: end for
11: if ¢’ = q then
12: ng =ng+ 1.
13: end if
14: end for

Output: P(Q=q|E=¢e) >~ 7.

7.6 EM Algorithm

The previous discussions assumed the values of all features are
observed for the training samples, that is, each training sam-
ple is complete. In practice, however, we often have incomplete
training samples. For instance, the root of a watermelon may
have been removed, so we do not know whether it is straight
or curly, that is, the feature root is unknown. Then, in the pres-
ence of unobserved features, also known as latent variables, how
can we estimate the model parameters?

Let X denote the set of observed variables, Z denote the
set of latent variables, and ® denote the model parameters.

Since the “likelihood” is often Then, the maximum likelihood estimation of ® maximizes the
based on exponential family lo g-likelih ood
functions, the natural logarithm

In(-) is generally used for
log-likelihood and also in the
EM algorithm.

LL® |X,Z)=InP(X,Z | ©). (7.34)

We cannot solve (7.34) directly because Z are latent variables.
However, we can use the expectation of Z to maximize the log
marginal likelihood of the observed data:

LLO|X)=InPX|0O) = anP(X, 7| ). (7.35)
z
The Expectation-Maximization (EM) algorithm (Dempster

et al. 1977) is a powerful iterative method for estimating latent
variables. Its basic idea is as follows: given the value of ©,
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from the training data, we can infer the expected value for each
latent variable in Z (the E-step); given the values of the latent
variables in Z, we can estimate ® with the maximum likelihood
estimation (the M-step).

To implement the above idea, we initialize (7.35) with ©°
and iteratively apply the following two steps until convergence:

== Infer the expectation of Z with ®’, denoted by Z/;
= Estimate ® with the maximum likelihood estimation based
on Z! and the observed variables X, denoted by ©/*+!.

The above iterative process is the prototype of the EM algo-

rithm. Instead of using the expectation of Z, we can compute

the probability distribution P(Z | X, ®) based on ©’, and the

above two steps become

= E-step (Expectation): infer the latent variable distribution
P(Z | X, ©) based on O, and then compute the expecta-
tion of the log-likelihood LL(® | X, Z) with respect to Z as

0(© | 0") =Ezx o LLO | X, Z). (7.36)

= M-step (Maximization): find the parameters that maximize
the expected log-likelihood, that is,

O = argmax Q(© | ©). (7.37)
®

In short, the EM algorithm alternatively computes the fol-
lowing two steps: the expectation (E) step, which uses the cur-
rent parameters to compute the expected log-likelihood; the
maximization (M) step, which finds the parameters that max-
imize the expected log-likelihood in the E-step. Iterating the
above two steps until converging to a local optimum.

We can also use optimization algorithms to estimate the
latent variables, such as gradient descent. However, computing
the gradients could be difficult since the number of terms in
the summation increases exponentially as the number of latent
variables increases. In contrast, the EM algorithm can be seen
as a non-gradient optimization method.

7.7 Further Reading

Bayesian decision theory plays a crucial role in fields related to
data analytics, such as machine learning and pattern recogni-
tion. Finding the approximate solution of Bayes’ theorem is an
effective approach for designing machine learning algorithms.
Applying Bayes’ theorem suffers from the problems of combi-
natorial explosion and data sparsity. To avoid these problems,
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This is only a brief description
of the EM algorithm. See
Sect. 9.4.3 for more concrete
examples.

See Wu (1983) for the
convergence analysis of the EM
algorithm.

The EM algorithm can be seen
as a coordinate descent method
which maximizes the lower
bound of the log-likelihood. See
Appendix B.5 for the coordinate
descent method.
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J. Pearl received the Turing
Award in 2011 for his significant
contributions to this field.

the naive Bayes classifier introduces the attribute conditional
independence assumption. Though this assumption can rarely
hold in practice, the performance of naive Bayes classifiers is
often surprisingly good (Domingos and Pazzani 1997, Ng and
Jordan 2002). One possible explanation is that correct clas-
sification typically requires only the conditional probabilities
to be ranked correctly rather than accurate probability val-
ues (Domingos and Pazzani 1997). Another possible explana-
tion is that if the inter-attribute dependencies are the same for
all classes, or if the effects of the dependency relationship can
cancel each other out, then attribute conditional independence
assumption reduces the calculation overhead without affect-
ing the performance negatively (Zhang 2004). Naive Bayes
classifiers are especially popular in the field of information
retrieval (Lewis 1991). (McCallum and Nigam 1998) compared
two common ways of utilizing naive Bayes classifiers in text
classifications.

Bayes classifiers form a “spectrum” based on the extent to
which inter-attribute dependencies are involved: naive Bayes
classifiers do not consider feature dependency at all, whereas
Bayesian networks can represent any dependencies among fea-
tures. These two are located at the two ends of the “spectrum”,
and the classifiers sit in the middle of them are a series of semi-
naive Bayes classifiers that consider partial feature dependen-
cies with different assumptions and constraints. It is gener-
ally believed that (Kononenko 1991) initialized the research
on semi-naive classifiers. ODE considers dependency on a sin-
gle parent feature, and representative one-dependent classifiers
include TAN (Friedman et al. 1997), AODE (Webb et al. 2005),
and LBR (Zheng and Webb 2000). On the other hand, k\DE
considers multiple dependencies on k parent features, and rep-
resentative k-dependent classifiers include KDB (Sahami 1996)
and NBtree (Kohavi 1996).

Note that Bayes classifiers are different from the general
Bayesian learning. Bayes classifiers make point estimates with
maximum posterior probabilities, whereas
Bayesian learning performs probability distribution estima-
tions. More information about Bayesian learning can be found
in Bishop (2006).

Bayesian networks provide an essential framework for learn-
ing and inference wunder uncertainty and have
attracted wide attention because of its powerful representa-
tion ability and good interpretability (Pearl 1988). Bayesian
network learning consists of structure learning and parameter
learning. Parameter learning is relatively easy, while structure
learning has been proven to be NP-hard (Cooper 1990; Chick-
ering et al. 2004). Hence, many score-and-search methods were
proposed (Friedman and Goldszmidt 1996). Though Bayesian
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networks are generally considered as generative models, there
are also some recent studies on discriminative Bayesian net-
work classifiers (Grossman and Domingos 2004). More infor-
mation about Bayesian networks can be found in Jensen (1997),
Heckerman (1998).

The EM algorithm is the most commonly used method
for estimating latent variables and has been extensively used
in machine learning. For example, the parameter estimation
of Gaussian Mixture Models (GMM) is based on the EM
algorithm, and the k-means clustering algorithm, which will
be introduced in Sect.9.4, is also a typical EM algorithm.
McLachlan and Krishnan (2008) provided detailed discussions
on the EM algorithm, including its analysis, extensions, and
applications.

The naive Bayes algorithm and the EM algorithm are both
in the “Top 10 algorithms in data mining” (Wu et al. 2007).
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Bayesian networks are classic
probabilistic graphical models.
See Chap. 14.

The “Top 10 algorithms in data
mining” also includes the
previously introduced C4.5,
CART decision tree, and
support vector machine
algorithms. It also includes the
AdaBoost, k-means, and
k-nearest neighbors algorithms
that will be introduced in later
chapters.
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The watermelon data set 3.0 is in
B Table4.3.

Assuming their priors are the
same. See Sect. 3.4.

The watermelon data set 2.0 is in
B Table4.1.

Exercises

7.1 Use the maximum likelihood estimation to estimate the
class-conditional probabilities of the first three features in the
watermelon data set 3.0.

7.2 * Prove that the naive Bayes classifier may still produce a
Bayes optimal classifier even if the attribute conditional inde-
pendence assumption does not hold.

7.3 Implement and train a Laplacian corrected naive Bayes
classifier on the watermelon data set 3.0 to classify the T1 sam-
ple in Sect. 7.3.

7.4 In practice, when the data dimensionality is high, the prod-
uct of the probabilities ]_[ldzl P(x; | ¢)in(7.15) can be very close
to 0 and underflow will happen. Discuss possible methods to
prevent underflow.

7.5 Prove that, for binary classification problems, the linear
discriminant analysis produces a Bayes optimal classifier if the
data of both classes follow the Gaussian distributions with the
same variance.

7.6 Implement and train an AODE classifier on the water-
melon data set 3.0 to classify the T'1 sample in Sect. 7.3.

7.7 For a binary classification problem with d binary features,
suppose the empirical estimation of any prior probabilities
requires at least 30 samples, then estimating the prior term
P(c) in the naive Bayes classifier (7.15) requires 30 x 2 = 60
samples. How many samples are needed to estimate the prior
term P(c, x;) in AODE (7.23)? (consider the best and the worst
cases.)

7.8 For @ Figure 7.3, prove for the common parent structure,
x3.l x4 doesnot hold if x1 is unknown; for the cascade structure,
y L z | x but yll z does not hold.

7.9 Use the watermelon data set 2.0 to construct a Bayesian
network based on the BIC criterion.

7.10 Use the watermelon data set 2.0 to construct a Bayesian
network based on the EM algorithm by considering umbilicus
as the latent variable.



Break Time

Break Time

Short Story: The Mystery of Bayes

On February 23, 1763, the priest R. Price,
who inherited the legacy of Thomas Bayes
(17017-1761), presented Bayes’ unpub-
lished work “An Essay toward solving a
Problem in the Doctrine of Chances” to
the Royal Society. This essay introduced
the famous Bayes’ theorem, and that day is
considered as the birth date of Bayes’ theo-
rem. Though Bayes’theorem has become one of the most classic
contents in probability and statistics today, Bayes’ life is still a
mystery.

Itis known that Bayes was a clergy who has spent most of his
adult life as a priest at a chapel in Tunbridge Wells, England.
His devotion to mathematics research was motivated by the
hope to prove the existence of god by mathematics. In 1742,
he was elected as a Fellow of the Royal Society while he only
published two works in his lifetime, one in theology and one
in mathematics. A senior member signed his nomination, but
it is still a mystery regarding why he was nominated and how
could he be elected given his limited achievement at that time
(Bayes’ theorem was published posthumously). Bayes’ life and
work did not receive much attention while he was alive, and

even Bayes’ theorem was soon forgotten by the public. Bayes’

theorem was later brought back by the great mathematician
Laplace, butit had not become famous until its full applications
in statistics in the twentieth century. The birth date of Bayes
is still unclear. Moreover, whether the photo we see today is
Bayes or not remains debatable.
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Weak learners typically refer to
learners with generalization
ability just slightly better than
random guessing, e.g., with an
accuracy slightly above 50% in
binary classification problems.

8.1 Individual and Ensemble

Ensemble learning, also known as multiple classifier system
and committee-based learning, trains and combines multiple
learners to solve a learning problem.

As shown in @ Figure 8.1, the typical workflow of ensem-
ble learning is training a set of individual learners first and
then combining them via some strategies, where an individual
learner is usually trained by an existing learning algorithm, such
asthe C4.5 algorithm and the BP neural network algorithm. An
ensemble is said to be homogeneous if all individual learners are
of the same type, e.g., a “decision tree ensemble” contains only
decision trees, while a “neural network ensemble” contains only
neural networks. For homogeneous ensembles, the individual
learners are called base learners, and the corresponding learn-
ing algorithms are called base learning algorithms. In contrast,
a heterogeneous ensemble contains different individual learn-
ers and learning algorithms, and there is no single base learner
or base learning algorithm. For heterogeneous ensembles, the
individual learners are unusually called component learners or
simply individual learners.

By combining multiple learners, the generalization ability
of an ensemble is often much stronger than that of an individual
learner, and this is especially true for weak learners. Therefore,
theoretical studies on ensemble learning often focus on weak
learners, and hence base learners are sometimes called weak
learners. In practice, however, despite that an ensemble of weak
learners can theoretically obtain good performance, people still
prefer strong learners for some reasons, such as reducing the
number of individual learners and reusing existing knowledge
about the strong learners.

Intuitively, mixing things with different qualities will pro-
duce something better than the worst one but worse than the
best one. Then, how can an ensemble produce better perfor-
mance than the best individual learner?

[ Individual learner 1

[ Individual learner 2 ]—P[ Combining module ]—> Output

[ Individual learner 7

Fig.8.1 The workflow of ensemble learning
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Testing Testing Testing Testing Testing Testing Testing Testing Testing
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3 sample 1 sample 2 sample 3
hy v v X hy v v X hy v X X
hy X v v hy v v X hy X v X
hy v X v hs M M X hs X X v
Ensemble v/ M v Ensemble v/ v X Ensemble X X X
(a) Ensemble helps. (b) Ensemble doesn’t help. (c) Ensemble hurts.

Fig. 8.2 Individual learners should be “accurate and diverse” (/; is the ith
learner)

Taking binary classification as an example, suppose three
classifiers are applied to three testing samples, as shown in
B Figure 8.2, where the ticks indicate the correct classifications,
and the crosses indicate the incorrect classifications. The clas-
sification of ensemble learning is made by voting. In @ Figure
8.2a, each classifier achieves an accuracy of 66.6%, while the
ensemble achieves an accuracy of 100%. In @ Figure 8.2b, the
three classifiers have made identical decisions, and the ensem-
ble does not improve the result. In 8 Figure 8.2c, each clas-
sifier achieves an accuracy of 33.3%, while the ensemble gives
an even worse result. From this example, we see that a good
ensemble should contain individual learners that are “accurate
and diverse”. In other words, individual learners must be not
bad and have diversity (i.e., the learners are different).

Let us do a simple analysis with binary classification, that
is, y € {—1, +1}. Suppose the ground-truth function is f, and
the error rate of each base learner is e. Then, for each base
learner /;, we have

P(hi(x) # f(x)) = e (8.1)

Suppose ensemble learning combines the 7' base learners by
voting, then the ensemble will make an correct classification if
more than half of the base learners are correct:

T
F(x) =sign Y hi(x)]. (8.2)

i=1

Assuming the error rates of base learners are independent, then,
from Hoeffding’s inequality, the error rate of the ensemble is

L7/2] T
P(F(x) #f(x) = ) ( k)(l — kel *

k=0

< exp (—% T — 26)2> . (8.3)

e 8

An individual learner should be
no worse than a weak learner.

For ease of discussion, we
assume 7 is odd.

See Exercise 8.1.
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The above equation shows that as the number of base learners
T in the ensemble increases, the error rate decreases exponen-
tially and eventually approaches zero.

The above analysis makes a critical assumption that the
error rates of base learners are independent. However, this
assumption is invalid in practice since the learners are trained
to solve the same problem and thus cannot be independent.
In fact, accuracy and diversity are two conflicting properties
of individual learners. Generally, when the accuracy is already
high, we usually need to sacrifice some accuracy if we wish to
increase diversity. It turns out that the generation and com-
bination of “accurate and diverse” individual learners are the
fundamental issues in ensemble learning.

Current ensemble learning methods can be roughly grouped
into two categories, depending on how the individual learners
are generated. The first category, represented by Boosting, cre-
ates individual learners with strong correlations and generates
the learners sequentially. The second category, represented by
Bagging and Random Forest, creates individual learners inde-
pendently and can parallelize the generation process.

8.2 Boosting

Boosting is a family of algorithms that convert weak learners
to strong learners. Boosting algorithms start with training a
base learner and then adjust the distribution of the training
samples according to the result of the base learner such that
incorrectly classified samples will receive more attention by
subsequent base learners. After training the first base learner,
the second base learner is trained with the adjusted training
samples, and the result is used to adjust the training sample
distribution again. Such a process repeats until the number of
base learners reaches a predefined value 7', and finally, these
base learners are weighted and combined.

The most well-known Boosting algorithm is AdaBoost (Fre-
und and Schapire 1997), as shown in 8 Algorithm 8.1, where
vi € {—1,+1} and f is the ground-truth function.

There are multiple ways to derive the AdaBoost algorithm,
but one that is easy to understand is based on the additive model,
that is, using the linear combination of base learners

T
H(x) = ahy(x) (8.4)
=1

to minimize the exponential loss function (Friedman et al. 2000)
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Algorithm 8.1 AdaBoost

Input: Training set D = {(x1, y1), (X2,2), - -+ s (Xm> Vi) };
Base learner £;
Number of training rounds 7.
Process:
I: Di(x) =1/m;
2: fort=1,2,..., T do
3: l’l[ = C(D, D[),

4: €= Prp, (he(x) # f(x));
5: if ¢, > 0.5 then break
6: o = %ln(l:’);
— if h =f(x);
7 Do) = D,Z(x) y exp(—ay), i 1(x) =f(x);
! exp(ay),  if h(x) # f(x);
— Di) exp(=ayf () (x)) .
- ;
8: end for

Output: F(x) = sign (Zszl ath,(x)).

Cexp(H | D) = Eyop [e—f(x)f“x)] . 8.5)

If H(x) minimizes the exponential loss, then we consider the
partial derivative of (8.5) with respect to H (x)

a[exp(l-l ID) _ _—H®X) . _ H(x) . _
ToHm ¢ Pfx)=1]x)+"P(f(x)=—-1]x),
(8.6)
and setting it to zero gives
1 P =1
Hay= i LY@ =11% (8.7)

2 Pf(x)=—1]x)

Hence, we have

sign(H (x)) sign<11 P<f'<x>=1|x>>

2P =<1 %)
L Py =11x)>P(fx)=—1]x
T |-L PF@) =11x) <Pfx)=—1]x)

=argmax P(f(x) =y | x), (8.8)
ye{=11}

155 8

Initialize the sample weight
distribution.

Train classifier /; using data set
D that follows distribution D;.
Estimate the error of /;.
Determine the weight of
classifier /1;.

Update the sample distribution,
where Z; is the normalization
factor that ensures D4 isa
valid distribution.

Here, we ignore the case of
Pfx)=1]x)=P(f(x)=
—1]x).
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See Sect. 6.7 for the
“consistency” of surrogate
functions.

which implies that sign(H (x)) achieves the Bayes optimal error
rate. In other words, the classification error rate is minimized
when the exponential loss is minimized, and hence the expo-
nential loss function is a consistent surrogate function of the
original 0/1 loss function. Since this surrogate function has bet-
ter mathematical properties, e.g., continuously differentiable,
it is used as the optimization objective replacing the 0/1 loss
function.

In the AdaBoost algorithm, the base learning algorithm
generates the first base classifier /; from the original training
data and then iteratively generates the subsequent base clas-
sifiers s, and associated weights a;,. Once the classifier /; is
generated from the distribution Dy, its weight «; is estimated
by letting o/, minimize the exponential loss function

eexp((’étht | Dt) = IE:x'VDt [efj'(x)atht(x)}

=Eyp, [e7YI( (x) = hi(x)) + e I(f (x) # he(x))]
= e M Py, (f(x) = hi(x)) + ¥ Pyp, (f (x) # hy(x))
=e M1 —¢)+ ¢, (8.9)

where € = Py~p,(h,(x) # f(x)). Setting the derivative of the
exponential loss function
8Zexp(Oétht | Dr) _

—efo"(l — 6;) + Eatﬁt (810)
305,

to zero gives the optimal «; as

a,=11n<1_6’), (8.11)
2 €

which is exactly the equation shown in line 6 of 8 Algorithm
8.1.

The AdaBoost algorithm adjusts the sample distribution
based on H;_ such that the base learner /; in the next round
can correct some mistakes made by H,_;. Ideally, we wish /,
to correct all mistakes made by H,_|. The minimization of
Lexp(H;—1 + by | D) can be simplified to

Cexp(Hi—1 + 1y | D) = Exop I:e_f(x)(Htfl(x)+ht(x)):|
—E,wp I:e*f(x)Ht—l(x)e*f(x)ht(x):l _
(8.12)

Since f2(x) = h%(x) = 1, (8.12) can be approximated using
Taylor expansion of e/ () g5
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2 2
texp(Hy_1 +hi | D) ~E,_p [e”f H—1 @) (1 — @) +M)}

=E,.p |:e—f(x)Ht71(x) (1 — f)h(x) + %>i| .

(8.13)
Hence, the ideal classifier is

hi(x) = argmin Lexp(H—1 + h | D)
h

1
= argmin Ey~p [ef(x)H’—‘(x) (1 —f(x)h(x) + E)}
h

— argmax Ey-p [e*f(x)H’*'(")f(x)h(x)]
h

=argmaxEy-p
h

[ oV H_1(x)

Ex~p [e—f(x)Htl(x)]f(x)h(x)j| ,

(8.14)
where Ey~p [e/ ®H-1®] is a constant. Let D, denote a dis-
tribution

D(x)eff(x)Ht—l (x)

Di(x) = Ex~p [e/ OH @]

(8.15)

According to the definition of mathematical expectation, the
ideal classifier is equivalent to

o=/ OH_1(x)
hi(x) = arg Znax Ex~p |:Ex~D (7™ HH(x)]f (x)h(x)}
= argmax Ex~p, [f (X)h(x)]. (8.16)
Since f'(x), h(x) € {—1, +1}, we have
S @)h(x) =1 =2I(f(x) # h(x)), (8.17)
and the ideal classifier is
hi(x) = arglfnin Ex~p, [I(f (x) # h(x))]. (8.18)

From (8.18), we see that the ideal classifier /#; minimizes the
classification error under the distribution D;. Therefore, the
weak classifier at round ¢ is trained on the distribution D;, and
its classification error should be less than 0.5 for D;. This idea
is similar to the residual approximation to some extent. Consid-
ering the relationship between D; and D, 1, we have
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See Sect. 2.5 for the
bias-variance decomposition.

A decision stump is a decision
tree with a single layer. See
Sect. 4.3.

The size refers to the number of
base learners in an ensemble.

Dy (x)e ™/ ©Hi(x)
Ex~p [e/ 0HI®)]
Dy (x)e S O Hi—1 () o=f () axsh (x)
Eyp [e~/ 0V HI®)]
Exp [e_f(x)Hr—l (x)]

Ex~p [e—f(x)Hr(x)] ’
(8.19)

Diy1(x) =

=D, (x) - e~/ ®arhi(x)

which is the update rule of a sample distribution as in line 7 of
@ Algorithm 8.1.

From (8.11) and (8.19), we can see that the AdaBoost algo-
rithm, as shown in @ Algorithm 8.1, can be derived by iter-
atively optimizing the exponential loss function based on an
additive model.

Boosting algorithms require the base learners to learn from
specified sample distributions, and this is often accomplished
by re-weighting; that is, in each round, a new weight is assigned
to a training sample according to the new sample distribution.
For base learning algorithms that do not accept weighted sam-
ples, re-sampling can be used; that is, in each round, a new
training set is sampled from the new sample distribution. In
general, there is not much difference between re-weighting and
re-sampling in terms of prediction performance. Note that in
each round, there is a sanity check on whether the current base
learner satisfies some basic requirements. For example, line 5
of @ Algorithm 8.1 checks whether the current base learner is
better than random guessing. If the requirements are not met,
the current base learner is discarded and the learning process
stops. In such cases, the number of rounds could still be far
from the pre-specified limit 7', which may lead to unsatisfac-
tory performance due to the small number of base learners in
the ensemble. However, if the re-sampling method is used, there
isan option to “restart”to avoid early termination (Kohavi and
Wolpert 1996). More specifically, a new training set is sampled
according to the sample distribution again after discarding the
current disqualified base learner, and then an alternative base
learner is trained such that the learning process can continue
to finish 7 rounds.

From the perspective of bias-variance decomposition, Boost-
ing mainly focuses on reducing bias, and thisis why an ensemble
of learners with weak generalization ability can be so powerful.
To give a more concrete illustration, we use decision stumps as
the base learner and run the AdaBoost algorithm on the water-
melon data set 3.0« (B Table 4.5). The decision boundaries of
ensembles of different sizes together with the corresponding
base learners are illustrated in 8 Figure 8.3.
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(c) 11 base learners.
Fig.8.3 AdaBoost on the watermelon data set 3.0a with ensemble sizes 3, 5,

and 11. The decision boundaries of the ensemble and base learners are shown
in red and black, respectively

8.3 Bagging and Random Forest

From Sect.8.1, we know that the generalization ability of
an ensemble depends on the independence of base learners.
Though strict independence is not possible in practice, we can
still make the learners as different as possible. One way of cre-
ating different base learners is to partition the original training
set into several non-overlapped subsets and use each subset to
train a base learner. Because the training subsets are differ-
ent, the trained base learners are likely to be different as well.
However, if the subsets are totally different, then it implies that
each subset contains only a small portion of the original train-
ing set, possibly leading to poor base learners. Since a good
ensemble requires each base learner to be reasonably good,
we often allow the subsets to overlap such that each of them
contains sufficient samples.

189
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Bagging stands for Bootstrap
AGGregalNG.

See Sect. 2.2.3 for bootstrap
sampling.

8 That is, all base learners are
equally weighted through voting
or averaging.

Dy s the distribution of a data
set generated by bootstrap.

For AdaBoost, modifications

are needed to enable multiclass
classification or regression. See
(Zhou 2012) for some variants.

8.3.1 Bagging

Bagging (Breiman 1996a) is a representative method of parallel
ensemble learning based on bootstrap sampling. It works as
follows: given a data set with m samples, we randomly pick one
sample and copy it to the sampling set; we keep it in the original
data set such that it still has a chance to be picked up next time;
repeating this process m times gives a data set containing m
samples, where some of the original samples may appear more
than once while some may never appear. From (2.1), we know
that approximately 63.2% of the original samples will appear
in the data set.

Applying the above process T times produces 7" data sets,
and each contains m samples. Then, the base learners are
trained on these data sets and combined. Such a procedure
is the basic workflow of Bagging. When combining the predic-
tions of base learners, Bagging adopts the simple voting method
for classification tasks and the simple averaging method for
regression tasks. When multiple classes receive the same num-
ber of votes, we can choose one at random or further investi-
gate the confidence of votes. The Bagging algorithm is given in
@ Algorithm 8.2.

Algorithm 8.2 Bagging

Input: Training set: D = {(x1, y1), (x2,32)s -+, X, Yy}
Base learning algorithm £;
Number of training rounds 7.
Process:
1: fort=1,2,..., T do
2: hy = L(D, Dpy).
3: end for
Output: H(x) = argmax Z,T:l I(h (x) = ).
ey

Suppose that the computational complexity of a base learner
is O(m), then the complexity of Bagging is roughly 7'(O(m) +
0O(s)), where O(s) is the complexity of voting or averaging.
Since the complexity O(s) islow and T is a constant that is often
not too large, Bagging has the same order of complexity as the
base learner, that is, Bagging is an efficient ensemble learn-
ing algorithm. Besides, unlike the standard AdaBoost, which
only applies to binary classification, Bagging can be applied to
multiclass classification and regression without modification.

The bootstrap sampling brings Bagging another advantage:
since each base learner only uses roughly 63.2% of the origi-
nal training samples for training, the remaining 36.8% sam-
ples can be used as a validation set to get an out-of-bag esti-
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mate (Breiman 1996a; Wolpert and Macready 1999) of the gen-
eralization ability. To get the out-of-bag estimate, we need to
track the training samples used by each base learner. Let D,
denote the set of samples used by the learner /4;, and H 00b(x)
denote the out-of-bag prediction of the sample x, that is, con-
sidering only the predictions made by base learners that did not
use the sample x for training. Then, we have

T
HP(x) = argmax D Ih(x) =y) - Ix ¢ D), (8.20)
ye =1

and the out-of-bag estimate of the generalization error of Bag-
ging is

€200 — |17| > IHP(x) # ). (8.21)
(x,y)eD

Other than estimating the generalization errors, the out-of-
bag samples also have many other uses. For example, when the
base learners are decision trees, the out-of-bag samples can be
used for pruning branches or estimating the posterior proba-
bility of each node, and this is particularly useful when a node
contains no training samples. When the base learners are neu-
ral networks, the out-of-bag samples can be used to assist early
stopping to reduce the risk of overfitting.

From the perspective of bias-variance decomposition, Bag-
ging helps to reduce the variance, and this is particularly useful
for unpruned decision trees or neural networks that are unsta-
ble to data manipulation. To give a more concrete illustration,
we use decision trees based on information gain as base learn-
ers to run the Bagging algorithm on the watermelon data set
3.0a (B Table 4.5). The decision boundaries of ensembles of
different sizes together with the respective base learners are
illustrated in @ Figure 8.4.

8.3.2 Random Forest

Random Forest (RF) (Breiman 2001a) is an extension of Bag-
ging, where randomized feature selection is introduced on top
of Bagging. Specifically, traditional decision trees select an
optimal split feature from the feature set of each node, whereas
RF selects from a subset of k features randomly generated
from the feature set of the node. The parameter k controls
the randomness, where the splitting is the same as in tradi-
tional decision trees if & = d, and a split feature is randomly

191

See Sect. 2.2.3 for out-of-bag
estimate.

See Sect. 2.5 for the
bias-variance decomposition.
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See Sect. 8.5.3 for sample
manipulation and feature
manipulation.
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(c) 11 base learners.

Fig. 8.4 Bagging on the watermelon data set 3.0cx with ensemble sizes 3, 5,
and 11. The decision boundaries of the ensemble and base learners are shown
in red and black, respectively

selected if k = 1. Typically, the recommended value of k is
k =log, d (Breiman 2001a).

Despite its ease of implementation and low computational
cost, RF often shows surprisingly good performance in real-
world applications and is honored as a representative of state-
of-the-art ensemble learning methods. With a small modifica-
tion, RF introduces feature-based “diversity” to Bagging by
feature manipulation, while Bagging considers sample-based
diversity only. RF further enlarges the difference between base
learners, which leads to ensembles with better generalization
ability.

The convergence property of RF is comparable to that of
Bagging. As illustrated in @ Figure 8.5, RF usually starts with
a poor performance at the beginning, especially when there is
only one base learner in the ensemble since the feature manip-
ulation reduces the performance of each base learner. Even-
tually, however, RF often converges to a lower generalization
error after adding more base learners to the ensemble. It is
worth mentioning that it is often more efficient to train an RF
than applying Bagging since RF uses “randomized” decision
trees that evaluate subsets of features for splitting, whereas
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Fig. 8.5 The impact of the ensemble size on RF and Bagging on two UCI
data sets

Bagging uses “deterministic” decision trees that evaluate all
features for splitting.

8.4 Combination Strategies

As illustrated in @ Figure 8.6, combining individual learners

is beneficial from the following three perspectives (Dietterich

2000):

== Statistical perspective: since the hypothesis space is often
large, there are usually multiple hypotheses achieving the
same performance. If a single learner is chosen, then the
generalization performance solely depends on the quality of
this single learner. Combining multiple learners will reduce
the risk of incorrectly choosing a single poor learner.

== Computational perspective: learning algorithms are often
stuck in local optimum, which may lead to poor general-
ization performance even when there is abundant training
data. If choosing another way by repeating the learning pro-
cess multiple times, the risk of being stuck in a terrible local

Hypotheses with equal performance Hypothesis space

Individual hypotheses

h.h2
Lt
NN

Ground-truth
hypothesis

(a) Statistical reason. (b) Computational reason. (c) Representational reason.

Fig.8.6 The benefits of combining learners (Dietterich 2000)
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In a study of Stacking
regression, (Breiman 1996b)
found that the weights must be
non-negative to ensure the
ensemble performs better than
the best single learner. Hence,
the non-negative constraint is
often applied to the weights of
learners.

optimum is reduced, though it is not guaranteed to be the
global optimum.

== Representational perspective: sometimes, the ground-truth
hypothesis is not represented by any candidates in the
hypothesis space of the current learning algorithm. In such
cases, it is for sure that a single learner will not find the
ground-truth hypothesis. On the other hand, the hypothesis
space extends by combining multiple learners, and hence it
is more likely to find a better approximation to the ground-
truth hypothesis.

Suppose an ensemble contains 7 individual learners {/, /7,

., hr}, where h;(x) is the output of /; on sample x. The rest

of this section introduces several typical strategies for combing
hi.

8.4.1 Averaging

Averaging is the most commonly used combination strategy
for numerical output 4;(x) € R. Typical averaging methods
include simple averaging

T
1
H) = — Zl:hi(x) (8.22)
=
and weighted averaging

T
H(x) =) wihi(x), (8.23)

where w; is the weight of individual learner /;, and typically
w; = 0, Z;T: 1 wi = 1. Simple averaging is a special case of
weighted averaging when w; = 1/T.

Weighted averaging has been widely used since the 1950s
(Markowitz 1952), and it was first used in ensemble learn-
ing in Perrone and Cooper (1993). Weighted averaging plays
an important role in ensemble learning since other combina-
tion methods can all be viewed as its special cases or variants.
Indeed, weighted averaging can be regarded as a fundamental
motivation of ensemble learning studies. Given a set of base
learners, different ensemble learning methods can be regarded
as different ways of assigning the weights.

Typically, weights are learned from training data. However,
the learned weights are often unreliable due to data insuffi-
ciency or noise. This is particularly true for large ensembles
with many base learners because trying to learn too many
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weights can easily lead to overfitting. In fact, many empiri-
cal studies and applications have shown that weighted averag-
ing is not necessarily better than simple averaging (Xu et al.
1992; Ho et al. 1994; Kittler et al. 1998). Generally speaking,
the weighted averaging method is a better choice when individ-
ual learners have considerable different performance, while the
simple averaging method is preferred when individual learners
share similar performance.

8.4.2 Voting

For classification, a learner /; predicts a class label from a set
of N class labels {c1, ¢2, ..., cy}, and a common combination
strategy is voting. For ease of discussion, let the N-dimensional
vector (h} (x); hlz (x);...; hfv (x)) denote the output of /; on the
sample x, where hi.(x) is the output of /2; on x for the class label
¢;. Then, we can define the following voting methods:

= Majority voting:

He) {9» it Y0 Koo > 0550, ST o

reject, otherwise.
(8.24)

That is, output the class label that receives more than half
of the votes or refuses to predict if none of the class labels
receive more than half of the votes.

== Plurality voting:

H(x)=c (8.25)

argmax YL, hﬁ(x).
J

That is, output the class label that receives the most votes
and randomly select one in case of a tie.
= Weighted voting:

H(x)=c (8.26)

arg max Zszl w,-hﬁ (x)
J

That is, a plurality voting with weights assigned to learn-
ers, where w; is the weight of 4;, and typically w; > 0 and
ST w; = 1 like the constraints on w; in weighted averag-
ing (8.23).

The standard majority voting (8.24) offers a “reject” option,
which is an effective mechanism for tasks requiring reliability
(e.g., medical diagnosis). However, if it is compulsory to make a
prediction, then plurality voting can be used instead. For tasks

1o 8

For example, setting the weights
inversely proportional to the
estimated errors of individual
learners.
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For example, a heterogeneous
ensemble consists of different
types of base learners.

Stacking is also a well-known
ensemble learning method on its
own, and many ensemble
learning methods can be viewed
as its special cases or variants.
We introduce it here since it is
also a special combination
method.

The first-level learners can also
be homogeneous.

that do not allow rejections, both the majority and the plurality
voting methods are called majority voting, or just voting.

Equations (8.24)~(8.26) assume no particular value type for
the output hi. (x), but two common value types are

== (lass label hi.(x) € {0, 1}: the output is 1 if 4; predicts the
sample x as class ¢;, and 0 otherwise. The corresponding
voting is known as hard voting.

== (Class probability M (x) € [0, 1]: an estimate to the posterior
probability P(c; | x). The corresponding voting is known
as soft voting.

Different types of /;(x) should not be mixed. For some
learners, the class labels come with confidence values that can
be converted into class probabilities. However, if the con-
fidence values are unnormalized (e.g., the margin values in
SVM), then, before using the confidence values as probabili-
ties, we need to apply calibration techniques, such as Platt scal-
ing (Platt 2000) and isotonic regression (Zadrozny and Elkan
2001). Interestingly, though the class probabilities are often
imprecise, the performance of combining class probabilities
usually outperforms that of combining class labels. Note that
the class probabilities are not comparable if different types of
base learners are used. In such cases, the class probabilities can
be converted into class labels before voting, e.g., setting the
largest hf. (x) as 1 and the others as 0.

8.4.3 Combining by Learning

When there is abundant training data, a more powerful combi-
nation strategy is combining by learning: using a meta-learner
to combine the individual learners. A representative of such
methods is Stacking (Wolpert 1992; Breiman 1996b). Here, we
call the individual learners as first-level learners and call the
learners performing the combination as second-level learners
or meta-learners.

Stacking starts by training the first-level learners using the
original training set and then “generating” a new data set
for training the second-level learner. In the new data set, the
outputs of the first-level learners are used as the input fea-
tures, while the labels from the original training set remain
unchanged. The Stacking algorithm is given in 8 Algorithm
8.3, where the first-level learners are assumed heterogeneous.
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Algorithm 8.3 Stacking

Input: Training set D = {(x1, y1), (x2,2), .., X, Vi) };
First-level learning algorithms L1, L3, ..., LT}
Second-level learning algorithm L.

Process:

1: fortr=1,2,...,T do

2: hy = L(D);

3: end for

4: D' = o
S5:fori=1,2,...,mdo

6 fort=1,2,...,Tdo
7: zip = M (x5);

8 end for

9: D' =D U((z1,zn, ..

10: end for

11: W = L(D).

Output: H(x) = I (hi(x), ha(x), ..., hr(x)).

<3 ZiT)s Yids

When generating the second-level training set from the first-
level learners, there would be a high risk of overfitting if the gen-
erated training set contains the exact training samples used by
the first-level learners. Hence, we often employ cross-validation
or leave-one-out methods such that the samples that have not
been used for the training of the first-level learners are used
for generating the training set for the second-level learner.
Taking k-fold cross-validation as an example. The original
training set is partitioned into k roughly equal-sized partitions
Dy, Dy, ..., Di. Denote D; and Bj = D\Dj as the testing set
and the training set of the jth fold, respectively. For T first-
level learning algorithms, the first-level learner hg’) is obtained
by applying the rth learning algorithm on the subset Bj. Let
Zip = hg’) (x;), then, for each sample x; in D;, the output from
the first-level learners can be written as z; = (z;1; zj2; .. . ZiT),
which is used as the input for the second-level learner with
the original label y;. By finishing the entire cross-validation
process on the 7 first-level learners, we obtain a data set
D" = {(z;, yi)}L, for training the second-level learner.

The generalization ability of a Stacking ensemble heav-
ily depends on the representation of the input features for
the second-level learner as well as the choice of the second-
level learning algorithm. Existing studies show that the Multi-
response Linear Regression (MLR) is a good second-level
learning algorithm when the first-level learners output class
probabilities (Ting and Witten 1999), and the MLR can do an
even better job when different sets of features are used (Seewald
2002).
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Generate first-level learner /;
using first-level learning

algorithm £;.
Generate second-level training

set.

Generate second-level learner ///
using second-level learning
algorithm on D',

MLR is a classifier based on
linear regression. It builds a
linear regression model for each
class by setting the output of
samples belonging to this class
as 1 and O for the rest. Then, a
testing sample is classified as the
class with the highest predicted
output value.
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This is how the StackingC
algorithm is implemented in
WEKA.

Bayes Model Averaging (BMA) assigns weights to different
learners based on posterior probabilities, and it can be regarded
as a special implementation of the weighted averaging method.
Clarke (2003) compared Stacking and BMA and showed that,
in theory, if there is limited noise in the data and the correct
data generating model is among the models under considera-
tion, then BMA is guaranteed to be no worse than Stacking. In
practice, however, the correct data generating model is by no
way guaranteed in the models under consideration, and some-
times even hard to be approximated by the models under con-
sideration. Hence, Stacking usually performs better than BMA
in practice since it is more robust than BMA; besides, BMA is
also more sensitive to approximation errors.

8.5 Diversity

8.5.1 Error-Ambiguity Decomposition

As mentioned in Sect. 8.1, to have an ensemble with strong gen-
eralization ability, the individual learners should be “accurate
and diverse”. This section is devoted to providing a brief theo-
retical analysis of this aspect.

Let us assume that the individual learners Ay, ha, . .., h are
combined via weighted averaging (8.23) into an ensemble for
the regression task /' : R? - R. Then, for the sample x, the
ambiguity of the learner /; is defined as

A(hi|x) = (hi(x) — H(x))?, (8.27)

and the ambiguity of the ensemble is defined as

T
Ah | x) = ZWiA(hi | x)
i=1

T
= Z wi(hi(x) — H(x))2. (8.28)

i=1

The ambiguity term represents the degree of disagreement
among individual learners on the sample x, which reflects the
level of diversity in some sense. The squared errors of the indi-
vidual learner /; and the ensemble H are, respectively,

Ehi | %) = (f (x) — hi(x))?, (8.29)
EH | x) = (f(x) — H(x))%. (8.30)
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Let E(h | x) = Zszl w; - E(h; | x) denote the weighted
average error of individual learners, then, we have

T
A1 x) =) wiE(hi | x) = E(H | x)
i=1

—E(h|x)—EH | x). (8.31)

Since (8.31) holds for every sample x, for all samples we have

T T
S owi [ A | x)px)dx = Y w; [ E(hi | x)p(x)dx — [ E(H | x)p(x)dx,
i=1 i=1

(8.32)

where p(x) is the probability density of the sample x. Similarly,
the generalization error and the ambiguity term of the learner
h; on all samples are, respectively,

Ei = /E(hi | x)p(x)dx, (8.33)
A = /A(h,- | x)p(x)dx. (8.34)

The generalization error of the ensemble is
E= /E(H | x)p(x)dx. (8.35)

Let E = Y., wiE; denote the weighted average error of
individual learners, and 4 = Z,Tz | wid; denote the weighted
average ambiguity of individual learners. Then, substituting
(8.33)—«8.35) into (8.32) gives

E=F -4 (8.36)

The elegant Equation (8.36) clearly shows that the generaliza-
tion ability of an ensemble depends on the accuracy and diver-
sity of individual learners. The above analysis is known as the
error-ambiguity decomposition (Krogh and Vedelsby 1995).

Given the above analysis, some readers may propose that
we can easily obtain the optimal ensemble by optimizing E — A
directly. Unfortunately, direct optimization of E — A is hard in
practice, not only because both terms are defined in the entire
sample space but also because A is not a diversity measure
that is directly operable; it is only known after we have the
ensemble fully constructed. Besides, we should note that the
above derivation process is only applicable to regression and
is difficult to extend to classification.

1o 8

Here, we abbreviate E (/;) and
A(h;) as E; and A4;.

Here, we abbreviate E(H) as E.
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See Sect. 2.3.2 for confusion
matrix.

8.5.2 Diversity Measures

Diversity measures, as the name suggests, are for measuring
the diversity of individual learners in an ensemble. A typical
approach is to measure the pairwise similarity or dissimilarity
between learners.

Given a data set D = {(x1, y1), (x,)2), ..., (Xm, ym)}, the
contingency table of the classifiers /; and #; for binary classifi-
cation (i.e., y; € {—1,+1})1s

hi=+1h=-1
hj=+1 a
hj = -1 b d

where a is the number of samples predicted as positive by both
h; and h;, and similarly for b, ¢, and d. With the contingency
table, we list some representative diversity measures below as
follows:

= Disagreement measure:

b
disy = 2, (8.37)
m
where the range of dis;; is [0, 1], and a larger value indicates
a higher diversity.
== Correlation coefficient:
ad — bc
Pij (8.38)

T Jaih@rocrdbrd)

where the range of p;; is [—1, 1]. When /4; and /; are unre-
lated, the value is 0. The value is positive when /; and /;
are positively correlated, and negative when /; and 4; are
negatively correlated.

= ()-statistic:

ad — bc

= — 8.39
ad + bc’ (8.39)

Oy
where O has the same sign as the correlation coefficient
pip- and | Q5] > [py].

= g-statistic:
P1—p2
K= ,
1 —ps

(8.40)

where p; is the probability that these two classifiers agree
on the prediction, and p; is the probability of agreement by
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Fig.8.7 The s-error diagrams on the UCI fic-tac-toe data set; every ensemble
consists of 50 C4.5 decision trees

chance. Given a data set D, these two probabilities can be
estimated as

_a+d

p1L= : (8.41)
m

(@a+bya+c)+(c+d)yb+d)
= m2 .

(8.42)

D2

If the two classifiers agree on all samples in D, then x = 1;if
the two classifiers agree by chance, then k = 0. Normally, «
is a non-negative value, but it can be negative in rare cases
where the agreement is even less than what is expected by
chance.

The aforementioned diversity measures are all pairwise
measures that can be easily visualized with 2-D plots. For
example, the well-known “xk-error diagrams”, as illustrated in
B Figure 8.7, plot each pair of classifiers as a point in a scatter
plot, where the x-axis represents their « value, and the y-axis
represents their average error. The closer the points to the top
of the plot, the lower the accuracy of individual classifiers; the
closer the points to the right-hand side of the plot, the less the
diversity of individual classifiers.

8.5.3 Diversity Generation

Our previous discussions showed that effective ensemble learn-
ing relies on diverse individual learners, but how can we enhance
diversity? The general idea is to introduce some randomness
into the learning process by manipulating the data samples,
input features, output representations, and algorithm parame-
ters.

201
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A subspace usually refers to a
lower dimensional feature space
mapped from the original higher
dimensional feature space. The
features describing the lower
dimensional space are not
necessarily the original features
but transformed from the
original features. See Chap. 10.

d’ is smaller than the number of
original features d.

Fy includes d’ randomly selected
features, and D; keeps only the
features in F;.

== Data sample manipulation: given the original data set, we

can manipulate it by generating multiple subsets to train
different individual learners. Data sample manipulation is
often based on sampling methods such as bootstrap sam-
pling used by Bagging and sequential sampling used by
AdaBoost. This approach is widely adopted due to its sim-
plicity and effectiveness. Some base learners, such as deci-
sion trees and neural networks, are called unstable base
learners since they are sensitive to data sample manipula-
tion, that is, a small change to the training samples leads to
significant changes to the base learners. Hence, data sam-
pling manipulation is particularly effective for unstable base
learners. On the other hand, some base learners, such as lin-
ear learners, SVM, naive Bayes, and k-nearest neighbors,
are stable base learners that are insensitive to data sample
manipulation. Hence, other mechanisms are needed, such
as input feature manipulation.

Input feature manipulation: the training samples are usu-
ally described by a set of features, where different subspaces
(subsets of features) offer different views of the data, and
the individual learners trained on different subspaces will
be different. The Random Subspace algorithm (Ho 1998)
is a well-known ensemble method that relies on input fea-
ture manipulation. As illustrated in @ Algorithm 8.4, the
random subspace algorithm extracts multiple subsets of
features and uses each subset to train a base learner. For
data with many redundant features, applying the random
subspace algorithm improves not only the diversity but
also the efficiency. Meanwhile, due to the redundant fea-
tures, the performance of learners trained with a subset of
features is often acceptable. Nevertheless, the input fea-
ture manipulation is often not a good choice when there
is a limited number of features or low feature redundancy.

Algorithm 8.4 Random Subspace

Input: Training set D = {(x1,y1), (x2,¥2), ..., (X, Y}
Base learning algorithm £;
Number of base learners 7;
Number of features in subspace d’.
Process:
1: fort=1,2,..., T do
2. F =RS(D,d);
3: D; = Mapg, (D);
4: hy = L(Dy).
5: end for
Output: H(x) = argmax Z,T:1 I(h: (Mapg, (x)) = y).
ey
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== Qutput representation manipulation: diversity can also be
enhanced by manipulating the output representations. One
method is making small changes to the class labels. For
example, the Flipping Output method (Breiman 2000) ran-
domly flips the class labels of some samples. Alternatively,
we can transform the output representation. For example,
the Output Smearing (Breiman 2000) method converts clas-
sification outputs into regression outputs before construct-
ing individual learners. Besides, we can also divide the orig-
inal task into multiple subtasks that can be solved in paral-
lel. For example, the ECOC method (Dietterich and Bakiri
1995) employs error-correcting output codes to divide a
multiclass classification task into multiple binary classifi- See Sect.3.5 for ECOC.
cation tasks to train base learners.

== Algorithm Parameter Manipulation: base learning algorithms
often have parameters, such as the number of hidden neu-
rons and initial connection weights in neural networks. By
randomly setting the parameters, we can obtain individual
learners that are quite different. For example, the Negative
Correlation method (Liu and Yao 1999) employs a regular-
ization term to enforce individual neural networks to use
different parameters. For algorithms with limited parame-
ters, we can replace some internal components with alter-
natives for manipulation. For example, using different split
feature selection methods in individual decision trees. Note
that when a single learner is to be used, we often deter-
mine the best parameters by training multiple learners with
different parameter settings (e.g., cross-validation), though
only one of them is selected. In contrast, ensemble learning
utilizes all of these trained learners, and hence the practi-
cal computational cost of creating an ensemble is not much
higher than creating a single learner.

Different diversity generation mechanisms can be used
together. For example, the random forest introduced in Sect. 8.3.2
employs both the data sample manipulation and input feature
manipulation. Some methods use more mechanisms at the same
time (Zhou 2012).

8.6 Further Reading

Zhou (2012) is the main recommended reading about ensemble
learning, which provides more detailed discussions on the con-
tent covered in this chapter. Kuncheva (2004), Rokach (2010b)
are also good references. Schapire and Freund (2012) is a book
dedicated to Boosting.
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A more strict description of this
phenomenon is “Why AdaBoost
can further improve the
generalization ability even after
the training error reaches zero?”
Indeed, if training continues,
overfitting will eventually
happen.

Boosting was initially developed in Schapire (1990) to pro-
vide a constructive answer to an important theoretical question
proposed by Kearns and Valiant (1989): “Is weak learnability
equivalent to strong learnability?” The original Boosting algo-
rithm has only theoretical significance. After several years of
hard work, Freund and Schapire (1997) proposed AdaBoost.
Due to the importance of this work, Yoav Freund and Robert
Schapire won the 2003 Go6del Prize, a prestigious award in the-
oretical computer science. Different ensemble learning meth-
ods often have significantly different working mechanisms and
theoretical properties. For example, from the bias-variance
decomposition point of view, Boosting focuses on reducing
the bias while Bagging focuses on reducing the variance. Some
attempts, such as MultiBoosting (Webb 2000), have been made
to take advantage of both approaches. There already exist con-
siderable theoretical research works on Boosting and Bagging,
which can be found in Chaps. 2 and 3 of Zhou (2012).

The derivation given in Sect. 8.2 came from the statistical
view (Friedman et al. 2000). This school of theory believes that
AdaBoost is essentially optimizing exponential loss based on an
additive model with an iterative process like Newton’s method.
It inspires the replace of the iterative method to other opti-
mization methods, leading to AdaBoost variants, such as Gra-
dientBoosting (Friedman 2001) and LPBoost (Demiriz et al.
2008). However, there are significant differences between the
practical behavior of AdaBoost and that derived from this
school of theory (Mease and Wyner 2008), especially it could
not explain the fundamentally amazing phenomenon of why
AdaBoost does not overfit. Therefore, many researchers argue
that the statistical view only explains a learning process that is
similar to AdaBoost but not AdaBoost itself. The margin the-
ory (Schapire et al. 1998) offers an intuitive explanation of this
important phenomenon, but it has been in challenging in the
past 15 years until recent studies established final conclusions
and shed light on the design of new learning methods. See Zhou
(2014) for more information.

In addition to the basic combination methods introduced in
this chapter, many other advanced methods exist, including the
methods based on Dempster-Shafer theory, Dynamic Classifier
Selection, and mixture of experts. This chapter only introduced
pairwise diversity measures. Kuncheva and Whitaker (2003),
Tanget al. (2006) showed that most existing diversity measures
have drawbacks. The understanding of diversity is considered
as the holy grail problem in ensemble learning research. More
information about combination methods and diversity can be
found in Chaps. 4 and 5 of Zhou (2012).

After obtaining an ensemble, trying to eliminate some indi-
viduals to get a smaller ensemble is called ensemble pruning,
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which helps reduce the storage and prediction time costs. Early
studies mainly focused on pruning in sequential ensemble meth-
ods, but it was found that pruning hurts the generalization per-
formance (Rokach 2010a). Zhou et al. (2002) disclosed that
the pruning of parallel ensembles can reduce the ensemble
size while improving the generalization ability, which opened
the door to optimization-based ensemble pruning techniques.
More information about this topic can be found in Chap. 6 of
Zhou (2012).

Chapters 7 and 8 in Zhou (2012) discussed the use of ensem-
ble learning in other learning tasks such as clustering, semi-
supervised learning, and cost-sensitive learning. Indeed, ensem-
ble learning is now widely used in most learning tasks, and
almost all winning solutions in the KDD Cups (a famous data
mining competition) employed ensemble learning.

Since an ensemble consists of multiple learners, it is a black
box, even if the individual learners have good interpretability.
There are attempts to improve the interpretability of ensem-
bles, such as converting an ensemble to a single model or
extracting symbolic rules from an ensemble. Research on this
topic derived twice-learning techniques, such as NeC4.5 (Zhou
and Jiang 2004), which can produce a single learner that out-
performs the ensemble; later, similar techniques are called
knowledge distillation. Besides, visualization techniques are
also helpful in improving interpretability. More information
on this topic can be found in Chap. 8 of Zhou (2012).
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Pruning of parallel ensembles is
also called selective ensemble.
However, nowadays, the term
selective ensemble is often used
as a synonym of ensemble
pruning, which is also called
ensemble selection.
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Exercises

8.1 Suppose we toss a coin with a probability of p it lands on
heads and a probability of 1 — p it lands on tails. Let H (n)
denote the number of heads tossing the coin n times, then the
probability of getting at most k heads is

k .
PHm <k =) <;>pf<1 -p" (8.43)

i=0

For § > 0 and k = (p — d)n, we have Hoeffding’s inequality
P(H(n) < (p — §)m) < e 2n, (8.44)

Try to derive (8.3).

8.2 The exponential loss function is not the only consistent
surrogate function for the 0/1 loss function. Considering (8.5),
prove that every loss function ¢(—f(x)H (x)) is a consistent
surrogate function for the 0/1 loss function if H(x) is mono-
tonically decreasing in the interval [—oo, 4] (§ > 0).

8.3 Download or implement the AdaBoost algorithm, and
then use unpruned decision trees as base learners to train an
AdaBoost ensemble on the watermelon data set 3.0ce. Compare
The watermelon data set 3.0ais  the results with @ Figure 8.4.
in @ Table 4.5.
8.4 GradientBoosting (Friedman 2001) is a common Boosting
algorithm. Try to analyze its difference and commonality to
the AdaBoost algorithm.

8.5 Implement Bagging, and then use decision stumps as base
learners to train a Bagging ensemble on the watermelon data
set 3.0a. Compare the results with 8 Figure 8.4.

8.6 Analyze the reasons why Bagging is not effective in improv-
ing the performance of naive Bayes classifiers.

8.7 Analyze the reasons why it is faster to train a random forest
than training a decision tree-based Bagging ensemble.

8.8 The MultiBoosting algorithm (Webb 2000) employs AdaBoost
as the base learner in Bagging, while the Iterative Bagging algo-
rithm (Breiman 2001b) employs Bagging as the base learner in
AdaBoost. Discuss the pros and cons of each method.
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8.9 * Design a visualized diversity measure. Use it to evaluate
the ensembles obtained in Exercises 8.3 and 8.5, and compare
with the k-error diagrams.

8.10 * Design an ensemble learning algorithm that can improve
the performance of k-nearest neighbors classifiers.
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Break Time

Short Story: Leo Breiman in His Green Old Age

Leo Breiman (1928-2005) was a
great statistician in the twentieth
century. At the end of the twenti-
eth century, he publicly stated that
the statistics community had made
statistics like a branch of abstract
mathematics, which divorced from
the original intention of statistics.
Instead, he believed that “Statistics
existed for the purposes of prediction
and explanation and working with
data.” As a statistician, he claimed
that his research was more about machine learning since there
were more data-related challenges in this area. In fact, Breiman
was an outstanding machine learning researcher, who not only
developed the CART decision tree, but also made three major
contributions to ensemble learning: Bagging, Random Forest,
and theoretical arguments about Boosting. Interestingly, all of
these were completed after he retired in 1993 from the Depart-
ment of Statistics, UC Berkeley.

Inthe early days, Breiman obtained a degree in physics from
the California Institute of Technology and decided to study
philosophy at Columbia University. However, the head of the
Department of Philosophy told Breiman that two of his best
Ph.D. students could not find jobs, and hence Breiman changed
his mind and turned to study mathematics. After earning his
master’s and Ph.D. degrees from UC Berkeley, he became a
professor at the University of California, Los Angeles (UCLA)
teaching probabilities. 7 years later, he was bored of probabil-
ities and resigned from the position. To say goodbye to prob-
abilities, he spent half a year at home to write a book about
probabilities and then started a career as a statistical consul-
tant in the industry for 13 years. Then, he came back to the
Department of Statistics, UC Berkeley as a professor. Breiman
had a variety of life experiences. He spent his sabbatical leave
working for UNESCO as an educational statistician in Liberia
to teach statistics for out-of-school children. He was also an
amateur sculptor, and he even managed business with partners
selling ice in Mexico. Random forest, which Breiman thought
was the most important research outcome of his life, was devel-
oped after he was in his 70s.
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Other unsupervised learning
tasks include density estimation,
anomaly detection, etc.

