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Abstract. We address the issue of selecting automatically the number
of components in mixture models with non-Gaussian components. As a
more efficient alternative to the traditional comparison of several model
scores in a range, we consider procedures based on a single run of the
inference scheme. Starting from an overfitting mixture in a Bayesian set-
ting, we investigate two strategies to eliminate superfluous components.
We implement these strategies for mixtures of multiple scale distribu-
tions which exhibit a variety of shapes not necessarily elliptical while
remaining analytical and tractable in multiple dimensions. A Bayesian
formulation and a tractable inference procedure based on variational
approximation are proposed. Preliminary results on simulated and real
data show promising performance in terms of model selection and com-
putational time.

Keywords: Gaussian scale mixture · Bayesian analysis · Bayesian
model selection · EM algorithm · Variational approximation

1 Introduction

A difficult problem when fitting mixture models is to determine the number K
of components to include in the mixture. A recent review on the problem with
theoretical and practical aspects can be found in [10]. Traditionally, this selec-
tion is performed by comparing a set of candidate models for a range of values of
K, assuming that the true value is in this range. The number of components is
selected by minimizing a model selection criterion, such as the Bayesian inference
criterion (BIC), minimum message length (MML), Akaike’s information criteria
(AIC) to cite just a few [13,23]. Of a slightly different nature is the so-called
slope heuristic [7], which involves a robust linear fit and is not simply based on
criterion comparisons. However, the disadvantage of these approaches is that a
whole set of candidate models has to be obtained and problems associated with
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running inference algorithms (such as EM) many times may emerge. When the
components distributions complexity increases, it may then be desirable to avoid
repetitive inference of models that will be discarded in the end. For standard
Gaussian distributions however, this is not really a problem as efficient software
such as Mclust [28] are available. Alternatives have been investigated that select
the number of components from a single run of the inference scheme. Apart from
the Reversible Jump Markov Chain Monte Carlo method of [26] which allows
jumps between different numbers of components, two types of approaches can
be distinguished depending on whether the strategy is to increase or to decrease
the number of components. The first ones can be referred to as greedy algo-
rithms (e.g. [30]) where the mixture is built component-wise, starting with the
optimal one-component mixture and increasing the number of components until
a stopping criterion is met. More recently, there seems to be an increase inter-
est among mixture model practitioners for model selection strategies that start
instead with a large number of components and merge them [18]. For instance,
[13] proposes a practical algorithm that starts with a very large number of com-
ponents, iteratively annihilates components, redistributes the observations to
the other components, and terminates based on the MML criterion. The app-
roach in [6] starts with an overestimated number of components using BIC, and
then merges them hierarchically according to an entropy criterion, while [24]
proposes a similar method that merges components based on measuring their
pair-wise overlap. Another trend in handling the issue of finding the proper
number of components is to consider Bayesian non-parametric mixture models.
This allows the implementation of mixture models with an infinite number of
components via the use of Dirichlet process mixture models. In [17,25] an infi-
nite Gaussian mixture (IGMM) is presented with a computationally intensive
Markov Chain Monte Carlo implementation. More recently, more flexibility in
the cluster shapes has been allowed by considering infinite mixture of infinite
Gaussian mixtures (I2GMM) [32]. The flexibility is however limited to a cluster
composed of sub-clusters of identical shapes and orientations, which may alter
the performance of this approach. Beyond the Gaussian case, infinite Student
mixture models have also been considered [31]. The Bayesian non-parametric
approach is a promising technique. In this work, we consider a Bayesian formu-
lation but in the simpler case of a finite number of components. We suspect all
our Bayesian derivations could be easily tested in a non parametric setting with
some minor adaptation left for future work. Following common practice that is
to start from deliberately overfitting mixtures (e.g. [3,11,21,22]), we investigate
component elimination strategies. Component elimination refers to a natural
approach which is to exploit the vanishing component phenomenon that has
been proved to occur in certain Bayesian settings [27]. This requires a Bayesian
formulation of the mixture for the regularization effect due to the integration of
parameters in the posterior distribution. This results in an implicit penalization
for model complexity. Although this approach can be based on arbitrary mixture
components, most previous investigation has been confined to Gaussian mixtures
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where the mixture components arise from multivariate Gaussian densities with
component-specific parameters.

