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Preface

Welcome to the proceedings of the RSSDS: Research School in Statistics and Data
Science, held during July 26–28, 2019, in Melbourne, Australia. This was the third
edition in a series of workshops; the first and second of which were called the S4D:
International Research Summer School in Statistics and Data Science, held in 2017 and
2018, at the University of Caen, in Normandy, France.

The workshop was organized as a collaboration between the French and Australian
statistical research communities, and was sponsored by AFRAN, ANR, Inria, La Trobe
University, the region of Normandy, and the University of Caen. The workshop
brought together academics, researchers, and industry practitioners of statistics and data
science, to discuss numerous advances in the disciplines and their impact on the
sciences and society. Attendees and presenters at the workshop covered numerous
topics, including data analysis, data science, data mining, data visualization, bioin-
formatics, machine learning, neural networks, statistics, and probability.

This year, RSSDS received 23 submissions. After a thorough peer-review process,
11 English papers were selected for inclusion in these proceedings, which implies an
acceptance rate of 47.83%. These 11 papers were presented at the workshop via poster
presentations. In addition to these 11 papers, 7 invited English papers were solicited
from the invited speakers of the workshop. These 7 invited papers were subjected only
to a technical editing process. In total, the proceedings contain 18 high-quality English
papers on various topics from data science to statistics.

The high-quality program would not have been possible without the authors who
chose RSSDS 2019 as their preferred venue for their publications. Furthermore, the
workshop would not have been successful if not for the work of the Program Com-
mittee members and Organizing Committee members, who put a tremendous amount
of effort into organizing the event, and soliciting and reviewing the research papers that
make up the program.

We hope that you enjoy reading and benefit from the proceedings of RSSDS 2019.

October 2019 Hien Nguyen
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Symbolic Formulae for Linear
Mixed Models

Emi Tanaka1,2(B) and Francis K. C. Hui3

1 The University of Sydney, Camperdown, NSW 2008, Australia
2 Monash University, Clayton, VIC 3800, Australia

emi.tanaka@monash.edu
3 Australian National University, Acton, ACT 2601, Australia

francis.hui@anu.edu.au

Abstract. A statistical model is a mathematical representation of an
often simplified or idealised data-generating process. In this paper, we
focus on a particular type of statistical model, called linear mixed models
(LMMs), that is widely used in many disciplines e.g. agriculture, ecol-
ogy, econometrics, psychology. Mixed models, also commonly known as
multi-level, nested, hierarchical or panel data models, incorporate a com-
bination of fixed and random effects, with LMMs being a special case.
The inclusion of random effects in particular gives LMMs considerable
flexibility in accounting for many types of complex correlated structures
often found in data. This flexibility, however, has given rise to a number
of ways by which an end-user can specify the precise form of the LMM
that they wish to fit in statistical software. In this paper, we review the
software design for specification of the LMM (and its special case, the
linear model), focusing in particular on the use of high-level symbolic
model formulae and two popular but contrasting R-packages in lme4 and
asreml.

Keywords: Multi-level model · Hierarchical model · Model
specification · Model formulae · Model API · Fixed effects · Random
effects

1 Introduction

Statistical models are mathematical formulation of often simplified real world
phenomena, the use of which is ubiquitous in many data analyses. These models
are fitted or trained computationally, often with practitioners using some read-
ily available application software package. In practice, statistical models in its
mathematical (or descriptive) representation would require translation to the
right input argument to fit using an application software. The design of these
input arguments (called application programming interface, API) can help ease

Supported by R Consortium.
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4 E. Tanaka and F. K. C. Hui

the friction in fitting the user’s desired model and allow focus on important
tasks, e.g. interpreting or using the fitted model for purposes downstream.

While there are an abundance of application software for fitting a variety of
statistical models, the API is often inconsistent and restrictive in some fashion.
For example, in linear models, the intercept may or may not be included by
default; and the random error typically assumed to be identical and indepen-
dently distributed (i.i.d) with no option to modify these assumptions straightfor-
wardly. Some efforts have been made in this front such as by the parsnip package
(Kuhn 2018) in the R language (R Core Team 2018) to implement a tidy unified
interface to many predictive modelling functions (e.g. random forest, logistic
regression, linear regression etc) and the scikit-learn library (Pedregosa et
al. 2011) for machine learning in the Python language (Van Rossum and Drake
Jr 1995) that provides consistent API across its modules (Buitinck et al. 2013).
There is, however, little effort on consistency or discussion for the software spec-
ification of many other types of statistical models, including the class of linear
mixed models (LMMs), which is the focus of this article.

LMMs (a special case of mixed models in general, which are also sometimes
referred to as hierarchical, panel data, nested or multi-level models) are widely
used across many disciplines (e.g. ecology, psychology, agriculture, finance etc)
due to their flexibility to model complex, correlated structures in the data. This
flexibility is primarily achieved via the inclusion of random effects and their
corresponding covariance structures. It is this flexibility, however, that results
in major differences in model specification between software for LMMs. In R,
arguably the most popular general purpose package to fit LMMs is lme4 (Bates
et al. 2015) – total downloads from RStudio Comprehensive R Archive Net-
work (CRAN) mirror from cranlogs (Csárdi 2019) indicate there were over two
million downloads for lme4 in the whole of 2018, while other popular mixed
model packages e.g. nlme, rstan, and brms (Bürkner 2017; Pinheiro et al. 2019;
Stan Development Team 2019) in the same year have less than half a million
downloads, albeit rstan and brms are younger packages. Another general pur-
pose LMM package is asreml (Butler et al. 2009), which wraps the proprietary
software ASreml (Gilmour 2009) into the R framework. As this package is not
available on CRAN, there are no comparable download logs, although, citations
of its technical document indicates popular usage particularly in the agricul-
tural sciences. In this paper, we discuss only lme4 and asreml due to their
active maintenance, maturity and contrasting approaches to LMM specification.

The functions to fit LMM in lme4 and asreml are lmer and asreml, respec-
tively. Both of these functions employ high-level symbolic formulae as part of
their API to specify the model. In brief, symbolic model formulae define the
structural component of a statistical model in an easier and often more accessi-
ble terms for practitioners. The earlier instance of symbolic formulae for linear
models was applied in Genstat (VSN International 2017) and GLIM (Aitkin et
al. 1989), with a detailed description by Wilkinson and Rogers (1973). Later on,
Chamber and Hastie (1992) describe the symbolic model formulae implementa-
tion for linear models in the S language, which remains much the same in the R
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language. While the symbolic formula of linear models generally have a consis-
tent representation and evaluation rule as implemented in stats::formula, this
is not the case for LMMs (and mixed models more generally) – the inconsistency
of symbolic formulae arises primarily in the representation of the random effects,
with the additional need to specify the covariance structure of the random effects
as well as structure of the associated model matrix that governs how the random
effects are mapped to (groups of) the observational units.

In Sect. 2, we briefly describe the symbolic formula in linear models. We
then describe the symbolic model formula employed in the LMM functions lmer
and asreml in Sect. 3. We follow by illustrating a number of statistical models
motivated by the analysis of publicly available agricultural datasets, with corre-
sponding API for lmer and asreml in Sect. 4. We limit the discussion of symbolic
model formulae to mostly those implemented in R, however, it is important to
note that the conceptual framework is not limited to this language. We conclude
with a discussion and some recommendations for future research in Sect. 5.

2 Symbolic Formulae for Linear Models

A special case of LMMs is linear models, which comprises of only fixed effects
and a single random term (i.e. the error or noise), given in a matrix notation as

y = Xβ + e, (1)

where y is a n-vector of responses, X is the n×p design matrix with an associated
p-vector of fixed effects coefficients β, and e is the n-vector of random errors.
Typically we assume e ∼ N(0, σ2In).

The software specification of linear model is largely divided into two
approaches: (1) input of arrays for the response y and design matrix for fixed
effects X, and (2) input of a symbolic model formula along with a data frame
that define the variables in the formula. The input of the data frame may be
optional if the variables are defined in the parental environment, although such
approach is not recommended due to larger potential for error (e.g. one variable
is sorted while others are not).

Symbolic model formulae have been heavily used to specify linear models in
R since its first public release in 1993, inheriting most of its characteristic from S.
In R, formulae have a special class formula, and can be used for other purposes
other than model specification, such as case when function in dplyr R-package
(Wickham et al. 2019), which uses the left hand side (LHS) to denote cases to
substitute with given value on the right hand side (RHS) - these type of use is
not within the scope of this paper. The history of the formula class in R (and
S) is considerably longer than other popular languages, e.g. the patsy Python
library (Smith et al. 2018), which imitates R’s formula, was introduced in 2011
and used in Statsmodels library (Seabold and Perktold 2010) to fit a statistical
model.

Symbolic model formulae makes use of the variable names defined in the
environment (usually through the data frame) for specifying the precise model
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formulation. With linear models, the LHS indicate the response; the RHS resem-
bles its mathematical form; and the LHS and RHS are separated by � which can
be read as “modelled by”. For example, the symbolic model formula y � 1 + x
can be thought of as the vector y is modelled by a linear predictor consisting of
an overall intercept term and the variable x.

When the variables are numerical then the connection between the formula
to its regression equation is obvious – the LHS is y, while the RHS corresponds
to the columns of the design matrix X in the linear model (1). One advantage
of this symbolic model formula approach is that any transformation to the vari-
able can be parsed in the model formula and may be used later in the pipeline
(e.g. prediction in its original scale). This contrasts to when the input arguments
are the design matrix and the corresponding response vector – there is now an
additional step required by the user to transform the data before model fitting
and subsequently afterwards for extrapolation. Such manual transformation also
likely results in manual back-transformation later in the analysis pipeline for
interpretation reasons. This no doubt creates extra layer of friction for the prac-
titioner in their day-to-day analysis. Figure 1 illustrates this connection using
the trees dataset.

The specification of the intercept by 1 in the formula, as done in Fig. 1,
is unnecessary in R since this is included by default. In turn, the removal of
the intercept can be done by including -1 or +0 on the RHS. In this paper,
the intercept is explicitly included as the resemblance to its model equation
form is lost without it. While the omission of 1 is long ingrained within R, we
recommend to explicitly include 1 and do not recommend designing software to
require explicit specification to remove intercept as currently required in R; see
Sect. 2.3 for further discussion on this.

Categorical or factor variables are typically converted to a set of dummy vari-
ables consisting of 0s and 1s indicating whether the corresponding observation
belongs to the respective level. For parameter identifiability, a constraint needs
to be applied, e.g. the treatment constraint will estimate effects in comparison
with a particular reference group (the default behaviour in R). Note that in the
presence of categorical variables, the direct mapping of the symbolic formula
to the regression equation is lost. However, the mapping is clear in converting
the model equation to the so-called Analysis of Variance (ANOVA) model spec-
ification as illustrated in Fig. 2, which represents the fit of a two-way factorial
ANOVA model to the herbicide data.

Interaction effects are specified easily with symbolic model formula by
use of the : operator as seen in Fig. 2. More specifically, the formula in
Fig. 2 can also be written more compactly as sqrt(Weight) �1 + Block +
Population * Herbicide where the * operator is a shorthand for including
both main effects and the interaction effects. Further shorthand exists for higher
order interactions, e.g. y �1 + (x1 + x2 + x3)^3 is equivalent to y �1 + x1 +
x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3, a model that contains main
effects as well as two-way and three-way interaction effects. The 1 can be
included in the bracket as y �(1 + x1 + x2 + x3)^3 to yield the same result.
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Fig. 1. There are two main approaches to fitting a linear model illustrated above with
the fit of a linear model to the trees dataset: (1) the top half uses the lm function
with the input argument as a symbolic model formulae (in blue); (2) the bottom half
uses the lm.fit function which requires input of design matrix and the response. The
latter approach is not commonly used in R, however, it is the common approach in
other languages; see Sect. 2.1 about the data and the model.

Perhaps surprisingly, y �(0 + x1 + x2 + x3)^3 does not include the intercept
in the fitted model, since 0 is converted to -1 and carried outside the bracket
and power operator. The formula simplification rule, say for y �(0 + x1 + x2
+ x3)^3, in R can be found by
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Fig. 2. In the presence of categorical variables, the resemblance of the symbolic model
formulae to its regression model form is not immediately obvious. In this case, cate-
gorical variables are transformed to a set of dummy variables with constraint applied
for parameter identifiability. As such, a single categorical variable span a number of
columns in the design matrix. On the other hand, if the model equation is written using
the ANOVA model specification (with index notation), then the categorical variables
have an immediate connection to the fixed effects in the model; see Sect. 2.2 for more
information about the data and the model.

2.1 Trees Volume: Linear Model

The trees data set (original data source from Ryan et al. 1976 built-in data in
R) contain 31 observations with 3 numerical variables. The model shown in Fig. 1
is a linear model in (2) with the 31×3 design matrix X =

[
131 log(x1) log(x2)

]
,

where x1 is the tree height and x2 is the tree diameter (named Girth in the
data). Finally, y is the log of the volume of the tree.

In Fig. 1, the connection of the data column names to symbolic model formula
and its resemblance to the model equation is immediately obvious. As discussed
before, transformations may be saved for later analysis using the symbolic model
formulae (e.g. prediction in original scale), however, this likely requires manual
recovery when the API requires design matrix as input.

2.2 Herbicide: Categorical Variable

The herbicide data set (original source from R. Hull, Rothamsted Research,
data sourced from Welham et al. 2015) contains 135 observations with 1 numer-
ical variable (weight response) and 3 categorical variables: block, herbicide, and
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population of black-grass with 5, 3 and 9 levels respectively. The experiment
employed has a factorial treatment structure (i.e. 27 treatments which are com-
binations of herbicide and population), with the complete set of treatment ran-
domised within each of the five blocks (i.e. it employs a randomised complete
block design).

The model in Fig. 2 is a linear model to the square root of the weight of the
black-grass with the design matrix X =

[
1135 x1 · · · x30

]
, where x1, ...,x4 are

dummy variables for Block B2, B3 and B4, x5, ...,x12 are dummy variables for
Population P2 to P9, x13 and x14 are dummy variables for Herbicide B and C,
and x15, ...,x30 are dummy variables for the corresponding interaction effects.
Alternatively, the model can be written via the ANOVA model specification,

yijk = μ + γk + αi + βj + (αβ)ij + eijk,

where index i denotes for level of population, index j for level of herbicide and
index k for the replicate block. With dummy variables, the relevant constraints
are α1 = β1 = γ1 = (αβ)1j = (αβ)i1 = 0. This form is equivalent to the linear
regression model given in Eq. (1) with the fixed effects vector

β = (μ, γ2, ..., γ5, α2, α3, ..., α9, β2, β3, (αβ)22, (αβ)23, ..., (αβ)93)�.

2.3 Specification of Intercept

Wilkinson and Rogers (1973) described many of the operators and evaluation
rules associated with symbolic model formulae, that to this day remain a main-
stay of R as well as other languages. These include simplification rules such as
y � x + x and y � x:x to y � x. Their description however did not include any
discussion about the intercept. The symbolic evaluation rules governing the inter-
cept are classified as special cases in the current implementation of R, although
they may not be as overly intuitive on first glance, e.g.

– y � 1:x simplifies to y � 1, although one may expect y � x;
– y � 1*x simplifies to y � 1, which may be surprising in light of the proceeding

point;
– y � x*1 simplifies to y � x, which makes the cross operator unsymmetric

for this special case.

Further ambiguity arises when we consider cases where we wish to explicitly
remove the intercept, e.g.

– y � -1:x simplifies to the nonsensical y � 1 - 1, which is equivalent to
y � 0,

– y � 1 + (-1 + x) simplifies to y � x - 1.

The last point was raised by Smith et al. (2018), and subsequently the formula
evaluation differs in the patsy Python library on this particular aspect. These
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complications arise due to the explicit specification for removing the intercept.
Furthermore, the symbolic model formulae that includes -1 or 0 removes the
resemblance to the model equation, detracting from the aim of symbolic model
formula to make model formulation straightforward and accessible for practi-
tioners. It should be noted, however, that these cases are all somewhat contrived
and would rarely be used in practice.

3 Linear Mixed Models

Consider a n-vector of response y, which is modelled as

y = Xβ + Zb + e, (2)

where the X is the design matrix for the fixed effects coefficients β; Z is the
design matrix of the random effects coefficients b, and e is the vector of random
errors. We typically assume that the random effects and errors are independent
of each other and both multivariate normally distributed,

[
b
e

]
∼ N

([
0
0

]
,

[
G 0
0 R

])

where G and R are the covariance matrices of b and e, respectively.
In Sect. 4, we present examples with different variables and structures for

model (2). In the next sections, we briefly describe and contrast the fitting
functions lmer and asreml from the lme4, asreml R-packages, respectively.

3.1 lme4

The lme4 R package fits a LMM with the function lmer. The API consists of
a single formula that extends the linear model formula as follows – the ran-
dom effects are added by surrounding the term in round brackets with grouping
structure specified on the right of the vertical bar, and the random terms within
each group on the left of the vertical bar, e.g. (formula | group). The formula
is evaluated under the same mechanism for symbolic model formula as linear
models in Sect. 2, with group specific effects from formula. These group specific
effects are assumed to be normally distributed with zero mean and unstructured
variance, as given above in (2). Examples of its use are provided in Sect. 4.

3.2 asreml

In asreml, the random effects are specified as another formula to the argu-
ment random. One of the main strength of LMM specification in asreml, in
contrast to lme4 in wide array of flexible covariance structures. The full list of
covariance structures available in asreml Version 3 are given in Butler et al.
(2009); asreml version 4 has some slight differences as outlined in Butler et
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al. (2018), although the main concept is similar: variance structures are spec-
ified with function-like terms in the model formulae, e.g. us(factor) will fit
a factor effect with unstructured covariance matrix; diag(factor) will fit a
factor effect with diagonal covariance matrix, i.e. zero off-diagonal and differ-
ent parameterisation in the diagonal elements. Note factor corresponds to a
categorical variable in the data; see Sect. 4 for examples of its usage.

4 Motivating Examples for LMMs

This section presents motivating examples with model specification by lmer or
asreml. It should be noted that the models are not advocated to be “correct”,
but rather a plausible model that a practitioner may consider in light of the data
and design. For succinctness, we omit all data argument to model fit functions.
Also, this paper uses lme4 version 1.1.21; pedigreemm version 0.3.3 and asreml
version 3.

4.1 Chicken Weight: Longitudinal Analysis

The chicken weight data is originally sourced from Crowder and Hand (1990) and
found as a built-in data set in R. It consists of the weights of 50 chickens tracked
over regular time intervals (not all weights at each time points are observed).
Each chicken are fed one of 4 possible diets.

In this experiment, we are interested in the influence of different diets on
chicken weight. We can model the weight of each chicken over time that includes
diet effect, overall intercept and slope for time. Fitting these effects as fixed and
assuming that the error is i.i.d. means that the observations from same chicken
are uncorrelated and there is no variation for the intercept and slope between
chickens. This motivates the inclusion of random intercept and random slope
for each chicken. More explicitly, and using an ANOVA model specification, the
weight may be modelled as

yij = β0 + β1xij + αT (i) + b0i + b1ixij + eij , (3)

where yij is the weight of the i-th chicken at time index j, xij is the days since
birth at time index j for the i-th chicken, b0i and b1i are the random intercept
and random time slope effects for the i-th chicken, β0 and β1 are the overall
fixed intercept and fixed time slope, and eij is the random error.

The above model is incomplete without distributional assumptions for the
random effects. As intercept and slope clearly measure different units, the vari-
ance will be on different scales. Furthermore, we make an assumption that the
random intercept and random slope are correlated within the same chicken,
but independent across chickens. With the typical assumption of mutual inde-
pendence of random effects and random error, and normally and identically
distributed (NID) effects, we thus have the distribution assumptions,

[
b0i
b1i

]
∼ NID

([
0
0

]
,

[
σ2
0 σ01

σ01 σ2
1

])
and eij ∼ NID(0, σ2). (4)
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If the effects in model (3) are vectorised as in model (2) with

b = (b01, b02, ..., b0,50, b11, b12, ..., b1,50)� and e = (eij),

then the model assumption (4) can also be written as

b ∼ N

(
0,

[
σ2
0 σ01

σ01 σ2
1

]
⊗ Im

)
and e ∼ N(0, σ2In)

where ⊗ is the Kronecker product. In asreml, a separable covariance structure,
Σ1 ⊗Σ2, is specified by the use of an interaction operator where the dimensions
and structures of Σ1 and Σ2 are specified by the factor input or its number of
levels and the function that wraps the factor, e.g. us(2):id(50) is equivalent
to Σ2×2 ⊗ I50 where Σ2×2 is a 2 × 2 unstructured covariance matrix.

The symbolic model formulae that encompasses the model (3) coupled with
assumption in (4) for lmer and asreml are shown in Fig. 3. The two symbolic
model formulae share the same syntax for fixed effects, however, in this case the
random effects syntax is more verbose for asreml.

One may wish to modify their assumption such that now we assume

b ∼ N

(
0,

[
σ2
0 0
0 σ2

1

]
⊗ Im

)
,

That is, the random slope and random intercept are assumed to be uncorre-
lated. This uncorrelated model may be specified in lme4 by replacing | with ||
as below.

It should be noted that the effects specified on the LHS of the || are uncor-
related if the variables are numerical only; we refer to the example in Table 1 for
a case where this does not work when the variable is a factor.

The same model is specified as below for asreml where now us(2) is replaced
with diag(2). The correspondence to the covariance structure is more explicit,
but again involves the random effects being (implicitly) vectorised as show in
Fig. 3 and care is needed with orders of separable structure.
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Fig. 3. This figure shows a longitudinal analysis of the chicken data (see Sect. 4.1).
The index form of the model equation shows direct resemblance for symbolic model
formula in lmer for the fixed and random effects, however, its covariance form is not as
easily inferred. In contrast, the symbolic model formula in asreml show resemblance
of the covariance structure specified in the second argument of ~str, however, the
corresponding random effects specified in the first argument of ~str must be vectorised
as show in the above figure and requires implicit knowledge of the Kronecker product
of relevant matrices.

4.2 Field Trial: Covariance Structure

In this example, we consider wheat yield data sourced from the agridat R-
package (Wright 2018), which originally appeared in Gilmoure et al. (1997).
This data set consists of n = 330 observations from a near randomised complete
block experiment with m = 107 varieties, of which 3 varieties have 6 replicates
while the rest have 3 replicates. The field trial that the yield data was collected
from was laid out in a rectangular array with r = 22 rows and c = 15 columns.
Each of the variety replicates are spread uniformly to b = 3 blocks. The columns
1–5, columns 6–10 and columns 11–15 form three equal blocks of contiguous
area within the field trial. The data frame gilmour.serpentine contains the
columns for yield, gen (variety), rep (block), col (column) and row. Further
columns colf and rowf, which are factor versions of col and row, have also
been added.
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We may model the yield observations y, ordered by the rows within columns,
using the model (2) where here β is the b-vector of replicate block effects and
b is the m-vector of variety random effects. We consider next a few potential
covariance structures for b and e.

Scaled Identity Structure. One of the simplest assumptions to make would
be to assume that var(b) = G = σ2

gIm i.e., a scaled identity structure. We may
additionally assume that var(e) = σ2In. In lmer, this is fitted as below.

To elaborate further, lmer specifies a random intercept for each variety. This
variety intercept will each be assumed to arise from NID(0,Σ1×1) where Σ1×1

is a 1 × 1 unstructured variance matrix (essentially a single parameter variance
component).

The same model is fitted in asreml as below. Particularly, idv(gen) signifies
a vector of variety effects with idv variance structure, i.e. a scaled identity
structure. This is the default structure in asreml, and so omitting variance
structure, random = ~gen, results in the same fit.

Crossed Random Effects. Field trials often employ rows and/or columns as
blocking factors in the experimental design. Furthermore, it is common practice
that the management practices of field experiments follow some systematic rou-
tine, e.g., harvesting may occur in a serpentine fashion from the first to the last
row. These occasionally introduce obvious unwanted noise in the data that are
often removed by including random row or column effects assuming that they
are i.i.d. for simplicity. These so-called crossed random effects are fitted as below
for lmer and asreml.

Error Covariance Structure. A field trial is often laid out in a rectangular
array and observations from each plot indexed by row and column within this
array. Consequently, the assumption that var(e) = σ2In may be restrictive when
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there is likely to be some sort of spatial correlation, i.e. plots that are geograph-
ically closer would be similar than plots further apart. A range of models may
be considered for this potential correlation. In practice, a separable autoregres-
sive process of order one, denoted AR1×AR1, has worked well as a compromise
between parsimony and flexibility as a structure (Gilmour et al. 1997). More
specifically, we assume var(e) = σ2Σc ⊗ Σr where Σc is a c × c matrix with
(i, j)-th entry of Σc given as ρ

|i−j|
c with autocorrelation parameter ρc, and a

similar definition holds for r × r matrix Σr except the autocorrelation param-
eter is denoted bvy ρr. This model is fitted in asreml by supplying a symbolic
formula, ar1(colf):ar1(rowf), to the argument rcov as below.

Here, the ar1 specifies an autoregressive process of order one with dimen-
sion given by number of levels in rowf and colf. It is important to note that
ar1 denotes a correlation matrix and a covariance matrix may be specified by
ar1v. Care needs to be taken in covariance specification for separable mod-
els, as clearly there is a lack of variance parameter(s) where Σ1 and Σ2 are
both correlation structures only, while if both are covariance structure then
the model is over-parameterised and unidentifiable. In the error structure of
rcov, this is taken care of such that rcov = ~ar1v(colf):ar1(rowf), rcov
= ~ar1(colf):ar1v(rowf) and rcov = ~ar1(colf):ar1(rowf) will fit all the
same model. It should be noted that this is not the case for separable covariance
structures specified in random effects.

In comparison, the more restrictive API of lmer function does not allow
the assumption on the random effects to be relaxed from var(e) = σ2In. One
may of course introduce a random effect, be ∼ N(0, σ2Σc ⊗ Σr), and assume
e ∼ N(0, σ2In). However, this separable covariance structure also can not be
specified within lmer function.

Known Covariance Structure. Often in plant breeding trials, the varieties of
interest have some shared ancestry. This is captured in the form of pedigree data
that contains 3 columns: individual ID, mother’s ID and father’s ID. The related
structure is commonly captured by the use of a numerator relationship matrix,
denoted here has A (Mrode 2014). For example, suppose that individuals i and
j are full-siblings. Then the corresponding (i, j)-th entry in A is 0.5 (i.e., the
average probability that a randomly drawn allele from individual i is identical
by descent to the randomly drawn allele at the same autosomal locus from
individual j).

With the additional information above, we may assume that var(b) = σ2
gA to

exploit this known relatedness structure between varieties. The symbolic model
formulae in lme4 alone is unable to specify this model and, an extension R
package pedigreemm (Vazquez et al. 2010) is required. The pedigree data is
parsed to make an object of pedigree class, which we refer to here as ped. This
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object ped is then included as part of the input in the main fitting function
pedigreemm, as depicted below.

In asreml, the fit is similar to the above, but the factor with the known
covariance structure must be wrapped in giv with argument ginverse providing
a named list with the inverse of the A in a sparse format, i.e. a data frame of 3
columns that consists the row and the column index of A and its corresponding
value in A provided that the value is non-zero.

4.3 Multi-environmental Trial: Separable Structure

In the final example, we consider CIMMYT Australia ICARDA Germplasm
Evaluation (CAIGE) bread wheat yield 2016 data (CAIGE 2016), which consists
of t = 7 sites across Australia, where the overall aim is to select the best genotype
(gen). There were m = 240 genotype tested across seven trials and 252–391 plots,
with a total of n = 2127 yield observations. Each trial employed a partially
replicated (p-rep) design (Cullis et al. 2006), with p ranging from 0.23 to 0.39.

Fitting a model to a model should take into account the differential mean
yield across sites, and allow for different genotypic variations by site. For simplic-
ity, we ignore other variations for now. In turn, the LMM formulation in Eq. (2)
may be used where y is the vector of yield (ordered rows within columns within
sites); β is the t-vector of site effects; and b is the mt-vector of genotype-by-site
effects (ordered by genotype within site). There are a number of distributions
that may be considered for b, as explained below.