For clustering algorithms, a
cluster is also called a class.

Clustering can also use labeled
samples (e.g., Sects. 9.4.2 and
13.6). However, the generated
clusters and the class labels are
different.

9.1 Clustering Problem

Unsupervised learning aims to discover underlying properties
and patterns from unlabeled training samples and lays the
foundation for further data analysis. Among various unsuper-
vised learning techniques, the most researched and applied one
is clustering.

Clustering aims to partition a data set into disjoint subsets,
where each subset is called a cluster. Through the partitioning,
each cluster is potentially corresponding to a concept (cate-
gory), such as “light green watermelon”, “dark green water-
melon”, “seeded watermelon”, “seedless watermelon”, or even
“locally grown watermelon”and “imported watermelon”. Note
that clustering algorithms are unaware of such concepts before
clustering and are only responsible for creating the clusters.
The concept carried by each cluster, however, is interpreted by
the user.

Formally, given a dataset D = {x1, x5, ..., X,;;} containing
munlabeled samples, where each sample x; = (x;1; X;2; ... ; Xin)
is an n-dimensional vector. Then, a clustering algorithm parti-
tions the data set D into k disjoint clusters {C; | [ = 1,2, ..., k},
where Cp Ny € = @ and D = Uf‘lel. Accordingly, we
denote A; € {1,2, ..., k} as the cluster label of sample x; (i.e.,
x; € Cy;). Then, the clustering result can be represented as a
cluster label vector A = (A1; A2; ... ; Ay) With m elements.

Clustering can be used by itself to identify the inherent
structure of data, while it can also serve as a pre-processing
technique for other learning tasks such as classification. For
example, a business may want to classify new users into differ-
ent “categories”, but this may not be easy. In such a case, we
can use clustering to group all users into clusters, where each
cluster represents a user category. Then, a classification model
can be built upon the clusters for classifying the category of
new users.

Depending on the learning strategy used, clustering algo-
rithms can be divided into several categories. The representa-
tive algorithms of each category will be discussed in the sec-
ond half of this chapter. Before that, let us first discuss two
fundamental problems involved with clustering—performance
measure and distance calculation.
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9.2 Performance Measure

Performance measures for clustering are also called validity
indices. As classification result is evaluated by performance
measures in supervised learning, the clustering result also needs
to be evaluated via some validity indices. Besides, once a valid-
ity index is selected, we can embed it into the optimization
objective of clustering algorithms such that the generated clus-
ters are more aligned to the desired results.

So, how does a good clustering look like? Intuitively, we
wish “things of a kind come together”; that is, samples in the
same cluster should be as similar as possible while samples
from different clusters should be as different as possible. In
other words, we seek clusters with high intra-cluster similarity
and low inter-cluster similarity.

Roughly speaking, there are two types of clustering validity
indices. The first type is external index, which compares the
clustering result against a reference model. The second type
is internal index, which evaluates the clustering result without
using any reference model.

Given a data set D = {x1, x2, ..., X;;}, suppose a cluster-
ing algorithm produces the clusters ¢ = {Cy, C3, ..., Ci}, and
a reference model gives the clusters ¢* = {C}, C5, ..., CY}.
Accordingly, let A and A* denote the clustering label vectors of
¢ and c*, respectively. Then, for each pair of samples, we can
define the following four terms

a=1SS], SS:{(x[,xj)|)\.[=)\.j,A.;-k=)\.;<,i<j},

©.1)
b=1|SDl, SD={(xi,xj) | A=A A] #1],i<j}

9.2)
c=IDS|, DS ={(xi.x)) | At # koA = A5, i <),

9.3)
d=|DD|, DD ={(x;,x)) | A #Xj, A] #17,i<]j},

(9.4)

where the set SS includes the sample pairs that both samples
belong to the same cluster in ¢ and also belong to the same
cluster in ¢*; the set SD includes sample pairs that both samples
belong to the same cluster in ¢ but not in ¢*; the sets DS and
DD can be interpreted similarly. Since each sample pair (x;, x;)
(i <j) can only appear in one set, we havea +b +c+d =
m(m—1)/2.

With (9.1)«9.4), some commonly used external indices can
be defined as follows:
e Jaccard Coefficient (JC):
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See Sect. 2.3 for performance
measures in supervised learning.

For example, use the clusters
provided by domain experts as a
reference model.

Typically, k # s.
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a
JC= ———. 9.5
a+b+c ©-5)

e Fowlkes and Mallows Index (FMI):

[ a a
FMI= | —— ——. 9.6
a+b a+c ©-6)

e Rand Index (RI):

_ 2a+d)

Rl = —.
m@m — 1)

9.7)

The above external validity indices take values in the interval
[0, 1], and a larger index value indicates better clustering qual-
ity.

Internal validity indices evaluate the clustering quality with-
out using a reference model. Given the generated clusters

c={Ci, Cy, ..., Ci}, we can define the following four terms:
2
avg(C) = ——— dist(x;, x7), 9.9)
8O = ere 2 "
<i<ji<ICl
diam(C) = max dist(x;, x;), (9.9)
<L)
dmin(ch C]) = x,'GCn';'l,lxrjl'Gq dlSt(xia xj)’ (910)
deen (Ci, Cp) = dist(p;, ), (9.11)

where u = ﬁ Zlgigm x; denotes the centroid of cluster C,

and dist(-, -) measures the distance between two samples. Here,
A larger distance corresponds to avg((C) is the average distance between the samples in cluster
a lower similarity. Distance C; diam(C) is the largest distance between samples in cluster
calculations will be discussed in . . .
the next section. C; duin(Cj, ;) is the distance between two nearest samples in

clusters C; and Cj; and deen (C;, Cy) is the distance between the

centroids of clusters C; and C;.

With (9.8)—9.11), some commonly used internal validity
indices can be defined as follows:
e Davies—Bouldin Index (DBI):

k

1 avg(Cy) + an(Cj)>
DBl = — » max . 9.12
k ; J#i ( deen (Ci, ) ( )

e Dunn Index (DI):

dmin(Ci, C;
DI = min {min min = /) ) 9.13)
1<igk | j# \ max;g gk diam(Cy)
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A smaller value of DBI indicates better clustering quality, while
a larger value of DI indicates better clustering quality.

9.3 Distance Calculation

Given a function dist(-, -), if it is a distance measure, then it
must have the following axioms:

Non-negativity: dist(x;, x;) > 0; (9.14)
Identity of indiscernibles: dist(x;, x;) = 0 if and only if x; = x;;
(9.15)
Symmetry: dist(x;, x;) = dist(x;, x;); (9.16)
Subadditivity: dist(x;, x;) < dist(x;, xz) + dist(xg, x;). 9.17)
Giventwosamplesx; = (x;1; Xi2; . . .5 Xjip) and x; = (Xj1; X;2;

.} Xjn), a commonly used measure is the Minkowski distance

1

n )
distmi (x;, x;) = (Z |Xiu —x,u\f’) . (9.18)

u=1

When p > 1, (9.18) satisfies the distance measure axioms
(9.14)—9.17).
When p = 2, the Minkowski distance becomes the Euclidean
distance

disteq (x;, x;) = Hx,' - xj”z =

n
> v =l 9.19)
u=1

When p = 1, the Minkowski distance becomes the Manhat-
tan distance

distman (x;, X;) = ||x,- —X; ”1 = Z |x,-u — x_]-u| . (9.20)

u=1

We generally divide attributes into continuous attributes,
which have infinite domains, and categorical attributes, which
have finite domains. However, for distance calculations, it is
more important to consider whether the attributes include ordi-
nal information. For example, a categorical attribute with the
domain {I, 2, 3} is more like a continuous attribute since the
distance can be calculated with the attribute values, that is,
“1” 1s closer to “2” than “3”. Such attributes are called ordi-
nal attributes. In contrast, if the domain of an attribute is dis-
crete like {aircraft, train, ship}, then the distance cannot be
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Subadditivity is also known as
triangle inequality.

Equation (9.18) is the L, norm
of x; — x;, that is,

xi—xif,

When p — oo, it becomes the
Chebyshev distance.

Also known as the city block
distance.

Continuous attributes are also
known as numerical attributes,
and categorical attributes are
also known as nominal
attributes.
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When the class information is
given, k is usually set to the
number of classes.

directly calculated with the attribute values, and such attributes
are non-ordinal attributes. Note that the Minkowski distance is
only applicable to ordinal attributes.

For non-ordinal attributes, the Value Difference Metric
(VDM) (Stanfill and Waltz 1986) can be used instead. Let m,, 4
denote the number of samples taking value a on the attribute u,
and my,, 4 ; denote the number of samples within the ith cluster
taking value a on the attribute «, and & is the number of clus-
ters. Then, the VDM distance between two categorical values
a and b of attribute u is

k
VDM, (a,b) =)

i=1

. . |P
My q,i my p,i

My, a my p

9.21)

For mixed attribute types, we can combine the Minkowski
distance and the VDM. Without loss of generality, we arrange
ordinal attributes in front of non-ordinal attributes and let n,
denote the number of ordinal attributes and n — n,. denote the
number of non-ordinal attributes. Then, the joint distance mea-
sure is

1
ne n P
MinkovDM,(x;, x)) = [ Y [xau — xul” + Y VDMy(xi, x3) |

u=1 u=nc+1

9.22)

In cases where different attributes have different impor-
tance, we can use weighted distance. For example, the weighted
Minkowski distance is

. 1
distymk (x, X)) = w1 |xi — xj1"+. o4 wa- | xin — x5 |7,
(9.23)

where the weightsw; > 0 (i = 1, 2, ..., n) represent the impor-
tance of attributes, and typically > 7, w; = 1.

We often define similarity measures via some kinds of dis-
tances, and the larger the distance, the lower the similarity.
However, it is worth noting that distances used in defining
similarity measures are not required to satisfy all axioms of
being distance measures, particularly the subadditivity (9.17).
For example, we may seek a similarity measure that considers
humans and horses are different, but considers both are simi-
lar to centaurs. To make this happen, we need to ensure small
distances from humans and horses to centaurs, while ensuring
a large distance between humans and horses. Such distances,
as illustrated in @ Figure 9.1, do not satisfy the subadditivity
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S S, D+ dy < dy
&7 & 4, not subadditive
z AN
A 2

d,;g =38

dissimilar

Fig.9.1 An example of non-metric distance

condition, and hence are called non-metric distances. Last but
not least, the distance calculation methods introduced in this
section are defined in advance, but in some real-world tasks,
it is necessary to determine the distance calculation method
based on the data samples via distance metric learning.

9.4 Prototype Clustering

Prototype clustering, also known as prototype-based clustering,
is a family of clustering algorithms that assumes the clustering
structure can be represented by a set of prototypes. Typically,
such algorithms start with some initial prototypes, and then
iteratively update and optimize the prototypes. Many algo-
rithms have been developed using different prototype repre-
sentations and optimization methods. The rest of this section
discusses several well-known prototype-based clustering algo-
rithms.

9.4.1 k-Means Clustering

Given a dataset D = {x1, x2, ..., x;;}, the k-means algorithm
minimizes the squared error of clusters ¢ = {Cy, Ca, ..., Ci}:

k
E=) > llx—uil3, (9.24)

i=1 xeC;

where u; = ﬁ > _xec; X is the mean vector of cluster C;. Intu-
itively, (9.24) represents the closeness between the mean vector
of a cluster and the samples within that cluster, where a smaller
E indicates higher intra-cluster similarity.

Nevertheless, minimizing (9.24) is not easy since it requires
evaluations of all possible partitions of the data set D, which
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Mathematically, setting d3 = 3
gives subadditivity.
Semantically, however, d3
should be much larger than d;
and d.

See Sect. 10.6 for distance metric
learning.

A “prototype” refers to a
representative data point in the
sample space.
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The watermelon data set 3.0« in
B Table 4.5 is a subset of the
watermelon data set 4.0.

The class label of the samples
9-21 is ripe=false, and the class
label of the rest samples is
ripe=true. Since we do not use
the label information in this
section, the labels are omitted in
the table.

is indeed an NP-hard problem (Aloise et al. 2009). Hence, the
k-means algorithm takes a greedy strategy and adopts an iter-
ative optimization method to find an approximate solution of
(9.24). The algorithm is illustrated in B8 Algorithm 9.1, where
line 1 initializes the mean vectors, and lines 4-8 and lines 9-16
iteratively update the clusters and mean vectors, respectively.
When the clusters do not change after one iteration, the current
clusters are returned.

We take the watermelon data set 4.0 in @ Table 9.1 as an
example to demonstrate the k-means algorithm. For ease of
discussion, let x; represent the sample with the ID i, where x;
is a two-dimensional vector containing the attributes density
and sugar.

B Tab.9.1 The watermelon data set 4.0

ID density sugar||ID density sugar||ID density sugar
10697 0460 |11 0245 0.057 [|21 0.748 0.232
20774 0376 (|12 0343 0.099 [[22 0.714 0.346
3 0634 0264 |13 0639 0.161 [|23 0483 0.312
4 0608 031814 0.657 0.198 ||24 0478 0.437
5 055 021515 0360 0370 (|25 0.525 0.369
6 0403 023716 0593 0.042 (26 0.751 0.489
7 0481 0.149 (|17 0719 0.103 |27 0.532 0.472
8 0437 0211 (|18 0.359 0.188 ||28 0.473 0.376
9 0666 0.091 |19 0339 024129 0.725 0.445
10 0.243  0.267 ||20 0.282  0.257 || 30 0.446 0.459

Suppose we set k = 3, then the algorithm randomly picks
up three samples xg, x13, and x4 as the initial mean vectors,
that is,

1 = (0.403; 0.237), po = (0.343;0.099), m3 = (0.478;0.437).

Then, for the sample x; = (0.697; 0.460), its distances to
the three current mean vectors p1, o, and w3 are 0.369, 0.506,
and 0.220, respectively. Since its distance to p3 is the shortest,
x is assigned to cluster Cs. Similarly, we evaluate all samples
in the data set and find the following cluster assignments:
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Algorithm 9.1 k-Means Clustering

Input: Dataset D = {x1,x2,...,%Xn};
Number of clusters k.
Process:

1: Randomly select k samples as the initial mean vectors

{1, m2, s ks
2: repeat

3 C=o0<i<k);
4: forj=1,2,...,mdo
5: Compute the distance between sample x; and each mean
vector pi(1 <i <h):dy = x; — pil:
6: According to the nearest mean vector, decide the cluster label
of x;: A; = argmin dj;
i€f1,2,....k}
7. Move x; to the corresponding cluster: Cy; = Gy, U {x;};
8: end for
9: fori=1,2,....,k do
10: Compute the updated mean vectors: u; = ﬁ D oxec X
11: if u; # p; then
12: Update the current mean vector p; to u/;
13: else
14: Leave the current mean vector unchanged.
15: end if
16: end for . _
17: until All mean vectors remain unchanged In order to avoid long execution
Output: Clusters C = {Cy, Ca, ..., Ci} . time, we often set a maximum

number of iterations or a
threshold of minimum change to
stop the learning early.

Cy ={x3,x5,%6,%7, X8, X9, X10, X13, X 14, X17, X18, X19, X20, X23};
G ={x11, x12, X16};

Cs ={x1,x2, %4, %15, X21, X22, X24, X25, X26, X27, X28, X29, X30}.

From C;, C; and C3, we can calculate the new mean vectors
) = (0.493;0.207), py = (0.394;0.066), s = (0.602; 0.396).

The above process repeats until convergence. For example, as
illustrated in @ Figure 9.2, the k-means algorithm finds the
final cluster assignments when the 5th iteration produced the
same clusters as the 4th iteration.

9.4.2 Learning Vector Quantization

Learning Vegtor Quar.ltlzatlc?n.(LVQ) is another protot.ype— The clustering process can be
based clustering algorithm similar to the k-means algorithm yiewed as identifying subclasses,
but requires labeled data samples; that is, the clustering pro-  where each subclass corresponds
cess is assisted by supervised information. to one cluster.
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Line 5 of @ Algorithm 9.2 takes
the “winner-take-all” strategy of
competitive learning. SOM can
be seen as a clustering algorithm
for unlabeled samples, while
LVQ can be seen as an extension
of SOM that utilizes supervised
information. More information
about competitive learning and
SOM can be found in Sects.
5.5.2and 5.5.3.
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Fig. 9.2 Results of the k-means algorithm on the watermelon data set 4.0
with & = 3. The samples and mean vectors are represented by “e” and “+”7,
respectively. The red dashed lines are the boundaries of clusters

Givenadataset D = {(x1, y1), (x,2), ..., (X, Vm)}, where
each sample x; is described by an n-dimensional feature vector
(Xj15 Xj25 .. .5 Xju) and a class label y; € Y. LVQ aims to learn a
set of n-dimensional prototype vectors { p1, p2, ..., py}, Where
each prototype vector represents one cluster and its class label
ist; €Y.

Asillustrated in @ Algorithm 9.2, the LVQ algorithm starts
with an initialization of the prototype vectors in line 1, e.g.,
randomly selects a sample with class label ¢, as the prototype
vector for the gth cluster. The prototype vectors are iteratively
optimized in lines 2—12. In each round, the algorithm randomly
selects a labeled sample and finds its nearest prototype vector,
and then the prototype vector is updated based on whether
the selected sample has the same class label with the prototype
vector. In line 12, the current prototype vectors are returned
as the final result if the stopping condition is met, e.g., the
maximum number of iterations is reached, or there is minor or
even no update to the prototype vectors.
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Algorithm 9.2 Learning Vector Quantization

Input: Training set D = {(x1, y1), (x2,¥2), - s (> ym)};
Number of prototype vectors ¢;

Initial labels of prototype vectors {f, 12, ..., ty};
Learning rate 7.
Process:
1: Initialize a set of prototype vectors {p1, p2, ..., Pg};
2: repeat

3: Randomly pickup a sample (x;, y;) from the data set D;
4: Compute the distance between x; and p;(1 < i < ¢): dji =

Xj = Pif >
5: H ’ Find %he nearest prototype vector p; for x;, where i* =
argmin dj;
i€fl,2,....q)
6 if y; = t;» then
7: P =pr+n- (xj — pix); x; and p;+ have the same class
8 else label.
9: p = pir —n-(xj — pi); x; and p;» have different class
10: end if labels.
11: Update the prototype vector p;+ to p’.
12: until The termination condition is met E.g., the maximum number of
Output: Prototype vectors {p1, p2, ..., pg}. iterations is reached.

Lines 6-10, which update the prototype vectors, are the
core of LVQ. Intuitively, if the class labels of a sample x; and
its nearest prototype vector p;« are the same, then p;+ is moved
toward x;. As shown in line 7, the prototype vector is updated
by

P =pi+n-(xj— pir), 9.25)

and the distance between p’ and x; is

|p" = xll, = |pir + 1 xj = pie) — x5,
=1 —=n-|pir—xi|,. (9.26)

Suppose that the learning rate n € (0, 1), then the prototype
vector p;+ becomes closer to x; after updating to p’.

Similarly, if p;« and x; have different class labels, then the
distance between updated prototype vector and x; is increased
to (1 + 1) - [lpi — xjll2, that is, away from x;.

Wit.h a set. of learned prototype vectors {pi, p2, ..., Pg}y a1 samples in the region R;
clustering assignments can be made for the sample space X. ;e represented by the prototype
Specifically, each sample x is assigned to the cluster represented  vector p;, then we have done a
by the nearest prototype vector. In other words, a prototype lossy compression to the data,
vector p; defines a region R;, where the distance from any sam- which is also called vector

. . . quantization, hence the name
plein R; to p; is not larger than the distance to any other pro- LVQ.
totype vector p; (i’ # i), that is,
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That is, 3 clusters for ripe=true,

and 2 clusters for ripe=false.

Denoted by x ~ N(u, X).

¥: symmetric positive definite
matrix;

|X|: determinant of X;

%~ ! inverse of X.

Ri={x € X|llx — pill < llx = prl,. i #1}. 9.27)

Therefore, {Ry, Ry, ..., Ry} forms a partition of the sample
space X, known as the Voronoi tessellation.

Next, we take the watermelon data set 4.0 in @ Table 9.1 as
an example to demonstrate the learning process of LVQ. Let
¢ be the class label of the samples with ID 9-21, and ¢ be
the class label for the rest of the samples. Letting ¢ = 5, that
is, the goal is to find 5 prototype vectors pi, p2, p3, pa, and
Ps, and the corresponding class labels are ¢y, ¢2, ¢2, ¢1, and ¢y,
respectively.

The algorithm starts by initializing the prototype vector of
each cluster to a sample that has the same class label as the
pre-defined class label of the cluster. Suppose that the selected
samples for these 5 clusters are x5, x12, X138, X23, and x»9. In
the first iteration, if the randomly selected sample is x|, then its
distances to the current prototype vectors pi, p2, p3, p4, and
psare 0.283, 0.506, 0.434, 0.260, and 0.032, respectively. Since
Ps is the nearest prototype vector to x| and they have the same
class label ¢, LVQ will update ps to a new prototype vector

p =ps+n-(x;—x5)
= (0.752;0.445) + 0.1 - ((0.697; 0.460) — (0.725; 0.445))
= (0.722; 0.447),

where n = 0.1 is a pre-specified learning rate. After ps is
updated to p’, the learning process continues until convergence.
@ Figure 9.3 shows the clustering results after different itera-
tions.

9.4.3 Mixture-of-Gaussian Clustering

Unlike k-means and LVQ, Mixture-of-Gaussian clustering
does not use prototype vectors but probabilistic models to rep-
resent clustering structures.

Before we discuss the technical details, let us revisit the def-
inition of (multivariate) Gaussian distribution. For a random
vector x in an n-dimensional sample space A&, if x follows a
Gaussian distribution, then its probability density function is

p(x) em 3w E ), (9.28)

= n 1

(2m)2 %2
where p is an n-dimensional mean vector and ¥ is an n x n
covariance matrix. From (9.28), we can see that a Gaussian dis-
tribution is fully determined by its mean vector u and covari-
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Fig.9.3 Results of the LVQ algorithm after different iterations on the water-

melon dataset4.0 with g = 5. The symbols “e”, “0”, “4”represent, respectively,

the class ¢ samples, the class ¢ samples, and the prototype vectors. The red
dashed lines show the Voronoi tessellation

ance matrix X. To show this dependency more explicitly, we
write the probability density function as p(x | u, X).
The Mixture-of-Gaussian distribution is defined as

k
pmx) =Y ai-p(x | i, i),

i=1

(9.29)

which consists of k mixture components and each corresponds
to a Gaussian distribution. u; and X; are the parameters of
the ith mixture component, and «; > 0 are the corresponding
mixture coefficients, where fo:l a; = 1.

Suppose that the samples are generated from a Mixture-
of-Gaussian distribution with the following process: select
the Gaussian mixture components using the prior distribu-
tion defined by «y, an, ..., oy, where «; is the probability of
selecting the ith mixture component; then, generate samples by
sampling from the probability density functions of the selected
mixture components.

Let D = {x1, x>, ..., X} be a training set generated from
theabove process,and z; € {1,2, ..., k} be therandom variable
of the Gaussian mixture component that generated sample x;,
where the values of z; are unknown. Since the prior probability
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pm () is also a probability
density function where
Jpmx)dx = 1.
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See Sect. 7.2 for maximum
likelihood estimation.

See Sect. 7.6 for the EM
algorithm.

P(zj = i) forz; correspondstoa;(i =1, 2, ..., k), the posterior
distribution of z;, according to Bayes’ theorem, is

P(zj=1) -pmx; |z =1)
Pm(x))
o p(xy | i, Xg)
Yo G | %)

In other words, pr(z; =i | x;) gives the posterior probability
that x; is generated by the ith Gaussian mixture component.
For ease of discussion, we denote it by yj;, wherei = 1,2,..., k.
When the Mixture-of-Gaussian distribution is known, the
data set D can be divided into k clusters ¢ = {Cq, C», ..., Ci},
and the cluster assignment A; for each sample x; is given by

pmzi=1i|x;) =

(9.30)

Aj = argmax yj. (9.31)
iefl,2,...k}

Hence, from the prototype clustering point of view, the Mixture-
of-Gaussian clustering employs probabilistic models (with
Gaussian distribution) to represent the prototypes, and the
cluster assignments are made by the posterior probabilities of
the prototypes.

How do we optimize the model parameters {(«;, 1, X;) |
1 < i < k}in (9.29)? One method is to apply the maximum
likelihood estimation on the data set D, that is, maximizing the
(log) likelihood

m
LLD) =In [ []pm@)
j=1
m k

=D In[> e plelmi T | (9.32)
j=1 i=1

The optimization problem is usually solved by the EM algo-
rithm. We give a brief derivation as follows.

If the parameters {(«;, 1, ;) | 1 < i < k} maximize (9.32),
then, from %ﬂ@ = 0, we have

m

a; - p(x; | pi, i)
Yo | e B0

(xj — [Ll') =0. (9.33)

From (9.30) and y;; = py(z; = i | x;), we have

Dt Vi
pi = =2V (9.34)
l > Y
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In other words, the mean of each mixture component can be
calculated as a weighted average of the samples, where each
sample is weighted by the posterior probability of this sample
. . .. ALL(D)
belonging to the given component. Similarly, from Sy = 0,
we have
YL v — i) (e — )T
Y= m : (9.35)
D=1 Yii

The maximization of LL(D) is subject to the constraints on the
mixture coefficients «;: «; > 0 and Zf:l a; = 1. Considering
the Lagrange form of LL(D)

k
LL(D) + A Zai—l , (9.36)
i=1

where A is the Lagrange multiplier. Setting the derivative of
(9.36) with respect to «; equal to zero gives

m

plx; | pi, Xp)

- +1=0. 9.37)
o1 i=rar s px | e, X))

If we multiply both sides of (9.37) by «; and sum over all mixture

components, we obtain A = —m. Substituting it into (9.37)
gives
1 m
o= 21: Viis (9.38)
=

which shows that the mixture coefficient of each Gaussian
component is the average posterior probability of each sam-
ple belonging to this Gaussian component.

From the above derivation, we have the EM algorithm for
the Gaussian mixture model: in each round, use the current
parameters to calculate the posterior probability y;; that each
sample is belonging to each Gaussian component (E-step), and
then update the parameters {(«;, mi, X;) | 1 < i < k} based on
(9.34), (9.35), and (9.38) (M-step).

The Mixture-of-Gaussian clustering algorithm is given in
B Algorithm 9.3. The algorithm starts by initializing the param-
etersin line 1. Then, in lines 2—12, the parameters are iteratively
updated using the EM algorithm. When the maximum number
of iterations is reached or the log-likelihood function LL(D) is
no longer increasing (or the increment is small), the EM algo-
rithm stops, and the cluster assignments are made in lines 14—
17.
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The E-step of the EM algorithm.

The M-step of the EM
algorithm.

E.g., the maximum number of
iterations is reached.

Algorithm 9.3 Mixture-of-Gaussian Clustering

Input: Dataset D = {x1,x2,...,x,};
Number of Gaussian mixture components k.
Process:
1: Initialize the parameters {(«;, pi, ;) | 1 < i < k} of the Mixture-of-
Gaussian distribution;

2: repeat
3: forj=1,2,...,mdo
4: According to (9.30), compute the posterior probabilities that

x; is generated by each Gaussian mixture component, i.e.,
Vi =pmz=ilxp <i<k);

5: end for
6: fori=1,2,...,kdo
7: Compute the updated mean vector: ) = Ziiql y]:j;
j=1"Yji
8: Compute the updated covariance matrix: X/ =
NN Tl M
S ’
9: Compute the updated mixture coefficients: a,/- = % Z}": 1 Yjis
10: end for

11: Update the model parameters {(o;, u;, X;) | 1 < i < k} to
{(ef, mi, ) 11 < i < k)

12: until The termination condition is met

13: C;=21 <i<k);

14: forj=1,2,...,m do

15: Determine the cluster label A; of x; according to (9.31);
16: Move x; to the corresponding cluster: C; = G, U {x;}.
17: end for

Output: Clusters C = {Cy, Ca, ..., Ci}.

We take the watermelon data set 4.0 in @ Table 9.1 as an
example to give a more concrete demonstration. Suppose that
the number of Gaussian mixture components is k = 3, and the
algorithm starts with the following parameter initialization:
o =y =0a3 = %;Ml =Xe; M2 = X225 U3 = X273 X1 = Xy =

0.1 0.0
3 = (o.o 0.1)"

In the first iteration, the algorithm computes the posterior
probabilities of samples given that they are generated by each
mixture component. Taking x| as an example, the posterior
probabilities computed by (9.30) are y1; = 0.219, y12 = 0.404,
and y13 = 0.377. After computing the posterior probabilities of
all samples with respect to all mixture components, we obtain
the following updated model parameters:

o) =0.361, o) = 0.323, o = 0.316
) = (0.491; 0.251), p) = (0.571;0.281), w} = (0.534; 0.295)

s 0.025 0.004 s _ 0.023 0.004 5/ — 0.024 0.005
1710.004 0.016)° 27 \0.004 0.017/)° =37~ 10.005 0.016
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Fig.9.4 Results of the Mixture-of-Gaussian algorithm after different itera-
tions on the watermelon data set 4.0 with k = 3. The symbols “o”, “®”, “4”
represent the samples of cluster Cy, C», and C3, respectively. The mean vectors

of Gaussian mixture components are denoted by “+”

The above updating process repeats until convergence. 8 Figure

9.4 shows the clustering results after different iterations.

9.5 Density Clustering

Density clustering, also known as density-based clustering, is

a family of clustering algorithms that assumes the clustering

structure can be determined by the densities of sample distri-

butions. Typically, density clustering algorithms evaluate the
connectivity between samples from the density perspective and
expand the clusters by adding connectable samples.
DBSCAN (Ester et al. 1996) is a representative density clus-
tering algorithm, which characterizes the density of sample dis-
tributions by a pair of “neighborhood” parameters (¢, MinPts).

Given adataset D = {x|, x2, ..., X;;}, we define the following

concepts:

e e-neighborhood: for x; € D, its e-neighborhood includes
all samples in D that have a distance to x; no larger than e,
that is, Ne(x;) = {x; € D | dist(x;, x;) < €}.

o Coreobject: x;isa core object ifits e-neighborhood includes
at least MinPts samples, that is, | Ne (x;)| > MinPts.
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DBSCAN stands for
Density-Based Spatial
Clustering of Applications with
Noise.

In the rest of this chapter, unless
otherwise stated, the distance
function dist(-, -) is assumed to
be the Euclidean distance.



228 Chapter 9 - Clustering

In general, directly
density-reachable is not
symmetric.

Density-reachable is subadditive
but not symmetric.

Density-connected is symmetric.

The samples in D that do not
belong to any clusters are
considered as noisy or anomaly
samples.

o Directly density-reachable: x; is said to be directly density-
reachable by x; if x; is a core object and x; is in the e-
neighborhood of x;.

o Density-reachable: x; is said to be density-reachable by x; if
there exists a sequence of samples p1, p2,. ..o, Where p; = x;,
Pn = Xxj, and p;4 is directly density-reachable by p;.

e Density-connected: x; and x; are said to be density-connected
if there exists x4 such that both x; and x; are density-
reachable by x.

The above concepts are illustrated in @ Figure 9.5.

With these concepts, the DBSCAN algorithm defines a
cluster as follows: the largest set of density-connected samples
derived by density-reachable relationships. Formally, given the
neighborhood parameters (e, MinPts), a cluster C € D is a
nonempty subset with the following properties:

Connectivity: x; € C, x; € C = x; and x; are density-connected;

(9.39)

Maximality: x; € C, x; is density-reachable by x; = x; € C.

(9.40)

Then, how do we find all clusters satisfying the above prop-
erties? Actually, if x is a core object and let X = {x’ € D |
x' is density-reachable by x} denote the set of samples density-
reachable by x, then it can be proved that X is a cluster that
satisfies both the connectivity and the maximality. Following
this observation, the DBSCAN algorithm generates clusters by
expanding from core objects, as illustrated in @ Algorithm 9.4.
More specifically, lines 1-7 find all core objects based on the
given neighborhood parameters (e, MinPts); lines 1024 gen-
erate a cluster by randomly selecting one of the core objects as
a seed and expanding from it to include all density-reachable
samples; lines 1024 repeat until all core objects have been
selected.

. o ©o.°
e AR o
O E~o—&" o
O @ 0

Fig. 9.5 The basic concepts of DBSCAN (MinPts = 3): the dashed circles
show the e-neighborhood; x| is a core object; x, is directly density-reachable
by x; x3 is density-reachable by x{; x3 and x4 are density-connected
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Algorithm 9.4 DBSCAN

Input: Dataset D = {x1,x2,...,Xn};
Neighborhood parameters (¢, MinPts).

Process:

1: Initialize the set of core objects: Q = &;
2: forj=1,2,...,mdo
3: Determine the e-neighborhood N (x;) of sample x;;
4 if |Ne(xj)| > MinPts then
5 Add sample x; to the set of core objects: Q = QU {x;};
6: end if
7: end for
8: Initialize the number of clusters: k = 0;

9: Initialize the set of unprocessed samples: I' = D;
10: while Q # & do

11: Keep a copy of the current unprocessed data set: I'pjg = T;
12: Randomly select a core object 0 € €2, and initialize the queue
0 = (o);

13: I' =T\{o};
14: while Q # @ do

15: Dequeue the first sample ¢ from Q;
16: if |Nc(q)| > MinPts then

17: Letting A = Ne(q) NT;

18: Enqueue the samples in A into Q;
19: [ =T\A;

20: end if

21: end while

22: k =k + 1, generate cluster Cj = I'gig\I';
23: Q = Q\Cg.

24: end while

Output: Clusters C = {Cy, Ca, ..., Ci}.

We take the watermelon data set 4.0 in @8 Table 9.1 as an
example to give a more concrete demonstration. Suppose that
the neighborhood parameters are (¢ = 0.11, MinPts = 5). We
start by finding the e-neighborhood for every sample so that
we can identify the set of core objects: Q = {x3, x5, x¢, X3, X9,
X13,X14, X18, X19, X24, X25, X28, X29}. Then, we randomly select
a core object from 2 as a seed and expand from it to include
all density-reachable samples. These samples form a cluster.
Without loss of generality, suppose the core object x g is selected
as the seed, then the first generated cluster is
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C1 = {x¢, X7, X8, X10, X 12, X18, X19, X20, X23}.

After that, DBSCAN removes all core objects in C; from
Q, that is, Q = Q\C; = {x3, x5, X9, X13, X14, X24, X25, X28,
x29}. Then, the next cluster is generated by randomly selecting
another core object from the updated © as seed. The process
repeats until there is no more element in 2. @ Figure 9.6 shows
the clusters generated in different rounds. In addition to Cj,
the other three generated clusters are

Cy = {x3, x4, X5,X9,X13,X14, X16, X17, X21};
C3 = {x1,x2,X22, X26, X29};
Cy = {x24, X25, X27, X28, X30}.
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(d) Generating cluster Cy.
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Fig.9.6 Results of the DBSCAN algorithm with € = 0.11 and MinPts = 5.

The symbols “e”, “0”, “x” represent the core objects, the non-core objects, and
the noisy samples, respectively. The red dashed lines show the clusters
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9.6 Hierarchical Clustering

Hierarchical clustering aims to create a tree-like clustering
structure by dividing a data set at different layers. The hier-
archy of clusters can be formed by taking either a bottom-up
strategy or a top-down strategy.

AGNES is a representative hierarchical clustering algo-
rithm that takes the bottom-up strategy. The algorithm starts
by considering each sample in the data set as an initial cluster.
Then, in each round, two nearest clusters are merged as a new
cluster, and this process repeats until the number of clusters
meets the pre-specified value. Here, the key is how to measure
the distance between clusters. Since each cluster is a set of data
points, we need to define a distance measure about sets. For
example, given clusters C; and C;, we can define the following
distances:

Minimum distance: dijn (C;, Cj) =  min  dist(x,z), (9.41)

xeC,zeC

Maximum distance: dmax(C;, Cj) = max dist(x,z), (9.42)
xeC,- zeC;

Average distance: davg(Cj, Cj) = Cil |C } Z Z dist(x, z).
M1 xeCizeG

(9.43)

The minimum distance between two clusters is determined by
their two nearest samples; the maximum distance is determined
by the two farthest samples from the clusters; the average
distance is determined by all samples in both clusters. When
the cluster distances are measured by dmin, dmax, O davg, the
corresponding AGNES algorithms are called single-linkage,
complete-linkage, or average-linkage, respectively.

231 9

AGNES stands for
AGglomerative NESting.

Hausdorff distance is often used
for computing the distance
between sets. See Exercise 9.2.
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Typically denoted by dyyin,
dmax, OF davg§

Initialize single-sample clusters.

Initialize the cluster distance
matrix.

<j*.

Algorithm 9.5 AGNES

Input: Dataset D = {x|,x2,...,xu};
Cluster distance metric function d;
Number of clusters k.

Process:
I: forj=1,2,...,mdo
22 G={x}
3: end for
4: fori=1,2,...,mdo
5: forj=i+1,...,mdo
6: M. j) = d(Ci, Cy);
T MG, =MGa,));
8: end for
9: end for

10: Set the current number of clusters: ¢ = m;

11: while ¢ > k do

12: Find two clusters C;+ and Cj+ that have the shortest distance;
13: Merge C,'* and C]* C,'* = C,'* @] Cj*;

14: forj=74+1,7*+2,...,qdo

15: Change the index of Cj to Cj_1;

16: end for

17: Delete the j*th row and j*th column of the distance matrix M
18: forj=1,2,...,q—1do

19: M@*,j) = d(C, Cp);
20: M, i*) = MI*,));
21: end for

22: q=q—1.
23: end while
Output: Clusters C = {Cy, Ca, ..., Ci}.

The pseudocode of AGNES is given in B8 Algorithm 9.5.
In lines 1-9, the algorithm starts by initializing the distance
matrix using the initial single-sample clusters. Then, in lines
1123, the algorithm finds and merges the two clusters with the
shortest distance, and then update the distance matrix accord-
ingly. This process repeats until the number of clusters meets
the pre-specified value.

We take the watermelon data set 4.0 in @ Table 9.1 as
an example to demonstrate AGNES. Suppose the algorithm
repeats until all samples appear in one cluster (i.e., kK = 1).
Then, we obtain a dendrogram, as illustrated in 8 Figure 9.7,
where each row links a set of clusters.

Cutting at a specified row of the dendrogram yields the
corresponding clusters. For example, if we cut along the dashed
line in @ Figure 9.7, we obtain the following 7 clusters:

C1 = {x1,x26, %29} Cy ={x3,x3,x4, %21, X0}
C3 = {x23,X24. X35, X27, X28., ¥30}: Cyq={xs5,x7};
Cs = {x9,x13,X14. X16. ¥17}: Ce = {x6, X3, X10. X5, X18. X19, X20}:

C7 ={x11.x12}.
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Fig.9.7 The dendrogram (using dmax) generated by the AGNES algorithm
on the watermelon data set 4.0. The x-axis shows the /D of samples and the
y-axis shows the distances between clusters
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For example, the same set of
fruits can be clustered by size,
color, Or even origin.

See Sect. 10.6 for distance metric
learning.

Convex clustering structures
refer to clustering structures
with an ellipsoidal shape.

Bregman distances, also known
as Bregman divergences, are a
family of distances that do not
have subadditivity nor
symmetry.

The higher the cutting level, the fewer clusters are produced.
B Figure 9.8 shows the clusters obtained at different cutting
points of @ Figure 9.7.

9.7 Further Reading

Clustering is an area of machine learning in which new algo-
rithms emerge the most in amounts and the fastest in time.
One reason behind is that there is no objective criterion for
judging the quality of a clustering result. In fact, given a data
set, it is always possible to propose a new algorithm based
on some criteria that have not yet been considered by existing
algorithms (Estivill-Castro 2002). Compared to other machine
learning areas, clustering is an area that has not been sys-
tematically developed yet, and hence the well-known text-
book (Mitchell 1997) did not even have a dedicated chapter on
clustering. Nevertheless, we still include this chapter to intro-
duce some representative clustering algorithms since clustering
techniques are very important in real-world applications. More
information about clustering can be found in dedicated books
and survey articles, such as Jain (2009), Jain and Dubes (1988),
Jain et al. (1999), Xu and Wunsch II (2005).

In addition to the validity indices introduced in Sect. 9.2,
other common performance measures include F-statistic, mutual
information, average silhouette width (Rousseeuw 1987), etc.
More information can be found in Halkidi et al. (2001), Jain
and Dubes (1988), Maulik and Bandyopadhyay (2002).

Distance calculation is the core of many learning problems.
Minkowski distance describes a general form of distance cal-
culation. Besides, inner product distance and cosine similarity
are also commonly used; see Deza and Deza (2009) for more
details. MinkovDM is given in Zhou and Yu (2005). Non-
metric distances (Jacobs et al. 2000; Tan et al. 2009) are often
used in applications involving complex semantics, such as pat-
tern recognition and image retrieval. Distance metric learning
can be directly embedded into the learning process of cluster-
ing (Xing et al. 2003).

k-means can be seen as a special case of Mixture-of-Gaussian
clustering when the mixture components have equal covari-
ances and each sample is assigned to only one mixture compo-
nent. k-means has been reinvented many times by researchers
from different fields, such as Steinhaus in 1956, Lloyd in 1957,
and MacQueen in 1967 (Jain and Dubes 1988; Jain 2009).
There are many variants of k-means, such as k-medoids
(Kaufman and Rousseeuw 1987) whose prototype vectors are
always training samples, k-modes (Huang 1998) which sup-
ports categorical features, Fuzzy C-means (FCM) (Bezdek
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1981) which is a soft clustering algorithm that allows sam-
ples belong to different prototypes simultaneously. It is worth
pointing out that k-means and its variants only perform well on
convex clustering structures. Recent studies show that adopting
Bregman distances can significantly improve the performance
on more clustering structures (Banerjee et al. 2005). Introduc-
ing kernel tricks to k-means gives the kernel k-means (Scholkopf
et al. 1998). Dhillon et al. (2004) showed that kernel k-means is
closely related to spectral clustering (von Luxburg 2007), which
can be seen as applying k-means after dimensionality reduction
by Laplacian Eigenmap. The number of clusters k is typically = See Chap. 10 for dimensionality
specified by users. Though there are some heuristic methods ~ reduction.
for determining k automatically (Pelleg and Moore 2000, Tib-
shirani et al. 2001), the common practice is still to select the
best one by trying different & values.

Each round of the standard LVQ only updates the near-
est prototype vector of the current sample. Improved versions,
such as LVQ2 and LVQ3 (Kohonen 2001), allow updating
multiple prototype vectors in parallel resulting in much faster
convergence speed. McLachlan and Peel (2000) introduced
Mixture-of-Gaussian clustering in detail, and more informa-
tion about the underlying EM optimization can be found
in Bilmes (1998), Jain and Dubes (1988).

In addition to DBSCAN (Ester et al. 1996), there are
other density-based clustering methods based on different den-
sity representations of sample distributions, such as OPTICS
(Ankerst et al. 1999) and DENCLUE (Hinneburg and Keim
1998). AGNES (Kaufman and Rousseeuw 1990) takes a bottom-
up strategy to generate hierarchical clustering structures. By
contrast, DIANA (Kaufman and Rousseeuw 1990) takes a top-
down strategy. Both AGNES and DIANA do not allow back-
trace the clusters that have been merged or split, which has
been improved in other hierarchical clustering methods such
as BIRCH (Zhang et al. 1996) and ROCK (Guha et al. 1999).

Clustering ensembles combine multiple clustering learners
to reduce the negative influence caused by random factorsin the
clustering process and the incompatibility between the assump-
tions and the actual clustering structures. More information
can be found in Chap. 7 of (Zhou 2012).

Clustering methods and distance calculations are often used
for anomaly detection (Hodge and Austin 2004; Chandola et al.
2009). For example, we can consider anomaly samples as those
far away from all cluster centers or in regions with extremely
low densities. Recent studies have proposed isolation-based
methods for efficient anomaly detection (Liu et al. 2012).
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The watermelon data set 4.0 is in
B Table 9.1 in Sect.9.4.1.

Exercises

9.1 Prove (1) when p > 1, Minkowski distance satisfies the
four axioms of distance measures; (2) when 0 < p < 1,
Minkowski distance does not satisfy subadditivity but satis-
fies non-negativity, identity of indiscernibles, and symmetry;
(3) when p approaches positive infinity, Minkowski distance
equals to the maximum absolute distance of respective compo-
nents, that is,

1

n P
i (b suf) = s |

u=1

9.2 Forsets X and Z from the same sample space, their distance
can be calculated using the Hausdorff distance as

disty (X, Z) = max (dist;, (X, Z), dist;(Z, X)), (9.44)
where
dist;, (X, Z) = maxmin ||x — z||5. (9.45)
xeX zeZ

Prove that the Hausdorff distance satisfies the four axioms of
distance measures.

9.3 Discuss whether we can use the k-means algorithm to find
the optimal solution that minimizes (9.24).

9.4 Implement and run the k-means algorithm on the water-
melon data set 4.0 with three different k values and three dif-
ferent initial centroids. Discuss what kind of initial centroids
can lead to good results.

9.5 Based on the definition of DBSCAN, X is the set of samples
that are density-reachable by a core object x. Prove that X
satisfies both connectivity (9.39) and maximality (9.40).

9.6 Analyze the difference between using minimum distance
and maximum distance in the AGNES algorithm.

9.7 Wesay a clustering is convex clustering if every cluster has a
convex hull (i.e., a convex polyhedron that contains all samples
in the cluster) and the convex hulls do not intersect. Analyze
which clustering algorithms introduced in this chapter can only
produce convex clusters and which clustering algorithms can
produce non-convex clusters.



Exercises

9.8 Design a new clustering performance measure, and com-
pare it to other measures introduced in Sect. 9.2.

9.9 * Design a non-metric distance that can be used for mixture
types of features.

9.10 * Design an improved k-means algorithm that can auto-
matically determine the number of clusters; implement and run
it on the watermelon data set 4.0.

237



238 Chapter 9 - Clustering

Aleksota is now Kaunas,
Lithuania.

Konigsberg, now Kaliningrad,
Russia, is the origin of the
famous “Seven Bridges”
problem.

Four-dimensional geometry is
also called Minkowski space.

Break Time

Short Story: Manhattan Distance and Hermann Minkowski

Manhattan distance, also known as Taxi-
cab geometry, is a word invented by the
distinguished German mathematician Her-
mann Minkowski (1864—1909). The Man-
hattan distance between two points is the
sum of the absolute differences of their
Cartesian coordinates, and this is exactly
the shortest travel distance between two
locations in a city with grid street plan. For
example, in Manhattan, the travel distance from the corner of
Fifth Avenue and the 33rd street to the corner of Third Avenue
and the 23rd street is (5 — 3) + (33 — 23) = 12 blocks.

Minkowski was born in a Jewish family in Aleksota, Rus-
sian. At the age of §, he moved with his family to Konigsberg
to escape the persecution of Jews in Russia. In Konigsberg, he
lived quite close to David Hilbert, who became a great mathe-
matician later. Minkowski was a child prodigy who read Shake-
speare, Schiller, and Goethe, and was able to recite almost the
entire “Faust” by memory. At the age of §, he attended gymna-
sium and then finished the 8-year course in five and a half years.
At the age of 17, he established the theory of quadratic forms,
for which he was awarded the “Grand Prix des Sciences Math-
ématiques” by the French Academy of Sciences. On Septem-
ber 21, 1908, Minkowski delivered the famous talk “Space and
Time”, in which he proposed four-dimensional geometry, clear-
ing the road for the general theory of relativity. Unfortunately,
three months later he died suddenly of appendicitis.

In 1896, Minkowski was a teacher at ETH Zurich, and
Albert Einstein was one of his students. Max Born, the winner
of Nobel Prize, said that he found the “armory” of relativity
from Minkowski’s works on mathematics. After Minkowski
passed away, his friend Hilbert collected his unpublished work
and published the book Gesammelte Abhandlungen von Her-
mann Minkowski in 1911. Minkowski’s brother, Oskar
Minkowski, was the “father of insulin”; his nephew, Rudolph
Minkowski, was a well-known German-American astronomer.
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The principle of kNN agrees
with the proverb that “One takes
the behavior of one’s company.”

See Sect. 8.4.

See Sect. 7.1 for the Bayes
optimal classifier.

10.1 k-Nearest Neighbor Learning

k-Nearest Neighbor (kNN) is a commonly used supervised
learning method with a simple mechanism: given a testing sam-
ple, find the k nearest training samples based on some distance
metric, and then use these & “neighbors” to make predictions.
Typically, for classification problems, voting can be used to pre-
dict the testing sample as the most frequent class label in the
k neighbors; for regression problems, averaging can be used to
predict the testing sample as the average of the k real-valued
outputs. Besides, the samples can be weighted by the distances
in the way that a closer sample is assigned a higher weight.

Compared to other methods that were introduced earlier,
k-Nearest Neighbor has something unique: it does not have
an explicit training process! In fact, it is a representative of
lazy learning, which simply stores the samples in the training
phase and does nothing until the testing samples are received.
In contrast, eager learning refers to the methods that learn from
samples in the training phase.

@ Figure 10.1 provides an illustration of the kNN classi-
fier. We can see that the parameter k plays an important role
since different k& values may lead to very different classifica-
tion results. In addition, different distance calculations may
also lead to significantly different “neighborhood”, and conse-
quently, different classification results.

We start our discussion with One-Nearest Neighbor Classi-
fier (INN, i.e., k = 1) for binary classification problems. Here,
we assume the distance calculations are “appropriate”such that
we can identify k appropriate neighbors.

Given a testing sample x, suppose its nearest neighbor is z,
then the misclassification rate of INN is the probability that x
and z have different class labels, that is,

Plerr) =1 — ZP(C | x)P(c | 2). (10.1)
cey

Let us assume that the samples are i.i.d., and we can always
find a sample within an arbitrarily small positive range § for any
x. In other words, for any testing sample, the training sample z
in (10.1) can always be found within an arbitrarily small range.
Let ¢* = argmax ..y P(c | x) denote the result of the Bayes
optimal classifier. Then, we have
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Fig. 10.1 The kANN classifier. The dashed lines are equidistant lines; the

testing sample is classified as positive when k = 1 or k = 5 and is classified as
negative when k = 3

Perr) =1 — ZP(C | x)P(c|z)
cey
:1-2ﬁﬂcu)
ce)y
<1- P | x)
=14+ P(* | x)(1—P(*|x))

<2 x (1 = P(c* | x)). (10.2)

From (10.2), we can make a somewhat surprising conclusion:

though the 1NN classifier is simple, its generalization error is
at most twice the error of the Bayes optimal classifier!

10.2 Low-Dimensional Embedding

Our discussions in the previous section rely on an important
assumption: we can always find a sample within an arbitrarily
small positive range d for any x, which means the sampling must
be sufficiently dense, that is, dense sampling. However, this
assumption is impractical. For example, when § = 0.001 and
there is only one feature, for (10.2) to hold, we need 1000 sam-
ples uniformly distributed within the normalized value range
of the given feature. However, this is only the case when the
dimension is 1. If the dimension increases, the situation will
change significantly. For instance, given 20 features, we would
need (10%)2° = 10% samples to satisfy the dense sampling
requirement. Since the number of features can easily go beyond
thousands in practice, it is generally impractical to fulfill the
dense sampling requirement. Besides, distance calculations, as
required by many learning methods, become difficult in the

10
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Here, we only provide a brief
discussion for beginners. See
Cover and Hart (1967) for a
more detailed analysis.

For reference: the number of
elementary particles in the
observable universe is about
1080 (each dust particle contains
billions of elementary particles).
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Another important approach is
feature selection. See Chap. 11.
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Fig.10.2  An illustration of low-dimensional embedding

high-dimensional space. For example, even the inner product
is no longer easy in high-dimensional cases.

In fact, high dimensionality leads to many issues, such as
data sparsity and the difficulty of distance calculation, that are
faced by all machine learning methods. This phenomenon is
known as the curse of dimensionality (Bellman 1957).

A general approach to alleviating the curse of dimensional-
ity is dimensionality reduction, which aims to convert the orig-
inal high-dimensional feature space into a low-dimensional
subspace via mathematical transformations. The sampling is
much denser in the subspace, and the distance calculations also
become easier. We may wonder why it is possible to perform
dimensionality reduction while keeping the necessary informa-
tion for further learning? It is because, in many cases, although
the observed or collected samples are high dimensional, the
useful information for the learning tasks could be just a low-
dimensional distribution; that is, there is a low-dimensional
embedding in the high-dimensional space. 8 Figure 10.2 pro-
vides an intuitive example, in which learning becomes easier in
the subspace of the low-dimensional embedding.

Multiple Dimensional Scaling (MDS) (Cox and Cox 2001)
is a classic dimensionality reduction technique that projects a
data set from the original space into a lower dimensional space
while preserving the distances between samples. 8 Figure 10.2
provides an illustration of MDS.

We briefly discuss how MDS works. Let D € R™*" be a
distance matrix of m samples in the original space, where the
distance between the samples x; and x; is the element dist;; on
the ith row and jth column. The task is to obtain the sample
representation Z € RY*" in the d’-dimensional space, where
d’ < d, and the distance between any two samples is the same
in both spaces, i.e., ||z; — z;|| = dist;;.



10.2 Low-Dimensional Embedding

Let B = ZTZ e R"*™ be the inner product matrix of the
samples in the dimension-reduced space, where b; = zlz;.
Then, we have

) 2
dzstl-2j = [|lz;[I> + ”Zj H - ZZiTZj
= bii + bjj — 2bj;. (10.3)

For ease of discussion, suppose the dimension-reduced sam-
ples are zero-centered, that is, Y i~ z; = 0. We notice that
both the row-wise and column-wise sums of B are 0, that is,
> iz1 by = 37711 bjj = 0. Then, we can derive

m
> " dist; = tr(B) + mby;, (10.4)
i=1
m
> disty; = tr(B) + mbj;, (10.5)
j=1
m m
>0 disty = 2mtr(B), (10.6)
i=1 j=1
where tr(-) is the trace of a matrix, and tr(B) = Y7, ||z;]|>.
Let
1 m
dist? = — > dist, (10.7)
j=1
1 m
disty = — ) _ dist, (10.8)
i=1

m m

% SO disi2, (10.9)

i=1 j=1

dist®

then, from (10.3)—<(10.9), we have
1
byj = — (distj; — dist}, — dist;; + dist), (10.10)

which makes it possible to calculate the inner product matrix B
from the distance matrix D that is not changed by dimension-
ality reduction.

By eigenvalue decomposition, we have B = VAVT, where
A = diag(A(, A2, ..., Ag) is the diagonal matrix consisting of
the eigenvalues A\ > \» > ... > Ay, and V is the matrix of
eigenvectors. Suppose that there are d* non-zero eigenvalues
that form the diagonal matrix A, = diag(A1, A2, ..., Agy), and

245 1 0

0 € R is an all-zero vector of
length d’.
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Typically, d’ < d.

let V, denote the corresponding eigenvector matrix. Then, Z
can be expressed as

Z =AY VT e R, (10.11)

In practice, however, we only require the dimension-reduced
distances to be close to the original distances rather than the
same. In such cases, we can take the d’ <« d largest eigenval-
ues to make a diagonal matrix A = diag(\, A2, ..., Ag), and
denote V as the corresponding eigenvector matrix. Then, Z can
be expressed as

Z =RV e r?xm, (10.12)

The pseudocode of MDS is given in @ Algorithm 10.1.

Algorithm 10.1 Multiple Dimensional Scaling

Input: Distance matrix D € R”*", where dist;; is the distance from x; to
X j;
Dimension d’ of the low-dimensional space.
Process:
1: Compute dist%, dist_zj, and dist? according to (10.7)=(10.9);
2: Compute inner product matrix B according to (10.10);
3: Perform eigenvalue decomposition on matrix B;
4: Take the d’ largest eigenvalues to make a diagonal matrix A, and V is
the corresponding eigenvector matrix.

oo 1/2 ’ . .
Output: The matrix VA / € R"™*4’ where each row gives the coordinates
of the sample in the low-dimensional space.