In this work, we address the issue of selecting automatically the number of
components in a non-Gaussian case. We consider mixtures of so called multiple
scale distributions for their ability to handle a variety of shapes not necessar-
ily elliptical while remaining analytical and tractable. We propose a Bayesian
formulation of these mixtures and a tractable inference procedure based on a
variational approximation. We propose two different single-run strategies that
make use of the component elimination property.

The rest of the paper is organized as follows. Mixture of multiple scale dis-
tributions, their Bayesian formulation and inference are specified in Sect. 2. The
two proposed strategies are described in Sect. 3, illustrated with experiments on
simulated data in Sect. 4.

2 Bayesian Mixtures of Multiple Scale Distributions

2.1 Multiple Scale Mixtures of Gaussians

A M -variate scale mixture of Gaussians is a distribution of the form:

p(y;μ,Σ,θ) =
∫ ∞

0

NM (y;μ,Σ/w) fW (w;θ) dw (1)

where NM ( . ;μ,Σ/w) denotes the M -dimensional Gaussian distribution with
mean μ, covariance Σ/w and fW is the probability distribution of a univariate
positive variable W referred to hereafter as the weight variable. A common form
is obtained when fW is a Gamma distribution G(ν/2, ν/2) where ν denotes the
degrees of freedom (we shall denote the Gamma distribution when the variable
is X by G(x;α, γ) = xα−1Γ (α)−1 exp(−γx)γα where Γ denotes the Gamma
function). For this form, (1) is the density denoted by tM (y;μ,Σ, ν) of the
M-dimensional Student t-distribution with parameters μ (real location vector),
Σ (M × M real positive definite scale matrix) and ν (positive real degrees of
freedom parameter).

The extension proposed by [14] consists of introducing a multidimensional
weight. To do so, the scale matrix is decomposed into eigenvectors and eigen-
values. This spectral decomposition is classically used in Gaussian model-based
clustering [5,9]. In a Bayesian setting, it is equivalent but more convenient to use
matrix T the inverse of the scale matrix. We therefore consider the decomposi-
tion T = DADT where D is the matrix of eigenvectors of T (equivalently of Σ)
and A is a diagonal matrix with the corresponding eigenvalues. The matrix D
determines the orientation of the Gaussian and A its shape. Using this parame-
terization of T , the scale Gaussian part in (1) is set to NM (y;μ,DΔwA−1DT ),
where Δw = diag(w−1

1 , . . . , w−1
M ) is the M × M diagonal matrix whose diagonal

components are the inverse weights {w−1
1 , . . . , w−1

M }. The multiple scale gener-
alization consists therefore of:

p(y;μ,Σ,θ) =
∫ ∞

0

...

∫ ∞

0

NM (y;μ,DΔwA−1DT ) fw(w1...wM ;θ) dw1...dwM (2)
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where fw is now a M-variate density depending on some parameter θ to be fur-
ther specified. In what follows, we will consider only independent weights, i.e.
θ = {θ1, . . . ,θM} with fw(w1 . . . wM ;θ) = fW1(w1;θ1) . . . fWM

(wM ;θM ). For
instance, setting fWm

(wm; θm) to a Gamma distribution G(wm;αm, γm) results
in a multivariate generalization of a Pearson type VII distribution (see e.g. [20]
vol. 2 chap. 28 for a definition of the Pearson type VII distribution). For iden-
tifiability, this model needs to be further specified by fixing all γm parameters,
for instance to 1. Despite this additional constraint, the decomposition of Σ still
induces another identifiability issue due to invariance to a same permutation of
the columns of D,A and elements of α = {α1, . . . , αM}. In a frequentist setting
this can be solved by imposing a decreasing order for the eigenvalues in A. In
a Bayesian setting one way to solve the problem is to impose on A a non sym-
metric prior (see Sect. 2.2). An appropriate prior on D would be more difficult
to set. The distributions we consider are therefore of the form,

