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Abstract. Income inequality measures are often used as an indication
of economic health. How to obtain reliable confidence intervals for these
measures based on sampled data has been studied extensively in recent
years. To preserve confidentiality, income data is often made available in
summary form only (i.e. histograms, frequencies between quintiles, etc.).
In this paper, we show that good coverage can be achieved for bootstrap
and Wald-type intervals for quantile-based measures when only grouped
(binned) data are available. These coverages are typically superior to
those that we have been able to achieve for intervals for popular mea-
sures such as the Gini index in this grouped data setting. To facilitate
the bootstrapping, we use the Generalized Lambda Distribution and also
a linear interpolation approximation method to approximate the under-
lying density. The latter is possible when groups means are available. We
also apply our methods to real data sets.

Keywords: Histograms + Inequality measures + Bootstrap confidence
intervals - Generalized Lambda Distribution

1 Introduction

Income data are generally made available in binned formats by governing bodies
to preserve the confidentiality of the individual participants. Obtaining infer-
ences from such summary information has been recently discussed by Deduwaku-
mara and Prendergast (2018), in the context of obtaining confidence intervals
for quantiles using estimates of the underlying distribution using grouped data.
As we will show in what follows, we can obtain reliable confidence intervals for
some inequality measures using bootstrap and Wald-type approaches.

Motivated by these findings, we compare the interval estimators for inequal-
ity measures when the data are available in grouped form only. For comparison,
we use the well-known Gini, Theil and Atkinson indices and the newly proposed
quantile ratio index (Prendergast and Staudte 2018). We begin by introduc-
ing these measures before discussing some distribution estimation strategies in
Sect. 3. In Sect. 4, we report findings of simulations for interval estimators of the
inequality measures. Two real data examples are presented in Sect. 5, followed
by a brief discussion in Sect. 6.
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2 Some Inequality Measures

Let f, F' and @ denote the density, distribution and quantile functions respec-
tively for the population of interest. For p € [0,1], let z, = Q(p) = F~'(p)
denote the p-th quantile. We find it convenient to consider continuous proba-
bility distributions to model incomes while acknowledging that, in practice, a
population of incomes has a finite number, N, of individuals. Let zq,...,z,
denote a simple random sample of incomes from the population and let Z, be
the estimated p-th quantile.

2.1 Gini Index

Suppose X ~ F where X represents a randomly chosen income from the popu-
lation and let p = E(X) denote mean income. Easily the most commonly used
inequality measure is the Gini index (Gini 1914), which measures the deviation
of the income distribution from perfect equality. It can be defined as,

17 ,
G:l—uo/[l—F(x)] do

with G € [0,1]. Here, G = 1 indicates that one individual holds all wealth (e.g.
one individual with income greater than zero) and G = 0 represents the equality
of incomes for all. The Gini index can be estimated for a simple random sample
of size n, with the ordered values of z1,...,z, by,

G 23 i, n+1'

For more details on the Gini index and estimation see, for example, Dixon et al.
(1988) and Damgaard and Weiner (2000).

2.2 Theil Index

Based on information theory, Theil (1967) proposed an entropy-based measure
which is defined to be

T= log f(as) dz
[

where T' € [0, c0). In practice where a population consists of finite number of N
incomes, the upper bound is In(N). The Theil index can be estimated by

-~ 1 ZT; xX;
T==-) ZIn(=
i (3)

where Z is the sample mean and where T e [0,1In(n)]. Further properties of the
Theil index can be found in Theil (1967), Allison (1978) and Shorrocks (1980).
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2.3 Atkinson Index

The Atkinson index was initially introduced by Atkinson (1970). This measure
depends on the sensitivity parameter, € (0 < € < c0), which represents the level
of inequality aversion. As this parameter increases, more weight is shifted to the
distribution at the lower end and vice versa. It is defined as

1
o] T—e

where A € [0, 1].

Atkinson values represent the proportion of total income that would be
needed to achieve an equal level of social welfare if incomes were perfectly dis-
tributed. Depending on the value of €, the sample estimate is

1
1/1 S\
1—x<n2x% ) , for 0<ex<1
1 I
1- = A for e=1

We use the value of € = 0.5 for our analysis which is the default value used in
the package ineq (Zeileis 2014) in R software (R Core Team 2017). More details
for the Atkinson index can be found in Atkinson (1970), Biewe and Jenkins
(2006) and Shorrocks (1980).