In general, the simplest method to obtain a lower dimen-
sional subspace is applying linear transformations to the origi-
nal high-dimensional space. Given thesamples X = (x1, x», ...,
Xm) € R9Min a d-dimensional space, the transformed samples
in the d’-dimensional space are

Z=W'X, (10.13)

where d’ < d, W € R9*d" is the transformation matrix, and
Z € RY*m is the sample representations in the new space.
The transformation matrix W can be seen as d’ basis vec-
tors with a dimension of d, and z; = WTx; is a d’-dimensional
feature vector obtained by multiplying the original feature
vector x; by each of the d’ basis vectors. In other words, z;
is the coordinate vector of x; in the new coordinate system
{wi, w2, ..., wg}. When w; and w;(i # j) are orthogonal, the
new coordinate system is an orthogonal coordinate system, and
W is an orthogonal transformation matrix. We notice that the
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features in the new space are linear combinations of the features
in the original space.

The methods that perform dimensionality reduction by lin-
ear transformations are called linear dimensionality reduc-
tion methods. Such methods follow the basic form of (10.13),
though different methods may require the lower dimensional
subspace to satisfy different conditions, that is, adding some
constraints to W. The next section will introduce a preva-
lent dimensionality reduction method that requires the lower
dimensional subspace to have the maximum variance.

Typically, we evaluate the effectiveness of a dimensionality
reduction by comparing the performance of the learner before
and after the dimensionality reduction, where the performance
improvement indicates the effectiveness. When the dimension-
ality is reduced to 2 or 3, we can apply visualization techniques
to inspect dimensionality reduction effectiveness.

10.3 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most com-
monly used dimensionality reduction methods. Before intro-
ducing the technical details, let us consider the following ques-
tion: for the samples in an orthogonal feature space, how can
we use a hyperplane (i.e., a line in two-dimensional space gen-
eralized to high-dimensional space) to represent the samples?
Intuitively, if such a hyperplane exists, then it perhaps needs to
have the following properties:
e Minimum reconstruction error: the samples should have
short distances to this hyperplane;
e Maximum variance: the projections of samples onto the
hyperplane should stay away from each other.

Interestingly, the above two properties lead to two equiva-
lent derivations of PCA. First, let us derive PCA by minimizing
the reconstruction error.

Suppose the samples are zero-centered (i.e., ), x; = 0).
Let {w{, ws, ..., w;} denote the new coordinate system after
projection, where w; is an orthonormal basis vector, that is,
lw;ill, = 1 and W;»FWJ' = 0(i # j). If some of the coordinates are
removed from the new coordinate system (i.e., the dimension is
reduced to d’ < d), then the projection of the sample x; in the
lower dimensional coordinate system is z; = (z;1; zj2; - - - ; Zid’)>
where z; = w]x; is the coordinate of x; in the jth dimension
of the lower dimensional coordinate system. If we reconstruct
x; from z;, then we have ; = Z}i1 ZjjWj.

For the entire training set, the total distance between the
original samples x; and the projection-reconstructed samples

247
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const is a constant.

Strictly speaking, the covariance

o1 T
matrix is = 372, x;x; , but
the constant term makes no
difference here.

10

X; 18
m d 2 m m
Z ZZ//W/' —Xi| = Zzl-Tzi -2 Zz,-TWTx,- + const
i=1 | j=1 , =l i=1
m
o —tr [ WT Z:x,-x,-T W],
i=1
(10.14)
where W = (w, wa, ..., wy). According to the property of

minimum reconstruction error, (10.14) should be minimized.
Since w; is the orthonormal basis vector and Y, x;x[ is the
covariance matrix, we have

min — tr(WIXXTW)
w (10.15)
s.t. Wiw =1,

which is the optimization objective of PCA.

Another interpretation of PCA is from the maximum vari-
ance perspective. If we wish the projections of samples to stay
away from each other, then the variance of the projected sam-
ples should be maximized, as illustrated in @ Figure 10.3.

The covariance matrix of the projected samples is
i WwTx ixl.TW, where WTx; is the projection of x; on the hyper-
plane in the new space. Then, we can write the optimization
objective as

mv%x tr(WTXXTW)

(10.16)
s.t. WIw =1L

362“

variance = 0.206

variance = 0.045

0 1 2 Ty

Fig.10.3 To make the projections of the samples away from each other as far
as possible (the red lines), we need to maximize the variance of the projected
samples
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We notice that (10.15) and (10.16) are equivalent.
Applying Language multipliers to (10.15) or (10.16) gives
XXTw; = \iw;. (10.17)
To obtain the solution of PCA, we perform eigenvalue decom-
position on the covariance matrix XX and obtain the sorted
eigenvalues: A\ > \» > ... > )\;. Then, we construct the
solution W* = (w, wp,..., Wy ) using the eigenvectors of

the first d’ eigenvalues. The pseudocode of PCA is given in
B Algorithm 10.2.

Algorithm 10.2 Principal Component Analysis

Input: Dataset D = {x1,x2,...,x,};
Dimension d’ of the lower dimensional space.
Process:
I: Center all samples: x; < x; — = 7 x;;
2: Compute the covariance matrix XXT of samples;
3: Perform eigenvalue decomposition on the covariance matrix XXT;
4: Take the eigenvectors wi, wa, ..., Wy corresponding to the d’ largest
eigenvalues.
Output: The projection matrix W* = (wy, wa, ..

L Wr).

Typically, the dimension d’ of the lower dimensional space
is specified by the user or selected by doing cross-validation
with different ¢’ values, that is, comparing the performance
of a kNN classifier (or other learners with low computational
cost) in the dimension-reduced spaces produced by different
d’ values. For PCA, a threshold ¢ (e.g., = 95%) can also be
set from the reconstruction perspective to find the minimum d’
subject to

d/
Zi:l Ai S

=2t

PR

With just W* and the mean vector of samples, PCA can
project new samples to the lower dimensional space by apply-
ing simple vector subtraction and matrix-vector multiplication
operations. The lower dimensional space and the original high-
dimensional space are different since the eigenvectors corre-
sponding to the d —d’ smallest eigenvalues are discarded. Infor-
mation loss is an unavoidable consequence of dimensionality
reduction, but it is often necessary: on the one hand, reduc-
ing the dimensionality can lead to relatively denser sampling
although the number of samples remains the same, which is an
important motivation of performing dimensionality reduction;
on the other hand, the eigenvectors of the smallest eigenval-

(10.18)

10
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In practice, we often do singular
value decomposition on X
instead of eigenvalue
decomposition on XXT, and
both decompositions lead to the
same W.

PCA can also be seen as
incrementally selecting the
direction that maximizes the
covariance, that is, find the
eigenvalues of the covariance
matrix ) ; x,~x[T and take the
eigenvector w| corresponding to
the largest eigenvalue; then find
the eigenvalues of

Zix,-x;r — /\1w1w—1r and then
take the eigenvector wy
corresponding to the largest
eigenvalue; ...Since the
components of W are
orthogonal and

d

m
Zx,-xl-T = Z )\jijjT,
Jj=1

i=1

it can be proved that the
incremental approach is
equivalent to the approach of
selecting the first d’ eigenvalues
at one time.

The mean vector is used to
zero-center the new samples via
vector subtraction.
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See Sect. 6.6 for kernel methods.

ues often relate to the noises, that is, discarding them helps to
reduce the noise.

10.4 Kernelized PCA

Linear dimensionality reduction methods transform a high-
dimensional space into a low-dimensional space via a lin-
ear mapping. In practice, however, non-linear mappings are
often needed to find the proper low-dimensional embedding.
@ Figure 10.4 shows an example of embedding data points
to an S-shaped surface in a three-dimensional space, where
the data points are sampled from a squared region of a two-
dimensional space. If we apply linear dimensionality reduc-
tion methods to the three-dimensional space, we will lose the
original low-dimensional structure. We call the original low-
dimensional space, from which the data points are sampled, as
the intrinsic low-dimensional space.

A general approach to non-linear dimensionality reduction
is to kernelize linear dimensionality reduction methods via ker-
nel tricks. Next, we give a demonstration with the representa-
tive Kernelized PCA (KPCA) (Scholkopf et al. 1998).

Suppose that we project data from the high-dimensional
feature space to a hyperplane spanned by W = (wy, wa, ..., wy).
Then, according to (10.17), we have the following for w;:

> izl ) wi=Nw;, (10.19)

i e TS

(a) Observation in the 3- (b) Intrinsic 2-di (c) Result of PCA dimension-
dimensional space. structure. ality reduction.

Fig. 10.4 The 3000 samples in the 3-dimensional space are sampled from
a squared region of the intrinsic 2-dimensional space and then embedded to
an S-shaped surface in the 3-dimensional space. In such cases, performing
linear dimensionality reduction incurs information loss of the low-dimensional
structure. The colors of sample points show the low-dimensional structure
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where z; is the image of x; in the high-dimensional feature
space. Then, we have

m

1 m ZTW
wi= (2w |wi=) a
NS Y
m .
=3z, (10.20)
i=1

T
1
z; 1s obtained by mapping the original sample x; via ¢, that is,
zi = ¢(x;),i =1,2,..., m. If the explicit form of ¢ is known,
then we can use it to map the samples to the high-dimensional
feature space, and then apply PCA. Equation (10.19) can be
rewritten as

where ai = /\ljz w; is the jth component of ;. Suppose that

(Z ¢(xi)<b(xi)T) Wi = \jWj, (10.21)

i=1

and (10.20) can be rewritten as

W= bxi)al. (10.22)

i=1

Since the exact form of ¢ is generally unknown, we introduce
the kernel function

k(xi, x) = d(x) T p(x)). (10.23)
Substituting (10.22) and (10.23) into (10.21) gives
Ko/ =\, (10.24)

where K is the kernel matrix corresponding to «, (K); =
rk(xi, xj), and o = (a; @h;...; a)y). We notice that (10.24)
is an eigenvalue decomposition problem, and hence we simply
take the eigenvectors corresponding to the d’ largest eigenval-
ues in K.

For a new sample x, its projected coordinate in the jth (j =
1,2,...,d") dimension is

7y =wo) =y o) o)
i=l
= 3" alnter ), (10.25)

i=1
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where «; has been normalized. From (10.25), we see that KPCA
is computationally expensive since it sums over all samples to
compute the projected coordinate.

10.5 Manifold Learning

Manifold learning is a dimensionality reduction approach that
utilizes some concepts of topological manifolds. A manifold
is a topological space that is locally homeomorphic to the
Euclidean space. It locally meets the properties of European
space, which means we can use Euclidean distance, and this
fact motivates a new way of dimensionality reduction. If a low-
dimensional manifold is embedded in the high-dimensional
space, then the samples, which seem to be very complex in
the high-dimensional space, locally have the same properties
of samples in the Euclidean space. Therefore, we can establish
dimensionality reduction mappings locally, and then extend to
the entire space. When the dimensionality is reduced to two
or three, we can naturally visualize the data, and hence mani-
fold learning is also useful for visualization purposes. The rest
of this section introduces two representative manifold learning
methods.

10.5.1 Isometric Mapping

Isometric Mapping (Isomap) (Tenenbaum et al. 2000) is moti-
vated by the fact that the straight-line Euclidean distances
measured in a high-dimensional space can be misleading since
the straight lines in the high-dimensional space may not exist
in the low-dimensional manifold embedding. As illustrated
in @ Figure 10.5a, the distance between two points in the
low-dimensional manifold embedding is the geodesic distance.
Imagine an insect crawling from one point to another, and it has
to crawl on the surface. Then, the red curve in @ Figure 10.5a is
the shortest path, that is, the geodesic on the S-shaped surface.
The geodesic distance is the intrinsic distance between the two
points. In such cases, measuring the straight-line distances in
the high-dimensional space is inappropriate.

Then, how can we compute the geodesic distances? Recall
that a manifold is locally homeomorphic to the Euclidean
space, which means we can find neighboring points of each
point based on the Euclidean distance, and hence a neighbor-
hood graph can be constructed. In the neighborhood graph,
only neighboring points are connected, and the geodesic dis-
tance is measured by finding the shortest path between two
points in the neighborhood graph. From 8 Figure 10.5b, we
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distance. distance.

Fig. 10.5 We cannot use the straight-line distance in the high-dimensional
space to compute the geodesic distance (red) in the low-dimensional manifold
embedding, but an approximation is possible with the neighborhood distance

can see that the shortest path in the neighborhood graph pro-
vides a good approximation to the geodesic distance in the
low-dimensional manifold embedding.

To find the shortest path between two points in a neighbor-
hood graph, we can use the well-known Dijkstra algorithm or
the Floyd algorithm. With the distance between any two points,
we can then use the MDS method introduced in Sect. 10.2 to
obtain the coordinates of samples in the low-dimensional space.
The pseudocode of Isomap is given in @ Algorithm 10.3.

Algorithm 10.3 Isometric Mapping

Input: Dataset D = {x|,x2,...,Xx};

Nearest neighbor parameter k;

Dimension d’ of the low-dimensional space.
Process:

1: fori=1,2,...,mdo

2: Find the k nearest neighbors of x;;

3:  Set the distances between x; and the k nearest neighbors to the
Euclidean distance, and set the distances from x; to other sample
points as positive infinity;

4: end for

5: Compute the distance dist(x;, x;) between every pair sample points

using a shortest path algorithm;

6: Use dist(x;, x;) as input for the MDS algorithm;

7. return The output of the MDS algorithm.

Output: Thelow-dimensional projections Z = {z1, z2, . .., Z;»} of thedata
set D.

Isomap only gives the low-dimensional coordinates of train-
ing samples, but how can we project new samples to the low-
dimensional space? A general approach is to train a regression
model using the high-dimensional coordinates of training sam-
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These two algorithms were
proposed by the 1972 Turing
Award winner E. W. Dijkstra
and the 1978 Turing Award
winner R. Floyd, respectively.

See Sect. 10.2 for MDS.
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ples as the input and the corresponding low-dimensional coor-
dinates as the output. Then, use the trained regression model to
predict the low-dimensional coordinates of new samples. Such
amethod looks ad hoc, but currently there seems to be no better
solution.

There are two general approaches to constructing the neigh-
borhood graph. The first approach is to specify the number of
neighbors. For example, using the k nearest neighbors mea-
sured by Euclidean distance, which gives the k-nearest neigh-
bor graph. The other approach is to specify a distance threshold
€ to consider all points with a distance smaller than ¢ as neigh-
bors, and the generated graph is called a e-nearest neighbor
graph. However, both approaches have the same limitation: if
the specified neighborhood range, either k or ¢, is too large, then
“short circuit” may happen, in which some distant points are
incorrectly considered close to each other; on the other hand,
if the specified neighborhood range is too small, then “open
circuit” may happen, in which some regions become discon-
nected from each other. Either case misleads the consequent
calculation of the shortest path.

10.5.2 Locally Linear Embedding

Unlike Isomap, which maintains the distances between sam-
ples, Locally Linear Embedding (LLE) (Roweis and Saul 2000)
aims to keep the linear relationships between neighboring sam-
ples. As illustrated in 8 Figure 10.6, suppose the coordinates
of a sample point x; can be reconstructed via a linear combina-
tion of the coordinates of its neighboring samples x;, x, and
x;, that is,

X = WiXj + WX + wix;. (10.26)

LLE aims to keep the relationship of (10.26) in the low-
dimensional space.

LLE starts by identifying the neighborhood indices set Q;
for sample x;, and then find the linear reconstruction weights
w; of samples in Q;:

2
m
WI’errzl’l.rll.’wm Z X — Z WiiX; (10.27)
i=1 JjeQi 5
s.t. Z wij = 1,
J€Qi

where x; and x; are known. Letting Cy = (x; — xj)T(xi —Xi),
then wy; has a closed form solution
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Fig.10.6 The reconstruction relationship of samples in the high-dimensional
space are preserved in the low-dimensional space
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Since LLE preserves w; in the low-dimensional space, the
low-dimensional coordinates z; of x; can be obtained by

wij (10.28)

2
m

min S lzi= ) wiz (10.29)

i=1 JEQi 2

We notice that (10.27) and (10.29) have the same form
of optimization objectives. The only difference is that (10.27)
optimizes w;, whereas (10.29) optimizes z;, that is, the low-
dimensional coordinates of x;.

Letting Z = (21,22, ...,2m) € ]Rd/x'”, (W);j = wy;, and

M=1I-W)Tad-w), (10.30)
then (10.29) can be rewritten as

min tr(ZMZT)
z (10.31)
st. ZZT =1.

We can solve (10.31) by eigenvalue decomposition: ZT is the
matrix consisting of the eigenvectors corresponding to the d’
smallest eigenvalues of M.

The pseudocode of LLE is given in 8 Algorithm 10.4. From
line 4, we see that x; and z; are not impacted by any changes to
a non-neighbor sample x;. This idea of restricting the impact
of changes in a local region is adopted in many other places as
well.
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The Euclidean distance is
squared for the convenience of
subsequent calculations.

Algorithm 10.4 Locally Linear Embedding

Input: Dataset D = {x1,x2,...,x,};
Nearest neighbor parameter k;
Dimension d’ of the low-dimensional space.
Process:
1: fori=1,2,...,mdo
2 Find the k nearest neighbors of x;;
3 Compute wy; using (10.27) forj € Q;;
4 Set wij = 0 forj ¢ O;;
5: end for
6
7
8

: Obtain M using (10.30);
. Perform eigenvalue decomposition on M;
: return the eigenvectors corresponding to the d’ smallest eigenvalues
of M.
Output: Thelow-dimensional projections Z = {z1, z2, . . ., 2} of the data
set D.

10.6 Metric Learning

In machine learning, the main purpose of dimensionality reduc-
tion is to find a lower dimensional space, in which the learning
performance is better than that in the original high-dimensional
space. Since each space corresponds to a distance metric defined
on the sample features, the searching of an appropriate space is
indeed searching for an appropriate distance metric. Then, why
not “learn” the appropriate distance metric directly? This ques-
tion motivated metric learning, also known as distance metric
learning .

To learn a distance metric, we must express it in a learnable
form. We have seen many distance metrics in Sect. 9.3, but all
of them have a fixed form without adjustable parameters that
can be improved by learning from data. Therefore, we need an
extension first.

For two d-dimensional samples x; and x;, their squared
Euclidean distance can be written as

distgd(x,-, xXj) = ||x,- —X; H; = distizj,l—l—disl;-’z—i-. . .—l—distl.zj’d,

(10.32)
where dist;; i is the distance between x; and x; on the kth
dimension. Suppose different features have different impor-
tance, then we can introduce the feature weights w as

distyeq (e %)) = [x; = x5
=wi - disty | +wy - dist o+ ...+ wg - dist]
= (¥ —x))TW(x; —x)), (10.33)
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where w; > 0, W = diag(w) is a diagonal matrix, and (W);; =
wi.

The adjustable weights W are the parameters to be learned
from data. We notice that the non-diagonal elements of W are
zero, which means the axes are orthogonal (i.e., the features are
independent). In practice, however, this is often not true. For
example, weight and volume of watermelons are positively cor-
related, thatis, the axes are not orthogonal. Hence, by replacing
W in (10.33) with a symmetric positive semidefinite matrix M,
we have the Mahalanobis distance

. 2
distyn (7, X7) = (x; — x) M (x; — x)) = |x; — x; 31
(10.34)

where M is also called the metric matrix, and metric learn-
ing is about learning M. In order to ensure the distances are
non-negative and symmetric, M must be a positive semidefinite
matrix, that is, there must be a matrix P such that M = PPT.

To learn M, we need to set an objective. Suppose we wish
to improve the performance of the nearest neighbor classifier,
then M can be directly embedded into the classifier’s perfor-
mance measure, and the optimal M is obtained by optimizing
the performance measure. We take Neighborhood Component
Analysis (NCA) (Goldberger et al. 2005) as an example to dis-
cuss the process.

Nearest neighbor classifiers usually employ the voting
method for classification, that is, each neighboring sample has
1 vote, and each non-neighboring sample has 0 vote. Instead
of using binary voting, we can also use the probabilistic voting
method, in which the probability of a sample x; influences the
classification of a sample x; is given by

2
exp (=[x —x;l)
Y exp (=l —xily)

where p;; is maximized when i = j. The impact of x; on x;
decreases as their distance increases. If the objective is to max-
imize the LOO accuracy, then the accuracy of x; is the proba-
bility that other samples can correctly classify it:

Pij (10.35)

pi= Y pi (10.36)

JEQ;

where €; is the index set of samples with the same class label
as x;. Then, the LOO accuracy for the entire data set is
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Mabhalanobis distance is named
after Indian mathematician

P. C. Mahalanobis. In the
standard Mahalanobis distance,
M is the inverse of the
covariance matrix (i.e.,

M = =~1). However, the value
of M is made more flexible in
metric learning.

See Sect. 2.2.2 for LOO.
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It can be solved using Stochastic
Gradient Descent (Goldberger
et al. 2005).

10

Metric learning methods
generally do not require M to be
low-rank.

rank(M) is the rank of M.

m

dopi=> > pj (10.37)
i=1

i=1je;

Substituting (10.35)into (10.37) and consideringM = PPT,
we have the optimization objective of NCA:

e e (<[P =Py
m[}n I—ZZ ( )

e Toexp (= [PTx = PTxy[3)

(10.38)

Solving (10.38) gives the distance metric matrix M that maxi-
mizes the LOO accuracy of the nearest neighbor classifier.

In addition to the supervised learning objectives, such as
minimizing the error rate, we can also introduce domain knowl-
edge into the optimization objective of metric learning. For
example, if we already know that some samples are similar or
dissimilar, we can define a must-link constraints set M and a
cannot-link constraints set ¢, where (x;, x;) € M indicates x;
and x; are similar, and (x;, x;) € C indicates x; and x; are
dissimilar. Since we wish similar samples to have smaller dis-
tances and dissimilar samples to have larger distances, we can
obtain the metric matrix M by solving the following convex
optimization problem (Xing et al. 2003):

min Z ||xl~ —xj”2
M M

(xj,x;)eM
st Y llxi—xllm > 1L (10.39)

(xi,xx)eC

M >0,

where the constraint M > 0 ensures that M is positive semidef-
inite. Equation (10.39) minimizes the total distance between
similar samples while keeping the individual distances between
dissimilar samples no less than 1.

Different metric learning methods obtain “good” positive
semidefinite symmetric distance metric matrices M based on
different goals. When M is a low-rank matrix, by eigenvalue
decomposition of M, we can always obtain a set of rank(M)
orthogonal basis vectors, where rank(M) is less than the orig-
inal number of features d. Hence, the learning outcome of
metric learning can derive a dimension-reduced matrix P €
RExrankM) that can be used for dimensionality reduction.
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10.7 Further Reading

Representatives of lazy learning include k-nearest neighbor
learners and lazy decision trees (Friedman et al. 1996). Naive
Bayes classifiers can be used for both lazy learning and eager
learning. See Aha (1997) for more information about lazy
learning.

PCA is a representative unsupervised linear dimensionality
reduction method. A representative supervised linear dimen-
sionality reduction method is LDA (Fisher 1936) (see Sect. 3.4),
and its kernelized version is KLDA (Baudat and Anouar 2000)
(see Sect. 6.6). Maximizing the correlation between two vari-
able sets gives Canonical Correlation Analysis (CCA) (Hotelling
1936), and its kernelized version is KCCA (Harden et al.
2004), which has numerous applications in multi-view learning.
Some pattern recognition studies found that a direct dimen-
sionality reduction on the object matrix (e.g., an image) often
leads to better performance than dimensionality reduction on
a reshaped vector (e.g., converting an image to a vector). Fol-
lowing this observation, many methods were proposed includ-
ing 2DPCA (Yang et al. 2004), 2DLDA (Ye et al. 2005),
(2D)?PCA (Zhang and Zhou 2005), and also tensor-based
methods (Kolda and Bader 2009).

Other than Isomap and LLE, popular manifold learn-
ing methods include Laplacian Eigenmaps (LE) (Belkin and
Niyogi 2003), Local Tangent Space Alignment (LTSA) (Zhang
and Zha 2004), etc. Locality Preserving Projections (LPP) (He
and Niyogi 2004) is a linear dimensionality reduction method
based on LE. For supervised learning, the low-dimensional
space adjusted by the class information is often superior to
the intrinsic low-dimensional space (Geng and Zhou 2005). It
is worth noting that neighborhood preservation in manifold
learning requires a dense sample, and this is indeed a major
barrier in high-dimensional situations. Hence, in practice, the
dimensionality reduction performance of manifold learning
is often not as good as expected. Nevertheless, the idea of
neighborhood preservation has significantly influenced other
branches of machine learning research, such as the well-known
manifold assumption and the manifold regularization in semi-
supervised learning (Belkin et al. 2006). Yan et al. (2007) pro-
vided a unified framework for dimensionality reduction from
a graph embedding point of view.

The must-link and cannot-link constraints have already
been used in semi-supervised clustering (Wagstaff et al. 2001)
before they were used in metric learning. In metric learn-
ing, such constraints are applied to all samples at the same
time (Xing et al. 2003), and hence the corresponding meth-
ods are called global metric learning methods. Some attempts
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See Sect. 13.5 for multi-view
learning.

See Chap. 13.

See Sect. 13.6 for
semi-supervised clustering.
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have also been made to incorporate local constraints (e.g., local
triplet constraints), leading to local distance metric learning
methods (Weinberger and Saul 2009). There are even attempts
to find an appropriate distance metric for every sample (Frome
etal. 2007, Zhan et al. 2009). In terms of learning and optimiza-
tion, different metric learning methods usually adopt different
optimization techniques. For example, Yang et al. (2006) con-
verted the metric learning problem to a binary classification
problem using a discriminant analysis method under a prob-
abilistic framework. Davis et al. (2007) converted the metric
learning problem to a Bregman optimization problem, which
enables online learning, under the framework of information
theory.
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Exercises

10.1 Implement the k-nearest neighbors algorithm and com-
pareits decision boundary to the decision boundary of decision
trees on the watermelon data set 3.0q.

10.2 Let err and err* be, respectively, the expected error rates of
the nearest neighbors classifier and the Bayes optimal classifier.
Prove

err™ L err < err® (2 - V] X err*) . (10.40)

10.3 Centering should be done before dimensionality reduc-
tion, and a typical method is to convert the covariance matrix
XXT to XHH™XT, where H =1 — %IIT. Discuss the effects of
the centering process.

10.4 In practice, we often perform singular value decompo-
sition of the centered sample matrix X instead of eigenvalue
decomposition of the covariance matrix XX . Discuss the rea-
sons of taking this approach.

10.5 We often require the projection matrix in dimensionality
reduction to be orthogonal. Discuss the pros and cons of using
orthogonal and non-orthogonal projection matrices.

10.6 Use the PCA function in any software packages of your
choice to perform dimensionality reduction on the Yale face
data set, and investigate the images corresponding to the first
20 feature vectors.

10.7 Analyze the connections between kernelized linear dimen-
sionality reduction and manifold learning, and discuss their
pros and cons.

10.8 * The short circuit and open circuit in k-nearest neigh-
bor graphs and e-nearest neighbor graphs are troublesome for
Isomap. Design a method to alleviate the problem.

10.9 * Design a method to find the low-dimensional coordi-
nates of new samples after performing LLE dimensionality
reduction.

10.10 Discuss how to ensure the distance metric produced by
metric learning satisfies the four axioms of distance measures.
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The watermelon data set 3.0« is
in @ Table4.5.

E.g., princomp function in
MATLAB.

The Yale face data set is
available at » http://vision.ucsd.
edu/content/yale-face-database.

See Sect. 9.3 for the axioms of
distance measures.
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Galton is the cousin of
C. Darwin and the inventor of
eugenics.

Break Time

Short Story: Principal Component Analysis and Karl Pearson

Principal Component Analysis (PCA)is, by
far, the most commonly used dimension-
ality reduction method. It has many other
names, such as Singular Value Decom-
position (SVD) of the scatter matrix in
linear algebra, factor analysis in statis-
tics, Karhiinen-Loéve transform in signal
processing, Hotelling transform in image
analysis, Latent Semantic Analysis (LSA)
in text analysis, Proper Orthogonal Decomposition (POD)
in mechanical engineering, Empirical Orthogonal Function
(EOF) in meteorology, Experimental Modal Analysis (EMA)
in structural dynamics, and the Schmidt—Mirsky theorem in
psychometrics.

Karl Pearson (1857-1936) invented PCA in 1901. Pearson
was known to be a “walking encyclopedia”, who was a statisti-
cian, applied mathematician, philosopher, historian, folklorist,
theologian, anthropologist, linguist, social activist, education
reformer, and writer. After graduated from King’s College,
Cambridge in 1879, Pearson visited many universities, includ-
ing Heidelberg University and the University of Berlin. In
1884, he was appointed to a professor of applied mathemat-
ics at University College, London (UCL), and became a fel-
low of the Royal Society at the age of 39. In 1892, he pub-
lished the book The Grammar of Science, which offered some
inspiration to Einstein’s theory of relativity. Pearson has made
tremendous contributions to statistics, such as correlation coef-
ficients, standard deviation, the chi-square test, and the method
of moments. Pearson laid the foundation of the hypothesis test-
ing theory and the statistical decision theory, and he is often
considered as the “father of statistics”.

Pearson started his research on statistics under the influ-
ence of two biologists F. Galton and W. Welton, who worked
on quantitative analysis of the theory of evolution. Pearson
together with Galton and Welton founded the prestigious jour-
nal Biometrika in 1901, and Pearson was the editor-in-chief for
the rest of his life. His only son Egon Pearson is also a promi-
nent statistician, and the Neyman—Pearson lemma is named
after him. Egon succeeded his father as a professor of statistics
at UCL and as the editor-in-chief of the journal Biometrika.
Later, Egon became the president of the Royal Statistical Soci-
ety.
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11.1 Subset Search and Evaluation

Watermelons can be described by many attributes, such as
color, root, sound, texture, and surface, but experienced peo-
ple can determine the ripeness with only the root and sound
information. In other words, not all attributes are equally
important for the learning task. In machine learning, attributes
are also called features. Features that are useful for the current
learning task are called relevant features, and those useless ones
are called irrelevant features. The process of selecting relevant
features from a given feature set is called feature selection.

Feature selection is an important step of data preprocessing
that often needs to be done before training the learners. The
reasons for feature selection are twofold. Firstly, the curse of
dimensionality is a common issue in practical learning prob-
lems due to the large number of features. If we can identify
the relevant features, then the subsequent learning process will
deal with a much lower dimensionality, and hence the curse
of dimensionality is alleviated. From this point of view, fea-
ture selection shares a similar motivation with dimensionality
reduction, as discussed in Chap. 10. Secondly, eliminating irrel-
evant features often reduces the difficulty of learning because
the learner is more likely to discover the truth without being
distracted by irrelevant information.

It is worth noting that the feature selection process must
not discard important features. Otherwise, the performance of
subsequent learning will be hurt by information loss. Further-
more, for the same data set, the important features are often
different for different learning tasks, and hence when we say
some features are “irrelevant”, we refer to a specific learning
task. There is another category of features called redundant fea-
tures, whose information can be derived from other features.
For example, considering a cubic object, if the features base
length and base width are known, then base area is a redun-
dant feature since it can be calculated from base length and
base width. Since redundant features usually provide no addi-
tional information, removing them can reduce the workload
of the learning process. However, in some cases, the redundant
features can make the learning easier. For example, suppose the
task is to estimate the volume of a cubic, then it will become eas-
ier if using the redundant feature base area. More specifically,
if a redundant feature happens to be an intermediate concept of
the learning task, then it is a helpful redundant feature. For ease
of discussion, we assume all data sets in this chapter contain
no redundant feature, and all essential information is available
in the given features.

When there is no prior domain knowledge, we need to eval-
uate all possible feature subsets to select the one that con-
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tains all essential information. However, this is computation-
ally impractical due to the combinatorial explosion. A more
practical method is to generate a candidate subset of features
and then evaluate its quality, and then, based on the evalu-
ation result, generate the next candidate subset. This process
continues until we cannot find any better candidate subsets.
There are two questions in this process: how to generate the
next candidate subset of features based on the current eval-
uation result and how to evaluate the quality of a candidate
subset of features.

The first question leads to the subset search problem. Given
afeature set {a1, ao, ..., az}, we can consider every feature as a
candidate subset, and then evaluate these d single-feature sub-
sets. Suppose {ay} is optimal, then it is the selected set in the
first round. After that, we add one more feature to the selected
set of the previous round to generate d — 1 two-feature can-
didate subsets. Among them, suppose the optimum is {a>, a4},
and it is better than {a,}, then it is the selected set of the current
round. The candidate subset generation process stops when
the optimal (k + 1)-feature subset in the (k + 1)th round is
not better than the selected set of the previous round, and the
previously selected k-feature subset is returned as the outcome
of feature selection. Such an incremental approach of adding
relevant features is called forward search. Similarly, if we start
with a complete feature set and gradually remove irrelevant
features, then it is called backward search. Moreover, we can
combine the forward and backward approaches into bidirec-
tional search to gradually select relevant features (once selected,
these features are always kept in the subsequent rounds) and
remove irrelevant features.

All of the above are greedy approaches since they only con-
sider the optimal set in the current round. For example, suppose
as is better than ag in the 3rd round, then we have the selected
set {an, aq, as}. However, it is possible that, in the 4th round,
{ay, a4, ag, ag} is better than any {ay, a4, as, a;}. Unfortunately,
such problems are unavoidable unless we do an exhaustive
search.

The second question leads to the subset evaluation problem.
Given a data set D, where the proportion of the ith class in D
isp; i = 1,2,...,)). For ease of discussion, let us assume
all features are discrete. Then, given a feature subset A4, the
feature values split D into V' subsets {Dl, D%, ..., DV}, where
each subset includes the samples taking the same values on A.
After that, we can compute the information gain of the feature
subset A4:

27 11

Also known as the generate and
search of subset.

Suppose that each feature has v
possible values, then V = vi4! is
potentially very large. Hence, in
practice, we often reuse the
evaluation results from the
previous round of subset search
as a start point.
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See Sect. 4.2.1 for information
entropy.

Many diversity measures, after
some modifications, can be used
for evaluating feature subsets,
e.g., disagreement measure and
correlation coefficient. See

Sect. 8.5.2.

" 1D
Gain(4) = Ent(D) — Z D

Ent(D"), (11.1)

v=1
where the information entropy Ent(D) is defined as

B

Ent(D) = — ) _ py log, pi.- (11.2)
k=1

The larger the information gain Gain(A4) is, the more useful
information the feature subset A contains for classification.
Therefore, we can use the training set D to evaluate every can-
didate feature subset.

More generally, the feature subset 4 partitions the data
set D, where each partition corresponds to a value assignment
of A. Since the label information Y gives the ground truth
partitions of D, we can evaluate 4 by checking the difference
between these two partitions. The smaller the difference, the
better the subset A. Information gain is only one of the options
to measure the difference, and any methods that can measure
the difference between two partitions can be used here.

Putting a feature subset search method and a subset evalu-
ation method together gives a feature selection method. When
we combine forward search with information entropy, it looks
similar to decision trees. Actually, decision trees can be used
for feature selection as well, where the set of splitting features
is the selected feature subset. Other feature selection methods
essentially combine, either explicitly or implicitly, one or more
subset search and subset evaluation methods, though not that
apparent as decision tree-based feature selection.

Commonly used feature selection methods can be
roughly classified into three categories, namely filter, wrapper,
and embedding methods.

11.2 Filter Methods

Filter methods select features without considering the subse-
quent learners, and hence they act like “filters” before the train-
ing process.

Relief (Relevant Features) (Kira and Rendell 1992)is a well-
known filter feature selection method, which incorporates a
relevance statistic to measure feature importance. This statis-
tic is a vector in which each component corresponds to the
importance of an original feature, and thus the importance of
a feature subset is determined by the sum of the corresponding
components in the vector. To select a feature subset, we select
features with a component greater than a user-specified thresh-
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old 7. Alternatively, we can specify the number of features k,
and then select the features corresponding to the k largest com-
ponents.

The key of Relief is to determine the relevance statistics
for a given training set {(x1, y1), (X2, 12), - - ., (X, Ym)}. Relief
starts by finding two nearest neighbors x; ,,;, and x; ,, for each
sample x;, where the first one, known as a near-hit, has the
same class label as x;, while the second one, known as a near-
miss, has a different class label. Then, the relevance statistics
component of feature j is

i,nm

¥ = —diff(, ] 07 + diffed, x] 0% (11.3)

where x, is the value of feature j of sample x,. diff(x/, x})
depends on the type of feature j: when j is discrete, diff(x/, xZ) =
0ifx}, = xg and 1 otherwise; when j is continuous, diff(x7,, xg) =
‘xﬁ, — ij‘ given that x/, and XZ are normalized to [0, 1].

From (11.3), we see that, for feature j, if the distance from
x; to its near-hit x; », is shorter than the distance to its near-
miss X; nm, then feature j is said to be useful for distinguishing
different classes, and hence the relevance statistics component
of feature j is increased; otherwise, if the distance from x; to
its near-hit x; 5 is greater than the distance to its near-miss
Xinm, then feature j is considered as useless for distinguishing
different classes, and hence the relevance statistics component
of feature j is decreased. By averaging the results calculated on
all samples, we obtain the relevance statistics components of all
features, where a higher value indicates a better discriminative
ability.

The index 7 in (11.3) indicates samples used for averaging.
In practice, Relief only needs to average over a sampled subset
rather than the entire data set (Kira and Rendell 1992). The
computational complexity of Relief is linear to the number of
sampling and the number of the original features, and hence it
is a highly efficient filter feature selection method.

Relief was originally designed for binary classification prob-
lems, and its variant Relief-F (Kononenko 1994) can handle
multiclass classification problems. Given a data set D with |))|
classes. For a sample x; of class k (k € {1, 2, ..., |)|}), Relief-F
starts by finding the near-hit x; ,;, from class k samples, and
then find a near-miss from each class other than k, denoted
by x;1mm (I =1,2,...,1Y; 1 # k). Accordingly, the relevance
statistics component of feature j becomes

269 1 1

The calculation of relevance
statistics in Relief is implicitly
related to the idea of metric
learning. See Sect. 10.6 for
metric learning.
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The Las Vegas method and the
Monte Carlo method are two
randomized methods named
after gambling cities. Their main
difference is that, when there is a
time constraint, the Las Vegas
method will give a satisfactory
solution or give no solution,
whereas the Monte Carlo
method always gives a solution,
though not necessarily satisfy
the requirements. Both methods
can give a satisfactory solution
when there is no time constraint.

§ =" ~diff (), x{f,nh)2 +> (Pl x diff (. Xf,z,nm)z) ’
- Ik
(11.4)

where p; is the proportion of class / samples in the data set D.

11.3 Wrapper Methods

Unlike filter methods, which do not consider the subsequent
learners, wrapper methods directly use the performance of sub-
sequent learners as the evaluation metric for feature subsets. In
other words, wrapper methods aim to find the most useful fea-
ture subset “tailored” for the given learner.

Generally speaking, wrapper methods are usually better
than filter methods in terms of the learner’s final performance
since the feature selection is optimized for the given learner.
However, wrapper methods are often much more computa-
tionally expensive since they train the learner multiple times
during the feature selection.

Las Vegas Wrapper (LVW) (Liu and Setiono 1996) is a
typical wrapper method. It searches feature subsets using a
randomized strategy under the framework of the Las Vegas
method, and the subsets are evaluated based on the final classi-
fication error. Pseudocode of LVW is givenin @ Algorithm 11.1.

Line 8 of @ Algorithm 11.1 estimates the error of learner £
using cross-validation on the feature subset 4’. If the error of
A’ is smaller than the error of the current feature subset A*, or
their errors are comparable but the size of 4’ is smaller, then
A’ is set as the new optimal subset.

It is worth noting that each randomly generated subset is
evaluated by training the learner one more time, which is com-
putationally expensive. Hence, LVW introduces a parameter 7'
to limit the number of iterations. However, when the number
of original features is large (i.e., |4] is large), LVW may run
for a long time if we set 7" to a large number. In other words,
LVW may not produce a solution if there is a constraint on the
running time.
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Algorithm 11.1 Las Vegas Wrapper

Input: Data set D;
Feature set 4;
Learning algorithm £;
Parameter T of the stopping condition.
Process:
1: E =o0;
cd =4l
A* = A4;
t=0;
: while 7 < T do
Generate random feature subset A4’;
d=|4|;
E’ = CrossValidation(&(D1));
9: if (E'<E)V({(E' =E)A( <d)) then
10: t=0;
11: E=F;
12: d=d
13: A* = A,
14: else
15: t=t+1.
16: end if
17: end while
Output: Feature subset 4*.

AN AR o

11.4 Embedded Methods and L, Regularization

The feature selection process and the learner training process
are clearly separated in both filter methods and wrapper meth-
ods. By contrast, embedded methods unify the feature selection
process and the learner training process into a joint optimiza-
tion process, that is, the features are automatically selected
during the training.

Given a data set D = {(x1,»1), (x2,32), ..., X, V) },
where x € R? and y € R. Taking a simple linear regression
model as an example, suppose the squared error is used as the
loss function, then the optimization objective is

m
min > = wlxpn (11.5)
i=1

Equation (11.5) can easily overfit the data when there is a
large number of features but a small number of samples. To
alleviate overfitting, we can introduce a regularization term to
(11.5). If we use L; regularization, then we have

m
min D i—wix)? + w3 (11.6)

i=1

7 11

Initialization.

Use cross-validation to estimate
the error of the learner on 4’.

Stop if there is no update in 7'
consecutive rounds.

See Sect. 6.4 for regularization.
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In 1943, A. Tikhonov published
ridge regression in the journal
Proceedings of the USSR
Academy of Sciences. To
acknowledge its author, ridge
regression is also called
Tikhonov regression and Ly
regularization is also called
Tikhonov reguarlization.

It seems that Ly norm is a
natural choice for inducing
sparsity on w (i.e., minimize the
number of non-zero components
in w). However, Ly norm is
discontinuous, which makes the
optimization difficult, and hence
it is often approximated by L{
norm.

That is, those features
corresponding to non-zero
components of w

where A > 0 is the regularization parameter. Equation (11.6)
is called ridge regression (Tikhonov and Arsenin 1977), which
significantly reduces the risk of overfitting by introducing L;
regularization.

We can also replace Ly norm with L, norm. For example,
when p = 1 (i.e., L norm), we have

min ) (i —waxp)? +a Wl (1.7

i=1

which is known as Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani 1996).

Though both L; and L; regularization can help reduce the
risk of overfitting, the former enjoys an extra benefit: L| norm
is more likely to result in a sparse solution than L; norm, that
is, fewer non-zero components in w.

To see the difference between L; and L, norms, let us look
at an intuitive example. Suppose x has only two features, then,
for both (11.6) and (11.7), the solution w has two components
w1 and wy. Using these two components as two axes, we plot
the contours of the first terms in (11.6) and (11.7), that is, con-
necting the points with an equal squared error in the space of
(w1, wz). Then, we plot the contours for L norm and L, norm,
respectively, that is, connecting the points with equal L| norm
and connecting the points with equal L, norm. The plotted con-
tours are illustrated in @ Figure 11.1. The solutions of (11.6)
and (11.7) need to make a trade-off between the squared error
term and the regularization term. In other words, the solutions
lie on the intersections between the contours of the squared
error term and the regularization term. From @ Figure 11.1,
we can see that, when using L norm, the intersections often
lie on the axes, that is, either wy or wy is 0. By contrast, when
using L, norm, the intersections often lie in a quadrant, that is,
neither w; nor ws is 0. In other words, L; norm is more likely
to result in a sparse solution than L, norm.

A sparse solution w implies that only the original features
corresponding to non-zero components of w are included in the
final model. Hence, a model trained with L; regularization is
likely to use only some of the original features. In other words,
the learning method based on L; regularization is an embed-
ded feature selection method that unifies the process of feature
selection and the process of training.

The L; regularization problem can be solved by Proximal
Gradient Descent (PGD) (Combettes and Wajs 2005). More
specifically, let V denote the differential operator, and we con-
sider the optimization objective

min f () + A flxlly - (11.8)
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A
Contours of squared error

Fig. 11.1 It is easier to obtain sparse solutions using L| regularization than
using L, regularization

If  (x) is differentiable and Vf satisfies the L-Lipschitz condi-
tion, that is, there exists a constant L > 0 such that

IVfx) = V@) |, <L|x —x|, (Vx,x"). (11.9)

Then, in the vicinity of xj, f(x) can be approximated by the
second-order Taylor expansion as

n L
S ) 2 f o)+ (VS i), x = xk) + 5 llx = xi?
2

+ const, (11.10)
2

T2

1
e~ (s Lore)

where (-, -) is the inner product and const is a constant inde-
pendent of x. The minimum of (11.10) is obtained at x41:

1_ .
Xl = X — ZVf(xk). (11.11)

Therefore, if we minimize f (x) with gradient descent method,
then each step of gradient descent iteration is equivalent to min-
imizing the quadratic function f (x). Similarly, extending this
idea to (11.8) gives

2
+Allxlly s
2

. L
X1 = argmin -
X

1
x - (xk - sz(x;a)
(11.12)

that is, each gradient descent iteration takes the minimization
of L norm into account.
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Exercise 11.8.

With the input factors reduced,
the “input-output” relations
within the learned model
become more clear.

For (11.12), we can first calculate z = x; — %Vf(xk), and
then solve I
Xjp1 = argmin = ¢ —zl3 + Allxlly (11.13)
X

Let x’ denote the ith component of x. Then, by expanding the
components of x in (11.13), we find out that there is no term
in the form of x'x/ (i # j), which means that the components
of x are not interfering with each other. Hence, (11.13) has a
closed-form solution

Z—x/L, AJL<-Z;
X1 =10, || <A/L; (11.14)
'+ A/L, z'<—MA/L,

where xf{ 4 and 2" are the ith component of x| and z, respec-
tively. Therefore, PGD can quickly solve LASSO or any other
models that are based on L; norm.

11.5 Sparse Representation and Dictionary
Learning

We can consider the data set D as a matrix, in which each row
corresponds to a sample, and each column corresponds to a
feature. Feature selection assumes that the features are sparse,
which means that many columns of the matrix are irrelevant
to the learning problem. By identifying and removing these
columns, we can obtain a smaller matrix that is easier to learn.
It also reduces the computation and storage overheads and
improves the interpretability of the learned model.

Now, let us consider another kind of sparsity: there are
many zero elements in the matrix D, but the zero elements
do not lie in the whole rows or columns. Such data is quite
common in practice. For example, in document classification
problems, each document is a sample, and each word within
is a feature with the frequency as its value. In other words,
each row in the matrix D corresponds to a document, and each
column corresponds to a word. The intersection of a row and
a column is the frequency of the word in the document. How
many columns are we talking about here? Taking English as an
example, according to the Oxford English Dictionary, there are
171, 476 words, which correspond to 171, 476 columns in the
matrix. Even if we consider only the most important words, as
in the Oxford 3000 list, there are still 3000 columns. However,
since most of these words do not appear in a single typical
document, every row in the matrix contains a large number of
zero elements, and the zero elements of different documents
often appear in quite different columns.
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The above sparse representation can benefit some learning
tasks. For example, an important reason that the linear sup-
port vector machine performs well on text classification tasks
is that the sparse representation of word frequencies makes
most problems linearly separable. Meanwhile, sparse repre-
sentations will lead to less storage overheads since there are
efficient methods to store the sparse matrix.

Is it possible to convert a dense data set D (i.e., a typical
non-sparse data set) into a sparse representation to take its
advantages? It is worth noting that the sparse representation
we are looking for is “appropriately sparse” rather than “overly
sparse”. For example, using the Oxford 3000 list may give a use-
ful representation that is appropriately sparse, whereas using
the Oxford English Dictionary may produce a less useful and
overly sparse representation.

Of course, in real-world learning problems, such as image
classification, there is no Oxford 3000 list available, and hence
we need to learn such a dictionary. The dictionary can convert
samples from a dense representation to a sparse representa-
tion that leads to an easier learning problem as well as a sim-
pler model. The process of constructing an appropriate dictio-
nary is called dictionary learning, also known as sparse coding.
However, the two names have slightly different emphases: dic-
tionary learning emphasizes the process of learning the dictio-
nary, while sparse coding emphasizes the process of converting
samples to sparse representations. Since both are done in the
same process of optimization, we do not distinguish them in
this book, and both are called dictionary learning.

Given a data set {x1, x2, ..., X}, the simplest form of dic-
tionary learning is

m m
i _ Baill2 + A i, 11.15
min ;nxl aill3 + ;nalnl (11.15)

where B € R is the dictionary matrix, k is the vocabulary
size, which is usually specified by the user, and «; € R¥ is the
sparse representation of sample x; € R¥. In (11.15), the first
term seeks for er; that can reconstruct x;, and the second term
seeks for er; that is sparse.

Compared to LASSO, (11.15) is more complicated since it
not only needs to learn «;, which is similar to w in (11.7), but
also the dictionary matrix B. However, as inspired by LASSO,
we can solve (11.15) with alternating optimization.

In the first step of alternating optimization, we fix the dictio-
nary B to optimize «;. By expanding (11.15) as the components
of a;, we find out that there is no cross-term like oo} (u # v),
and hence, similar to LASSO, we can find «; for each sample
X;:
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See Sects. 6.3 and 12.4.

Dictionary is also called a
codebook.

Dictionary learning is also
known as codebook learning.

11
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The Nyquist sampling theorem
provides a sufficient but not
necessary condition for signal
recovery.

min [lx; — Botl3 + & fle (11.16)

In the second step, we initialize with &; to optimize the dic-
tionary B, that is, (11.15) becomes

min IX — BA||%, (11.17)

where X = (x1,x2, ..., %) € R A = (a1, a2, ...,0,) €
R¥*m and |-||z is the Frobenius norm. There are different
methods to solve (11.17), and a frequently used one is K-
SVD (Aharon et al. 2006), which takes a column-wise updating
strategy. Let b; denote the ith column of the dictionary matrix
B, and a’ denote the ith row of the sparse representation matrix
A, then (11.17) can be rewritten as

2
k
. CRAIZ — i _ o
min X —BA|; min X Zb]a
j=1 F
2
:n}]iin X—ijocj — b
J#i F
. in2
= min |E;i — bie' || - (11.18)

When updating the ith column of the dictionary matrix, E; =
X—> b 0/ is fixed since all other columns are fixed. Hence,
(11.18) is, theoretically, minimized by finding the orthogonal
vectors corresponding to the largest singular values of E;. How-
ever, since the singular value decomposition of E; updates both
b; and o', it may break the sparsity of A. To avoid this, K-SVD
takes some special treatments for E; and a': before the singu-
lar value decomposition, we keep only the non-zero elements
of &/, and, for E;, we keep only the product terms of b; and the
non-zero elements of &’; by doing so, the sparsity obtained in
the first step is preserved.

After initializing the dictionary matrix B, repeating the
above two steps gives the final dictionary B and a sparse rep-
resentation e; for each sample x;. The above dictionary learn-
ing process has a user-specified parameter k that controls the
vocabulary size, which relates to the sparseness.

11.6 Compressed Sensing

In real-world applications, we often need to recover the full
information from the partially available information. Tak-
ing telecommunication as an example, we convert analog sig-
nals into digital signals. According to the Nyquist sampling
theorem, if the sampling rate is more than twice the analog
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signal’s highest frequency, then the sampled digital signal con-
tains all information in the analog signal. That is, we can fully
reconstruct the original analog signals from the converted dig-
ital signals. However, the sampled digital signal is often com-
pressed for ease of transmission and storage, which may lead
to information loss. Besides, there could be more information
loss during the transmission, e.g., packet loss. In such cases,
the information is not received in full, then can we still fully
reconstruct the original signal? One solution to such problems
is compressed sensing (Donoho 2006; Candes et al. 2006).

Suppose there is a discrete signal x with a length m, then, by
sampling at a rate much lower than the sampling rate required
by the Nyquist sampling theorem, we obtain a sampled signal
y with a length n (n < m):

y = ®x, (11.19)

where @ € R is the measurement matrix of signal x, which
determines the sampling rate and how the sampled signal is
constructed.

The measurement value y can be easily calculated with the
discrete signal x and the measurement matrix ®. However,
can a receiver recover the original signal x from the received
measurement value and measurement matrix?

In general, the answer is “no”. Since n << m, (11.19), which
consists of y, x, and ®, must be an under-determined equation
whose numerical solution is difficult to find.

Suppose there is a linear transformation ¥ € R" that
can represent x as Ws, then y can be expressed by

y=®V¥s = As, (11.20)

where A = ®W¥ e R If we can recover s from y, then the
signal x can be recovered by x = Ws.

At first glance, (11.20) is not helpful since the inverse prob-
lem (i.e., recovering the signal s) is still under-
determined. Interestingly, however, the inverse problem can be
easily solved if s is sparse! It is because the sparsity significantly
reduces the impacts of unknown factors. When s is sparse, ¥
in (11.20) is called a sparse basis, and A acts like a dictionary
that converts the signal to a sparse representation.

In many applications, we can obtain sparse s. For example,
the digital signals of image or audio are usually non-sparse in
the time domain, but they can be converted to sparse signals in
the frequency domain using mathematical transforms, such as
Fourier transform, cosine transform, and wavelet transform.

Unlike feature selection and sparse representation, com-
pressed sensing focuses on how to recover the original signal
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Also known as compressive
sensing.

y is also called a measurement
value.

We assume x is not sparse.
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from the partially observed samples via the inherent sparsity
of the signal. It is commonly agreed that compressed sens-
ing has two stages: the sensing and measurement stage and the
reconstruction and recovery stage. The sensing and measure-
ment stage focuses on obtaining a sparse representation of the
original signal via methods such as Fourier transform, wavelet
transform, as well as dictionary learning and sparse coding
that have been introduced in Sect. 11.5. Many of these tech-
niques have already been developed in other fields, such as sig-
nal processing, before compressed sensing was proposed. The
reconstruction and recovery stage focuses on reconstructing
the original signal from the partial observations by exploiting
the sparsity property. This stage is the heart of compressed
sensing, and we usually refer to this part when talking about
compressed sensing.

The theories behind compressed sensing are a bit complex.
Hence, we only briefly introduce the Restricted Isometry Prop-
erty (RIP) (Candés 2008).

For a n x m (n <« m) matrix A, we say A satisfies the k-
restricted isometry property (k-RIP) if there exists a constant
8 € (0, 1) such that

(1 =80 lIsll3 < Agsll3 < (1+80) lsl3 (11.21)

holds for every vector s and submatrix Ay € R of A. In such
cases, the sparse signal s can be almost fully reconstructed from
y, and subsequently x:

min |sllp
§ (11.22)
s.t. y = As.

However, since (11.22) involves the minimization of Ly
norm, it is an NP-hard problem. Fortunately, under certain
conditions, minimizing Ly norm shares the same solution with
minimizing L norm (Candes et al. 2006). Hence, in practice,
we solve

min ||s||;
s (11.23)
s.t. y = As,

which means the compressed sensing problem is solved as an
L norm minimization problem. For example, (11.23) can be
converted to a form that is equivalent to LASSO, which can
then be solved by proximal gradient descent, that is, using Basis
Pursuit De-Noising (Chen et al. 1998).

The techniques for reconstructing full information from
partial information have important uses in many real-world
applications. For example, by collecting the ratings provided
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by readers, an online book store can infer the preferences of
readers, which can then be used for personalized recommen-
dations. However, the preference information is only partially
available since none of the readers has read all books, and none
of the books has been read by all users. @ Table 11.1 gives an
example of ratings provided by four readers. The ratings are
processed into a 1-5 scale, from the least to the most preferred.
Because readers only rate the books they read, the table con-
tains many unknown values.

Considering the ratings in @ Table 11.1 as a partially avail-
able signal, is it possible to recover the original signal via the
mechanism of compressed sensing?

Recall that a pre-requisite of recovering an under-sampled
signal via compressed sensing is that the signal has a sparse rep-
resentation. Then, do the readers’ preference data have a sparse
representation? The answer is “yes”. In general, the ratings
depend on many factors such as genre, author, and bookbind-
ing; for ease of discussion, suppose the ratings in @ Table 11.1
are only about the genre. In our example, Gulliver’s Trav-
els and Robinson Crusoe are novel books; The Story of
Mankind and A Study of History are history books; Gitan-
jali is a poem book. Typically, books with the same genre are
likely to have the same readers. With this assumption, books
can be grouped by genre, where the number of groups is far
less than the number of books. In other words, the signal in
B Table11.1 is sparse in terms of genre. Hence, the mecha-
nism of compressed sensing should be applicable to the rating
recovery problem.

@ Tab.11.1 The book ratings by some readers

Gulliver’s Robinson The Story A Study Gitanjali

Travels Crusoe of of History
Mankind
Emma 5 ? ? 3 2
Michael ? 5 3 ? 5
John 5 3 ? ? ?
Sarah 3 ? 5 4 ?