MP(y; μ, D, A, α) =
M∏

m=1

Γ (αm + 1/2)Am

Γ (αm)(2π)1/2

(
1 +

Am[DT (y − μ)]2m
2

)−(αm+1/2)

(3)

Let us consider an i.i.d sample y = {y1, . . . ,yN} from a K-component mix-
ture of multiple scale distributions as defined in (3). With the usual notation
for the mixing proportions π = {π1, . . . , πK} and ψk = {μk,Ak,Dk,αk} for
k = 1 . . . K, we consider,

p(y;Φ) =
K∑

k=1

πkMP(y;μk,Ak,Dk,αk)

where Φ = {π,ψ} with ψ = {ψ1, . . . ψK} denotes the mixture parameters.
Additional variables can be introduced to identify the class labels: {Z1, . . . , ZN}
define respectively the components of origin of {y1, . . . ,yN}. An equivalent mod-
elling is therefore:

∀i ∈ {1 . . . N}, Yi|Wi = wi, Zi = k,ψ ∼ N (μk,DkΔwi
A−1

k DT
k ) ,

Wi|Zi = k,ψ ∼ G(αk1, 1) ⊗ . . . ⊗ G(αkM , 1) ,

and Zi|π ∼ M(1, π1, . . . , πk) ,

where Δwi
= diag(w−1

i1 , . . . , w−1
iM ), symbol ⊗ means that the components of Wi

are independent and M(1, π1, . . . , πk) denotes the Multinomial distribution. In
what follows, the weight variables will be denoted by W = {W1, . . . ,WN} and
the labels by Z = {Z1, . . . , ZN}.

2.2 Priors on Parameters

In a Bayesian formulation, we assign priors on parameters in Φ. However, it
is common (see e.g. [1]) not to impose priors on the parameters αk since no
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convenient conjugate prior exist for these parameters. Then the scale matrix
decomposition imposes that we set priors on μk and Dk,Ak. For the means μk,
the standard Gaussian prior can be used:

μk | Ak,Dk ∼ N (mk,DkΛ−1
k A−1

k DT
k ) , (4)

where mk (vector) and Λk (diagonal matrix) are hyperparameters and we shall
use the notation m = {m1, . . . ,mK} and Λ = {Λ1, . . . ΛK}. For Ak and Dk

a natural solution would be to use the distributions induced by the standard
Wishart prior on Tk but this appears not to be tractable in inference scheme
based on a variational framework. The difficulty lies in considering an appropri-
ate and tractable prior for Dk. There exists a number of priors on the Stiefel
manifold among which a good candidate could be the Bingham prior and exten-
sions investigated by [19]. However, it is not straightforward to derive from it a
tractable E-Φ1 step (see Sect. 2.3) that could provide a variational posterior dis-
tribution. Nevertheless, this kind of priors could be added in the M-D-step. The
simpler solution adopted in the present work consists of considering Dk as an
unknown fixed parameter and imposing a prior only on Ak, which is a diagonal
matrix containing the positive eigenvalues of Tk. It is natural to choose:

Ak ∼ ⊗M
m=1G(λkm, δkm) , (5)

where λk = {λkm,m = 1 . . . M} and δk = {δkm,m = 1 . . . M} are hyperpa-
rameters with λ = {λ1, . . . λK} and δ = {δ1, . . . δK} as additional notation. It
follows the joint prior on μ1:K = {μ1, . . . ,μK}, A1:K = {A1, . . . ,AK} given
D1:K = {D1, . . . ,DK}

p(μ1:K ,A1:K ;D1:K) =
K∏

k=1

p(μk|Ak;Dk) p(Ak) (6)

where the first term in the product is given by (4) and the second term by (5).
Then a standard Dirichlet prior D(τ1, . . . , τK) is used for the mixing weights