A:

2.4 Quantile Ratio Index

Prendergas and Staude (2018, 2019) introduced the quantile ratio index (QRI)
which uses the ratio of symmetric quantiles and which is simpler than similarly
defined inequality measures given by Prendergast and Staudte (2016b). The QRI

is denoted as
1

1
I:l—/Mdpzl—/R(p)dp
0 0

L1-p/2

where I € [0,1]. Note that R(p) is the ratio of symmetric quantiles so that I
can be seen to be based on the average ratio of incomes chosen symmetrically
from the poorer and richer halves of the incomes respectively. For a suitably

large J, I is estimated as J ! > {1 - R(pj)} where p; = (j—1/2)/J and ]%(pj)
is the ratio of the estimated (p;/2)-th and (1 — p;/2)-th quantiles. Prendergast

and Staudte (2018) show that J = 100 is large enough to obtain good estimates
of I and so this will be our choice in what follows.
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3 Density Estimation Methods

We now consider two methods for estimating the density from grouped data. The
first requires bins and frequencies, and the second also requires the bin means.
The methods were used by Dedduwakumara and Prendergast (2018) to obtain
intervals for quantiles from histograms.

3.1 GLD Estimation Method

Due to flexibility in approximating a wide range of distributions, the Generalized
Lambda Distribution (GLD) is commonly used and particularly favoured in fields
such as economics and finance. Defined in terms of its quantile function, several
parameterizations for the GLD exist. Following is the FKML parameterization
for the GLD given by Freimer et al. (1988) which is often favoured since it is
defined for all parameter choices, with the only restriction being that the scale
parameter must be greater than zero. The GLD quantile function is

L e =) (-p)f-i
Q(p)—AJrn - 5 ‘ (1)

The GLD has been used in different contexts to obtain various interval esti-
mators (e.g. Su 2009; Prendergast and Staudte 2016a) when the full data set
is available. However, using the percentile matching methods presented by Kar-
ian and Dudewicz (1999) and Tarsitano (2005), the GLD parameters can still
be estimated when data is in grouped format with frequencies and bins. This
method is available in the bda package (Wang 2015).

3.2 Linear Interpolation Method

The linear interpolation method was proposed by Lyon et al. (2016) as a method
of estimating the underlying distribution of binned data when the group (bin)
means are also available. Within each bin, a linear density is estimated using the
lower and upper bounds of the bin and the associated mean, and the final bin
is fitted with an unbounded exponential tail. The slope of the linear density is
determined by the mean in relation to the bin midpoint. Closed form solutions
for the density and the quantile functions are extensively provided by Lyon et
al. (2016) and following is a summary of the density results.

Assume there are J intervals in the grouped data bounded by [a;_1,a;),j =
1,...,J where ag > —o0 and ay = oco. Let the IQidpoint, mean and relative
frequency of the jth bin be denoted by zf%, Z; and f;. The linear density for the
jth bin is

hj(z) = o + Bz, x € laj,a;) (2)
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where the estimates of o, 3; are given by,

o~

~ 2 12(35 —2f) fi ~
_F e g 3
bi=1; (0~ 7 4y —a Os; ®)

The density estimate for the final unbounded interval using an exponential

tail is provided by,
T—ay_
hole) = Foxp { - 220 0

where 1= frand A=2; —ay_1.

4 Interval Estimators Using Grouped Data

In this section, we propose and describe our bootstrap and Wald-type methods
to produce intervals for inequality measures using grouped information. The
variance of the QRI estimator depends on the underlying income distribution
density function applied to income quantiles (Prendergast and Staudte 2018).
Therefore, provided we can obtain good estimates of the density from grouped
data, then the QRI is well-suited to obtaining Wald-type intervals in this setting.
Aside from bootstrapping, to obtain the variance of, for example, the Gini index,
it is common to use the jackknife approach or other methods that require the full
data set. Consequently, obtaining an approximation to the variances for the Gini,
Thiel and Atkinson measure estimators from grouped data is not straightforward
and therefore an area for further research.