The above problem can be solved with the matrix completion
technique (Candeés and Recht 2009) as follows:

min rank(X)
X (11.24)
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This is a typical collaborative
filtering problem.
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Also known as low-rank matrix

recovery.
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where X is the sparse signal to be recovered; rank(X) is the rank
of the matrix X; A is the observed signal, e.g., the rating matrix
in @ Table 11.1; Q is the set of subscript index pairs (i, j) of the
non-missing (i.e., not “?”) elements (A); in A. The constraint
in (11.24) states that the elements (X);; in the recovered matrix
X must have the same values as the corresponding elements in
the observed matrix A.

Similar to (11.22), (11.24) is an NP-hard problem. The con-
vex hull of rank(X) on the set {X € R™*" : ||X||12p < 1} is the

nuclear norm of X:
Nuclear norm is also known as )
trace norm. min{m,n}

Xl = Y (X, (11.25)

j=1

where 0;(X) is the singular value of X. Equation (11.25) states
that the nuclear norm of a matrix is the sum of its singular val-
ues. Therefore, we can find an approximate solution of (11.24)
by minimizing the nuclear norm of the matrix:

min X[,
i (11.26)

Since (11.26) is a convex optimization problem, it can be solved
with Semidefinite Programming (SDP). Theoretical studies

See Appendix B.3 for SDP. show that, under certain conditions, if rank(A) = rand n < m,
11 then A can be perfectly recovered from O(mrlog? m) observed
elements (Recht 2011).

11.7 Further Reading

Feature selection is one of the earliest research areas of machine
learning. Early studies were mainly based on the “feature gen-
eration and search”™“evaluation” process. Many search tech-
niques from artificial intelligence were introduced to the pro-
cess of subset generation and search, such as the branch and
bound method (Narendra and Fukunaga 1977) and the float-
ing search method (Pudil et al. 1994). In terms of subset evalu-
ation, many criteria were borrowed from information theory,
such as information entropy and Akaike Information Crite-
rion (AIC) (Akaike 1974). Blum and Langley (1997) discussed
different subset evaluation criteria, while (Forman 2003) con-
ducted extensive experimental comparisons.

In the early days, most feature selection studies focused on
filter methods. Later on, wrapper methods emerged
(Kohaviand John 1997), followed by embedded methods (Weston
and Tipping 2003). The construction of decision trees can also
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be regarded as a kind of feature selection, and hence, from
this point of view, embedded methods can be traced back to
ID3 (Quinlan 1986). A considerable amount of literature has
conducted empirical comparisons on different feature selection
methods (Yang and Pederson 1997; Jain and Zongker 1997).
More information on feature selection can be found in Guyon
and Elisseeff (2003), Liu et al. (2010) and books dedicated to
this subject Liu and Motoda (1998, 2007).

Least Angle RegresSion (LARS) (Efron et al. 2004) is an
embedded feature selection method for linear regression that
selects the feature with the highest correlation to the residual
in each round. LASSO (Tibshirani 1996) can be implemented
by slightly modifying LARS. LASSO was extended to other
variants, such as Group LASSO (Yuan and Lin 2006) that
considers feature group structures, and Fused LASSO (Tib-
shirani et al. 2005) that considers feature sequence structures.
Since LASSO methods are not strictly convex, there may exist
multiple solutions, and this problem can be solved with Elastic
Net (Zou and Hastie 2005).

For dictionary learning and sparse coding (Aharon et al.
2006), we can manipulate the sparsity by changing the dictio-
nary size, as well as the dictionary “structures”. For example,
we can assume the dictionary has group structures, that is, the
variables in the same group are either all zero or all non-zero.
Such a property is known as group sparsity and is utilized by
group sparse coding (Bengio et al. 2009). Sparse coding and
block sparse coding have many applications in image feature
extraction, and more information can be found in Mairal et al.
(2008), Wang et al. (2010).

Compressed sensing (Donoho 2006; Candeés et al. 2006)
motivated robust principal component analysis (Candés et al.
2011)and matrix completion-based collaborative filtering (Recht
et al. 2010). Baraniuk (2007) provided a brief introduction to
compressed sensing. After converting Ly norm into L; norm,
we can find the solutions using basis pursuit de-noising of
LASSO, as well as other techniques such as Basis Pursuit (Chen
etal. 1998) and Matching Pursuit (Mallat and Zhang 1993). Liu
and Ye (2009) proposed a projection-based method for effi-
cient sparse learning and provided SLEP, a software package
for sparse learning (» https://github.com/divelab/slep/).
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form a group. When this concept
is not present in a document, all
variables corresponding to this
group are zero.
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The watermelon data set 3.0 is in
B Table4.3.

Exercises

11.1 Implement and run the Relief algorithm on the water-
melon data set 3.0.

11.2 Write down the pseudocode of the Relief-F algorithm.

11.3 The Relief algorithm evaluates the importance of each
feature. Design an improved version such that the importance
of each feature pair can be evaluated.

11.4 Design an improved version of LVW such that the algo-
rithm is guaranteed to produce a solution even if there is a time
constraint.

11.5 With the assistance of @ Figurel1.1, use examples to
describe the situations when L regularization cannot produce
sparse solutions.

11.6 Discuss the relationships between ridge regression and
support vector machines.

11.7 Discuss the difficulties of solving Ly norm regularization
directly.

11.8 Derive the closed-form solution (11.14) for the L; norm
minimization problem.

11.9 Discuss the difference and commonality between the uses
of sparsity in dictionary learning and compressed sensing.

11.10 * Improve (11.15) such that the learned dictionary has
group sparsity.
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Short story: Monte Carlo method and Stanisaw Ulam

Stanistaw Ulam (1909-1984) is a well-
known Polish mathematician, who has
made significant contributions to ergodic
theory, number theory, set theory, etc. The
Ulam sequence is named after him.

Ulam was born in Lemberg, Austria-
Hungary. He studied at the Lwow Poly-
technic Institute, where he obtained his
Ph.D. degree in 1933. Two years later, in 1935, John von Neu-
mann invited Ulam to visit the Institute for Advanced Study in
Princeton. In 1940, Ulam became an assistant professor at the
University of Wisconsin—-Madison, and a citizen of the United
States in the next year. In 1943, Ulam joined the Manhattan
Project, in which he, together with Edward Teller, developed
the Teller—Ulam design, which became the basis for most ther-
monuclear weapons.

Electronic Numerical Integrator and Computer (ENIAC),
one of the earliest electronic general-purpose digital computers,
was used in the Manhattan Project shortly after its invention.
Ulam was keenly aware of the possibility of using computers
to estimate probabilistic variables via hundreds of simulations.
John von Neumann immediately recognized the importance of
this idea and supported Ulam. In 1947, Ulam implemented
the proposed statistical method and successfully applied it to
the calculations of the nuclear chain reaction. Because Ulam
often mentioned his uncle, Michat Ulam, “who just had to go
to Monte Carlo” to gamble, Nicolas Metropolis dubbed the
statistical method “Monte Carlo method”.
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283

Lemberg is now Lviv, Ukraine.
The city was temporarily
conquered by Austria-Hungary
between 1867 and 1918 and
returned to Poland after World
War 1. In 1939, the city became
part of the former Soviet Union,
and later on, it became part of
the independent nation of
Ukraine in 1991.

Both John von Neumann and
Edward Teller were born in
Hungary.

The Metropolis—Hasting
algorithm is a representative
Monte Carlo method named
after Metropolis.
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12.1 Basic Knowledge

As the name suggests, computational learning theory is about
“learning” by “computation” and is the theoretical foundation
of machine learning. It aims to analyze the difficulties of learn-
ing problems, provides theoretical guarantees for learning algo-
rithms, and guides the algorithm design based on theoretical
analysis.

Given a data set D = {(x1,¥1), (¥2,2)s -+, (Xm> Ym)},
where x; € &. In this chapter, we focus on binary classifica-
tion problems (i.e., y; € Y = {—1, 4+1}) unless otherwise stated.
Suppose there is an underlying unknown distribution D over
all samples in X, and all samples in D are drawn independently
from the distribution D, that is, i.i.d. samples.

Let /1 be a mapping from X'to Y, and its generalization error
is

E(h; D) = Px~p(h(x) # y). (12.1)

The empirical error of /2 over D is
1 m
E(h: D) = — % "1(h(x;) # 7). (12.2)
mn i=1

Since D contains i.i.d. samples drawn from D, the expec-
tation of the empirical error of & equals to the generalization
error. When it is clear from the context, we abbreviate E (/; D)
and E (h; D) as E(h) and E (h), respectively. The maximum
error we can tolerate for a learned model, also known as the
error parameter, is an upper bound of E (%), denoted by €, where
EM) <e.

The rest of this chapter studies the gap between the empir-
ical error and the generalization error. A mapping / is said to
be consistent with D if the empirical error of / on the data set
D is 0. For any two mappings A1, i, € X — Y, their difference
can be measured by the disagreement

d(hi, hy) = Pe~p(hi(x) # ha(x)). (12.3)

For ease of reference, we list a few frequently used inequal-
ities below
e Jensen’s inequality: for every convex function f'(x), we have

S EX) < E(f(x)). (12.4)
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e Hoeffding’s inequality (Hoeffding 1963): if x1, x2,..., X
are m independent random variables with 0 < x; < 1, then,
for any € > 0, we have

m

1 & 1
P (E 2)@' - EE(M) > e) < exp(—2me?),
i= i=

(12.5)
(

e McDiarmid’s inequality (McDiarmid 1989):if x1, x2, ..., X
are m independent random variables, and for any 1 < i <
m, the function f satisfies

m
1

l m
Ei;xi - E;E(’”)

> e) < 2exp(—2me?).

(12.6)

sup  f (X1, Xim) = f OO e Xim1 X Xl x| < i
X1 seoes X X

then, for any € > 0, we have

52
P, e Xm) — E(F (X1 s Xm)) = €) < exp <Z?€c,2> ,
(12.7)

a2
P(lf(xla cey Xm) — ]E(f(xl ~~~~~ Xm)| =€) < 2exp <22,’6C,2> .
(12.8)

12.2 PAC Learning

Probably Approximately Correct (PAC) learning theory
(Valiant 1984) is one of the most fundamental components of
computational learning theory.

Let ¢ denote a concept, which provides a mapping from
the sample space & to the label space Y, and ¢ determines the
ground-truth label y of the sample x. A concept c is said to be a
target concept if ¢(x) = y holds for every sample (x, ). The set
of all target concepts that we wish to learn is called a concept
class, denoted by C.

The set of all possible concepts for a given learning algo-
rithm ¢ is called a hypothesis space, denoted by H. Since the
ground-truth concept class is unknown to learning algorithms,
H and C are usually different. A learning algorithm constructs
by collecting all concepts that are believed to be the target con-
cepts. Since it is unknown whether the collected concepts are
ground-truth target concepts, s € H is referred to as a hypoth-
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The hypothesis space of a
learning algorithm £ is different
from the hypothesis space of the
learning problem as discussed in
Sect. 1.3.
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See Sect. 1.4.

In general, the fewer the training
samples, the higher the
randomness.

12

The sample size m is related to
the error €, the confidence 1 — §,
the complexity of data size(x),
and the complexity of target
concept size(c).

esis, which provides a mapping from the sample space X to the
label space .

If ¢ € M, then H contains a hypothesis that can correctly
classify all instances, and such a learning problem is said to be
separable or consistent with respect to the learning algorithm
£. If ¢ ¢ H, then 1 does not contain any hypothesis that can
correctly classify all instances, and such a learning problem
is said to be non-separable or inconsistent with respect to the
learning algorithm £.

Given a training set D, we wish the learning algorithm £
can learn a hypothesis % that is close to the target concept c.
Readers may wonder why not learn the exact target concept
¢? The reason is that the machine learning process is subject to
many factors. For example, since the training set D usually con-
tains finite samples, there often exist many equivalent hypothe-
ses that cannot be distinguished by learning algorithms on D.
Also, there exists some randomness when sampling D from D,
and hence the hypotheses learned from different equal-sized
training sets could be different. Therefore, instead of learning
the exact target concept ¢, we wish to learn a hypothesis 4 with
an error bounded by a given value with high confidence, that
is, a hypothesis that is probably approximately correct (i.e.,
PAC). Let 1 — § denote the confidence, and we have the formal
definition as follows:

Definition 12.1 (PAC Identify) A learning algorithm £ is said
to PAC identify the concept class ¢ from the hypothesis space
H if, for any ¢ € C and distribution D, and €,8 € (0, 1), the
learning algorithm £ outputs a hypothesis z € ‘H satisfying

PE(h) <e)>1-05. (12.9)

Such a learning algorithm £ has a probability of at least
1 —§ of learning an approximation of the target concept ¢ with
an error of at most €. Following Definition 12.1, we can further
define the following:

Definition 12.2 (PAC Learnable) A target concept class Cis said
to be PAC learnable with respect to the hypothesis space H if
there exists a learning algorithm £ such that, for any €,§ €
(0, 1) and distribution D, the learning algorithm ¢ can PAC
identify the concept class ¢ from the hypothesis space H for
any m > poly(l/e, 1/8, size(x), size(c)), where poly(:, -, -, -) is
a polynomial function and m is the number of i.i.d. training
samples drawn from the distribution D.
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For learning algorithms, it is necessary to consider the run-
ning time complexity. Hence, we further define:

Definition 12.3 (PAC Learning Algorithm) A concept class C is
said to be efficiently PAC learnable by its PAC learning algo-
rithm ¢ if ¢ is PAC learnable by £ within a polynomial time
poly(1/¢€, 1/8, size(x), size(c)).

Suppose the learning algorithm £ processes each sample
with a constant time, then the running time complexity is equiv-
alent to the sample complexity, and we could focus only on the
sample complexity:

Definition 12.4 (Sample Complexity) The sample complexity of
a PAC learning algorithm ¢ is the smallest sample size m >
poly(1/e, 1/8, size(x), size(c)) required by £.

PAC learning provides a formal framework for describing
thelearning ability of learning algorithms, and many important
questions can be discussed theoretically under this framework.
For example, what are the requirements for learning a good
model for a given learning problem? What are the conditions
for an algorithm to learn effectively? How many training sam-
ples are required to learn a good model?

A hypothesis space H includes all possible output hypothe-
sesof alearning algorithm ¢, and akey element of PAClearning
is the complexity of H. If the hypothesis space is the same as
the concept class (i.e., H = C), then C s said to be properly PAC
learnable with respect to H. Intuitively, it means the ability of
the learning algorithm properly matches the learning problem.
However, it is impractical to assume that # = C since we do
not know the concept class for real problems, let alone some
learning algorithm ¢ with  is exact C. Therefore, it is more
realistic to study the cases when the hypothesis space and the
concept class are different (i.e., H # C). In general, a larger 1
is more likely to contain the target concept we are looking for,
though the larger hypothesis space also makes it more difficult
to find the target concept. X is called a finite hypothesis space
if |H| is finite, and an infinite hypothesis space otherwise.
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12.3 Finite Hypothesis Space

12.3.1 Separable Case

In separable cases, the target concept c¢ is in the hypothesis
space H (i.e., ¢ € H). Then, given a training set D with size m,
how can we find a hypothesis from H satisfying the constraint
of a given error parameter?

Itis natural to come up with the following learning strategy.
Since the labels of the samples in D are assigned by the target
concept ¢ € H, any hypotheses that misclassify any samples in
D must not be the target concept c. Hence, we simply eliminate
all hypotheses that are inconsistent with D and keep the rest.
When the training set D is sufficiently large, we can keep elim-
inating inconsistent hypotheses from # until there is only one
hypothesis left, which must be the target concept c. In practice,
however, since the training data is usually limited, we may end
up with more than one hypothesis that is consistent with D, and
we cannot distinguish them without additional information.

Given that the training data is limited, how many samples
do we need to learn a good approximation of the target concept
¢? For PAC learning, we say a training set D is sufficient for
a learning algorithm ¢ if £ can find an e-approximation of the
target concept with a probability of at least 1 — §.

We first estimate the probability of having a hypothesis that
performs perfectly on the training set but still with a general-
ization error greater than €. Suppose the generalization error
of a hypothesis / is greater than €, then, for any i.i.d. sample
(x, y) drawn from the distribution D, we have

P(h(x) =y) =1— P(h(x) #y)
=1-E®M)
<l-e (12.10)

Since D contains m samples independently drawn from D, the
probability that z and D are consistent is given by

P((h(x1) = y1) A ... A (h(xm) = ym)) = (1 — P(h(x) # »))"
<1 —em (12.11)

Though we do not know which hypothesis 4 € H will be
the output by the learning algorithm £, we only need to ensure
that the total probability of having any hypotheses that are
consistent with D and have generalization errors greater than
€ is not greater than §. That is, ensuring the total probability
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PheH:EMh) >e AEMH) =0) < |H| (1 —e)™

<|H|e ™ (12.12)
is not greater than 8, that is,
[H]e ™ < 6. (12.13)
Hence, we have
mz é(ln |H| + In é), (12.14)

which shows that every finite hypothesis space # is PAC learn-
able, and the required sample size is given by (12.14). As the
number of samples increases, the generalization error of the
outpu} hypothesis & converges toward 0 at a convergence rate

12.3.2 Non-separable Case

For difficult learning problems, the target concept c is usually
not in the hypothesis space H. Suppose E (1) # O forany h € H,
that is, every hypothesis in  misclassifies at least one training
example, then, from Hoeffding’s inequality, we have:

Lemma 12.1 Let D be a training set containing m samples inde-
pendently drawn from a distribution D. Then, for any h € H and
0<e<1, wehave

P(Eh) — E(h) > €) < exp(—2me?), (12.15)
P(E(h) — E(h) > €) < exp(—2me?), (12.16)
P(|E(h) — E()] = €) < 2exp(—2me?). (12.17)

Corollary 12.1 Let D be a training set containing m samples inde-
pendently drawn from a distribution D. Then, for any h € H and
0 < e <1, the following holds with a probability of at least 1 —§:

E(h) — m(zz% <EMh) <EMh) + ,/ln(;%. (12.18)

Corollary 12.1 shows that, for a large m, the empirical error
of & is a good approximation to its generalization error. For
finite hypothesis spaces, we have

Theorem 12.1 Let H be a finite hypothesis space. Then, for any
heHand0 <8 <1, we have

293
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That is to find the best
hypothesis in H.

In|H| + In(2/8)
2m

P (|E(h) —EM)| < ) >1-35. (12.19)

Proof Let hy, hy, ..., hyy) denote the hypotheses in H, and we
have

P@heM:|E(h) —EMh]|> e
=P ((|Eh1 - Eh1| > 6) V...V (‘Ehm\ - EI’IHI’ > 6))

<Y P(|E(h) —EMh)| > e).

heH

From (12.17), we have

Y P(E() — E()| > €) < 2 [H| exp(—2me?),
heH

which proves (12.19) by letting 8 = 2 |H| exp(—2me?). O

A learning algorithm £ cannot learn an e-approximation of
the target concept ¢ if ¢ ¢ H. However, for a given hypothesis
space H, the hypothesis & € H with the smallest generaliza-
tion error is still a reasonably good target. In other words,
instead of targeting at ¢, we find an e-approximation of 4, i.e.,
argminy,4, E(h). This approach generalizes PAC learning to
agnostic learning in which ¢ ¢ H. Accordingly, we define

Definition 12.5 (Agnostic PAC learnable) A hypothesis space H
is said to be agnostic PAC learnable if there exists a learning
algorithm ¢ such that, for any ¢, § € (0, 1) and distribution D,
the learning algorithm £ outputs a hypothesis & € # satisfying

P(E(h) — min EH)<e)>1-8, (12.20)

for any m > poly(1/e, 1/8, size(x), size(c)), where m is the
number of i.i.d. training samples drawn from the distribution
D.

Similar to PAC learnable, a hypothesis space # is said to be
efficiently agnostic PAC learnable by its agnostic PAC learn-
ing algorithm ¢ if % is agnostic PAC learnable by ¢ within
a polynomial time poly(1/e, 1/8, size(x), size(c)). The sample
complexity of the learning algorithm £ is the smallest sample
size m satisfying the above requirements.
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12.4 VC Dimension

Hypothesis spaces in real-world applications are usually infi-
nite, such as all intervals in the real domain and all hyperplanes
in the R? space. To study the learnability of such cases, we
need to measure the complexity of hypothesis spaces. A gen-
eral approach is to consider the Vapnik—Chervonenkis dimen-
sion (VC dimension) (Vapnik and Chervonenkis 1971). We first
introduce three concepts: growth function, dichotomy, and shat-
tering.

Given a hypothesis space # and a set of instances D =
{x1,x2,...,x;}, where each hypothesis & € H can label every
instance in D. The labeling result is denoted by

hlp = {(h(x1), h(x2), ..., h(xm))},

any element of which is called a dichotomy. The number of
dichotomies generated by the hypotheses in # over D increases
as m increases.

Definition 12.6 For m € N, the growth function [Ty (m) of a
hypothesis space # is defined as

Myu(m) = max  [{(h(x1),....h(xp) | h e H}|.

(X1, Xm}CX

(12.21)

The growth function Iy (m) gives the largest number of
dichotomies that the hypothesis space H can generate over
m instances. The more dichotomies, the more representation
power, that is, the better adaptability to learning problems.
The growth function describes the representation power of a
hypothesis space H, which also reflects the complexity of the
hypothesis space. We can now use a growth function to present
the relationship between the empirical error and the general-
ization error:

Theorem 12.2 Foranym € N, 0 <€ < 1, and h € H, we have

-~ m€2
P(|E(h) — E(h)| > €) < 4T13,(2m) exp <_T) . (12.22)

Different hypotheses in % may generate identical or different
dichotomies over D. The number of dichotomies could be finite
even for an infinite hypothesis space #; for example, there are at
most 2" dichotomies over m instances. We say that a hypothesis
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For example, in binary
classification problems, there
are at most 4 dichotomies given
2 instances, and 8 dichotomies
given 3 instances.

N is the natural number domain.

The proof can be found
in Vapnik and Chervonenkis
(1971).
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space M can shatter a data set D if H can generate all possible
dichotomies of D, that is, I3 (m) = 2.
We can now formally define the VC dimension as follows:

Definition 12.7 The VC dimension of a hypothesis space H is
the size of the largest instance set D shattered by H:

VC(H) = max{m : Ty (m) = 2"}. (12.23)

VC(H) = d says that there exists an instance set D of size
d that can be shattered by . However, it does not mean every
instance set D of size d can be shattered by #. Some readers may
have recognized that the definition of the VC dimension does
not involve the underlying data distribution D! In other words,
the VC dimension of a hypothesis space H can be calculated
even if the data distribution is unknown.

In general, we can calculate the VC dimension of # as fol-
lows: the VC dimension of # is d if there exists an instance set
of size d shattered by # while there is no instance set of size
d + 1 shattered by H. We illustrate the calculation of the VC
dimension with the following two examples:

Example 12.1 (Interval(a, b] in the real domain) Let H = {hj4 p) :
a,b € R, a < b} denote the set of all closed intervals in the real
domain ¥ = R. For every x € X, we have h, ;(x) = +1
if x € [a,b]; otherwise, Ay, pj(x) = —1. Letting x; = 0.5
and x; = 1.5, then, {x, x»} is shattered by the hypotheses
{h10,11, 170,21, 11,21, hy2,31) from H, hence the VC dimension of #
is at least 2. However, there is no hypothesis /i, 5; € H that can
generate the dichotomy {(x3, +), (x4, —), (x5, +)} for a data
set containing any 3 instances {x3, x4, X5}, where x3 < x4 < Xxs.
Hence, the VC dimension of # is 2.

Example 12.2 (Linear separators in the 2-dimensional real plane)
Let # denote the set of all linear separators in the 2-dimensional
real plane X = R?. From @ Figure 12.1 we see that there exists
a data set of size 3 shattered by 7, whereas there is no instance
set of size 4 shattered by %. Hence, the VC dimension of the
hypothesis space # of all linear separators in the 2-dimensional
real plane is 3.

From Definition 12.7, we see the following relationship
between the VC dimension and the growth function (Sauer
1972):

Lemma 12.2 If the VC dimension of a hypothesis space H is d,
then, for any m € N, we have
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+ -
’ ) ' / +
* +
- - + -
All of the 2°=8 dichotomies can be made by At least one of the 2*=16 dichotomies
linear separators cannot be made by linear separators

(a) 3 instances. (b) 4 instances.

Fig. 12.1 The VC dimension of the hypothesis space of all linear separators
in the 2-dimensional real plane is 3

d

y(m) < 3 (”:) (12.24)

i=0

Proof We will proceed by induction. The theorem holds when
m = 1,and d = 0 or d = 1. Hypothesizing that the the-
orem holds for im — 1,d — 1) and (m — 1, d). Letting D =
{x1,x2,....,xp}and D' = {x1,x2, ..., Xu_1}, we have

H|D = {(h(xl)a h(x2)7 R} h(xm)) | h € H}v

Hip = {(h(x1), h(x2), ..., h(x;,u-1)) | h € H}.
Since every hypothesis / € H classifies x,, as either +1 or —1,
every sequence appeared in Hp will appear in H|p once or

twice. Let Hpp denote the set of sequences from H|p that
appear twice in Hp, that is,

Hpwp ={01.y2, -, ym—1) € Hip 130, 0 € 'H,

(h(xi) =B (i) = yi) A (h(xem) # 0 (xm)), 1 <i<m—1}.

Since the sequences in Hpy|p appear twice in H|p but once in
H|p, we have

[Hip| = |Hip | + [Hop| - (12.25)

For the data set D’ of size m — 1, we have, from the induction
assumption,

d
Hip| < Tm—1) <Y (m h 1>. (12.26)

1
i=0

Let O denote the set of instances shattered by Hp/p. From
the definition of Hp/|p, we know that #|p can shatter QU {x,,}.
Since the VC dimension of H is d, the largest possible VC dimen-
sion of Hp/|p is d — 1. Therefore, we have
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Also known as Sauer’s Lemma.
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d—1
—1
Hoo| < Ttm -1 < 3 (’” l. ) (12.27)

i=0
From (12.25)—12.27), we have

d d—1

eSS

1

() =0 é(( 1)*2’? ))

1

()

From the arbitrariness of data set D, Lemma 12.2 follows.
O

From Lemma 12.2, we can calculate the upper bound of the
growth function:

Corollary 12.2 If the VC dimension of a hypothesis space H is d,
then, for any integer m > d, we have

e . m d
e is Euler’s number. [y (m) < ( J ) . (12.28)

12 Proof
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From Corollary 12.2 and Theorem 12.2, we have the gen-
eralization error bound in terms of the VC dimension, also
known as the VC bound:

Theorem 12.3 If the VC dimension of a hypothesis space H is d,
then, for any m > d, § € (0, 1), and h € H, we have

2e 4
8dIn 4" + 8In 5
m

|E(h) — Eh| g\/ >1-36.
(12.29)

Proof Setting 411, (2m) exp(—’”6 ) < 4(267”’)‘1 exp(—"’Tez) =
8, we have

\/8d1n2€’"+81n
€ =

m

which completes the proof by substituting the above equation
into Theorem 12.2. O

From Theorem 12.3, the generalization error bound in
(12.29) is dependent only on the sample size m and converges
toward 0 at a convergence rate of O(Lm). Since the VC bound
is independent of the data distribution D and the data set D, it
is distribution-free and data-independent.

Let & denote the hypothesis output by a learning algorithm
£. Then, we say ¢ satisfies the Empirical Risk Minimization
(ERM) principle if

E(h) mm EH). (12.30)
eH
Then, we have the following theorem:

Theorem 12.4 Every hypothesis space H with a finite VC dimen-
sion is (agnostic) PAC learnable.

Proof Suppose ¢ is a learning algorithm satisfying the ERM

principle, and 4 is the hypothesis output by £. Let g be the
hypothesis with the smallest generalization error in #, that is,

E(g) = mm Eh). (12.31)
€M
Letting

5
§=:,
2
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Rademacher complexity is
named after the German
mathematician H. Rademacher
(1892-1969).

(In2/8) ¢
=_. 12.32
2m 2 ( )
From Corollary 12.1, the following holds with a probability of

at least 1 —§/2:

— € ~ €
E(g)_§ < E(g) SE(9)+§. (12.33)
Setting
8d1n 2" 4 81n &
\/ g 7%y _ € (12.34)
m 2
then, from Theorem 12.3, we have
~ € 1)
_ <) )>1-2
P(E(h) Eh < 2) >1-. (12.35)

Hence, the following holds with a probability of at least 1 — &:

~ € -~ €
E(h —E(9) <Eh + 35— (E@ - 3)
=EMh) —E(g) +€
€.

N

We can solve m from (12.32) and (12.34). Then, from the arbi-
trariness of #, we have Theorem 12.4. O

125 Rademacher Complexity

From Sect. 12.4, we see that the VC bound is distribution-free
and data-independent (i.e., it is valid for any data distribu-
tion), which makes the analysis of generalization error bound
“universal”. However, since it does not take the data set into
account, the VC bound is generally loose, especially for “poor”
data distributions that are far from the typical situation in
learning problems.

Rademacher complexity presents another characterization
of the complexity of the hypothesis space, and the difference
from the VC dimension lies in consideration of data distribu-
tion in some sense.

Given a data set D = {(x1, y1), (x2,2), ..., (X1, ym)}, the
empirical error of a hypothesis / is given by
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- 1 &
E(hy = — 3 Th(x) # )

i=1

_ ! i 1 — yih(xi)
T m 2

i=1

I
=3 = 5 D Vihx), (12.36)
i=1

where % > yih(x;) represents the consistency between the
predicted values /4(x;) and the ground-truth labels y;. It takes
the maximum value 1 if A(x;) = y; foralli € {1,2,...,m}. In
other words, the hypothesis with the smallest empirical error is

argmax — Zylh(x,) (12.37)
heH

In practice, however, the data set may have been corrupted
by some noises, that is, the label y; of sample (x;, y;) is affected
by some random factors and is no longer the ground-truth label
of x;. In such cases, sometimes it is better to select a hypothesis
that has considered the influence of random noises, rather than
the best hypothesis over the training set.

We introduce the Rademacher random variable o;, which
takes value +1 or —1 with an equal probability of 0.5. With o,
we rewrite (12.37) as

sup — Z oih(x;). (12.38)

hen M i=1

We consider all hypotheses in 7 and take the expectation over
(12.38) as

Ey |:sup Z o,h(x,):| (12.39)

hen M -1

where ¢ = {01, 02, ..., 0on}. Equation (12.39) takes value in
[0, 17 and expresses the representation power of the hypothesis
H. For example, (12.39) equals to 0 when |#| = 1, that is, there
is only one hypothesis in #; (12.39) equals to 1 when |#| = 2™
and H shatters D, that is, for any o, there exists a hypothesis
such that 4(x;)) =0; (i =1,2,...,m).

Let 7 : Z — R be a real-valued function space, and Z =
{z1,22,...,2m} be a set of i.i.d. instances, where z; € 2. By
replacing & and # in (12.39) with 2z and 7, respectively, we
have
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It is likely that we cannot find
the maximum value since H is
infinite. Hence, we replace the
maximum by the supremum.
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Definition 12.8 The empirical Rademacher complexity of a
function space F with respect to Z is defined as

Ry =T, [sup 53 oaf(zi)} : (12.40)

g m
fer iz

The empirical Rademacher complexity measures the corre-
lation between the function space F and the random noise in
the data set Z. To analyze the correlation between Fand D over
Z, we can take the expectation over the data set Z with m i.i.d.
samples drawn from D:

Definition 12.9 The Rademacher complexity of a function space
F with respect to a distribution D over 2 is defined as

Ri(F) = Ezcz)zi=m [ﬁz(ﬂ] : (12.41)

Based on the Rademacher complexity, we can define the
generalization error bound of function space F (Mohri et al.
2012):

Theorem 12.5 Let 7 : 2 — [0, 1] be areal-valued function space,
and Z = {z1,22, ..., Zm} be a set of i.i.d. samples drawn from
D over 2. Then, forany § € (0, 1) and f € F, the following holds
with a probability of at least 1 — §:

Elf(2)] < L > f @)+ 2R (F) + Indl/ 8), (12.42)
m i=1 2m

B @< — 3 )+ 2RzP) + 3, oD (1243
"o 2m

Proof Letting

R 1 m

Ez(f) =~ ;jf(zf),

®(Z) = supE[f] — Ez(f),
feF

and let Z’ be another data set that is the same as Z except for
one instance. Suppose that z,, € Z and z,, € Z’ are the two
different instances. Then, we have
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() —-@(2) = (/Sup E[f]1— Ez/(f)) - (;up E[f1— Ez(f))
eF eF
<sup Ez(f) - Ez(f)
feF
_ S (zm) _f(Z;,n)
sup —————

feF m
1
Similarly, we have

D(2) - @(Z) <

)

1
m
1

|®(2) — d(Z)H| < —.
m

According to McDiarmid’s inequality (12.7), forany § € (0, 1),
the following holds with a probability of at least 1 — §:

0@ < Ero@+ "0 (12.44)

where the upper bound of Ez[®(Z)] is given by
Ez[®(Z2)] =EZ Lsup Elf] - Ez(f)]

eF
=Ez [/Sup Ey [Ez (f) - Ez(f)]]

eF
<Ez z [/Sup Ezp(f) - EZ(f):|

‘eF
1 m
co [ Sy -se)
1 m

=Ey; 7 7 | sup — i(f @) = f(z)

o L
< Ea,Z’ |:§up — ZUL/((Z;):| +Eq 7z |:§up Z Uif(zi):|

feFMm fe]-'”7i=1

5, , |:sup 1 i oif(zi):| Z,i'se:;li(gl;iao,jnfollow the same
JerMi '

= 2Ru(F).

The above gives the proof of (12.42). From Definition 12.9,
we know that changing one instance in Z will change the value
of ﬁz(}‘) at most 1/m. According to McDiarmid’s inequal-
ity (12.7), the following holds with a probability of at least
1—-46/2:

12

Using Jensen’s inequality (12.4)
and the convexity of the
supremum function.
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In(2/s)

Riu(F) < Rz(F) + 5
m

(12.45)

Then, from (12.44), the following holds with a probability of
at least 1 —§/2:

In(2/8)
D(Z2) K Ez[®(D)] + o

Hence, the following holds with a probability of at least 1 — §:

-~ In(2/$§
®(Z) <2Rz(F) +3 n(2 /), (12.46)
m
The above gives the proof of (12.43). O

Since F in Theorem 12.5 is a real-valued function over the
interval [0, 1], Theorem 12.5 is applicable to regression prob-
lems only. For binary classification problems, we have the fol-
lowing theorem:

Theorem 12.6 Let H : x — {—1, +1} be a hypothesis space and
D = {x1,x2,...,X,} be a set of i.i.d. instances drawn from D
over X. Then, for any § € (0,1) and h € H, the following holds
with a probability of at least 1 — §:

E(h) < E(h) + Ru(H) + 1n(21ni<3), (12.47)
E(h) <E(h) + Rp(H) +3 m(zz% (12.48)

Proof Let 7 be ahypothesis space of binary classification prob-
lems. By letting Z2 = X x {—1, +1}, h € H can be transformed
to

In(@) = fu(x,y) = I(h(x) # y), (12.49)

which transforms the hypothesis space # with an output domain
of {—1, +1} to a function space Fy; = {f;, : h € H} with an out-
put domain of [0, 1]. From Definition 12.8, we have
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Rz(Fy) =Eq | sup —Zalfh(xz,y, }

fhe]:Hml 1

=Eq | sup — Zazﬂ(h(xz) # y,):|

heH i=1
B m
1 — yih(x;)
=Eq | sup — _—
heH Z 2 :|
T
= 3Eo —Zaz+sup Z( yzazh(xz))}
L hen M
1 B 1 m
= 3Eo 225 Z( yzozh(x,))]
. Z( h(x))
=3 i 2o
I~
= 3 Rp(H). (12.50)

Taking the expectation of (12.50) gives

1
m(}—H) = - Rn(H). (12,51)

From (12.50),(12.51),and Theorem 12.5, we have Theorem 12.6
proved. O

Theorem 12.6 gives the generalization error bound based on
the Rademacher complexity, also known as the Rademacher
bound. In comparison with Theorem 12.3, the VC bound is
distribution-free and data-independent, whereas the
Rademacher bound depends on the distribution D in (12.47)
and the data set D in (12.48). In other words, the Rademacher
bound depends on the data distribution of the specific learning
problem. The Rademacher bound is generally tighter than the
VC bound since it is “tailored” for the specific learning prob-
lem.

For the Rademacher complexity and the growth function,
we have

305

—y;o; and o; follow the same
distribution.

12

Theorem 12.7 The Rademacher complexity R,,(H) andthe growth See Mohrietal. (2012) for proof.

Sfunction T3, (m) of a hypothesis space H satisfy

Ry(H) < ,/W. (12.52)

From (12.47), (12.52), and Corollary 12.2, we have
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_ 2d1n <
Eh <EM) + }2 d +‘/ln(2;i5). (12.53)

In other words, we can derive the VC bound from the
Rademacher complexity and the growth function.

12.6 Stability

The generalization error bound, based on either the VC dimen-
sion or Rademacher complexity, is independent of the specific
learning algorithm. Hence, the analysis applies to all learning
algorithms and enables us to study the nature of learning prob-
lems without considering specific design of learning algorithms.
However, if we wish the analysis to be algorithm-dependent,
then we need to take a different approach, and one direction is
stability analysis.

As the name suggests, the stability of an algorithm concerns
about whether a minor change of the input will cause a signif-
icant change in the output. The input of learning algorithms is
a data set, so we need to define the changes on data sets.

GivenadatasetD = {z1 = (x1,51),22 = (X2, 2), ..., Zm =
(Xm» ym)}, where x; € X are i.i.d. instances drawn from dis-
tribution D and y; € {—1,+1}. Let H : x —> {—1,+1} be a
hypothesis space, and £p € H be the hypothesis learned by a
learning algorithm ¢ on the training set D. Then, we consider
the following changes on D:

e Let D\ denote the set D with the ith sample z; excluded,
that is,

D\l = {21712»-~~aZi—1,Zi+1,-~-,Zm},

e Let D' denote the set D with the ith sample z; replaced with
z;, that is,

] ’
Dl = {zly 225 -++5%i—15%;5 Zi+1, '-~,Zm},

where z; = (x},)}), and x/ follows distribution D and is
independent of D.

A loss function £(£p(x),y) : ¥ x ¥ — RT, abbreviated
as £(£p, z), characterizes the difference between the predicted
label £p(x) and the ground-truth label y. We now introduce
several types of loss with respect to the hypothesis £p as follows:

e Generalization loss:

Z(E, D) = ExeX,z:(x,y) [Z(»QD, Z)] N (1254)
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e Empirical loss:
1 m
€(g.D)=—> £(Lp. 2 (12.55)
m i=1
e Leave-one-out loss:

1 m
lioo(£, D) = — 3 E(Lpy, 2)). (12.56)
i=1

We define the uniform stability as follows:

Definition 12.10 A learning algorithm ¢ is said to satisfy the
B-uniform stability with respect to loss function £ if, for any
x € Xand z = (x, »), £ satisfies

[e(€p,2) —(Lpv.2)| < B, i=1,2,....m. (12.57)

If a learning algorithm ¢ satisfies the B-uniform stability
with respect to a loss function ¢, then

|e(Lp, 2) — €(Lpi, 2)|
< [e(Lp.z) — €(L€pvi, )| + |[€(Lpi, 2) — L(Lpi, 2)|
<28,

which means that the stability of excluding an instance implies
the stability of replacing an instance.

If the loss function £ is bounded as 0 < £(£p, z) < M forall
Dand z = (x, y), then, we have [Bousquet and Elisseeff (2002)]

Theorem 12.8 Given a data set D with m i.i.d. instances drawn
from the distribution D. If a learning algorithm £ satisfies the -
uniform stability with respect to a loss function £ upper bounded
by M, then, for any m > 1 and § € (0, 1), the following holds
with a probability of at least 1 — §:

0L, D) <UL, D)+ 2B + (4mB + M) ln(sz‘)’ (12.58)
£(2,D) < lioo(L. D) + B + 4mp + M) hl;l%

(12.59)

Theorem 12.8 shows the generalization error bound of the
learning algorithm ¢ derived from the stability analysis. From
(12.58), we see the convergence rate between the empirical error
and the generalization erroris 8/m. When 8 = 0(}%), the con-
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See Bousquet and Elisseeff
(2002) for proof.
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Minimizing empirical error and
minimizing empirical loss are
sometimes different since there
exist some poor loss functions ¢
such that minimizing the loss
does not minimize the empirical
error. For ease of discussion,
this chapter assumes that
minimizing the loss always
minimizes the empirical error.

vergence rate becomes O( f)’ which is consistent with those

of VC bound and Rademacher bound in comparisons with
Theorems 12.3 and 12.6.

The stability analysis of learning algorithm focuses on
|’£7(£, D) — ¢(g, D)|, whereas the complexity analysis of the
hypothesis space considers supj,4 |E(h)—E(h)|. In other words,
the stability analysis does not necessarily consider every hypoth-
esis in H, but only analyzes the generalization error bound of
the output hypothesis £p based on the properties (stability) of
£. So, what is the relationship between stability and learnabil-
ity?

Toensure the generalization ability of a stable learning algo-
rithm ¢, we must assume B+/m — 0, that is, the empirical loss
converges to the generalization loss; otherwise, learnability can
hardly be discussed. For ease of computation, letting 8 = nll
and substituting into (12.58), we have

In(1/5)

2
UL, D) <UL, D)+ +@+M)
2m

(12.60)

Given a loss function ¢, a learning algorithm £ is an ERM
learning algorithm satisfying the ERM principle if its output
hypothesis minimizes the empirical loss. We have the following
theorem on stability and learnability:

Theorem 12.9 If an ERM learning algorithm £ is stable, then the
hypothesis space H is learnable.

Proof Let g be the hypothesis with the minimum generalization
loss in H, that is,

(g, D) = ml}_} L(h, D).

Letting

€
/—_

6—2,

2

g =2exp (—2m(e/)2) ,

then, from Hoeffding’s inequality (12.6), the following holds
with a probability of at least I — §/2 when m > 6% In %:

|t(g, D) — Uy, D)| <

l\)l‘"\

For (12.60), by setting
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In(2/8) €

2m 2

2
—+@G+M)
m

we have m = 0( Lini 5)- Hence, the following holds with a
probability of at least 1 —38/2:

€&, D) <UL, D) + =

Therefore, the following holds with a probability of at least
1-34:

-~ € (o~ €
ue. D)~ tg. D) <UL D)+ 5 - (Ug. D) - 5)

<UL, D) — (g, D) + ¢
<€

which proves Theorem 12.9. O

Readers may wonder, why we can derive the learnability of
a hypothesis space from the stability of a learning algorithm.
Learning algorithm and hypothesis space are very different
things. However, it is worth noting that stability is not irrel-
evant to hypothesis space as they are indeed connected by a
loss function ¢ according to the definition of stability.

12.7 Further Reading

Valiant (1984) proposed PAC learning, which motivated a
branch of machine learning research known as Computational
Learning Theory. A good introductory textbook on this topic
is Kearns and Vazirani (1994). The most important academic
conference in this field is the Conference on Learning Theory
(COLT).

Vapnik and Chervonenkis (1971) proposed the VC dimen-
sion, which makes it possible to study the complexity of infinite
hypothesis spaces. Sauer’s Lemma is named after Sauer (1972),
while the same result was also derived in Vapnik and Chervo-
nenkis (1971), Shelah (1972), respectively. This chapter mainly
focuses on binary classification problems, and as for multiclass
classification problems, the VC dimension can be extended to
the Natarajan dimension (Natarajan 1989; Ben-David et al.
1995).

Rademacher complexity was introduced to machine learn-
ing by Koltchinskii and Panchenko (2000) and received more
attention after Bartlett and Mendelson (2002). Bartlett et al.
(2002) proposed the local Rademacher complexity, which can
derive a tighter generalization error bound for noisy data.
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The VC dimension is named
after the surnames of the two
authors.
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Bousquet and Elisseeff (2002) introduced the stability anal-
ysis of machine learning algorithms, and motivated many stud-
ies on the relationship between stability and learnability. For
example, Mukherjee et al. (2006), Shalev-Shwartz et al. (2010)
showed the equivalence of ERM stability and ERM learnabil-
ity. Since not all learning algorithms satisfy the ERM principle,
Shalev-Shwartz et al. (2010) further studied the relationship
between stability and learnability with respect to Asymptotical
Empirical Risk Minimization (AERM).

This chapter mainly focuses on deterministic learning prob-
lems, that is, there is a deterministic label y for each sample x.
Though most supervised learning problems are deterministic,
there are also stochastic learning problems in which the label
of an instance does not firmly belong to a single class but is
decided by a posterior probability function conditioned on fea-
ture values. See Devroye et al. (1996) for more discussions on
the generalization error bound in stochastic learning problems.



Exercises

Exercises

12.1 Prove Jensen’s inequality (12.4).
12.2 Prove Lemma 12.1.
12.3 Prove Corollary 12.1.

12.4 Prove that the hypothesis space consisting of all linear
hyperplanes in R has a VC dimension of d + 1.

12.5 Calculate the VC dimension of the hypothesis space of
decision stumps.

12.6 Prove that the VC dimension of the hypothesis space of
decision tree classifiers can be infinite.

12.7 Prove that the VC dimension of the hypothesis space of
k-nearest neighbors classifiers can be infinite.

12.8 Prove that the Rademacher complexity of the constant
function c is 0.

12.9 Given function spaces F; and 7>, prove that R, (F] +
7)) < Ryu(F1) + Ry(#), where R, (+) is the Rademacher com-
plexity.

12.10 * Considering Theorem 12.8, discuss the rationality of
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. . 2
Hint: letting § = 2¢=2"¢"

estimating an algorithm’s generalization ability via cross-validation.
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Break Time

Short Story: Leslie G. Valiant—The Father of Computational
Learning Theory

Theoretical Computer Science (TCS)
is an intersection of computer sci-
ence and mathematics that focuses
on mathematical topics of comput-
ing. A famous TCS problem is the
“P versus NP problem”.

Computational learning the-
ory, as a subfield of machine learn-
ing, is the intersection of machine
learning and TCS. If we are talk-
ing about computational learning
theory, we have to talk about the
British computer scientist Leslie G. Valiant (1949-). Valiant
studied at King’s College, Cambridge, Imperial College Lon-
don, and the University of Warwick, where he earned his Ph.D.
degree in 1974. Before he became a professor at Harvard Uni-
versity in 1982, he taught at Carnegie Mellon University, the
University of Leeds, and the University of Edinburgh. In 1984,
Communications of the ACM published Valiant’s paper titled
“A theory of the learnable”, in which PAC learning theory was
proposed and laid the foundations of computational learning
theory. In 2010, Valiant received the Turing Award for his sem-
inal contributions to PAC learning theory, the complexity of
enumeration and of algebraic computation, and the theory of
parallel and distributed computing. The ACM Turing Award
committee pointed out that Valiant’s paper published in 1984
created a new research area known as computational learning
theory that puts machine learning on a sound mathematical
footing. ACM Computing News also published an article titled
“ACM Turing Award Goes to Innovator in Machine Learn-
ing” to emphasize the contributions of this first Turing Award
recipient from machine learning.




References

References

Bartlett PL, Mendelson S (2002) Rademacher and Gaussian complexities:
risk bounds and structural results. ] Mach Learn Res 3:463—482
Bartlett PL, Bousquet O, Mendelson S (2002). Localized rademacher com-
plexities. Sydney, Australia, pp 44—58

Ben-David S, Cesa-Bianchi N, Haussler D, Long PM (1995) Character-
izations of learnability for classes of {0, ..., n}-valued functions. J
Comput Syst Sci 50(1):74-86

Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn
Res 2:499-526

Devroye L, Gyorfi L, Lugosi G (eds) (1996) A probabilistic theory of
pattern recognition. Springer, New York

Hoeffding W (1963) Probability inequalities for sums of bounded random
variables. ] Am Stat Assoc 58(301):13-30

Kearns MJ, Vazirani UV (1994) An introduction to computational learn-
ing theory. MIT Press, Cambridge

Koltchinskii V, Panchenko D (2000) Rademacher processes and bounding
the risk of function learning. In: Gine E, Mason DM, Wellner JA (eds)
High dimensional probability II. Birkhduser Boston, Cambridge, pp
443457

McDiarmid C (1989) On the method of bounded differences. Surv Comb
141(1):148-188

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine
learning. MIT Press, Cambridge

Mukherjee S, Niyogi P, Poggio T, Rifkin RM (2006) Learning theory:
stability is sufficient for generalization and necessary and sufficient
for consistency of empirical risk minimization. Adv Comput Math
25(1-3):161-193

Natarajan BK (1989) On learning sets and functions. Mach Learn 4(1):67—
97

Sauer N (1972) On the density of families of sets. ] Comb Theory - Ser A
13(1):145-147

Shalev-Shwartz S, Shamir O, Srebro N, Sridharan K (2010) Learnability,
stability and uniform convergence. J Mach Learn Res 11:2635-2670

Shelah S (1972) A combinatorial problem; stability and order for models
and theories in infinitary languages. Pac J Math 41(1):247-261

Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134—
1142

Vapnik VN, Chervonenkis A (1971) On the uniform convergence of rel-
ative frequencies of events to their probabilities. Theory Probab Its
Appl 16(2):264-280

313

12



q 315

Check for
updates

Semi-Supervised Learning

Table of Contents

13.1 Unlabeled Samples 316
13.2 Generative Methods 319
13.3 Semi-Supervised SVM 321
13.4 Graph-Based Semi-Supervised Learning 324
13.5 Disagreement-Based Methods 328
13.6 Semi-Supervised Clustering 331
13.7 Further Reading 334

References 340

© Springer Nature Singapore Pte Ltd. 2021
Z.-H. Zhou, Machine Learning,
https://doi.org/10.1007/978-981-15-1967-3_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1967-3_13&domain=pdf
https://doi.org/10.1007/978-981-15-1967-3_13

13

316 Chapter 13 - Semi-Supervised Learning

For example, we can train an
SVM model with D; and select
the unlabeled sample that is
closest to the classification
hyperplane for query.

13.1 Unlabeled Samples

We come to the watermelon field during the harvest season,
and the ground is covered with many watermelons. The melon
farmer brings a handful of melons and says that they are all
ripe melons, and then points at a few melons in the ground
and says that these are not ripe, and they would take a few
more days to grow up. Based on this information, can we build
a model to determine which melons in the field are ripe for
picking? For sure, we can use the ripe and unripe watermelons
told by the farmers as positive and negative samples to train a
classifier. However, is it too few to use only a handful of melons
as training samples? Can we use all the watermelons in the field
as well?

Formally, we have a data set D; = {(x1, 1), (x2,32), ...,
(x7, yp)} with [ labeled samples, where the labels, ripe or unripe,
are known. Besides, we have another data set D, = {x;41,
—X/42, ..., X4y} containing u unlabeled samples without labels,
where / < u. If we use traditional supervised learning methods,
then we can only use D; and have to discard all information in
D,. In this case, the generalization ability of a learned model
may not be satisfactory when D; is small. So, can D,, be used
in the process of building the model?

A straightforward approach is to label all samples in D,
before learning, that is, we ask the farmers to check all water-
melons in the field. Other than this labor-intensive approach,
is there a “cheaper” way?

One alternative is that we can use D; to train a model first,
take this model to pick a watermelon in the field, ask the farmer
whether it is ripe, then add this newly obtained labeled sample
to Dy to retrain a model, and then pick a melon again . . .. Since
we only select the most useful watermelons to improve the per-
formance of the model, the labeling cost is greatly reduced. This
kind of learning paradigm is called active learning, and its goal
is to use as few query as possible to get the best performance,
that is, to ask the farmer as few times as possible.

Active learning introduces additional expert knowledge and
interactions to transform some unlabeled samples into labeled
samples, but can we use unlabeled samples to improve the
generalization performance without interacting with experts?
Though it sounds unrealistic, the answer is “yes”!

Although the unlabeled samples do not contain label infor-
mation, they contain information about the data distribution,
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Cgr9 e 9 “gy

Testing sample Observed
unlabeled samples

+ o - O——> + "0 -

Fig.13.1 Anillustration of utilizing unlabeled samples. The gray dots on the
right-hand side are unlabeled samples

which can benefit the modeling if the samples are independently
drawn from the same data distribution as the labeled samples.
@ Figure 13.1 gives an intuitive illustration: when the testing
sample lies between a positive sample and a negative sample,
we can hardly tell which class it belongs to; however, if we can
observe the unlabeled samples, we are confident that it belongs
to the positive class.

When a learner can automatically improve its performance
by learning from unlabeled samples without external inter-
actions, it is called semi-supervised learning. Semi-supervised
learning is highly demanded by real-world applications, since in
practice we can easily collect a large number of unlabeled sam-
ples, but “labeling” them is costly. For example, in computer-
aided medical image analysis, we can obtain a large number of
medical images, whereas it is impractical to ask medical experts
to mark all lesions. The phenomenon of “limited labeled data,
abundant unlabeled data” is even more common on the Inter-
net. For example, when building Web page recommendation
models, it is generally required to request users to label Web
pages that they are interested in. However, users are generally
unwilling to spend time labeling Web pages, and therefore, only
a few labeled Web pages are available. Nevertheless, there are
countless Web pages on the Internet that can be used as unla-
beled data. As we will see later, semi-supervised learning pro-
vides a solution for utilizing the “cheap” unlabeled samples.

To utilize unlabeled samples, we must make some assump-
tions to connect the underlying data distribution disclosed by
the unlabeled samples to the labels. A common choice is the
clustering assumption, which assumes that the data contains
clustering structures, and the samples within the same cluster
belong to the same class. @ Figure 13.1 shows an example of
the use of the clustering assumption in exploiting unlabeled
samples, where the samples to be predicted and the positive
samples are brought together by the unlabeled samples, lead-
ing to the conclusion that the testing sample is more likely to be
classified as positive, compared with the far separated negative
samples. Another commonly used assumption is the manifold
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The concept of manifold is the
basis of manifold learning. See
Sect. 10.5.

As the clustering assumption
considers the class labels, it is
mostly for classification
problems.

assumption, which assumes that the samples are distributed on
a manifold structure where neighboring samples have similar
output values. On the one hand, the degree of “neighboring”
is usually described by “similarity”, and therefore the mani-
fold assumption can be seen as an extension of the clustering
assumption. It is worth noting that the manifold assumption
has no limit on the output value, so it can be used for more
types of learning tasks. In fact, no matter we use the clustering
assumption or manifold assumption, it essentially assumes that
“similar samples have similar outputs”.

Semi-supervised learning can be further categorized into
pure semi-supervised learning and transductive learning, where
the former assumes the unlabeled samples are not the test sam-
ples, and the latter assumes the unlabeled samples are exactly
the test samples on which the generalization performance
is optimized. In other words, pure semi-supervised learning
takes an open-world assumption, that is, the model we wish
to learn can be applied to any unobserved samples. By con-
trast, transductive learning takes a closed-world assumption,
that is, the model only predicts the observed unlabeled samples.
@ Figure 13.2 illustrates the difference between active learning,
pure semi-supervised learning, and transductive learning. Pure
semi-supervised learning and transductive learning are often
jointly called semi-supervised learning, which is the term used
in the rest of the book unless otherwise stated.

Active leaming m = =
— s e Predic Testing

—_— : Training ] Prediction B

=== 'i{ | > Model | > data J

Unisbeled dats

]

[ . > _' | - > Testin,
Training Prediction csting
= o

(Pure) semi-supervised leaming

=

Unlabeled data

=1
g
E
=
2
=
5
&
3
&

Transductive leaming

?] Unabeled data

Fig. 13.2
learning

Active learning, (pure) semi-supervised learning, and transductive
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13.2 Generative Methods

Generative methods, which are directly based on certain gen-
erative models, assume that all samples, labeled or unlabeled,
are “generated” from the same underlying model. This assump-
tion enables us to connect the unlabeled samples to the learning
objective, where the labels of unlabeled samples are treated as
missing parameters that can be estimated with maximum likeli-
hood estimation using the EM algorithm. The main difference
among generative methods lies in the underlying assumptions
made by their generative models, that is, different assumptions
of the underlying model lead to different generative methods.

Given a sample x with its ground-truth class label y € Y,
where ¥ = {1,2,..., N} is the set of all possible classes. We
assume that the sample is generated by a Gaussian mixture
model in which each Gaussian mixture component corresponds
to a class. In other words, the sample is generated based on the
following probability density function:

N
px) = e plx | pir Tp), (13.1)

i=1

where «; > 0 is the mixture coefficient and Zf\il a;i=1; p(x |
Ii, X;) is the probability of the sample x belonging to the ith
Gaussian mixture component; u; and X; are the parameters of
the ith Gaussian mixture component.