We may consider a separable model such that b ∼ N(0,Σs ⊗ Σg), where Σs

and Σg are a t×t and m×m matrices, respectively. We may further assume that
Σg has a known structure similar to Sect. 4.2, but for simple illustration here
we will assume that the genotypes are independent, i.e. Σg = Im. Also, we may
assume that Σs = diag

(
σ2
g1, σ

2
g2, · · · , σ2

gt

)
, i.e. a diagonal matrix with differ-

ent variance paramterisation for each site, thus allowing for different genotypic
variance at each site. This model can be fitted as below in asreml.

The same model in lmer is somewhat more involved as shown in Table 1.
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Table 1. The table lists the equivalent symbolic model formula in lmer and asreml

for the site-by-genotype random effect, b and the corresponding mathematical form
of the variance structure of b. Here, Σt×t is a t × t unstructured covariance matrix;
Dt×t = diag(σ2

g1, ..., σ
2
g7), a t × t diagonal covariance matrix; m is the number of

genotypes; t is the number of sites; and S1 is a n-vector where the entry is one if the
corresponding observation belongs to site 1 and zero otherwise (similar definitions hold
for S2, . . . , S7). The conversion of the factor site to numerical variables S1, ..., S7 is
required to have uncorrelated random effects in lmer via the || operator, as per the
last row in the table. The || group separation in lmer is only effective when variables
on LHS are numerical.

lmer asreml var(b)

idv(site):id(geno)

(1 | site:geno) id(site):idv(geno) σ2
gItm

site:geno

(0 + site | geno)

(0 + site || geno) us(site):id(geno) Σt×t ⊗ It

(0 + S1 + S2 + S3 + S4 + S5 + S6 + S7 | geno)

(0 + S1 + S2 + S3 + S4 + S5 + S6 + S7 || geno) diag(site):id(geno) Dt×t ⊗ It

The diagonal model assumes that genotype-by-site effects are uncorrelated
across sites for the same genotype. However, a more realistic assumption is to
assume that these effects are correlated, thus allowing for different correlation of
genotype effects between pair of sites, i.e. we assume that Σs is an unstructured
covariance matrix. The specification of such model for lmer and asreml is shown
in Fig. 4.

A even more realistic model may consider including site-specific random row
or column effects, and assuming an AR1×AR1 process for the error covariance at
each site as in Sect. 4.2. These are easily included in asreml using the at function
within the symbolic model formulae. For example, the inclusion of random row
effect at site S1 only and AR1×AR1 processes for the error covariance at each
site is shown below.

The above model cannot be specified using lmer.

5 Discussion

In fitting statistical models, the user may not necessary understand the full intri-
cacies of model fitting process. However, it is essential that the user understands
how to specify the model that they wish to fit and the interpretation from the
fit. Symbolic model formulae is a way of bridging the gap between software and
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Fig. 4. Depiction of the fit of a simplified LMM for the analysis of the MET data. In
modelling the site-by-gen random effect, the variance structure are specified differently
using lmer and asreml, where latter shows resemblances of covariance structure written
mathematically and when all random effects are vectorised and concatenated, while the
former requires some additional computation.

mathematical representation of the model, and has been extensively employed
in R for this purpose.

In this article, we have extensively compared two widely used LMM R-
packages with contrasting model specification in functions: lmer and asreml.
Both of these functions use symbolic model formulae to specify the model with
lmer taking a more hierarchical approach to random effects specification, while
asreml focuses on the covariance structure of the vectorised random effects (and
the data for the matter). There are strength and weakness in both approaches
as we discuss next.

It is clear from Sect. 4.1 that a random intercept and random slope model is
verbose using the symbolic model formulae of asreml. Specifically, the random
effect symbolic formula contains a function str that takes input of two other
formula: the first input specifying the random effects, and second input specifying
the covariance structure of the vectorised form of random effects specified in
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the first input. The second input also requires the dimension(s) of covariance
structure as input. These number may need manual update when the data is
subsequently updated, thus making this symbolic model formula clumsy to use.

On the other hand, the flexibility of asreml is evident in Sects. 4.2 and 4.3,
where the LMMs fitted are less easy to pose hierarchically, but the vectorised
version of the LMM remains straightforward provided one knows how to estab-
lish the set up the structure of the covariance matrices. Put another way, the vast
set of in-built pre-defined covariance structures in asreml (e.g. scaled identity,
diagonal structure, unstructured, autoregressive process), along with the capac-
ity to modify the error covariance structure and incorporate separable structures
makes the model specification embedded in asreml a superior choice here. There
are many more pre-defined covariance structures not demonstrated in this paper,
and interested readers may refer to Butler et al.(2009), (2018). By contrast, the
lack of flexibility in lme4 means that either a more obtuse workaround is required
or the precise LMM can not be formulated at all.

That being said, the Bürkner (2017), (2018) (brms) make extensive discussion
of symbolic model formula and extends on the framework built on lme4. The
brms model formulae resembles lme4 and many symbolic model formulae in our
examples will be similar. The brms R-package uses a Bayesian approach to fit its
models and model specification require further discussion on specifying priors.
These discussions are left for future review, although we acknowledge that such
extensions may well resolve some of the current limitations of lme4 and bridge
its gap in flexibility with asreml.

Symbolic model formulae in R is widely used and frameworks to specify mixed
models by lme4 and asreml (version 3) used for many years. This makes dras-
tic changes difficult for these frameworks. Based on our review, we argue that
ideally any new framework for symbolic model formulae should require inter-
cepts to be specified explicitly. As discussed in Sect. 2.3, the default inclusion
or explicit removal of intercepts removes the resemblance of symbolic model
formulae to the model equation. Currently, the implicit inclusion of intercepts
makes certain model formulation unclear and inconsistent across different LMM
specifications, e.g. (Time | Chick) in lmer includes random intercept (and
slope) for Chick, but the equivalent formulation str(~Chick + Chick:Time,

~diag(2):id(50)) in asreml does not include the random intercept.
There is a trade-off between different types of symbolic model formulae: lmer

syntax is no doubt less flexible and may be less intuitive to some, however, with
a degree of familiarity pertains as a higher level language for symbolic model for-
mula. For many hierarchical models, the formulation is more elegant and simpler
than asreml. However, asreml is more flexible to specify variety of covariance
matrices. This strength is predicated on having a deeper understanding of ran-
dom effects and its covariance structure, and promotes the view of the LMM in
a fully vectorised form.

Acknowledgement. This paper benefited from twitter conversation with Thomas
Lumley. This paper is made using R Markdown (Xie et al. 2018). Huge thanks goes
to the teams behind lme4 and asreml R-packages that make fitting of general LMMs
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Abstract. Computational tools for data analysis are being released
daily on repositories such as the Comprehensive R Archive Network.
How we integrate these tools to solve a problem in research is increasingly
complex and requiring frequent updates. To mitigate these Kafkaesque
computational challenges in research, this manuscript proposes toolchain
walkthrough, an opinionated documentation of a scientific workflow. As a
practical complement to our proof-based argument (Gray and Marwick,
arXiv, 2019) for reproducible data analysis, here we focus on the practi-
cality of setting up reproducible research compendia, with unit tests, as
a measure of code::proof, confidence in computational algorithms.

Keywords: Metaresearch · Metaprogramming · Statistical computing

1 The Kafkaesque Dystopia of DevOps

In Franz Kafka’s 1925 novel The Trial [14], the fictional character Josef K. is
prosecuted for crimes that are not clear, in proceedings brought forth by an
unidentified authority. For the diligent scientist attempting to answer a mathe-
matical question computationally, such as measuring the efficacy of a statistical
estimator via simulation, the process of implementing a scientific workflow to
achieve this aim can be a Kafkaesque tour of computational tools and systems.
The scientist may feel as if they are locked in a dystopia, tested repeatedly for
practices in which they have not been trained, such as shell scripts and compu-
tational architecture. Whilst there are detailed guides for specific computational
tools, it is hard to tell what is still relevant, as code frequently slides into obso-
lescence [22], and identify the optimal place to begin [34]. Significant cultural

1 Stack Overflow (https://stackoverflow.com/) is forum for asking tightly scoped pro-
gramming questions.
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barriers continue to exist in programming fora; for example, only one in seven-
teen contributors to Stack Overflow1 identify as women [6].

For many an unfortunate scientist, the dystopian experience is not confined
to the DevOps, the developmental operations of preparation for the implementa-
tion of an algorithm [13]. Just as Josef K. was tried multiple times, the labours
of the scientist attempting to answer a mathematical question computationally
have only just begun. Analogous to how a string will knot with mathematical
predictability when jostled [2], an algorithm will reliably require debugging, the
process of identifying and correcting code, either to incorporate a new feature, or
to correct an error. This scientist finds themselves part of the first generation of
research software engineers (RSEs), who use computational tools in discipline-
specific research practices [35]. By virtue of pioneering, RSEs are inadvertently
cast as metaresearchers2, developing new methodologies for scientific technolo-
gies that hitherto did not exist [15]. With the aim of mitigating the dystopia
of DevOps and debugging for RSEs, this manuscript proposes a toolchain walk-
through, an opinionated [21] documentation of a scientific workflow, towards a
measure of code::proof, a good enough [34] effort to provide computational
confidence through reproducible research compendia with unit tests.

2 Toolchain Walkthrough

We define a toolchain as a collection of computational tools and commands that
forms a scientific workflow to achieve a specific research objective, such as test the
efficacy of a statistical estimator in a particular context. The term walkthrough,
we borrow from video game terminology [5], and is defined as a guide for other
players of the game. Various walkthrough formats exist to optimise the narrative
enjoyment of the gamer. For example, the Universal Hint System [26] interface
provides the gamer with ever more revealing hints without spoiling other parts
of the game. Next generation walkthroughs see in-game modifiers, in games such
as World of Warcraft, where these provide an option for on-screen boss-specific
warnings [25].

We define toolchain walkthrough as an opinionated [21] documentation of
a scientific workflow, where opinionated is a term appropriated from software
engineering that acknowledges that software guides the user to certain choices.
In this manuscript, we describe a workflow for building a research compendium
that is opinionated in privileging reproducibility. As with the hint systems of
gaming, a workflow can and must be tailored to the skill and background of the

2 Visit the discussion on metaresearch and RSEs on the research compendium associ-
ated with this manuscript as an example of why this paper, and its companion [8],
have so many acknowledgements. Canonical literature is not yet established in the
field of RSE, and thus leaders of RSE projects, such as Alex Hayes’ maintenance of
the broom:: [23]. This has propelled Hayes rapidly to the level of expert, by virtue of
the pioneering collaborative structure of the package, where hundreds of statistical
modellers contribute integrated code.

https://stackoverflow.com/
https://github.com/softloud/codeproof/issues/2
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user. Thus toolchain walkthroughs can be extended and adapted for different
disciplines.

Toolchain walkthroughs have not only intrinsic value in terms of solving
the intended research problem, but also extrinsic value, pedagogically and from
a developmental perspective. Frequently those who are undertaking research
software engineering on statistical projects are not the most senior member of the
team; in the case of university faculty, these are often also lecturers and service
teachers. There is value in seeing the minutiae of what the footsoldiers of research
development undertake and how they instruct others. This can inform as to what
skillsets are required in graduate courses, or are required for those who wish to
optimise scientific workflow for researchers. Much of what is being implemented
right now, in workflows recommended in texts3 such as R Packages [29] and
Advanced R [30], is being adopted from existing software engineering principles.
Toolchain walkthroughs can contribute to the literature on the adoption of these
procedures in a research context, in addition to programming fora and blog posts.

Blog posts and programming fora, as well as printed texts, are inevitably
bound for obsolescence [22]. Vignettes, tool-specific long-form documenta-
tion [29], focus on one tool in the chain. As a counterpoint to the inadvertently
implied redundancy of the academic manuscript in the theoretical companion
manuscript [8], here we consider if the ephemerality of most-recent publications,
and the chronological nature of academic publishing, may serve the breakneck
speed of research development. The toolchain walkthrough provides a documen-
tation of a specific scientific workflow constructed by an expert, or expert in
training, in the field. Indeed an expert in training is perhaps best placed, as by
virtue of inexperience must research in order to solve the problem. The challenge
above, say, the standard one might expect from a blog post, is to provide a good
enough4 [34] effort to avoid questionable research practices [7] that privilege,
say, convention over optimal scientific methodology.

3 Two Research Compendia Case Studies

For concrete examples of the benefits of adopting software research engineer-
ing principals in mathematical science, we consider two in-development research
compendia, varameta:: and simeta::. The primary purpose of these packages
is to provide a comparative analysis of estimators for the variance of the sample
median when quartiles are provided, rather than a measure of standard devi-
ation, within the meta-analytic context. However, by structuring the packages
as such, rather than within a single script file, there is scope for solving similar
problems.

3 As in the companion manuscript [8], we focus on R packages, but the reader is invited
to consider these as examples rather than definitive guidance. The same arguments
hold for other languages, such as Python, and associated tools.

4 As opposed to ofttimes unattainable or impractical best practices [33] in scientific
computing.
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3.1 The varameta:: Package; a Comparative Analysis

In contemporary meta-analytic computational tools, such as the R package
metafor:: [27], a measure of both an effect and its variance are required to
estimate the population parameters of interest.

However, not all studies report a variance of effect; particularly when scien-
tists suspect an underlying asymmetry in the distribution of the observed data,
prompting them to report quartiles, rather than sample standard deviations.
One solution to this is to approximate estimators for mean and variance from
quartiles [3,12,28]. We wish to explore the comparative efficacy of an estimator
for the variance of the sample median derived from the estimator of [24]:

var(m) ≈ 1
4nf(ν)2

where m denotes the sample median, n the sample size, ν the population median,
and f the population probability density function.

However, in an experimental setting, we do not know the true distribution,
nor the true population median. Thu, our method proposes that we assume
a distribution, and estimate the parameters of that characterized the assumed
distribution from the sample size and sample quartiles. We provide estimators
derived for different distributions, to assess the efficacy of this analysis frame-
work. One of which is the exponential distribution, which this manuscript will
focus on.

If we assume that f is an exponential probability density function, with
unknown rate parameter λ, then we can estimate this rate parameter via the
sample median. Since the true median is given by log 2/λ, we can estimate the
rate parameter,

λ ≈ log 2/m, (1)

via the sample median, m.
Each proposed estimator requires a different set of reported values as inputs

and different calculations. It is notable that a most optimal estimation method
for the problem above is generally unknown. For example, in the comparative
analysis Wan et al. [28], it was shown that the performance of different estimators
varied with the simulated sample sizes.

Thus, there is merit to providing not only the practical functionality
of our proposed solution, but also the existing solutions. By structuring
this comparative analysis as a reproducible research compendium we achieve
practical improvements on a self-contained computational script file. Via
roxygen::ised [32] documentation, estimators are provided in a modular fash-
ion, with a devoted script file for each estimator that is easily sourced from
the package environment. In addition to the advantage of debugging a single
script file, the comparative analysis also serves a practical purpose, providing a
characterisation of the functionality of each estimator.
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To compare these estimators for the variance of the sample median, we under-
took coverage probability simulations. Here, the coverage probability refers to the
probability that the true parameter of interest falls within its constructed confi-
dence interval. In order to do so, we require simulated meta-analytic data, which
has the added complexity of a random effect that governs the variation between
studies. To solve this with confidence in the implementation of computational
algorithms and mathematical derivations, we structure this as a package. In
addition to building code::proof, by separating the simulation component, we
begin to develop a computational solution to not only solving this problem, but
the testing of any estimator for the variance of the sample mean or median.

3.2 The simeta:: Package

A coverage probability simulation repeats several trials with the same simulation
meta-parameters where the differing factor is the random sampling of data. In
order to separate simulation meta-parameters from trial-level parameters, and
delineate this algorithm, we begin by considering a single trial from a standard
coverage probability simulation.

3.3 Coverage Probability Simulation

Each trial draws a random sample, for example rnorm(n = 100, mean = 3, sd
= 0.2) will produce 100 values drawn randomly from a normal distribution with
mean 3 and standard deviation 0.2. From this sample, we calculate summary
statistics. Using these summary statistics, we can compute an estimate of the
parameter of interest ν̂, and its variance γ̂. With these estimates, we can produce
a (1 − α) × 100% confidence interval ν̂ ± z1−α/2

√
γ̂, where za = Φ−1 (a) is the

ath quantile of the standard normal distribution, and Φ is the standard normal
distribution function. Given we set the parameters for the random sample drawn,
we know the true parameter, ν. Thus we can ask, does ν fall within the confidence
interval produced? We summarise the steps of a trial as an algorithm:

1. Draw a random sample from the distribution that is characterised by the
parameter of interest, ν;

2. Calculate summary statistics from the random sample;
3. Calculate an estimate of ν from the summary statistics;
4. Construct a confidence interval using the parameter estimate;
5. Check if ν falls within the confidence interval.

A coverage probability simulation performs multiple trials and returns the
proportion p ∈ [0, 1] of confidence intervals for ν that contain the generative
parameter value.
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3.4 Simulating Meta-analysis Data

For a meta-analysis simulation, however, these steps are significantly more
involved. And with this complexity, as we shall see, nesting, of the algorithm, the
advantages of the package structure begin to become apparent. In a single script
file, it is hard to find at which step of the algorithm that the code has failed. In
addition to human error introduced into code, there are also practical consid-
erations. For example, the random effects maximum likelihood model, method
= REML, employed by metafor::rma [27] does not always converge on estimates
for the effect and its variance, in which case a fixed effects model, method = FE,
can be employed to produce parameter estimates.

The other point of complexity is in the sampling of meta-analytic data. As
meta-analytic data is a collection of summary statistics for K studies of control
and intervention samples, the first step of a coverage probability simulation trial,

1. Draw a random sample from the distribution that is characterised by the
parameter of interest, ν,

requires several substeps. For the kth (k ∈ {1, . . . , K}) study, we assume there
is variation γk associated with that study, and, in particular, the control, with
parameter νC

k , and intervention, with parameter νI
k , samples with ratio, ρ =

νC
k /νI

k .
Let us consider a practical example from the estimators provided in the

comparative analysis, varameta::. Our estimator of interest is the variance of
the log-ratio of sample medians for control, νC , and intervention, νI groups. Since
our focus is on building the research compendium to undertake this analysis,
rather than the estimators in question, we will take the simplest case, where
there is one parameter λ associated with the distribution of interest. Let us
assume an underlying exponential distribution: Exponential(λ).

At the simulation level, which is to say, across all trials, we set λ, the param-
eter of the distribution of interest. Also at the simulation level, we define a
ratio ρ := νC/νI of interest for the population medians, where ρ = 1 would
indicate no true difference between control and intervention groups. We assume
that the log-ratio of sample medians log(mI

k/mC
k ) for the kth study, can be

characterised in terms of the log-ratio of populations medians log(νC/νI), with
some error γ ∼ N(0, τ2) association with that study, as well as sampling error,
ε ∼ N(0, σ2),

log(mI
k/mC

k ) = log(νI/νC) + γk + εk.

Since the underlying distribution is exponential, we need to find λJ
k for J ∈

{C, I} in order to sample n values x1, . . . , xn ∼ Exponential(λJ
k ). We also know

the median of the exponential distribution with rate parameter λ is given by
log 2/λ. Then, assuming the sampling error will be attained through the random
computational process, we have
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log(mI
k/mC

k ) = log(νI/νC) + γk

=⇒ log(λC
k ) − log(λI

k) = log(λC) − log(λI) + γk

=⇒ log(λC
k ) − log(λI

k) = (log(λC) + γk/2) − (log(λI
k) − γk/2)

If we then split the random effect associated with the variation between
studies γk equally, and divide the terms by experimental group J ∈ {C, I}, we
obtain the following system for the control C and intervention I groups’ kth
parameter, λJ

k .

λC
k = λC exp(γk/2)

λI
k = λI exp(−γk/2)

1. Draw a measure of variation for the kth study from N(0, τ2) and calculate
λI from fixed values, the ratio of medians, ρ, and the control group’s rate
parameter λC ;

2. Calculate the rate parameters for the control, λC
k , and intervention, λI

k, groups
for the kth study;

3. Draw a random samples of size nJ
k from Exponential(λJ

k ), for J ∈ {C, I}.

The sample size nJ
k for the Jth group of the kth study can also be sam-

pled, by assuming Nk := nC
k + nI

k and drawing Nk from a uniform distribution
Uniform(a, b), where the minimum a, and maximum b, reflect knowledge about
the domain of interest. The proportion of Nk given to nI

k can be drawn from a
beta distribution. But we shall omit the derivations of these sampling distribu-
tions, in the interests of brevity.

In the sampling steps that have been outlined, there are random values
drawn, but there are also set simulation-level parameters. We may wish to
see how our estimator performs for different numbers of studies, K, different
expected variability between the studies, τ2, and whether or not there is a dif-
ference between the control and intervention groups, ρ.

And finally, if we consider other distributions, with a mix of symmetric, say,
normal or Cauchy distribution, and asymmetric, say, exponential or log-normal,
we require different derivations for the sampling parameters.

3.5 Complexity and Formalised Analysis Structures

Via the modular nature of a research compendium R package, we can separate
each layer of the algorithm into functions. We can produce automated unit tests
for these functions that, at the very least, check that each component of the
algorithm returns an output of expected type. We cannot automate the math-
ematical derivations, but we can produce an algorithm structure that provides
far more computational confidence in implementation than a single script file in
which the entire algorithm is nested.

However, structuring an analyses in research compendia is more challenging
than simply coding directly into a .R script. Thus, there is benefit to outlining
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the computational workflow. We now turn to the practical toolchain walkthrough
for establishing these analyses as research compendia. We may not be able to
prepare for all errors, but we can aim to weather most problems that arise in
the computational implementation of mathematical algorithms.

4 Research Compendia Toolchain Walkthrough

We now aim to provide a practical guide to computational research compen-
dia for the comparative analysis, varameta::, and the simulation algorithm,
simeta::, that supports it. As this is a first effort at a toolchain walkthrough,
there will likely be aspects that are overlooked or underdeveloped.

4.1 DevOps

The DevOps section of this toolchain walkthrough aims to cover computational
tools, why they were chosen, as well as some guidance as to how to source them.

Intended Audience. A toolchain walkthrough is a documentation of a specific
scientific workflow created by a scientist who utilised this workflow for research.
We begin by identifying the audience targeted who may benefit from detailing
the minutiae of this process. We do not seek to generalise, but rather to provide
a workflow that reflects the author’s knowledge of good enough practices in
scientific computing for this task, optimised for efficiency, scientific rigour, and,
in the spirit of the gaming walkthrough: fun.

This toolchain walkthrough assumes an R user whose expertise is not pri-
marily in computing, but rather a researcher who employs R for analysis in a
discipline such as statistics, psychology, archaeology, or ecology. We make an
effort to cover some of the less familiar aspects of computational workflow, such
as shell commands, that might be considered trivial to a formally trained com-
puter scientist.

Although many R users have gaps in their formal computational science
education, researchers who utilise R are often implementing complex algorithms,
such as the one outlined in Sect. 3.2, which describes the simulation of meta-
analysis data for coverage probability simulation.

Burn It Down. This section only applies for work that has already begun.
However, this is often the case for the development of a scientific project. We
frequently have work that begin as small scripts, that develop in complexity and
requirements.

In recognition of the ofttimes overwhelming density of resources, we list a few
bash shell commands here that are particularly useful for moving files around
when setting up an analysis as a research compendium. We enclose user input
in <> and describe the utility of the command after #. A directory is colloquially
referred to as a folder. These can be executed from a terminal.
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. # here

.. # up one
cd <directory path> # change location of .
ls -a # list files in .
cp <file> <toplace> # copy
mv <file> <toplace> # move or rename
rm -rf <directory> # remove directory and its contents
locate <partoffilename> # find a file
mkdir <directory> # create a directory

How to Code. The R software environment can be downloaded from
R: The R Project for Statistical Computing. There are several excellent res-
ources for getting started with programming with R. We list an opinionated
selection here, chosen for clarity and enjoyment, all of which are freely available
online:

– Learning Statistics with R by Danielle Navarro [20],
– R for Data Science by Grolemund Garrett and Hadley Wickham [9],
– R Cookbook by J.D. Long and Paul Teetor [17].

We now assume a working knowledge of the R programming language, as the
intended audience of this toolchain workflow are researchers who have a working
level of programming proficiency in R.

Where to Code. In this toolchain walkthrough, we emphasise cross-platform
open-source software. There is, of course, the immediate benefit of accessibility.
Furthermore, open-source invites an evolutionary development community where
many can contribute small solutions that integrate to solve larger problems.
RStudio is an integrated development environment for writing in the statistical
language R. RStudio is cross-platform in that it can be installed on Windows,
Macintosh, and Linux operating systems. There are many further advantages
to this widely-used environment. For example, the citr:: add-in [1] modifies
RStudio to enable a connection to the open-source reference manager Zotero.
Another example is the datapasta:: [19] add-in that enables copy-paste of
tables into R-formatted script.

4.2 Create Compendium Architecture

As varameta:: is a research compendium containing comparative analyses and
simeta:: a package to provide simulation tools, the creation process for these
two compendia are different.

We make use of two R packages, rrtools:: [18] and usethis:: [31], to assist
in automating these tasks.

https://www.r-project.org/
https://learningstatisticswithr.com/
https://r4ds.had.co.nz/
https://rc2e.com/
https://www.rstudio.com/
https://www.r-project.org/
https://www.zotero.org/
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Compendiumise varameta::.

1. Open RStudio and close project via the toolbar File menu,
2. In the Console, set the working directory to desired location; e.g.,

> getwd()
[1] "/home/charles"
> setwd("Documents/repos/")
> getwd()
[1] "/home/charles/Documents/repos",

3. and rrtools::use compendium("varameta"),
4. and update DESCRIPTION file with author, title, etc.,
5. Create analysis file structure with rrtools::use analysis().

For varameta::, we will have several reproducible documents that will form
the basis of the analysis, as well as figures to contribute to the associated publi-
cation. The final step above automates the creation of a directory structure for
a paper, figures, data, and templates.

Compendiumise simeta::. In this case, the file structure is less involved,
however the testing structure will be need to be considerably more robust because
of the complexity of the simulation algorithm described in Sect. 3.2:

1. Create a package with usethis::create package(),
2. Switch to the package directory with usethis::project activate().

4.3 Common Steps Across both Packages

1. Set open source licence, with

usethis::use mit license(name = "Charles Gray");

this ‘simple and permissive’ choice of licence [31] serves the purpose of a
comparative analysis of estimators,

2. Set up documentation for functions with usethis::use roxygen md(),
3. Set up data for internal datasets and examples with usethis::use data().

Connecting to GitHub. There are benefits to implementing a version con-
trol system, such as via the Git language and GitHub online repository archive,
beyond the ability to trace work back to an earlier iteration [4]. The added ben-
efit, arguably even greater benefit, is that of collaborative science. Storing work
on GitHub allows for instantaneous sharing of code and analyses, and collabora-
tive work with advanced project planning features, enabling other scientists to
make very specific comments on work in progress.
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Data Ethics and Further Considerations. In the case of varameta::’s esti-
mators for meta-analysing medians, and simeta:: for simulating meta-analysis
estimators, there are no ethics in data considerations beyond ensuring contribu-
tors are recognised and credited for their work by time of publication. For some
disciplines, sharing geographic locations might be an ethical consideration, say,
in preventing fossil hunters from exploiting palaeontology sites [11]. Personal
details, must, too be considered, that might inadvertently identify people and
violate privacy considerations. Furthermore, various allowances might need to
be made for institutional workflow. We note these here as a possible considera-
tions, but as our case studies do not have such requirements, we now consider
our research compendia instantiated.

However, as this algorithm has significant complexity, we need to include
unit tests to provide confidence in our results, as we argue in the companion
computational metamathematics manuscript [8], which motivates the practical
steps laid out here.