π with τ = {τ1, . . . , τK} the Dirichlet hyperparameters.
For the complete model, the whole set of parameters is denoted by Φ. Φ =

{Φ1,Φ2} is decomposed into a set Φ1 = {Φ1
1, . . . Φ

1
K} with Φ1

k = {μk,Ak, πk}
of parameters for which we have priors and a set Φ2 = {Φ2

1, . . . Φ
2
K} with

Φ2
k = {Dk,αk} of unknown parameters considered as fixed. In addition, hyper-

parameters are denoted by Φ3 = {Φ3
1, . . . Φ

3
K} with Φ3

k = {τk,mk,Λk,λk, δk}.

2.3 Inference Using Variational Expectation-Maximization

The main task in Bayesian inference is to compute the posterior probability
of the latent variables X = {W ,Z} and the parameter Φ for which only
the Φ1 part is considered as random. We are therefore interested in comput-
ing the posterior p(X,Φ1 | y,Φ2). This posterior is intractable and approxi-
mated here using a variational approximation q(X,Φ1) with a factorized form
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q(X,Φ1) = qX(X) qΦ1(Φ1) in the set D of product probability distributions.
The so-called variational EM procedure (VEM) proceeds as follows. At iteration
(r), the current parameters values are denoted by Φ2(r−1) and VEM alternates
between two steps,

E-step: q(r)(X,Φ1) = arg max
q∈D

F(q,Φ2(r−1))

M-step: Φ2(r) = arg max
Φ2

F(q(r),Φ2) ,

where F is the usual free energy

F(q,Φ2) = Eq[log p(y,X,Φ1;Φ2)] − Eq[log q(X,Φ1)]. (7)

The full expression of the free energy is not necessary to maximize it and to
derive the variational EM algorithm. However, computing the free energy is use-
ful. It provides a stopping criterion and a sanity check for implementation as
the free energy should increase at each iteration. Then it can be used as speci-
fied in Sect. 3.1 as a replacement of the likelihood to provide a model selection
procedure. Its detailed expression is given in a companion paper [2].

The E-step above divides into two steps. At iteration (r), denoting in addition
by q

(r−1)
X the current variational distribution for X:

E-Φ1-step: q
(r)
Φ1 (Φ1) ∝ exp(E

q
(r−1)
X

[log p(Φ1|y,X;Φ2(r−1))]) (8)

E-X-step: q
(r)
X (X) ∝ exp(E

q
(r)
φ1

[log p(X|y,Φ1;Φ2(r−1))]) . (9)

Then the M-step reduces to:

M-step: Φ2(r) = arg max
φ2

E
q
(r)
X q

(r)
Φ1

[log p(y,X,Φ1;Φ2)] .

The resulting variational EM algorithm is specified in [2] in two cases depending
on the prior used for the mixing weights. For component elimination, the central
quantity is q

(r)
π (π) the approximate variational posterior of π that itself involves

q
(r)
Z (Z) =

∏
i q

(r)
Zi

(Zi) the variational posterior of the labels.
In what follows, we illustrate the use of this Bayesian formulation and its vari-

ational EM implementation on the issue of selecting the number of components
in the mixture.

3 Single-Run Number of Component Selection

In this work, we consider approaches that start from an overfitting mixture with
more components than expected in the data. In this case, as described by [16],
identifiability will be violated in two possible ways. Identifiability issues can arise
either because some of the components weights have to be zero (then component-
specific parameters cannot be identified) or because some of the components
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have to be equal (then their weights cannot be identified). In practice, these two
possibilities are not equivalent as checking for vanishing components is easier and
is likely to lead to more stable behavior than testing for redundant components
(see e.g. [27]).