Let f(x) € Y denote the predicted label of x, and ® €
{1, 2, ..., N} denote the Gaussian mixture components that x
belongs to. Maximizing the posterior probability, we have

f(x) = argmaxp(y = | x)
Jjey

N
= argmapr(y =j,0=i|x)
A |
N
=argmax ) p(y=j|O=1ix) p@=i|x),
J&Y o
(13.2)
where
PO =i|x) = a;-p(x | wi, Xy) (13.3)

YN plx | i, Z0)

is the posterior probability that x being generated by the ith
Gaussian mixture component, where p(y = j | ® = i,x) is
the probability of x belonging to class j and is generated by
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See Sect. 7.6 for the EM
algorithm.

This assumption implies the
one-to-one relationship between
mixture components and classes.

See Sect. 9.4 for Gaussian
mixture models.
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Semi-supervised learning usually
assumes that the number of
unlabeled samples is much
larger than that of labeled
samples, though this assumption
is not necessary.

See Sect. 9.4 for the EM
algorithm on
Mixture-of-Gaussian clustering.

Parameters could be initialized
by the labeled samples.

the ith Gaussian mixture component. Since we assume that
each class corresponds to one Gaussian mixture component,
p(y =j | ® = i,x) only depends on the Gaussian mixture
component ® that x belongs to, which means, we can simply
rewriteitasp(y = j | ® = i) instead. Without loss of generality,
we can assume that the ith class corresponds to the ith Gaussian
mixture component, thatis, p(y = | ® = i) = 1 if and only if
i=j,and p(y =j | ® = i) = 0 otherwise.

We notice that estimating p(y = j | ® = i,x) in (13.2)
requires the label of x, and hence we can only use the labeled
samples. However, p(® = i | x) does not involve the label, and
hence it can be expected to have a more accurate estimation
with the help of a large amount of unlabeled samples, that is,
the estimation of (13.2) could be more accurate with unlabeled
samples. This shows how the unlabeled samples can improve
classification performance.

Givenalabeleddataset D; = {(x1, y1), (x2,¥2), ..., (x7, y)}
and an unlabeled data set D, = {x;11, X432, ..., X1y}, Where
! < uand ! + u = m. Assuming that all samples are i.i.d. and
are generated by the same Gaussian mixture model. Then, we
use maximum likelihood estimation to estimate the parameters
{(aj, pi, ;) | 1 < i < N} of the Gaussian mixture model, and
the log-likelihood of D; U D,, is formed as

N
LL(D;UD) = Y In (Zai P | i, ) - p(yi | © = llxj))

(xj,yj)ED/ i=1

N
+ ) In (Zai-p<x,|ui,z,->). (13.4)

){/EDu i=1

There are two terms in (13.4): a supervised term based on

labeled data set D; and an unsupervised term based on unla-

beled data set D,,. The parameter estimation of Gaussian mix-

ture model can be done using the EM algorithm with the fol-

lowing iterative update rules:

e E-step: compute the probabilities of an unlabeled sample x;
belonging to each Gaussian mixture component based on
the current model parameters:

o - p(xj | wi, Xi)
SN i p(xj | il i)

e M-step: update the model parameters based on yj;, where /;
is the number of labeled samples belonging to the ith class:

Vii = (13.5)
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1

Ch yuvavwd DIRZUESEDENE §
x;€Dy Vji i x;eDy (xj,y))eDiAyj=i
(13.6)
1
E' = —— (x: — Mx: — X T
Y it <x;, i) = kO] = i)
J u

x;€Dy

+ Z (xj — pi)(xj — /Li)T>, (13.7)

(xj,y))eDiNyj=i

1
o= Y vtk (13.8)

x;€Dy

By repeating the above process until convergence, we obtain
the model parameters for classifying new samples using (13.3)
and (13.2).

Other variants of generative methods can be derived by
replacing the Gaussian mixture model by other models in the
above process, such as mixture of experts models (Miller and
Uyar 1997) and naive Bayes models (Nigam et al. 2000). Gen-
erative methods are simple and easy to implement and can
outperform other semi-supervised learning methods when the
labeled samples are extremely limited. However, such meth-
ods heavily rely on accurate model assumptions, that is, the
assumed generative model must match the ground-truth data
distribution; otherwise, incorporating the unlabeled samples
can even reduce the generalization performance (Cozman and
Cohen 2002). Unfortunately, it is often difficult to make an
accurate model assumption without sufficiently reliable domain
knowledge.

13.3 Semi-Supervised SVM

Semi-Supervised Support Vector Machine (S3VM) is the exten-
sion of SVM for semi-supervised learning. Compared to the
standard SVM, which aims to find the separating hyperplane
with the maximum margin, S3VM aims to find a separating
hyperplane that not only separates the labeled samples but
also lies in a low-density region of all samples. As illustrated
in @ Figure 13.3, the assumption here is low-density separation,
which is an extension of the clustering assumption under linear
separating hyperplanes.

A well-known S3VM is Transductive Support Vector
Machine (TSVM) (Joachims 1999), which is designed for binary
classification problems. TSVM considers all possible label
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See Chap. 6 for SVM.
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Separating hyperplane of S3VM

\
Separat}ng hyperplane of SVM

Fig. 13.3 S3VM and low-density separation (“+” and “—" are, respectively,
the labeled positive samples and the labeled negative samples; gray dots are
the unlabeled samples)

assignments of unlabeled samples, that is, it temporarily treats
each unlabeled sample as a positive or negative sample during
optimization. By examining unlabeled samples with all possi-
ble label assignments, TSVM aims to find a separating hyper-
plane that maximizes the margin for both labeled samples and
unlabeled samples with label assignment. Once the separating
hyperplane is determined, the final label assignment for the
unlabeled sample is its prediction.

Formally, given a labeled data set D; = {(x1,y1), (x2,
¥2), ..., (x;,¥)} and an unlabeled data set D, = ({x;,
X142,y X4y}, Where y; € {—1,+1}, ] K u,and I + u = m.
The learning objective of TSVM is to predict the labels y =
D11 Via2s -« - Yiaw), Vi € {—1, +1}, for all samples in D,, such
that

min_ 3 Liwiz + ClZS: +Cy Z &

W ’y’ i= l+1
s.t. yi(w xi+b)>1-¢,i=12,...,1,
Piwlxi+b)=>1—¢&, i=1+1,142,.
£>0,i=12,...,m, (13.9)

where (w, b) determines the separating hyperplane; & is the
slack vector, where &; (i = 1, 2, ..., /) corresponds to the loss
of each labeled sample, and & (i = [+ 1,/ + 2,...,m) cor-
responds to the loss of each unlabeled sample; C; and C, are
user-specified trade-off parameters to balance the importance
of model complexity, labeled samples, and unlabeled samples.

Trying out all possible label assignments of unlabeled sam-
ples is an exhaustive process that is only feasible for a small
number of unlabeled samples. In practice, more efficient opti-
mization strategies are usually needed.
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TSVM takes an iterative local search strategy to find an
approximate solution of (13.9). To be specific, it first learns
an SVM from the labeled samples by ignoring any terms or
constraints in (13.9) that involving C, or y. Then, the learned
SVM produces the label assignment by predicting all unlabeled
samples, where the predictions are called pseudo-labels. Substi-
tuting the obtained y into (13.9) gives a standard SVM learning
problem, from which we obtain an updated separating hyper-
plane and an updated slack vector. Since the pseudo-labels may
not be accurate yet, we set C, to a value smaller than C; such
that the labeled samples have larger weights than the unlabeled
samples. After that, TSVM finds two unlabeled samples that
have different label assignments and are likely to be incorrectly
labeled. Then, by swapping the labels of these two samples, we
can obtain the updated separating hyperplane and slack vec-
tor from (13.9) and repeat this process. After each iteration,
we increase the influence of unlabeled samples by increasing
C, gradually, and the iteration repeats until C, = C;. Once
converged, the obtained SVM not only gives labels of unla-
beled samples but can also predict unobserved samples. The
pseudocode of TSVM is given in @ Algorithm 13.1.

Algorithm 13.1 Transductive support vector machine
Input: Labeled data set D; = {(x1, y1), (x2,¥2), ..., (x5, yD};

Unlabeled data set Dy, = {x; 41, X142, ..., X144};
Trade-off parameters C; and C,,.
Process:

1: Train a SVM; using Dy;

2: Use SVM; to predict the samples in D, to get y =
Gi1s P2, -+ Drvu)s

3: Initialize C, < Cy;

4: while C, < C; do

5: Solve (13.9) using Dy, D,,, y, C;, C,, to get (w, b) and &;

6 while 3(i,j | §i7; <OA G >DAE >0 AE +§ >2)}do

7: Ji=-bis

8: Jp ==

9: Solve (13.9) again using Dy, D,, y, C;, C, to get (w, b) and &;

10: end while

11: C, = min{2C,, C}}.

12: end while

Output: Predictions of the unlabeled samples: ¥ = (Dj41, V142 « - - » Vitu)-

The learning process of TSVM may suffer from the class
imbalance problem, in which the number of samples in one class
is far more than the number of samples in the other class. To
alleviate  this problem, we can slightly adjust
B Algorithm 13.1. Specifically, we split the term C,, in the opti-
mization objective to C;\ and C,, which correspond to unla-
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y is known at this point.

Adjust y; and ;.

Increase the influence of
unlabeled samples.

See Sect. 3.6 for class imbalance
problem and the motivation of
(13.10).
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See Joachims (1999) for the
proof of convergence

beled samples with positive and negative pseudo-labels, respec-
tively. Then, TSVM is initialized with

cr="c-, (13.10)
Uy

where u; and u_ are the number of unlabeled samples with

positive and negative pseudo-labels, respectively.

In lines 6-10 of B Algorithm 13.1, the label assignments
yi and ; of two unlabeled samples x; and x; are likely to be
incorrect if §; and j; are different and the corresponding slack
variables satisfy & + & > 2; in such a case, the values of J; and
yj need to be swapped, and (13.9) is optimized again such that
the objective value of (13.9) decreases after each iteration.

The iterative updating process is an expensive large-scale
optimization problem because the algorithm iterates over each
pair of unlabeled samples that are likely to be incorrectly
labeled. Hence, one research focus of S3VM is the design of
efficient optimization strategies, such as LDS (Chapelle and
Zien 2005), which uses gradient descent on graph kernel func-
tions, and meanS3VM (Li et al. 2009), which uses label mean
estimation.

13.4 Graph-Based Semi-Supervised Learning

Training data sets can often be encoded into a graph structure,
in which each node corresponds to a sample, and an edge con-
nects two nodes if their corresponding samples are highly simi-
lar (or correlated). The strength of an edge indicates the degree
of similarity (or correlation). Imagine that the nodes of labeled
samples are colored, and the nodes of unlabeled samples are
uncolored. Then, semi-supervised learning is like the process
of spreading the “color” over the graph. Since a graph corre-
sponds to a matrix, we can derive and analyze semi-supervised
learning algorithms via matrix operations.

Givenalabeled dataset D; = {(x1, y1), (x2,12), ..., (x7, y1)}
and an unlabeled data set D, = {x;y1, X412, ..., X;1+,}, Where
| < uand ! 4+ u = m. We start by constructing a graph G =
(V,E) from D;U D,, where V = {x1,.... X, X141, X1y}
is the node set and FE is the edge set; the edge set E can be rep-
resented as an affinity matrix which is often defined based on
the Gaussian function:

—[lxi—x 3 i
(W) = eXp( % ) WIES (13.11)
0, otherwise,
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where i,j € {1,2,...,m}, and o > 0 is a user-specified band-
width parameter of Gaussian function.

From graph G = (V, E), we aim to learn a real-valued
function f : V' — R with a classification rule y; = sign(f'(x;)),
where y; € {—1, +1}. Intuitively, similar samples share similar
labels, and hence we can define an energy function (Zhu et al.
2003) with respect to £

1 m m

E(f)= 5D > Wi/ (i) = f (x;))?

i=1j=1

= % (Z dif (i) + Y dif )~ 23 Z(W)gf'(x,;)ﬂxj))
i=1 Jj=1 i=1j=1

= A2 = 3 Y W eaf (x)

i=1

i=1j=1

=fTD-Wy, (13.12)

where f = (f;; fu), and f; = (f(x1); f(x2);...;f(x;)) and
SJu = (fxi10);f(x142); .. .5 f(x14,,)) are the predictions of
function f on the labeled and unlabeled samples, respectively;
D = diag(dy, ds, ..., d;y,) is a diagonal matrix in which the
diagonal element d; = Zjl-:’f(W)l-j is the sum of the ith row of
matrix W.

A function f with the minimal energy should satisfy f'(x;) =
yi(i=1,2,...,1) for labeled samples and satisfy A f = 0 for
unlabeled samples, where A = D—W isa Laplacian matrix. For
W and D, we partition the matrix by the /th row and the /th col-
Wi Wlu:|

umn and group the elements into four blocks: W =
£ P |:Wul Wuu

and D = Dy O, . Then, (13.12) can be rewritten as
0,7 Dy
N ogT Ty (1D O | [ Wi Wy, fi
EW) = (fl fu) (|:0u1 Dy W Wy, Su
(13.13)
= [T Ou=Wif1=2fyWuf1+ £ Oue—Wu) fu.
(13.14)
By setting "BE—;’:) =0, we have
fuz(Duu_Wuu)ilwulfb (13'15)

Let
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Minimizing the energy function
gives the optimal result.

Since W is a symmetric matrix,
d; is also the sum of the ith
column.
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_ D' 0, 1[Wy W, }
P — D IW — 1l Tu u
|: 0, D;uljl |:Wu1 Wy

-1 -1
_ [Py Wu Dy Wlu], (13.16)

B |:D;u1WUI D;ulWW
we have P, = D,;ul W, and P, = D;ul W,;. Then, (13.15) can
be rewritten as

fu=Dud =D W)W, £
=1 -D, W) 'D, W, f
=A—Pu) 'Pyf (13.17)

By using the label information of D; as f; = (y1;y2;...5 V1)
and substituting it into (13.17), we have f,, which is then used
to predict the unlabeled samples.

The above process is a label propagation method for binary
classification. Next, we introduce another label propagation
method (Zhou et al. 2004) that is applicable to multiclass clas-
sification.

Suppose y; € V. We start by constructing a graph G =
(V, E) from D;U D,, where V = {x1,...,X},..., X4} 1s the
node set and E is the edge set. The weight matrix W of the edge
set E is the same as (13.11). D = diag(di, da,....djyy,) is a
diagonal matrix in which the diagonal element d; = 2]1:14 (W)
is the sum of the ith row of W. We define a (I + u) x || non-
negative label matrix F = (FT, F2T e, F[lu)—r, where the ith
row F; = ((F)i1, (F)i2, ..., (F);y)) is the label vector of sample
x;, and the classification rule is y; = arg max; <y (F)j-

Fori=1,2,...,mandj=1,2,..., ), we initialize F as
1, ifd<igl! P =)

FO) = (V)= | TASISHAG=D 34
0, otherwise,

where the first / rows of Y refer to the label vectors of the /
labeled samples.

We construct a label propagation matrix S = D WD~:

based on W, where D_% = diag <ﬁ ﬁ,..., \/d;,_ﬂ)
Then, we have the iterative formula
F(t+1)=aSF@) + (1 —a)Y, (13.19)

where o € (0, 1) is a user-specified parameter for balancing
the importance of the label propagation term SF(z) and the
initialization term Y. Iterating (13.19) until convergence, we
have
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F* = lim F() = (1 - )~ aS)7Y, (13.20)
—00
which can be used to obtain the labels (41, J14+2 - - - » Vitu) Of

unlabeled samples. The pseudocode of the algorithm is given
in @ Algorithm 13.2.

Algorithm 13.2 Iterative label propagation

Input: Labeled data set D; = {(x1, y1), (x2,2), ..., (x5, ¥}
Unlabeled data set Dy, = {x; 41, X/42, .- . s X134}
Graph construction parameter o;

Trade-off parameter o.

Process:

1: Use (13.11) and parameter o to obtain W;

ol—

. Use W to construct the label propagation matrix S = D~ IWD- ;
. Initialize F(0) according to (13.18);
t=0;
repeat
Ft+ 1) =aoSF®O+ (1 -a)Y;
t=t+1;
8: until Converged to F*
9:fori=[+1,1+2,...,]+udo
10: P = arg max; ¢;<|y| F)j.
11: end for
Output: Predictions of the unlabeled samples: y = (Ji41, Y1425 - -+ » Vitu)-

AN

Note that 8 Algorithm 13.2 corresponds to the following
regularization framework:

Y s 1 17 !
min | Y Wiy | —=F - —=F| [+2 > 1F - Y2,
Fo2 ij=1 Vd; Vd; i=1

(13.21)

where o > 0 is the regularization parameter. Considering that
the labeled samples are limited while there are many unla-
beled samples, we can introduce the L, regularization term
,uzg?ﬂ |F;|I?> of unlabeled samples to alleviate the over-
fitting problem. When p = ITT“, the optimal solution of

(13.21)equals to the converged solution F* of @ Algorithm 13.2. See Sect. 11.4.

The second term of (13.21) forces the predicted labels of
labeled samples to be similar to the ground-truth labels, and
the first term forces nearby samples to have similar labels, that
is, the basic semi-supervised learning assumption that we have
exploited for (13.12). The only difference is that (13.21) works
for discrete class labels, whereas (13.12) considers continuous
output.

13
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Disagreement is also called
diversity.

The concepts in graph-based semi-supervised learning meth-
ods are well-defined, and the algorithms’ properties can be eas-
ily analyzed from the matrix operations. However, such meth-
ods also have some deficiencies. Firstly, the memory cost can
be very high since the calculations involve matrics of size O(m?)
for a sample size of O(m), that is, it is difficult to apply such
algorithms to large-scale problems. Secondly, the graphs are
constructed from the training samples, making it challenging to
identify the positions of new samples. Hence, with new samples
arrived, we need to re-construct the graph and redo the label
propagation, or introduce an extra prediction mechanism, such
as joining D; and D,, (labeled by label propagation) to train a
classifier (e.g., SVM) for predicting new samples.

13.5 Disagreement-Based Methods

Unlike the previously introduced methods that utilize unla-
beled samples via a single learner, disagreement-based methods
train multiple learners and the disagreement between learners
is crucial for the exploitation of unlabeled data.

Co-training (Blum and Mitchell 1998) is a representative
disagreement-based method. Since it was originally designed
for multi-view data, it is also a representative method for multi-
view learning. Before introducing co-training, let us first take a
look at the multi-view data.

In many real-world applications, a data object can have
multiple attribute sets, where each attribute set provides a view
of the data object. For example, a movie can have different
attribute sets such as the attribute set about the visual images,
the attribute set about the audio, the attribute set about the sub-
titles, and the attribute set about the online reviews. For ease of
discussion, we consider only the visual and audio attribute sets.
Then, a movie clip can be represented as a sample ((x!, x2), »),
where x' is the feature vector of the sample in view i. Let x!
denote the feature vector in the visual view, and x2 denote the
feature vector in the audio view. Let y denote the label, indi-
cating the genre of movies, such as action and romance. Then,
data in the form of ((x!, x2), y) is called multi-view data.

Suppose that different views are compatible, that is, they
share the same output space ). Let ! denote the label space
for visual information, and )* denote the label space for
audio information. Then, we have ¥ = y! = 2. For exam-
ple, both label spaces must be {action, romance} rather than
V' = {action, romance} and )* = {literary, horror}. Under
the above assumption, there are many benefits of explicitly
considering multiple views. For example, it is hard to tell the
genre of a movie when we only see two people looking at each
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other visually. However, it is likely to be a romance movie if
we also hear the phrase “I love you” from the audio. On the
other hand, if both the visual and the audio information sug-
gest action, then putting them together, it is very likely to be
an action movie. Under the assumption of compatibility, the
above example shows that the complementarity between differ-
ent views is useful for constructing learners.

Co-training can exploit the compatibility and complemen-
tarity of multi-view data. Suppose that the data has two suffi-
cient and conditionally independent views, where “sufficient”
means that every view contains enough information to produce
an optimal learner, and “conditionally independent” means
that two views are independent given the class labels. Under
this setting, there is a simple approach to utilize unlabeled
samples. We first use the labeled samples to train a classifier
on each view and then use each classifier to predict the pseudo-
labels of the unlabeled samples that the classifier is most confi-
dent with. After that, we supply the unlabeled samples with
pseudo-labels to the other classifiers as labeled samples for
retraining . . .. Such a “learning from each other and progress-
ing together” process repeats until convergence, that is, no more
changes in both classifiers or the predefined maximum num-
ber of iterations is reached. The pseudocode of the algorithm
is given in @ Algorithm 13.3. The computational cost would
be very high if we consider the classification confidence of all
unlabeled samples in each round. Therefore, Blum and Mitchell
(1998) created a pool of unlabeled samples that are drawn and
replenished in each round. The estimation of classification con-
fidence depends on the base learning algorithm £. For example,
it can be obtained from the posterior probability of naive Bayes
classifier or the margin in SVM.

Though co-training looks simple, theoretical studies (Blum
and Mitchell 1998) showed that the generalization performance
of weak classifiers can be boosted to arbitrary high using unla-
beled samples given that the views are sufficient and condi-
tionally independent. In practice, however, since the views
rarely hold conditional independence, the improvement in per-
formance is often not that significant as in theory. Notably,
the performance of weak learners can still be considerably
improved even with weaker conditions (Zhou and Li 2010).

Co-training was originally designed for multi-view data,
but some variants have been developed for single-view data.
In these variants, different learners are realized by different
algorithms (Goldman and Zhou 2000), different data sam-
pling (Zhou and Li 2005b), or even different parameter set-
tings (Zhouand Li2005a). The performance can still be improved
in these variants by utilizing unlabeled samples. Later on, the-
oretical studies revealed that multi-view data is unnecessary
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See Chap. 8 for weak classifiers.

For example, the visual and
audio of a movie are not
conditionally independent.
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The superscript of x; indicates
the two views rather than
ordinal relationships, that is,
(x}, x%) and (x%, x}) refer to the
same sample.

Letp,n < s.

Initialize the labeled training set
for each view.

Train /; on the view j using the
labeled samples.

Extend the labeled data set.

13

Hence, such methods are called
disagreement-based methods.

Algorithm 13.3 Co-training

Input: Labeled data set D; = {((x}, x%),yl), . ((xl , x,) ok
Unlabeled data set D, = {(x,l+1 s x%+2>* e (x]+u, x,2+u)},
Buffer pool size s;
Number of positive samples in each round p;
Number of negative samples in each round #n;
Base learning algorithm £;
Number of learning rounds 7'.

Process:

1: Construct buffer pool Dy by randomly selecting s samples from D,;

2: Dy = Dy\Dy;
3: for j =1,2do
4 = {0 | (X)) v € Dy
5: end for
6: fort=1,2,..., T do
7: forj=1,2do
8: hj < £(D));
9: Check the classiﬁcation confidences of /; on
D’ {x | ¢ x x ) € Dy}, and select p samples D, C Dy
with the hlghest conﬁdence of being positive and n samples
D,, C D with the highest confidence of being negative;
10: Use D; to generate pseudo-labeled positive samples
Dy = (@] 7, +1) | X} € D));
11: Use D), to generate pseudo-labeled negative samples
D7 = ()7, =1y | x] e D}):
12: Dy = D,\(Dp U D,);
13: end for
14: if 11 and /; are unchanged then
15: break
16: else
17: forj=1,2do
18: D)=} u (B, uDj);
19: end for
20: Randomly select 2p 4+ 2n samples from D, and add them to D;.
21: end if
22: end for

Output: Classifiers /1 and /.

for such algorithms; instead, as long as the weak learners have
a significant disagreement (or difference), exchanging pseudo-
labels can improve generalization performance (Zhou and Li
2010). In other words, different views, different algorithms, dif-
ferent data sampling, and different parameter settings are just
possible ways for generating differences, not necessary condi-
tions.

By choosing the suitable base learners, disagreement-based
methods are less affected by model assumptions, non-convexity
of loss function, and data scale problems. These simple and
effective methods have a solid theoretical foundation and a
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broad scope of applications. To use them, we need to train
multiple learners with significant differences and acceptable
performance, but when there are very limited labeled samples,
especially when the data does not have multiple views, it is not
easy to do without ingenious design.

13.6 Semi-Supervised Clustering

Clustering is a typical unsupervised learning problem in which
we do not rely on supervision information. In practice, how-
ever, we often have access to some additional supervision infor-
mation, which can be utilized to obtain better clustering results
via semi-supervised clustering.

Typically, there are two kinds of supervision information
in clustering tasks. The first kind is must-link and cannot-link
constraints, where must-link means the samples must belong
to the same cluster, and cannot-link means the samples must
not belong to the same cluster. The second kind of supervision
information refers to a small number of labeled samples.

Constrained k-means (Wagstaff et al. 2001) is a representa-
tive semi-supervised clustering algorithm that utilizes supervi-
sion information in the form of must-link and cannot-link con-
straints. Given a data set D = {x, x2, ..., X;;}, a must-link set
M, and a cannot-link set ¢, where (x;, x;) € M means x; and
x; must be in the same cluster and (x;, x;) € C means x; and x;
must not be in the same cluster. Constrained k-means, which is
an extension of k-means, ensures that the constraints in M and
¢ are satisfied during the clustering process; otherwise it will
return an error when the constraints are violated. The pseu-
docode of constrained k-means is given in @ Algorithm 13.4.
Taking the watermelon data set 4.0 as an example, suppose that
must-link constraints exist for the sample pairs x4 and x2s, X 12
and xyg, x14 and x;7, and cannot-link constraints exist for the
sample pairs x, and x»1, x13 and x»23, x19 and x33, that is,

M = {(x4, x25), (x25, X4), (¥12, X20), (¥20, X12), (¥14, X17), (¥17, X14)},

C = {(x2,x21), (¥21, X2), (¥13, ¥23), (¥23, X13), (¥ 19, X23), (¥23, X19)}.

We set k = 3 as the number of clusters and randomly pick
X¢, X12, and x»7 as the initial mean vectors. Under this setting,
B Figure 13.4 shows the results of the constrained k-means
clustering after different iterations. Since the mean vectors do
not change after the Sth iteration (compared to the 4th itera-
tion), we have the final clustering result
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See Sect. 10.6.

See Sect. 9.4.1 for k-means.

The watermelon data set 4.0 is in
B Table9.1 in Sect. 9.4.1.
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Initialize k empty clusters.

Update the mean vectors.

The labels here refer to cluster
labels rather than class labels.

Algorithm 13.4 Constrained k-means clustering

Input: Dataset D = {x1,x2,...,x,};
Must-link constraints set M;
Cannot-link constraints set C;
Number of clusters k.

Process:

1: Randomly select k samples as the initial mean vectors {g1, w2, ..., mi}

2: repeat

3: C=2(1<j<k

4: fori=1,2,...,mdo

5: Compute the distance between sample x; and each mean
vector u;(1 <j < k):dy = Hx,- — /Lj}

2;

6: K={1,2,...,k};

7: is_merged=false;

8: while —is_merged do

9: Use K to find the nearest cluster of x;: r = argmin;e dyj;
10: Check if putting x; into C, violates any constraint in M

or C;

11: if —is_violated then

12: Cr=CrU{x;};

13: is_merged=true

14: else

15: K = K\{r};

16: if L = o then

17: break and return an error message

18: end if

19: end if
20: end while
21: end for
22: for j=1,2,...,k do
23: n= ﬁerC, x;

24: end for

25: until All mean vectors remain unchanged
Output: Clusters C = {Cy, Ca, ..., Ci}

C1 = {x3,x5,X7,X9,X13, X14, X16, X17, X21};
C = {x6, X3, X10, X11, X12, X15, X18, X19, X20};
C3 = {x1,x2,X4, X2, X23, X24, X25, X26, X27, X28, X29, X30}.

Supervision information also exists in the form of a small
number of labeled samples. Given a data set D = {x, x2, ...,
x;} and a small set of labeled samples S = U,l';l S; C D,
where S; # @ is the set of samples in the jth cluster. It is
straightforward to use such supervision information: we can
use the labeled samples as the seeds to initialize the k centroids
of the k-means algorithm, and these seeds are retained in their
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Fig. 13.4 Results of the constrained k-means algorithm after different iter-
ations on the watermelon data set 4.0 with k£ = 3. The symbols “e” and “+”
represent, respectively, the samples and the mean vectors. The must-link con-
straints and the cannot-link constraints are, respectively, represented by the
solid lines and the dashed lines. The red dashed lines show the clusters

clusters during the learning process. Such a procedure gives the
Constrained Seed k-means (Basu et al. 2002), as illustrated in
B Algorithm 13.5.

Taking the watermelon data set 4.0 as an example, suppose
that the following samples are labeled and set as the seeds:

S1 = {x4,x25}, S2 = {x12, x20}, S5 = {x14, x17},

which are used to initialize the mean vectors. Under this setting,
B Figure 13.5shows the results of the constrained seed k-means
clustering after different iterations. As the mean vectors do not
change after the 4th iteration (compared to the 3rd iteration),
we have the final clustering result

C1 = {x1, X2, X4, X22, X23, X24, X25, X26, X27, X28, X29, X30};
Gy = {x6, %7, X8, X10, X11, X12, X15, X 18, X19, X20};
C3 = {x3,X5,X9,X13, X 14, X16, X17, X21}.

13
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ScD,I|S|I«I|D|.

Initialize the cluster centroids
using labeled samples.

Initialize the & clusters using
labeled samples.

Update the mean vectors.

13

Algorithm 13.5 Constrained seed k-means clustering
Input: Dataset D = {x|,x2,...,%Xu};
A small number of labeled samples S = U;; 1S);
Number of clusters k. ‘
Process:
I: forj=1,2,...,kdo
. 1 .
2 W= 5] Lres ¥

3: end for

4: repeat

5: Ci=2(<j<k);

6: forj=1,2,...,kdo

7: for all x € S; do

8: C =CU{x};

9: end for

10: end for
11: for all x; € D\S do

12: Compute the distance between sample x; and each mean

vector u;(1 <j < k):dy = |xi — wj

13: Find the nearest cluster of x;: r = argminje(; 5 1y 45
14: Move x; to the corresponding cluster: C, = C, U {x;};
15: end for

16: forj=1,2,...,kdo

17: n= ﬁzxecj x;

18: end for

19: until All mean vectors remain unchanged
Output: Clusters C = {Cy, Cs, ..., Ci}.

13.7 Further Reading

It is generally agreed that semi-supervised learning was first
studied in Shahshahani and Landgrebe (1994). Due to the vast
demand for utilizing unlabeled data in real-world applications,
semi-supervised learning became a flourishing area of research
in the late twentieth century and the early twenty-first century.
Since 2008, the International Conference on Machine Learn-
ing (ICML) started to give out “10-Year Best Paper Award”
each year, and works on semi-supervised learning have taken
the award three times in six years: Blum and Mitchell (1998)
won the award in 2008 for the contributions to disagreement-
based methods; Joachims (1999) won the award in 2009 for the
contributions to semi-supervised SVM; and Zhu et al. (2003)
won the award in 2013 for the contributions to graph-based
semi-supervised learning. These three works covered three out
of the four mainstream semi-supervised learning paradigms.

Generative semi-supervised learning first appeared in the
work of Shahshahani and Landgrebe (1994), and is mainly
studied in specific application domains since the model assump-
tion relies on sufficiently reliable domain knowledge.
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Fig. 13.5 Results of the constrained seed k-means algorithm after different
iterations on the watermelon data set 4.0 with k = 3. The symbols “e”and “+”
represent, respectively, the samples and the mean vectors. The seed samples
are shown in red and the red dashed lines show the clusters

The objective function of semi-supervised SVM is non-
convex, and efforts have been made to reduce the adverse
effects of non-convexity. For example, Chapelle and Zien
(2006) employed a continuation method to gradually trans-
form a simple convex objective function to a non-convex S3VM
objective function, and Sindhwani et al. (2006) employed a
deterministic annealing technique to convert a non-convex
problem to a series of convex problems, which are then solved
sequentially from the easiest to the most difficult one.
Collobert et al. (2006) utilized a CCCP method to optimize
the non-convex objective function.

Early graph-based semi-supervised learning methods (Blum
and Chawla 2001) took the clustering assumption and regarded
the learning problem as finding the mincut of the graph. For
such methods, the quality of graph is vital. Commonly used
graph structures include Gaussian distance graph, k-nearest
neighbor graph, and e-nearest neighbor graph. Besides, studies
on graph construction (Wang and Zhang 2006; Jebara et al.
2009) and graph kernel methods are also related to graph-based
semi-supervised learning (Chapelle et al. 2003).

Disagreement-based methods originated from co-training,
which was initially designed to choose one learner for predic-
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See Sect. 10.5.1 for k-nearest
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neighbor graph and e-nearest

neighbor graph.
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Many researchers on ensemble
learning argue that the
performance of weak learners
can be boosted to a high level by
employing multiple learners,
and therefore, there is no need
to use unlabeled samples. By
contrast, many researchers on
semi-supervised learning argue
that by employing unlabeled
samples, the performance of
weak learners can be boosted to
a high level, and therefore, there
is no need to combine multiple
learners. However, both
arguments have their
limitations.

Here, “safe” means the
generalization performance after
utilizing unlabeled samples is at
least no worse than that of just
using labeled samples.

tion (Blum and Mitchell 1998). Tri-training used three learn-
ers to generate pseudo-labels by majority voting and ensem-
ble these learners (Zhou and Li 2005b). Subsequent studies
found that combining more learners can further improve per-
formance, and this important fact bridges two independently
developed areas: ensemble learning and semi-supervised learn-
ing (Zhou 2009). Besides, such methods can be easily applied
to multi-view data and can be naturally combined with active
learning (Zhou and Li 2010).

Belkin et al. (2006) proposed the manifold regularization
framework for semi-supervised learning. The framework took
a local smoothness assumption to regularize the loss function
defined over labeled samples such that the prediction function
possessed local smoothness.

Utilizing unlabeled samples through semi-supervised learn-
ing does not necessarily guarantee the improvement in gener-
alization performance, and it may even decrease the perfor-
mance sometimes. For generative methods, it is believed that
inappropriate model assumptions cause performance degener-
ation (Cozman and Cohen 2002), and hence such methods rely
on sufficiently reliable domain knowledge. For semi-supervised
SVM, the performance degeneration is believed to be caused
by the existence of multiple “low-density separations” in the
training set such that the learning algorithm may make a poor
selection. S4VM (Li and Zhou 2015) improved the “safeness”
of semi-supervised SVM by optimizing the worst-case perfor-
mance by exploiting the multiple low-density separators. A
general approach to “safe” semi-supervised learning has yet
to be developed.

Besides classification and clustering problems, semi-
supervised learning has also been widely used in other machine
learning problems, such as semi-supervised regression (Zhou
and Li 2005a) and dimensionality reduction (Zhang et al.
2007). See Chapelle et al. (2006), Zhu (2006) for more infor-
mation about semi-supervised learning. Detailed discussions
on disagreement-based methods can be found in Zhou and Li
(2010). Settles (2009) provided an introduction to active learn-
ing.
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13.1 Derive (13.5), (13.6), (13.7), (13.8).

13.2 Derive a generative semi-supervised learning algorithm
based on the naive Bayes model.

13.3 Suppose that the data set is generated from a mixture of
experts model, that is, the data is generated using the proba-
bility density obtained from the mixture of X components:

k
px16)=> o plx |0y, (13.22)
i=1

where @ = {61, 05, ..., 0;} is the model parameter, p(x | ;) is
the probability density of the ith mixture component, «; > 0 is
the mixture coefficient, and Zf;l «; = 1. Assuming each mix-
ture component corresponds to one class, but each class may
contain multiple mixture components. Derive the correspond-
ing generative semi-supervised learning algorithm.

13.4 Download or implement the TSVM algorithm, and apply
it to two UCI data sets. Use 30% of the samples as testing
samples, 10% of the samples as labeled samples, and 60% of
the samples as unlabeled samples. Train a TSVM model that
utilizes unlabeled samples and a SVM model that only uses
labeled samples, and compare the performance.

13.5 For the TSVM algorithm, the class imbalance problem
may occur during the label assignment or label adjustment.
Design an improved version of the TSVM algorithm that con-
siders the class imbalance problem.

13.6 * The label assignment and label adjustment in the TSVM
algorithm are computationally expensive. Design an improved
version of the TSVM algorithm that is more computationally
efficient.

13.7 * Design a graph-based semi-supervised learning method
that can classify new coming samples.

13.8 Self-training is one of the oldest semi-supervised learning
methods. It uses the labeled samples to train a classifier for
predicting the pseudo-labels of the unlabeled samples. After
that, it uses the labeled samples and the unlabeled samples with
pseudo-labels to train another classifier for revising the pseudo-
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The UCI data sets can be found
at » http://archive.ics.uci.edu/
ml/.
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labels, and this process repeats. Discuss the pros and cons of
this method.

13.9 * Suppose there are two views in the features of a given
data set, but we do not know which features belong to each
view. Design an algorithm that can separate the two views.

13.10 For line 10 of @ Algorithm 13.4, write down the viola-
tion checking algorithm (for checking if any constraints are
violated).
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Short Story: Manifold and Bernhard Riemann

The name manifold comes from the orig-
inal German term Mannigfaltigkeit pro-
posed by the great German mathemati-
cian Bernhard Riemann (1826—1866), who
was born in Breselenz, Germany. Riemann
appeared gifted in mathematics when he
was a child. In 1946, his father sent him to
the University of Géttingen to study The-
ology. However, after attending Gauss’s
lectures on the method of least squares,
Riemann decided to study mathematics instead. In 1847, Rie-
mann transferred to the University of Berlin for two years and
obtained his Ph.D. degree in mathematics under the supervi-
sion of Gauss in 1851. During his study, Riemann was influ-
enced by many great mathematicians, including C. Jacobi and
P. Dirichlet. In 1854, Riemann was invited by Gauss to give his
inaugural lecture “On the Hypotheses which lie at the Bases
of Geometry”, which created a new research area known as
Riemannian geometry. In the lecture, Riemann integral was
proposed, and the term Mannigfaltigkeit appeared for the first
time. After that, Riemann started to teach at the University of
Gottingen and was promoted to professor following the death
of Dirichlet.

Riemann is the creator of Riemann geometry and the
founder of complex analysis. He has made significant con-
tributions to many areas, including calculus, analytic num-
ber theory, combinatorial topology, algebraic geometry, and
mathematical physics. Riemann’s work influenced the devel-
opment of mathematics for a century, and many outstanding
mathematicians have tried to prove the hypotheses proposed
by Riemann. In David Hilbert’s list of 23 unsolved problems
and the 7 Millennium prize problems raised by the Clay Math-
ematics Institute, there is one problem in common, that is,
Riemann hypothesis. Based on the Riemann hypothesis, thou-
sands of mathematical statements have been proposed in dif-
ferent branches of mathematics, and all of them will prompt
to be theorems once Riemann hypothesis is proved. It is very
rare to have a hypothesis connected to that many mathemat-
ical branches and statements, and the Riemann hypothesis is
regarded as one of the most important unsolved mathematical
problems today.
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Among the 7 Millennium prize
problems, the only solved
problem so far is the Poincaré
conjecture, which directly relates
to manifold: every simply
connected, closed 3-manifold is
homeomorphic to the 3-sphere.

Riemann hypothesis was
proposed in 1859 in Riemann’s
paper “On the Number of Prime
Numbers Less Than a Given
Quantity”, which states that the
real part of every non-trivial
zero of the Riemann zeta
function is 1/2.
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A learner makes inference when
it predicts the ripeness of
watermelon based on
information such as texture,
color, and root. However, the
inference is more than just
prediction. For example, when
we eat a ripe watermelon and try
to infer the shape of its root
reversely, it is also inference.

Bayesian networks are often
used when explicit causal
relationships exist between
variables. Markov networks are
often used when correlations
exist between variables while
explicit causal relationships are
difficult to obtain.

See Sect. 7.5 for static Bayesian
network.

14.1 Hidden Markov Model

The most important problem in machine learning is to estimate
and infer the value of unknown variables (e.g., class label) based
on the observed evidence (e.g., training samples). Probabilis-
tic models provide a framework that considers learning prob-
lems as computing the probability distributions of variables.
In probabilistic models, the process of inferring the distribu-
tions of unknown variables conditioned on known variables
is called inference. More specifically, let Y denote the set of
target variables, O denote the set of observable variables, and
R denote the set of other variables. Then, generative models
consider the joint distribution P(Y, R, O), while discrimina-
tive models consider the conditional distribution P(Y, R | O).
Given the values of a set of observed variables, inference aims to
obtain the conditional probability P(Y | O) from P(Y, R, O)
or P(Y,R | O).

It is impractical to eliminate R by probability marginal-
ization since the computational complexity is prohibitive. For
example, it costs at least O(2!YIIRly operations even if each
variable has just two possible values. Besides, the learning pro-
cess of probabilistic models, that is, estimating the parameters
of variable distributions from the data set, is not easy since there
are often complex relationships between variables. Hence, we
must develop a methodology to concisely represent the rela-
tionships between variables for the study of efficient learning
and inference.

Probabilistic Graphical Models (PGM) are a family of
probabilistic models that represent the relationships between
variables with graph structures, in which, each node (also
known as vertex) represents one or a set of random variables
and each link (also known as edge) between two nodes rep-
resents the probabilistic relationship between the variables.
Depending on the properties of edges, probabilistic graphical
models can be roughly divided into two categories. The first
category is called directed graphical models or Bayesian net-
works, which employ Directed Acyclic Graphs (DAG) to repre-
sent the dependence between variables. The second category is
called undirected graphical models or Markov networks, which
employ undirected graphs to represent the dependence between
variables.

The simplest dynamic Bayesian network is Hidden Markov
Model (HMM), a well-known directed graphical model com-
monly used for modeling time-series data and has been widely
used in speech recognition and natural language processing.

As illustrated in @ Figure 14.1, there are two sets of vari-
ables in an HMM. The first set of variables are state variables
{y1,»2,..., v}, where y; € Y represents the system state at


https://doi.org/10.1007/978-981-15-9460-1_7
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Fig. 14.1 The graph structure of HMM

the ith time point. The state variables are usually assumed to
be hidden and unobserved, hence they are also called hidden
variables. The second set of variables are observed variables
{x1, x2, ..., xn}, where x; € Xrepresents the observation at the
ith time point. In HMM, the system changes between different
states {s1, 52, ..., sy}, and hence the state space Y is usually a
discrete space with N possible values. The observed variables
xi, however, can be either discrete or continuous. For ease of
discussion, we assume that the observed variables are discrete,
re., X=1{01,02,...,0up}.

The directed links in @ Figure 14.1 represent the depen-
dence between variables. For each time point, the value of an
observed variable only depends on the state variable, that is,
X, is solely determined by y,. Meanwhile, the state y, at time
point ¢ only depends on the state y,_; at time point z — 1 and
is independent of the previous ¢ — 2 states. Such a model is
known as Markov chain, in which the system state at the next
time point does not depend on any previous states but the cur-
rent state. Under this dependence setting, the joint probability
of all variables is

P Y1 nXm yn) = PP | y) [[ PO 1 vicDP G | i)
i=2
(14.1)

In addition to the structure information, an HMM has three
more sets of parameters
== State transition probabilities: the probabilities that the model
changes between states, usually denoted by matrix A =
[a;i1n xn, Where

aj =Py1=slyi=s), 1<i,j<N

indicates the probability that the next state is 5; when the
current state is s; at time point z.

== Qutput observation probabilities: the probabilities of obser-
vations based on the current state, usually denoted by
matrix B = [b;]y xm, Where

a5 14

“The future depends on what
you do today.”—Mahatma
Gandhi.
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bijZP(XIZOj|y;=Si), I<i<N,1<j<M

indicates the probability of observing o; when the current
state is s; at time point 7.

Initial state probabilities: the probability of each state that
appears at the initial time point, usually denoted by = =
(Tl'], Ty vnny TI'N), where

T =Py1=s5), 1<i<N
indicates the probability that the initial state is s;.

The above three sets of parameters together with the state

space Y and the observation space X determine an HMM, usu-
ally denoted by A = [A, B, 7w]. Given an HMM ), it generates

the observed sequence {xi, x2, ..., X} by the following pro-
cess:
(1) Set ¢t =1 and select the initial state y; based on the initial

state probability ;

(2) Select the value of the observed variable x;, based on the
state variable y, and the output observation probability
matrix B;

(3) Transition to the next state y;, | based on the current state
y; and the state transition probability matrix A;

(4) Ift <m,sett = t+1 and return to step (2); otherwise, stop.

Vi € {81,582, ...,sny}and x; € {01, 02, ..., 0pr} are the state and

observation at time point ¢, respectively.

There are three fundamental problems when applying HMM

in practice:

Given a model A = [A, B, ], how can we effectively cal-
culate the probability P(x | A) for generating the observed
sequence X = {x1, X2, ..., X,}? In other words, how to eval-
uate the matching degree between a model and an observed
sequence?

Given amodel A = [A, B, 7v] and an observed sequence x =
{x1, x2, ..., x}, how can we find the best state sequence
y = {¥1, 2, - . ., yn} that matches x? In other words, how to
infer the hidden states from the observed sequence?

Given an observed sequence x = {x, x2, ..., X;}, how can
we adjust the model parameter A = [A, B, ] such that
the probability P(x | \) of observing the given sequence is
maximized? In other words, how to train the model such
that it can better describe the observed data?

The above problems are critical in real-world applications.

For example, in many tasks, we need to estimate the most
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likely value of the current observation x, based on the pre-
viously observed sequence {x1, X2, ..., X,_1}; this problem can
be solved by finding P(x | A), that is, the first listed problem.
In speech recognition problems, the observations are audio
signals, the hidden states are spoken texts, and the task is to
infer the most likely state sequence (i.c., spoken texts) based
on the observed sequence (i.e., audio signals), that is, the sec-
ond listed problem. In many applications, manually specifying
model parameters is becoming impractical, and hence model
parameters need to be learned from data, that is, the third listed
problem. Fortunately, thanks to the conditional independence
given in (14.1), all of the three listed problems can be solved
efficiently.

14.2 Markov Random Field

Markov Random Field (MRF) is a typical Markov network
and a well-known undirected graphical model. In MRF, each
node represents one or a set of variables, and the edges between
nodes represent the variable dependence. Besides, there is a set
of potential functions, also known as factors, which are non-
negative real-valued functions defined over variable subsets
mainly for defining probability distribution functions.

A simple MREF is illustrated in @8 Figure 14.2. A subset of
nodes in the graph is called a cligue if there exists a link between
any two nodes. We say a clique is a maximal clique if adding any
extra node makes it no longer a clique; in other words, a maxi-
mal clique is a clique that is not contained in any other cliques.
For example, the cliques in @ Figure 14.2 are {x1, x3}, {x1, x3},
{x2, x4}, {x2, x5}, {x2, X6}, {x3, x5}, {x5, x6}, and {x2, x5, x¢},
which are also maximal cliques except {x2, x5}, {x2, x¢}, and
{xs, x6}; {x1, X2, x3} isnot a clique since there is no link between
x7 and x3. We notice that every node appears in at least one
maximal clique.

Fig. 14.2 A simple MRF
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See Sect. 7.5.1.

In MREF, the joint probability of multiple variables can be
decomposed into the product of multiple factors based on the
cliques, and each factor corresponds to one clique. To be spe-
cific, let x = {x1, x2, ..., x,} denote the set of n variables, ¢
denote the set of all cliques, and xp denote the set of variables
in clique Q € ¢, then the joint probability P(x) is defined as

1
P(X) =~ [ ¢oxo). (14.2)
QeC

where ¢ is the potential function that captures the depen-
dence between variables in clique Q; Z = 3\ [[pec ¥Y0(X0)
is the normalization factor that ensures P(x) is a properly
defined probability. In practice, it is often difficult to calcu-
late Z exactly, but we usually do not need the exact value.

When there are many variables, the number of cliques can be
quite large. For example, every pair of linked variables forms a
clique, and hence there will be many terms multiplied in (14.2),
leading to high computational cost. We notice that, if clique Q
is not a maximal clique, then it is contained in a maximal clique
O* (i.e., xg < xp+). Hence, the dependence between variables
X isnot only encoded in the potential function 1), but also the
potential function vg+«. Therefore, it is also possible to define
the joint probability P(x) based on the maximal cliques. Let c*
denote the set of all maximal cliques, we have

1
P(X) = — [ voxo. (14.3)

Qec*

where Z* = 3 [peer Y0 (Xg) is the normalization factor.

Taking @ Figure 14.2 as an example, the joint probability P(x)
can be defined as

1
P(x) = 2¢12 (x1, X2)¥13(x1, X3)¥24 (X2, X4)1035(x3, X5)1256 (X2, X5, X6),

where the potential function s56(x2, X5, X¢) is defined over
the maximal clique {x», x5, x¢}. Since we have ¥y56(x2, X5, X¢),
there is no need to construct the potential functions for the
cliques {x2, x5}, {x2, x¢}, and {xs, x¢}.

How can we obtain conditional independence in MRF?
We still utilize the concept of separation. As illustrated in
@ Figure 14.3, the path connecting a node in the node set 4
to a node in node set B passes through the node set C, and we
say C is a separating set that separates 4 and B. For MRF, we
have the global Markov property: two subsets of variables are
conditionally independent given a separating set of these two
subsets.
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Fig.14.3 The node set C separates the node set 4 and the node set B

Taking @ Figure 14.3 as an example, let x4, xp, and x¢
denote the sets of variables for 4, B, and C, respectively. Then,
x4 and xp are conditionally independent given x¢, denoted by
x4 L Xp | Xxc.

Now, let us do a simple verification. For ease of discussion,
let A, B, and C correspond to single variables x4, xg, and x¢,
respectively. Then, 8 Figure 14.3 is simplified to @ Figure 14.4.

Fig. 14.4 A simplified version of @ Figure 14.3

From (14.2), the joint probability of the variables in
@ Figure 14.4 is given by

1
P(x4,xp,xc) = EWC(XA, xc)¥pc(XB, Xc). (14.4)

According to the definition of conditional probability, we have

P(x4,xp.XC) _ P(x4,xp,xC)
P(xc) Zx;i be P(xy, xg, xC)

P(xgq,xp | xc) =

1
_ zV4acy, xc)dpe(xp, XC)
= I
Xy, X, 7%ac ¥y xOvpe (X, xc)

_ Yvac(xq, xXC) ) Ypc(XB, XC) (145)
foA Yac¥y, x0) be Ypc(X. x0)’

Plrg, xe) | 2y PO Y x0)
Pxe) Xy Xy, Py Xp.xC)

P(xylxc) =

1,
2w, z%ac (4 xO1pe(Xp, xC)

= 1
v, Xy 7z%ac Wy xO)pe (X xc)

Yac(Xq,xC)
= AcA4 207 14.6
Xy, vacyxe) (14.6)

14
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The set of parents, children, and
children’s parents is called the
Markov blanket of a variable.

From (14.5) and (14.6), we have
P(x4,xp | xc) = P(x4 | x0)P(xp | x0), (14.7)

that is, x4 and xp are conditionally independent given xc.
From the global Markov property, we can derive the fol-

lowing two useful corollaries:

== Local Markov property: a variable is conditionally indepen-
dent of other variables given its adjacent variables. For-
mally, we have X, L Xp\p+(v) | Xn(v), where V' is the set of
all nodes in the graph, n(v) are the adjacent nodes of node
v in the graph, and n*(v) = n(v) U {v}.

= Pairwise Markov property: two non-adjacent variables are
conditionally independent given all other variables. For-
mally, we have x,, L X, | Xp\(u,0y if (1, v) ¢ E, where u and
v are two nodes in the graph, and V and E are, respectively,
the set of all nodes and the set of all edges in the graph.

Now, let us take a look at the potential functions in MRF.
A potential function ¥ (x) describes the dependence between
a set of variables x¢. It should be a non-negative function that
returns a large value when the variables take preferred values.
For example, suppose that all variables in 8 Figure 14.4 are
binary variables, and the potential functions are

1.5, ifxy = xc;
0.1, otherwise,

pac(xq, xc) = {

Spc ) 0.2, ifxp=xc;
BC\XB, XC) = .
¢ ¢ 1.3, otherwise,
then the model is biased towards x4 = x¢ and xg # xc,
that is, x4 and x¢ are positively correlated, while xp and x¢
are negatively correlated. From (14.2), we know that the joint
probability would be high when the variable assignments sat-
isfy x4 = xc and xp # xc.

To satisfy the non-negativity, we often use exponential func-
tions to define potential functions

Po(xp) = e o), (14.8)

Hp(xg) isreal-valued function defined on variable x¢, usually
in the form of

HQ(XQ) = Z QuyXyXy + Z By Xy, (14.9)
u,veQ,u#v veQ

where a,, and (3, are parameters. In (14.9), the first term con-
siders pairs of nodes and the second term considers individual
nodes.
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14.3 Conditional Random Field

Conditional Random Field (CRF) is a discriminative undi-
rected graphical model. In Sect. 14.1, we mentioned that gen-
erative models consider joint distributions, while discrimina-
tive models consider conditional distributions. The previously
introduced HMM and MRF are examples of generative mod-
els, and now we introduce CRF as an example of discriminative
models.

CRF aims to model the conditional probability of mul-
tiple variables given some observed values. To be specific,
CRF constructs a conditional probability model P(y | x),
where x = {x1,x2,..., Xy} is the observed sequence, and
y = {y1, 2, ..., Vu} is the corresponding label sequence. Note
that the label variable y can be structural, that is, there are
some correlations among its components. For example, in part-
of-speech tagging problems, the observations are natural lan-
guage sentences (i.e., sequences of words), and the labels are
sequences of part-of-speech tags, as shown in @ Figure 14.5(a).
In syntactic analysis, the output labels are parse trees, as shown
in @ Figure 14.5(b).

[S]

e~ v
(Y1 Y2 Y3 Ya¥Ys Yo} y
[D N ™V Pl N (PP
[NP]
N
{ry w0 w3 X475 6} [D] [N] [V] [P][D] N]

l The boy knocked at the watermelon. ‘ l The boy knocked at the watermelon. ‘ X

(a) Part-of-speech tagging. (b) Syntactic analysis.

Fig. 14.5 The part-of-speech tagging problem and the syntactic analysis
problem in natural language processing

Let G = (V, E) be an undirected graph in which each node
corresponds to one component in the label vector y, where y, is
the component corresponding to node v, and let n(v) denote the
adjacent nodes of node v. Then, we say (y, x) forms a CRF if
every label variable y, in graph G satisfies the Markov property

Py | X, ympy) = PO | X, Yu)s (14.10)

Theoretically, the structure of graph G can be arbitrary as
long as it encodes the conditional independence between label
variables. In practice, however, especially when modeling label
sequences, the most common structure is the chain structure,

14
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We can regard CRF as MRF
with observed values, or as an
extension of logistic regression.
See Sect. 3.3.
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A1 Y2 Y3 Yn

x={x129 ... T2}

Fig.14.6 The graph structure of chain-structured CRF

as illustrated in @ Figure 14.6. Such a CRF is called chain-
structured CRF, which is the focus of the rest of our discussions.

Similar to how joint probability is defined in MRF, CRF
defines conditional probability P(y | x) according to the poten-
tial functions and cliques in the graph structure. Given an
observed sequence X, the chain-structured CRF in @ Figure 14.6
mainly contains two types of cliques about label variables, that
is, one for single label variable {y;} and the other for adjacent
label variables {y;_1, y;}. With appropriate potential functions,
we can define conditional probability like (14.2). In CRF, by
using exponential potential functions and introducing feature
functions, the conditional probability is defined as

n—1 n
Py|x) = %exp (Z D NG e X D+ DY sk X, f))

j o=l k i=l

(14.11)

where #;(yiy1, Vi, X, i) is the transition feature function defined
on two adjacent labels in the observed sequence, describing the
relationship between the two adjacent labels as well as measur-
ing the impact of the observed sequence on them; si (y;, X, 7)
is the status feature function defined on the label index i in
the observed sequence, describing the impact of the observed
sequence on the label variable; \; and py are parameters; Z is
the normalization factor that ensures (14.11) to be a properly
defined probability.

We also need to define appropriate feature functions, which
are usually real-valued functions that describe empirical prop-
erties that are likely or expected to be held about the data.
Taking the part-of-speech tagging in @ Figure 14.5 (a) as an
example, we can employ the following transition feature func-
tion:

1, ifyi1 =[P, yi =[V]and x; = “knock”;

Gig1, Yis X, 1) = .
T ! 0, otherwise,
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which says the labels y; and y;; are likely to be [}V'] and [P]
when the ith observation x; is the word “knock”. We can also
employ the following status feature function:

St X 1) = 1, ify; = .[V] and x; = “knock”;
0, otherwise,

which says that the label y; is likely to be [ V] if the observation

x; 1s the word “knock”.