5 Testing

We now expand in a practical sense on unit testing, which, in the theoretical
companion manuscript, we describe ‘the software engineering tool that provides
a key piece of the correspondence between scientific claim and programming’ [8].
It is in this manuscript that we sought to answer the question: why test? In this
toolchain walkthrough, we will focus on the practical implementation of first
unit tests.

5.1 What Is a Test?

Tests are collected in contexts. Each test comprises congruous expectation func-
tions.

In the head of the ‘bug hunt’ context (under context("bug hunt")), we find
the loading of packages. A seed is then set for reproducibility of errors. The first
test, "metasim runs for different n", tests the simeta::metasim() func-
tion for different orders of magnitude of trials. As each trial samples new
data, this is the most direct way to test the scalability of the function for large
datasets. We then follow up with a test that checks that the exponential distri-
bution can be passed to all levels in the algorithm.

context("bug hunt")

set.seed(38)
library(tidyverse)
library(metasim)

test_that("metasim runs for different n", {
expect_is(metasim(), ’data.frame’)
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expect_is(metasim(trials = 100) , "data.frame")
# expect_is(metasim(trials = 1000) , "data.frame")

})

test_that("exponential is parsed throughout", {

# check sample
expect_equal(
sim_sample(10, rdist = "exp",

par = list(rate = 3)) %>% length, 10)
# check samples
...

5.2 Non-empty Thing of Expected Type

Simply asking ‘does a function produce the expected output? ’, induces a surprising
number of considerations. To illustrate this, we return to our case studies.

Testing a Collection of Estimators in varameta::. In the interests of math-
ematical and computational brevity, we focus on one distributional example: the
simple case of the exponential distribution, which is characterised by a single
parameter. We return to the estimator of the rate λ̂ := log 2/m derived for the
exponential distribution, as discussed in Sect. 3.4 and defined in Equation (1),
explicitly coded in R.

function(n, median) {

# Estimate parameters.
lambda <- log(2) / median

# Approximate the standard error of the sample median.
1 / (2 * sqrt(n) * dexp(median, rate = lambda))

}

We create a context file, tests/testthat/test-exponential.R and provide
a short context description in the first line of the script.

context("exponential estimator")

As a starting point, we can write unit tests to automate a check that this
function returns non-empty thing of expected type. We arbitrarily choose values,
a sample size of 10, and a proposed sample median of 4, for instance. The function
should return a numeric double value, and should be positive.
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test_that("non-empty thing of expected type, for fixed values", {

# returns numeric

expect_type(g_exp(10, 4), "double")

# returns positive number

expect_gt(g_exp(10, 4), 0)

})

In addition to choosing explicit values, we can also randomly sample the
sample size n, and sample median m. To ensure reproducibility of these testing
results on any machine, we set a random seed, passing set.seed an arbitrary
numeric value.

set.seed(39) # ensures reproducibility of test results

# sample fuzz testing parameters
n <- sample(seq(2, 100), 1)
m <- runif(1, 1, 100)

We can then use these random fuzz values [16] to produce analogous unit
tests for non-empty thing of expected type.

test_that("non-empty thing of expected type, for random values", {
expect_type(g_exp(n, m), "double")
expect_gt(g_exp(n, m), 0)

})

We can extend these tests to cover expected input errors. For example, we
wish this function to fail when passed negative numbers. The sample size cannot
be less than or equal to 0, and due to the logarithm, the function only works for
positive sample medians. Here, we include the fixed and randomised values in
the same test.

test_that("negative numbers throw an error", {
expect_error(g_exp(-3, 4))
expect_error(g_exp(3, -4))
# with fuzz testing
expect_error(g_exp(-n, m))
expect_error(g_exp(n, -m))

})

Running all tests in a context tells us if the function is behaving as expected.
The more tests we write, the more confidence we will have that our function
behaves as we intended it to.
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==> Testing R file using ’testthat’

Loading varameta
| OK F W S | Context
| 8 | exponential estimator

Results
OK: 8
Failed: 0
Warnings: 0
Skipped: 0

Test complete

There is a tradeoff with tests, in terms of time taken by updating the tests
themselves. Here a test requires updating from an expected output of a numeric
vector, to a dataframe. The function that is being tested.

==> Testing R file using ’testthat’

Loading simeta
| OK F W S | Context
| 6 1 | bug hunt [7.1 s]

test-bug-hunt.R:21: failure: exponential is parsed throughout
sim_stats(rdist = "exp", par = list(rate = 3)) inherits from
‘tbl_df/tbl/data.frame‘ not ‘numeric‘.

Results
Duration: 7.1 s

OK: 6
Failed: 1
Warnings: 0
Skipped: 0

Test complete

Testing a Nested Algorithm in simeta::. Our other case study provides
an example of a nested algorithm. In addition to ensuring each function returns
a non-empty thing of expected type, we can automate checks that the functions
form a toolchain. In the first place, it is helpful to know that our functions
continue to form a toolchain under default settings.

We begin by setting our context. In this case, as we are running our functions
on default settings, we do not require randomly sampled fuzz parmeters.
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context("default pipeline")

We now check that the algorithm runs ‘upwards’, by running a test from most
granular function in the algorithm to most nested. We could write a similiarly
inverted test, from most nested function, downwards to most granular.

test_that("work upwards through algorithm", {
expect_is(sim_n(), "data.frame")
expect_gt(sim_n() %>% nrow(), 1)
# sim_df calls sim_n
expect_is(sim_df(), "data.frame")
expect_is(sim_stats(), "data.frame")
# metasim calls metatrial
expect_is(metatrial(), "data.frame")
expect_is(singletrial(), "data.frame") # alternate trial
expect_is(metasim(trials = 3), "data.frame")
# metasims calls sim_df & metasim
expect_is(metasims(

single_study = FALSE,
trials = 3,
progress = FALSE

),
"sim_ma")

})

Now, if this test fails, we will know the combination of functions fails at some
point in the nested algorithm. We follow this upwards test with a series of small
tests for each function set to defaults to identify at which point in the pipeline
where the algorithm fails, if the ‘work upwards’ test fails.

# test each component on defaults

test_that("sim_n", {
expect_is(sim_n(), "data.frame")

})

test_that("sim_df", {
expect_is(sim_df(), "data.frame")

})

test_that("metatrial", {
# metasim calls metatrial
expect_is(metatrial(), "data.frame")

})

test_that("singletrial", {
expect_is(singletrial(), "data.frame") # alternate trial
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})

test_that("metasim", {
expect_is(metasim(trials = 3), "data.frame")

})

test_that("metasims", {
expect_is(metasims(

single_study = FALSE,
trials = 3,
progress = FALSE

),
"list")

})

And we can now run all tests, for a starting point of automating checks that
our algorithm runs on default settings.

==> Testing R file using ’testthat’

Loading simeta
| OK F W S | Context
| 14 | default pipeline [28.7 s]

Results
Duration: 28.7 s

OK: 14
Failed: 0
Warnings: 0
Skipped: 0

Test complete

To demonstrate how informative testing can be in identifying where an algo-
rithm breaks, we now modify the simeta::metasim function to return a char-
acter string, "error". Testing the default pipeline reveals where the algorithm
is broken. Debugging is where the advantage of testing is exposed, and thus,
arguably the requirement for testing increases with complexity of algorithm.
Detailed output have been omitted for brevity.
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==> Testing R file using ’testthat’

Loading simeta
| OK F W S | Context
| 10 4 | default pipeline [32.3 s]

test-default-pipeline.R:12: failure: work upwards through algorithm
metasim(trials = 3) inherits from ‘character‘ not ‘data.frame‘.

test-default-pipeline.R:14: error: work upwards through algorithm
Argument 1 must have names
...

test-default-pipeline.R:43: failure: metasim
metasim(trials = 3) inherits from ‘character‘ not ‘data.frame‘.

test-default-pipeline.R:47: error: metasims
Argument 1 must have names
...

Results
Duration: 32.3 s

OK: 10
Failed: 4
Warnings: 0
Skipped: 0

Test complete

From this output, we can see not only where the algorithm fails, but also
what other functions fail because of a reliance on the elements that have failed.

5.3 Test-Driven Development

As we build new features into our package, such as checking that the single-
trial setting works in the simulation function from simeta::, we can focus on
a writing new tests that ensure our feature works within the ecosystem of our
algorithm as expected. We can develop our algorithm from a testing setting,
rather than focusing on rewriting functions and script files.

Another overview check that we can incorporate is from the covr:: pack-
age [10]. Using covr::package coverage(), we can check what proportion of
lines of code have been tested in each function.

For the varmeta:: package, at the time of writing, we have the following test
coverage.
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varameta Coverage: 90.00%
R/g_cauchy.R: 44.44%
R/g_norm.R: 71.43%
R/hozo_se.R: 92.31%
R/bland_mean.R: 100.00%
R/bland_se.R: 100.00%
R/effect_se.R: 100.00%
R/g_exp.R: 100.00%
R/g_lnorm.R: 100.00%
R/hozo_mean.R: 100.00%
R/wan_mean_C1.R: 100.00%
R/wan_mean_C2.R: 100.00%
R/wan_mean_C3.R: 100.00%
R/wan_se_C1.R: 100.00%
R/wan_se_C2.R: 100.00%
R/wan_se_C3.R: 100.00%

This is enables us to target specific functions that may require further testing.
Testing lines of code is somewhat a blunt instrument, as we are not ensuring tests
for every combination of inputs. However, test coverage is still an informative
measure of software reliability. For example, here we see not all code in the g *
estimators have been checked.

These notes on testing are not intended to be comprehensive, but only aim to
give the user an starting point for the initialisation of summarising an analysis
in a reproducible research compendia, with an informative level of automated
checks. Given only one quarter of packages on the largest R package repository
CRAN have unit tests at all [8], it is arguable that there is much further scope
for discussion and development with respect to the adoption of automated tests
in reproducible research compendia.

6 Prepare for most weather conditions

Computational proof may be unachievable, however, a measure of code::proof
can be attained by structuring research compendia in a standardised repro-
ducible format, such as produced by rrtools:: [18]. Perhaps we cannot prove
our software in the traditional mathematical sense [8]. However, we could con-
sider building confidence in the mathematics that we implement computation-
ally, like waterproofing our shoes. If we step in a big enough puddle, our feet
are still going to get wet, but at least we have prepared to weather most of the
problems associated with the implementation of statistical algorithms.
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Abstract. Mixtures-of-Experts models and their maximum likelihood
estimation (MLE) via the EM algorithm have been thoroughly studied
in the statistics and machine learning literature. They are subject of a
growing investigation in the context of modeling with high-dimensional
predictors with regularized MLE. We examine MoE with Gaussian gat-
ing network, for clustering and regression, and propose an �1-regularized
MLE to encourage sparse models and deal with the high-dimensional
setting. We develop an EM-Lasso algorithm to perform parameter esti-
mation and utilize a BIC-like criterion to select the model parameters,
including the sparsity tuning hyperparameters. Experiments conducted
on simulated data show the good performance of the proposed regular-
ized MLE compared to the standard MLE with the EM algorithm.

Keywords: Mixtures-of-experts · Clustering · Feature selection · EM
algorithm · Lasso · High-dimensional data

1 Introduction

Mixture-of-experts (MoE), originally introduced in [12,13], form a class of condi-
tional mixture models [16] for modeling, clustering and prediction in the presence
of heterogeneous data. Their construction rely on conditional mixture models
[16] in which both the gating network, formed by the mixing proportions, and
the experts network formed by the mixture components, depend on the pre-
dictors or the inputs. The most popular choices for the gating network are the
softmax gating functions [12] or the Gaussian gating functions; the latter is a
particular case of the exponential family gating functions introduced in [24].

Different choices are now common for the expert network model, depend-
ing on the type of the observed responses. For instance, a model for normal
observations for regression and clustering was introduced in [5] or non-normally
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distributed expert models like in [1] to deal with skewed data distributions [3],
to ensure robustness to outliers [2,19], or to accommodate both skewness and
robustness as in [4]. A detailed review on MoE models can be found in [17].

Fitting MoE is generally performed by maximum-likelihood estimation
(MLE) via the EM algorithm or its variants [8,15]. In a high-dimensional setting,
the regularization of the MLE, to perform parameter estimation under a spar-
sity hypothesis and hence to simultaneously perform feature selection, has been
studied in [14] and more recently in [7,11]. These approaches consider �1 and
�2 penalties for the log-likelihood function, and are constructed upon softmax
gating functions.

In this paper, we consider MoE with Gaussian gated functions, and pro-
pose an �1-regularized MLE via and EM-Lasso algorithm. We study the perfor-
mance of the proposal on an experimental setup. The remainder of this paper
is organized as follows. Section 2 describes the MoE modeling framework, and
the Gaussian-gated MoE and its MLE with the EM algorithm. Then, Sect. 3
presents the proposed regularized MLE and the EM-Lasso algorithm. Finally,
Sect. 4 is dedicated to numerical experiments.

2 Gaussian-Gated Mixture-of-Experts

2.1 MoE Modeling Framework

We consider mixtures-of-experts model to relate a high-dimensional predictor
X ∈ R

p to a response Y ∈ R
d, potentially multivariate d ≥ 1. We assume

that the pair (X,Y ) is generated from a heterogeneous population governed
by a hidden structure represented by a latent categorical variable Z ∈ [K] =
{1, . . . , K}. Assume that we observe a random sample {(Xi,Yi)}i=1,...,n of n
independently and identically distributed (i.i.d) pairs (Xi,Yi) from (X,Y ), and
let D = ((x1,y1), . . . , (xn,yn)) be an observed data sample. Assume that the
pair (X,Y ) follows a MoE distribution, then the MoE model can be defined as

f(yi|xi;Ψ) =
K∑

k=1

gk(xi;w)f(yi|xi;θk) (1)

where gk(x;w) = P(Z = k|X = x;w) is the distribution of the hidden variable
Z given the predictor x with parameters w, which represents the gating network,
and the conditional component densities f(y|x;θk) = f(yi|X = x, Z = k;θ)
represent the experts network whose parameters are θk.

2.2 Gaussian-Gated Mixture-of-Experts

Let us define by φm(v;m,C) = (2π)−m/2|C|−1/2 exp
(− 1

2 (v − m)�C−1(v − m)
)

the probability density function of a Gaussian random vector V of dimension
m with mean m and covariance matrix C. We consider mixture-of-experts for
clustering and regression of heterogeneous data. In this case, the mixture of
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Gaussian-gated experts models, we abbreviate as MoGGE, for multivariate real
responses, is defined by (1) where the experts are (multivariate) Gaussian regres-
sions, given by

f(yi|xi;θk) = φd(yi;ak + BT
k xi,Σk) (2)

and the gating network g(xi;w) is defined by Gaussian gating function of the
form:

gk(xi;w) =
P(Zi = k)f(xi|Zi = k;wk)

∑K
�=1 P(Zi = �)f(xi|Zi = �;w�)

=
αkφp(xi;μk,Rk)

∑K
�=1 α�φp(xi;μ�,R�)

(3)

with P(Zi = k) = αk, f(xi|Zi = k;w) = φp(xi;μk,Rk) (k = 1, . . . , K). This
Gaussian gating network was introduced in [24] to sidestep the need for a non-
linear optimization routine in the inner loop of the EM algorithm in the case of
a softmax function for the gating network. The MoGGE model is thus param-
eterized by the parameter vector Ψ = (wT ,θT )T where w = (wT

1 , . . . ,wT
K)T

is the parameter vector of the gating network and θ = (θT
1 , . . . ,θT

K)T is the
parameter vector of experts network, with wk = (αk,μT

k , vech(Rk)T )T and
θk = (aT

k ,BT
k , vech(Σk)T )T for k = 1, . . . , K. The approximation capabilities

of this model have been studied very recently in [18].

2.3 Maximum Likelihood Estimation via the EM Algorithm

Mixtures-of-experts of the form (1) with softmax gating functions are in general
estimated by maximizing the (conditional) log-likelihood

∑n
i=1 log f(yi|xi;Ψ)

by using the EM algorithm , in which the M-step requires an internal iterative
numerical optimization procedure (eg. a Newton-Raphson algorithm) to update
the softmax parameters. We follow the approach of estimating MoGGE in [24],
which relies on maximizing the joint loglikelihood, and in the MLE, the M-Step
can then be solved in a closed form. Indeed, based on Eqs. (1), (2), and (3), we
the MoGGE conditional density is given by:

f(yi|xi;Ψ) =
K∑

k=1

αkφp(xi;μk,Rk)
∑K

�=1 α�φp(xi;μ�,R�)
φd(yi;ak + BT

k xi,Σk)· (4)

Then we can write the joint density as:

f(yi,xi;Ψ) = f(xi;w)f(yi|xi;θ) =
K∑

k=1

P(Zi = k)f(xi;wk)f(yi|xi;θk)

=
K∑

k=1

αkφp(xi;μk,Rk)φd(yi;ak + BT
k xi,Σk)· (5)

The joint log-likelihood to be maximized by EM is therefore given by:

L(Ψ) =
n∑

i=1

log f(yi,xi;Ψ) =
n∑

i=1

log
K∑

k=1

αkφp(xi;μk,Rk)φd(yi;ak+BT
k xi,Σk)·

(6)
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2.4 The EM Algorithm for the MoGGE Model

The complete-data log-likelihood upon which the EM principle is constructed is
then defined by

Lc(Ψ) =
n∑

i=1

K∑

k=1

Zik log
[
αkφp(xi;μk,Rk)φd(yi;ak + BT

k xi,Σk)
]

(7)

where Zik being an indicator binary-valued variable such that Zik = 1 if Zi = k
(i.e., if the ith pair (xi,yi) is generated from the kth expert and Zik = 0 other-
wise. The EM algorithm, after starting with an initial solution Ψ (0), alternates
between the E- and the M- Steps until convergence (when there is no longer a
significant change in the log-likelihood (6)).

E-step: Compute the expectation of the complete-data log-likelihood (7), given
the observed data D and the current parameter vector estimate Ψ (q):

Q(Ψ ;Ψ (q)) = E

[
Lc(Ψ)|D;Ψ (q)

]

=
n∑

i=1

K∑

k=1

τ
(q)
ik log

[
αkφp(xi;μk,Rk)φd(yi;ak + BT

k xi,Σk)
]
, (8)

where:

τ
(q)
ik = P(Zi = k|yi, xi;Ψ

(q)) =
α
(q)
k φp(xi;μ

(q)
k ,R

(q)
k )φd(yi;a

(q)
k + B

(q)
k

T
xi,Σ

(q)
k )

f(xi, yi;Ψ (q))
,

(9)
is the posterior probability that the observed pair (xi,yi) is generated by the
kth expert. This step therefore only requires the computation of the posterior
component membership probabilities τ

(q)
ik (i = 1, . . . , n), for k = 1, . . . , K.

M-step: Calculate the parameter vector update Ψ (q+1) by maximizing the
Q-function (8), i.e, Ψ (q+1) = arg maxΨ Q(Ψ ;Ψ (q)). By decomposing the
Q−function (8) as

Q(Ψ ;Ψ (q)) =
K∑

k=1

Q(wk;Ψ (q)) + Q(θk;Ψ (q)) (10)

where

Q(wk;Ψ (q)) =
n∑

i=1

τ
(q)
ik log [αkφp(xi;μk,Rk)] (11)

and

Q(θk;Ψ (q)) =
n∑

i=1

τ
(q)
ik log φd(yi;ak + BT

k xi,Σk), (12)

the maximization can then be done by performing K separate maximizations
w.r.t the gating network parameters and the experts network parameters.
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Updating the Gating Networks’ Parameters: Maximizing (11) w.r.t wk’s cor-
responds to the M-Step of a Gaussian Mixture Model [16]. The closed-form
expressions for updating the parameters are given by:

α
(q+1)
k =

n∑

i=1

τ
(q)
ik

/
n, (13)

μ
(q+1)
k =

n∑

i=1

τ
(q)
ik xi

/ n∑

i=1

τ
(q)
ik , (14)

R(q+1)
k =

n∑

i=1

τ
(q)
ik (xi − μ

(q+1)
k )(xi − μ

(q+1)
k )T

/ n∑

i=1

τ
(q)
ik · (15)

Updating the Experts’ Network Parameters. Maximizing (12) w.r.t θk’s corre-
sponds to the M-Step of standard MoE with multivariate Gaussian regression
experts, see e.g [6]. The closed-form updating formulas are given by:

a
(q+1)
k =

n∑

i=1

τ
(q)
ik (yi − B

(q)
k

T
xi)

/ n∑

i=1

τ
(q)
ik , (16)

B
(q+1)
k =

[ n∑

i=1

τ
(q)
ik xix

T
i

]−1
n∑

i=1

τ
(q)
ik xi(yi − a

(q+1)
k )T , (17)

Σ
(q+1)
k =

n∑

i=1

τ
(q)
ik (yi − (a

(q+1)
k + B

(q+1)
k

T
xi))(yi − (a

(q+1)
k + B

(q+1)
k

T
xi))

T
/ n∑

i=1

τ
(q)
ik · (18)

However, in a high dimensional setting, MLE may be unstable or even unfeasi-
ble. One possible way to proceed in such a context is the regularization of the
objective function. In the context of MoE models, this has been studied namely
in [7,11,14] where �1 and �2 regularization for the log-likelihood function of the
standard MoE model with softmax gating network. This penalized MLE allow an
efficient estimation for simultaneous parameter estimation and feature selection.

3 Penalized Maximum Likelihood Parameter Estimation

Here we study the regularized estimation of the MoGGE model. We first consider
the case when d = 1 (univariate response yi). The expert densities are thus
defined by f(yi|xi;θk) = φ(yi;βk,0 + βT

k xi, σ
2
k) with θk = (βk,0,β

T
k , σ2

k)T .
In our proposed approach, rather than maximizing the joint log-likelihood

(6), we attempt to maximize its �1-regularized version, to encourage sparse mod-
els and to perform estimation and feature selection. The resulting penalized
log-likelihood can then be defined by:

L(Ψ) = L(Ψ) − Penλ,γ(Ψ) (19)

where L(Ψ) is the observed-data log-likelihood of Ψ defined by (6) and Penλ,γ(Ψ)
is a Lasso [22] regularization term encouraging sparsity for the expert network
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parameters and the gating network parameters, with λ and γ positive real values
representing tuning hyperparameters. For regularizing the expert parameters,
the penalty is naturally applied to the regression coefficient vectors βk. For
the gating network, since the estimates are those of a Gaussian mixture, we
then follow the strategy of feature selection in model-based clustering in [20]
in which we apply the penalty to the Gaussian mean vectors μk and assume
that the Gaussian covariance matrices of the gating network are diagonal, ie.
Rk = diag(ν2

1 , . . . , ν2
K). The penalty function is then given by:

Penλ,γ(Ψ) = λ

K∑

k=1

‖βk‖1 + γ

K∑

k=1

‖μk‖1· (20)

We now derive an EM-Lasso algorithm to maximize (19).

3.1 The EM-Lasso Algorithm for the MoGGE Model

Lets first define the penalized joint complete-data log-likelihood, which is given
by

Lc(Ψ) = Lc(Ψ) − Penλ,γ(Ψ) (21)

where Lc(Ψ) is the non-regularized joint complete-data log-likelihood defined
by (7). The EM-Lasso algorithm then alternates between the two following steps
until convergence (when there is no significant change in (19).

E-step. This step computes the expectation of the complete-data log-likelihood
(21), given the observed data D, using the current parameter vector Ψ (q):

Qλ,γ(Ψ ;Ψ (q)) = E

[
Lc(Ψ)|D;Ψ (q)

]
= Q(Ψ ;Ψ (q)) − Penλ,γ(Ψ) (22)

which only requires the computation of the posterior probabilities of component
membership τ

(q)
ik (i = 1, . . . , n), for each of the K experts as defined by (9).

M-step. This step updates the value of the parameter vector Ψ by maximizing
the Q-function (8) with respect to Ψ , that is, by computing the parameter vector
update Ψ (q+1) = arg maxΨ Qλ,γ(Ψ ;Ψ (q)). Now we have this decomposition

Qλ,γ(Ψ ;Ψ (q)) =
K∑

k=1

Qγ(wk;Ψ (q)) + Qλ(Ψk;Ψ (q)) (23)

and the maximization is performed by K separate maximizations of the penalized
Q-functions Qγ(wk;Ψ (q)) and Qλ(Ψk;Ψ (q)).
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Coordinate Ascent for Updating the Gating Network. Updating the gating net-
work parameters consists of maximizing w.r.t wk the following penalized Q-
function

Qγ(wk;Ψ) =
n∑

i=1

τ
(q)
ik log [αkφp(xi;μk,Rk)] − γ

p∑

j=1

|μk,j |

=
n∑

i=1

τ
(q)
ik log αk +

n∑

i=1

τ
(q)
ik log φp(xi;μk,Rk) − γ

p∑

j=1

|μk,j |·

It can be seen that the updates of the αk’s are unchanged compared to the
standard algorithm and are given by (13). For the mean vectors, updating the
coefficients μk,j corresponds to weighted version or and �1-regularized maximum
likelihood estimation a Gaussian mean; The coefficients μk,j can then be updated
in a cyclic way by using a Coordinate ascent algorithm until (24) is maximized.
Coordinate ascent (CA) [10, sect. 5.4] [9,23] is indeed an efficient way to solve
Lasso-regularization problems. For each coefficient index j = 1, . . . , p, it can be
easily shown that, after starting with the previous EM-Lasso estimate as initial
value, i.e, μ

(0,q)
kj = μ

(q)
kj , each iteration t of the CA algorithm updates are given

by the following updating formulas (see eg. [20]), written in a scalar and a vector
form:

μ
(t+1,q)
kj = sign(μ̃(q+1)

kj )

(
|μ̃(q+1)

kj | − γ
∑n

i=1 τ
(q)
ik

ν
2(q)
kj

)

+

= S
(

n∑

i=1

τ
(q)
ik xij ; γν

2(q)
kj

)/ n∑

i=1

τ
(q)
ik

= S
(
XT

j τ
(q)
k ; γν

2(q)
kj

)
/1T

nτ
(q)
k (24)

with, μ̃
(q+1)
kj =

∑n
i=1 τ

(q)
ik xij

/ ∑n
i=1 τ

(q)
ik is the usual non-regularized MLE

update for μk (Eq. (14)), Xj the jth column of X, 1n is a vector of ones of
size n, τ

(q)
k = (τ (q)

1k , . . . , τ
(q)
nk )T , and S(u; η) := sign(u)(|u| − η)+ is the soft-

thresholding operator with (.)+ = max{., 0}. The CA procedure is iterated until
no significant change in (24) is observed. We then take the update at convergence
of the CA algorithm, i.e μ

(q+1)
kj = μ

(t+1,q)
kj . Finally, the updates of the diagonal

elements of the co-variance matrices are given by:

ν
2(q+1)
kj =

n∑

i=1

τ
(q)
ik (xij − μ

(q+1)
kj )2

/ n∑

i=1

τ
(q)
ik · (25)

Coordinate Ascent for Updating the Experts Network. The maximization step
for updating the expert parameters θk consists of maximizing the function
Qλ(θk;Ψ (q)) given by:
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Qλ(θk;Ψ
(q)) = Q(Ψk;Ψ

(q))− λ

p∑

j=1

|βk,j |

= − 1

2σ2
k

n∑

i=1

τ
(q)
ik

(
yi − (βk,0 + βT

k xi)
)2

− n
(q)
k

2
log(2πσ2

k)− λ

p∑

j=1

|βk,j |·

Updating βk, for each component k, consists of solving an independent weighted
Lasso problem where the weights are the posterior component membership prob-
abilities τ

(q)
ik . Each of these weighted Lasso problems is then separately solved

by Coordinate Ascent. The CA algorithm, after starting from the previous EM-
Lasso estimate as initial values, i.e β

(0,q)
kj = β

(q)
kj , calculates, at each iteration t,

the following coordinate updates, until no significant change in (26):

β
(t+1,q)
kj = S

(
n∑

i=1

τ
(q)
ik r

(t,q)
ikj xij ;λσ

(q)2
k

)/ n∑

i=1

τ
(q)
ik x2

ij (26)

= S
(
XT

j W(q)
k r

(q)
kj ;λσ

(q)
k

2)
/(XT

j W(q)
k Xj), (27)

with r
(t,q)
ikj = yi−β

(q)
k0 −xT

i β
(t,q)
k +β

(t,q)
kj xij , r

(t,q)
kj = y−β

(q)
k0 1n−Xβ

(t,q)
k +β

(t,q)
kj Xj

is the residual without considering the contribution of the j-th coefficient, and
W(q)

k = diag(τ (q)
k ). The parameter vector update is then taken at convergence

of the CA algorithm, i.e β
(q+1)
k = β

(t+1,q)
k . Then, the intercept and the variance,

have the following standard updates:

β
(q+1)
k,0 =

n∑

i=1

τ
(q)
ik (yi − xT

i β
(q+1)
k )

/ n∑

i=1

τ
(q)
ik = τ

(q)
k

T
(y − Xβ

(q+1)
k )

/
1T

nτ
(q)
k (28)

σ
2(q+1)
k =

n∑

i=1

τ
(q)
ik

(
yi − (β

(q+1)
k,0 + xT

i β
(q+1)
k )

)2 / n∑

i=1

τ
(q)
ik (29)

=
∥∥
√

W
(q)
k

(
y − β

(q+1)
k,0 1n − Xβ

(q+1)
k

)∥∥2

2

/
1T

nτ
(q)
k · (30)

3.2 Algorithm Tuning and Model Selection

In practice, appropriate values of the tuning parameters (λ, γ) as well as the
number of experts K should be chosen. In order to select them, we use a modified
BIC based on a grid of candidate values for K, λ and γ. This modified BIC is
an extension of the criterion used in [21] for regularized mixture of regressions
and was used in [7,11] and is defined as:

BIC(K,λ, γ) = L(Ψ̂K,λ,γ) − df(K,λ, γ)
log n

2
, (31)

where Ψ̂K,λ,γ is the penalized log-likelihood estimator obtained by the EM-
Lasso algorithm, and df(K,λ, γ) is the estimated number of non-zero coefficients
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in the model, interpreted as the degrees of freedom. Let’s assume that K0 ∈
{K1, . . . ,KM}, whith K0 the true number of expert components. For each value
of K, we define grids of tuning parameters {λ1, . . . , λM1} and {γ1, . . . , γM2}.
For each triplet (K,λ, γ), we calculated the penalized log-likelihood estimators
Ψ̂K,λ,γ and compute BIC(K,λ, γ). Finally, the model with parameters (K,λ, γ)
having the highest BIC value, is then selected.