For the bootstrapping procedure, we obtain the bootstrap samples from the
estimated quantile function arising from the estimated GLD or linear interpo-
lation densities. We then use the percentile bootstrap interval described below.
While there are other bootstrap methods available that often have improved
performance over the percentile method, they require the full data set and it is
not immediately clear on how to use them when data is only available in grouped
format; e.g. the bootstrap ¢ interval requires the variance of the estimator, the
BCa method (Efron 1987) and Efron’s ABC method (Diciccio and Efron 1992)
requires the full sample data to calculate the acceleration parameter. However,
we did try a variation of the bootstrap ¢ interval whereby the o parameter was
estimated as usual, but where the estimate and its standard error were also
approximated from the bootstrap samples given the lack of the full data set.
Coverages were usually no better, and often worse than those for the percentile
approach so we do not present them in what follows for brevity. Further vari-
ations of bootstrap methods to accommodate the lack of the full data set may
result in improved results and this is an area for future research.

Bootstrap Confidence Intervals. In the following algorithm, we describe the
estimation of percentile bootstrap confidence intervals in detail.
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Step 1: Estimate the GLD and linear interpolation densities using available
summary information of bin points and frequencies (and bin means for
the linear interpolation approach).

Step 2: Take 500 bootstrap samples of size n using the estimated quantile func-
tions from the two estimation methods using the inverse transform sam-
pling method. That is, randomly generate n numbers, y1,. .., ¥y, in [0,1]
from the uniform distribution and then the ith observation for the jth
bootstrap is y;; = Q(y;) where @ is the estimated quantile function.

Step 3: Construct the percentile bootstrap 95% confidence intervals by taking
the 2.5% and 97.5% quantiles of the 500 bootstrapped estimates of the
inequality measures.

For the GLD method, we consider the available bin points as the empirical
percentiles in the percentile matching method, providing the estimated param-
eters for the GLD. By using the GLD quantile function (Sect. 3.1) and the esti-
mated parameters, we can easily take the bootstrap samples using the inverse
transform sampling method as in Step 2. For the linear interpolation approach,
we use the following two quantile functions to generate data depending on the
value of p (Lyon et al. 2016). For the bounded interval of [a;_1, a;), the following
quantile function is used for p € [0,1) is,

7623' +\/ 23]‘]9 + éj
= ()
B;

where, 6’; = [a2 — QBjﬁj,l + 2Bjajaj,1 + gf(aj,l)Q], ﬁAJ and o as in (3).

Further the fitted exponential tail yields the following quantile function when
the cumulative relative frequency up to final (Jth) interval is denoted by F,

< —Fy_
T, =as_1—Aln <1p;’1>. (6)
1

l’p:

Wald-Type Confidence Intervals for the QRI. Obtaining confidence inter-
vals for the QRI from full data sets is studied by Prendergast and Staudte
(2018). The variance of the estimator depends on the density function and quan-
tiles. Therefore, given a good estimation of the density which in turn would be
expected to give good estimates to quantiles, QRI intervals from grouped data
are possible.

The (1 — a) x 100 confidence interval for I is given by I + zl_a/g\/Var(f),

where Var([) is adopted from Prendergast and Staudte (2018) where we use
J = 100. Here, 2y_,/7 is the 1 — a/2 percentile from the standard normal dis-

tribution. Var(I) consists of the variances and co-variances terms of ratios of
symmetrically chosen quantiles (see Prendergast and Staudte 2018). We then
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require estimates for population quantiles and density function. As described
earlier, first we estimate the underlying density and quantile functions using the
GLD and linear interpolation methods. Then those estimated quantile functions
can be used to estimate the symmetrically chosen quantiles.

5 Simulations and Examples

We begin by reporting our findings for simulation studies conducted with a
variety of distributions before considering real data examples.

5.1 Simulations

To assess coverage, we consider the lognormal distribution with 4 = 0 and
o = 1 and the Singh-Maddala distribution with parameter values a = 1.6971,
b = 87.6981 and g = 8.3679 where these parameters were from fitted US family
incomes reported by McDonald (1984). We also consider the Dagum distribution
with the parameter choices of a = 4.273 b = 14.28 and p = 0.36 which were used
in Kleiber (2008) and were estimated from fitted US family incomes in 1969.
The x3, Pareto type II distribution with scale one and shape equal to two and
the exponential distribution with rate one were also considered. Table 1 provides
the population inequality values of each measure.