Methods can be considered in a Bayesian and maximum likelihood setting.
However, in a Bayesian framework, in contrast to maximum likelihood, consid-
ering a posterior distribution on the mixture parameters requires integrating out
the parameters and this acts as a penalization for more complex models. The
posterior is essentially putting mass on the sparsest way to approximate the true
density, see e.g. [27]. Although the framework of [27] is fully Bayesian with priors
on all mixture parameters, it seems that this penalization effect is also effective
when only some of the parameters are integrated out. This is observed by [11]
who use priors only for the component mean and covariance parameters. See
[2] for details on the investigation of this alternative case with no prior on the
mixing weights.

The idea of using overfitting finite mixtures with too many components K
has been used in many papers. In a deliberately overfitting mixture model, a
sparse prior on the mixture weights will empty superfluous components during
estimation [21]. To obtain sparse solutions with regard to the number of mixture
components, an appropriate prior on the weights π has to be selected. Guidelines
have been given in previous work when the prior for the weights is a symmetric
Dirichlet distribution D(τ1, . . . , τK) with all τk’s equal to a value τ0. To empty
superfluous components automatically the value of τ0 has to be chosen appro-
priately. In particular, [27] proposed conditions on τ0 to control the asymptotic
behavior of the posterior distribution of an overfitting mixture with respect to
the two previously mentioned regimes. One regime in which a high likelihood
is set to components with nearly identical parameters and one regime in which
some of the mixture weights go to zero. More specifically, if τ0 < d/2 where d is
the dimension of the component specific parameters, when N tends to infinity,
the posterior expectation of the weight of superfluous components converges to
zero. In practice, N is finite and as observed by [21], much smaller value of τ0
are needed (e.g. 10−5). It was even observed by [29] that negative values of τ0
were useful to induce even more sparsity when the number of observations is too
large with respect to the prior impact. Dirichlet priors with negative parame-
ters, although not formally defined, are also mentioned by [13]. This latter work
does not start from a Bayesian formulation but is based on a Minimum Message
Length (MML) principle. [13] provide an M-step that performs component anni-
hilation, thus an explicit rule for moving from the current number of components
to a smaller one. A parallel is made with a Dirichlet prior with τ0 = −d/2 which
according to [29] corresponds to a very strong prior sparsity.

In a Bayesian setting with symmetric sparse Dirichlet priors D(τ0, . . . , τ0), the
theoretical study of [27] therefore justifies to consider the posterior expectations
of the weights E[πk|y] and to prune out the too small ones. In practice this
raises at least two additional questions: which expression to use for the estimated
posterior means and how to set a threshold under which the estimated means
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are considered too small. The posterior means estimation is generally guided by
the chosen inference scheme. For instance in our variational framework with a
Dirichlet prior on the weights, the estimated posterior mean E[πk|y] takes the
following form (the (r) notation is removed to signify the convergence of the
algorithm),

E[πk|y] ≈ Eqπ
[πk] =

τ̃k∑K
l=1 τ̃l

=
τk + nk∑K
k=1 τk + N

(10)

where nk =
∑N

i=1 qZi
(k) and the expression for qZi

(k) is detailed in [2]. If we
are in the no weight prior case, then the expectation simplifies to

πk ≈ nk

N
(11)

with the corresponding expression of qZi
(k) also given in [2].

Nevertheless, whatever the inference scheme or prior setting, we are left with
the issue of detecting when a component can be set as empty. There is usually a
close relationship between the component weight πk and the number of observa-
tions assigned to component k. This later number is itself often replaced by the
sum nk =

∑N
i=1 qZi

(k). As an illustration, the choice of a negative τ0 by [13] cor-
responds to a rule that sets a component weight to zero when nk =

∑N
i=1 qZi

(k)
is smaller than d/2. This prevents the algorithm from approaching the bound-
ary of the parameter space. When one of the components becomes too weak,
meaning that it is not supported by the data, it is simply annihilated. One of
the drawbacks of standard EM for mixtures is thus avoided. The rule of [13] is
stronger than that used by [22] which annihilates a component when the sum
nk reduces to 1 or the one of [11] which corresponds to the sum nk lower than
a very small fraction of the sample size, i.e.