4 Experimental Study

In this section, we study the performance of our approach on simulated data.
The codes are written in Matlab and in R and will be made publicly available
on https://github.com/fchamroukhi. Different evaluation criteria are used to
assess the model’s performance, including sparsity, estimation of parameters and
clustering accuracy.

Sparsity Performance. In order to evaluate the sparsity of the model, we calcu-
late the specificity/sensitivity defined by:

– Sensitivity: proportion of correctly estimated zero coefficients;
– Specificity: proportion of correctly estimated nonzero coefficients.

Clustering Performance. For measuring the clustering performance, we calculate
the correct classification rate and the Adjusted Rate index (ARI) between the
true simulated partition and the partition estimated by the EM algorithms. The
estimated cluster labels are obtained by plugin the Baye’s allocation rule for the
estimated model, which consists of maximizing the posterior probabilities defined
in 9 and calculated with the estimated parameters. That is, the estimated class
label ẑi for the i-th pair (Xi,Yi) is given by

ẑi = arg
K

max
k=1

τik(Ψ̂ ) (i = 1, . . . , n)· (32)

For calculating the classification rate, we evaluate all the possible permutations
of the obtained partition, and the one giving the best rate is then retained.

4.1 Simulation Study

The data are generated according to the following generative hierarchical pro-
cess:

Zi ∼ Mult(1;α1, . . . , αK)
Xi|Zi = zi ∼ Np(.;μzi

,Rzi
)

Yi|Xi = xi, Zi = zi ∼ Nd(.;βzi,0 + βT
zi

xi, σ
2
zi

).

https://github.com/fchamroukhi
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We consider a MoGGE model of K = 2 expert components. The parameters of
the Gaussian gating function, whose prior probabilities are α1 = α2 = 0.5, are
μ1 = (0, 1,−1,−1.5, 0, 0.5, 0, 0)T , μ2 = (2, 0, 1,−1.5, 0,−0.5, 0, 0)T and R1 =
R2 = diag(ν2

1 , . . . , ν2
K) with ν2

1 = . . . = ν2
K = 1. The parameters of the Gaussian

expert regressors are β1 = (0, 1.5, 0, 0, 0, 1, 0,−0.5)T , β2 = (1,−1.5, 0, 0, 2, 0,
0, 0.5), and σ1 = σ2 = 1. For each data set, we sample n = 300 data pairs,
and for each experiment, 100 datasets were generated to average the results
and provide error bars. In order to get the best model for each sample in the
sense of the BIC criterion, we estimated the penalized model with the following
grids of values for the parameters: λ = (0, 1, 2, . . . , 25), γ = (0, 1, 2, . . . , 25); The
minimum and maximum values selected for λ and γ are respectively 4, 20 and
3, 18. Then we selected the penalized model which maximizes the modified BIC
value (31). The results will be provided in the parts below.

Obtained Results

Parameter Estimation Accuracy. Figure 1 shows the estimated parameters for
the gating network, with the error bars, for the proposed approach and for the
standard MoGGE model. Similarly, Fig. 2 shows the estimated parameters of the
gating network. It can be seen on the two figures that, as expected, the proposed
lasso-regularization approach with the proposed EM-Lasso algorithm, clearly
provides models that are sparser, compared to the standard approach with EM,
where the zero-coefficients are not precisely recovered. This is observed for both
the gating function parameters, and the expert function parameters. While the
penalized version we can see that it may be subject of a bias in estimating the
non-zero coefficients, the parameter estimated and the bias are still reasonable.
Hence, if one would to encourage sparsity, and to still have a good performance
in density estimation, then the penalized MoGGE is a better choice, compared
to the standard MLE of the MoGGE model.

Table 1. Sensitivity (S1) and specificity (S2) results.

Method Expert 1 Expert 2 Gate

S1 S2 S1 S2 S1 S2

MoGGE-EM 0.000 1.000 0.000 1.000 0.000 1.000

MoGGE-EMLasso-BIC 0.790 1.000 0.785 1.000 0.779 1.000

Sensitivity/Specificity Results. Table 1 gives the sensitivity (S1) and specificity
(S2) results for the two compared approaches. Note that here since we have
two components, then only the estimation of one Gaussian gating function is
considered, as the parameters of the other one are zeros. It can be seen that,
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Fig. 1. Boxplots of the estimated gating network parameters μk,j : component k = 1,
top, and component k = 2, bottom. The red stars are the true values.

none of the parameters in the non penalized model has a null value. The penalized
model provides naturally sparser models compared to the standard non-penalized
one.

Clustering Results. We calculate the accuracy of clustering for each data set.
The results in terms of correct classification rate and ARI values are provided
in Table 2. We can see that the classification rate as well as as the Adjusted
Rand Index are very close for the two methods, with a slight advantage to the
proposed approach.

Table 2. Clustering results: correct classification rate and Adjusted Rand Index.

Model C.rate ARI

MoGGE - EM 97.25%(0.8770%) 89.28%(3.325%)

MoGGE-EMLasso-BIC 97.43%(0.8521%) 89.99%(3.231%)
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Fig. 2. Boxplots of the estimated expert network parameters βk,j : component k = 1,
top, and component k = 2, bottom. The red stars are the true values.

Selecting the Sparsity Tuning Parameters. We compute the Lasso path for a
sample with same parameters as presented at the beginning of the section. On
Fig. 3, we observe that even with very small values (null value as well, i.e. non
penalized MoE) of γ, the true zero parameters have values very close to zero.
We also note that for values of ratio close to 0.8 for both λ and γ, almost every
true zero parameters have null values and the slight bias introduced in the true
nonzero parameters is reasonable.
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Fig. 3. Lasso paths of the estimated gating network parameters (top) and expert net-
work parameters (bottom). The solid line represents the values of the true non-zero
values, and the dashed line represents the true zero values.

5 Conclusion and Future Work

In this paper, the mixture of Gaussian-gated experts is studied towards model-
ing and clustering of heterogeneous regression data with high-dimensional pre-
dictors. A regularized MLE approach is proposed to simultaneously perform
parameter estimation and feature selection. The developed EM-Lasso algorithm
to fit the model relies on coordinate ascent updates of the regularized parame-
ters, and its application in numerical experiments clearly shows it provides sparse
models. Its performance is also compared to the state-of-the art fitting with the
EM algorithm, shows its good performance, in particular in terms of sparsity.
The diagonal hypothesis of the covariance matrix to derive the regularization
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(19) is now being relaxed, so that the regularization is on the elements of the
precision matrix, i.e a graphical Lasso regularization. A future extension will
also consider multivariate response with dedicated sparsity on the matrices of
regression coefficients.
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9. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimiza-
tion. Technical report, Annals of Applied Statistics (2007)

10. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman & Hall/CRC, London/Boca Raton (2015)

11. Huynh, T., Chamroukhi, F.: Estimation and feature selection in mixtures of gen-
eralized linear experts models. arXiv:1907.06994 (2019)

12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Comput. 3(1), 79–87 (1991)

13. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural Comput. 6, 181–214 (1994)

14. Khalili, A.: New estimation and feature selection methods in mixture-of-experts
models. Can. J. Stat. 38(4), 519–539 (2010)

15. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn.
Wiley, New York (2008)

16. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
17. Nguyen, H.D., Chamroukhi, F.: Practical and theoretical aspects of mixture-of-

experts modeling: an overview. WIREs Data Min. Knowl. Discov. 8, e1246-n/a
(2018). https://doi.org/10.1002/widm.1246

18. Nguyen, H.D., Chamroukhi, F., Forbes, F.: Approximation results regarding the
multiple-output mixture of linear experts model. Neurocomputing (2019). https://
doi.org/10.1016/j.neucom.2019.08.014

http://arxiv.org/abs/1506.06707
http://arxiv.org/abs/1907.06994
https://doi.org/10.1002/widm.1246
https://doi.org/10.1016/j.neucom.2019.08.014
https://doi.org/10.1016/j.neucom.2019.08.014


56 F. Chamroukhi et al.

19. Nguyen, H.D., McLachlan, G.J.: Laplace mixture of linear experts. Comput. Stat.
Data Anal. 93, 177–191 (2016)

20. Pan, W., Shen, X.: Penalized model-based clustering with application to variable
selection. J. Mach. Learn. Res. 8, 1145–1164 (2007)
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Abstract. Mixtures of skew component distributions are being applied
widely to model and partition data into clusters that exhibit non-normal
features such as asymmetry and tails heavier than the normal. The num-
ber of contributions on skew distributions are now so many that it is
beyond the scope of this paper to include them all here. However, many
of these developments can be considered as special cases of a (location-
scale variant) of the fundamental skew normal (CFUSN) distribution or
of the fundamental skew t (CFUST) distribution. We therefore focus
on mixtures of CFUSN and CFUST distributions, along with a recently
proposed extension that can be viewed as a scale-mixture of the CFUSN
distribution, namely the canonical fundamental skew (symmetric gener-
alized) hyperbolic (CFUSH) distribution.

Keywords: Skew normal distribution · Skew t-distribution · Mixtures
of skew components

1 Introduction

Finite mixtures of multivariate skew distributions have gained wide acceptance
as a useful tool for analyzing a variety of heterogeneous datasets that exhibit
non-normal features (McLachlan et al. 2019). These distributions provide flexible
alternatives to traditional normal and t-mixture models, with additional features
such as asymmetry and heavy tails, rendering them suitable for a wider range of
applications. For a comprehensive survey of skew distributions, see, for example,
the articles by Azzalini (2005), Arellano-Valle and Azzalini (2006), Arellano-
Valle et al. (2006), the book edited by Genton (2004), and the recent mono-
graph by Azzalini (2014). With various proposals appearing rapidly in recent
years, which are similar but not identical, the connection between them and
their relative performance becomes rather unclear. It led Lee and McLachlan
(2013a) to provide a concise overview of these developments by presenting a
systematic classification of the existing skew symmetric distributions into four
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types, restricted, unrestricted, extended, and generalized, thereby clarifying their
close relationships.

In particular, the multivariate skew normal and skew t-distributions have
been used extensively in model-based clustering. Their usefulness has also been
exemplified by various applications in a range of scientific fields, including envi-
ronmental science (Allard and Soubeyrand 2012; Tagle et al. 2019), flow cytom-
etry (Pyne et al. 2009, 2014; Lee et al. 2016; Hejblum et al. 2019), financial risk
analysis (McLachlan 2013b; Mousavi et al. 2019), fisheries science (Contreras-
Reyes and Arellano-Valle 2013; Contreras-Reyes et al. 2018), astrophysics (Riggi
and Ingrassia 2013; Voigt and Fried 2015), image segmentation (Lee and McLach-
lan 2013b), and the social sciences (Asparouhov and Muthén 2016; Hohmann
et al. 2018). Some other notable contributions to multivariate nonnormal mix-
ture models include the normal-inverse-Gaussian (NIG) mixture models (Karlis
and Santourian 2009) and related densities arising from the family of general-
ized hyperbolic (GH) distributions, and mixtures of multiple-scaled distributions
(Forbes and Wraith 2013; Wraith and Forbes 2015).

The number of contributions on skew distributions are now so many that it
is beyond the scope of this paper to include them all here. However, many of
these developments can be considered as special or limiting cases of a (location-
scale variant) of the fundamental skew normal (FUSN) distribution or of the
fundamental skew t (CFUST) distribution (Arellano-Valle and Genton 2005).
Hence in this paper we shall focus on the CFUSN and CFUST distributions
along with a recently proposed extension that can be viewed as a scale-mixture of
the CFUSN distribution (Lee and McLachlan 2018). This distribution is referred
to here as the canonical fundamental skew (symmetric generalized) hyperbolic
(CFUSH) distribution. We shall present a comparison of mixtures of CFUST
and CFUSH distributions in their application to the modelling and clustering
of two data sets as considered in Murray et al. (2017). In this comparison, the
performance of a mixture of CFUST distributions is found to be superior to the
mixture model with CFUSH component distributions.

The CFUSN, CFUST, and CFUSH distributions belong to the family of skew
symmetric distributions. Hence before defining these three distributions, we shall
consider the family of skew symmetric distributions.

2 Skew Symmetric Distributions

To establish some notation, we let Y denote a p-dimensional random vector, Ip

be the p×p identity matrix, and 0 be a vector/matrix of zeros of appropriate size.
The skew distributions to be considered here belong to the class of canonical

fundamental skew symmetric (CFUSS) distributions proposed by Arellano-Valle
and Genton (2005). The density of members of the class of CFUSS distributions
can be expressed as

f(y; θ) = 2rfp(y; θ)Qr(y; θ), (1)

where fp(y; θ) is a symmetric density on Rp, Qr(y; θ) is a skewing function that
maps y into the unit interval, and θ is the vector containing the parameters of
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Y . Let U be a r × 1 random vector, where Y and U follow a joint distribution
such that Y has marginal density fp(y;θ) and Qr(y;θ) = P (U > 0 | Y = y).
If the latent random vector U (the vector of skewing variables) has its canonical
distribution (that is, with mean 0 and scale matrix Ir), we obtain the canonical
form of (1), namely the CFUSS distribution. The class of CFUSS distributions
encapsulates many existing distributions, including those to be considered here.
We now proceed to define those members.

We are to focus on a finite mixture of canonical fundamental skew t (CFUST)
distributions for a model based approach to clustering where the clusters are
asymmetric and possibly long-tailed (Lee and McLachlan 2016). The CFUST
distribution is an extension of the canonical fundamental skew normal (CFUSN)
distribution through the addition of a scalar parameter ν representing the
degrees of freedom as in the symmetric t-distribution. Hence we firstly define
the CFUSN distribution.

3 CFUSN Distribution

The so-called canonical fundamental skew normal (CFUSN) distribution is a
location-scale variant of the canonical fundamental skew normal distribution in
Arellano-Valle and Genton (2005). If the p × 1 random vector Y has a CFUSN
distribution, its density is given by

fCFUSN(y; μ,Σ,Δ) = 2rφp(y; μ,Ω)Φr(c(y); 0,Λ), (2)

where

Λ = Ir − ΔT Ω−1Δ,

c(y) = ΔT Ω−1(y − μ),
Ω = Σ + ΔΔT ,

and Δ is a p × r matrix of skewness parameters with pr free parameters. They
are identifiable up to a permutation of the columns of Δ. Also, φr(y; μ,Σ) and
Φr(y; μ,Σ) denote the r-dimensional multivariate normal density and (cumula-
tive) distribution, respectively, with mean μ and covariance Σ. The number of
skewing variables r is not necessarily restricted to being less than or equal to p.

The convolution-type stochastic characterization of the CFUSN distribution
is given by

Y = μ + Δ|U0| + U1, (3)

where [
U0

U1

]
∼ Nr+p

([
0
0

]
,

[
Ir 0
0 Σ

])
. (4)

In the above, |U0| denotes the vector whose ith element is the magnitude of the
ith element of the vector U0.
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3.1 Restricted Multivariate Skew Normal (rMSN) Distribution

In the univariate case (p = 1) with a single skewing variable (r = 1), the CFUSN
density as defined by (2) reduces to the skew univariate normal distribution as
pioneered by Azzalini (1985). Its extension to the multivariate case (p > 1) with
(r = 1) was undertaken by Azzalini and Dalla Valle (1996).

Concerning the CFUSN Distribution in the multivariate case (p > 1), Lee
and McLachlan (2013a) referred to it as the restricted multivariate skew normal
(rMSN) distribution if r = 1; that is, if only a single skewing variable is used. This
is because with only a single skewing variable, the CFUSN density is restricted
to modelling skewness in a single direction in the feature space.

Concerning the attempt in Azzalini et al. (2016) to show that the amount of
skewness in the rMST distribution is unlimited, Mardia’s measure of skewness for
the rMST is indeed unbounded. But as subsequently explained by McLachlan and
Lee (2016), since this measure is a squared Euclidean norm (Kollo and Srivastava
2007), the use of this property by Azzalini et al. (2016) to support the flexibility
of the rMST distribution is similar to saying that rank-one covariance matrices
will suffice for modelling multivariate scatter just because their Euclidean norm
can be made as big as desired. Furthermore, Kollo (2008) showed some nice and
simple examples of two multivariate distributions with very different shapes, but
identical values of Mardia’s measures of multivariate skewness and kurtosis.

3.2 Unrestricted MultivariateSkew Normal (uMSN) Distribution

Lee and McLachlan (2013a) referred to the CFUSN distribution in the particular
case where r = p and the matrix Δ of skewness parameters is diagonal, as
the unrestricted multivariate normal distribution (uMSN). They used the term
“unrestricted” in the sense that the restricted version can be regarded as the
unrestricted one with the restriction that all p skewing variables are the same.
It should be noted, however, that the rMSN distribution is not nested within
the unrestricted distribution, and so there can be situations where mixtures of
rMSN distributions will be preferred over mixtures of uMSN distributions.

Although the uMSN distribution has p skewing variables, it is limited to mod-
elling skewness in directions that are parallel to the axes of the feature space. Con-
sequently, Lee and McLachlan (2014b; 2015; 2016) developed the methodology
and algorithms for the fitting of mixtures of CFUSN and CFUST distributions
with arbitrary skewness matrices so that they can handle skewness in multiple
directions that are not necessarily parallel to the axes of the feature space.

We now define the CFUST distribution.

4 CFUST Distribution

The CFUST distribution provides a model for skew data with tails heavier than
the CFUSN distribution. The density of the CFUST distribution is defined by

f (y;μ,Σ,Δ, ν) = 2r tp (y;μ,Ω, ν) Tr

(
c(y)

√
ν + p

ν + d(y)
;0,Λ, ν + p

)
. (5)
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Here tp (y;μ,Ω, ν) denotes the p-dimensional t-distribution with location
parameter μ, scale matrix Ω, and degrees of freedom ν, and Tr(.) is the r-
dimensional (cumulative) t-distribution function. As the degrees of freedom ν
tend to infinity, the CFUST distribution tends to the CFUSN distribution.

The canonical fundamental skew t (CFUST) distribution can be character-
ized by

Y = μ + Δ|U0| + U1 (6)

where, conditional on W = w,[
U0

U1

]
∼ Nr+p

([
0
0

]
, w

[
Ir 0
0 Σ

])
(7)

and W is distributed according to the inverse gamma distribution IG(ν
2 , ν

2 ).
If we take the matrix Δ of skewness parameters in the formulation (6) to

be a p-dimensional vector (that is, r = 1), then we obtain the skew t-density as
proposed by Azzalini and Capitanio (2003). Lee and McLachlan (2013a) referred
to this distribution as the restricted multivariate skew t (rMST) distribution
corresponding to its limiting rMSN distribution.

If we take r = p with Δ diagonal in (6), then we obtain the model considered
by Sahu et al. (2003). It was termed the unrestricted multivariate skew t (uMST)
distribution corresponding to its limiting uMSN distribution.

In an attempt to provide an automated approach to the clustering of flow
cytometry data, Pyne et al. (2009) considered the fitting of mixtures of rMSN and
rMST distributions. This paper and those of Lin (2009a; 2009b) would appear
to be the first papers to consider the fitting of mixtures of multivariate skew
distributions. Previously, Lin et al. (2007a; 2007b) had considered the fitting of
mixtures of univariate skew normal and t-distributions.

5 Scale Mixture of CFUSN Distribution

A Scale Mixture of the CFUSN distribution (SMCFUSN) can be defined by the
stochastic representation

Y = μ + W
1
2 Y 0, (8)

where Y 0 follows a central CFUSN distribution and W is a positive (univariate)
random variable independent of Y 0. Thus, conditional on W = w, the density
of Y has a CFUSN distribution with scale matrix wΣ. The marginal density of
Y is given by

fSMCFUSN(y;μ,Σ,Δ;Fζ )

= 2r

∫ ∞

0

φp (y;μ, wΩ) Φr

(
1√
w

ΔT Ω−1(y − μ);0,Λ

)
dFζ (w), (9)

where Fζ denotes the distribution function of W indexed by the parameter ζ.
We shall use the notation Y ∼ SMCFUSNp,r(μ,Σ,Δ;Fζ ) if the density of Y
can be expressed in the form of (9).

The CFUST distribution corresponds to taking W to have the inverse gamma
distribution IG(ν

2 , ν
2 ).
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6 CFUSH Distribution

The so-called hidden truncation hyperbolic distribution proposed by Murray et
al. (2017) can be viewed as a member of the class of the canonical fundamen-
tal skew symmetric generalized hyperbolic (CFUSH) distributions (Lee, Lin,
McLachlan 2018). To see this, we suppose now that the latent variable W in (9)
follows a generalized inverse Gaussian (GIG) distribution (Seshadri 1997). The
GIG density can be expressed as

fGIG(w;ψ, χ, λ) =

(
ψ
χ

)λ
2

wλ−1

2Kλ(
√

χψ)
e− ψw+ χ

w
2 , (10)

where W > 0, the parameters ψ and χ are positive, and λ is a real parameter. In
the above, Kλ(·) denotes the modified Bessel function of the third kind of order
λ. If we put χ = ν, λ = − 1

2ν, and let ψ tend to zero in (10), then it tends to
the inverse gamma distribution IG(12ν, 1

2ν).
Taking the latent variable W in (9) to have a GIG distribution, we obtain the

CFUSH distribution. It has the p-dimensional symmetric GH (generalized hyper-
bolic) density hp(·) and the r-dimensional symmetric GH distribution function
Hr(·), corresponding to the symmetric density fp(·) and the distribution function
Qr(·), respectively, in (1).

The symmetric GH density is given by

hp(y; μ, Σ, ψ, χ, λ) =

(
χ + η(y; μ, Σ)

ψ

) λ
2 − p

4

(
ψ
χ

) λ
2

Kλ− p
2
(
√

[χ + η(y; μ, Σ)]ψ)

(2π)
p
2 |Σ| 12 Kλ(

√
χψ)

,

(11)

where
η(y; μ,Σ) = (y − μ)T Σ−1(y − μ).

It is well known that the GH distribution has an identifiability issue in that
the parameter vectors θ = (μ, kΣ, kψ, χ/k, λ) and θ∗ = (μ,Σ, ψ, χ, λ) both
yield the same symmetric GH distribution (11) for any k > 0. It is therefore
not surprising that the CFUSH distribution also suffers from such an issue. To
handle this, restrictions are imposed on some of the parameters of the CFUSH
distribution. An example is the HTH distribution considered in Murray et al.
(2017) where the constraint ψ = χ = ω is used, leading to the density

fHTH(y;μ,Σ,Δ, ω, λ)

= 2rhp (y;μ,Ω, ω, ω, λ) Hr

(
ΔT Ω−1(y − μ)

(
ω

ω + η

) 1
4

;0,Λ, γ, γ, λ − p
2

)
,

(12)

where γ =
√

ω[ω + η(y; μ,Σ)].
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Note that in their terminology, Murray et al. (2017) are using ‘hidden trunca-
tion’ to describe the latent skewing variable that follows a truncated distribution
in the convolution-type characterization of the CFUSH distribution. Another
alternative is to restrict the parameters of W so that, for example, E(W ) = 1.
A commonly used constraint on the GH distribution is to set |Σ| = 1. This
can be applied to the CFUSH distribution to achieve identifiability; see also the
unrestricted skew normal generalized hyperbolic (SUNGH) distribution consid-
ered by Maleki et al. (2019), which is equivalent to the CFUSH distribution on
setting its scaling function equal to W 1/2.

Note that the CFUST distribution is not a special case of the CFUSH dis-
tribution as stated in places in Murray et al. (2017). It can be obtained as a
limiting case. One approach to obtain the limiting case is to put λ = −ν/2 and
to replace Σ, Δ and ω by 1

kΣ, 1
kΔ, and kν in the density (12) to give

fHTH(y;μ, 1
kΣ, 1

kΔ, kν,−ν
2 ),

and then to let k tend to zero; see also Murray et al. (2019).

7 Mixtures of CFUST Distributions Versus Mixtures of
HTH Distributions

To demonstrate the performance of mixtures of HTH distributions in clustering
data, they were compared by Murray et al. (2017) with mixtures of the two
special cases of CFUST distributions defined in the previous section, namely
the uMST (that is, CFUST(r = 1)) and the rMST (CFUST(diag)) distributions,
the latter two being referred to as the classical skew t and the SDM skew t
distribution, respectively, by Murray et al. (2017). These three models were
fitted to two real data sets referred to as the Seeds and HSCT (hematopoietic
stem cell transplant) sets. However, a mixture of CFUST distributions was not
fitted to these two data sets by Murray et al. (2017), who stated that “the SDB
skew t mixture model is regarded by some as the state of the art approach
(see [36]).” The reference [36] is the paper by Lee and McLachlan (2013b) in
which the CFUST distribution was not considered. In subsequent papers (Lee
and McLachlan 2014b; 2015; 2016), which appeared before the submission by
Murray et al. (2017) of their paper, it had been explained and demonstrated
how the SDB skew t distribution, along with the classical skew t, are embedded
in the CFUST distribution. The results in Murray et al. (2017) are reproduced
here in Table 1, along with the results for mixtures of CFUST distributions
as obtained by McLachlan and Lee (2019). The notation HTHu and HTHm in
Table 1 as used in Murray et al. (2017) refer to the HTH component distributions
having r = 1 and r = p in forming the skewness matrix Δ in the formulation of
the HTH distribution as a member of the class of SMCFUSN distributions (9).