By comparing (14.11) and (14.2), we can observe that both
CRF and MRF define the probabilities using potential func-
tions on cliques. The difference is that CRF models conditional
probabilities, whereas MRF models joint probabilities.

14.4 Learning and Inference

Given the joint probability distributions defined on proba-
bilistic graphical models, we can infer the marginal distribu-
tion or conditional distribution of the target variables. We have
encountered conditional distributions previously. For exam-
ple, in HMM, we infer the conditional probability distribution
of an observed sequence x given certain parameter A. By con-
trast, marginal distribution refers to probabilities obtained by
summing out or integrating out irrelevant variables. Taking
Markov networks as an example, the joint distribution of vari-
ables is expressed as the product of maximal cliques’ potential
functions, and therefore, finding the distribution of variable x
given parameter © is equivalent to integrating out irrelevant
variables in the joint distribution, known as marginalization.

In probabilistic graphical models, we also need to deter-
mine the parameters of distributions by parameter estimation
(i.e., parameter learning), which is often solved via maximum
likelihood estimation or maximum a posteriori estimation. If
we consider the parameters as variables to be inferred, then the
parameter estimation process is similar to the inference pro-
cess, that is, it can be absorbed into the inference problem.
Hence, we mainly discuss the inference methods for the rest of
our discussions.

To be specific, suppose that the set of variables x = {x1, x7,
..., Xy} in a graphical model can be divided into two disjoint
variable sets xg and xf, then the inference problem is about
finding the marginal probability P(xf) or the conditional prob-
ability P(xp | xg). From the definition of conditional proba-
bility, we have

P(xg,xp) _ P(Xg,Xr)

= , 14.12
P(xE) > xp PXE, XF) ( )

P(xp | Xg) =

553 14

The Bayesian school thinks that
unknown parameters are
random variables, just like all
other variables. Hence,
parameter estimation and
variable inference can be
performed within the same
inference framework. The
frequentist school disagrees.
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where the joint probability P(Xg, Xr) can be obtained from the
probabilistic graphical model. Hence, the core of the inference
problem is how to efficiently compute the marginal distribu-
tion, that is

P(xp) = > P(Xg, Xp). (14.13)

Xy

There are two types of inference methods for probabilistic
graphical models: exact inference methods and approximate
inference methods. Exact inference methods compute the exact
values of marginal distributions or conditional distributions.
However, such methods are often impractical since their com-
putational complexity increases exponentially to the number of
maximal cliques. By contrast, approximate inference methods
find approximate solutions with tractable time complexity and
are more practical in real-world applications. The rest of this
section introduces two representative exact inference methods,
and we will introduce approximate inference methods in the
next section.

14.4.1 Variable Elimination

Exact inference methods are essentially a kind of dynamic pro-
gramming methods. Such methods attempt to reduce the cost
of computing the target probability by exploiting the condi-
tional independence encoded by the graphical model. Among
them, variable elimination is the most intuitive one and is the
basis of other exact inference methods.
We demonstrate variable elimination with the directed graph-

ical model in @ Figure 14.7 (a).

mia(z2)
1247

@@ @)
@ i)

(a) Bayesian network structure. (b) Message passing.

Fig. 14.7 The process of variable elimination and message passing
Suppose that the inference objective is to compute the

marginal probability P(xs5). To compute it, we only need to
eliminate the variables {x1, x7, X3, x4} by summation, that is
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P(xs) =) D D D P(x1,x2, X3, X4, X5)

X4 X3 X3 X|

= E E E E P(x)P(xy | x1)P(x3 | x2)P(x4 | x3)P(x5 | x3).
X4 X3 X X|
(14.14)

By doing the summations in the order of {x1, x3, x4, X3}, we
have

P(xs) =) P(xs|x3) ) P(xa|x3) ) P(x3]x2) ) P(x)P(xa | x1)
X3 X4 X2 X1

= P(xs|x3) Y Plxg|x3) Y Plx3|xpmpp(xz), (14.15)
X3 X4 X2

where m;;(x;) is an intermediate result in the summation, the
subscript i indicates that the term is the summation result with
respect to x;, and the subscript j indicates other variables in the
term. We notice that m;;(x;) is a function of x;. By repeating
the process, we have

P(xs) =Y P(xs|x3) > P(x4| x3)m3(x3)

X3 X4
=Y P(xs | x3)mp3(x3) Y P(xq | X3)
X3 X4
=Y Plxs | x3)ma3(x3)ma3(x3)
X3
= m35(x5). (14.16)

m3s5(xs) is a function of x5 and only depends on the value of
Xs.

The above method also applies to undirected graphical
models. For example, if we ignore the directions of the edges
in @ Figure 14.7 (a) and consider it as an undirected graphical
model, then we have

1
P(xy, xp, x3, x4, x5) = Ewlz(m,xz)?/fza(XL X3)¥34(x3, X4)9P35(x3, X5),
(14.17)

where Z is the normalization factor. The marginal distribution
P(xs5) is given by

1
P(xs) =~ D bas(xa, x5) Y waa(x3, X4) D a3(x2, x3) Y whia(x1, X2)
X3 X4 X2 X1

1
=z Z $35(x3, X5) Z 1h34(x3, X4) Z 23 (32, X3)m12(x2)
X3 X4 X2

= st (14.18)

355

Using the conditional
independence encoded by the
directed graphical model.

14
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Also known as the sum-product
algorithm.

By using the distributive law of multiplication to addition,
variable elimination converts the problem of calculating sum-
mations of products of multiple variables to the problem of
alternately calculating summations and products of some of
the variables. Doing so simplifies the calculations by restrict-
ing the summations and products to local regions that involve
only some of the variables.

Nevertheless, variable elimination has a clear disadvan-
tage: there is a considerable amount of redundancy in the
calculations of multiple marginal distributions. Taking the
Bayesian network in B Figure 14.7 (a) as an example, if we
compute P(x4) after computing P(xs), then the calculations of
m12(x2) and mp3(x3) are repetitive when the summation order
is {x1, x2, x5, X3}

14.4.2 Belief Propagation

The belief propagation algorithm avoid repetitive calculations
by considering the summation operations in variable elimina-
tion as a process of message passing. In variable elimination, a
variable x; is eliminated by the summation operation

my(x) = iy [ mutxn. (14.19)
Xi ken(i)\j

where n(7) are the adjacent nodes of x;. In belief propagation,
however, the operation is considered as passing the message
m;;(x;) from x; to x;. By doing so, the variable elimination pro-
cessin (14.15) and (14.16) becomes a message passing process,
as illustrated in @ Figure 14.7 (b). We see that each message
passing operation involves only x; and its adjacent nodes, and
hence the calculations are restricted to local regions.

In belief propagation, a node starts to pass messages after
receiving the messages from all other nodes. The marginal dis-
tribution of a node is proportional to the product of all received
messages, that is

P(xp)oc [T muitx. (14.20)
ken(i)

Taking B Figure 14.7 (b) as an example, x3 must receive the
messages from x, and x4 before it passes the message to xs,
and the message m3s5(x5) that x3 passes to x5 is exactly P(xs).

When there is no cycle in the graph, belief propagation can
compute marginal distributions of all variables via the follow-
ing two steps:
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may(21) maa(:

—

(a) Passing messages to the root node. (b) Passing messages from the root node.

Fig.14.8 An illustration of the belief propagation algorithm

== Select a root node, and then pass messages from all leaf
nodes to the root node until the root node has received
messages from all adjacent nodes;

== Pass messages from the root node toward leaf nodes until
all leaf nodes have received messages.

Taking @ Figure 14.7 (a) as an example, let x| be the root
node, and x4 and x5 be the leaf nodes. The two steps of message
passing are illustrated in @ Figure 14.8, where each edge has
two messages on it with different directions. From the messages
and (14.20), we have the marginal probabilities of all variables.

145 Approximate Inference

Exact inference methods are usually computationally expen-
sive, and hence we often use approximate inference methods
in practice. Roughly speaking, there are two types of approxi-
mate inference methods, namely sampling, which accomplishes
approximation by stochastic methods, and deterministic approx-
imations, represented by variational inference.

14.5.1 MCMC Sampling

In many tasks, we are interested in probability distributions
just because we need them to calculate some expectations for
decision-making. Taking the Bayesian network in @ Figure 14.7
(a) as an example, the goal of inference could be finding the
expectation of xs. It turns out that, sometimes, it can be more
efficient to calculate or approximate the expectations directly
without finding the probability distributions first.

The above idea motivates the sampling methods. Suppose
our objective is to find the expectation of the function f'(x) with
respect to the probability density function p(x)

Eplf1= /f(X)p(x)dx- (14.21)

357

Replace integration with
summation if x is discrete.
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Or a distribution related to p(x).

We can approximate the objective expectation E[f] by sam-
pling a set of samples {x1, x2, ..., xy} from p(x) and then com-
pute the mean of f(x) on these samples

. 1 X
== l;f (x1), (14.22)

According to the law of large numbers, we can obtain an accu-
rate approximation from the i.i.d. samples {xj, x2, ..., xy}
by large-scale sampling. The problem here is how to sam-
ple? For example, in probabilistic graphical models, how can
we efficiently obtain samples from the probability distribution
described by the graphical model?

One of the most commonly used sampling techniques for
probabilistic graphical models is the Markov Chain Monte
Carlo (MCMC) method. Given the probability density func-
tion p(x) of a continuous variable x € X, the probability that
x lies in the interval A4 is

P(A) = /p(x)dx. (14.23)
A
Iff : X — R, then the expectation of f(x) is given by

2() = Eplf (X)] = / FpCOdx. (14.24)

However, the integration in (14.24) is not easy to compute when
x isnot univariate but a high-dimensional multivariate variable
x that follows a complex distribution. Hence, MCMC first con-
structs some i.i.d. samples X1, Xp, ..., Xy that follow the dis-
tribution p, and then obtains an unbiased estimate of (14.24)
as

i g
= l;f (X)) (14.25)

Nevertheless, constructing i.i.d. samples that follow the dis-
tribution p can still be difficult if the probability density func-
tion p(x) is complex. The key idea of MCMC is to generate
samples by constructing a “Markov chain with stationary dis-
tribution p”. To be specific, by letting the Markov chain run for
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a sufficiently long time (i.c., converged to a stationary distri-
bution), the generated samples approximately follow the dis-
tribution p. How do we know if the Markov chain has arrived
at a stationary state? We say a Markov chain 7T has arrived at
a stationary state with a stationary distribution p(x’) once the
following stationary condition is met at time point :

pOHTE T x) = pxHT(x" | x'7), (14.26)

where T'(x" | x) is the state transition probability (i.e., the prob-
ability of transitioning from state x to state x’), and p(x’) is the
distribution at time point ¢.

Inshort, MCMC starts by constructing a Markov chain and
let it converge to the stationary distribution, which is exactly
the posterior distribution of the parameters to be estimated.
Then, it uses the Markov chain to generate the desired samples
for further estimations. A vital step in this process is construct-
ing the state transition probabilities of the Markov chain, and
different construction methods lead to different MCMC algo-
rithms.

The Metropolis—Hastings (MH) algorithm is an important
representative of MCMC methods, which approximates the
stationary distribution p via reject sampling. The MH algo-
rithm is given in @ Figure 14.1. In each round, the MH algo-
rithm draws a candidate state sample x* based on the sample
x’~1 of the last round, where x* has a certain probability of
being “rejected”. Once x* converged to a stationary state, from
(14.26), we have

PO Hoot X THA X7 = px) o XA ),
(14.27)

where Q(x* | x'~!) is the user-specified prior probability,
A(x* | x'~1) is the probability of accepting x*, and Q(x* |
x'~ N A(x* | x'~1) is the state transition probability from state
x'~1 to state x*. To arrive at the stationary state, we just need
to set the acceptance probability to

T N PXHOT! | x%)
AKX™ | x )_mm<l’p(xf1)Q(x*|x’1) . (14.28)

559 14

The Metropolis—Hastings
algorithm is named after the
original authors Metropolis

et al. (1953) and Hastings (1970),
who extended the algorithm to a
general form afterwards.
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Repeat enough times to arrive at
the stationary distribution.

According to (14.28).

In practice, we often discard the
samples in the beginning of the
list since we wish to use samples
generated from the stationary

distribution.
See Sect. 7.5.3 for Gibbs

sampling.

14

Algorithm 14.1 Metropolis—Hastings Sampling

Input: Prior probability Q(x* | x'~1).
Process:

1: Initialize x°;

2: fort=1,2,...do

3: Sample the candidate sample x* according to Q(x* | x'~1);

4: Sample the threshold « from range (0, 1) according to uniform
distribution;

5 if u < A(x* | x'~1) then

6: x! = x*;

7: else

8: x! =x—1,

9: end if

10: end for

11: return xl, xz,
2

Output: A list of sampled samples: x!, x2, ...

Gibbs sampling is sometimes considered as a special case of
the MH algorithm, since it also obtains samples using Markov
chains with the target sampling distribution p(x) as the sta-
tionary distribution. Specifically, let x = {x1, x3,..., xy} be
the set of variables, and p(x) be the objective distribution, then
the Gibbs sampling algorithm generates samples by repeating
the following steps after initializing x:

(1) Select a variable x; either randomly or according to a cer-
tain ordering;

(2) Compute the conditional probability p(x; | X;), where x; =
{x1,Xx2, ..., Xi—1, Xi+1, ..., XN} 1s the current value of x
excluding x;;

(3) Sample a new value of x; from p(x; | x;) and replace the
original value.

14.5.2 Variational Inference

Variational inference approximates complex distributions with
simple and known distributions. It restricts the type of the
approximate distribution, such that the approximate posterior
distribution is locally optimal with a deterministic solution.
Before introducing the details of variational inference, let us
see a concise way of representing graphical models—plate nota-
tion (Buntine 1994). Figurel4.9 gives an example.
@ Figure 14.9 (a) shows that there are N variables {x{, x3, ...,
xy} dependent on the variable z. In @ Figure 14.9 (b), the plate
notation compactly describes the same relationship, where
multiple variables independently generated by the same mech-
anism are placed in the same rectangle (plate), which allows
nesting, and there is a label N indicating the number of repeti-
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(a) Typical variable dependency graph. (b) Plate notation.

Fig. 14.9 An example of plate notation

tions. Observable or known variables are usually shaded, e.g.,
x in @ Figure 14.9. The plate notation provides a very concise
way of representing variable relationships in various learning
problems.

In @ Figure 14.9 (b), the probability density function of all
observable variables x is

N

x| ©) =[] pGxiz]0), (14.29)

i=1

which has the corresponding log-likelihood function

N
Inp(x|®) =>In {Zp(xi,z | @)}, (14.30)
i=1 z

where x = {x1, x2, ..., xy}, ©® includes the parameters of the
distributions that x and z follow.

Generally speaking, the inference and learning task in
@ Figure 14.9is mainly estimating the hidden variable z and the
distribution parameter variable ©, that is, finding p(z | x, ®)
and ©.

The parameters of graphical models are often estimated by
maximum likelihood estimation. For (14.30), we can apply the
EM algorithm. In the E-step, we infer p(z | x, ©') by the param-
eter variable ®' at time point z, and then compute the joint like-
lihood function p(x, z | ®). In the M-step, we use the current
parameter O obtained in the E-step to find the parameter @1
of the next time point by optimizing the function 9(®; @)

Ot = argmax Q(©; ®)
S}
= arg max Zp(z | x,®)Inp(x,z | O). (14.31)
@ z
where Q(®; ®) is actually the expectation of the joint log-

likelihood function In p(x, z | ®) with respect to the distribu-
tion p(z | x, ®). It approximates the log-likelihood function

” 14

Approximate distributions used
in variational inference should
have nice mathematical
properties. They are usually
probability density functions of
continuous variables.

See Sect. 7.6 for the EM
algorithm.
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See Appendix C.3 for the KL
divergence.

To make the notation
uncluttered, we abbreviate ¢;(z;)
as ¢q;.

const is a constant.

when the distribution p(z | x, ®) equals to the ground-truth
posterior distribution of the hidden variable z. Hence, the EM
algorithm estimates not only the parameter ® but also the dis-
tribution of the hidden variable z.

Note that p(z | x, ®) is not necessarily the ground-truth
distribution of z but only an approximate distribution. Let ¢(z)
denote the approximate distribution, we can derive

Inp(x) = L(¢) + KL(qllp), (14.32)
where
L(q) =/q(z) ln{M}dZ, (14.33)
q(z)

p(z]|x)

KL(qllp) = —/q(z) In dz. (14.34)

In practice, however, it may be difficult to find p(z | x, ®') in
the E-step due to the intractable multivariate z, and this is when
variational inference comes in handy. We typically assume that
z follows the distribution

M
9@ =[] gi(z). (14.35)
i=1

In other words, we assume that we can decompose the complex
multivariate variable z into a series of independent multivariate
variables z;. With this assumption, the distribution ¢; can be
made simple or has a good structure. For example, suppose ¢;
is an exponential family distribution, then we have

L(q) :/nqi {lnp(x, 7) — Zlnqi} dz
= /qj (/lnp(x, z) l_[qidzi} dz; — / gj In g;dz; + const

i#f
= /qj In p(x, z)dz; —/qj In gjdz; + const, (14.36)
where
Inp(x, z;) = E;»;[In p(x, z)] + const, (14.37)
Eizllnp(x,2)] = /lnp(x, z) Hq,-dz,-. (14.38)

i#j
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Since we are interested in ¢;, we can maximize £(g) with g;;
fixed. We notice that (14.36) equals to —KL(g; || p(x, z;)), that
is, £(g) is maximized when ¢; = p(x, z;). Hence, the optimal
distribution ¢} that the variable subset z; follows should satisfy

Ing; (z)) = Eizj(Inp(x, 2)] + const, (14.39)
so we have

exp (Eiz[Inp(x, 2)])
[ exp (Eix[inp(x, 2)]) dz;’

q; () = (14.40)

In other words, with the assumption (14.35), (14.40) provides
the best approximation to the ground-truth distribution of the
variable subset z;.

With the assumption (14.35), we can often find a closed
form solution to E;;[In p(x, z)] by properly partitioning vari-
able subsets z; and selecting the distribution that ¢; follows;
hence the hidden variable z can be inferred efficiently by
(14.40). From (14.38), we observe that the estimation of the dis-
tribution ¢; of z; not only considers z; but also z;x;. Since this is
achieved by finding the expectation of the joint log-likelihood
function In p(x, z) with respect to z;.;, such a method is also
called the mean field method.

When applying variational inference in practice, the most
important thing is to find the proper hidden variable decompo-
sition and the proper distribution hypothesis of each subset of
hidden variables. With the hidden variable decomposition and
distribution hypotheses, the parameter estimation and infer-
ence of probabilistic graphical models can be made by the EM
algorithm and the consideration of (14.40). Clearly, the per-
formance of variational inference is subject to the quality of
hidden variable decomposition and distribution hypotheses.

14.6 Topic Model

Topic model is a family of generative directed graphical models
mainly used for modeling discrete data, e.g., text corpus. As
represented by Latent Dirichlet Allocation (LDA), topic mod-
els have been widely used in information retrieval and natural
language processing.

There are three key concepts in topic models, namely word,
document, and topic. A word is the basic discrete unit in the
data, e.g., an English word in text processing. A document is a
data object, such as a paper or a Web page, containing a set
of words without considering the ordering of words. Such a
representation is known as bag-of-words. Topic models apply

363 1 4

“mean” refers to expectation and
“field” refers to distribution.

We can describe an image using
bag-of-words by considering the
small blocks in the image as
words, and then topic models
are applicable.
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Some words are usually
excluded, such as stop words.

See Appendix C.1.6 for Dirichlet
distribution.
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Fig. 14.10 An illustration of the document generation process of LDA

to any data objects that can be described by bag-of-words.
A topic describes a concept represented by a series of related
words together with the probabilities that they appear in the
concept.

@ Figure 14.10 provides an intuitive example of topic model.
A topic is like a box containing those words with high proba-
bility to appear under the concept of the topic. Suppose that we
have a data set of 7" documents on K topics, where all words in
the documents are from a dictionary of N distinct words. The
data set (i.e., collection of documents) is denoted by 7' x N-
dimensional vectors W = {wj, wa, ..., wr}, where w, , (i.e.,
the nth component of w;, € RY) is the frequency of the word
n appeared in the document ¢. The topics are denoted by K
N-dimensional vectors By (k = 1,2, ..., K), where g, (ie.,
the nth component of 3, € RY) is the frequency of the word n
in the topic k.

In practice, we can obtain the word frequency vectors w;
(i=1,2,...,T)bycounting the words in documents, though
we do not know which topic is mentioned in which document.
LDA assumes that each document contains multiple topics that
can be modeled by a generative model. More specifically, let
0, € RK denote the proportion of each topic in document ¢,
and ©; ; denote the proportion of topic k in document ¢. Then,
LDA assumes a document 7 is “generated” by the following
steps:

(1) Randomly draw a topic distribution ®; from a Dirichlet
distribution with parameter o;
(2) Generate N words for document ¢ by the following steps:
(a) Obtain a topic assignment z; , according to topic dis-
tribution ®, for each word » in document ¢;
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Fig.14.11 The plate notation of LDA

(b) Generate a word through random sampling according
to the word frequency distribution 3; corresponding
to topic assignment z; .

The above document generation process is illustrated in
@ Figure 14.10. Note that a generated document will have dif-
ferent proportions of topics (step 1), and each word in the doc-
ument comes from a topic (step 2b) generated according to the
topic distribution (step 2a).

The plate notation in @ Figure 14.11 describes the rela-
tionships between variables, where word frequency w, , is the
only observed variable that depends on topic assignment z;
and the corresponding word frequency distribution 3. The
topic assignment z; , depends on topic distribution ®,, which
depends on a parameter a. The word frequency distribution 3y
depends on a parameter 7). Then, the probability distribution
of LDA is

PW,z,8,0 |a,n) =

T K N
[1r©: 10 []pBs Im) (H Pwin |z Bi)PGin | @;)) ,
t=1 i=1
(14.41)

n=1

where p(®; | «) is usually set to a K-dimensional Dirichlet
distribution with a parameter a, and p(83, | 1) is usually set to
an N-dimensional Dirichlet distribution with a parameter 7.
For example

TQ o) ap—1
® — =k T TT gkt 14.42
PO @) = 75 F(Oék)l;[ iy (14.42)

where I'(-) is the Gamma function. Clearly,  and i in (14.41)
are the model parameters to be determined.

Given a data set W = {w, wo, ..., wr}, the parameters
of LDA can be estimated by maximum likelihood estimation,
that is, finding e and © by maximizing the log-likelihood

ses 14

See Appendix C.1.5 for Gamma
function.

The word frequencies in training
documents.



14

366 Chapter 14 - Probabilistic Graphical Models

.
LL(c,m) =) _Inp(w; | c,m). (14.43)
t=1

However, it is difficult to solve (14.43) directly since p(w; |
a, 1) is not easy to compute. In practice, we often use varia-
tional inference to find an approximate solution.

Once a and 7 are found, we can use word frequency wy ,
to infer the topic structure of a document, that is, inferring ®,,
Bk, and z; , by solving

p2.5,0 | W,a,n = V2001 cm (14.44)

PW|a,n)

Similarly, (14.44) is hard to solve since p(w | ¢, 17) is not easy to
compute. In practice, Gibbs sampling or variational inference
is often employed to find an approximate solution.

14.7 Further Reading

Koller and Friedman (2009) is a book dedicated to prob-
abilistic graphical models. Pearl (1982) initialized the study
on Bayesian networks, and (Pearl 1988) summarized relevant
studies in the early days. Geman and Geman (1984) proposed
Markov random fields, which are often used together with
Bayesian networks in real-world applications. Hidden Markov
model and its application to speech recognition can be found
in Rabiner (1989). Lafferty et al. (2001) proposed conditional
random fields, and more information can be found in Sutton
and McCallum (2012).

Pearl (1986) proposed the belief propagation algorithm
as an exact inference method, and it was derived into many
approximate inference methods. For typical cyclic graphs, the
initialization and message passing mechanisms of belief propa-
gation need to be modified, resulting in the Loopy Belief Prop-
agation algorithm (Murphy et al. 1999). Its theoretical prop-
erties are still unclear, though some progress can be found in
Mooij and Kappen (2007), Weiss (2000). Some cyclic graphs
can be described by factor graphs (Kschischanget al. 2001), and
then converted into factor trees for belief propagation. There
are attempts (Lauritzen and Spiegelhalter 1988) to enable belief
propagation for arbitrary graph structures. Recent advances
in parallel computing motivated studies on parallelized belief
propagation. For example, Gonzalez et al. (2009) proposed the
concept of 7, approximate inference and designed a multi-core
parallelized belief propagation algorithm with a time complex-
ity decreasing linearly to the number of cores.
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The modeling and inference techniques, particularly vari-
ational inference, for graphical models became mature in the
middle 1990s, and (Jordan 1998) summarized the major out-
comes in that period. See (Wainwright and Jordan 2008) for
more information about variational inference.

An advantage of graphical models is that we can intuitively
and quickly define models for specific learning problems. A
prominent representative of such methods is LDA (Blei et al.
2003), which has many variants (Blei 2012). One research direc-
tion of probabilistic graphic models is to make the model adap-
tive to the data (i.e., non-parametric methods), such as Hierar-
chical Dirichlet Processes (Teh et al. 2006) and Infinite Latent
Feature Model (Ghahramani and Griffiths 2006).

Not all topic models are Bayesian learning methods. For
example, Probabilistic Latent Semantic Analysis (PLSA) (Hof-
mann 2001) is a probabilistic extension of Latent Semantic
Analysis (LSA).

Monte Carlo methods are a family of numerical methods
developed in the 1940s based on random numbers, and prob-
ability and statistical theory. MCMC is the combination of
Markov chains and the Monte Carlo method, and (Pearl 1987)
introduced it to Bayesian network inference. See Neal (1993)
for more information about applying MCMC to probabilistic
inference. See Andrieu et al. (2003), Gilksetal. (1996) for more
information about MCMC.
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Non-parametric means
parameters, such as assumptions
on data distribution, are not
required to be specified, and this
is an important advancement of
Bayesian learning. See Sect. 7.7
for Bayesian learning.

LSA is a variant of SVD for

textual data.

See “Break Time” of Chap. 11
for Monte Carlo methods.
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Exercises

14.1 Use plate notation to represent conditional random field
and naive Bayes classifier.

14.2 Prove the local Markov property in graphical models: a
variable is conditionally independent of other variables given
the adjacent variables.

14.3 Prove the pairwise Markov property in graphical mod-
els: two non-adjacent variables are conditionally independent
given all other variables.

14.4 Explain why the potential functions are only needed for
the maximal cliques in Markov random field.

14.5 Discuss the similarities and differences between condi-
tional random field and logistic regression.

14.6 Prove that the computational complexity of the variable
elimination method increases exponentially to the number of
maximal cliques in graphical models, but does not necessarily
increase exponentially to the number of nodes.

14.7 Gibbs sampling can be seen as a special case of the
Metropolis—Hastings algorithm, but it does not take the reject
sampling strategy. Discuss the advantages of doing so.

14.8 Mean field is an approximate inference method. Consid-
ering (14.32), discuss the difference between the approximated
problem solved by the mean field method and the original prob-
lem, and discuss how to select the prior probability of variables
in practice.

14.9 * Download or implement the LDA algorithm, and apply
it to a novel book (e.g., Robinson Crusoe) to see how the topics
evolve over chapters.

14.10 * Design an improved LDA algorithm that does not
require the predefined number of topics.
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Break Time

Short Story: Judea Pearl—Pioneer of Probabilistic Graphical
Models

We must mention the Israeli-
American computer scientist Judea
Pearl (1936-) when talking about
graphical probabilistic models. Pearl
was born in Tel Aviv. After obtain-
ing his B.S. degree from the Tech-
nion in 1960, Pearl emigrated to the
United States to continue his study
at the Newark College of Engineer-
ing and received his Ph.D. degree
in Electrical Engineering from the
Polytechnic Institute of Brooklyn
in 1965. After graduation, he worked at RCA Research Lab-
oratories on superconductive amplifiers and storage devices,
and later on, in 1970, he joined the University of California,
Los Angeles.

Research on artificial intelligence in the early days focused
on symbolism learning and logic reasoning, which can hardly
process and represent uncertainties in a quantitative manner.
In the 1970s, Pearl introduced probabilistic methods into arti-
ficial intelligence and invented a series of techniques, includ-
ing Bayesian network and Belief propagation, which led to
the framework of probabilistic graphical models. By using
Bayesian networks as a tool, Pearl created a new research
area known as causal inference. Pearl received the ACM/AAAI
Allen Newell Award in 2003, and later on, the Turing Award
in 2011 for his fundamental contributions to artificial intelli-
gence through the development of a calculus for probabilistic
and causal reasoning. ACM commented that “ Pearl’s work not
only revolutionized the field of artificial intelligence, but also
became an important tool for many other branches of engineer-
ing and the natural sciences.” In 2011, Pearl also received the
Lakatos Award, which is the most prestigious award in the
philosophy of science.
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See Sect. 1.5.

The ACM/AAALI Allen Newell
Award is presented to people for
career contributions that have
breadth within computer
science, or that bridge computer
science and other disciplines.
The award is named after Allen
Newell (1927-1992), who is a
Turing Award winner and a
pioneer in the field of artificial
intelligence. The second
recipient of this award from the
field of machine learning is
Michael Jordan, who received
the award in 2009.
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Broadly speaking, all predictive
models can be seen as one or a
set of rules. In rule learning, we
refer to logic rules with the term
“logic” omitted.

In formal logic, a /iteral is an
atomic formula (atom) or its
negation.

The watermelon data set 2.0 is
given in @ Table4.1.

15.1 Basic Concepts

In machine learning, rules usually refer to logic rules in the
form of “if ..., then ...” that can describe regular patterns or
domain concepts with clear semantics (Fiirnkranz et al. 2012).
Rule learning is about learning a set of rules from training data
for predicting unseen samples.

Formally, a rule is in the form of

< finfhAn-- A, (15.1)

where the right-hand side of implication symbol “ <" is called
the antecedent or body of the rule, and the left-hand side is
called the consequent or head of the rule. The body is a conjunc-
tion of literals fj,, where “ A” represents “AND”. Each literal f},
is a Boolean expression on a feature, e.g., (color = dark) or
—(root = straight). L is the length of rule indicating the num-
ber of literals in the rule body. The head & consists of literals
representing decisions or concepts, €.g., ripe. Such logic rules
are also known as if-then rules.

Compared to black boxes, such as neural networks and
support vector machines, the decision process of rule learn-
ing is more intuitive and transparent, leading to better inter-
pretability. Besides, most human knowledge can be concisely
described and represented by formal logic. For example, a
piece of knowledge like “the father of father is grandfather”
is difficult to be expressed by numerical functions, but it
can be conveniently expressed by a first-order logic formula
“grandfather(X, Y) < father(X, Z) Afather(Z, Y)”. Hence,
we can easily introduce domain knowledge into rule learning.
The abstraction ability of logic rules leads to significant advan-
tages in dealing with some highly complex Al problems. For
example, in question answering systems, we may have many or
even infinite possible answers, and performing abstraction and
reasoning using logic rules will bring apparent convenience.

Suppose we learned the following rule set R from the water-
melon data set:

Rule I: ripe < (root = curly) A (umbilicus = hollow)

Rule 2: —ripe <« (texture = blurry).

Rule 1 hasalength of 2, and it classifies samples by checking the
valuation (or truth-value assignment) of two literals. A sample
(e.g., sample 1 in the watermelon data set 2.0) that satisfies the
rule body is said to be covered by the rule. However, not being
covered by rule 1 does not imply the watermelon is unripe. We
classify a watermelon as unripe if it is covered by rules with
the head “—ripe” (e.g., rule 2).
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Each rule in the rule set can be seen as a submodel, and the
rule set is an ensemble of submodels. When a sample is cov-
ered by multiple rules with different classification outcomes, we
say there is a conflict, which can be resolved by conflict resolu-
tion. Common conflict resolution strategies include (weighted)
voting, ordering, and meta-rule methods. The voting strat-
egy returns the most agreed prediction. The ordering strategy
defines a preference order over the rule set, and the highest-
ordered rule is used when there is a conflict; the corresponding
rule learning process is called ordered rule learning or priority
rule learning. The meta-rule method defines a set of meta-rules
based on domain knowledge for resolving conflicts, that is,
rules about rules, e.g., “Choosing the rule with the minimum
length when there is a conflict.”

The rules learned from training data may be unable to
cover all unseen samples. For example, the rule set R can-
not classify samples with “root = curly”, or samples with
“umbilicus = slightly hollow” and “texture = clear”. Such
cases are common when the number of features is large. Hence,
rule learning algorithms often set a default rule that handles
uncovered samples, e.g., a default rule for R could be “all water-
melons not covered by rule 1 and rule 2 are unripe.”

Rules can be divided into two classes by the expressive
power of formal languages: propositional rule and first-order
rule. A propositional rule is a plain statement consisting of
propositional atoms and logical connectors such as conjunc-
tion (N), disjunction (V), negation (—), and implication (<).
For example, the rule set R is a propositional rule set, where
root = curly and umbilicus = hollow are propositional
atoms. By contrast, the basic elements of first-order rules
are atomic formulas that describe the features or relations of
objects. For example, the predicate father(X, Y) is an atomic
formula that describes the father—son relationship. The succes-
sor function o(X) = X + 1 is also an atomic formula. Let the
predicate N (X) denote “ X isanatural number”, and VX denote
“holds for all X, 3Y denote “exists Y such that”, then we can
write the statement “all natural numbers incremented by 1 are
natural numbers”asVX3IY(N(Y) < N X)A(Y =o(X))),or
more concisely, VX (N (c(X)) < N(X)). Such a rule is called
first-order rule, where X and Y are logic variables, V (“for
all”) and 3 (“exists”) are quantifiers that specify the quantity
of specimens in the domain of discourse that satisfy the rule.
First-order rules are also called relational rules since they can
express complex relations between objects. Taking the water-
melon data set as an example, if we simply use the names of
features as predicates to define the relations between their val-
ues and samples, then propositional rule set R can be rewritten
as the following first-order rule set R':

575 15

See Chap. 8 for ensemble
learning.

A default rule can be seen as a
special meta-rule.
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The watermelon training set 2.0
is in the first part of
@ Tabled.2.

Rule I: ripe(X) <« root(X, curly) A umbilicus(X, hollow);
Rule 2: —ripe(X) <« texture(X, blurry).

From the perspective of formal language, propositional rules
are special cases of first-order rules, and hence first-order rule
learning is more complicated than propositional rule learning.

15.2 Sequential Covering

Rule learning aims to find a rule set that can cover as many sam-
ples as possible. The most straightforward approach is sequen-
tial covering, which induces one rule at a time: every time a
rule is learned, all samples covered by it are removed from the
training set, and the learning process repeats with the remain-
ing samples in the training set. Such a strategy is also called
separate-and-conquer, since only part of the training set is pro-
cessed in each round.

Let us take a closer look at sequential covering with propo-
sitional rule learning. The body of a propositional rule con-
sists of Boolean functions for testing the feature values (e.g.,
color = green and sugar < 0.2), and the head of ruleis the class
label. The core of sequential covering is how to learn individual
rules from the training set. Given a rule head @, rule learning
is a search problem of finding the optimal set of literals for
the rule body. Formally, when given a positive data set and a
negative data set, the learning task is to induce the optimal rule
r based on the candidate literal set 7 = {f;.}. In propositional
rule learning, a candidate literal is a Boolean expression in the
form of “R(feature;, feature; ;)”, where feature; is the ith fea-
ture, feature; ; is the jth candidate value of feature;, and R(x, y)
is a binary Boolean function that tests whether x and y satisfy
relation R.

The simplest approach is to start with an empty rule “@® <«
with the positive class as the rule head and then iterate over
every candidate value of every feature: the rule can be con-
structed by conjunctively adding them to the rule body as lit-
erals. Once the current rule covers only positive samples, we
return the rule and remove the covered samples from the train-
ing set, and then induce the next rule with the remaining sam-
ples.

Taking the watermelon training set 2.0 as an example, we
generate the literals ripe and color = green from the sample 1:

ripe < (color = green).

This rule covers the samples 1, 6, 10, and 17, where two of
them are positive and the rests are negative. Since the rule does
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not meet the requirement “covering only positive samples”, we
replace the proposition with another atomic proposition about
feature color (e.g., color = dark). However, the new rule still
fails to meet the requirement, hence we fallback to color =
green and try to add a propositional atom about other features,
e.g., root = curly:

ripe < (color = green) A (root = curly),

which still covers negative sample 17. Therefore, we replace the
second proposition with another atomic proposition about this
feature, e.g., root = slightly curly:

ripe < (color = green) A (root = slightly curly),

which finally excludes negative samples and satisfies the require-
ment of “covering only positive samples”, though it covers only
one positive sample. We keep this rule and remove the covered
sample 6 and then use the rest 9 samples as the updated training
set. By repeating this process, we have

Rule 1: ripe <« (color = green) A (root = slightly curly);
Rule 2: ripe <« (color = green) A (sound = muffled);

Rule 3: ripe <« (color = dark) A (root = curly);

Rule 4: ripe « (color = dark) A (texture = slightly blurry),

which is a rule set covering all positive samples but none of the
negative samples, and this is the output of sequential covering.

When there are many features and candidate values, the
above exhaustive search becomes infeasible due to the combi-
natorial explosion. Therefore, in practice, we often take either a
top-down strategy or a bottom-up strategy. The top-down strat-
egy, also called the generate-then-test method, starts with a
general rule and gradually adds more literals to reduce the
coverage of samples until the pre-specified conditions are met.
Such a process is known as specialization of rules. The bottom-
up strategy, also called the data-driven method, starts with a
specialized rule and gradually removes literals to increase the
coverage of samples until the pre-specified conditions are met.
Such a process is known as generalization of rules. The top-
down strategy, which searches for rules from high coverage to
low coverage, often generates rules with better generalization
and noise-tolerance than the rules generated by the bottom-
up strategy, though the bottom-up strategy is more suitable
with limited training samples. In practice, propositional rule
learning often takes the top-down strategy, whereas first-order
rule learning, which deals with more complex hypothesis space,
often takes the bottom-up strategy.
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For ease of discussion, we do
not consider literals of negative
atoms in the rest of this chapter,
that is, we only consider
candidate literals in the form of
f but not —f.

For example, an empty rule
without any features is a general
rule that covers all samples.

For example, a rule generated
from all the feature values of a
sample is a specialized rule that
covers only this sample.
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The watermelon data set 2.0 is
given in the first part of
B Table4.2.

Let us see a demonstration of the top-down strategy using
the watermelon training set 2.0. We start with an empty rule
“ripe <7, and then gradually add each “feature = value”
as a propositional atom to the empty rule for consideration.
Suppose the quality of a rule is measured by its accuracy on
the training set, and let n/m be the accuracy of the new rule
obtained by adding a proposition, where n is the number of
positive samples in the m samples covered. As illustrated in
@ Figure 15.1, both color = dark and umbilicus = hollow
have achieved the highest accuracy 3/4 in the first round.

Adding the first encountered literal color = dark to the
empty rule, gives

ripe < (color = dark).

Then, the samples covered by the above rule are used as the
training set in the second round, in which, we find that adding
any of the five literals in @ Figure 15.1 can achieve an accuracy
of 100%. By choosing the literal root = curly, which locates
first and covers the most samples, we have

ripe < (color = dark) A (root = curly).

The rule induction process needs criteria for evaluating the
quality of rules. For example, in the above example, we first
consider the accuracy of rules. With the same accuracy, we
further consider the sample coverage, followed by the order of
propositions. Such criteria can be varied according to different
learning problems.

The above example is greedy to consider only one “optimal”
literal in each round, and such an approach can easily lead to
local optimum. To alleviate this problem, we can take a more

First round candidate set ‘ ‘ Second round candidate set ‘
[ color = green (2/4) [ root = curly (2/2)

color = dark (3/4) A

sound = dull (1/1)
ripe « —

P root = curly (3/5) texture = slightly blurry (1/1)

sound = mutffled (4/6) umbilicus = hollow (2/2)

texture = clear (4/6) surface = hard (2/2)

umbilicus = hollow (3/4)
The single rule generated after two rounds:

surface = hard (3/6)  ripe « (color = dark) A (root = curly)

Fig. 15.1 Taking the top-down strategy to generate single rules from the
watermelon data set 2.0
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gentle approach such as beam search, which adds the best b
literals in the current round to the candidate literal set of the
nextround. Taking @ Figure 15.1 asan example, if weletb = 2,
then both literals that have achieved an accuracy of 3/4 in the
first round are kept for the second round; after the second
round, we obtain the following rule, which not only achieves
an accuracy of 100% but also covers 3 positive samples:

ripe < (umbilicus = hollow) A (root = curly).

Due to the simplicity and effectiveness of sequential cov-
ering, it is the basis for almost all rule learning algorithms.
Sequential covering can be easily extended to multiclass prob-
lems by considering each class in turn: when learning rules for
class ¢, considering all class ¢ samples as positive and the rest
samples as negative.

15.3 Pruning Optimization

Rule induction is essentially a greedy search process that needs
a mechanism to alleviate the risk of overfitting, and one com-
mon approach is pruning. Like decision tree learning, pruning
can take place during the rule generation (i.e., pre-pruning)
or after the rules have been generated (i.e., post-pruning).
Whether pruning is needed or not is usually decided by com-
paring the performance of the rule or rule set before and after
adding/removing its literals and rules, respectively.

Pruning can also be decided by statistical significance test.
For example, CN2 (Clark and Niblett 1989) performs pre-
pruning by assuming that the predictive performance of the
rule set must be significantly better than that of simply mak-
ing predictions according to the posterior probability distri-
bution exhibited by the training set. For ease of calculation,
CN2 employs Likelihood Ratio Statistics (LRS). Let m4 and
m_ denote, respectively, the number of positive samples and
the number of negative samples in the training set; let /724 and
m_ denote, respectively, the number of positive and negative
samples covered by the rule set. Then, LRS can be defined as

iy hi_ )
~ my+m_ ~ my+m_
LRS =2 | siry logy —5—— + /i1 logy —57- ;
my+m-_ ) (m+ +m_ )

(15.2)

which is essentially a measure of information. To be specific,
LRS measures the difference between the distribution of sam-
ples covered by the rule (set) and the empirical distribution of
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See Sect. 4.3 for decision tree
pruning.

See Sect. 2.4 for statistical
significance test.
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In rule learning, they are often
called growing set and pruning
set.

RIPPER stands for Repeated
Incremental Pruning to Produce
Error Reduction, which is
named JRIP in WEKA.

Given the number of repeti-
tions k in @ Algorithm 15.1,
RIPPER is also called
RIPPERK, e.g., RIPPERS
means k = 5.

all the training samples: a larger LRS implies that the predic-
tions made by the rule (set) are more likely to be different from
the predictions made by simply conjecturing based on the ratio
of positive/negative samples in the training set; and a smaller
LRS implies that the performance of the rule (set) is more likely
to be by chance. In real-world applications with a large amount
of data, the LRS threshold is often set to a large value (e.g.,
0.99) for stopping the growth of rule (set).

A widely used approach of post-pruning is the Reduced
Error Pruning (REP) (Brunk and Pazzani 1991), which takes
the following procedure: split samples into a training set and
a validation set, and then do multiple rounds of pruning on
the rule set R learned from the training set; in each round,
use the validation set to find the best rule set by evaluating all
possible pruning operations, such as deleting a literal from the
rule body, deleting the last one or multiple literals in the rule,
and deleting the entire rule. The above procedure repeats until
pruning no longer improves the performance on the validation
set.

Though REP is often effective (Brunk and Pazzani 1991), it
has a complexity of O(m*) for m training samples. Incremental
REP (IREP) (Fiirnkranz and Widmer 1994) managed to reduce
the complexity to O(mlog? m) with the following procedure:
before generating a rule, the current data set is split into a
training set and a validation set; then, a rule r is generated
from the training set and is immediately pruned by REP on the
validation set to get r’; remove all samples covered by r’ and
repeat the above process on the remaining samples. IREP is
more efficient since it only prunes one rule at a time, whereas
REP prunes the entire rule sets.

Better performance can often be achieved by combining
pruning with other post-process techniques for rule-set opti-
mization. Taking the well-known rule learning algorithm RIP-
PER (Cohen 1995) as an example, it can achieve both bet-
ter generalization performance and faster learning speed than
many decision tree algorithms, and the secrete behind it is
combing pruning with post-processing optimization.

The pseudocode of RIPPER is given in 8 Algorithm 15.1.
RIPPER starts by generating rule set R based on the pruning
mechanism of IREP* (Cohen 1995). IREP* improves IREP
lgy replaciAng the evaluation heuristic of accuracy in IREP with
%, pruning each single rule by deleting multiple lit-
erals from the end of the body, and performing a last-time
pruning with IREP on the entire rule set that has been learned.
The post-processing mechanism in RIPPER aims to further
improve the performance after the pruning for every single rule
has been done. To this end, RIPPER generates two variants for

eachruler; e R
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e r;: use IREP* to generate a replacement rule r; from the
samples covered by r;;

e r/: specialize r; by adding literals, and then use IREP* to
generate a revised rule r; .

Algorithm 15.1 RIPPER

Input: The data set D;
The number of repetitions k.

Process:
I: R = IREP*(D); Generate rule set based on
2:i=0; IREP*.
3: repeat

4 R* = PostOpt(R); Post-processing.
5 D; = NotCovered(R*, D); Remove covered samples.
6 Rj = IREP*(D,‘);
7. R=R'UR;
8 i=i+1.

9: untili = k
Output: Rule set R.

After that, r; and r/ are added to R withoutr;, giving R" and
R”, respectively. Then, the rule sets R, R’ and R” are compared
and the optimal one is kept as R*. This process is denoted by
PostOpt(R) in line 4 of @ Algorithm 15.1,

Why would the optimization strategy of RIPPER work?
The reason is simple: the rules are generated under a particular
order in the initial R ignoring the subsequently learned rules,
and in this way, a greedy approach can easily be stuck at a
local optimum. The post-processing optimization of RIPPER
alleviates the locality problem of greedy approach by revisiting
R at the end to achieve a better performance (Fiirnkranz et al.
2012).

15.4 First-Order Rule Learning

Due to the limitation of the expressive power of propositional
logic, propositional rule learning can hardly handle more com-
plex relations between objects, although such relation infor-
mation is crucial in many applications. For example, when
we pick watermelons in a supermarket, it can be difficult to
describe all watermelons with precise feature values: how green
is color = green and how dull is sound = dull? A more practi-
cal way is to compare watermelons. For example, “watermelon
1 is riper than watermelon 2”since “watermelon 1 has a greener
color and curlier root than watermelon 2”. However, such
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Such rules are also called
first-order logic clause.

an argument is beyond the expressive power of propositional

logic, and hence we need to employ the first-order rule learning.
Let us define the following concepts for our watermelon

data:

darkness of color: dark > green > light;

curliness of root: curly > slightly curly > straight;

dullness of sound: dull > muffled > crisp;

clearness of texture: clear > slightly blurry > blurry;

hollowness of umbilicus: hollow > slightly hollow > flat;

hardness of surface: hard > soft.

With these concepts, we convert the watermelon data set 2.0
to the watermelon data set 5.0 as shown in Table 15.1. Data
in such a format is called relational data, which describes
the relations between samples. The atomic formulas, such as
darker_color and curlier_root, that are converted from the
original features are called background knowledge. The atomic
formulas, such as riper and —riper, that are converted from
the class labels are called relational data examples. From the
watermelon data set 5.0, we can learn first-order rules, such as

(VX,VY)(riper(X, Y) < curlier_root(X, Y) A hollower_umbilicus(X, Y)).

Though the above first-order rule is still in the form of
(15.1), the head and body of the rule are first-order logic expres-
sions. riper(-, -), curlier_root(:, -),and hollower_umbilicus(-, -)
are predicates describing relations, and the individual objects
“watermelon 1”7 and “watermelon 2” are replaced with logic
variables X and Y. The universal quantifier V indicates that
the rule holds for all individual objects in the domain. Since
all variables in first-order rules are quantified by the universal
quantifier, we omit the quantifiers in subsequent discussions
when the context is clear.

First-order rules have strong expressive power. For exam-
ple, recursion can be concisely expressed as

riper(X, Y) « riper(X, Z) Ariper(Z, Y).
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8 Tab. 15.1

The watermelon data set 5.0.
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darker_color(2, 1)
darker_color(2, 14)

darker_color(3, 1)

darker_color(15, 17)
curlier_root(1, 6)

curlier_root(1, 14)
curlier_root(17, 14)
duller_sound(2, 3)

duller_sound(17,7)
duller_sound(17, 16)
clearer_texture(l, 16)

clearer_texture(15, 16)
hollower_umbilicus(1, 6)

hollower_umbilicus(1, 15)
hollower_umbilicus(17, 10)
harder_surface(l, 7)

harder_surface(17, 6)
harder_surface(17, 15)

darker_color(2, 6)
darker_color(2, 16)

darker_color(3, 6)

darker_color(17, 14)
curlier_root(1, 7)

curlier_root(17,7)
curlier_root(17, 15)
duller_sound(2, 6)

duller_sound(17, 10)
clearer_texture(l, 7)
clearer_texture(l, 17)

clearer_texture(15, 17)
hollower_umbilicus(1, 7)

hollower_umbilicus(15, 10)
hollower_umbilicus(17, 16)

harder_surface(l, 10)

harder_surface(17, 7)

darker_color(2, 10)

darker_color(2. 17) The numbers in parentheses

.. correspond to the ID in
darker_color(15, 16) B Table4.2.
darker_color(17, 16)
curlier_root(l, 10)

curlier_root(17, 10)
duller_sound(2, 1)
duller_sound(2, 7)

duller_sound(17, 15)
clearer_texture(l, 14)
clearer_texture(l5, 14)

clearer_texture(l7, 16)
hollower_umbilicus(1, 10)

hollower_umbilicus(15, 16)
harder_surface(l, 6)
harder_surface(l, 15)

harder_surface(17, 10)
The formulas above the divider

riper(l, 10)

riper(l, 16)
riper(7, 16)
—riper(10, 2)

—riper(17, 2)
—riper(17,7)

riper(1, 14)
riper(7, 14)
riper(7, 17)
—riper(10, 3)

—riper(17, 3)

are background knowledge, and
the formulas below the divider
are samples.

riper(l, 15)
riper(7, 15)
—riper(10, 1)
—riper(10, 6)

—riper(17, 6)

Another advantage of first-order rules over propositional rules
is the ability to incorporate domain knowledge. In proposi-
tional rule learning or even in general statistical learning, there
are two typical approaches for incorporating domain knowl-
edge: using domain knowledge to construct new features on top
of current features, or design a mechanism according to domain
knowledge (e.g., regularization) to constrain the hypothesis
space. However, in practice, not all domain knowledge can
be easily included through reconstructing features or introduc-
ing regularization. For example, suppose we obtain a chem-
ical compound X composed of unknown chemical elements,
and wish to find how X is reacted with known chemical com-
pound Y. To this end, we repeat the reaction multiple times,
and each time, we analyze the constituent elements from the
outcome. Though we know nothing about the properties of
the unknown chemical elements, some general chemical prin-
ciples are available as domain knowledge, such as metal atoms

Statistical learning are
generally based on
attribute-value representation,
whose expressive power is
equivalent to propositional
logic. Such learning approa-
ches can be collectively called
propositional learning.
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See Sect. 4.2.1 for information
gain used in decision trees.

produce ionic bond and hydrogen atoms share covalent bond,
as well as some possible reactions between known chemical ele-
ments. With such domain knowledge, it is relatively easy to find
the reaction formula between X and Y, and we can also infer
the properties of X or even discover new chemical molecules
or elements. Such kind of domain knowledge is common in
real-world applications, but it can hardly be utilized in propo-
sitional learning.

One famous first-order rule learning algorithm, FOIL (First-
Order Inductive Learner) (Quinlan 1990), follows the sequen-
tial covering framework and takes a top-down inductive strat-
egy. FOIL is similar to the propositional rule learning discussed
in Sect. 15.2, but it needs to consider more variable combina-
tions due to the existence of logic variables in the first-order
setting. Taking the watermelon data set 5.0 as an example, we
start with an empty rule for the concept riper(X, Y)

riper(X, Y) «.

Then, we consider combinations of all possible predicates and
variables as candidate literals, which must include at least one
variable that have already appeared in the rule; otherwise the
literal would be meaningless. In this example, we consider the
following candidate literals:

darker_color(X, Y), darker_color(Y, X),
darker_color(X, Z), darker_color(Z, X),
darker_color(Y, Z), darker_color(Z, Y),
darker_color(X, X), darker_color(Y, Y),
curlier_root(X, Y), duller_sound(X, Y),

FOIL selects literals by evaluating the FOIL gain

. ~ f’;’l+ my
F_Gain = logy ————— —logy —— s
- WZ+X< gzl”}\’l++ﬁ’17 g2m++m>

(15.3)

where my and m_ are, respectively, the number of positive
samples and negative samples that are covered by the original
rule; 715 and m_ are, respectively, the number of positive sam-
ples and negative samples that are covered by the new rule after
adding a literal. Unlike information gain used in decision trees,
FOIL gain considers only the information of positive samples
and uses the coverage of positive samples of the new rule as
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weight. The reason is that the number of positive samples in
relational data is often far fewer than the number of negative
samples, and hence we pay more attention to positive samples.

For our example in the watermelon data set 5.0, the new rule
can cover 16 positive samples and 2 negative samples by adding
either darker_color(X, Y) or hollower_umbilicus(X, Y) to
the empty rule. The corresponding FOIL gainis 16 x (log, {—g —
log, %) = 13.28. Suppose we choose darker_color(X, Y),
then we have

riper(X, Y) < darker_color(X, Y).

Because the rule still covers 2 negative samples riper(15, 1)
and riper(15, 6), FOIL grows the length of the rule body as
propositional rule learning does, and adds the final one to the
rule set. At the end, FOIL optimizes the rule set with pruning.

FOIL can produce recursive rules if we allow the target
predicate to appear in candidate literals. Besides, the rule set is
often more concise if we allow negation literals (i.e., —f).

FOIL sits somewhere between the propositional rule learn-
ing and inductive logic programming, which will be discussed
in the next section. The expressive power of FOIL is still limited
since its top-down strategy does not support function symbols
and nested expressions; however, FOIL converts propositional
rule learning directly to first-order rule learning by operations
such as replacing constants representing objects with logic vari-
ables, and therefore, FOIL is often more efficient than typical
inductive logic programming methods.

15.5 Inductive Logic Programming

Inductive Logic Programming (ILP) gives stronger expressive
power to machine learning systems by supporting function
symbols and allowing nested expressions in first-order rule
learning. Besides, ILP can be seen as using machine learning
techniques to induce logic programs from background knowl-
edge. The learned rules can be directly used in logic program-
ming languages (i.e. PROLOG).

Nevertheless, the nesting of functions and logic expressions
also brings great challenges to computing. For example, given
unary predicate P and unary function f', we can construct infi-
nite number of literals such as P(X), P(f (X)) and P(f (f (X))).
Then, the number of candidate atomic formulas becomes infi-
nite. As a result, top-down strategies such as FOIL and propo-
sitional logic rule learning will fail, since we cannot enumerate
all candidate literals when growing the rule. Moreover, the cal-
culation of FOIL gain needs to calculate the coverage of rules,

385 1 5

Essentially, this is due to class
imbalance. See Sect. 3.6.
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The watermelon data set 5.0 is in
B Table15.1.

Here the numbers are the ID of
watermelons.

and this becomes infeasible after introducing function symbols
and nested expressions.

15.5.1 Least General Generalization

ILPtakesa bottom-up strategy which directly uses the grounded

facts of one or more positive samples as the bottom rules, and
then gradually generalizes the rules to improve the coverage.
The generalization operation could be deleting literals from the
rule body or replacing constants with logic variables.

Taking the watermelon data set 5.0 as an example. For ease
of discussion, suppose riper(X, Y) only depends on the rela-
tions involving (X, Y). Then, the bottom rules of positive sam-
ples riper(1, 10) and riper(1, 15) are, respectively

riper(1, 10) < curlier_root(1, 10) A duller_sound(l, 10)
A hollower_umbilicus(1, 10) A harder_surface(1, 10);
riper(1, 15) < curlier_root(l, 15) A hollower_umbilicus(l, 15)

A harder_surface(1, 15).