∑N
i=1 qZi

(k)/N < 10−5 where N
varies from 400 to 900 in their experiments. Note that [22] use a Bayesian frame-
work with variational inference and their rule corresponds to thresholding the
variational posterior weights (10) to 1/N because they set all τk to 0 in their
experiments.

In addition to these thresholding approaches, alternatives have been devel-
oped that would worth testing to avoid the issue of setting a threshold for sep-
arating large and small weights. In their MCMC sampling, [21] propose to con-
sider the number of non-empty components at each iteration and to estimate
the number of components as the most frequent number of non-empty compo-
nents. This is not directly applicable in our variational treatment as it would
require to generate hard assignments to components at each iteration instead of
dealing with their probabilities. In contrast, we could adopt techniques from the
Bayesian non parametrics literature which seek for optimal partitions, such as
the criterion of [12] using the so-called posterior similarity matrix ([15]). This
matrix could be approximated easily in our case by computing the variational
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estimate of the probability that two observations are in the same component.
However, even for moderate numbers of components, the optimization is already
very costly.

In this work, we consider two strategies for component elimination. The first
one is a thresholding approach while the second one is potentially more general
as it is based on increasing the overall fit of the model assessed via the vari-
ational free energy at each iteration. Also it avoids the choice of a threshold
for separating between large or small weights. The tested procedures are more
specifically described in the next section.

3.1 Tested Procedures

We compare two single-run methods to estimate the number of components in
a mixture of multiple scale distributions.

Thresholding Based Algorithm: A first method is directly derived from a
Bayesian setting with a sparse symmetric Dirichlet prior likely to induce vanish-
ing coefficients as supported by the theoretical results of [27]. This corresponds
to the approach adopted in [21] and [22]. The difference between the later two
being how they check for vanishing coefficients. Our variational inference leads
more naturally to the solution of [22] which is to check the weight posterior
means, that is whether at each iteration (r),

n
(r)
k < (Kτ0 + N)ρt − τ0 (12)

where ρt is the chosen threshold on the posterior means. When ρt is set such
that (12) leads to n

(r)
k < 1, this method is referred to, in the next Section, as

SparseDirichlet+πtest. For comparison, the algorithm run with no intervention
is called SparseDirichlet.

Free Energy Based Algorithm: We also consider a criterion based on the
free energy (7) to detect components to eliminate. This choice is based on the
observation that when we cannot control the hyperparameters (e.g τk) to guide
the algorithm in the vanishing components regime, the algorithm may as well
go to the redundant component regime. The goal is then to test whether this
alternative method is likely to handle this behavior. The proposal is to start
from a clustering solution with too many components and to try to remove
them using a criterion based on the gain in free energy. In this setting, the
components that are removed are not necessarily vanishing components but can
also be redundant ones. In the proposed variational EM inference framework,
the free energy arises naturally as a selection criterion. It has been stated in [4]
and [8] that the free energy penalizes model complexity and that it converges to
the well known Bayesian Information Criterion (BIC) and Minimum Description
Length (MDL) criteria, when the sample size increases, illustrating the interest
of this measure for model selection.
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The free energy expression used is given in [2]. The heuristic denoted by
SparseDirichlet+FEtest can be described as follows (see the next section for
implementation details).

1. Iteration r = 0: Initialization of the K(0) clusters and probabilities using for
instance repetitions of k-means or trimmed k-means.