On fitting mixtures of CFUST distributions to the HSCT and Seeds data sets
with r = p skewing variables, McLachlan and Lee (2019) obtained higher values
of the adjusted Rand Index (ARI), namely 0.991 and 0.916 relative to the values
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of 0.984 (0.976) and 0.877 (0.877) for mixtures of HTHm (HTHu) distributions
fitted to the HSCT and Seeds data sets, respectively.

In commenting on their results in Table 1, Murray et al. (2017) stated that
“The results (Table 1) show that the HTHu and HTHm mixture models out-
perform both the classical and SDB skew-t mixtures for both data sets. This is
crucial when one considers that the HSCT and seeds data sets were used by [Lee
and McLachlan (2014a)] to illustrate the excellent clustering performance of the
SDB and classical skew-t mixture approaches”. We wish to note here that Lee
and McLachlan (2013b) did not consider the seeds data set to demonstrate the
clustering performance of mixtures of rMST and uMST distributions. This is
because they did not produce clusterings with higher ARI’s than that obtained
by mixtures of ordinary multivariate normal distributions.

In Murray et al. (2017), the very small value of 0.009 for the ARI for the
SDB skew t mixture model in Table 1 is not interpreted as reflecting the failure
of the algorithm to fit the model to the data. Rather it is taken at face value with
the statement that “the SDB skew-t mixture performs better than the classical
skew-t mixture approach for the Seeds data.”

As stated in Murray et al. (2017), “the expected value of the ARI under
random classification is zero”. Thus the reported value of 0.009 for the SDB
skew t-mixture model is implying that this model does no better than random
classification! But this is unrealistic, particularly as an ARI value of 0.836 was
obtained for the classical model; such a difference between the ARI’s for these
two models is highly unlikely as both embed the t-mixture model with just a
few additional parameters to allow for any skewness in the data.

Table 1. ARI value of CFUST mixture model versus the ARI values for the mixture
models in Murray et al. (2017)

CFUST HTHu HTHm Classical skew t SDB skew t

HSCT 0.991 0.976 0.984 0.782 0.890

Seeds 0.916 0.877 0.877 0.836 0.009

To investigate this further, we followed the procedure adopted in Murray
et al. (2017) for the fitting of this model. We first scaled the data so that
each variable had mean zero and unit standard deviation before applying the
EMMIXuskew program using the default options for the starting values for the
skewness parameters. We found that the EM algorithm stopped after three itera-
tions as essentially all the observations were being put into the one cluster. It was
a consequence of the initial estimates of the skewness parameters not being scale
invariant which for the Seeds data set after scaling caused problems. However,
the EMMIXuskew algorithm also has optional starting strategies in addition to
the default ones, such as those provided by k-means applied to the unscaled
data and by the normal mixture model. When we used these latter options, we
obtained a fit for the CFUST(diag) mixture model (that is, the SDB skew t
model) with an ARI of 0.84. However, given the problems that our algorithm
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EMMIXuskew encountered with the data as scaled by Murray et al. (2017), we
have modified those default steps for the provision of starting values that were
not scale invariant. But we recommend using our latest algorithm EMMIXcskew
(Lee and McLachlan 2015; 2018), which also has the provision to fit mixtures of
CFUST distributions.

8 Conclusions

Mixtures of CFUSN distrbutions provide a flexible approach to the clustering
of heterogeneous data into clusters that exhibit skewness. For clusters with tails
heavier than the normal, there is the mixture of CFUST distributions model.
The CFUSN and CFUST distributions formally encompass other widely used
models as special and limiting cases, including the restricted and unrestricted
skew normal and t-distributions, and the normal and t-distributions.

Lee and McLachlan (2015; 2018) have developed an R package EMMIXcskew
for the fitting of the CFUST distribution and finite mixtures of CFUST dis-
tributions via maximum likelihood (ML). An expectation–maximization (EM)
algorithm is described for computing the ML estimates of the parameters of
the FM-CFUST model, and different strategies for initializing the algorithm are
discussed and illustrated. Concerning the implementation of the EM algorithm,
the M-step can be carried out in closed form for CFUSN mixtures and also for
CFUST mixtures apart for the degrees of freedom for each component which
needs to be calculated iteratively on each M-step.

Recently, the so-called CFUSH distribution has been proposed from which
the CFUST distribution can be obtained as a limiting case. For the two data sets
considered in this paper, CFUSH mixtures did not perform as well as CFUST
mixtures in providing a clustering.
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Abstract. The two-stage approach for occupancy modelling applies the
partial and conditional likelihood to occupancy data and is an alternative
to direct maximisation of the full likelihood that involves simultaneous
estimation of occupancy and detection probabilities. The two-stage app-
roach resolves limitations with the full likelihood and allows full use of
GLM (generalised linear model) and GAM (generalised additive model)
computing functions in standard software such as R. It reduces com-
putation time as it significantly reduces the number of models to be
assessed in model selection. The two-stage approach makes it easy to
include covariates for heterogeneous GLMs and GAMs and we present
these models for time dependent detection probabilities. For the basic
occupancy model we provide complete solutions for maximum likelihood
estimation at the boundaries of the sample space, where the score equa-
tions do not apply. We describe a region based on a convex hull within
which estimates are certain to exist and evaluate the bias of the occu-
pancy estimator.

Keywords: Partial likelihood · Zero inflated binomial ZIB · GLM ·
GAM · Heterogeneous · Occupancy · Imperfect detection · IWLS

1 Introduction

Over recent years there has been a shift in focus from estimating population size
(or abundance) to mapping species dispersion and doing this through occupancy.
We give the two-stage approach for occupancy, specifically work in [12,14,15,
17]. We begin with the full likelihood for the homogeneous case and resolve
limitations. We present the maximum likelihood estimators for the boundaries
of the sample space, where the score equations do not apply and give a plausible
region that ensures estimation and give an overview of the evaluation of bias of
the occupancy estimator.

Methods for estimating occupancy of a species that account for imperfect
detection are necessary for sound species management. Systematic sampling
strategies are vital for species management when multiple visits to a site occur.
c© Springer Nature Singapore Pte Ltd. 2019
H. Nguyen (Ed.): RSSDS 2019, CCIS 1150, pp. 68–80, 2019.
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Repeated visits to a site has the potential for introducing heterogeneity into
the data. This heterogeneity may be accommodated either by covariates [19]
or by assuming a distributional form for the detection probabilities [18]. Other
methods for modelling heterogeneity include Bayesian approaches such as those
of [1,3,5,6,10,20–22,25,30]. However, an optimal outcome would be to design a
study which minimises this potential heterogeneity at the outset.

This paper is outlined as follows. In Sect. 2, we describe the full likelihood
function that describes the basic occupancy model. We describe limitations
with estimation that exist at the boundary of the parameter space and iden-
tify another boundary problem and give the complete set of boundary solutions
in Sect. 3 [7,12]. Section 4 gives a plausible region defined by a convex hull on
the parameter space as a function of the sufficient statistics, which ensures that
estimates for occupancy and detection exist and are less biased. Limitations of
the full likelihood provides motivation for the two-stage approach, presented in
Sect. 6. We show our extensions to the basic occupancy model with a partial like-
lihood approach that leads to our two-stage approach for the homogeneous case.
This includes a conditional likelihood to estimate detection. The homogeneous
model is extended to allow covariates to be considered separately in each stage.
Then, detection and occupancy are estimated with GLMs (generalised linear
models) that also deals with restrictions of the full likelihood for site inhomo-
geneity. As noted elsewhere (for example, [7,11,16,29]) the full likelihood may be
numerically unstable and this is addressed with the two-stage approach. There
is some loss of efficiency for detection that is outweighed by gains in computa-
tional efficiency. We extend the GLM for two-stage model to include covariates
of time dependent detection. We show two methods for estimating occupancy
for GLM that include direct maximisation and iterative weighted least squares
(IWLS). The GLM model is extended to include nonlinear covariates with GAMS
(generalised additive models) and occupancy is estimated with an iterative off-
set method. Details and further derivations are deferred to originating work as
noted throughout. We provide a short summarising discussion in Sect. 7.

2 Full Likelihood

The most basic occupancy model has two parameters, occupancy ψ and detection
p. It was proposed by [19] and is an adaptation of capture-recapture models [9].
Occupancy and detection probabilities are assumed to remain constant over all
N sites and T survey occasions. Under this assumption, we may construct the
likelihood by modelling the number of detections at each site Xi�(=

∑T
i=1 xi�)

as a zero-inflated Binomial random variable ZIB(T, p;ψ) [8,26,27] and [20, p.
94]. The number of detections Xi� at site i is distributed as Xi�

d= 0, with
probability (1−ψ), and Xi�

d= Bi(T, p), with probability ψ. Thus P (Xi� = xi�) =
ψ(1 − p)T + (1 − ψ) when xi� = 0, and P (Xi� = xi�) = ψ

(
T
xi�

)
pxi�(1 − p)T−xi�

for xi� = 1, 2, . . . , T . There are two states and three possible outcomes; either
the species is present and is detected (x = 1), or the species is present and is
not detected (x = 0), or the species is not present and not detected (x = 0).
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Occupancy is supposed to be permanent. Then, with an indicator for presence,
I(xi� > 0) gives the likelihood of each site i, Li(ψ, p|xi) = P (Xi� = xi� ψ, p)
for the observed history vector xi = (xi1, . . . , xiT )T for detections xij = 1 and
nondetections xij = 0 at site i on occasion j. Then by taking the product over
all site likelihoods Li(ψ, p|xi) results in the full likelihood

L(ψ, p|X) =
N∏

i=1

Li(ψ, p|xi�)

=
(

ψ(1 − p)T + (1 − ψ)
)N−k

ψkpx(1 − p)NT−x, (1)

for the N ×T history matrix X = [xij ], where k =
∑N

i=1 I(xi � > 0) is number of
sites at which any detection is made during the study and x =

∑N
i=1 xi � is the

total number of detections. The first term of the product relates occupancy to
nondetections (or 0s) and the remainder terms relates occupancy to detections
(1s).

The conditional distribution of the data, given the statistic (X,K) from
the observed (x, k) does not depend on the parameters (ψ, p), so (X,K) are
sufficient statistics for (ψ, p). This was shown in [12]. All the information con-
cerning (ψ, p) that is contained in the data is captured by (X,K) and hence
(ψ̂, p̂) = (ψ̂(x, k), p̂(x, k)). This observation is important as it enables to spec-
ify the exact distribution of the maximum likelihood estimator, and hence to
evaluate the exact expectation, exact variance and the bias of ψ̂.

3 Boundary Solutions

Solutions to the score equations are given by ψ = k/Nθ and p/θ = x/kT , where
θ = g(p) = 1 − (1 − p)T is the probability of at least one detected site. The
value of p is obtained numerically as there is no closed form solution. For given
values of (x, k), and since N and T are known, solve (1 − (1 − θ)1/T )/θ = x/kT
to obtain θ(x, k). Thus, the value for ψ may be calculated.

However, the score equations may or may not give the maximum likelihood
estimates (mles). These give the mles if the maximum occurs at a turning point
in the interior of the parameter space, the unit square [0, 1]2. If the maximum of
the likelihood occurs on the edge of the parameter space, then the maximum may
not occur at a turning point and one (or both) of the score equations may not be
satisfied. This will tend to happen when (x, k) is on the edge of the sample space
(k = N or x = k or x = kT ). This results in three sets of boundary solutions.

Values for ψ̂ < 1 may be obtained when N − k > N(1 − θ̂). As there are no
closed form solutions for ψ, p and var(ψ̂), numerical maximisation is required.
The full likelihood approach maximises ψ and p simultaneously via numerical
maximisation, for example, with function optim in R to obtain estimates ψ̂ and
p̂ [24]. However, direct maximisation does not always converge, as examined
in [16]. These are known limitations with the full likelihood. Asymptotically,
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for N and T , the score equations will yield the mles, but otherwise this is not
guaranteed. For small N and T , these will not apply.

Derivations for the boundary solutions are given in [12,17]. Any history
matrices that give sufficient statistics that fall on an edge of the sample space do
not fulfil the score equations. On the boundaries when x = k or k = N , the max-
imum is obtained by assuming that occupancy is perfect (or complete, ψ = 1),
and all sites are occupied (ψ = 1), and our failure to observe at all site-occasions
is explained by imperfect (or incomplete) detectability (p < 1), where p is the
proportion of all NT site-occasions where detections are made. The estimators
on this boundary are given by the edge solution ψ̂ = 1 and p̂ = x/NT . On the
boundary x = kT , detection is assumed to be perfect and leads to p̂ = 1 and
ψ̂ = k/N . For example, see Figure 2.1 and Section 2.3.2 in [12].

4 Plausible Region

In [17] a region was proposed which the authors refer to as the ‘plausible’ region,
within which it is guaranteed that the mles exist and which leads to estimates
that are less biased. This region is a convex hull that covers the largest region
of the sample space whilst mles exist.

An example of a sparse sample space for N = 5 and T = 3 is shown in Fig. 1.
An example of a heavily populated sample space is given by N = 27 and T = 4
and the convex hull is shown in Fig. 2. The solid line connecting the outer bullets
gives the convex hull QE . The curved lines connecting the bullets mark the Lk-
lines given by ψθ = k/N for values of θ and k = 1, . . . , N . Bullets along the Lk

mark the mles corresponding to (x, k) where for each k : x = k, k + 1, . . . , kT .
Boundary solutions are on the convex hull and internal points given by the score
equations. The vertical and horizontal dashed lines indicate where mles do not
exist, as given by ψ = 1/N for θ = 1 and k = 1. The lower bound for QE is
shown with the curved dashed line defined by ψ = 1/(Nθ), where k = 1, as
seen in Figs. 2 and 1. But as line at k = 1, the L1 line, has few points on it,
at most T − 2 (i.e. kT − 2 with k = 1 and 2 boundary points for ψ and p)
‘internal’ points (i.e. points not on the boundary of the mles), so if T is small
this lower bound curve may be well under the actual estimate points. The next
curve L2 at k = 2 is ψθ = 2/N populated by (at most) 2T − 2 internal points,
which may be relatively few points for small T , for example when N = 5 and
T = 3 in Fig. 1. Thus we want a curve close to QE and includes most of the
points. So the approximation for the bottom edge of the convex hull of the set
of mles QE(N,T ) consists of the region that is not densely populated so that
for points above this, unbiased estimation is plausible. In [12] the authors derive
ψLB = cE/p+1/N − cE where cE = (1− ε1/N )/T for some small value of ε > 0,
for example ε = 0.01. This approximate lower bound is intended to provide a
reasonable practical lower bound for plausible estimation of ψ for a given p.
They found that when N and T are small e.g. N = 5 and T = 3, ε = 0.01 gives
a good approximation.
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Fig. 1. Convex hull QE for N = 5, T = 3 marked by the solid line connecting the outer
solid circles. The curved dashed line marks the lower bound for ψ, ψLB . The solid
curved lines mark the Lk-lines for k = 1, . . . , N and the bullets along the Lk mark the
mle corresponding to (x, k) where for each k : x = k, k + 1, . . . , kT , with the bottom
curve starting at k = 1. The vertical and horizontal dashed lines are 1/N .

5 Bias

To evaluate the bias of occupancy estimator ψ̂ requires the exact mean and
variance of occupancy. In [17] the joint pmf of (X,K) was derived, and allows
for definition of the exact expectation, exact variance and bias of occupancy
estimator ψ̂.

In [17], the authors compared the exact variance to the asymptotic variance
proposed by [20] and found that the asymptotic variance seriously underesti-
mates the actual variance. For example, [19] recommended bootstrapping but
they were not clear about which interval estimator to use and performance had
not been assessed.

In [16] four bootstrap interval estimators for occupancy were examined
including a normal approximation that uses the asymptotic variance of occu-
pancy. They found that when N , T and p were not too small the studentized
interval estimator was most consistent over the range of p and ψ. The asymptotic
variance for occupancy ψ̂ was given in [20], and complete derivations given in
[12],

var(ψ̂) =
ψ

N

(

(1 − ψ) +
1 − θ

θ − Tp(1 − p)T−1

)

.
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Fig. 2. Convex hull QE for N = 27, T = 4 marked by the solid line connecting the
outer solid circles. The curved dashed line marks the lower bound for ψ, ψLB . The solid
curved lines mark the Lk-lines for k = 1, . . . , N and the bullets along the Lk mark the
mle corresponding to (x, k) where for each k : x = k, k + 1, . . . , kT , with the bottom
curve starting at k = 1. The vertical and horizontal dashed lines are 1/N .

There is no closed form solution and a value for var(ψ̂) is not always obtainable.
Depending on the size of the study N and T , and depending on the values of the
sufficient statistics (x, k) the Hessian may not be invertible [12,16,17]. The vari-
ance is obtained from the observed Fisher information var(ψ̂) = −∂2l(ψ̂/x)/∂ψ̂2.

A bias correction was examined, based on a conditional and an unconditional
expectation for ψ̂ within the plausible region for estimation [17].

6 Two-Stage Approach and Modelling Occupancy

Modelling occupancy is possible by maximising the full likelihood. The function
occu in the R package unmarked uses optim to maximise the full likelihood and
simultaneously estimate ψ and p. Standard errors are possible with a bootstrap
method or a Bayesian approach [3].

However there are limitations with the full likelihood, for example, that it
may land outside the parameter space or simply will not converge, with multiple
solutions for the mle as seen with the boundary solutions, or of identifiability
with multiple local maxima, where numerical maximisation may converge to
any of these or to none at all. The function may be too flat and estimates
will be highly variable or variances may not be obtainable. And it may be too
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difficult to include covariates, for example as noted by [28]. Hence we would like
an alternative approach. Bootstrap methods or Bayesian methods can include
covariates but still have the issues with the basic occupancy model discussed
above [17,28].

Presence-absence data results from recording capture information or detec-
tions. With the two-stage approach, we exploit the repeated visits to a site where
there is more information on the detection probability than occupancy proba-
bilities.

Thus [14,15] used a partial likelihood approach to propose a two-stage app-
roach to estimating occupancy. This approach ignores information on the first
capture and may be beneficial to gain computational efficiency at the cost of some
small loss of efficiency in estimating the detection probabilities [14,15]. Often an
investigator will wish to consider detection probabilities separately to occupancy
probabilities, which is possible with the two-stage approach. Detection is esti-
mated in the first stage then these values are used to estimate occupancy in the
second stage.

We want to include this ‘extra’ covariate information into modelling relation-
ships between ψ, of the species and its habitat. Occupancy and detection may be
functions of, or influenced by covariates. With the partial likelihood approach,
it is easy to include nonlinear functions of covariates for example with GAMs,
whereas with the full likelihood approach there may be a large number of param-
eters to estimate. It resolves limitations and gives efficient closed form variance
approximations [12,14,15]. And, it reduces the dimension of models in model
selection. There may be time dependent covariates that affect detection that is a
straight forward extension of the two-stage approach. [12,14,15] explored these
scenarios in detail. The GAMs version is explored in [12,13].

6.1 Homogeneous Case

A two-stage approach to the homogeneous case is simple. In this case ψ and
p are assumed constant across sites i and survey occasions j. It uses partial
likelihoods to partition the full likelihood into one partial likelihood as a function
of occupancy and detection L1(ψ, p) and another as a function of detection alone
L2(p), as

L(ψ, p) ∝ (1 − ψ + ψ(1 − p)T )N−k
k∏

i=1

ψpxi�(1 − p)T−xi� (2)

= (1 − ψθ)N−kψk

(
k∏

i=1

(1 − p)ai−1p

)

px−k(1 − p)b−(x−k)

∝ (1 − ψθ)N−kψkpx−k(1 − p)b−(x−k)

= L1(ψ, p)L2(p),

where ai are first detections for site i and bi is the number of occasions remaining
after the first detection at site i, then b =

∑N
i=1 bi are the total number of
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remaining occasions after ai. This yields closed form estimators for p as a ratio
of redetections over the number of remaining visits p̂ = (x−k)/b and ψ̂ = k/(Nθ̂)
that are more stable than the full likelihood approach. Derivations are given in
[14]. This model is equivalent to a conditional likelihood on detections, which
yields orthogonal parameters as shown in [14] and can be computed using the
VGAM package in R [24,33]. Variances are also given, and for detection, this
is a simple binomial variance. Simulation studies show that the efficiency of ψ̂
is above 90% for the two-stage approach [14]. With these positive results, the
homogeneous case is extended and the heterogeneous case is developed to include
covariates.

6.2 Heterogeneous Case

In the first instance, we explore site inhomogeneity, where occupancy and detec-
tion may vary between sites but remain constant within sites; in other words,
remain constant over survey occasions. We give an overview here and derivations
are given in [15].

The contribution of a single site i to the overall likelihood is

Li(ψi, pi) =

{

1 − ψi + ψi(1 − pi)τ

}1−wi {(
τ

xi �

)

ψip
xi �
i (1 − pi)τ−xi �

}wi

∝ (1 − ψiθi)1−wiψwi
i

{
pi(1 − pi)(ai−1)

}wi
{

p
(xi �−1)
i (1 − pi)bi−xi �+1

}wi

= (1 − ψiθi)1−wiψwi
i

{
p
(xi �−1)
i (1 − pi)bi−xi �+1

}wi

, (3)

= L1i(ψi, pi)L2i(pi)

where wi = 1 is presence.
Let ηs = ψsθs for sites s = 1, . . . , S1 and then the likelihood can be re-written

as a conditional likelihood for detection as in

L(ηs, ps) = (1 − ηs)zsη1−zs
s ×

{
pys

s (1 − ps)1−ys

θs

}1−zs

= L1(ηs)L2(ps). (4)

Modelling Detection. The conditional likelihood for detection L2(ps) can be
modelled with the vglm function in the VGAM package in R [32–34], and examples
are given in [15]. Let psj be the detection probability at site s on occasion
j(= 1, . . . , τ) for an occupied site s then θs = 1−∏τ

j=1(1−psj) is the probability
of at least one detection at site s for an occupied site. If there is no dependence
on the survey occasion then psj = ps and θs = 1 − (1 − ps)τ . Then, detection
can be modelled with a vector of covariates usj via psj = h(uT

sjβ) for a vector of

1 For ease of derivations we make some slight modifications to notation.



76 N. Karavarsamis

coefficients β ∈ R
q. The function h usually will be the logistic function h(x) =

(1 + exp(−x)−1). For time dependent covariates on detection the likelihood is

L(ηs,ps) = (1 − ηs)zsη1−zs
s ×

{∏τ
j=1 p

ysj

sj (1 − psj)1−ysj

θs

}1−zs

= L1(ηs)L2(ps),

where ps = (ps1, . . . , psτ )T for time dependent probabilities. For time indepen-
dent case detection is constant over survey occasions, ps and ps = p(us,β) =
h(uT

s β) [15]. The contribution of site s to the log-likelihood is then

�(ηs,ps) = zs log(1 − ηs) + (1 − zs) log(ηs) (5)

+ (1 − zs)

⎧
⎨

⎩

τ∑

j=1

ysj log(psj) +
τ∑

j=1

(1 − ysj) log(1 − psj) − log(θs)

⎫
⎬

⎭
.

(6)

In the first stage, (6) is used to obtain estimated detection coefficients β̂ and
these yield the fitted values p̂s. With these, calculate θ̂s and define η̃s = ψsθ̂.
Then in the second stage, use η̃ in (5) to estimate occupancy ψ. A large sample
variance Vβ is derived in [15]. Note that the conditional likelihood estimators p̂
will not be the mles, however [15] showed that estimation is not compromised
by this fact.

Modelling Occupancy. In [15] explored three estimation methods for occu-
pancy. Direct numeric maximisation of the first partial likelihood L1s(ψs, ps) as
a function of ψs from (3). Then ψs = h(xT

s α) where xs is a vector of covariates
associated with site s and α ∈ R

p is a vector of coefficients. To estimate α,
maximise the partial likelihood

∏S
s=1 L1s(η̃s) where ps and hence θs have been

replaced by its estimator from the first stage p̂s = ps(β̂). Then,

L1(α) =
S∏

s=1

L1s(η̃s) ∝
S∏

s=1

(1 − ψsθ̂s)zsψ1−zs
s ,

where ws = 1 − zs and the log-partial likelihood is

�(α) =
S∑

s=1

{
(1 − ws) log(1 − ψsθ̂s) + ws log(ψs)

}
.

This may be maximised numerically using the optim function in R.
The potential instability of the maximum likelihood estimates when com-

puted using numerical optimization through the function optim in R motivated
[15] to develop an iterative weighted least squares (IWLS) approach. This is
quite straightforward for the logistic model in our two-stage approach.
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For a logistic model, let matrix X have sth column xs, w = (w1, . . . , wS)T ,
E(ws) = ηs = θsψs, η = (η1, . . . , ηS)T . Then, as θs is not a function of
α, maximising the partial log-likelihood is equivalent to maximising �(η) =
∑S

s=1 {(1 − ws) log(1 − ηs) + ws log(ηs)}. Let η(α) be η evaluated at α and set
V = diag{(1 − η)η} and U = diag{θsψs(1 − ψs)}. Then α(k) is estimate at
the kth step and let Z = UXα(k) + w − η(α(k)). Then the estimate at the

(k+1)th step is α(k+1) =
(
XUV −1UXT

)−1

XUV −1UZ and this is repeated
until convergence to yield the IWLS estimate for α. An estimate of the expected
Fisher information corresponding to the partial likelihood, E {I(α,β)}, is given
by Ĩ(α,β) = XUV −1UXT . Details and variances are derived in [15].

An iterative offset method was also explored in [15]. Their results show that
the IWLS is preferred and recommend optim if IWLS does not converge. We
defer further details and results with examples to their respective sources.

6.3 GAMs

Let us be the vector of covariates associated with detection whose effects
will be modelled parametrically and vs1, . . . , vsK be those that will be mod-
elled nonparametrically. Let the GAM for the linear predictor κs is κs =
uT

s β + l1(vs1) + · · · + lK(vsK). Similarly, for occupancy let xs be the para-
metric covariates and rs1, . . . , rsJ the nonparametric components. The GAM for
the linear predictor is νs = xT

s α1 + g1(rs1) + · · · + gJ(rsJ ).
Write α = (αT

1 ,αT
2 )T , where α1 are the parameters in the parametric com-

ponent of the model and α2 those in the nonparametric component.
For a given λS and penalty matrix P, the penalised partial log-likelihood is

�λ(α,β) = �(α1,β) − 1
2λSαT

2 Pα2,

�λ(α,β) =
S∑

s=1

{(1 − ws) log(1 − ψs(α1)θs) + ws log(ψs(α1))} − 1
2
λSαT

2 Pα2,

(7)
where l(α1,β) is the likelihood from the GLM procedure. The penalised partial
score function is Qλ(α,β) = Q(α1,β)−λSP∗α2, where Q(α,β) = ∂�(α,β)/∂α
and P∗ is a penalty matrix that penalises parameters in the nonparametric
component of the model.

These models are fitted through penalised partial likelihoods in two stages,
where, in the second stage, occupancy estimates are obtained through an itera-
tive offset method. In the first stage, fit a GAM to the redetection data to yield
estimates p̂s for all sites as functions of us and νs1, . . . , νsK .

In the second stage fit a GAM to the indicators of presence ws with an
offset using an iterative procedure. At the ith step the offset is a

(i)
s = log(θs) −

log 1 + exp(v(i−1))(1 − θs), for values of θ̂s for θs from the first step and v(i−1)

is the predictor from the (i − 1)th step. Details of the iterative offset procedure
are given in [15].

The GAM penalized likelihood is maximised, and coefficients estimated, by
penalized iteratively re-weighted least squares (P-IRLS) [31, p. 169]. We use the
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gam function of the mgcv package to implement these methods from within R
[24]. The penalty matrix may be extracted from fitting the gam function and
computes an AIC (Aikaike information criterion) for the penalised likelihood
using the effective degrees of freedom. The AIC is applied directly to model
selection. To avoid overfitting with GAMs one way to control complexity is
through the dimension of the basis of the smooth terms. Compute and minimize
the BICq = BIC −2k log(q/(1−q)) using the bestglm package in R [4,23]. It is
based on the BIC (Bayesian information criterion) for the fitted smooth model
for a given k corrected for the number of parameters in the overall model, and
q ∈ (0, 1). Then an appropriate k is chosen. This is done separately in each stage
for detection and occupancy.