The above two rules have limited generalization abilities
since they only describe two specific relational data samples.
Hence, we wish to convert such specific rules to rules that are
more general. To achieve this goal, Least General Generaliza-
tion (LGG) (Plotkin 1970) is the most fundamental technique.

Given first-order formulas r; and r, LGG starts by finding
all literals that have the same predicate, and then checks each
pair of constants at the same position in the literals: if the two
constants are the same, then they remain unchanged, denoted
by LGG(z, t) = t; otherwise, the constants are replaced by a
new variable that also applies to all other places in the formulas.
For example, if the two different constants are s and ¢ and the
new variable is V', then we have LGG(s, 1) = V, which means
whenever s or ¢ appears in the formula, we replace it by V.
Let us take the two rules in the above as an example and LGG
would start by comparing riper(1, 10) and riper(1, 15); since
“107#£“15”, both constants are replaced with Y, and all pairs
of “10” and “15” in r; and r, are replaced with Y. Then, we
have

riper(l, Y) <« curlier_root(l, Y) A duller_sound(l, 10)
A hollower_umbilicus(1, Y) A harder_surface(l, Y);
riper(l, Y) <« curlier_root(l, Y) A hollower_umbilicus(l, Y)

A harder_surface(l, Y).
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After that, LGGignores all literals with different predicates
in both formulas r; and r,. Because the LGG cannot special-
ize to a formula r when the LGG contains a predicate that
does not present in the formula r. In our example, the literal
duller_sound(1, 10) is ignored, gives the LGG

riper(l, Y) <« curlier_root(l, ¥) A hollower_umbilicus(X, Y>)
A harder_surface(l, Y). (15 .4)

We see that (15.4) can only decide whether watermelon 1
is better than the others. To improve its generalization ability,
suppose we have another bottom rule about watermelon 2

riper(2, 10) < darker_color(2, 10) A curlier_root(2, 10)
A duller_sound(2, 10) A hollower_umbilicus(2, 10)
A harder_surface(2, 10), (15 .5)

then we can find the LGG of (15.4) and (15.5). We notice that
the constant “10” and variable “Y” appear in the same posi-
tion of the literals riper(2, 10) and riper(l, Y). Hence, we let
LGG(10, Y) = Y, and replace all pairs of “10” and “Y” in
the formulas with Y. Finally, by letting LGG(2, 1) = X and
deleting all literals that do not have a common predicate in both
formulas, we have the following rule without any constant:

riper(X, Y») < curlier_root(X, Y7) A hollower_umbilicus(X, Y>)
A harder_surface(X, Y7).

The above example only considers literals without negation
(—). In fact, LGG is able to perform more complex generaliza-
tion operations. Besides, we assumed that the bottom rules of
riper(X, Y) only includes relations about (X, Y), but there
are often other useful relations in background knowledge as
well. Therefore, many ILP systems take different approaches to
select bottom rules, where the most commonly used one is Rel-
ative Least General Generalization (RLGG) (Plotkin 1971).
When computing LGG, RLGG takes background knowledge
into consideration by setting the bottom rule of sample e as
e < K, where K is the conjunction of all atoms in background
knowledge.

It is easy to prove that LGG is the most specialized formula
among all first-order formulas that can specialize to r; and r;:
there is no first-order formula r’ that can specialize to both r;
and rp while can also generalize to the LGG of r; and r;.

In many ILP systems, after obtaining the LGG, we add it
to the rule set just like an individual rule, and then optimize
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See Chap. 3 of Lavrac and
Dzeroski (1993).
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Induction was mathematically
proved to be the inverse of
deduction by W. S. Jevons, who
was the British economist and
logician in the nineteenth
century.

the rule set using the techniques that we introduced in earlier
sections, such as post-pruning.

15.5.2 Inverse Resolution

In logic, deduction and induction are fundamental approaches
that humans use to understand the world. Roughly speak-
ing, deduction infers specific phenomenons from general rules,
whereas induction summarizes general rules from specific obser-
vations. The poofs of mathematical theorems are representa-
tive examples of applying deduction, whereas machine learning
falls into induction category. In 1965, logician J. A. Robinson
proposed that the deductive reasoning in first-order logic can
be described by a simple rule, that is, the famous resolution
principle (Robinson 1965). Two decades later, computer scien-
tists S. Muggleton and W. Buntine proposed inverse resolution
(Muggleton and Buntine 1988) for inductive reasoning, which
played an important role in the development of ILP.

Using the resolution principle, we can link first-order logic
rules with background knowledge for simplification; whereas
using inverse resolution, we can develop new concepts and rela-
tions from background knowledge. Next, we take the simpler
propositional reasoning as an example to demonstrate how res-
olution principle and inverse resolution work.

Suppose logic expressions C; and C; hold, containing com-
plementary literals L1 and L, respectively; without loss of gen-
erality, letting L = Ly = =L, C; = AV L,and C, = BV —L.
The resolution principle tells that we can obtain resolvent C =
AV B by eliminating L using deductive reasoning. If we define
the deletion operation on disjunctive normal form as

(AV B) —{B} = 4, (15.6)

then the resolution process can be expressed as

C=(Cr—{Lh v (G —{=L}D), (15.7)
abbreviated by
C=C- (. (15.8)

@ Figure 15.2 provides an illustrating example of the reso-
lution principle.

Oppositely, inverse resolution is about how to obtain C;
(i #j) given C and C;. Suppose that we wish to find C;, given
C and Cj, then the inverse resolution process is

G =(C—-(Cr—{L})) v{-L}. (15.9)
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How can we conduct inverse resolution in practice? Mug-
gleton (1995) defined four complete inverse resolution opera-
tions. Let rule p <— ¢ be an equivalent expression of p vV —¢, let
lowercase letters be atomic literals, and let uppercase letters be
logic clauses consisting of conjunctions, then the four inverse
resolution operations are

p<AAB q< A

Absorption: (15.10)

p<qgAB g« A’
ANB A
pP=AnZ P NG (15.11)
q< B p<—ANng
p<—AAB p<—AnC

Identification:

(15.12)

Intra-construction:

g« B p<Anrg g<C’

p<—AAB q<—AANC (15.13)

Inter-construction:

p<TrAB r<A qg<rnC’

Here, £ represents “X implies Y7, which is written as X - Y
in formal logic. In the above rules, a clause in X is either the
resolvent of Y or an equivalent term of a clause in Y; the new
literals appear in Y can be seen as new propositions learned
via induction.

Bothresolution and inverse resolution can be easily extended
to first-order logic. Unlike propositional logic, the resolution
and inverse resolution of first-order logic often need unification
and substitution operations.

Substitution refers to substituting the variables in logic
expressions with other terms. For example, by substituting
C = darker_color(X, Y) A duller_sound(X, Y) with § =
{1/X,2/Y}, we have C' = C6 = darker_color(l, 2) A duller_
sound(1, 2), where {X, Y} is called the domain of #. Similar
to substitutions in algebra, we also have composition of sub-
stitutions and inverse substitution. For example, we first use
6 = {Y/X} to substitute X with Y, and then use A = {1/Y}
to substitute Y with 1. Such a composition of substitution is
denoted by 6 o A\, and the inverse substitution is denoted by
0~ ={Xx/Y}.

Unification refers to making two or more logic expressions
equal by variable substitutions. For example, given two logic
expressions A = darker_color(l, X) and B = darker_color
(Y,2), we can apply 6§ = {2/X,1/Y} such that 40 = B =

AV L Bv-L

AV B

Fig. 15.2 An example of the resolution principle
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ForC=Av B,wehave A+ C
and 3B(C = A v B) equivalent.

darker_color(l, 2); in such case, we say that 4 and B are unifi-
able and 6 is the unifier of A and B. Let ¢ be the unifier of
a set of first-order logic expressions W, then we say 0 is the
Most General Unifier (MGU) of W if there exists a substitu-
tion A for any unifier € of W such that § = § o A. MGU is also
called the most general substitution, which is one of the most
important concepts of ILP. For example, the logic expressions
darker_color(1l, Y) and darker_color(X, Y) can be unified by
both #; = {1/X} and 0, = {1/X,2/Y}, where only 6 is their
MGU.

When resolving first-order logical clauses, we need to use
unification to search complementary terms L; and L;. Given
two first-order logic expressions C; = AV Lj and C; = BV Ly,
if there exists an unifier 6 such that L0 = —1,6, then we can
resolve the expressions as

C=(Cr—{Li1)ho v (Cr — {L2})0. (15.14)

Similarly, we can perform inverse resolution of first-order
logic by extending (15.9) with unifier. Based on (15.8), we define
C) = C/Cyand C; = C/C as resolution quotients, and then
the objective of inverse resolution is to find resolution quotient
C; given C and Cj. For Ly € Cy, suppose ¢ is a substitution
such that

(Cr = {Lih¢1 - C, (15.15)

where the domain of ¢ is all variables in C;, denoted by
vars(Cp). The purpose of ¢ is to make the corresponding lit-
erals in C; — {L;} and C unifiable. Let ¢ be a substitution
with the domain vars(L;) — vars(Cy —{L1}), L be the literal to
be eliminated from the resolution quotient C,, 6> be a substi-
tution with the domain vars(L,), and both ¢ and ¢, operate
on L such that =L;¢| o ¢y = Ly6. Then, ¢1 o ¢ 0 0, is the
MGU of =L and L,. If we denote the composition of substi-
tutions ¢ o ¢, as ¢ an denote 0 I"as the inverse substitution
of #,, then we have (—-L101)92_1 = L,. Therefore, like (15.9),
the first-order inverse resolution can be represented as

Cy = (C— (C1 — {Lih6r v {=L161)6; " (15.16)

In first-order inverse resolution, the choices of L, L,, 61, and
0 are usually not unique, and hence other decision criteria are

required, such as coverage, accuracy, and information entropy.
Taking the watermelon data set 5.0 as an example, suppose
we have already obtained the following rules:

C) =riper(l, X) <« curlier_root(l, X) A clearer_texture(l, X);
C, =riper(l, Y) « curlier_root(l, Y) A duller_sound(l, Y).
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We recognize that the rules are in the forms of p <~ 4 A B and
p < A A C, therefore, we can perform inverse resolution via
intra-construction in (15.12). Since the predicates in both C)
and C, are binary, we invent a new binary predicate (M, N)
to represent the generalized information in our new rule. Then,
from (15.12), we have

C' =riper(l, Z) <« curlier_root(l, Z) A g¢(M, N).

The other two terms at the bottom of (15.12) are the resolu-
tion quotients of C;/C" and C,/C’, respectively. For C;/C’,
we have the choices —curlier_root(l, Z) and —g(M, N) for
eliminating L; from C’. ¢ is a newly invented predicate, and
sooner or later, we need to learn a new rule g(M, N) <? to
define it. According to the Occam’s razor principle, the fewer
rules are better given the same expressive power, we therefore,
let =g(M, N) be L. From (15.16), we have L, = ¢(1,S),
o1 = {X/Z}, oo = {I/M,X/N}, and 6, = {X/S}. By
simple calculation, we can obtain that the resolution quo-
tient for C;/C’ is ¢(1, S) < clearer_texture(l, S). Similarly,
we can find the resolution quotient for Cp/C’ is g(1, T) <«
duller_sound(1, 7).

An important ability of inverse resolution is inventing new
predicates, which potentially correspond to new knowledge
that does not exist in sample features or background knowl-
edge. Such an ability is important for knowledge discovery and
refinement. Nevertheless, the actual semantics of automatically
invented predicates, e.g., whether ¢ means fresher, sweeter, or
more sun exposure can only be decided by users based on
further understanding of the task domain.

In the above example, we only showed how to perform
inverse resolution based on two rules. In practice, ILP systems
often take a bottom-up strategy to generate a set of rules, which
are further processed by inverse resolution and the LGG.

15.6 Further Reading

Rule learning is the main representative of symbolism learn-
ing and also one of the earliest machine learning techniques
(Michalski 1983). A comprehensive summary of rule learning
can be found in Fiirnkranz et al. (2012).

The basic framework of rule learning is sequential covering,
which was first advocated in Algorithm Quasi-optimal (AQ) in
Michalski (1969); later on, AQ has been developed to a fam-
ily of algorithms, and two famous representatives are AQ15
(Michalski et al. 1986) and AQ17-HCI (Wnek and Michalski
1994). Limited by computing power, AQ in the early days can
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razor principle.
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Each leaf node in a decision tree
corresponds to an equivalent
class.

PRISM has been implemented
in WEKA.

RIPPER outperforms C4.5 in
terms of both efficiency and
effectiveness on many tasks.

only randomly pick a pair of positive and negative samples as
seeds to start the training, and therefore, the learning perfor-
mance of AQ is unstable due to the randomness of sampling.
The problem was solved by PRISM (Cendrowska 1987), which
takes a top-down search strategy. PRISM shows an advantage
of rule learning over decision tree learning: decision trees try
to split sample space into non-overlapped equivalent classes,
whereas rule learning does not impose this constraint, and
hence the models learned from rule learning tend to be less
complex. The performance of PRISM is weaker than AQ, but
it is a milestone of rule learning when we look back today.

CN2 (Clark and Niblett 1989) used beam search and is the
earliest rule learning algorithm that takes overfitting into con-
sideration. Fiirnkranz (1994) showed the advantage of using
post-pruning to alleviate overfitting in rule learning. The pin-
nacle of propositional rule learning is RIPPER (Cohen 1995),
which unified different tricks in the area, and for the first time,
it made rule learning won the long-term competition against
decision trees. An implementation of RIPPER written in the
C programming language can be found on the author’s home-
page.

It is commonly agreed that the study on relational learn-
ing started in Winston (1970). Since it was difficult to solve
relational learning problems with propositional rule learning,
first-order rule learning got developed. FOIL converts proposi-
tional rule learning to first-order rule learning with operations
such as replacing objects with logic variables, and FOIL is still
being used today. For example, the Never-Ending Language
Learning (NELL) program launched by Carnegie Mellon Uni-
versity in 2010 employed FOIL to learn semantic relations in
natural languages (Carlson et al. 2010). Many literatures simply
classified all first-order rule learning methods to ILP, whereas
we distinguish them in a more strict sense in this book.

The terminology “Inductive Logic Programming” was pro-
posed by Muggleton (1991). The GOLEM (Muggleton and
Feng 1990) algorithm overcame many difficulties in trans-
forming propositional logic to first-order rule learning, and
it established the ILP framework that takes the bottom-up
search strategy. LGG was first proposed in Plotkin (1970),
and GOLEM employs RLGG. PROGOL (Muggleton 1995)
improved inverse resolution to inverse entailment and achieved
better performance. Studies on predicate invention have made
some progress in recent years (Muggleton and Lin 2013). Rules
learned by ILP can be almost directly used by logic program-
ming interpreters such as PROLOG that is commonly used
in expert systems, and therefore, ILP is an important bridge
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between machine learning and knowledge engineering. PRO-
GOL (Muggleton 1995) and ALEPH (Srinivasan 1999) are
widely used ILP systems, and their basic idea has been covered
in our discussion of ILP in this chapter. Datalog (Ceri et al.
1989) has made significant influence to the area of database
research. For example, it has influenced the SQL 1999 stan-
dard and IBM DB2. Classic literature on ILP includes (Mug-
gleton 1992; Lavrac and Dzeroski 1993), and there is also a
dedicated International Conference on Inductive Logic Pro-
gramming (ILP).

ILP has achieved some successes in biological data mining
and naturallanguage processing (Bratko and Muggleton 1995),
but its high complexity makes it difficult to handle large-scale
problems. For this reason, studies on this topic are somewhat
suppressed by the rise of statistical learning. As machine learn-
ing techniques have been applied to a wider range of fields in
recent years, the importance of ILP has been increasingly recog-
nized in learning problems involving rich structured informa-
tion and domain knowledge. In light of this fact, some effort has
been made to join rule learning and statistical learning together,
such as Probabilistic Inductive Logic Programming (PILP)
(De Raedt et al. 2008) which incorporates probabilistic models
in ILP, and Relational Bayesian Network (RBN) (Jaeger 2002)
which assigns logic semantics to nodes in Bayesian network.
In fact, joining relational learning and statistical learning is an
important trend in the development of machine learning, where
PILP is an important representative in this line of research.
Other important representatives include Probabilistic Rela-
tional Model (PRM) (Friedman et al. 1999), Bayesian Logic
Program (BLP) (Kersting et al. 2000), and Markov Logic Net-
work (MLN) (Richardson and Domingos 2006). These efforts
are known under the umbrella of statistical relational learning
(Getoor and Taskar 2007).

393 1 5

See Sect. 1.5 for knowledge
engineering and expert systems.



394 Chapter 15 - Rule Learning

The watermelon data set 2.0 is in
0 Table4.1.

The watermelon data set 2.0« is
in @ Table4.4.

The watermelon data set 5.0 is in
B Table15.1.

15

Output “unsolvable” when S
cannot be unified.

Exercises

15.1 Given that negation literals are permitted, take the top-
down strategy to learn the propositional rule set from the water-
melon data set 2.0.

15.2 Given that we can generalize rules by deleting literals or
replacing constants with variables during the learning process,
take the bottom-up strategy to learn the propositional rule set
from the watermelon data set 2.0.

15.3 Download or implement the RIPPER algorithm, and
apply it to the watermelon data set 2.0 to learn the proposi-
tional rule set.

15.4 Rule learning algorithms can also learn from incomplete
data sets. Analogously to how missing values are handled by
decision tree algorithms, use sequential covering to learn the
propositional rule set from the watermelon data set 2.0c.

15.5 Download or implement the RIPPER algorithm, and
apply it to the watermelon data set 5.0 to learn the first-order
rule set with negation literals permitted.

15.6 Use ILP to learn the concept unriper(X, Y) from the
watermelon data set 5.0.

15.7 Prove that there is no first-order formula r’ that can spe-
cialize to the first-order formulas r; and r, while also can gen-
eralize to their LGG.

15.8 Find the LGG set of the watermelon data set 5.0.

15.9 * First-order atomic formulas are recursively defined in
the form of P(t1, 3, ..., t,), where P is a predicate or a func-
tion, and #; is called a “term” that can be logical constants,
variables, or other atomic formulas. Let S = {E|, E>, ..., E;}
be the set of first-order atomic formulas E;, design an algorithm
to find their MGU.

15.10 * Sequential covering-based rule learning algorithms
will, before learning the next rule, remove training samples that
have already been covered by the current rule set. With this
greedy approach, the subsequent learning process only looks
at the uncovered samples without considering the correlation
between the previous rules and the current rules when calculat-
ing the coverage of rules. Nevertheless, such an approach will



Exercises

keep reducing the number of samples in the subsequent learn-
ing processes. Design a rule learning algorithm that does not
remove samples.
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Kalusz was part of different
countries in history, including
Poland, Russia, Germany, and
Ukraine.

See Sect. 1.5.

15

Break Time

Short Story: Ryszard S. Michalski—Pioneer of Machine Learn-
ing

The series of AQ algorithms is an impor-
tant work in the early days of rule
learning research, mainly developed by
the Polish-American computer scientist
Ryszard S. Michalski (1937-2007), a pio-
neer in machine learning.

Michalski was born in Kalusz. He
earned a Ph.D. degree in computer science
from the Silesian University of Technol-
ogy, Gliwice in 1969. In the same year, he published the AQ
technique at the FCIP conference held in Bled, Yugoslavia
(present-day Slovenia). In 1970, Michalski started to teach at
the University of Illinois Urbana-Champaign and continued
his study on AQ technique. In 1980, Michalski, together with
J. G. Carbonell and T. Mitchell, organized the first machine
learning workshop at Carnegie Mellon University. The work-
shop was held again in 1983 and 1985, and later on, it became
the International Conference on Machine Learning (ICML). In
1983, Michalski, Carbonell, and Mitchell edited a book called
Machine Learning: An Artificial Intelligence Approach, which is
amilestone in the history of machine learning. In 1986, Machine
Learning, the first journal dedicated to machine learning, was
established, and Michalski was one of the three founding edi-
tors.
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16.1 Task and Reward

Planting watermelon involves many steps, such as seed selec-
tion, regular watering, fertilization, weeding, and insect con-
trol. We usually do not know the quality of the watermelons
until harvesting. If we consider the harvesting of ripe water-
melons as a reward for planting watermelons, then we do not
receive the final reward immediately after each step of plant-
ing, e.g., fertilization. We do not even know the exact impact of
the current action on the final reward. Instead, we only receive
feedback about the current status, e.g., the watermelon seedling
looks healthier. After planting watermelons many times and
exploring different planting methods, we may finally come up
with a good strategy for planting watermelons. Such a process,
when abstracted, is called reinforcement learning.

As illustrated in @ Figure 16.1, we usually use Markov
Decision Process (MDP) to describe reinforcement learning
problems: an agent is in an environment £ with a state space X,
where each state x € X is a description of the environment per-
ceived by the agent, e.g., the growing trend of the watermelon
seedling in watermelon planting. The actions that the agent can
perform form an action space A. For example, in watermelon
planting, the actions include watering, using different types of
fertilizers, and applying different types of pesticides. When an
action a € A is performed on the current state x, the under-
lying transition function P will transit the environment from
the current state to another with a certain probability, e.g.,
watering a dehydrated seedling may or may not recover it to
a healthy state. After the transition from one state to another,
the environment sends the agent a reward based on the under-
lying reward function R, e.g., +1 for healthy seedling, —10
for withered seedling, and +100 for harvesting a ripe water-
melon. In short, reinforcement learning involves a quadruplet
E=(X,A4,P,R), where P: X x A x X — R gives the state
transition probability, and R : X x 4 x X — R gives the
reward. In some applications, the reward function may only
depend on state transitions, thatis, R : X x X — R.

Action @

Environment

State
Reward 7

Fig. 16.1 A diagram of reinforcement learning
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a =not watering a = watering
p=04 p=06
r=1

a = watering
p =0.! 5
r=-1

a =not watering
p 0 6

p=0.4

a = watering
p=04

a = watering
p=06
r=-1

a = watering / not watering
p=1
r=-100

Fig. 16.2 The MDP of watering watermelons

@ Figure 16.2 provides an example showing the MDP of
watering watermelons. In this example, we have four states
(i.e., healthy, underwatered, overwatered and withered) and
two actions (i.e., watering, not watering). After each transi-
tion, the agent receives a reward of 1 if the state is healthy
and a reward of —1 if the state is underwatered or overwa-
tered. The state can be recovered to healthy by watering or
not watering. When the seedling is withered, it is unrecov-
erable, and the agent receives the minimum reward value of
—100. The arrows in 8 Figure 16.2 represent state transitions,
where a, p, and r are, respectively, the action, the state transi-
tion probability, and the reward. We can easily figure out that
the optimal strategy is to take the action watering in the state
healthy, the action not watering in the state overwatered, the
action watering in the state underwatered, and any actions in
the state withered.

The agent has no direct control of the state transition or
reward. It can only influence the environment by taking actions
and perceive the environment by observing transited states and
returned rewards. For example, in the watermelon planting
problem, the environment is the natural world in which water-
melons grow; in a chess game, the environment is the chess-
board and the opponent; in robot control, the environment is
the body of the robot and the physical world.

By interacting with the environment, the agent tries to learn
a policy 7 that can select the action a = w(x) at state x. For
example, when the agent observes the state underwatered, it
takes the action watering. There are two ways of representing
policies. The first one is representing policies with functions
m : X — A, and we often use this representation for deter-
ministic policies. The other one is representing policies with
probabilities 7 : X x A — R, and we often use this representa-
tion for stochastic policies. For the probability representation,
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7w(x, a) is the probability of choosing the action a at state x,
and we must ensure ), 7(x,a) = 1.

The quality of policy is measured by the cumulative rewards
of executing this policy in the long term. For example, a policy
that leads to a withered seedling may accumulate only a small
amount of reward, whereas a policy that leads to a ripe water-
melon can accumulate a large amount of reward. The objective
of reinforcement learning is to find a policy that maximizes the
long-term cumulative rewards. There are different ways to cal-
culate cumulative rewards, and the commonly used ones are 7-
step cumulative rewards ]E[% Z; 1 7+] and vy-discounted cumu-
lative rewards E[Zf:og ~'rry1], where r; is the reward at step ¢
and E is the expectation with respect to all random variables.

Readers may have recognized the differences between rein-
forcement learning and supervised learning. If we consider
“states” and “actions”, respectively, as “samples” and “labels”
in supervised learning, then “policies”correspond to “classifiers”
(for discrete actions) or “regressors” (for continuous actions),
and hence the two learning paradigms are somewhat similar.
The main difference is that there are no labeled samples in
reinforcement learning. In other words, there is no supervised
information that tells the agent which action it should take with
the given state. Instead, the agent has to wait for the outcome
and then “reflects” its previous actions. From this perspective,
reinforcement learning can be seen as supervised learning with
time-delayed labels.

16.2 K-Armed Bandit

16.2.1 Exploration Versus Exploitation

Unlike common supervised learning, the final amount of rewards
inreinforcement learning is only observed after multiple actions.
Let us start our discussion with the simplest case: we maximize
the reward of each step, that is, consider only one step at a time.
Note that reinforcement learning and supervised learning are
still quite different even in this simplified scenario since the
agent needs to try out different actions to collect the respective
outcomes. In other words, there is no training data that tells
the agent which actions to take.

To maximize the one-step reward, we need to consider two
aspects: find the reward corresponding to each action and take
the highest-rewarded action. If the reward of each action is a
definite value, then we can find the highest-rewarded action
by trying out all actions. In practice, however, the reward of
action is usually a random variable sampled from a probabil-



16.2 K-Armed Bandit

ity distribution, and hence we cannot accurately determine the
mean reward only in one trial.

The above one-step reinforcement learning scenario
corresponds to a theoretical model called K-armed bandit. As
illustrated in @ Figure 16.3, there are K arms in the K-armed
bandit. After inserting a coin, the player can pull an arm, and
the machine will return some coins at a certain probability (of
this arm) that is unknown to the player. The player’s objective
is to develop a policy that maximizes the cumulative reward,
that is, more coins.

If we only want to know the expected reward of each arm,
then we can employ the exploration-only method: equally allo-
cate the pulling opportunities to the arms (i.e., pull each arm in
turn), and then calculate the average number of coins returned
by each arm as the approximation of expectation. In contrast,
if we only want to take the highest-rewarded action, then we
can employ the exploitation-only method: pull the currently
best arm (i.e., the one with the highest average reward), or
randomly choose one when there are multiple best arms. By
comparing these two methods, we see that the exploration-only
method can estimate the reward of each arm reasonably well
at the cost of losing many opportunities to pull the optimal
arm, whereas the exploitation-only method is likely to miss the
optimal arm since it does not have a good estimation of the
expected reward of each arm. Therefore, we are unlikely to
maximize the cumulative rewards using either method.

$6$

arms
1 2 3 4 5 ‘/
RS

Fig.16.3 An example of K-armed bandit

Actually, exploration (i.e., estimating the quality of each
arm) and exploitation (i.e., choosing the currently best arm)
are conflicted since the total number of trials (i.e., pulling
opportunities) is fixed. In other words, improving one aspect
will weaken the other, and such a situation is known as the
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We will use (16.3) in Sect. 16.4.2.

Exploration-Exploitation dilemma in reinforcement learning.
To maximize the cumulative rewards, we need to make a good
trade-off between exploration and exploitation.

16.2.2 ¢-Greedy

The e-greedy method makes a trade-off between exploration
and exploitation based on a probability value. In each trial,
it chooses exploration (i.e., randomly select an arm) with a
probability of € or chooses exploitation (i.e., select the arm with
the highest reward at the moment, or randomly select from tied
arms with the highest reward) with the probability of 1 — e.
Formally, let Q(k) denote the average reward of arm k. By
pulling the arm k for n times, we obtain a series of rewards

V1, V2, ..., Vy, and the average reward is given by
1 n
o) = - lev,. (16.1)
=

Instead of using (16.1) to calculate the average of n rewards,
we can also calculate the average incrementally by updating
QO(k) after each trial. Let the subscripts denote the number of
trials, and we have Qy(k) = 0 at the initial point. For every
n > 1, 0,_1(k) is the average reward after n — 1 trials, and
the average reward, after the nth trial with a reward of vy, is
updated to

On(k)

1
. ((n=1) x On—1(k) +vn) (16.2)

1
On—1(k) + ; Vi — On—1(k)) . (16.3)

In this way, we only need to record two values no matter
how many trials we run, that is, the number of completed trials
n—1 and the most recent average reward Q,_1 (k). The e-greedy
algorithm is given in @ Algorithm 16.1.

When the rewards of arms are highly uncertain (e.g., wide
probability distribution), we need more explorations (i.e., larger
€). In contrast, when the rewards of arms have low uncertainty
(e.g., concentrated probability distribution), we can obtain
good approximations with a small number of trials, and hence
a small € is sufficient. In practice, we usually let € be a small
constant, such as 0.1 or 0.01. As the number of trials increases,
we get a more accurate estimation of the rewards of all arms
and eventually no longer need exploration. In such cases, we
can let € decrease as the number of trials increases, e.g., letting

e=1/4/1t.
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Algorithm 16.1 e-greedy

Input: Number of arms K;
Reward function R;
Number of trials T';
Exploration probability e.
Process:
1: r=0;
2:Vi=1,2,...,K: Q@) =0, count(i) = 0;
3. fort=1,2,..., T do

4 if rand() < e then

5 k = uniformly and randomly selected from 1, 2, ..., K;
6: else

7: k = argmax; Q(i);

8: end if

9: v = R(k);

101 r=r + v,
. _ Q(k)xcount(k)+v .
I 00 = =t

12: count(k) = count(k) + 1.
13: end for
Output: Cumulative rewards r.

16.2.3 Softmax

The Softmax algorithm makes a trade-off between exploration
and exploitation based on the current average rewards. The
basicidea is that arms with similar average rewards should have
similar probabilities to be chosen, and arms with higher average
rewards than the others should have higher probabilities to be
chosen.

The Softmax algorithm allocates the probabilities of being
chosen based on the Boltzmann distribution

0w

e T

P(k) = (16.4)

@
Zszl %
where Q(i) is the average reward of the current arm, and 7 > 0
is known as temperature. A smaller 7 makes the arms with
high average rewards more likely to be chosen. Softmax moves
towards exploitation-only as T approaches 0 and moves towards
exploration-only as T approaches the positive infinity. The Soft-
max algorithm is given in 8 Algorithm 16.2.

The choice between e-greedy and Softmax mainly depends
on the specific applications. To understand their difference, let
us take a look at an intuitive example. Considering the fol-
lowing 2-armed bandit: the arm 1 returns a reward of 1 at a
probability of 0.4 and returns a reward of 0 at a probability of
0.6, and the arm 2 returns a reward of 1 at a probability of 0.2
and returns a reward of 0 at a probability 0.8. For this 2-armed

16
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Q(i) and count(i) are,
respectively, the average rewards
of arm i and the number of
times arm i is chosen.

Generate a random number
from [0, 1].

The reward of the current trial.

(16.2) updates the average
reward.
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T is a parameter used in line 4.

Q(i) and count(i) are,
respectively, the average rewards
of arm i and the number of
times arm i is chosen.

The reward of the current trial.

(16.2) updates the average
reward.

Algorithm 16.2 Softmax

Input: Number of arms K;
Reward function R;
Number of trials T’;
Temperature parameter 7.
Process:
1: r=0;
2:Vi=1,2,...,K: Q@) =0, count(i) = 0;
3: forr=1,2,...,T do

k = randomly selected from 1, 2, ..., K according to (16.4);
v = R(k);
F=r+v;

— Q@) xcount(k)+v,

o) = count(k)+1 >
count(k) = count(k) + 1.
end for
Output: Cumulative rewards r.

R N A

bandit, @ Figure 16.4 shows the cumulative rewards of differ-
ent algorithms under different parameter settings, where each
curve is the average result of 1000 repeated experiments. We
can observe that the curve of Softmax almost overlaps with the
curve of exploitation-only when 7 = 0.01.

e-greedy(e = 0.1

Softmax(r = 0.1)

e-greedy(e = 0.01)

Exploitation-only

Softmax (7 = 0.01)

Exploration-only

Average cumulative rewards

T T T T T
0 500 1000 1500 2000 2500 3000
Number of trials

Fig. 16.4 The performance comparison of different algorithms on the 2-
armed bandit

For multi-step reinforcement learning problems with dis-
crete state space and discrete action space, a straightforward
approach is to consider the action selection of each state as a
K-armed bandit problem, where the cumulative rewards in the
reinforcement learning problem replace the reward function
in the K-armed bandit problem, that is, applying bandit algo-
rithms to each state: we keep records of the number of trails
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and the current cumulative rewards for each state, and decide
the action based on the bandit algorithm. However, there are
limitations in such an approach since it does not consider the
structural information in the MDP of reinforcement learning.
As we will see in Sect. 16.3, there are better methods once we
take advantage of the properties of MDP.

16.3 Model-Based Learning

We start our discussions on multi-step reinforcement learning
problems with the scenario of known model, that is, the quadru-
plet E = (X, A, P, R) in MDP is known. In other words, the
agent has already modeled the environment and can simulate
the environment exactly or approximately. We call such a learn-
ing task model-based learning. Here, the probability of transi-
tion from state x to state x’ via action a is known, denoted by
P¢_ ., and the reward is also known, denoted by RS . For
ease of discussion, we assume both the state space X and the
action space A be finite. For general model-based reinforce-
ment learning, we need to consider how to learn the environ-
ment model and how to learn the policy in the model. Here,
we only discuss the latter, given that the environment model is
known.

16.3.1 Policy Evaluation

With the known model, we can estimate the expected cumula-
tive rewards of using policy 7. Let the function V'™ (x) denote
the cumulative rewards of using policy 7 from the starting state
x, and the function Q™ (x, @) denote the cumulative rewards of
using policy 7 after taking action « at state x. Here, we call V' (-)
the state value function representing the cumulative rewards for
a given state, and Q(-) the state-action value function represent-
ing the cumulative rewards for a given state-action pair.

From the definition of cumulative rewards, we have the
state value functions

407 1 6

We will discuss unknown model
in Sect. 16.4.

We will discuss infinite space in
Sect. 16.5.
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Such recursive equations are
known as Bellman equations.

Expanded using the law of total
probability.

[ V; x)=Er Fﬂ Z;r:ﬂ’t | xp = x] R T — step cumulative rewards;

VIx) =Ex Z;OSWII',H | xg = x] , 7 — discounted cumulative rewards.

(16.5)

To keep our discussion concise, we omit the type of above
two cumulative rewards in subsequent discussions when the
context is clear. Let xo denote the initial state, ag denote the
first action performed on the initial state, and ¢ denote the
number of steps for T-step cumulative rewards. Then, we have
the state-action value functions

0r(x,a) =B, |+ i1 1 xo =x, a0 = al;
T [T t=1"1 ] (16.6)

07 (x,a) = Er [ 57 141 | X0 = x, a0 = a] .

Since MDP possesses the Markov property, that is, the state
at the next step only depends on the current state rather than
any previous states, and therefore, the value function has a
simple form of recursion. Specifically, for 7T-step cumulative
rewards, we have

T
1
V%T“(X) =E; |:T ;'”t | xo = X:|

.
1 T—1 1

=E7r|:TVI+T T—erthO:xi|

—Zw(xa)ZpH( v

acA x'eX

+7T Er |: Zrt|x0—xi|>
= Sntna) Y (R T V).

aeA x'eX
(16.7)

Similarly, for y-discounted cumulative rewards, we have

Vi)=Y mx.a) Y Pl (RE, +yVI(X)). (16.8)

acA x'eX

Note that we can expand using the law of total probability
because P and R are known.

Readers may have recognized that the above calculations
of value functions using recursive equations are essentially a
kind of dynamic programming. For V7, we can imagine that
the recursion continues until it reaches the initial starting point.
In other words, from the initial value Vj of the value function,
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we can calculate the one-step rewards V| of every state in one
iteration. Then, from the one-step rewards, we can calculate the
two-step cumulative rewards V57, and so on. Such a procedure
is shown in @ Algorithm 16.3, and it takes only 7 iterations
to precisely calculate the value function of 7-step cumulative
rewards.

Algorithm 16.3 T-step cumulative rewards-based policy evalu-
ation
Input: MDP quadruplet E = (X, 4, P, R);
Evaluating policy 7;
Cumulative rewards parameter 7.
Process:
I:VxeX: V(x)=0;
2:forr=1,2,...do
3OV X V() = Koy 00 @) Ly Py (R L+ SV (0);

4 if 1 =T + 1 then
5 break;

6: else

7: V=Vv.

8 end if

9: end for

Output: State value functions V.

There is also a similar algorithm for VT since ~! approaches
0 when ¢ is large. To this end, we just need to modify line 3 of
B Algorithm 16.3 based on (16.8). Besides, the algorithm may
iterate for quite many rounds, and therefore, we need to set a
stopping criterion, e.g., set a threshold § and stop the algorithm
when the change of value function after one iteration is smaller
than 0. Accordingly, t = T + 1 in line 4 of B Algorithm 16.3
is replaced by

max | Vi(x) — V’(x)] <4. (16.9)
xeX

With the state value functions V', we can calculate the state-
action value functions

Q?(X’ a) = ZX/GX PZHX/(%R;%’C/ + % V;—l(x/));

Qg(xs a) = Zx/e}( Piﬁx/(Ri_)x/ + ’YV';/T(X/))
(16.10)

409 1 6

V (x) is the cumulative rewards
of x.

(16.7) updates the value
function.

We write in this format so that
the T-step cumulative rewards
and the ~-discounted cumulative
rewards can be considered under
the same algorithmic
framework.

See Exercise 16.2.
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16.3.2 Policy Improvement

After evaluating the cumulative rewards of a policy, we natu-
rally wish to improve it if it is not the optimal one. An ideal
policy should maximize the cumulative rewards

7 = argmax, Z V7 (x). (16.11)
xeX

A reinforcement learning problem could have more than
one optimal policy, and the value function V* corresponding
to the optimal policies is called the optimal value function

Vxe X V*x) =V (x). (16.12)

Note that V* in (16.12) is the value function of the optimal
policies only if it imposes no constraint on the policy space.
For example, for discrete state space and discrete action space,
the policy space is the combination of all actions over all states,
containing |A|'X! different policies. However, once there are
constraints on the policy space, then the policies that break the
constraints are illegitimate policies whose value functions are
not the optimal value function even if they have the highest
cumulative rewards.

Since the cumulative rewards of the optimal value function
are maximized, we can make some small adjustments to the
Bellman equations (16.7) and (16.8), that is, change the sum-
mation over actions to selecting the best action

Vi) = maxeeaY vy P (G RO+ TRV ()

X—> X

Vix) = maXgea) ey Pi_ (RO .+ ”YVf;(x’))-

(16.13)
In other words,
V*(x) = max 07 (x, a). (16.14)
acA

Substituting it into (16.10), we have the optimal state-action
value function

1 T—1 .
Q?(X, a) = Z.x’eXpﬁcl—)x’(TRz—)x’ + 7 MaXgey Q*Ti—l (X/, a/)’

Q: (X, a) = Zx/EXP)Lz—n(/ (R,Z_m/ + ,\/maxa/EA Q: (X/, a/))'
(16.15)

The above equations about the optimal value functions are
called the Bellman optimality equations, whose unique solu-
tions are the optimal value functions.
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The Bellman optimality equations suggest a method for
improving non-optimal policies, that is, changing the action
chosen by the policy to the currently best action. Clearly, doing
so will improve the quality of policies. Let " denote the pol-
icy with changed action, and Q™ (x, 7/(x)) > V™ (x) denote the
condition of action change. Taking the y-discounted cumula-
tive rewards as an example, from (16.10), we have the recursive
inequality

VT(x) < 0" (x, 7' (X))
= 3 PLOLRTS), 4417y

X—>X X—> X

x'eX
< PLVRID, 4907 ()
x'eX
= V7 (x). (16.16)

Since the value function is monotonically increasing with
respect to every improvement made on the policy, we can safely
improve the current policy 7 to

7'(x) = argmax Q" (x, a) (16.17)

acA

until 7’ and 7 remain the same, and hence the Bellman opti-
mality equation is achieved, that is, the optimal policy is found.

16.3.3 Policy Iteration and Value Iteration

The previous two subsections discussed how to evaluate the
value function of a policy, as well as how to improve a policy
to the optimum. Joining them gives the method for finding the
optimal solution: start with an initial policy (usually a random
policy), and then alternately iterate through policy evaluation
and policy improvement until the policy converges with no
more changes. Such a method is known as policy iteration.

411
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|A(x)]| is the number of all

possible actions under state x.

(16.7) updates the value
function.

(16.10) calculates Q.

See Exercise 16.3.

16

Algorithm 16.4 T-step cumulative rewards-based policy itera-

tion

Input: MDP quadruplet E = (X, 4, P, R);

Cumulative rewards parameter 7.

Process:
l:VxeX:V(x)=0,7(x,a) =
2: loop
3: fort=1,2,...do

.
[4()]°

4 VA€ X V() = Taes 706 @) Ly Py (RO L+ 51V 00);
S: if 1= T + 1 then

6: break;

7 else

8 V=V,

9 end if

10: end for

11: Vx € X : 7/(x) = argmax,. 4 O(x, a);
12: if Vx : 7/(x) = w(x) then

13: break;
14: else

15: =
16: end if

17: end loop

Output: Optimal policy .

B Algorithm 16.4 shows the pseudocode of policy iteration,
which improves @ Algorithm 16.3 by adding policy improve-
ment. Similarly, we can derive the policy iteration algorithm
based on y-discounted cumulative rewards. Policy iteration
algorithms are often time-consuming since they need to re-
evaluate policies after each policy improvement.

From (16.16), we see that the policy improvement and the
value function improvement are equivalent. Therefore, we can
improve policy via value function improvement, that is, from
(16.13), we have

Vr(x) = maxaeAZx/eXP;{%x/ (%Rzﬁx/ + % VT_1(x’)) ;

V’Y (x) = maxaeAZx/eXP;l—)x’ (R;—>V + ’YVV(X/)) .
(16.18)

This gives the value iteration algorithm, as shown in @ Algorithm
16.5.
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Algorithm 16.5 T-step cumulative rewards-based value itera-
tion
Input: MDP quadruplet £ = (X, 4, P, R);
Cumulative rewards parameter 7',
Convergence threshold 6.
Process:
I: Vxe X : V(x)=0;
2: fortr=1,2,...do
3 VN e X V() = maxges Loy PL o (LR

X—>X

S+ Er);

4 if maxyey |[V/(x) — V' (x)| < 0 then
5 break;

6 else

7: V=V.

8 end if

9: end for

Output: Policy 7(x) = argmax,.4 O(x, a).

When ~y-discounted cumulative rewards are used, we just
need to replace line 3 of @ Algorithm 16.5 with

x—x' X—> X

Vxe X : V(x)= maxaeAleeXP” (RE, v+ 7V (X)).

(16.19)

From the above algorithms, we see that reinforcement
learning problems with known models can be regarded as
dynamic programming-based optimization. Unlike supervised
learning, there is no generalization considered but just finding
the best action for each state.

16.4 Model-Free Learning

In real-world reinforcement learning problems, it is often dif-
ficult to obtain state transition probabilities and reward func-
tions of the environment, and it can even be difficult to know
the number of possible states. When the environment model is
unknown, we call the learning task model-free learning, which
is much more difficult than learning with known models.

16.4.1 Monte Carlo Reinforcement Learning

In model-free learning, the first problem faced by policy iter-
ation algorithms is that policies become unevaluable since we
cannot apply the law of total probability without knowledge
about the model. As a result, the agent has to try actions and
observe state transitions and rewards. Inspired by K-armed

413

(16.18) updates the value
function.

(16.10) calculates Q.
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See Sect. 14.7 for Monte Carlo
methods. We have seen the
MCMC method in Sect. 14.5.1.

bandit, a straightforward replacement of policy evaluation is
to approximate the expected cumulative rewards by averaging
over the cumulative rewards of multiple samplings, and such
an approach is called Monte Carlo Reinforcement Learning
(MCRL). Since the number of samplings must be finite, the
method is more suitable for reinforcement learning problems
with 7'-step cumulative rewards.

The other difficulty is that policy iteration algorithms only
estimate the value function V', but the final policy is obtained
from the state-action value function Q. Converting V' to Q is
easy when the model is known, but it can be difficult when the
model is unknown. Therefore, the target of our estimation is
no longer V' but Q, that is, estimating the value function for
every state-action pair.

Besides, when the model is unknown, the agent can only
start from the initial state (or initial state set) to explore the
environment, and hence policy iteration algorithms are not
applicable since they need to estimate every individual state.
For example, the exploration of watermelon planting can only
start from sowing but not other states. As a result, we can only
gradually discover different states during the exploration and
estimate the value functions of state-action pairs.

Putting them all together, when the model is unknown, we
start from the initial state and take a policy for sampling. That
is, by executing the policy for 7 steps, we obtain a trajectory

(X0, a0, 11, X1, A1, 12, - .y XT—1, AT—1, T, XT).

Then, for each state-action pair in the trajectory, we sum up its
subsequent rewards as a sample of its cumulative rewards. Once
we have multiple trajectories, we take the average cumulative
rewards for each state-action pair as an estimate of the state-
action value function.

To obtain a reliable estimation of value functions, we need
many different trajectories. However, if our policy is determin-
istic, then we will end up with identical trajectories since the
policy will always select the same action for the same state. We
recognize that this is similar to the problem in the exploitation-
only method of K-armed bandit, and therefore, we can learn
from the idea of exploration-exploitation trade-off. Taking e-
greedy method as an example, it selects an action at random
with probability € and the current best action with probabil-
ity 1 — e. We call the deterministic policy 7 as original policy,
and the policy of applying the e-greedy method on the original
policy is denoted by

7(x), with probability 1 — €;
7¢(x) = { Uniformly and randomly (16.20)
select an action from A with probability e.
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For the original policy 7 = argmax, Q(x, a) that maximizes
the value function, the current best action has a probability of
1 — €+ 177 to be selected in the e-greedy policy ¢, and each ~Assuming there s only one best
non-optimal action has a probability of @ to be selected. In o™
this way, there is a chance for every action to be selected, and
hence we can obtain different trajectories.

After Monte Carlo-based policy evaluation, we also need
policy improvement as we had in policy iteration algorithms.
Recall that we exploited the monotonicity revealed by (16.16)
to improve policy using the current best action. For any original
policy 7, its e-greedy policy 7€ equally allocates the probability
e to all actions, and therefore, we have Q7 (x, 7' (x)) > V™ (x)
for the original policy ' that maximizes the value function.
Hence, (16.16) still holds, and we can use the same policy
improvement method.

The pseudocode of the above procedure is given in
B Algorithm 16.6. Since the evaluation and improvement are
on the same policy, the algorithm is called the on-policy Monte
Carlo reinforcement learning algorithm. The algorithm com-
putes the average reward incrementally by updating the value
function using all state-action pairs in the trajectory once sam-
pled.

Algorithm 16.6 On-policy Monte Carlo reinforcement learning

Input: Environment E;
Action space A4;
Initial state xo;
Number policy steps T'. By default, the action is chosen
Process: with uniform probability.
I: Q(x,a) =0, count(x,a) =0, w(x,a) = IA(lx)I;
2: fors=1,2,...do
3:  Obtain a trajectory by executing the policy 7 in E:

Sample the sth trajectory.

(X0, a0, F1, X1, A1, 72, - .., XT—1, AT—1, FT, XT); For each state-action pair,
4: fort=0,1,..., 7 — 1do compute the cumulative rewards
5: R = ﬁ Z;[H i of the trajectory.
6: O(xs,ar) = Q(X"gf){:lfzil?,l,fﬂf'HR; (16.2) updates the average
7: count(x;, a;) = count(x,, a;) + 1; reward.
8: end for
9: For each seen state x: . .
argmax, Q(x, d'), with probability 1 — ¢; foulrjltciliirihe policy from the value
7m(x) = { Uniformly and randomly ’
select an action from 4,  with probability e.
10: end for

Output: Policy 7.

The on-policy Monte Carlo reinforcement learning algo-
rithm produces an e-greedy policy. However, introducing the
e-greedy policy is just for the convenience of policy evaluation
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The method of estimating the
expectation of distribution using
the samples of another
distribution is known as
importance sampling.

rather than using it as the final policy. The one we wish to
improve is indeed the original (non e-greedy) policy. Then, is it
possible to use e-greedy only in policy evaluation and improve
the original policy in policy improvement? The answer is “yes”.

Suppose we sample trajectories using two different policies
7 and 7', where the difference is that the same state-action
pair has different probabilities of being sampled. In general,
the expectation of function f over probability distribution p is
given by

E[f] = f p(0)f (x)dx, (16.21)

which can be approximated using the samples {x1, x3, ..., X}
obtained from the probability distribution p, that is

N 1 &
B = — Z f(x0). (16.22)
i=1

Suppose we introduce another distribution ¢, then the expec-
tation of function f" over the probability distribution p can be
equivalently written as

E[f]1= / Q(x)@f(x)dx, (16.23)
X q(x)

which can be seen as the expectation of ’;E—ﬁ f(x) over the dis-

tribution ¢, and hence can be estimated using the samples
{x},x5,...,x;,} drawn from ¢

i) = — i P (16.24)
mS gy '
Back to our original problem, using the sampled trajectory
of the policy 7 to evaluate 7 is actually estimating the expecta-
tion of the cumulative rewards

1 m
O, ) = — ; R;, (16.25)

where R; is the cumulative rewards from the state x to the
end of the ith trajectory. If we evaluate the policy 7 using the
trajectories sampled from the policy 7/, then we just need to
add weights to the cumulative rewards, that is

1 m T

O(x,a)=—Y —LR; (16.26)

m !
i=1 Pl
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where PT and P,?T/ are the two probabilities of producing the
ith trajectory by the two policies. Given a trajectory (xo, ao,
Fl,...,XT_1,d7—1, T, XT), its probability of being produced
by the policy 7 is given by

T-1
Pr =[] rxiapPi,, .
i=0

(16.27)

Though the state transition probability P§_, ,, ., appears in
(16.27), (16.24) only needs the ratio of the two probabilities

T—1
_ l_[ m(Xi, aj)
' (Xi, @)

i=0

Pﬂ'
Z 16.28
Pﬂ./ ( )

If 7 is a deterministic policy and «’ is its e-greedy policy, then
m(x;, a;) is always 1 for a; = w(x;) and 7’ (x;, a;) is either ﬁ or
1 —e+ @, and hence we can evaluate the policy 7. The off-
policy Monte Carlo reinforcement learning algorithm is given
in @ Algorithm 16.7.

Algorithm 16.7 Off-policy Monte Carlo reinforcement learning

Input: Environment E;
Action space A4;
Initial state xq;
Number policy steps 7.
Process:
I: Q(x,a) =0, count(x,a) =0, w(x,a) =
2: fors=1,2,...do
3:  Obtain a trajectory by executing the e-greedy policy = in E:
(x0, ao, 11, X1, 1,12, -+ XT—1,AT—1, T, XT);

" i={1—6+€/|A|,

|
[A()[°

aj = m(x;);
e/ 141, a; # m(x;);

5 fort=0,1,..., 7 —1do

6 R=g5 (Thon) ML Mg,
7 Q(Xt, at) — Q(x;,a;)xcount(xs,a,)+R .
8

count(x;,a;)+1 ’
: count(x;, a;) = count(x;, a;) + 1;
9: end for

10: m(x) = argmax, Q(x, d).
11: end for

Output: Policy .

16
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By default, the action is chosen

with uniform probability.
Sample the sth trajectory.

Compute the adjusted
cumulative rewards. The terms
in the product with the
subscription greater than the
superscription take value 1.

(16.2) updates the average
reward.
Obtain the policy from the value

function.
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16.4.2 Temporal Difference Learning

When the model is unknown, Monte Carlo reinforcement
learning algorithms use trajectory sampling to overcome the
difficulty in policy evaluation. Such algorithms update value
functions after each trajectory sampling. In contrast, the dynamic
programming-based policy iteration and value iteration algo-
rithms update value functions after every step of policy exe-
cution. Comparing these two approaches, we see that Monte
Carlo reinforcement learning algorithms are far less efficient,
mainly because they do not take advantage of the MDP struc-
ture. We now introduce Temporal Difference (TD) learning,
which enables efficient model-free learning by joining the ideas
of dynamic programming and Monte Carlo methods.

Essentially, Monte Carlo reinforcement learning algorithms
approximate the expected cumulative rewards by taking the
average across different trials. The averaging operation is
in batch mode, which means state-action pairs are updated
together after sampling an entire trajectory. To improve effi-
ciency, we can make this updating process incremental. For
state-action pair (x, a), suppose we have estimated the value
function QF (x, a) = % S, ri based on the ¢ state-action sam-
ples, then, similar to (16.3), after we obtained the (z + 1)-th
sample r;41, we have

Or(x,a) = Of (x,a) +

t+1 (res1 — Q7 (x, @), (16.29)

which increments Q7 (x, a) by h%](r,ﬂ — 07 (x, a)). More gen-
erally, by replacing erLl with coefficient 11, we can write the
increment as a1 (r.41 — OF (x, @)). In practice, we often set o,
to a small positive value a.. If we expand Q7 (x, a) to the sum of
step-wise cumulative rewards, then the sum of the coefficients
is 1, that is, letting a; = « does not change the fact that Q; is
the sum of cumulative rewards. The larger the step-size « is,
the more important the later cumulative rewards are.

Taking ~y-discounted cumulative rewards as an example,
suppose we use dynamic programming and state-action func-
tions, which are convenient when the model is unknown. Then,
from (16.10), we have

Q" (x.a)= Y P4 (R, +VT()

x'eX
= Z Pfé_)x/(Ri_)x/ + Y Z ﬂ-(x/’ a/)Qﬂ'(x/’ a/)).
x'eX aed

(16.30)

With cumulative sum, we have



16.4 Model-Free Learning

O (x,a) = Of (x, @)+ (RS, ,+707 (X', d) = O (x, @),
(16.31)

where x’ is the state transitioned from the state x after executing
the action @, and ¢’ is the action for x’ selected by the policy .

With (16.31), value functions are updated after each action,
as shown in @ Algorithm 16.8. Each update on value functions
requires to know the previous state, the previous action, the
reward, the current state, and the action to be executed. Putting
the initials together gives the algorithm name Sarsa (Rummery
and Niranjan 1994). Sarsa is an on-policy algorithm, in which
both the evaluation (line 6) and the execution (line 5) use the
e-greedy policy.

By modifying Sarsa to an off-policy algorithm, we have the
Q-Learning algorithm (Watkins and Dayan 1992), as shown
in @ Algorithm 16.9, in which the evaluation (line 6) uses the
original policy and the execution (line 4) uses the e-greedy pol-

icy.

Algorithm 16.8 Sarsa

Input: Environment E;
Action space A4;
Initial state xq;
Reward discount ~;

Step-size .
Process:
I: Q(x,a) =0,7(x,a) = \A(lx)l;
2: X = xg,a = w(x);
3: fort=1,2,...do
4: r, x' = the rewards and transitioned state through executing the

action a in E;
5 a =7m¢x);
6 O, a) =0, a) +a(r+v0(,d) — O, a));
7: m(x) = argmax, Q(x, d’);
8: x=x,a=d.
9: end for
Output: Policy 7.

16.5 Value Function Approximation

Our previous discussions assumed finite state space with each
state assigned an index. The value function is a tabular value
function of the finite state space, that is, it can be represented as
an array with the ith element in the array as the output value for
the input i, and modifying the value of a state does not affect
the values of other states. In practical reinforcement learning
problems, however, the state space is often continuous with an

419 16

By default, the action is chosen
with uniform probability.

One-step execution approach.

The e-greedy policy of the
original policy.

(16.31) updates the value
function.
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By default, the action is chosen
with uniform probability.

One-step execution approach.

The original policy.
(16.31) updates the value
function.

Algorithm 16.9 Q-learning

Input: Environment E;
Action space A4;
Initial state xo;
Reward discount ~;
Step-size .
Process:
I: Q(x,a) =0,7(x,a) = |A(1x)|;
2: X = Xo;
3:fort=1,2,...do
4: r, x' = the rewards and transitioned state through executing the
action ¢ = 7°(x) in E;
5 a =m(x);
6 O(x,a) = 0(x,a) + a(r+ 70, d) — O(x, a));
7: m(x) = argmax, Q(x, a’);
8.
9:

x=x.
end for
Output: Policy 7.

infinite number of states. To solve this problem, what should
we do?

Intuitively, we can discretize the continuous state space into
a finite state space and then apply the previously introduced
techniques. Unfortunately, it is difficult to discretize the state
space effectively, especially before we have explored the state
space.