2. Iteration r ≥ 1:
(a) E and M steps updating from parameters at iteration r − 1
(b) Updating of the resulting Free Energy value
(c) In parallele, for each cluster k ∈ {1 . . . K(r−1)}

i. Re-normalization of the cluster probabilities when cluster k is
removed from current estimates at iteration r − 1: the sum over the
remaining K(r−1) − 1 clusters must be equal to 1

ii. Updating of the corresponding E and M steps and computation of
the associate Free Energy value

(d) Selection of the mixture with the highest Free Energy among the K(r−1)-
component mixture (step (b)) or one of the (K(r−1) −1)-component mix-
tures (step (c)).

(e) Updating of K(r) accordingly, to K(r−1) or K(r−1) − 1 .
3. When no more cluster deletion occur (eg. during 5 steps), we switch to the

EM algorithm (SparseDirichlet).

4 Experiments

In addition to the 3 methods SparseDirichlet+πtest, SparseDirichlet+FEtest and
SparseDirichlet, referred to below as MP single-run procedures, we consider
standard Gaussian mixtures using the Mclust package [28] including a version
with priors on the means and covariance matrices. The Bayesian Information
Criterion (BIC) is used to select the number of components from K = 1 to 10.
The respective methods are denoted below by GM+BIC and Bayesian GM+BIC.
Regarding mixtures of MP distributions, we also consider their non Bayesian
version, using BIC to select K, denoted below by MMP+BIC.

In practice, values need to be chosen for hyperparameters. These include the
mk that are set to 0, the Λk that are set to εIM with ε small (set to 10−4) so
has to generate a large variance in (4). The δkm are then set to 1 and λkm to
values 5 × 10−4 = λ1 < λ2 < . . . < λM = 10−3. The τk’s are set to 10−3 to favor
sparse mixtures.

Initialization is also an important step in EM algorithms. For one data sam-
ple, each single-run method is initialized I = 10 times. These I = 10 initializa-
tions are the same for all single-run methods. Each initialization is obtained with
K = 10 using trimmed k-means and excluding 10% of outliers. Each trimmed
kmeans output is the one obtained after running the algorithm from R = 10
restarts and selecting the best assignment after 10 iterations. For each run of a
procedure (data sample), the I = 10 initializations are followed by 5000 itera-
tions maximum of VEM before choosing the best output. For Gaussian mixtures,
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the initialization procedure is that embedded in Mclust. For MP models, initial
values of the αkm’s are set to 1.

Another important point for single-run procedures, is how to finally enu-
merate remaining components. For simplicity, we report components that are
expressed by the maximum a posteriori (MAP) rule, which means components
for which there is at least one data point assigned to them with the highest
probability.

4.1 Simulated Data

We consider several models (more details can be found in [2]), 3 Gaussian mix-
tures and 10 MP mixtures, with 10 simulated samples each, for a total of 130
samples, K varying from 3 to 5, N from 900 to 9000, with close or more separated
clusters. The results are summarized in Table 1 and the simulated samples illus-
trated in Fig. 1. Gaussian mixture models provide the right component number
in 26% to 32% of the cases, which is higher than the number of Gaussian mix-
tures in the test (23%). All procedures hesitate mainly between the true number
and this number plus 1. We observe a good behavior of the free energy heuristic
with a time divided by 3 compared to the non Bayesian MP mixture procedure,
although the later benefits from a more optimized implementation. For the first
strategy, the dependence to the choice of a threshold value is certainly a limita-
tion although some significant gain is observed over the cases with no component
elimination (SparseDirichlet line in Table 1). Overall, eliminating components on
the run is beneficial, both in terms of time and selection performance but using
a penalized likelihood criterion (free energy) to do so avoid the commitment to a
fix threshold and is more successful. A possible reason is that small components
are more difficult to eliminate than redundant ones. Small components not only
require the right threshold to be chosen but also they may appear at much latter
iterations as illustrated in Fig. 2.

Table 1. 13 models simulated 10 times each: the true number of components is varying
so the columns indicate the difference between the selection and the truth. The average
time (for the total of the I = 10 repetitions, over the 130 samples) is indicated in the
last column. The most frequent selection (in %) is indicated by a box while the true
value is in green.