The variance approximation is an extension of the GLM variance approxi-
mation except for the penalty matrix, which penalises parameters in the non-
parametric component of the model. Further details are given in [15].

7 Discussion

Occupancy models appear simple but their analysis is more difficult than
expected. We have resolved problems with construction of estimators and inter-
val estimators. Full likelihood approximations are possible but does not allow
easy access to GLM machinery, [28] showed that problems with the full likeli-
hood feed through to the covariate model. The two-stage approach with partial
likelihood allows full access to GLM machinery at both stages and estimators
from both stages are probabilities so are naturally constrained to be between 0
and 1. Mixed effects models and other maximisation method such as the EM
(estimation-maximisation) algorithm can also be considered [2]. A natural next
step is to resolve the boundary problems with covariates in the GLMs and GAMs
cases, and is deferred to future work.
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Abstract. We address the issue of selecting automatically the number
of components in mixture models with non-Gaussian components. As a
more efficient alternative to the traditional comparison of several model
scores in a range, we consider procedures based on a single run of the
inference scheme. Starting from an overfitting mixture in a Bayesian set-
ting, we investigate two strategies to eliminate superfluous components.
We implement these strategies for mixtures of multiple scale distribu-
tions which exhibit a variety of shapes not necessarily elliptical while
remaining analytical and tractable in multiple dimensions. A Bayesian
formulation and a tractable inference procedure based on variational
approximation are proposed. Preliminary results on simulated and real
data show promising performance in terms of model selection and com-
putational time.

Keywords: Gaussian scale mixture · Bayesian analysis · Bayesian
model selection · EM algorithm · Variational approximation

1 Introduction

A difficult problem when fitting mixture models is to determine the number K
of components to include in the mixture. A recent review on the problem with
theoretical and practical aspects can be found in [10]. Traditionally, this selec-
tion is performed by comparing a set of candidate models for a range of values of
K, assuming that the true value is in this range. The number of components is
selected by minimizing a model selection criterion, such as the Bayesian inference
criterion (BIC), minimum message length (MML), Akaike’s information criteria
(AIC) to cite just a few [13,23]. Of a slightly different nature is the so-called
slope heuristic [7], which involves a robust linear fit and is not simply based on
criterion comparisons. However, the disadvantage of these approaches is that a
whole set of candidate models has to be obtained and problems associated with
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running inference algorithms (such as EM) many times may emerge. When the
components distributions complexity increases, it may then be desirable to avoid
repetitive inference of models that will be discarded in the end. For standard
Gaussian distributions however, this is not really a problem as efficient software
such as Mclust [28] are available. Alternatives have been investigated that select
the number of components from a single run of the inference scheme. Apart from
the Reversible Jump Markov Chain Monte Carlo method of [26] which allows
jumps between different numbers of components, two types of approaches can
be distinguished depending on whether the strategy is to increase or to decrease
the number of components. The first ones can be referred to as greedy algo-
rithms (e.g. [30]) where the mixture is built component-wise, starting with the
optimal one-component mixture and increasing the number of components until
a stopping criterion is met. More recently, there seems to be an increase inter-
est among mixture model practitioners for model selection strategies that start
instead with a large number of components and merge them [18]. For instance,
[13] proposes a practical algorithm that starts with a very large number of com-
ponents, iteratively annihilates components, redistributes the observations to
the other components, and terminates based on the MML criterion. The app-
roach in [6] starts with an overestimated number of components using BIC, and
then merges them hierarchically according to an entropy criterion, while [24]
proposes a similar method that merges components based on measuring their
pair-wise overlap. Another trend in handling the issue of finding the proper
number of components is to consider Bayesian non-parametric mixture models.
This allows the implementation of mixture models with an infinite number of
components via the use of Dirichlet process mixture models. In [17,25] an infi-
nite Gaussian mixture (IGMM) is presented with a computationally intensive
Markov Chain Monte Carlo implementation. More recently, more flexibility in
the cluster shapes has been allowed by considering infinite mixture of infinite
Gaussian mixtures (I2GMM) [32]. The flexibility is however limited to a cluster
composed of sub-clusters of identical shapes and orientations, which may alter
the performance of this approach. Beyond the Gaussian case, infinite Student
mixture models have also been considered [31]. The Bayesian non-parametric
approach is a promising technique. In this work, we consider a Bayesian formu-
lation but in the simpler case of a finite number of components. We suspect all
our Bayesian derivations could be easily tested in a non parametric setting with
some minor adaptation left for future work. Following common practice that is
to start from deliberately overfitting mixtures (e.g. [3,11,21,22]), we investigate
component elimination strategies. Component elimination refers to a natural
approach which is to exploit the vanishing component phenomenon that has
been proved to occur in certain Bayesian settings [27]. This requires a Bayesian
formulation of the mixture for the regularization effect due to the integration of
parameters in the posterior distribution. This results in an implicit penalization
for model complexity. Although this approach can be based on arbitrary mixture
components, most previous investigation has been confined to Gaussian mixtures
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where the mixture components arise from multivariate Gaussian densities with
component-specific parameters.

In this work, we address the issue of selecting automatically the number of
components in a non-Gaussian case. We consider mixtures of so called multiple
scale distributions for their ability to handle a variety of shapes not necessar-
ily elliptical while remaining analytical and tractable. We propose a Bayesian
formulation of these mixtures and a tractable inference procedure based on a
variational approximation. We propose two different single-run strategies that
make use of the component elimination property.

The rest of the paper is organized as follows. Mixture of multiple scale dis-
tributions, their Bayesian formulation and inference are specified in Sect. 2. The
two proposed strategies are described in Sect. 3, illustrated with experiments on
simulated data in Sect. 4.

2 Bayesian Mixtures of Multiple Scale Distributions

2.1 Multiple Scale Mixtures of Gaussians

A M -variate scale mixture of Gaussians is a distribution of the form:

p(y;μ,Σ,θ) =
∫ ∞

0

NM (y;μ,Σ/w) fW (w;θ) dw (1)

where NM ( . ;μ,Σ/w) denotes the M -dimensional Gaussian distribution with
mean μ, covariance Σ/w and fW is the probability distribution of a univariate
positive variable W referred to hereafter as the weight variable. A common form
is obtained when fW is a Gamma distribution G(ν/2, ν/2) where ν denotes the
degrees of freedom (we shall denote the Gamma distribution when the variable
is X by G(x;α, γ) = xα−1Γ (α)−1 exp(−γx)γα where Γ denotes the Gamma
function). For this form, (1) is the density denoted by tM (y;μ,Σ, ν) of the
M-dimensional Student t-distribution with parameters μ (real location vector),
Σ (M × M real positive definite scale matrix) and ν (positive real degrees of
freedom parameter).

The extension proposed by [14] consists of introducing a multidimensional
weight. To do so, the scale matrix is decomposed into eigenvectors and eigen-
values. This spectral decomposition is classically used in Gaussian model-based
clustering [5,9]. In a Bayesian setting, it is equivalent but more convenient to use
matrix T the inverse of the scale matrix. We therefore consider the decomposi-
tion T = DADT where D is the matrix of eigenvectors of T (equivalently of Σ)
and A is a diagonal matrix with the corresponding eigenvalues. The matrix D
determines the orientation of the Gaussian and A its shape. Using this parame-
terization of T , the scale Gaussian part in (1) is set to NM (y;μ,DΔwA−1DT ),
where Δw = diag(w−1

1 , . . . , w−1
M ) is the M × M diagonal matrix whose diagonal

components are the inverse weights {w−1
1 , . . . , w−1

M }. The multiple scale gener-
alization consists therefore of:

p(y;μ,Σ,θ) =
∫ ∞

0

...

∫ ∞

0

NM (y;μ,DΔwA−1DT ) fw(w1...wM ;θ) dw1...dwM (2)
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where fw is now a M-variate density depending on some parameter θ to be fur-
ther specified. In what follows, we will consider only independent weights, i.e.
θ = {θ1, . . . ,θM} with fw(w1 . . . wM ;θ) = fW1(w1;θ1) . . . fWM

(wM ;θM ). For
instance, setting fWm

(wm; θm) to a Gamma distribution G(wm;αm, γm) results
in a multivariate generalization of a Pearson type VII distribution (see e.g. [20]
vol. 2 chap. 28 for a definition of the Pearson type VII distribution). For iden-
tifiability, this model needs to be further specified by fixing all γm parameters,
for instance to 1. Despite this additional constraint, the decomposition of Σ still
induces another identifiability issue due to invariance to a same permutation of
the columns of D,A and elements of α = {α1, . . . , αM}. In a frequentist setting
this can be solved by imposing a decreasing order for the eigenvalues in A. In
a Bayesian setting one way to solve the problem is to impose on A a non sym-
metric prior (see Sect. 2.2). An appropriate prior on D would be more difficult
to set. The distributions we consider are therefore of the form,

MP(y; μ, D, A, α) =
M∏

m=1

Γ (αm + 1/2)Am

Γ (αm)(2π)1/2

(
1 +

Am[DT (y − μ)]2m
2

)−(αm+1/2)

(3)

Let us consider an i.i.d sample y = {y1, . . . ,yN} from a K-component mix-
ture of multiple scale distributions as defined in (3). With the usual notation
for the mixing proportions π = {π1, . . . , πK} and ψk = {μk,Ak,Dk,αk} for
k = 1 . . . K, we consider,

p(y;Φ) =
K∑

k=1

πkMP(y;μk,Ak,Dk,αk)

where Φ = {π,ψ} with ψ = {ψ1, . . . ψK} denotes the mixture parameters.
Additional variables can be introduced to identify the class labels: {Z1, . . . , ZN}
define respectively the components of origin of {y1, . . . ,yN}. An equivalent mod-
elling is therefore:

∀i ∈ {1 . . . N}, Yi|Wi = wi, Zi = k,ψ ∼ N (μk,DkΔwi
A−1

k DT
k ) ,

Wi|Zi = k,ψ ∼ G(αk1, 1) ⊗ . . . ⊗ G(αkM , 1) ,

and Zi|π ∼ M(1, π1, . . . , πk) ,

where Δwi
= diag(w−1

i1 , . . . , w−1
iM ), symbol ⊗ means that the components of Wi

are independent and M(1, π1, . . . , πk) denotes the Multinomial distribution. In
what follows, the weight variables will be denoted by W = {W1, . . . ,WN} and
the labels by Z = {Z1, . . . , ZN}.

2.2 Priors on Parameters

In a Bayesian formulation, we assign priors on parameters in Φ. However, it
is common (see e.g. [1]) not to impose priors on the parameters αk since no
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convenient conjugate prior exist for these parameters. Then the scale matrix
decomposition imposes that we set priors on μk and Dk,Ak. For the means μk,
the standard Gaussian prior can be used:

μk | Ak,Dk ∼ N (mk,DkΛ−1
k A−1

k DT
k ) , (4)

where mk (vector) and Λk (diagonal matrix) are hyperparameters and we shall
use the notation m = {m1, . . . ,mK} and Λ = {Λ1, . . . ΛK}. For Ak and Dk

a natural solution would be to use the distributions induced by the standard
Wishart prior on Tk but this appears not to be tractable in inference scheme
based on a variational framework. The difficulty lies in considering an appropri-
ate and tractable prior for Dk. There exists a number of priors on the Stiefel
manifold among which a good candidate could be the Bingham prior and exten-
sions investigated by [19]. However, it is not straightforward to derive from it a
tractable E-Φ1 step (see Sect. 2.3) that could provide a variational posterior dis-
tribution. Nevertheless, this kind of priors could be added in the M-D-step. The
simpler solution adopted in the present work consists of considering Dk as an
unknown fixed parameter and imposing a prior only on Ak, which is a diagonal
matrix containing the positive eigenvalues of Tk. It is natural to choose:

Ak ∼ ⊗M
m=1G(λkm, δkm) , (5)

where λk = {λkm,m = 1 . . . M} and δk = {δkm,m = 1 . . . M} are hyperpa-
rameters with λ = {λ1, . . . λK} and δ = {δ1, . . . δK} as additional notation. It
follows the joint prior on μ1:K = {μ1, . . . ,μK}, A1:K = {A1, . . . ,AK} given
D1:K = {D1, . . . ,DK}

p(μ1:K ,A1:K ;D1:K) =
K∏

k=1

p(μk|Ak;Dk) p(Ak) (6)

where the first term in the product is given by (4) and the second term by (5).
Then a standard Dirichlet prior D(τ1, . . . , τK) is used for the mixing weights

π with τ = {τ1, . . . , τK} the Dirichlet hyperparameters.
For the complete model, the whole set of parameters is denoted by Φ. Φ =

{Φ1,Φ2} is decomposed into a set Φ1 = {Φ1
1, . . . Φ

1
K} with Φ1

k = {μk,Ak, πk}
of parameters for which we have priors and a set Φ2 = {Φ2

1, . . . Φ
2
K} with

Φ2
k = {Dk,αk} of unknown parameters considered as fixed. In addition, hyper-

parameters are denoted by Φ3 = {Φ3
1, . . . Φ

3
K} with Φ3

k = {τk,mk,Λk,λk, δk}.

2.3 Inference Using Variational Expectation-Maximization

The main task in Bayesian inference is to compute the posterior probability
of the latent variables X = {W ,Z} and the parameter Φ for which only
the Φ1 part is considered as random. We are therefore interested in comput-
ing the posterior p(X,Φ1 | y,Φ2). This posterior is intractable and approxi-
mated here using a variational approximation q(X,Φ1) with a factorized form
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q(X,Φ1) = qX(X) qΦ1(Φ1) in the set D of product probability distributions.
The so-called variational EM procedure (VEM) proceeds as follows. At iteration
(r), the current parameters values are denoted by Φ2(r−1) and VEM alternates
between two steps,

E-step: q(r)(X,Φ1) = arg max
q∈D

F(q,Φ2(r−1))

M-step: Φ2(r) = arg max
Φ2

F(q(r),Φ2) ,

where F is the usual free energy

F(q,Φ2) = Eq[log p(y,X,Φ1;Φ2)] − Eq[log q(X,Φ1)]. (7)

The full expression of the free energy is not necessary to maximize it and to
derive the variational EM algorithm. However, computing the free energy is use-
ful. It provides a stopping criterion and a sanity check for implementation as
the free energy should increase at each iteration. Then it can be used as speci-
fied in Sect. 3.1 as a replacement of the likelihood to provide a model selection
procedure. Its detailed expression is given in a companion paper [2].

The E-step above divides into two steps. At iteration (r), denoting in addition
by q

(r−1)
X the current variational distribution for X:

E-Φ1-step: q
(r)
Φ1 (Φ1) ∝ exp(E

q
(r−1)
X

[log p(Φ1|y,X;Φ2(r−1))]) (8)

E-X-step: q
(r)
X (X) ∝ exp(E

q
(r)
φ1

[log p(X|y,Φ1;Φ2(r−1))]) . (9)

Then the M-step reduces to:

M-step: Φ2(r) = arg max
φ2

E
q
(r)
X q

(r)
Φ1

[log p(y,X,Φ1;Φ2)] .

The resulting variational EM algorithm is specified in [2] in two cases depending
on the prior used for the mixing weights. For component elimination, the central
quantity is q

(r)
π (π) the approximate variational posterior of π that itself involves

q
(r)
Z (Z) =

∏
i q

(r)
Zi

(Zi) the variational posterior of the labels.
In what follows, we illustrate the use of this Bayesian formulation and its vari-

ational EM implementation on the issue of selecting the number of components
in the mixture.

3 Single-Run Number of Component Selection

In this work, we consider approaches that start from an overfitting mixture with
more components than expected in the data. In this case, as described by [16],
identifiability will be violated in two possible ways. Identifiability issues can arise
either because some of the components weights have to be zero (then component-
specific parameters cannot be identified) or because some of the components
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have to be equal (then their weights cannot be identified). In practice, these two
possibilities are not equivalent as checking for vanishing components is easier and
is likely to lead to more stable behavior than testing for redundant components
(see e.g. [27]).

Methods can be considered in a Bayesian and maximum likelihood setting.
However, in a Bayesian framework, in contrast to maximum likelihood, consid-
ering a posterior distribution on the mixture parameters requires integrating out
the parameters and this acts as a penalization for more complex models. The
posterior is essentially putting mass on the sparsest way to approximate the true
density, see e.g. [27]. Although the framework of [27] is fully Bayesian with priors
on all mixture parameters, it seems that this penalization effect is also effective
when only some of the parameters are integrated out. This is observed by [11]
who use priors only for the component mean and covariance parameters. See
[2] for details on the investigation of this alternative case with no prior on the
mixing weights.

The idea of using overfitting finite mixtures with too many components K
has been used in many papers. In a deliberately overfitting mixture model, a
sparse prior on the mixture weights will empty superfluous components during
estimation [21]. To obtain sparse solutions with regard to the number of mixture
components, an appropriate prior on the weights π has to be selected. Guidelines
have been given in previous work when the prior for the weights is a symmetric
Dirichlet distribution D(τ1, . . . , τK) with all τk’s equal to a value τ0. To empty
superfluous components automatically the value of τ0 has to be chosen appro-
priately. In particular, [27] proposed conditions on τ0 to control the asymptotic
behavior of the posterior distribution of an overfitting mixture with respect to
the two previously mentioned regimes. One regime in which a high likelihood
is set to components with nearly identical parameters and one regime in which
some of the mixture weights go to zero. More specifically, if τ0 < d/2 where d is
the dimension of the component specific parameters, when N tends to infinity,
the posterior expectation of the weight of superfluous components converges to
zero. In practice, N is finite and as observed by [21], much smaller value of τ0
are needed (e.g. 10−5). It was even observed by [29] that negative values of τ0
were useful to induce even more sparsity when the number of observations is too
large with respect to the prior impact. Dirichlet priors with negative parame-
ters, although not formally defined, are also mentioned by [13]. This latter work
does not start from a Bayesian formulation but is based on a Minimum Message
Length (MML) principle. [13] provide an M-step that performs component anni-
hilation, thus an explicit rule for moving from the current number of components
to a smaller one. A parallel is made with a Dirichlet prior with τ0 = −d/2 which
according to [29] corresponds to a very strong prior sparsity.

In a Bayesian setting with symmetric sparse Dirichlet priors D(τ0, . . . , τ0), the
theoretical study of [27] therefore justifies to consider the posterior expectations
of the weights E[πk|y] and to prune out the too small ones. In practice this
raises at least two additional questions: which expression to use for the estimated
posterior means and how to set a threshold under which the estimated means
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are considered too small. The posterior means estimation is generally guided by
the chosen inference scheme. For instance in our variational framework with a
Dirichlet prior on the weights, the estimated posterior mean E[πk|y] takes the
following form (the (r) notation is removed to signify the convergence of the
algorithm),

E[πk|y] ≈ Eqπ
[πk] =

τ̃k∑K
l=1 τ̃l

=
τk + nk∑K
k=1 τk + N

(10)

where nk =
∑N

i=1 qZi
(k) and the expression for qZi

(k) is detailed in [2]. If we
are in the no weight prior case, then the expectation simplifies to

πk ≈ nk

N
(11)

with the corresponding expression of qZi
(k) also given in [2].

Nevertheless, whatever the inference scheme or prior setting, we are left with
the issue of detecting when a component can be set as empty. There is usually a
close relationship between the component weight πk and the number of observa-
tions assigned to component k. This later number is itself often replaced by the
sum nk =

∑N
i=1 qZi

(k). As an illustration, the choice of a negative τ0 by [13] cor-
responds to a rule that sets a component weight to zero when nk =

∑N
i=1 qZi

(k)
is smaller than d/2. This prevents the algorithm from approaching the bound-
ary of the parameter space. When one of the components becomes too weak,
meaning that it is not supported by the data, it is simply annihilated. One of
the drawbacks of standard EM for mixtures is thus avoided. The rule of [13] is
stronger than that used by [22] which annihilates a component when the sum
nk reduces to 1 or the one of [11] which corresponds to the sum nk lower than
a very small fraction of the sample size, i.e.

∑N
i=1 qZi

(k)/N < 10−5 where N
varies from 400 to 900 in their experiments. Note that [22] use a Bayesian frame-
work with variational inference and their rule corresponds to thresholding the
variational posterior weights (10) to 1/N because they set all τk to 0 in their
experiments.

In addition to these thresholding approaches, alternatives have been devel-
oped that would worth testing to avoid the issue of setting a threshold for sep-
arating large and small weights. In their MCMC sampling, [21] propose to con-
sider the number of non-empty components at each iteration and to estimate
the number of components as the most frequent number of non-empty compo-
nents. This is not directly applicable in our variational treatment as it would
require to generate hard assignments to components at each iteration instead of
dealing with their probabilities. In contrast, we could adopt techniques from the
Bayesian non parametrics literature which seek for optimal partitions, such as
the criterion of [12] using the so-called posterior similarity matrix ([15]). This
matrix could be approximated easily in our case by computing the variational
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estimate of the probability that two observations are in the same component.
However, even for moderate numbers of components, the optimization is already
very costly.

In this work, we consider two strategies for component elimination. The first
one is a thresholding approach while the second one is potentially more general
as it is based on increasing the overall fit of the model assessed via the vari-
ational free energy at each iteration. Also it avoids the choice of a threshold
for separating between large or small weights. The tested procedures are more
specifically described in the next section.

3.1 Tested Procedures

We compare two single-run methods to estimate the number of components in
a mixture of multiple scale distributions.

Thresholding Based Algorithm: A first method is directly derived from a
Bayesian setting with a sparse symmetric Dirichlet prior likely to induce vanish-
ing coefficients as supported by the theoretical results of [27]. This corresponds
to the approach adopted in [21] and [22]. The difference between the later two
being how they check for vanishing coefficients. Our variational inference leads
more naturally to the solution of [22] which is to check the weight posterior
means, that is whether at each iteration (r),

n
(r)
k < (Kτ0 + N)ρt − τ0 (12)

where ρt is the chosen threshold on the posterior means. When ρt is set such
that (12) leads to n

(r)
k < 1, this method is referred to, in the next Section, as

SparseDirichlet+πtest. For comparison, the algorithm run with no intervention
is called SparseDirichlet.

Free Energy Based Algorithm: We also consider a criterion based on the
free energy (7) to detect components to eliminate. This choice is based on the
observation that when we cannot control the hyperparameters (e.g τk) to guide
the algorithm in the vanishing components regime, the algorithm may as well
go to the redundant component regime. The goal is then to test whether this
alternative method is likely to handle this behavior. The proposal is to start
from a clustering solution with too many components and to try to remove
them using a criterion based on the gain in free energy. In this setting, the
components that are removed are not necessarily vanishing components but can
also be redundant ones. In the proposed variational EM inference framework,
the free energy arises naturally as a selection criterion. It has been stated in [4]
and [8] that the free energy penalizes model complexity and that it converges to
the well known Bayesian Information Criterion (BIC) and Minimum Description
Length (MDL) criteria, when the sample size increases, illustrating the interest
of this measure for model selection.
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The free energy expression used is given in [2]. The heuristic denoted by
SparseDirichlet+FEtest can be described as follows (see the next section for
implementation details).

1. Iteration r = 0: Initialization of the K(0) clusters and probabilities using for
instance repetitions of k-means or trimmed k-means.

2. Iteration r ≥ 1:
(a) E and M steps updating from parameters at iteration r − 1
(b) Updating of the resulting Free Energy value
(c) In parallele, for each cluster k ∈ {1 . . . K(r−1)}

i. Re-normalization of the cluster probabilities when cluster k is
removed from current estimates at iteration r − 1: the sum over the
remaining K(r−1) − 1 clusters must be equal to 1

ii. Updating of the corresponding E and M steps and computation of
the associate Free Energy value

(d) Selection of the mixture with the highest Free Energy among the K(r−1)-
component mixture (step (b)) or one of the (K(r−1) −1)-component mix-
tures (step (c)).

(e) Updating of K(r) accordingly, to K(r−1) or K(r−1) − 1 .
3. When no more cluster deletion occur (eg. during 5 steps), we switch to the

EM algorithm (SparseDirichlet).

4 Experiments

In addition to the 3 methods SparseDirichlet+πtest, SparseDirichlet+FEtest and
SparseDirichlet, referred to below as MP single-run procedures, we consider
standard Gaussian mixtures using the Mclust package [28] including a version
with priors on the means and covariance matrices. The Bayesian Information
Criterion (BIC) is used to select the number of components from K = 1 to 10.
The respective methods are denoted below by GM+BIC and Bayesian GM+BIC.
Regarding mixtures of MP distributions, we also consider their non Bayesian
version, using BIC to select K, denoted below by MMP+BIC.

In practice, values need to be chosen for hyperparameters. These include the
mk that are set to 0, the Λk that are set to εIM with ε small (set to 10−4) so
has to generate a large variance in (4). The δkm are then set to 1 and λkm to
values 5 × 10−4 = λ1 < λ2 < . . . < λM = 10−3. The τk’s are set to 10−3 to favor
sparse mixtures.

Initialization is also an important step in EM algorithms. For one data sam-
ple, each single-run method is initialized I = 10 times. These I = 10 initializa-
tions are the same for all single-run methods. Each initialization is obtained with
K = 10 using trimmed k-means and excluding 10% of outliers. Each trimmed
kmeans output is the one obtained after running the algorithm from R = 10
restarts and selecting the best assignment after 10 iterations. For each run of a
procedure (data sample), the I = 10 initializations are followed by 5000 itera-
tions maximum of VEM before choosing the best output. For Gaussian mixtures,
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the initialization procedure is that embedded in Mclust. For MP models, initial
values of the αkm’s are set to 1.

Another important point for single-run procedures, is how to finally enu-
merate remaining components. For simplicity, we report components that are
expressed by the maximum a posteriori (MAP) rule, which means components
for which there is at least one data point assigned to them with the highest
probability.

4.1 Simulated Data

We consider several models (more details can be found in [2]), 3 Gaussian mix-
tures and 10 MP mixtures, with 10 simulated samples each, for a total of 130
samples, K varying from 3 to 5, N from 900 to 9000, with close or more separated
clusters. The results are summarized in Table 1 and the simulated samples illus-
trated in Fig. 1. Gaussian mixture models provide the right component number
in 26% to 32% of the cases, which is higher than the number of Gaussian mix-
tures in the test (23%). All procedures hesitate mainly between the true number
and this number plus 1. We observe a good behavior of the free energy heuristic
with a time divided by 3 compared to the non Bayesian MP mixture procedure,
although the later benefits from a more optimized implementation. For the first
strategy, the dependence to the choice of a threshold value is certainly a limita-
tion although some significant gain is observed over the cases with no component
elimination (SparseDirichlet line in Table 1). Overall, eliminating components on
the run is beneficial, both in terms of time and selection performance but using
a penalized likelihood criterion (free energy) to do so avoid the commitment to a
fix threshold and is more successful. A possible reason is that small components
are more difficult to eliminate than redundant ones. Small components not only
require the right threshold to be chosen but also they may appear at much latter
iterations as illustrated in Fig. 2.

Table 1. 13 models simulated 10 times each: the true number of components is varying
so the columns indicate the difference between the selection and the truth. The average
time (for the total of the I = 10 repetitions, over the 130 samples) is indicated in the
last column. The most frequent selection (in %) is indicated by a box while the true
value is in green.