Table 1. True values of inequality measures for each distribution.

F Gini | Theil | Atkinson | I

Lognormal 0.520 | 0.500 | 0.221 0.664
Singh-Maddala |0.355 | 0.206 | 0.106 0.579
Dagum 0.3350.191 | 0.097 0.548
X3 0.500 | 0.423 | 0.215 0.702
Pareto (2) 0.667 | 1.000 | 0.383 0.740
Exponential (1) | 0.500 | 0.423 | 0.215 0.702
Weibull (10) 0.067 | 0.007 | 0.004 0.167

From Table?2 for quintile-grouped data and using the linear interpolation
method, intervals for I produces coverage probabilities close to the nominal
level of 0.95 together with narrow mean width for all settings and with both
bootstrap and the Wald-type intervals. Given that the computation of the inter-
val is much more efficient for the Wald-type interval, there does not appear to be
an advantage for using the bootstrap. However, for the Gini, Theil and Atkinson
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Table 2. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from quintiles estimated using linear
interpolation method at nominal level 95%, each based on 1000 replications and 500
bootstrap repetitions.

F

Bootstrap

Wald-type

Gini

Theil

Atkinson

I

I

Lognormal

50
100
250
500

0.788 (0.164)
0.813 (0.119)
0.837 (0.075)
0.840 (0.054)

0.734 (0.327)
0.761 (0.250)
0.720 (0.161)
0.650 (0.115

0.785 (0.129
0.804 (0.097
0.813 (0.062
0.798 (0.045

0.947 (0.162
0.960 (0.112
0.967 (0.069
0.955 (0.048

0.968
0.965
0.962
0.956

0.163
0.112
0.070
0.049

Singh-Maddala

50
100
250
500

0.909 (0.128)
0.925 (0.091)

0.940 (0.058) |0
0.946 (0.041)

0.921 (0.151
0.927 (0.108

0.952 (0.049

0.911 (0.072
0.914 (0.052
0.938 (0.034
0.946 (0.024

0.948 (0.165
0.933 (0.114
0.933 (0.072
0.941 (0.050

0.949
0.959

.947
0.948

0.164
0.116
0.072
0.051

Dagum

50
100
250
500

0.902 (0.128)
0.914 (0.093)
0.902 (0.059)
0.925 (0.042)

0.886
0.902
0.878 (0.067)

)

)

)

.948 (0.069)
)

0.143)

)

0.105

~a = = =

0.869 (0.069
0.904 (0.051
0.893 (0.033
0.918 (0.024

0.939 (0.169
0.952 (0.117
0.940 (0.073
0.943 (0.052

0.946
0.951
0.948
0.954

0.168
0.118
0.074

50
100
250
500

0.930 (0.111)
0.938 (0.071)
0.948 (0.050)

0.939 (0.285)
0.933 (0.204)
0.939 (0.131)
0.950 (0.093)

0.931 (0.126
0.930 (0.090
0.939 (0.058
0.946 (0.041

0.955 (0.117
0.951 (0.072
0.945 (0.051

0.964
0.952
0.952
0.960

0.170
0.118
0.073
0.051

Pareto (2)

50
100
250
500

0.633 (0.172)
0.637 (0.121)
0.571 (0.077)
0.500 (0.054)

0.391 (0.490)
0.351
0.172
0.083 (0.173

0.373
0.242

0.603 (0.177
0.590 (0.131
0.484 (0.084

(
(
(
(
(
0.362 (0.060

0.968 (0.163
0.970 (0.112
0.949 (0.069
0.973 (0.048

0.969
0.971
0.959
0.961

0.162
0.113
0.070
0.049

N NN N

0.934 (0.288
0.938 (0.204)
0.949 (0.131)
0.945 (0.093)

0.170
0.118
0.073
0.051

Exponential (1)| 50
100
250
500

0.916 (0.158)
0.929 (0.111)
0.936 (0.071)
0.943 (0.050)