Procedures (10 restarts) Difference between selected and true
number of components

Average time
(in seconds)

0 1 2 3 4 5 6 7

GM+BIC 26.1 33.0 8.4 3.8 19.2 1.5 2.3 5.3 177

Bayesian GM+BIC 31.5 34.6 3.0 3.0 20.7 3.8 1.5 1.5 92

MMP+BIC 94.6 5.3 . . . . . . 9506

SparseDirichlet 54.6 39.2 5.3 .7 . . . . 10355

SparseDirichlet+πtest 70.0 27.6 1.5 .7 . . . . 4640

SparseDirichlet+FEtest 99.2 . . .7 . . . . 3125
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Fig. 1. Examples of simulated samples. First line: 3 Gaussian mixtures with 3 and 5
components. Second line: MP mixtures with different dof and increasing separation
from left to right. Third line: MP mixtures with increasing separation, from left to
right, and increasing number of points, N = 900 for the first plot, N = 9000 for the
last two.
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Fig. 2. Illustration of the two component elimination strategies: Free energy gain strat-
egy, iterations 10 to 50 (left) and too small component proportion test, iterations 10
to 720 (right). Eliminations are marked with red lines. Most of them occur at earlier
iterations when using the free energy test.
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5 Discussion and Conclusion

We investigated, in the context of mixtures of non-Gaussian distributions, differ-
ent single-run procedures to select automatically the number of components. The
Bayesian formulation makes this possible when starting from an overfitting mix-
ture, where K is larger than the expected number of components. The advantage
of single run procedures is to avoid time consuming comparison of scores for each
mixture model from 1 to K components. There are different ways to implement
this idea: full Bayesian settings which have the advantage to be supported by
some theoretical justification [27] and Type II maximum likelihood as proposed
by [11] (not reported here but investigated in [2]). For further acceleration, we
investigated component elimination which consists of eliminating components
on the run. They are two main ways to do so: components are eliminated as
soon as they are not supported by enough data points (their estimated weight
is under some threshold) or when their removal does not penalize the overall fit.
For the latest case, we proposed a heuristic based on the gain in free energy. The
free energy acts as a penalized likelihood criterion and can potentially eliminate
both too small components and redundant ones. Redundant components do not
necessarily see their weight tend to zero and cannot be eliminated via a simple
thresholding.

As non Gaussian components, we investigated in particular the case of mul-
tiple scale distributions [14], which have been shown to perform well in the
modelling of non-elliptical clusters with potential outliers and tails of various
heaviness. We proposed a Bayesian formulation of mixtures of such multiple
scale distributions and derived an inference procedure based on a variational
EM algorithm to implement the single-run procedures.

On preliminary experiments, we observed that eliminating components on the
run is beneficial, both in terms of time and selection performance. Free energy
based methods appeared to perform better than posterior weight thresholding
methods: using a penalized likelihood criterion (free energy) avoids the commit-
ment to a fix threshold and is not limited to the removal of small components.
However, a fully Bayesian setting is probably not necessary as both in terms
of selection and computation time, Type II maximum likelihood on the weights
was competitive with the use of a Dirichlet prior with a slight advantage to the
latter (results reported in [2]).

To confirm these observations, more tests on larger and real data sets would
be required to better compare and understand the various characteristics of each
procedure. Theoretical justification for thresholding approaches, as provided by
[27], applies for Gaussian mixtures but may not hold in our case of non-elliptical
distributions. A more specific study would be required and could provide addi-
tional guidelines as how to set the threshold in practice. Also time comparison in
our study is only valid for the Bayesian procedures for which the implementation
is similar while the other methods using BIC have been better optimized, but
this does not change the overall conclusion as regards computational efficiency.
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6 Supplementary Material

All details on the variational EM and free energy computations, plus additional
illustrations can be found in a companion paper [2].
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