Procedures (10 restarts) Difference between selected and true
number of components

Average time
(in seconds)

0 1 2 3 4 5 6 7

GM+BIC 26.1 33.0 8.4 3.8 19.2 1.5 2.3 5.3 177

Bayesian GM+BIC 31.5 34.6 3.0 3.0 20.7 3.8 1.5 1.5 92

MMP+BIC 94.6 5.3 . . . . . . 9506

SparseDirichlet 54.6 39.2 5.3 .7 . . . . 10355

SparseDirichlet+πtest 70.0 27.6 1.5 .7 . . . . 4640

SparseDirichlet+FEtest 99.2 . . .7 . . . . 3125
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Fig. 1. Examples of simulated samples. First line: 3 Gaussian mixtures with 3 and 5
components. Second line: MP mixtures with different dof and increasing separation
from left to right. Third line: MP mixtures with increasing separation, from left to
right, and increasing number of points, N = 900 for the first plot, N = 9000 for the
last two.
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Fig. 2. Illustration of the two component elimination strategies: Free energy gain strat-
egy, iterations 10 to 50 (left) and too small component proportion test, iterations 10
to 720 (right). Eliminations are marked with red lines. Most of them occur at earlier
iterations when using the free energy test.
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5 Discussion and Conclusion

We investigated, in the context of mixtures of non-Gaussian distributions, differ-
ent single-run procedures to select automatically the number of components. The
Bayesian formulation makes this possible when starting from an overfitting mix-
ture, where K is larger than the expected number of components. The advantage
of single run procedures is to avoid time consuming comparison of scores for each
mixture model from 1 to K components. There are different ways to implement
this idea: full Bayesian settings which have the advantage to be supported by
some theoretical justification [27] and Type II maximum likelihood as proposed
by [11] (not reported here but investigated in [2]). For further acceleration, we
investigated component elimination which consists of eliminating components
on the run. They are two main ways to do so: components are eliminated as
soon as they are not supported by enough data points (their estimated weight
is under some threshold) or when their removal does not penalize the overall fit.
For the latest case, we proposed a heuristic based on the gain in free energy. The
free energy acts as a penalized likelihood criterion and can potentially eliminate
both too small components and redundant ones. Redundant components do not
necessarily see their weight tend to zero and cannot be eliminated via a simple
thresholding.

As non Gaussian components, we investigated in particular the case of mul-
tiple scale distributions [14], which have been shown to perform well in the
modelling of non-elliptical clusters with potential outliers and tails of various
heaviness. We proposed a Bayesian formulation of mixtures of such multiple
scale distributions and derived an inference procedure based on a variational
EM algorithm to implement the single-run procedures.

On preliminary experiments, we observed that eliminating components on the
run is beneficial, both in terms of time and selection performance. Free energy
based methods appeared to perform better than posterior weight thresholding
methods: using a penalized likelihood criterion (free energy) avoids the commit-
ment to a fix threshold and is not limited to the removal of small components.
However, a fully Bayesian setting is probably not necessary as both in terms
of selection and computation time, Type II maximum likelihood on the weights
was competitive with the use of a Dirichlet prior with a slight advantage to the
latter (results reported in [2]).

To confirm these observations, more tests on larger and real data sets would
be required to better compare and understand the various characteristics of each
procedure. Theoretical justification for thresholding approaches, as provided by
[27], applies for Gaussian mixtures but may not hold in our case of non-elliptical
distributions. A more specific study would be required and could provide addi-
tional guidelines as how to set the threshold in practice. Also time comparison in
our study is only valid for the Bayesian procedures for which the implementation
is similar while the other methods using BIC have been better optimized, but
this does not change the overall conclusion as regards computational efficiency.
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6 Supplementary Material

All details on the variational EM and free energy computations, plus additional
illustrations can be found in a companion paper [2].
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Abstract. Many modern statistical settings feature the analysis of data
that may arise from unknown generating processes, or processes for which
the generative models are computationally infeasible to interact with.
Conventional estimation and inference solution methods in such settings
may be unwieldy or impossible to implement. The approximate Bayesian
computation (ABC) approach is a potent method in such scenarios, since
it does not require the knowledge of the underlying generative model in
order to perform inference. Furthermore, when combined with sufficiently
regular discrepancy measurements such as the energy statistic, ABC can
be shown to have desirable asymptotic properties. We provide a concise
introduction to the general ABC framework. To demonstrate the capa-
bilities and usefulness of the ABC approach, we present the analyses of
a number of artificial examples as well as one of a real-data example
pertaining to circular statistics data.

Keywords: Approximate Bayesian computation · Bayesian statistics ·
Circular statistics · Energy statistic · Normal mixture model

1 Introduction

Suppose that we observe independent and identically distributed (IID) data
Xn = {Xi}n

i=1 (n ∈ N), where X1 ∈ X ⊆ R
d (d ∈ N) arises from a data generat-

ing process (DGP) with probability density function or probability mass function
(PDF or PMF) of form f (x|θ), where θ ∈ T is some parameter vector. From
hereon in, we shall refer to both PDF and PMF as PDF, when the nomenclature
makes no difference.

As opposed to the classical frequentist framework of statistics, which consid-
ers that θ is a constant, the Bayesian approach considers that θ is a realization
of some random variable Θ with DGP characterized by the prior PDF π (θ) (cf.
[19, Ch. 5]). Thus, whereas the frequentist goal is to produce some estimator
Θ̂n = θ̂ (Xn) (function of the data) that is unbiased (E

(
Θ̂n

)
− θ = 0) or that

is consistent (Θ̂n − θ → 0, in probability or almost surely, as n → ∞), the goal
Bayesian inference is to characterize the posterior distribution of Θ|Xn = xn,
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where xn is some realization of Xn. That is, the Bayesian goal is to obtain the
posterior PDF

π (θ|xn) =
f (xn|θ) π (θ)∫

T
f (xn|θ) π (θ) dθ

, (1)

where f (xn|θ) =
∏n

i=1 f (Xi|θ) is the likelihood of Xn. Good introductions to
the Bayesian statistics literature can be found in the works of [13,16], and [24].

In general, when conducting Bayesian inference, one has access to the func-
tional forms of f (xn|θ) and π (θ), and can efficiently evaluate the functions
for any inputs xn and θ. If the PDFs f (xn|θ) and π (θ) are compatible, such
as under conjugacy (cf. [24, Sec. 2.2]), then one may be able to evaluate the
denominator

∫
T

f (xn|θ) π (θ) dθ in closed form, and therefore obtain a closed
form expression for the posterior PDF π (θ|xn). If a closed form expression for∫
T

f (xn|θ) π (θ) dθ is not available, then it is still possible to use Markov chain
Monte Carlo techniques to sample parameters from the posterior distribution,
which can be used to estimate (1) and its related statistics (cf. [17]).

Unfortunately, one does not always have access to the likelihood function
f (xn|θ), or also commonly, one does not have an efficient means of computing
the likelihood function. In situations where access to the likelihood function is
inhibited, an approximation of the posterior PDF is required. In this paper, we
consider the so-called approximate Bayesian computation (ABC) method.

ABC is a simulation based method for approximation of the posterior PDF
(1). The modern ABC method primarily arose from the need for intractable
likelihood approximations in genetic settings, such as in the articles of [23] and
[14]. Good modern introductions to the ABC method appear in [7,9], and [18].

There are now many variants on the theme of ABC algorithms. In order
to keep the paper concise, we shall concentrate our attention on the so-called
rejection ABC algorithm, which requires the notion of a data discrepancy mea-
surement. Again, for conciseness, we shall concentrate our attention on the use
of the so-called energy statistic (ES) of [20] and [22].

The remainder of the paper shall proceed as follows. In Sect. 2, we describe the
basic rejection ABC algorithm. In Sect. 3, we present the ES and show how one
can construct an ABC algorithm using the ES. In Sect. 4, a number of artificial
examples are used to illustrate the ES-based ABC algorithm. In Sect. 5, a real-
data example to circular statistics data is provided as a demonstration of the
applicability of the presented methodology. A conclusion follows in Sect. 6.

2 Approximate Bayesian Computation

Let Xn be as in Sect. 1 and let Ym = {Yi}m
i=1 (m ∈ N) be an IID random

sample, where Y1 ∈ X. We call Ym the quasi-sample. Define D (Xn,Ym) ≥ 0
to be some discrepancy measurement, that measures how different the sample
Xn and Ym are to one another. Here, we require the properties that when D
is small, the samples Xn and Ym are similar to one another in some sense, and
similarly, when D is large, the two samples are different.
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Using D, and for some m ∈ N and some tolerance ε > 0, the goal of ABC is
to approximate the posterior PDF (1), via the so-called quasi-posterior PDF

πε,m (θ|xn) =

∫
X
[[D (xn,ym) ≤ ε]]f (ym|θ) π (θ) dym∫

T

∫
X
[[D (xn,ym) ≤ ε]]f (ym|θ) π (θ) dymdθ

, (2)

where [[A]] is the Iverson bracket, which takes a value of 1 if the logical proposition
A is true, and takes value of 0, otherwise (cf. [5]). Here, we can configure m and
ε to tweak the quality of the approximation that (2) provides. For example, if
we take ε to be small, then the approximation will be more accurate, whereas
a larger value of ε will yield a more liberal approximation. As noted in [10], a
degree of liberty may be suitable in situations where there may be potential
for model misspecification. The value of m is usually taken to be equal to n.
However, computational considerations may influence the choices of m and ε, as
we shall discuss in the sequel.

Unfortunately, we cannot evaluate (2) explicitly. However it is possible to
drawn an IID random sample TN = {Θj}N

j=1 (N ∈ N) from the quasi-posterior
distribution that is characterized by (2), using the so-called rejection algorithm.
Upon defining [N ] = {1, . . . , N}, we may present the rejection algorithm as
Algorithm 1.

Input: Data Xn. Data discrepancy function D. Accuracy parameter ε > 0.
quasi-sample size m ∈ N. Posterior sample size N ∈ N.
For: k ∈ [N ];

1. Generate Θ from DGP with PDF π (θ);
2. Generate Ym from GDP with PDF f (ym|Θ);
If: D (Xn,Ym) < ε;

Set Θk = Θ;
Else: Repeat Steps 1 and 2.

Output: Sample TN = {Θk}N
k=1 from the quasi-posterior DGP with PDF (2).

Algorithm 1. Rejection algorithm for generating an IID sample TN of size
N from the DGP that is characterized by the PDF (2).

Provided that D is sufficiently regular, it is provable that (2) converges to a
fixed asymptotic limiting distribution, as n → ∞ and m (n) → ∞, for any fixed
ε > 0, where m is a function of n. The following result was proved by [6].

Theorem 1. Let Xn and Ym be IID samples from DGPs that can be charac-
terized likelihood functionsf (xn|ϑ) and f (ym|θ), respectively, which are deter-
mined by parameters ϑ and θ. Suppose that

D (Xn,Ym) → D∞ (ϑ,θ) ,

almost surely, as n → ∞ and m (n) → ∞. If D ≥ 0, ε > 0, and D∞ (ϑ,θ) �= ε,
then

πε,m (θ|xn) → [[D∞ (ϑ,θ) ≤ ε]]π (θ)∫
T
[[D∞ (ϑ,θ) ≤ ε]]π (θ) dθ

,

almost surely, as n → ∞.



An Introduction to ABC 99

That is, the quasi-posterior PDF converges to a function that is proportional
to the prior PDF π (θ), truncated to the set that is characterized by the relation-
ship D∞ (ϑ,θ) ≤ ε, for fixed ϑ that is determined by Xn. This result provides
a theoretical guarantee that the quasi-posterior PDF has a limit as n gets large,
and that the limit concentrates the density of the quasi-posterior PDF around
a region that is determined by the sample Xn.

3 The Energy Statistic

Let f (x), g (x), and h (x) be a set of three PDFs over the domain X ⊆ R
d. We

may define a distance Δ (f, g) between any two PDFs as a function that satisfies
the following conditions:

1. Δ (f, g) ≥ 0 (non-negativity);
2. Δ (f, g) = 0 if and only if f = g (equivalence);
3. Δ (f, g) = Δ (g, f) (symmetry);
4. Δ (f, g) + Δ (g, h) ≥ Δ (f, h) (triangle inequality).

One such function Δ that satisfies the definition of a distance is the energy
distance (ED) function. Suppose that X1,X2 are IID and arise from a DGP
that is characterized by f (x), and that Y1,Y2 are IID and arise from a DGP
that is characterized by g (y) (x,y ∈ X). Then, the ED between f and g is
defined as

Δ (f, g) = 2E ‖X1 − Y1‖2 − E ‖X1 − X2‖2 − E ‖Y1 − Y2‖2 ,

where ‖·‖2 is the Euclidean distance. From Proposition 1 of [21], we have the
following result.

Proposition 1. Let X and Y arise from DGPs with PDFs f and g, respec-
tively. If f (x) = f (x|ϑ) and g (y) = f (y|θ) are parametric with respective
characteristic functions ϕ (t;ϑ) and ϕ (t;θ), and if the second moments of X
and Y exist, in the sense that E ‖X‖2 + E ‖Y ‖2 < ∞, then

Δ (f, g) =
Γ

(
d+1
2

)

π(d+1)/2

∫

Rd

|ϕ (t;ϑ) − ϕ (t;θ)|2
‖t‖d+1

2

dt. (3)

Thus, Proposition 1 ensures that when the second moments of f and g exist,
so does the distance Δ (f, g). Furthermore, if f (x) = f (x|ϑ) and g (y) = f (y|θ)
are parametric PDFs from the same family, then the ED is a function of the two
parameters ϑ and θ. In the parametric case, we thus write Δ (f, g) = Δ (ϑ,θ),
where Δ (ϑ,θ) equals the right-hand side of (3).

Let Xn be an IID sample from a DGP with PDF f and let Ym be an IID
sample from a DGP with PDF g. We may estimate Δ (f, g) using Xn and Ym

using the ES defined via the V-statistic
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E (Xn,Ym) =
2

mn

n∑
i=1

m∑
j=1

‖Xi − Yj‖2

− 1
n2

n∑
i=1

n∑
j=1

‖Xi − Xj‖2 − 1
m2

m∑
i=1

m∑
j=1

‖Yi − Yj‖2 ,

Under the assumption that E ‖X1‖22 + E ‖Y1‖22 < ∞, and provided that
min {m,n} → ∞, we have the result that E (Xn,Ym) converges almost surely
to Δ (f, g) (cf. [11]). Upon setting f (x) = f (x|ϑ) and g (y) = f (y|θ), and
letting D∞ (ϑ,θ) = Δ (ϑ,θ), we have the following corollary to Theorem 1.

Theorem 2. Let Xn and Ym be IID samples from DGPs that can be character-
ized likelihood functionsf (xn|ϑ) and f (ym|θ), respectively, such that E ‖X1‖22+
E ‖Y1‖22 < ∞. If D = E, ε > 0, and Δ (ϑ,θ) �= ε, then

πε,m (θ|xn) → [[Δ (ϑ,θ) ≤ ε]]π (θ)∫
T
[[Δ (ϑ,θ) ≤ ε]]π (θ) dθ

,

almost surely, as min {m,n} → ∞.

Thus, Theorem 2 establishes that the ES can be used within the ABC frame-
work in order to generate samples from DGPs quasi-posterior PDFs that are
meaningful in some sense.

4 Artificial Examples

From hereon in, we shall assume that we use the ES as our choice of discrepancy
measurement (i.e., we set D = E). We note that in Algorithm1, the specification
of the accuracy parameter ε determines the runtime of the algorithm. That is,
with all else held constant, we may anticipate that a larger value of ε will lead to
a faster runtime of the algorithm, since Steps 1 and 2 will require less repetition,
whereas smaller values of ε will lead to slower runtime. Furthermore, without
knowledge of the probability of the event D (Xn,Ym) ≤ ε, it is impossible to
predict the runtime of the algorithm, as a function of ε.

In order to make the runtime more predictable, we shall consider an alterna-
tive version of Algorithm 1, which over samples a fixed number ν ∈ N of param-
eters from the DGP characterized by π (θ), such that ν > N . Then, a fraction
γ ≤ N/ν of the sample is used to construct TN = {Θk}N

k=1, where the elements
of TN are chosen using the discrepancy measurement δk = D (Xn,Ym,k), where
Ym,k is a sample from the DGP characterized by the likelihood f (yk|Θk). Upon
defining 
·� to be the ceiling operator, we call this algorithm the quantile ABC
algorithm, and elaborate upon it in Algorithm 2.
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Input: Data Xn. Data discrepancy function D. Quantile parameter γ ∈ (0, 1).
quasi-sample size m ∈ N. Posterior sample size N ∈ N.
Define: Over-sample size ν = �N/γ�;
For: k ∈ [ν];

1. Generate Θ from DGP with PDF π (θ);
2. Generate Ym from GDP with PDF f (ym|Θ);
3. Compute δk = D (Xn,Ym);

Define:
Order statistics δ(1), . . . , δ(ν), equal to the values of δ1, . . . , δν , ordered from

smallest to largest;
Accuracy parameter ε = δ(N);
Posterior sample TN =

{
Θk|δk ≤ δ(N), k ∈ [ν]

}
;

Output: Sample TN from the quasi-posterior DGP with PDF (2).

Algorithm 2. γ-quantile algorithm for generating an IID sample TN of size
N from the DGP that is characterized by the PDF (2).

We note that the quantile ABC algorithm has been suggested in the past in
articles such as [4]. In Algorithm 2, we may note that γ plays the role of the
accuracy parameter, and the runtime of the algorithm is inversely proportional
to its value. However, unlike ε, for any value of γ, one requires a predictable
number ν = 
N/γ� of samples from the DGP that is characterized by the prior
π (θ). Thus, one may always predict the runtime of the algorithm for any choice
of γ. We shall use Algorithm 2 in all instances, for the remainder of the paper.

4.1 Normal Model

Let

φ
(
x;μ, σ2

)
=

(
2πσ2

)1/2
exp

[
− (x − μ)2

2σ2

]
,

denote the normal PDF with mean μ ∈ R and variance σ2 > 0. Suppose that Θ
is a mean parameter that is generated from a DGP with PDF π (θ) = φ (θ;μ, 1).
Furthermore, suppose that we observe IID data Xn = {Xi}n

i=1 that arise from a
DGP with PDF f (x|θ) = φ (x; θ, 1). Via a conjugacy relationship (cf. [16, Sec.
3.3]), we may write the posterior PDF f (θ|Xn) in closed form as

f (θ|Xn) = φ

(
θ;

1
n + 1

[
μ + nX̄n

]
,

1
n + 1

)
, (4)

where X̄n = n−1
∑n

i=1 Xi is the sample mean of Xn.
Suppose that μ = 1 and n = 100. Upon drawing a fixed sample Xn from

the prior DGP with PDF π (θ) = φ (θ; 1, 1), we implement Algorithm 2 with
m = 100, γ = 1/100, and N = 100, in order to obtain a quasi-posterior sample
TN = {Θk}N

k=1. Using the density() function from the R programming language
[15], we plot the kernel density estimate (KDE) of the sample TN along with
the true posterior PDF in Fig. 1. We notice that the two PDFs share centrality
and dispersion properties, and thus we can see that the ABC approach yields a
reasonable approximation to the posterior PDF in this situation.
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Fig. 1. Posterior and quasi-posterior PDFs for normal distribution example. The true
posterior PDF is represented by the solid curve, with the solid line indicating its mean.
The ABC quasi-posterior PDF is plotted as a dashed curve, with the dashed vertical
line indicating its mean.

4.2 Normal Mixture Model

Let

φ (x;μ,Σ) = |2πΣ|−1/2 exp
[
−1

2
(x − μ)�

Σ−1 (x − μ)
]

,

denote the multivariate normal PDF, where μ ∈ R
d and Σ ∈ R

d×d is a positive
definite and symmetric matrix. Here, (·)� is the matrix transposition operator.

Suppose that d = 2 and that data Xn = {Xi}n
i=1 are generated IID, such

that X1 arises from a DGP with two-component mixture density

f (x|θ) = pφ (x;μ1, I) + (1 − p) φ (x;−μ1, I) , (5)

where θ� = (μ, p) (μ ∈ R, and p ∈ [0, 1]). Here 1 and I are the ones vector and
identity matrix, respectively. We suppose for example that Xn is generated from
a DGP with θ� = ϑ� = (2, 1/2), in particular. For n = 100, a realization of Xn

is visualized in Fig. 2.
We wish to recover the parameter vector θ that defines the DGP of Xn via

ABC. We utilize Algorithm 2 with m = 100, γ = 1/100, and N = 100, in order
to generate a quasi-posterior sample TN = {Θk}N

k=1 using (5) to simulate data,
and using the prior PDF

π (θ) =
[[μ ∈ [0, 4]]]

4
× [[p ∈ [0, 1]]], (6)

which characterizes a distribution where the first coordinate of Θ is sam-
pled uniformly between 0 and 4, and where the second coordinate is sam-
pled uniformly, independent of the first coordinate, between 0 and 1. That is
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Fig. 2. A sample of n = 100 IID realizations from the DGP characterized by the PDF
(5), with ϑ� = (2, 1/2). Concentric circles indicate density contours of the two normal
distributions that make up the mixture model (5).
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Fig. 3. A sample of N = 100 IID realizations TN from the ABC quasi-posterior dis-
tribution, obtained using the mixture model (5) and prior distribution characterized
by (6). The contours indicate the KDE of the sample TN . The plus sign indicates the
location of ϑ� = (2, 1/2) and the cross indicates the mean of TN .

Θ ∼ Uniform ([0, 4] × [0, 1]). Figure 3 visualizes the quasi-posterior sample TN ,
along with its KDE, as estimated via the kde() function from the R package ks
of [3]. We observe that the quasi-posterior sample is concentrated in a region
that is very close to ϑ. In fact, the mean of the p coordinate is almost exactly
equal to 1/2.
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Fig. 4. PDFs of form (7), with θ ∈ {1/4, 1/2, 3/4}.
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Fig. 5. Quasi-posterior PDF for the triangle distribution example, obtained via a KDE
of the sample TN . The solid vertical line indicates the value ϑ = 1/10, and the dashed
vertical like indicates the mean of the quasi-posterior sample TN .

4.3 Triangle Distribution

We now suppose that the IID sample Xn = {Xi}n
i=1 is such that X1 is generated

from a triangle distribution that is characterized by the PDF

f (x|θ) =
2x

θ
[[x ∈ [0, θ]]] +

2 (1 − x)
1 − θ

[[x ∈ (θ, 1]]], (7)
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where θ ∈ (0, 1). Visualizations of the PDF (7) with different values of θ appears
in Fig. 4. A characterization of the difficulty in estimating the parameter θ of
the triangle distribution can be found in [12].

We generate a n = 100 observations sample Xn from a triangle distribution
with parameter θ = ϑ = 1/10. Upon setting m = 100, γ = 1/100, and N = 100,
and using (7) to characterize the DGP of Xn and sampling Θ from the uniform
prior distribution with PDF

π(θ) = [[θ ∈ [0, 1]]],

we obtain a quasi-posterior sample TN = {Θk}N
k=1. We plot the KDE for the

quasi-posterior sample in Fig. 5. We observe that the mean of the quasi-posterior
sample is a good estimator of the generative parameter value ϑ.

5 Application

The analysis of wind direction data plays an important role in meteorology.
The data set wind from the R package circular [1]. The data set Xn = {Xi}n

i=1

contains n = 310 measurements of wind direction, in radians anti-clockwise from
due East, such that Xi ∈ X = [0, 2π) (i ∈ [n]). Each measurement is taken at
the same location at the weather station of a place named Col de la Roa in
the Italian Alps. The measurements are all acquired between 29 January and 31
March, in 2001. A visualization of the data is presented in Fig. 6.
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Fig. 6. Visualization of the wind data set from the R package circular.

Due to the circular and thus non-Euclidean nature of the domain X (e.g., the
fact that 0 and 2π represent the same point), we cannot characterize the data
via DGPs that are only applicable to Euclidean spaces, such as via the normal
distribution. A particularly useful distribution for characterization of circular
data is the von Mises distribution (cf. [8, Sec. 2.2]).
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The von Mises distribution can be characterized via the PDF

f (x|θ) =
exp [κ cos (x − μ)]

2πI0 (κ)
, (8)

where μ ∈ X and κ > 0 represent the centrality and scale of the data, respectively,
and θ� = (μ, κ). Unfortunately, I0 (κ) is the modified Bessel function of order
zero, which takes the infinite sum form of

I0 (κ) =
∞∑

j=0

(j!)−2
(κ

2

)2j

,

and thus makes optimization involving (8) difficult. This therefore inhibits the
usual processes for obtaining parameter estimates. Fortunately, simulation from
a DGP that is characterized by (8) is still possible via the use of algorithms such
as that of [2].

We thus apply Algorithm2 to the problem of estimating θ for the wind data.
We set m = n, γ = 1/100, and N = 100. The prior PDF was chosen to take the
form

π (θ) =
[[μ ∈ X]]

2π
exp (−κ) .

That is, Θ ∼ Uniform (X) × Exponential (1). The rvonmises () function from
circular is then used to simulate data from a von Mises distribution with any
particular parameter combination that is drawn from the prior DGP. In Fig. 7, we
present the marginal histograms for the quasi-posterior sample TN = {Θk}N

k=1.
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Fig. 7. Histograms A and B visualize the distribution of the μ and κ coordinates from
the quasi-posterior sample TN , respectively, for the ABC algorithm applied to analyze
the wind data.
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We may also obtain the mean of TN , which we can write as Θ̄�
N =

(0.3297, 2.1404). We can then plot the estimated PDF f
(
x|Θ̄N

)
along with the

data in order to visualize the centrality and dispersion of the wind directions
in Fig. 8. We can simply observe that the density is highest in East North-East
direction with the scale parameter accounting for the variability around this
centroid. Overall the model provides a reasonable fit to the data.
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Fig. 8. Visualization of the ABC estimated PDF f
(
x|Θ̄N

)
along with the wind data.

6 Conclusion

Modern data analysis can require the estimation of computationally intractable
models. If data can be simulated from such models, then the ABC method pro-
vides a possible avenue for resolving the complex model estimation problem. The
ABC framework along with the ES statistic approach yields a theoretically and
practically sound solution for parameter estimation problems. We have demon-
strated that such a framework can be applied to study both simple artificial
estimation problems as well as interesting applied ones. Using our examples,
we invite the reader to explore the many potential uses of the ABC method to
estimation problems that they may face.
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Abstract. Current concerns about reproducibility in many research
communities can be traced back to a high value placed on empirical
reproducibility of the physical details of scientific experiments and obser-
vations. For example, the detailed descriptions by 17th century scientist
Robert Boyle of his vacuum pump experiments are often held to be the
ideal of reproducibility as a cornerstone of scientific practice. Victoria
Stodden has claimed that the computer is an analog for Boyle’s pump –
another kind of scientific instrument that needs detailed descriptions of
how it generates results. In the place of Boyle’s hand-written notes, we
now expect code in open source programming languages to be available
to enable others to reproduce and extend computational experiments. In
this paper we show that there is another genealogy for reproducibility,
starting at least from Euclid, in the production of proofs in mathemat-
ics. Proofs have a distinctive quality of being necessarily reproducible,
and are the cornerstone of mathematical science. However, the task of
the modern mathematical scientist has drifted from that of blackboard
rhetorician, where the craft of proof reigned, to a scientific workflow that
now more closely resembles that of an experimental scientist. So, what
is proof in modern mathematics? And, if proof is unattainable in other
fields, what is due scientific diligence in a computational experimental
environment? How do we measure truth in the context of uncertainty?
Adopting a manner of Lakatosian conversant conjecture between two
mathematicians, we examine how proof informs our practice of compu-
tational statistical inquiry. We propose that a reorientation of mathe-
matical science is necessary so that its reproducibility can be readily
assessed.
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In David Auburn’s Pulitzer prize-winning 2000 play Proof, a young mathe-
matician, Catherine, struggles to prove to another mathematician, Hal, that her
argument is not a reproduction of the intellectual work of her deceased father, a
professor [2]. Her handwriting similar to her father’s, there is no way to discern
her proof from his. But if Catherine were a computational scientist, we would
have a very different story. We reimagine Hal challenging Catherine for different
mathematical questions and the reproducibility of her solutions. We consider
simple to complex mathematical questions that can be answered at the black-
board, and then consider the scenario where Catherine must use a combination
of mathematical and computational tools to answer a question in mathematical
science. Via these scenarios, we question to what extent proof methodology con-
tinues to inform our choices as mathematical scientists become as much research
software engineers1 as they are mathematicians.