0.921 (0.126
0.924 (0.090
0.935 (0.058
0.947 (0.041

0.939 (0.169
0.952 (0.116
0.929 (0.072
0.961 (0.050

0.965
0.966
0.962
0.963

(
(
(
(
(
(
(
(
(
(
(
0.891 (0.048)
(
(
(
(
(
(
(
(
(
(
(
(

NN NN N NSNS NN N2 NG NI N NN NN N

( ) (0.163)
( ) (0.112)
( ) (0.070)
( ) (0.049)
( ) (0.164)
( ) (0.116)
( )|0.947 (0.072)
( ) (0.051)
( ) (0.168)
( ) (0.118)
( ) (0.074)
( ) (0.052)
0.930 (0.158) 0.954 (0.170) (0.170)
( ) (0.118)
( ) (0.073)
( ) (0.051)
( ) (0.162)
( ) (0.113)
( ) (0.070)
( ) (0.049)
( ) (0.170)
( ) (0.118)
( ) (0.073)
( ) (0.051)

measures, the coverages are comparatively weaker but improves as the sample
size increases for most of the distributions.

Table 3 shows that the intervals based on the GLD and quintiles for the Gini,
Theil and Atkinson measures have poor coverage. Coverages are typically very
good for the QRI intervals, albeit more conservative than those using the linear
interpolation method. However, coverages become low for the lognormal suggest-
ing that quintiles do not provide enough information to get a good approximation
using the GLD.
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Table 3. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from quintiles estimated using GLD
method at nominal level 95% for, each based on 1000 replications and 500 bootstrap

repetitions.

F n Bootstrap Wald-type
Gini Theil Atkinson I I
Lognormal 50 [0.495 (0.168)0.406 (0.387)|0.598 (0.150)|0.967 (0.173) [0.974 (0.172)
100 |0.446 (0.117)|0.366 (0.260)|0.510 (0.101)0.975 (0.126) |0.971 (0.105)
250 |0.373 (0.071)|0.269 (0.141) |0.453 (0.059)|0.899 (0.085) |0.924 (0.065)
500 |0.271 (0.049)|0.165 (0.090) |0.359 (0.039)|0.661 (0.063) |0.713 (0.046)
Singh-Maddala | 50 [0.862 (0.134)[0.937 (0.151)|0.953 (0.090)|0.979 (0.168) |0.989 (0.180)
100 |0.783 (0.094)|0.920 (0.107)|0.930 (0.063)0.984 (0.119) |0.973 (0.125)
250 |0.735 (0.060) |0.918 (0.068) |0.911 (0.040)|0.974 (0.075) |0.955 (0.078)
500 |0.646 (0.042)|0.887 (0.048)|0.803 (0.028)|0.965 (0.054) |0.925 (0.056)
Dagum 50 [0.844 (0.133)0.955 (0.140)|0.988 (0.085)[0.990 (0.174) [0.988 (0.192)
100 |0.759 (0.094)0.909 (0.099) |0.991 (0.060)|0.991 (0.123) |0.981 (0.132)
250 0.561 (0.060) |0.799 (0.063)|0.982 (0.038)|0.982 (0.079))|0.959 (0.083)
500 |0.299 (0.042)|0.575 (0.045) |0.981 (0.027)|0.967 (0.057) |0.941 (0.059)
X3 50 |0.652 (0.169) |0.544 (0.359) |0.749 (0.158)|0.980 (0.170) |0.989 (0.172)
100 |0.583 (0.121)|0.488 (0.269) |0.663 (0.111)0.971 (0.117) |0.978 (0.118)
250 |0.605 (0.073)|0.512 (0.147) |0.666 (0.065)|0.970 (0.073) |0.979 (0.073)
500 |0.568 (0.051)|0.467 (0.096) |0.624 (0.044)|0.974 (0.051) |0.969 (0.051)
Pareto (2) 50 0.558 (0.237)0.508 (1.029)|0.609 (0.289)[0.973 (0.161) [0.989 (0.161)
100 [0.579 (0.197)|0.549 (1.056)|0.607 (0.251)0.971 (0.111) |0.977 (0.111)
250 |0.626 (0.152)|0.647 (0.982) |0.663 (0.201)|0.968 (0.069) |0.972 (0.069)
500 |0.650 (0.123)]0.697 (0.903) |0.687 (0.169)|0.976 (0.048) |0.977 (0.049)
Exponential (1)| 50 [0.653 (0.172)[0.559 (0.388)|0.722 (0.163)|0.973 (0.169) |0.980 (0.171)
100 |0.589 (0.119)|0.513 (0.259) | 0.667 (0.110) 0.970 (0.117) |0.983 (0.118)
250 |0.578 (0.074)|0.483 (0.151) |0.651 (0.066)|0.982 (0.073) |0.973 (0.073)
500 |0.561 (0.051)|0.470 (0.095)|0.615 (0.044)|0.973 (0.051) |0.969 (0.051)