As a workaround, we can try to model the value function in
continuous state space directly. Suppose the state space is an
n-dimensional real-valued space X = R”, whose state values
cannot be recorded with a tabular value function. Let us start
with a simple case in which the value function is represented as
a linear function of states (Busoniu et al. 2010):

Vo(x) =0"x, (16.32)

where x is the state vector, and 6 is the parameter vector. Such
a value function cannot precisely record the value of every state
as we did for the finite state space, and hence solving such a
value function is called value function approximation.

We wish that the value function learned from (16.32) can
approximate the ground-truth value function V'™ as precise as
possible, and we often measure the difference using the least
squares error

Ep = Fpmr [ (V") = Vo@))? ] (16.33)

where E, . is the expectation over the states sampled from the
policy .



16.5 Value Function Approximation

We can use a gradient descent method to minimize the error.
Finding the negative derivative of the error, we have

IVp(x)
90 }
= Exr 2017 (%) — Vo(x))x], (16.34)

OEy

~—5 = Eyr [2(V”(x) — Vo(x))

from which we have the update rule of individual samples
0=0+aV"(x)— Ve(x))x. (16.35)

Though we do not know the ground-truth value function
V'™ of the policy, we can learn from temporal difference learn-
ing: based on V™ (x) = r + v V™ (x’), we substitute the current
estimated value function for the ground-truth value function,
that is

0 =0+ a@+vVe(x) — Vox))x
=0+a(r++0"x —0 x)x, (16.36)

where x’ is the state at the next moment.

Temporal difference learning requires the state-action value
function to obtain the policy. A simple approach is to apply
6 to the joint vector of states and actions. For example, we
can add one more dimension to the state vector for storing
the action indices, that is, replacing x in (16.32) with (x; a).
Another approach is to encode actions with 0/1 to get the vector
a=(0;...;1;...;0), where “1” indicates the selected action.
Then, we combine a with the state vector into (x; @), and use it
to replace x in (16.32). By doing so, the linear approximation
is done on the state-action value function.

By replacing the value function in the Sarsa algorithm with
linear value function, we have the Sarsa algorithm with linear
value function approximation, as shown in @ Algorithm 16.10.
Similarly, we can derive the Q-Learning algorithm with linear
value function approximation. We can also easily replace the
linear learner in (16.32) with other learning methods, e.g., ker-
nel methods for non-linear value function approximation.

16.6 Imitation Learning

In classic reinforcement learning settings, the only feedback
information received by the agent is the cumulative rewards
after making multiple decisions. In real-world applications,
however, we can often obtain some examples of how human
experts make decisions. For example, we may ask experienced
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See Chap. 6 for kernel methods.
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The e-greedy policy of the
original policy.

(16.36) updates the parameters.

Also known as apprenticeship
learning, learning from
demonstration, and learning by
watching. This learning
paradigm has a connection to
learning from instruction. See
Sect. 1.5.
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Algorithm 16.10 Sarsa with linear value function approxima-
tion

Input: Environment E;
Action space A4;
Initial state xo;
Reward discount ~;
Step-size .
Process:
1: 6 =0;
2: x =x0,a=7(x) =argmax, 0" (x;d");
3: fort=1,2,...do
4: r, x' = the rewards and transitioned state through executing the
action ¢ in E;
5 ad =7w(x");
6 0=0+ar+~v0T(x";d)—07 (x; a)(x; a);
7: 7(x) = argmax,, 07 (x; a”);
8: x=x',a=4d.
9: end for
Output: Policy 7.

farmers to demonstrate how to plant watermelons. Learning
from such demonstrations is called imitation learning.

16.6.1 Direct Imitation Learning

The multi-step decision process in reinforcement learning faces
a huge search space, and hence it is not easy to use the cumu-
lative rewards to learn the appropriate decisions made many
steps ago. Such a difficulty, however, can be well alleviated
by directly imitating the state-action pairs provided by human
experts, and we call it direct imitation learning (a.k.a. behavior
cloning).

Suppose that human experts have supplied us a set of
trajectories {7y, 72, ..., T}, Where each trajectory includes a
sequence of states and actions

[AN B SS | i
T = (Sl,al,SZ,az,...,Sni+l),

where 7; is the number of transitions in the ith trajectory. Such
information tells the agent what to do under each state, and
therefore, we can use supervised learning to learn the policy
that matches the trajectory data obtained from human experts.

We can extract the state-action pairs from all trajectories to
make a new data set

D = {(s1,a1), (s2.@2), ... (S @y )}



16.6 Imitation Learning

which encodes states as features and actions as labels. Then,
from data set D, we can learn a policy model using either classi-
fication algorithms for discrete actions or regression algorithms
for continuous actions. The agent can use the learned policy
model to set the initial policy, which is then further improved
by reinforcement learning techniques.

16.6.2 Inverse Reinforcement Learning

In many applications, it is often challenging to design the
reward function, but we may inversely derive the reward func-
tion from the examples provided by human experts, and we call
it inverse reinforcement learning (Abbeel and Ng 2004).

In inverse reinforcement learning, the state space X and the
action space 4 are known, and we also have a trajectory data
set {71, 7, ..., Tm} just like we have in direct imitation learning.
The basic idea of inverse reinforcement learning is as follows:
letting the agent take the actions that are consistent with the
provided examples is equivalent to finding the optimal policy
in the environment of a reward function, where the optimal
policy produces the same trajectories as the provided examples.
In other words, we look for a reward function such that the
provided samples are optimal and then use this reward function
to train the policy in reinforcement learning.

Suppose that the reward function can be represented as a
linear function of states, that is, R(x) = w ' x. Then, the cumu-
lative rewards of policy 7 can be written as

+00 +00
p"=E |:ZVIR(x,) | 7T:| =E |:Z’YIWTxt | 7T:|
=0

t=0

~+00
=w'E [Z 7x | W} , (16.37)

t=0

which is the inner product of the coefficients w and the expec-
tation of the weighted sum of state vectors.

Let x™ denote the expectation of state vectors IE[Z;;OS’ vxg|
m]. The expectation Xx™ can be approximated using the Monte
Carlo method: the example trajectories can be seen as a sam-
pling of the optimal policy, and hence we can calculate the
weighted sum of states in each example trajectory and then
take the average, denoted by x*. Then, for the optimal reward
function R(x) = w*'x and the expectation ¥™ produced by
any other policies, we have

W —w s =w T @ —x) > 0. (16.38)
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If we can calculate (x* — x™) for every policy, then we can
solve

w* = argmax,, min wl (X" —x™)
™ (16.39)
s.t. lw| < 1.

Since it is difficult to obtain all policies, an alternative
approach is to start with a random policy and use it to find
a better reward function iteratively. The reward function is
then used to find a better policy. This process continues until
we have the reward function and policy that fit the example
trajectories. The pseudocode of the above procedure is given
in @ Algorithm 16.11. In the step of finding a better reward
function, the minimization in (16.39) should only include the
previously learned policies instead of all policies.

Algorithm 16.11 Iterative inverse reinforcement learning

Input: Environment E;
State space X;
State space 4;
Trajectory data set D = {71, 72, ..., Tim}.
Process:
1: x* = the mean vector of the weighted sum of the state vectors in the
example trajectories;
2: © = random policy;
3:fort=1,2,...do
4: k7 = the mean vector of the weighted sum of the state vectors in
the trajectories sampled from ;

5: Solve w* = argmax,, min{_; w' (¥* — ¥7) s.t. [lw] <
6: 7 = the optimal policy in the environment (X, 4, R(x) = w*' x).
7: end for

Output: Reward function R(x) = w*" x and policy 7.

16.7 Further Reading

Sutton and Barto (1998) wrote a famous book dedicated to
reinforcement learning. Gosavi (2003) discussed reinforcement
learning from the optimization perspective, and Whiteson (2010)
discussed reinforcement learning with an emphasis on evo-
lutionary search algorithms. Mausam and Kolobov (2012)
introduced reinforcement learning from the Markov decision
process point of view. Sigaud and Buffet (2010) has broad
coverage, including Partially Observable MDP (POMDF) and
policy gradient methods. See Busoniu et al. (2010) for more
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information about reinforcement learning with value function
optimization.

The European Workshop on Reinforcement Learning
(EWRL) is a series of workshops dedicated to reinforcement
learning. The Multi-disciplinary Conference on Reinforcement
Learning and Decision Making (RLDM) is a new conference
that started in 2013.

Kaelbling et al. (1996) wrote an early survey on reinforce-
ment learning. Deisenroth et al. (2013), Kober et al. (2013)
surveyed the applications of reinforcement learning in the field
of robotics.

Vermorel and Mohri (2005) introduced and compared sev-
eral K-armed bandit algorithms. Multi-armed bandit mod-
els have been extensively studied Berry and Fristedt (1985) in
the field of statistics, which have been widely used, for prob-
lems such as online learning and adversarial learning, in recent
years. Bubeck and Cesa-Bianchi (2012) provided an overview
on regret bound analysis of multi-armed bandit problems.

Temporal decision (TD) learning was first proposed by A.
Samuel in his famous checker project. Sutton (1988)
proposed the TD(\) algorithm, from which (Tesauro 1995)
developed the TD-Gammon program that popularized TD
learning by reaching the level of top human backgammon
players at that time. Watkins and Dayan (1992) proposed
the Q-Learning algorithm, which was then improved to Sarsa
by Rummery and Niranjan (1994). TD learning is still being
improved and extended in recent years, such as generalized
TD learning (Ueno et al. 2011) and TD learning with eligibility
traces (Geist and Scherrer 2014). Dann et al. (2014) compared
different policy evaluation methods for TD learning.

Imitation learning is an important approach for speeding
up reinforcement learning (Lin 1992, Price and Boutilier 2003)
and has been widely used in the field of robotics (Argall et al.
2009). Abbeel and Ng (2004), Langford and Zadrozny (2005)
proposed inverse reinforcement learning methods.

Reinforcement learning is known as approximate dynamic
programming in operations research and cybernetics. See Bert-
sekas (2012) for more information.
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“regret” refers to the difference
between the rewards of the
decision made under uncertain
conditions and the decision
made under certain conditions.

See Break Time of Chap. 1 for
Samuel’s checker project.
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Exercises

16.1 In the K-armed bandit problem, the Upper Confidence
Bound (UCB) method selects arm that has the largest value of
Q(k) + UC(k) in each trial, where Q(k) is the current average
reward of the arm k and UC (k) is the confidence interval. For
example

21
o) + |2,
Ny

where 7 is the total number of pulls, and 7 is the total number
of pulls of the arm k. Discuss the difference and commonal-
ity between the UCB method, the e-greedy method, and the
Softmax method.

16.2 Taking @ Algorithm 16.3 as a reference, write down the
policy evaluation algorithm based on the ~-discounted reward
function.

16.3 Taking @ Algorithm 16.4 as a reference, write down the
policy iteration algorithm based on the ~y-discounted reward
function.

16.4 When the MDP is unknown, we can learn the MDP first
and then apply model-based reinforcement learning methods.
For example, we sample from random policies and estimate the
transition function and the reward function. Discuss the pros
and cons of such a method compared to model-free reinforce-
ment learning methods.

16.5 Derive the update rule (16.31) of the Sarsa algorithm.

16.6 Taking B Algorithm 16.10 as a reference, write down the
Q-Learning algorithm with linear value function approxima-
tion.

16.7 In practice, linear value function approximation has rela-
tively large errors. Extend the Sarsa algorithm with linear value
function approximation to the Sarsa algorithm with neural net-
work approximation.

16.8 Extend the Sarsa algorithm with linear value function
approximation to the Sarsa algorithm with non-linear value
function approximation that uses kernel functions.



Exercises

16.9 For goal-directed reinforcement learning, the task is to
arrive at a specific state, e.g., to park a car to the designated
location. Design a reward function for such problems, and dis-
cuss the utility of different reward functions, e.g., setting the
rewards to 0, —1, or 1 for each step that does not meet the goal.

16.10 * Unlike traditional supervised learning, direct imitation
learning deals with data that may come from different data dis-
tributions at different times. Design a direct imitation learning
algorithm that considers the changes in data distributions over
time.

427
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Chebyshev has many notable
students, including A. A.
Markov, A. Lyapunov, A.
Korkin, and D. Grave. He has
also influenced many
mathematicians outside of St.
Petersburg University.

16

Break Time

Short Story: Markov Decision Process and Andrey Andreyevich
Markov

Andrey Andreyevich Markov (1856— jz
1922) was a renowned Russian
mathematician and best known for
his work on stochastic processes.
Markov made significant contribu-
tions to probability theory, number
theory, approximation theory, dif-
ferential calculus, etc.

Markov was born in Ryazan,
Russia. When he was 17 years old,
Markov independently developed
a solution to linear ordinary differ-
ential equations, and this drew the attention of several mathe-
maticians from St. Petersburg University. In 1874, Markov was
admitted to St. Petersburg University, and obtained a lecturer
position there in 1878. Supervised by the prominent Russian
mathematician P. Chebyshev, Markov earned a Ph.D. degree
in 1884 at St. Petersburg University, where he remained for the
rest of his career. In the early days of his research, Markov fol-
lowed Chebyshev’s research direction and worked on the law of
large numbers and the central limit theorem. However, Markov
is best known for his contribution to research on stochastic
processes. From 1906 to 1912, Markov proposed the Markov
chains and Markov processes. These methods can describe a
wide range of real-world processes, ranging from Brownian
motion on the microscopic level to the spread of large-scale
infectious disease. In his classical textbook The Calculus of
Probabilities, Markov illustrated Markov chains using the dis-
tribution of vowels and consonants in A. S. Pushkin’s poem
“Eugeny Onegin”. In the 1950s, more than 30 years later after
Markov’s death, the Markov decision process was developed
by combining Markov processes and dynamic programming.

The Markov brothers’ inequality is named after Markov
and his younger brother Vladimir Andreevich Markov (1871—
1897). Markov’s son, whose name was also Andrey Andreye-
vich Markov (1903-1979), was also a prominent mathemati-
cian. The Turing-complete Markov algorithm, Markov’s prin-
ciple, and Markov’s rule are named after the junior Markov.
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432 Appendix A: Matrix

1, is the identity matrix of order
n, or simply denoted by I when
the context is clear.

Appendix A
Matrix

A.1 Basic Operations

Let (A);; = A4;; denote the element in the ith row and jth column
of real matrix A € R”*" and AT denote the transpose of A,
where (AT);; = 4;;. Then, we have

A+B) =AT +B", (A.1)
(AB)T =BTAT. (A.2)
When m = n, the matrix A € R"*" is called a square matrix
of order n. Let I, denote the identity matrix of order n, then
the inverse of A, denoted by A~!, satisfies AA T =ATA=1L
Then, we have
AhH™ ' =@hT, (A3)
AB)"! =B~ 1AL (A4)
For an n-by-n square matrix A, its trace is the sum of the ele-

ments on its diagonal, that is, tr(A) = Y /| 4;;. For trace, we
have the following properties:

tr(AT) = tr(A), (A.5)
tr(A + B) = tr(A) + tr(B), (A.6)
tr(AB) = tr(BA), (A.7)
tr(ABC) = tr(BCA) = tr(CAB). (A.8)

The determinant of an n-by-n square matrix A is given by

det(A) = ) par(0) A5, A2, - - - Ano,- (A.9)

oeS,

where S, is the set of permutations of order n. The value of
par(o) can be either —1 or +1 depending on whether the per-
mutation o = (o1, 02, ..., 0y) is odd or even, that is, whether
the number of descending value pairs is odd or even. For exam-
ple, the number of descending value pairs in (1, 3, 2) is 1, and
2 for (3, 1, 2). For the identify matrix, we have det(I) = 1. For
a 2-by-2 A, we have

det(A) = det (A” A12> = AnAxn — Annda.
A2 Ax
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The determinant of an n-by-n square matrix A has the following
properties:

det(cA) = " det(A), (A.10)
det(AT) = det(A), (A.11)
det(AB) = det(A) det(B), (A.12)
det(A™!) = det(A)~!, (A.13)
det(A") = det(A)". (A.14)

The Frobenius norm of the matrix A € R"*" is given by

m 1/2

IAllF = (tr(ATA)'/? = (ZZA@ : (A.15)

i=1 j=I

We can see that the Frobenius norm of a matrix is the L, norm
of its spanned vectors.

A.2 Derivative

The derivative of a vector a with respect to a scalar x and the
derivative of x with respect to a are both vectors, where the ith
components of them are, respectively

Oa Oa;

=) == A.l
(ax),. Ox’ (A-16)

Ox Ox

— ) = —. A.l
(Ga)i 0a; (A-17)

Similarly, the derivative of a matrix A with respect to a
scalar x and the derivative of x with respect to A are both
matrices, where the components on the ith row and jth column
are, respectively

OA 0A4jj

=) ==Y A.18
<8x>[j ox ( )

Ox Ox

— ) =—. A.l
(5),= 34, a9

For a function f'(x), if it is differentiable with respect to the
components of x, then the first-order derivative of f(x) with
respect to x is a vector, whose ith component is given by

of (x)

(Vf(x); = ax;

. (A.20)
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a is a constant vector with
respect to x.

The second-order derivative of /' (x) with respect to x is a square
matrix, known as Hessian matrix, whose element in the ith row
and jth column is given by

(vrw) =2/

= . A.21
i 6xl~8xj ( )

The derivative of vectors and matrices obeys the product
rule

OxTa 0Oa'x

o o ® (A.22)
OAB OA OB
o = BtAL (A.23)

From A~'A = T and (A.23), the derivative of the inverse
matrix can be written as

OA~! _10A
T = ATAT (A.24)

If the derivative of matrix A is taken with respect to an
element of it, then we have

otr(AB)
—3/11']‘ = Bji, (A.25)
Otr(AB)

A B', (A.26)

and subsequently, we have

Otr(ATB)
oA = B, (A.27)
otr(A) _
A= I, (A.28)
Otr(ABAT) T
A = AB+B"). (A.29)

From (A.15) and (A.29), we have

ONAlF  Otr(AAT)
OA 0A

2A. (A.30)

The chain rule is an important technique for calculating
the derivatives of composite functions. In simple words, if a
function f is the composition of g and 4, that is, f (x) = g(h(x)),
then we have

f(x) _ 9g(h(x)) 0Oh(x)
ox  Oh(x) ox

(A.31)
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For example, Ax — b can be seen as a whole to simplify the
calculation of the following equation

9 Ar—b)TWAr —b) = 2A¥ =D wiax b
ox ox
=2ATW(Ax — b). (A.32)

A3 Singular Value Decomposition

Any real matrix A € R”*" can be decomposed as
A=UxV', (A.33)

where U € R"™ is a unitary matrix of order m satisfying
UTU =1,V € R is a unitary matrix of order n satisfying
VTV =1,and ¢ € R™*"isa mx nmatrix with all of its elements
taking the value 0 except (0);; = o;, where o; are non-negative
real numbersand oy >0y > ... > 0.

The decomposition in (A.33) is known as Singular Value
Decomposition (SVD), where the column vectors u; € R” of U
are called the left-singular vectors, the column vectors v; € R”
of V are called the right-singular vectors, and o; are called
the singular values. The number of non-zero singular values is
called the rank of A.

SVD has a wide range of applications. Taking the low-
rank matrix approximation problem as an example, suppose
we want to approximate a r-rank matrix A with a k-rank matrix
A, where k < r, then, the problem can be formulated as

min A—A
i, 1A=, .
s.t. rank(A) = k.

SVD provides an analytical solution to the above problem:
after performing SVD on A, we obtain a matrix o by setting
the r — k smallest singular values in o to zero, that is, we keep
only the k largest singular values. Then, the optimal solution
of (A.34) is given by

A = Uz v/, (A.35)

where U and V. are, respectively, the first k& columns of U
and Vin (A.33). The result is referred to as the Eckart—Y oung—
Mirsky theorem.
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In machine learning, W is
usually a symmetric matrix.

The singular values are typically
arranged in descending order to
ensure 6 is unique.

The results of SVD and
eigendecomposition are the
same when A is a symmetric
positive definite matrix.



Appendix B
Optimization

B.1 Lagrange Multiplier Method

The method of Lagrange multipliers is a technique for finding
the extrema of a multivariate function subject to a set of con-
straints. By introducing Lagrange multipliers, an optimization
problem with d variables and k constraints can be converted
into an unconstrained optimization problem with d + k vari-
ables.

Let us consider an optimization problem with one equality
constraint. Suppose x is a d-dimensional vector, and we want to
find a certain value x* that minimizes the function f'(x) subject
to the constraint g(x) = 0. Geometrically, the task is to find a
point that minimizes the objective function f'(x) on the (d — 1)-
dimensional space determined by g(x) = 0. It is not difficult to
obtain the following conclusions:
== The gradient Vg(x) at any point x on the constraint surface

is orthogonal to the constraint surface;
== The gradient Vf'(x*) at the optimal point x* is orthogonal

to the constraint surface.

From the above conclusions, we know that, at the optimal
point x* shown in Figure B.1, the gradients Vg(x) and Vf'(x)
are either in the same direction or the opposite directions. That
is, there exists a Lagrange multiplier A # 0 such that

Vf(x*) + AVg(x*) = 0. (B.1)
We can define the Lagrange function as
Lx, \) =1 (x) + Ag(x), (B.2)

from which we can get (B.1) by setting its partial derivative with
respect to x, i.e., Vy L(x, \) or partial derivative V, L(x, A) to
zero. Also, we can obtain the constraint g(x) = 0 by setting the
partial derivative with respect to x, i.e., Vi L(x, \) or partial
derivative V, L(x, A\) to zero. Hence, the original constrained
optimization problem can be converted into an unconstrained
optimization problem of the Lagrange function L(x, )).

Now let us take a look at the inequality constraint g(x) < 0.
As shown in Figure B.1b, the optimal point x* lies on the
boundary corresponding to g(x) = 0 or falls into the area
corresponding to g(x) < 0. In the case of g(x) < 0, the con-
straint g(x) < 0 has no affect, and the optimal point can be
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The point is the tangent point of
the constraint surface and the
contour line of f'(x).

Proof by contradiction: if the
gradient Vf (x*) is not
orthogonal to the constraint
surface, then we can shift x* on
the constraint surface to further
reduce the objective value.

For equality constraints, A could
be positive or negative.
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(a) Equality constraint. (b) Inequality constraint.

Fig. B.1 The geometric interpretation of Lagrange multipliers. Minimizing
the objective function f'(x) subject to (a) the equality constraint g(x) = 0 or (b)
the inequality constraint g(x) < 0. The red surface corresponds to g(x) = 0
and the shaded area corresponds to g(x) <0

obtained using the condition Vf(x) = 0, which is equivalent
to finding the optimal point by letting A\ = 0 and then setting
Vi L(x, A\) as zero. In the case of g(x) = 0, the optimization
works similarly as our previous discussions on equality con-
straints except that the directions of Vf(x*) and Vg(x*) are
always opposite in this case, that is, there exists A > 0 such that
Vf(x*) + AVg(x*) = 0. Considering both cases, Ag(x) = 0 is
always satisfied. Hence, minimizing f (x) subject to g(x) < 0is
equivalent to minimizing the Lagrange function of (B.2) subject
to the following constraints:

g(x) <0,
A>0, (B.3)
Ag(x) =0,

which are known as the Karush—-Kuhn-Tucker (KKT) condi-
tions.

The above method can be generalized to optimization prob-
lems with multiple constraints. Considering the following opti-
mization problem with a nonempty feasible region D c R? and
subject to m equality constraints and » inequality constraints:

min f (x)
st hix)=0 (i=1,...,m), (B.4)
gix) <0 (G=1,...,n).
Byintroducing the Lagrange multipliers A = (A1, A2, ..., Aw) |

and g = (w1, p12, - . ., ptn) |, we have the corresponding Lagrange
function

LG, A ) =/ () + D Nhi(x) + Y pig(x), (B.5)

i=1 j=1
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and the KKT conditions (f = 1, 2, ..., n) introduced by the
inequality constraints are

gi(x) <0,
pj 2 0, (B.6)
1igj(x) = 0.

We can examine an optimization problem from two per-
spectives, that is, the primal problem and the dual problem.
From (B.5), the Lagrange dual function T' : R™ x R" — R
of the primal problem (B.4) is defined as

INCWHES )icré]]f;) L(x, X, p)

m n

= inf | £+ D Nihix) + 3 igix) | . (BT)

i=1 j=1

Letx € D denote a point in the feasible region of the primal
problem (B.4), then we have

D o Nhi@) + Y pigi(E) <0 (B.8)
i=1 j=1

for any & > 0 and A. Thereby, we have

LA p) = iH{DL(x, A ) SLE A p) <fX). (B.9)
xe

Let p* denote the optimal value of the primal problem (B.4),
then we have

T\, p) <p* (B.10)

for any p > 0 and A, that is, the dual function can provide
a lower bound of the optimal value of the primal problem.
Apparently, the lower bound depends on the value of pt and A.
Hence, a question naturally arises: what is the optimal lower
bound that we can obtain from the dual function? This question
leads to the optimization problem

max I'(A\, p) s.t. pu >0, (B.11)
Ap

which is the dual problem of the primal problem (B.4), where
o and X are called dual variables. The dual problem (B.11) is
always a convex optimization problem regardless of the con-
vexity of the primal problem (B.4).

For the optimal value d* of (B.11), we have d* < p*, which
is called weak duality. When d* = p*, we say strong duality
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In order to obtain the dual
problem, we often set the
derivative of the Lagrange
function L(x, A, p) with respect
to x as zero.

p > 0 indicates that all
components of y are
non-negative.
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This is known as the Slater’s
condition.

Non-standard QP problems can
include equality constraints. An
equality constraint can be
replaced with two inequality
constraints. An inequality
constraint can be converted into
an equality constraint by
introducing slack variables.

holds, and in such a case, the dual problem can provide the opti-
mal lower bound of the primal problem. Strong duality usually
does not hold in general optimization problems. However, the
strong duality holds when the primal problem is a convex opti-
mization problem (e.g., in (B.4), both f'(x) and g;(x) are convex
and 4;(x) is affine) and there is at least one feasible point in the
feasible region such that the inequality constraints are satis-
fied with strict inequalities. It is worth mentioning that, when
strong duality holds, we can obtain the numerical relationship
between the primal variables and the dual variables by find-
ing the derivatives of the Lagrange function with respect to the
primal variables and the dual variables, respectively, and then
setting both derivatives as zero. Hence, once the dual problem
is solved, the primal problem is solved.

B.2 Quadratic Programming

Quadratic Programming (QP) is a typical optimization prob-
lem that includes both convex and non-convex cases. In a QP
problem, the objective function is a quadratic function of the
variables and the constraints are linear inequalities of variables.

Suppose there are d variables and m constraints, then the
standard QP problem is formulated as

1
n}cin ExTQx +c'x (B.12)
s.t. Ax < b,

where x is a d-dimensional vector, Q € R?*“ is a real symmetric
matrix, A € R"*4 is a real matrix, b € R" and ¢ € R are real
vectors, and every row in Ax < b corresponds to a constraint.

Suppose Q is positive semidefinite, then the objective func-
tion (B.12) is convex, and the corresponding QP problem is a
convex optimization problem; meanwhile, a global minimum
of the problem exists if the feasible region defined by the con-
straints Ax < b is nonempty and the objective function has a
lower bound in this feasible region. When Q is positive defi-
nite, the problem has a unique global minimum. When Q is not
positive definite, (B.12) is an NP-hard problem with multiple
stationary points and local minima.

Common techniques for solving QP problems include the
ellipsoid method, the interior-point method, the augmented
Lagrangian method, and the gradient projection method. When
Q is positive definite, the corresponding QP problem can be
solved by the ellipsoid method in polynomial time.
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B.3 Semidefinite Programming

Semidefinite Programming (SDP) is a class of convex optimiza-
tion problems in which the variables can be organized into a
symmetric positive semidefinite matrix, and both the objective
function and the constraints are linear functions of the vari-
ables.

Let X and C be two d x d symmetric matrices, and letting

d d
C-X=)Y Y Cixj. (B.13)

i=1 j=1

The SDP problem can be formulated as

min C-X
X
st. A -X=b;, i=1,2,....m (B.14)
X > 0.
where A;(i = 1,2,...,m) are d x d symmetric matrices, and
bi(i =,1,2,..., m) are m real numbers.

Although both SDP and linear programming (LP) involve
linear objective functions and constraints, the constraint X > 0
in SDP is non-linear and non-smooth. In optimization theory,
SDP unifies several standard optimization problems, such as
LP and QP.

The interior-point method, which is commonly used in LP
problems, can solve SDP problems after some modifications.
However, it is often difficult to solve large-scale SDP problems
due to computational complexity.

B.4 Gradient Descent Method

Gradient descent is a first-order optimization method, and it
is one of the most classic and simplest methods for solving
unconstrained optimization problems.

Considering the unconstrained optimization problem
miny f(x) for an continuously differentiable function f(x).

Suppose we can construct a sequence x°, x!, x2, ... satisfying

fEth <f@h, t=0,1,2,... (B.15)

then the objective function converges to a local minimum by
repeating (B.15). From Taylor expansion, we have

f(x + Ax) ~f(x) + Ax | Vf(x). (B.16)
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X > 0O indicates that X is positive
semidefinite.

First-order optimization
methods use only the first-order
derivative rather than any
higher-order derivatives.
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It is possible to have different -y,
at different steps.

The L-Lipschitz condition says
that, for any x, there exists a
constant L such that

1f ) =Wl < Llx — y|l holds.

Also known as coordinate
ascent when solving
maximization problems.

Hence, (B.15) is equivalent to f(x + Ax) < f(x), and we can
choose

Ax = —yVf(x), (B.17)

where the step size « is a small constant. This method is known
as the gradient descent method.

By choosing the step size(s) approximately the objective
function f'(x) is guaranteed to converge to a local minimum if
f(x) satisfies certain conditions. For example, if f(x) satisfies
the L-Lipschitz condition, then f (x) is guaranteed to converge
to a local minimum by setting the step size as 1/(2L). When the
objective function is convex, the local minimum corresponds
to the global minimum, and it can be found by the gradient
descent method.

When the objective function f'(x) is twice continuously dif-
ferentiable, we can replace (B.16) with the more accurate twice
Taylor expansion, resulting in Newton’s method, which is a
typical second-order optimization method. The number of iter-
ations in Newton’s method is far less than that of the gradient
descent method. However, since Newton’s method involves the
second-order derivative V2f(x), the computational complex-
ity of each iteration is high due to computing the inverse of
the Hessian matrix (A.21). We can reduce the computational
cost significantly by finding an approximate inverse Hessian
matrix that is relatively easier to compute, and this is known
as the quasi-Newton method.

B.5 Coordinate Descent Method

Coordinate descent is a gradient-free optimization method. It
searches along a coordinate direction in each iteration and finds
the local minima by cycling different coordinate directions.

Suppose we have a minimization problem of the function
f(x),wherex = (x1, x2,...,x4) € R?isad-dimensional vec-
tor. Starting from the initial point x°, the coordinate descent
method solves the problem by iteratively constructing the
sequence x9 x!, x2, ..., where the ith component of xtl s
constructed by

= argminf(x{“, .. .,xffll,y, XX, (B.18)

yeR

xl{+1

Following the above process, we have

@) =rah =radh = (B.19)
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Similar to the gradient descent method, the objective function
converges to a local minimum by constructing the sequence
x9 x1, x2, ... via the above process.

The coordinate descent method does not compute the gradi-
ent of the objective function and involves only one-dimensional
search in each iteration, hence it is applicable to computing
heavy problems. However, the coordinate descent method may
get stuck at a non-stationary point if the objective function is
non-smooth.
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c.1 Common Probability Distributions

This section briefly discusses several common probability dis-
tributions. For each distribution, we provide its probability
density (or mass) function together with a few useful statis-
tics, such as expectation E[-], variance var[-], and covariance
covl[-, ].

c.1.1 Uniform Distribution

The uniform distribution is a simple probability distribution
over a continuous variable defined in [a, b](a < b). Its proba-
bility density function, as shown in Figure C.1, is

1
p(x|a,b):U(X|a,b):m, (Cl)

and its expectation and variance are, respectively

Elx] = 2 er b (C2)
_(b—a)?
var[x] = o (C.3)

We can observe that a + (b — a)x follows the uniform distribu-
tion U(x | a, b) if the variable x follows the uniform distribu-
tion U(x | 0, 1) and a < b.

c.1.2 Bernoulli Distribution

The Bernoulli distribution is a probability distribution over
a binary variable x € {0, 1}. The distribution is governed by a
continuous parameter p € [0, 1] representing the probability of
x = 1. Its probability mass function, expectation, and variance
are, respectively

P(x | @) = Bern(x | @) = p*(1— ', (C4)
E[x] = u, (C.5)
var[x] = pu(1 — p). (C.6)
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Here, we only discuss
continuous uniform
distribution.

The Bernoulli distribution is
named after the Swiss
mathematician J. Bernoulli
(1654-1705).
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For u, the conjugate prior
distribution of the binomial
distribution is the Beta
distribution. See Appendix C.2
for conjugate distributions.

p(x) 4
U(z | a,b)
1 =
b—a
>
0 a b x

Fig.C.1 The probability density function of the uniform distribution

c.1.3 Binomial Distribution

The binomial distribution describes the probability of observ-
ing m successes (i.e., x = 1) in N independent Bernoulli tri-
als, where the probability of success in each Bernoulli trial is
u € [0, 1]. Its probability mass function, expectation, and vari-
ance are, respectively

. N
P(@m|N,p) =Bin(m | N, pu) = (m)u’”(l — N,

(C.7)
E[x] = Npu, (C.8)
var[x] = Nu(l — p). (C.9)

When N = 1, a binomial distribution reduces to a Bernoulli
distribution.

c.1.4 Multinomial Distribution

We can generalize the binary variable of the Bernoulli dis-
tribution to a d-dimensional vector x, where x; € {0, 1} and
Z?:l x; = 1, resulting in the following discrete distribution:

d
P(x | p)=]]w". (C.10)
i=1
Elx;] = pi, (C.11)
var[x;] = pi(l — pi), (C.12)

covlx;, xi] = —pipy, i # J, (C.13)
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where p; € [0, 1] is the probability of x; = 1 and Z?:l Wi =
1. From the above discrete distribution, we can generalize
the binomial distribution to the multinomial distribution that
describes the probability of observing m; occurrences of x; = 1
in N independent trials. For multinomial distribution, the
probability mass function, expectation, variance, and covari-
ance are, respectively

P(my,my,...,mg | N, p) = Mult(my, ma, ...,mg | N, p)

N! <
(C.14)
E[m;] = N, (C.15)
var[m;] = Npi(1 — p;), (C.16)
COV[I’I’lj, mi] = —N,uju,-. (C.17)

c.1.5 Beta Distribution

The Beta distribution is a probability distribution over a con-
tinuous variable i € [0, 1] governed by the parameters a > 0
and b > 0. Its probability density function, as shown in Figure
C.2,1s

B _T@+b) g, p
p(u | a,b) = Beta(u | a, b) = Tar®” I=pw

_ 1 a—1l.,1 _ \b—1

= Bab” I=w™, (C.18)

and its expectation and variance are, respectively

Elu] = , C.19
[pl= - 5 (C.19)
ab
ar[u] = , C.20
varl = @t b 1) (C.20)
where I' (@) is the Gamma function
+o0
I'(a) = / “~ledt, (C.21)
0
and B(a, b) is the Beta function
I'(a)T'(b)
B(a,b) = ———. C.22
@b = T axh (€22)

When a = b = 1, the Beta distribution reduces to the uniform
distribution.
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For p, the conjugate prior
distribution of the multinomial
distribution is the Dirichlet
distribution. See Appendix C.2
for conjugate distributions.
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The Dirichlet distribution is
named after the German
mathematician P. Dirichlet
(1805-1859).

p(n) A.I Beta(u | 0.5,0.5),
2 | Beta(y | 2,5) !
. Beta(p | 1,1) ,/’
0 0.5 1w

Fig.C.2 The probability density function of the Beta distribution

c.1.6 Dirichlet Distribution

The Dirichlet distribution is a multivariate probability distribu-
tion over a set of d continuous variables gt = (u1; 12; - . .5 d),
where y; € [0,1] and Y9, y; = 1. The Dirichlet distribu-
tion has the parameters o« = (ay; ag; ...; ay), where a; > 0
anda = Zle «;. Its probability density function, expectation,
variance, and covariance are, respectively

L@ 1w
= D =  —-—-——-- ?‘i_ s
p(p | @) = Dir(u | @) r(m)...r(a,.)ll]l%
(C.23)
Bl = =, (C.24)
(6%
L ai(a— )
var[u;] = T ERTR (C.25)
) 1 aja,-

covipy, il = =55 TR (C.26)

When d = 2, the Dirichlet distribution reduces to the Beta
distribution.

c.1.7 Gaussian Distribution

The Gaussian distribution, also known as the normal distribu-
tion, is the most widely used continuous probability distribu-
tion.
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Fig. C.3 The probability density function of the uniform distribution

For a single variable x € (—o0, 00), the Gaussian distribu-
tion is governed by the mean p € (—00, 0o) and the variance
o2 > 0. Figure C.3 shows the probability density functions
of the Gaussian distribution governed by different parameter
values. For the univariate Gaussian distribution, its probability
density function, expectation, and variance are, respectively

2y 2y 1 _(x_ﬂ)z
p(XIM,U)—N(XIu,a)—WeXp{ 57 }

(C.27)
Elx] = p, (C.28)
var[x] = 0. (C.29)

In the case of a d-dimensional vector x, the multivariate
Gaussian distribution is governed by a d-dimensional mean
vector i and a d x d symmetric positive definite covariance
matrix o. For the multivariate Gaussian distribution, its proba-
bility density function, expectation, and covariance are, respec-
tively

pex | . Z) =Nix | p. %)
1 1

VQ2m)d det(X)
(C.30)

E[x] = p, (C.31)
cov[x] = X. (C.32)

v

o is the standard deviation.
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Here, we only consider the cases
that the Gaussian distribution
has a known variance and its
mean follows the prior
distribution.

c.2 Conjugate Distribution

When the posterior distribution is in the same probability dis-
tribution family as the prior probability distribution, they are
called conjugate distributions. Specifically, suppose the vari-
able x follows a distribution P(x | ®) governed by the param-
eter ®. Let X = {x1, x2, ..., X5} denote the observed samples
of the variable x, and assuming the parameter ® follows a
prior distribution IT(®). The prior distribution I1(®) is said
to be the conjugate distribution of the distribution P(x | ®)
or P(X | ®) if the prior distribution IT(®) and the posterior
distribution F(® | X), which is determined by the prior distri-
bution I1(®) and the sample distribution P(X | ®), belong to
the same probability distribution family.

Forexample, suppose that x ~ Bern(x | p), X = {x1, x2, ...

X} are the observed samples, X is the mean of the observed
samples, and p ~ Beta(u | a, b), where a and b are the known
parameters. Then, the posterior distribution

F(u| X) o Beta(u | a, b)P(X | 1)
_ -t
- B(a, b)
1

um}'c(l _ ‘u)mfmfc

a+m§c71(1 _ u)b+m7m5c—1

= Bat+mx,b+m—mn"
= Beta(u | @', ) (C.33)
is also a Beta distribution, where ¢’ = a + mX and b/ =

b+ m—mx. This means the Beta distribution and the Bernoulli
distribution are conjugate. Similarly, we can find that the
conjugate distribution of the multinomial distribution is the
Dirichlet distribution, and the conjugate distribution of the
Gaussian distribution is itself.

The prior distribution reflects some kind of prior informa-
tion, whereas the posterior distribution reflects both the infor-
mation provided by the prior distribution and the information
provided by the samples. When the prior distribution and the
sample distribution are conjugate, the posterior and prior dis-
tributions belong to the same probability distribution family,
which means the prior information and the information of sam-
ples are the same class of information. Hence, if we use a poste-
rior distribution as the prior distribution for further sampling,
then the new posterior distribution is still in the same class.
With such a property, the conjugate distribution can simplify
many problems. Taking (C.33) as an example, if we apply the
Beta distribution to the samples X of the Bernoulli distribu-



Appendix C: Probability Distributions

tion, then the parameters @ and b of the Beta distribution can be
regarded as an estimate of the ground-truth (success or failure)
of the Bernoulli distribution. After receiving some “evidence”
(samples), the parameters of the Beta distribution change from
a and b to a + mx and b + m — mXx respectively, and a/(a + b)
approaches the ground-truth value of the parameter . of the
Bernoulli distribution as m increases. By using the conjugate
prior, the model can be conveniently updated by updating the
estimated parameters « and b.

c.3 Kullback-Leibler Divergence

The Kullback—Leibler (KL) divergence, also known as the rel-
ative entropy or the information divergence, measures the dif-
ference between two probability distributions. Given two prob-
ability distributions P and Q, their KL divergence is defined as

e log 2%, (C.34)

q(x)
where p(x) and ¢(x) are the probability density functions of P
and Q, respectively.

The KL divergence is non-negative, that is

KL(P || Q) = /

KL(P || 9) =0, (C.35)

and KL(P || Q) = 0if and only if P = Q. However, the KL
divergence is not symmetric, that is

KL(P | Q) # KL || P), (C.360)

and hence the KL divergence is not a metric.
By expanding the definition of KL divergence (C.34), we
obtain

KL(P || Q) = / () log p(x)dx — / () log g(x)dx
— _H(P)+ H(P, ), (C.37)

where H (P) is the entropy of Pand H (P, Q) is the cross entropy
of P and Q. Ininformation theory, the entropy H (P) represents
the minimum average number of bits needed to encode a vari-
able from the distribution P. The cross entropy H (P, Q) repre-
sents the minimum average number of bits needed to encode a
variable from P if using an encoding scheme based on Q. There-
fore, the KL divergence can be regarded as the number of the
“extra” bits for encoding a variable from P using an encoding
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Here, we assume the two
distributions are continuous
probability distributions. For
discrete probability
distributions, we only need to
change the integration to the
summation over the discrete
values.

See Sect. 9.3 for the four basic
properties of a valid metric.
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scheme based on Q. Obviously, the number of the extra bits is
non-negative, and it is zero if and only if P = Q.
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Symbols

0/1 loss function, 138, 141

5 x 2 cross-validation, 45
F1,35

K-armed bandit, 403
e-greedy, 404

k-Nearest Neighbor, 242
k-fold cross-validation, 29
k-means algorithm, 217, 234

A

Accumulated error backpropagation, 112
Accuracy, 26, 33

Activation function, 104

Active learning, 316

AdaBoost, 184

Adaptive resonance theory, 116

Additive model, 184

Affinity matrix, 324

Agnostic PAC learnable, 294

Anomaly detection, 235

Approximate dynamic programming, 425
Approximate inference, 170, 357, 366
Artificial intelligence, 11

Artificial neural networks, 104

ART network, 116

Attribute, 3

Attribute space, 3

Averaging, 242

Bagging, 190

Base learner, 182

Base learning algorithm, 182

Bayes classifiers, 156

Bayesian decision theory, 156
Bayesian learning, 174

Bayesian networks, 166, 344, 366
Bayes model averaging, 198

Bayes optimal classifier, 156

Bayes risk, 156

Bayes’ theorem, 157

Belief network, 166

Belief propagation, 356, 366
Bellman equation, 410

Bernoulli distribution, 445

Beta distribution, 447

Between-class scatter matrix, 66, 146
Bias, 7

Bias-variance decomposition, 49, 188
Binary classification, 4

Binomial distribution, 446
Binomial test, 42
Boltzmann distribution, 120
Boltzmann machine, 119
Boosting, 184, 204
Bootstrapping, 30

BP algorithm, 108

BP neural networks, 108
Break-Even Point, 35

C

C4.5 decision tree, 85, 90
Cannot-link constraint, 258, 331
Canonical correlation analysis, 259
CART, 86

Cascade correlation, 118
Categorical attributes, 215
Chain rule, 110, 434

Chebyshev distance, 215

City block distance, 215
Classification, 3

Class imbalance, 71, 323
Cluster, 4, 212

Clustering, 4, 212

Clustering assumption, 317
Clustering ensemble, 235
Codebook learning, 275

Coding matrix, 70
Collaborative filtering, 279
Common parent, 167
Competitive learning, 116
Compressed sensing, 277
Computational learning theory, 288
Concept class, 289

Concept learning, 5, 19
Conditional independence assumption, 159, 329
Conditional random field, 351
Conditional risk, 156
Confidence, 42

Conflict resolution, 375
Confusion matrix, 34
Conjugate distribution, 450
Connectionism, 12

Connection weights, 107
Consistency, 149

Contingency table, 46, 200
Continuous attributes, 215
Contrastive divergence, 120
Converge, 106

Convolutional neural network, 122
Coordinate descent, 173, 442
Cost, 39
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Cost curve, 40

Cost matrix, 39

Cost-Sensitive, 40

Co-training, 328

Cross entropy, 451
Cross-validated z-test, 44
Cross-validation, 29

Curse of dimensionality, 244, 266
Cutting plane algorithm, 148

D

Data mining, 17

Data preprocessing, 266

Data set, 3

Decision stump, 89

Decision trees, 80, 392
Deduction, 388

Deep learning, 121

Default rule, 375

Dense sampling, 243

Density clustering, 227
Determinant, 434

Dichotomy, 295

Dictionary learning, 275
Dimensionality reduction, 244
Dirichlet distribution, 448
Disagreement, 198, 328
Disagreement-based methods, 328
Discretization, 90
Discriminative models, 157, 344
Distance measure, 215

Distance metric learning, 217, 256
Diversity, 198

Diversity measures, 200
Divide-and-conquer, 80
Downsampling, 72
D-separation, 168

Dual function, 439

Dual problem, 132, 439
Dummy node, 106

Eager learning, 242

Early stopping, 113

Elman network, 119

EM algorithm, 172, 225, 319, 361
Embedded feature selection, 272
Empirical error, 26, 288
Empirical risk, 141

Empirical risk minimization, 299
Energy-based model, 119
Ensemble learning, 181, 336
Ensemble pruning, 204

Entropy, 451

Error, 26

Error-Ambiguity decomposition, 198
Error backpropagation, 108

Error backpropagation algorithm, 108
Error Correcting Output Codes (ECOC), 69
Error rate, 26, 32

Euclidean distance, 215

Evidence, 157

Exact inference, 170, 354

Example, 3

Exploration-exploitation dilemma, 404
Exponential loss, 139, 185

F

Fact, 3

Factor, 347

Feature, 3, 266

Feature engineering, 123
Feature learning, 123
Feature selection, 266
Feature vector, 3

Filter methods, 268

Finite hypothesis space, 291
First-order rule, 375
Fisher’s Linear Discriminant, 65
Fluctuation, 106

Friedman test, 46
Frobenius norm, 433
Functional neuron, 106

G

Gain ratio, 85

Gaussian distribution, 448
Gaussian kernel, 137

Gaussian mixture, 223, 319
Generalization, 5, 130, 377
Generalization error, 26, 288
Generalized 0 rule, 124
Generalized linear model, 61
Generalized Rayleigh quotient, 66
Generative model, 157, 319, 351
Genetic algorithm, 115

Geodesic distance, 252

Gibbs sampling, 170, 360

Gini index, 86

Global Markov property, 348
Global minimum, 113

Global scatter matrix, 67
Gradient descent, 109, 273, 421, 441
Graph-based semi-supervised learning, 324
Ground-truth, 3

Growth function, 295

H

Hard margin, 138



Hausdorff distance, 236
Hidden Markov model, 344
Hidden variable, 345
Hierarchical clustering, 231
Hinge loss, 139

Hoeffding’s inequality, 183, 289
Hypothesis, 3, 290

Hypothesis space, 289
Hypothesis testing, 41

ID3 algorithm, 82

Imitation learning, 421
Inconsistent, 290
Incremental learning, 99, 117

Independent and identically distributed, 4, 288

Individual learner, 182
Induction, 388
Inductive bias, 7
Inductive learning, 5

Inductive Logic Programming (ILP), 385, 392

Inference, 344

Information divergence, 451
Information entropy, 82
Information gain, 82, 267
Instance, 3

Interpretability, 124, 205

Intrinsic distance, 252

Intrinsic low-dimensional space, 250
Inverse reinforcement learning, 423
Inverse resolution, 388

Irrelevant features, 266

Isometric mapping, 252

J

Jensen’s inequality, 288

K

Kernel function, 134
Kernelization, 146, 250
Kernelized PCA, 250

Kernel matrix, 136, 147, 251
Kernel method, 145

Kernel trick, 136

KKT conditions, 133, 140, 144
KL divergence, 362, 451
Known model, 407

Kohonen network, 117

L

L norm, 272
L, norm, 272
Label, 3
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Labeled sample, 316

Label propagation, 326

Label space, 3

Lagrange multiplier method, 437
Laplacian correction, 162
Latent Dirichlet al.location, 363
Latent variable, 172

Lazy learning, 163, 242, 259
Learner, 3

Learning, 2

Learning from instruction, 12
Learning rate, 106

Learning Vector Quantization (LVQ), 219, 220
Least Absolute Shrinkage and Selection Operator

(LASSO), 272, 281
Least general generalization, 386
Least squares method, 59, 76
Leave-One-Out, 29
Likelihood, 157
Likelihood ratio, 379
Linear dimensionality reduction, 247
Linear discriminant analysis, 65, 146
Linear hyperplane, 106
Linear kernel, 137
Linearly separable, 106, 134
Linear model, 58
Linear regression, 58, 271
Link function, 61
Lipschitz condition, 273
Literal, 374
Locally linear embedding, 254
Local Markov property, 350
Local minimum, 113
Logistic function, 62, 104
Logistic loss, 139
Logistic regression, 62, 141, 351
Log-likelihood, 64, 158
Log-linear regression, 61
Low-density separation, 321
Low-Dimensional embedding, 243
Low-rank matrix approximation, 435

M

Macro-F1, 36

Macro-P, 36

Macro-R, 36

Majority voting, 195
Manhattan distance, 215
Manifold assumption, 259, 318
Manifold learning, 252
Manifold regularization, 259
Many versus Many (MvM), 68
Margin, 131

Marginal distribution, 353
Marginal independence, 167
Marginalization, 167, 344
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Marginal likelihood, 172

Markov blanket, 350

Markov chain, 171, 345

Markov Chain Monte Carlo (MCMC), 357
Markov Decision Process (MDP), 400
Markov networks, 344

Markov random field, 347

Matrix completion, 279

Maximum likelihood estimation, 158, 319, 353
Maximum likelihood method, 64, 158, 319
McDiarmid’s inequality, 289
McNemar’s Test, 45

Mean field, 363

Mean squared error, 32, 59

Mercer’s theorem, 145, 148
Meta-rule, 375

Metric learning, 256

MH algorithm, 359

Micro-F1, 36

Micro-P, 36

Micro-R, 36

Minimum description length, 169
Minkowski distance, 215, 234
Missing values, 92

Mixed attribute types, 216

Mixture of experts, 204, 337
Model-free learning, 413

Model selection, 27

Monte Carlo method, 283, 367, 413
Moral graph, 168

Most general unifier, 390

M-P neuron model, 104

Multiclass classification, 4, 68
Multi-label learning, 74

Multi-layer feedforward neural network, 108
Multinomial distribution, 446
Multiple classifier system, 182
Multiple dimensional scaling, 244
Multiple kernel learning, 149
Multivariate decision trees, 95, 99
Multivariate linear regression, 60
Multi-view learning, 259, 328
Must-link constraints, 258, 331

Naive Bayes Classifier, 159

Nearest neighbor classifier, 242
Neighbourhood component analysis, 257
Nemenyi post-hoc test, 46

Neural networks, 104

Neuron, 104

No Free Lunch theorem, 10

Nominal attributes, 215

Non-linear dimensionality reduction, 250
Non-linearly separable, 106

Non-metric distances, 217

Non-ordinal attribute, 216
Non-parametric methods, 367
Non-Separable, 293
Non-separable, 290

Normal distribution, 448
Normalization, 40, 185
Nuclear norm, 280
Numerical attributes, 215

(o)

Oblique decision tree, 97
Occam’s razor, 8, 19

Odds, 63

One-Dependent Estimator, 163
One versus One (OvO), 68
One versus Rest (OVR), 68
Online learning, 117, 260, 425
Ordered rule, 375

Ordinal attribute, 215
Out-of-bag estimate, 31, 191
Overfitting, 26, 113, 191, 379
Oversampling, 72

P

PAC identify, 290

PAC learnable, 290

PAC learning algorithm, 291
Pairwise Markov property, 350
Parameter estimation, 59
Parameter space, 113

Parameter tuning, 14

Penalty function method, 142
Perceptron, 105

Plate notation, 360

Plurality voting, 196

Policy, 401

Policy iteration, 411

Pooling, 122

Post-pruning, 86, 379

Potential function, 347

P-R curve, 34

Precision, 33

Pre-pruning, 86, 379

Principal Component Analysis (PCA), 247
Prior, 157

Priority rule, 375

Probabilistic graphical models, 175, 344
Probabilistic models, 222, 344
Probably approximately correct, 289
Properly PAC learnable, 291
Propositional atom, 375
Propositional rule, 375

Prototype clustering, 217

Proximal gradient descent, 272, 278
Pruning, 86, 379



Q

Q-learning, 419
Quadratic programming, 440
Query, 316

Rademacher complexity, 300
Radial basis function, 115
Random forest, 184

Random subspace, 202

RBF network, 115

Rebalance, 72

Recall, 33

Rectified Linear Unit (ReLU), 122
Recursive neural network, 119
Redundant feature, 266
Regression, 4

Regularization, 61, 113, 142
Reinforcement learning, 400
Relational learning, 392
Relative entropy, 451
Relevant feature, 266
Representation learning, 123
Representer theorem, 145
Reproducing Kernel Hilbert Space (RKHS), 137
Re-sampling, 188

Rescaling, 72

Resolution quotient, 390
Restricted Boltzmann machine, 120
Reward, 400

Re-weighting, 188

Ridge regression, 272
RIPPER, 380

Risk, 156

ROC curve, 37, 52

Rote learning, 6

Rule, 374

Rule learning, 374

S

Sample, 3

Sample complexity, 291

Sample space, 3

Sarsa, 419

Selective ensemble, 205
Self-organizing map, 117
Semidefinite programming, 441
Semi-naive Bayes classifiers, 163
Semi-supervised clustering, 259, 331
Semi-supervised learning, 317
Semi-supervised SVM, 321
Semi-Supervised SupportVectorMachine (S3VM), 321
Separable, 290, 292

Separating hyperplane, 130, 321
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Sequential covering, 376
Shattering, 295

Sigmoid function, 62, 104
Similarity measure, 216

Simple averaging, 194

Simulated annealing, 115

Single hidden layer neural network, 107
Singular value decomposition, 249, 435
Slack variable, 139

Soft margin, 138

Soft margin support vector machine, 139
Softmax, 405

SOM Network, 117

Sparse coding, 275

Sparse representation, 73, 274
Sparsity, 73

Specialization, 377

Split selection, 81, 99

Square loss, 59

Squashing function, 104
Stability, 306

Stability-plasticity dilemma, 117
Stable base learner, 202

Stacking, 196

State-action value function, 407
State value function, 407
Stationary distribution, 171
Statistical learning, 14, 148
Statistical relational learning, 393
Stratified sampling, 28

Structural risk, 141

Subset evaluation, 267

Subset search, 267

Subspace, 202, 244

Substitution, 389

Super-parent, 163

Supervised learning, 4

Support vector, 131

Support vector expansion, 136
Support Vector Machine (SVM), 131
Support vector regression, 142
Surrogate function, 62

Surrogate loss, 139

Symbolism, 12, 391

T

Tabular value function, 419

TD learning, 425

Temporal difference learning, 418, 421
Testing, 4

Testing sample, 4

Threshold, 104, 111

Threshold logic unit, 105
Threshold-moving, 72

Tikhonov reguarlization, 272
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Time complexity, 291
Topic model, 363
Total cost, 39

Trace, 432

Trace norm, 280
Training, 3

Training error, 26
Training example, 3
Training set, 3
Transductive learning, 318
Transfer learning, 19

U

Underfitting, 26

Undersampling, 72

Unification, 389

Uniform distribution, 445

Uniform stability, 307

Unit-step function, 62, 104
Unlabeled samples, 316
Unsupervised layer-wise training, 122
Unsupervised learning, 4, 212
Upsampling, 72

Vv

Validation set, 32, 113
Validity index, 213

Value function approximation, 419
Value iteration, 411
Variable elimination, 354
Variational inference, 360
VC dimension, 295
Version space, 7

View, 328

Voting, 183, 242
V-structure, 167

w

Weak learner, 182

Weighted averaging, 194

Weighted distance, 216

Weighted voting, 195

Weight sharing, 122

WEKA, 19

Winner-take-all, 116

Within-class scatter matrix, 66, 146
Wrapper methods, 270
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