When the data is summarised in deciles rather than quintiles (i.e. more bins
and more information), Table4 shows improved coverage is achieved with the
GLD method. However, coverage is still poor for the Gini, Theil and Atkinson
measures when compared to the good coverages achieved for the QRI. Again,
the similar coverages for the bootstrap and Wald-type intervals suggest that the
Wald-type is a good choice since it is simple and quick to compute.
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Table 4. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from deciles estimated using GLD
method at nominal level 95% for, each based on 1000 replications and 500 bootstrap

repetitions.

F

Bootstrap

Wald-type

Gini

Theil

Atkinson

I

I

Lognormal

50
100
250
500

0.754 (0.262)
0.789 (0.209)
0.760 (0.152)
0.740 (0.113)

0.733 (0.963)
0.787 (0.892)
0.761 (0.749)
0.744 (0.585

0.762 (0.273
0.781 (0.227
0.756 (0.173
0.730 (0.130

0.926 (0.156
0.943 (0.108
0.938 (0.068
0.927 (0.048

0.948
0.953
0.943
0.920

0.156
0.109
0.068
0.048

Singh-Maddala

50
100
250
500

0.791 (0.148)
0.781 (0.102)
0.786 (0.060) | 0
0.756 (0.041)

0.760 (0.248
0.756 (0.167

0.706 (0.052

0.769 (0.103
0.747 (0.068

715 (0.037
0.660 (0.025

0.912 (0.160
0.922 (0.111
0.941 (0.070
0.945 (0.050

0.958
0.965
0.954
0.955

0.161
0.113
0.071
0.050

Dagum

50
100
250
500

0.735 (0.146)
0.744 (0.099)
0.709 (0.060)
0.710 (0.042)

0.631
0.632
0.564 (0.074)

)

)

)

748 (0.083) |0
)

0.222)

)

0.138

(
(
(
(
(
(
(
(

0.740 (0.101
0.733 (0.067
0.685 (0.039
0.681 (0.027

0.898 (0.163
0.941 (0.115
0.957 (0.073
0.957 (0.052

0.937
0.956
0.960
0.949

0.167
0.118
0.074

50
100
250
500

0.775 (0.141)
0.799 (0.084)
0.753 (0.057)

0.783 (0.551)
0.736 (0.392)
0.763 (0.216)
0.714 (0.136)

0.845 (0.196
0.803 (0.134
0.779 (0.077
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In Fig. 1 we look at what happens to estimates using the linear interpolation
method for each measure (e.g. an estimate based on a bootstrap sample) as skew
increases. In this case, we use the lognormal distribution while increasing the o
parameter from 0.5 to 2. The estimates are centered according to the true value
so a value of zero indicates a perfect estimate. We exclude the Theil index from
the analysis since its upper bound is unrestricted. As the distribution becomes
more skewed, the Gini and Atkinson estimators have an increase in bias and
variability whereas the quantile-based measure (I) indicates smaller variability



248 D. S. Dedduwakumara and L. A. Prendergast

Lognormal distribution
c=0.5 o=1 c=1.5 c=2

=}
omo 0o
00 o0
.
()
[}

-85+ 0 =t

Centered estimated indices

—0.2-

1 6 A I G A I G A I G A

Fig. 1. Boxplots of 1000 centered (with respect to the true values) simulated estimates
of inequality measures from quintiles, estimated using linear interpolation method from
the Lognormal distribution with mean 0 and various standard deviation values where
n =250

and smaller bias throughout for all of the choices of o. This helps to explain why
the coverages are poor for the Gini and Atkinson measures.

6 Applications

6.1 Example 1: Household Income Reported with Group Means

In this example, we present household income data reported with group means by
the Survey of Consumer Finances and Expenditures carried out by the Macquarie
University and the University of Queensland which can be found in Podder
(1972) and Kakwani and Podder (1976). The data is summarised in Table 5.

The confidence intervals produced by 500 bootstrapped samples using the
linear interpolation (LI) and GLD methods are given in Table6. As the final
interval is unbounded, we arbitrarily set the upper limit of that bin to $500,000.
As can be seen, the confidence intervals and the estimates generated by the two
methods are similar.
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Table 5. Australian household income data for 1967-68

Income Number of households | Mean income
Below $1000 310 674.39
$1000-$2000 552 1426.10
$2000-$3000 1007 2545.79
$3000—-$4000 1193 3469.35
$4000-$5000 884 4470.33
$5000-$6000 608 5446.60
$6000-$7000 314 6460.93
$7000-$8000 222 7459.14
$8000-$9000 128 8456.66
$9000-$11000 112 9788.38
$11000 and over | 110 15617.69

Table 6. Interval and point estimates of the inequality measures generated using the
linear interpolation (LI) and GLD methods for the data presented in Table 7.

Method | Bootstrap ‘Wald-type
Gini Theil Atkinson I I
LI 0.319 0.178 0.088 0.509 0.510
(0.311, 0.327) | (0.168, 0.188) | (0.084, 0.092) | (0.503, 0.517) | (0.502, 0.517)
GLD 0.329 0.177 0.104 0.519 0.521
(0.321, 0.337) | (0.165, 0.190) | (0.098, 0.109) | (0.512, 0.528) | (0.513, 0.529)

6.2 Example 2: Comparison of Equalized Disposable Household
Income Data

In this example, we compare two assumed-independent income distributions
reported in deciles from ABS (2011) (see Table 7) to assess whether the income
inequality measures of the two distributions are significantly different from one
another. It is simple to adapt the previous intervals to the two-sample setting.
For example, for the bootstrap approach we simply estimate the difference at
each iteration and then form the interval by taking percentiles from the boot-
strapped differences. For the Wald-type approach we can get the variance of the
difference as a sum of the variances for each estimator of the QRI. For estimation
purposes, the highest income has been considered as $5000 for both years.

From Table 8, it can be seen that all intervals for the difference in the mea-
sures do not include zero. These intervals then suggest that income inequality
has change over the years. We can conclude that inequality of the equalized dis-
posable household income in Western Australia has been significantly increased
from 1996-97 to 2009-10.
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Table 7. Equalized disposable household income at top of selected percentiles ($) in
Western Australia.

Percentile | 1996-97 | 2009-10
10th 263 347
20th 311 454
30th 364 565
40th 434 663
50th 518 770
60th 586 882
70th 665 1071
80th 778 1296
90th 955 1652

Table 8. Point and interval estimates of inequality measures generated using GLD
method for Equalized disposable household income in Western Australia presented in
Table 7

Year Bootstrap Wald-type
Gini Theil Atkinson I 1

1996-97 | Average Est.|0.262 0.107 0.053 0.488 0.489

CI (0.253, 0.271) | (0.099, 0.115) | (0.049, 0.057) | (0.473, 0.503) | (0.483, 0.496)
2009-10 | Average Est.|0.326 0.174 0.083 0.538 0.538

CI (0.318, 0.334) | (0.163, 0.185) | (0.079, 0.088) | (0.528, 0.548) | (0.531, 0.545)
Difference | Average Est.|0.064 0.067 0.030 0.050 0.049

CI (0.051, 0.077) | (0.054, 0.08) |(0.025, 0.037)|(0.032, 0.07) |(0.040, 0.058)

7 Discussion

To preserve confidentiality, it is common for income data to be summarised in
grouped format. We therefore considered interval estimators for several mea-
sures, including the popular Gini index and a newly proposed quantile-based
measure, the QRI. Since grouped data contains bin boundaries and frequencies
(and therefore quantile estimates of the data), the QRI is naturally suited to
this setting. We showed that bootstrap intervals and a Wald-type interval, both
using estimated densities form the grouped data, had typically excellent coverage
(i.e. close to nominal). The other measures, however, often had intervals with
poor coverage. Further research could include consideration of how to get good
approximations to the variances of the Gini, Theil and Atkinson estimators when
dealing with grouped data. This was possible for the QRI since the variance of
the estimator can be approximated using the estimated density function. For
the other measures it is not so straightforward. In summary, when faced with
grouped data, if confidence intervals are needed then the QRI is a good option
for measuring inequality.
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