Mathematical science is the compendium of research that binds the Cather-
ine’s methodology of work indistinguishably from her father’s. However, in com-
putational science, we not only do not have a common language in the traditional
sense, with programming languages such as Python, R, and C++ performing
overlapping tasks, but our research workflows comprise tools and platforms and
operating systems, such as Linux or Windows, as well. Many inadvertent rea-
sons conspire so that scientists are arriving at similar problems with different
approaches to data management and version control. Code scripts, arguably the
most immediately analogous to mathematical proof, are but one of the many
components that make up the outputs of computational science.

If Catherine were a contemporary computational mathematician, she would
not only struggle to reproduce another person’s work, but she would likely strug-
gle to reproduce her own. She may be overwhelmed by the diversity of research
outputs [5], and find that she needs to rewrite her work to unpick what she did
with specific computational functions under specific software package releases.
The language of mathematical science has changed from something we write, to
something we collect. In order to diligently answer scientific questions computa-
tionally, the mathematician must now consider her work within that of a research
compendium. In this paper we ask: how can we extend the certainty afforded
by a mathematical proof further down the research workflow into the ‘mangle
of practice’ [31]? We show that communities of researchers in many scientific
disciplines have converged on a toolkit that borrows heavily from software engi-
neering to robustly provides many points to verify certainty, from transparency
via version control, to stress testing of algorithms. We focus on unit testing as a
strong measure of certainty.

1 We might argue here we employ the term research software engineer (RSE) as
Katz and McHenry would define Super RSEs, developers who ‘work with and
support researchers, and also work in teams of RSEs who research and develop
their own software, support it, grow it, sustain it, etc.’ [20]. Or choose the more
ambiguous Research Software Engineers Association definition of RSEs as people in
academia who ‘combine expertise in programming with an intricate understanding
of research’ [45].
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1 The Technological Shift in Mathematical Inquiry

The task of a mathematical scientist in the pre-computer age was largely that of
a blackboard rhetorician, where the craft of proof reigned. For a proof such as
that featured in Auburn’s play, the argument can often be included in the article,
or as a supplementary file. This allows the reader to fully reproduce the author’s
reasoning, by tracing the flow of argument through the notation. As comput-
ers have become ubiquitous in research, mathematical scientists have seen their
workflow shift to one that now more closely resembles that of a generic scientist,
concerned with diligent analysis of observational and experimental data, medi-
ated by computers [30]. But the answer to the question of what constitutes a
diligent attempt to answer a scientific question examined in a computationally
intensive analysis, is unclear, and remains defined by the era of the blackboard
mathematician.

So, what is proof in mathematics, when experimental and computer-assisted
methods are common? And, beyond mathematics, in fields where literal proofs
are unattainable, what counts as an equivalent form of scientific certainty in
a computational experimental environment? How do we measure truth in the
context of uncertainty? Among the histories of science we can trace three efforts
to tackle these questions. First is the empirical effort, most prominently repre-
sented by Robert Boyle (1627–1691), known for his vacuum pump experiments
[34]. Boyle documented his experiments in such detail and to an extent that
was uncommon at the time. He was motivated by a rejection of the secrecy
common in science at his time, and by a belief in the importance of written
communication of experimental expertise (as a supplement to direct witnessing
of experimental procedures). Boyle’s distinctive approach of extensive documen-
tation is often cited by modern advocates of computational reproducibility [35].
Making computer code openly available to the research community is argued
to be the modern equivalent of Boyle’s exhaustive reporting of his equipment,
materials, and procedures [22].

A second effort to firming up certainty in scientific work, concerned with
statistical integrity, can be traced at least as far back as Charles Babbage (1791–
1871), mathematician and inventor of some of the first mechanical computers.
In his 1830 book ‘Reflections on the Decline of Science in England, and on
Some of Its Causes’ he criticised some of his contemporaries, characterising them
as ‘trimmers’ and ‘cooks’ [14]. Trimmers, he wrote, were guilty of smoothing
of irregularities to make the data look extremely accurate and precise. Cooks
retained only those results that fit their theory and discarded the rest [26]. These
practices are now called data-dredging, or p-hacking, where data are manipulated
or removed from an analysis until a desirable effect or p-value is obtained [17].

A third effort follows the history of formal logic through to the time when an
equivalence between philosophical logic and computation was noted. This obser-
vation is called the Curry-Howard isomorphism or the proofs-as-programs inter-
pretation. First stated in 1959, this correspondence proposed that proofs in some
areas of mathematics, such as type theory, are exactly programs from a particu-
lar programming language [37]. The bridging concepts come from intuitionistic



114 C. T. Gray and B. Marwick

logic and typed lambda calculi, which have lead to the design of computational
formal proof management systems such as the Coq language. This language is
designed to write mathematical definitions, execute algorithms and theorems,
and check proofs [3]. This correspondence has not been extensively discussed in
the context of reproducibility, but we believe it has relevance and is motivating
beyond mathematics. Our view is that this logic-programming correspondence
can be extended in a relaxed way beyond mathematics in proofs to scientific
claims in general, such that computational languages can express those claims
in ways that can establish a high degree of certainty.

Questions of confidence in scientific results are far from restricted to the
domains of mathematics or computers; indeed, science is undergoing a broad
reexamination under what is categorised as a crisis of inference [12]. How we
reproduce scientific results is being examined across a range of disciplines [6,38].
An early answer to some of these questions is that authors should make avail-
able the code that generated the results in their paper [11,36]. These recom-
mendations mark the emergence of a concern for computational reproducibility
in mathematics. This paper extends this argument for computational repro-
ducibility further into the workflow of modern statistical inquiry, expanding and
drawing on solutions proposed by methods that privilege computational repro-
ducibility.

Systemic problems are now being recognised in the practice of conventional
applied statistics, with a tendency towards dichotomania [1] that reduces com-
plex and nuanced questions to Boolean statements of TRUE or FALSE. This has
diluted the trust the can be placed in scientific results, and led to a crisis of
replication, where results can not easily be reproduced [12] and questionable
research practices [13] proliferate.

As the conventions of statistics are called into question, it stands to reason
that the research practices of the discipline of statistics itself require exami-
nation. For those practicing statistical computing, a conversation is emerging
about what constitutes best practice [43]. But best practice may be unrealis-
tic, especially for those applying statistics from fields where their background
has afforded limited computational training. And thus the question is becom-
ing reframed in terms of good enough standards [44] we can reasonably request
of statistical practitioners. By extension, we must reconsider how we prepare
students in data-analytic degree programs.

Proofs, derivations, verification, all form the work of mathematics. How do
we make mathematical arguments in a computational2 environment? In con-
structing mathematical arguments, we posit that we require an additional core
element: unit testing for data analysis. We propose an expansion of the spectrum
of reproducibility, Fig. 1, to include unit testing for data analytic algorithms facil-
itated by a tool such as testthat:: [41], for answering mathematical research

2 We focus in this manuscript on R packages, but the reader is invited to consider
these as examples rather than definitive guidance. The same arguments hold for
other languages, such as Python, and associated tools.
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Fig. 1. We propose updating this spectrum of reproducibility [25] with unit tests for
data analysis. In addition to the advertising, the formal scientific argument put for-
ward, many informal and traditionally hidden scientific outputs comprise the com-
pendium of research that produces the results. Given the underutilised nature of
unit tests, we suggest there is further work to be done to facilitate the adoption of
good enough [44] research software engineering practices for answering mathematical
questions computationally. The informal components of mathematical research com-
pendium are shaded grey. This figure has been adapted with permission [33] and is
licensed under CC-BY 2.0.

questions computationally. In order to motivate this practice, we turn to the
purest of sciences, mathematical proof.

2 Truth in Mathematics

The titular proof [2] of Auburn’s play is a mathematical argument, a formalised
essay in mathematical science. The creator of the proof, Catherine, is questioned
by Hal, who is capable of following the argument; that is, Hal can replicate an
approximation of the type of thought process that leads to a reproduction of the
argument presented in the proof.

In Fig. 1, we have coloured the components, black formal argument, and
grey informal work, of mathematics Hal would need to reproduce the proof. In
order to verify the results, Hal would need to follow the formal argument, to
understand what was written in the proof, but also need to do informal work,
to understand the links between concepts for verification.

Hal would come to the problem with a different background and education
to Catherine. Although work is necessary for the verification of the results, the
reproduction of the reasoning, the work required would be different for Hal and
Catherine, based on their respective relevant preparation. However, the language
of mathematics carries enough uniformity that Hal can fill in the work he requires
to understand the result, from reasoning and mathematical texts. If Catherine
were asking a mathematical question computationally, the presentation of the
results carries not millennia of development of methodology, as does the noble
craft of mathematics, but less than a century of frequently disconnected devel-
opments separated by disparate disciplines.
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We begin with traditional mathematics and end with answering questions
in computational mathematics. To this aim, we adopt, in the manner of
Lakatos’ Proofs and Refutations’ conversant conjecture, scenarios between Hal
and Catherine, where Hal challenges Catherine over her authorship of the proof.
In each scenario, we imagine the challenge would play out for different ways
of answering mathematical questions. We argue the thinking work of mathe-
matical science is not as immediately inferable in a computational experimental
environment, and that the roots of mathematical science in proof lead to an
overconfidence that science is as readily reproducible as a proof.

2.1 Prove It!

Let us suppose Catherine claimed she could demonstrate a property about the
order3 on natural numbers, N = {1, 2, 3, . . . }, the counting numbers.

The order on a set of numbers is dense if, for any two numbers we can find
a number in between. More formally, we say an ordered set P is dense if, for all
x < y in P , there exists z in P such that x < z < y.

Catherine presents the following argument that the order on N is not dense.
In this case she chooses a type of indirect proof, an existence proof [4], where
she presents a counterexample demonstrating that the density property is not
true for all cases for N.

Proof. The order on N is not dense. Let us, in the spirit of Lewis Carroll4,
be contrary and suppose, by way of contradiction, that the order on N, is dense.
Then for any two numbers, x and y, in N such that x < y, I should be able to
find a distinct number z in N between them, that is x < z < y. But, consider
the numbers 3 and 4. Let x = 3 and y = 4, then x < y. There is no distinct
number, z, that exists between x and y. Since this rule must be true for any two
numbers x < y in the order to be dense, we have shown the order on natural
numbers N is not dense. ��

A standard way to prove something is not true, is to assume it is true, and
derive a contradiction [9]. Arguably, this reasoning goes to the heart of the prob-
lem of dichotomania lamented by 800 scientists in a recent protest paper about
the misinterpretation of statistics in Nature [1]. A null hypothesis test of a differ-
ence between two groups will assume the opposite of what we suspect is true; we
believe there to be a difference between two groups and take a sample from each
of the groups and perform a test. This test assumes there is no difference, null,
between the two groups and that any observed differences in sampling are due to

3 Let P be a set. An order on P is a binary relation � on P such that, for all x, y, z ∈ P :
we have x � x; with x � y and y � x imply x = y; and, finally, x � y and y � z
imply x � z. We then say � is reflexive, antisymmetric, and transitive, for each of
these properties, respectively [8].

4 Lewis Carroll, author of Alice in Wonderland, is a writing pseudonym used by
Charles Lutwidge Dogson, born in 1832, who taught mathematics at Christ Church,
Oxford [7].
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random chance. The calculation returned, the p-value, is the likelihood we would
observe the difference under those null assumptions. Crucially, the calculation
returned is probabilistic, a number between 0 and 1, not a TRUE or FALSE, the
logic of a proof by contradiction. The logic does not apply to a situation where,
within a single group of people, some people might be resistant to treatment,
and some might not be, say, and we have estimated a likelihood of the efficacy of
the treatment. Dichotomania is the common misinterpretation of a probabilistic
response in a dichotomous framework; scientists are unwittingly framing null
hypothesis significance testing in terms of a proof by contradiction.

In order to illustrate our central point, we now turn to a direct argument,
rather than the indirect approach of contradiction, in order to examine the pro-
cess of the making of a proof. In both the case of the direct, and indirect proofs,
however, Hal could challenge Catherine, as he did in the play.

“Your dad might have written it and explained it to you later. I’m not
saying he did, I’m just saying there’s no proof that you wrote this” [2].

2.2 The Steps in the Making of a Proof

Let us now suppose Catherine’s proof instead demonstrated a density property
on the order on the real numbers,

R = {. . . ,−3, . . . ,−3.3, . . . , 0, . . . , 1, . . . , 100.23, . . . },

i.e., the whole numbers, and the decimals between them. Catherine claims the
order on R is dense, which is to say, if we choose any two distinct numbers in
the real numbers, we can find a distinct number between them.

Catherine would construct her proof in the manner laid out in the introduc-
tory monograph When is a Proof? [9], in Table 1, provided to undergraduate
mathematics majors at La Trobe University. These steps comprise formal and
informal mathematical work, showing that mathematical work comprises more
than the advertising, as it is labelled in the reproducibility spectrum presented
in Fig. 1. In the case of pure mathematics, the advertising would be the paper
that outlines the proof, the formal mathematical argument, but the informal
work is left out.

Catherine presents the following proof to Hal to show the order on real num-
bers, R, is dense.

Proof. The order on R is dense. Let x < y in R. Let5 z := (x+ y)/2. To see that
x < z < y, we begin with x < y, so, x + x < x + y and x + y < y + y, which
gives,

5 In mathematics, we read := as ‘be defined as’, =⇒ as ‘implies’, and < as ‘less than
but not equal to’.
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Table 1. The steps in the making of a proof from Brian A. Davey’s primer, When is a
Proof? [9]. The formal steps that contribute to the final proof are in bold, the hidden
informal work, in italics. These steps are summarised in terms of p =⇒ q in the final
column of the table.

Step -1 Translate the statement to be proved into ordinary English

and look up appropriate definitions

Step 0 Write down what you are asked to prove. Where appropriate,

isolate the assumptions, p, and the conclusion, q

p =⇒ q

Step 1 Write down the assumptions, p: “Let . . . ” Assume p

Step 2 Expand Step 1 by writing out definitions: “i.e., . . . ” Define p

Step 3 Write down the conclusion, q, which is to be proved: “To prove: . . . ” State q

Step 4 Expand Step 3 by writing out definitions: “i.e., . . . ” Define q

Step 5 Use your head: do some algebraic manipulations, draw a diagram, try

to find the relationship between the assumptions and the conclusion

Work

Step 6 Rewrite your exploration from Steps 3, 4 and 5 into a proof.

Justify each statement in your proof

Formalise work

Step 7 The last line of the proof “Hence q.”

x + x < x + y < y + y

=⇒ x + x

2
<

x + y

2
<

y + y

2

=⇒ 2x
2

<
x + y

2
<

2y
2

=⇒ x <
x + y

2
< y

=⇒ x < z < y,

since z = (x + y)/2, as required.

Catherine presents the formal proof, the science that in Fig. 1 is described as
the advertising, a subcomponent, of the compendium of research she created in
order to arrive at this argument. Hal wishes to verify the results and investigate
whether Catherine merely reproduced her father’s reasoning. In the case of proof,
what is published is the formal argument, but as the steps in Table 1, this is not
all of what makes a proof. We could think of the steps presented in Table 1 in
terms of a mathematical statement p =⇒ q, which we read as p implies q, as
given in the final column of the table. We now revisit the proof Catherine offered
in terms of these steps.

We begin, step 0; we state what we wish to prove, p =⇒ q, in plain English.
We wish to show the real numbers, R, are dense; i.e., for all x < y in R, there
exists z such that x < z < y.
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Step 1, we assume p is true. We assume we have two distinct numbers x and
y in R with x < y; i.e., x is less than y, and x is not equal to y. Step 2, nothing
to define as we are familiar with < and R.

Step 3, we state what we wish to prove, q; the order on R is dense. Step 4,
i.e., we need to show there exists z in R such that x < z < y. Now, Catherine
has offered a solution z := (x + y)/2 that Hal wishes to verify.

Step 5, Suppose Hal asks, what if both x and y are negative numbers? Is it
still true that x < z < y? Hal might verify his understanding of + by thinking
about positive and negative numbers as steps taken to the left or the right. In
Fig. 2, Hal considers the case where both numbers are negative, x, y < 0. In this
case, we have x steps to left, and y steps to the left, which we imagine as arrows
of appropriate length. If we lay both arrows end to end, we see the number of
combined steps to the left. If we consider the half-way point of x and y laid
beside each other, (x+ y)/2, we see this falls between where the arrow heads of
x and y fall.

Fig. 2. On the left, Hal might begin to verify his understanding of + by first considering
the case where both numbers are negative, x, y < 0. In this case, we might think of +
as combining x steps to the left with y steps to the left. The halfway point (x + y)/2,
falls in the middle of the two arrows laid side by side, which also falls between where
the two ends of the arrows fall. On the right, Hal considers the case where x < 0, y > 0
and |x| < |y|. Here x + y can be thought of as y steps to the right and then x steps to
the left. Again, the halfway point (x + y)/2 falls halfway between the tips of the two
arrows above.

Now Hal can flip the arrows in the opposite directions to construct an argu-
ment for if both numbers were positive, x, y > 0.

But then Hal asks in Fig. 2, what if one number were positive and one number
were negative? Is (x+y)/2 still halfway between? Let us assume, as mathemati-
cians say, without loss of generality that the magnitude of x is strictly less than
y, that is |x| < |y|, the number of steps in x is less than the number of steps of
y. Hal now considered where one would end up if one took y steps to the right
and then x steps to left. He checks that he does not need to consider two cases,
as he would end up in the same place if he took x steps to the left and then
y steps to the right. Again, (x + y)/2 falls between where he would start and
where he would end.

Now Hal has verified his understanding of +, which may or may not be the
way that Catherine arrived at her result, but after this work he is capable of fully
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reproducing the mathematical result presented. He reads the proof Catherine has
provided, and verifies Steps 6, and Step 7. Catherine has proved that the order
on R is dense. With this proof, as with the proof presented in Sect. 2.1, Hal
cannot disqualify the possibility that Catherine merely reproduced her father’s
work.

Even in these relatively simple proofs, Step 5, the informal work of verification
and understanding vastly outweighs what goes into the formal proof. But these
toy examples belie a process of redefinition and re-examination, as illustrated
in the discussion within a hypothetical mathematics classroom that forms the
narrative of Lakatos’ Proofs and Refutations [21]. We now move to a recently
published proof to illustrate this process of redefinition.

In the Combat Conditions of New Mathematics. Suppose, now, that
Catherine’s proof were for the theorem pertaining to quasi-primal algebras, pre-
sented in the recent publication ‘The homomorphism lattice induced by a finite
algebra’ [10] in Order, a mathematics journal devoted to ‘original research on
the theory and application of ordered sets’. In addition to the informal work
demonstrated by the proof that the order on R is dense, the making of this
proof involved a redefinition of the result proved, through a process writing sev-
eral proofs. In terms of Table 1, initially a result was considered, p =⇒ q.
A proof was written for this result. At this point the mathematicians realised,
however, that the converse could be shown, that is, q =⇒ p. And so, a proof
was generated for a new result, p ⇐⇒ q. In the case of this proof, the act of
writing the proof itself redefined the result in question. In the combat conditions
of new mathematics, the process of writing a proof is doing mathematical sci-
ence, and involves a great deal more work than is presented in the advertising
of the science.

Hal may require graduate-level knowledge of abstract algebra to reproduce
this proof, but as a professional mathematician, this is not a great leap. More
challenging the proof may be, but the process of reproduction would be similar.
Even if this were the proof, Hal would not know if Catherine merely reproduced,
as he did, her father’s proof.

But what if Catherine were posing her mathematical question computation-
ally? Would Hal be able to reproduce her results?

2.3 Is Computational Mathematics Mired in Proof Methodology?

When we are exploring and answering mathematical questions in a computa-
tional environment, we consider some aspects of our work to be formal and
some informal. But in omitting the greyed informal work in Fig. 1, are we still
approaching compendia of research from the perspective of a blackboard math-
ematician?

Given we use statistics in most science, arguably most scientific questions are
posed, to some extent, mathematically. The output format, a published paper,
remains similar to mathematics of the pre-computer age. But the informal work
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of answering mathematical questions has changed significantly. Now that much
work is done computationally, there are multiple research outputs that comprise
the compendium of science that produces the published paper.

Let us now suppose that Catherine had a statistical estimator for a pop-
ulation parameter of interest. That is, Catherine has an equation that, given
some data, she can approximate some value about the population, such as an
overall average. Let us further suppose, as is increasingly common, that she does
not have a closed-form solution, meaning she cannot write out a mathemati-
cal argument in the traditional sense. Instead, she demonstrates the estimator’s
performance through simulation studies.

Now suppose Hal challenges Catherine to prove that she created the science
that produced the paper. Given what is on the piece of paper, how can Hal know
that Catherine’s code does what she said it does? It is unclear what assumptions
were made, about, say, sample size and distribution. How can Hal verify her
results? Through adopting research software engineering principles, Catherine
can facilitate a process akin to proofs and refutations, the redefinition described
in the Sect. 2.2, The combat conditions of new mathematics. The process of
redefinition is transcribed by version control, but further to this, the software
itself provides a modular framework, such as a theorem in mathematics, for
future work to scaffold and extend. New software can be developed that either
extends, or redefines the existing software. One analogous way this is occurring
is in the rise of metapackages, such as tidyverse:: [42] and metaverse:: [39],
that collect software to solve particular problems in an opinionated [29] manner,
that guide the end-user to what the creators consider to be good enough practice.
This is analogous to classes of mathematics, such as group theory or analysis,
that collect results, theorems, that rely upon each other, and where certain
underlying assumptions, such as the Axiom of Choice6, are made. Indeed, as
Martin-Löf proposed a shift in terminology from computer science to computing
science, they make the following remark.

It has made programming an activity akin in rigour and beauty to that of
proving mathematical theorems [23].

How are contemporary researchers answering mathematical questions? Alex
Hayes, current maintainer and one of the many authors of broom:: [32], an open
source R package that amalgamates hundreds of contributions towards providing
a suite of tools that tidily7 [15] extract statistical model information from R

6 Turning to the bible of algebra, Lattices and Order [8], we learn the Axiom of Choice
‘asserts that it is possible to find a map which picks one element from each member
of a family of non-empty sets’.

7 From Wickham’s Tidy data [15], we describe data as tidy if

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

.
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algorithms, recently noted the underdeveloped nature of the implementation of
statistical algorithms [16]:

In practice, most people end up writing a reference implementation and
checking that the reference implementation closely matches the pseu-
docode of their algorithm. Then they declare this implementation correct.
How trustworthy this approach is depends on the clarity of the connection
between the algorithm pseudocode and the reference implementation.

This is not to carp upon diligent scientists; we need to do far more to support
the software engineering principles we expect from those who answer mathe-
matical questions computationally [28]. Mathematicians are trained to provide
enough work such that the hidden steps illustrated in italics in Table 1 can be
reproduced by their target audience. The detail of mathematical work shown
is tempered for level of the audience, but the same process described in bold
in Table 1 is the same. But, does the workflow Alex describes above equip the
target audience with enough information such that they can understand all the
details of the entire argument put forward?

Code has the appearance of being highly logical, it’s easy to assume it’s
infallible; and whilst the logic of the code is robust, the pipeline that carries the
algorithm to implementation may be susceptible to compromising factors, with
typos being just one example of inadvertent error.

Because code appears so logical, we assume it is analogous to proof for our
intended audience to follow. But we were trained to leave out the informal messy
thinking work associated with mathematics; trusting the formal argument pro-
vides enough information to verify and reproduce the mathematics. Does our
code do what we think it does? In addition to providing the research outputs
in the spectrum of reproducibility, Fig. 1, we posit mathematical science should
adopt the software development practice of unit testing, to ensure the mathe-
matical results can be verified and reproduced.

3 Testing

Testing is the software engineering tool that is provides a key piece of the corre-
spondence between scientific claim and programming. Just as the Curry-Howard
isomorphism expresses proofs-as-programs to link mathematics and program-
ming, we argue that tests are the link between scientific claims more generally
and programming. In a test the researcher isolates a scientifically meaningful
part of their code, and creates a witness so that others can easily see that the
code does what the researcher intends it to do. In this section we consider a
‘vital’ [40] research output, testing, that it is unlikely the mathematical scientist
has been trained in. There are many such under-formalised skills represented in
Fig. 18. In 2016, a quarter of packages on R package archives CRAN, Biocon-
8 Indeed, the natural consequence of questioning how we practice mathematical science

is how we train the next generation of practitioners. Important, however this may
be, this is beyond the scope of this manuscript.
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ductor, and rOpenSci, included tests, a repository by repository breakdown of
this is shown in Table 2.

Table 2. Percentage of R packages in repositories that have unit tests included. These
results are from Jim Hester’s presentation on covr:: in September 2016 [18].

Repository Tests Total

CRAN 2091 9772 21%

Bioconductor 449 1258 36%

rOpenSci 84 146 58%

2624 11,176 24%

Now, Hayes advises people against using untested software [16]. It is alarming
that, by this logic, we would be insane to use three quarters of packages avail-
able. But Hayes continues, ‘You have two jobs. The first job is to write correct
code. The second job is to convince users that you have written correct code’ [16].
The disconnect here suggests a failure to communicate broadly the importance of
testing of algorithms in the dissemination of research. As researchers, we believe
our science is as reproducible as a traditional mathematical proof; however, the
growing literature of the replication crisis demonstrates we have not succeeded
in rendering our science reproducible.

rOpenSci’s review system recommends using the covr:: [19] package to mea-
sure how the code behaves with different expected outputs. From the creator of
covr::, we obtain the following definition of test coverage.

Test coverage is the proportion of the source code that is executed when
running these tests [19].

3.1 What Is a Test?

Tests demonstrations that a given input produces an expected output. They are
grouped contextually in a file; the context being a certain aspect of the algorithm
that should be tested [40]. An example of a context for a test is the question, does
a given function return the expected result for different inputs? Each test com-
prises a collection of expectations. Each expectation runs a function or functions
from the package, and checks the returned output is as expected. In this case, we
have a test for the expect_equal function: one expectation checks the function
successfully runs when given equal inputs, and another expectation checks that
the function fails when passed two non-equal inputs.

An example test from the testthat:: [41] contains two expectations.

test_that("basically principles of equality hold", {
expect_success(expect_equal(1, 1))
expect_failure(expect_equal(1, 2))

})

https://www.rstudio.com/resources/webinars/covr-bringing-test-coverage-to-r
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3.2 How Good Are We at good Enough testing?

A response to the replication crisis has been to examine questionable research
practices [13], frequently borne of tradition and convention within different dis-
ciplines, deviate from evidence-based best-practice research methodology. We
suggest it is a questionable research practice to draw conclusions about the effi-
cacy of statistical estimators from untested code.

Given only a quarter of R packages have unit tests associated with them,
we are falling short of best practice in scientific computing [43]. In a recent
assessment of what constitutes good enough practice in scientific computing [44],
unit testing was not included. However, for mathematical science, where the
algorithms implemented and the code written is often complex, we suggest that
unit testing should be considered good enough practice, in spite of the additional
learning curve. With the backdrop of the replication crisis, it is crucial we have
confidence in the algorithms we implement.

3.3 Analysis of Testing Code in R Packages

So, what packages have tests? We provide a preliminary analysis of tests in
CRAN packages in Fig. 3. The code and data used to generate the results pre-
sented here are openly available at https://github.com/softloud/proof.

We provide analysis for packages associated with CRAN task view [46], opin-
ionated [29] collections of R packages that are relevant to a particular type of sta-
tistical analysis, maintained voluntarily by experts in their respective fields [46].
CRAN task views provide a convenient taxonomy of R packages for a preliminary
exploratory analysis of patterns of test use among R package authors.

Packages listed in a task view are may be interpreted by users as more stable
and trustworthy than other packages, because they have passed some kind of
inspection by maintainer of the task view who listed the package (however the
review and curation process is not open or documented). And yet, even amongst
the 4105 packages associated with task views, 1524 packages were without tests;
37 per cent of packages associated with CRAN task view were without tests.

The proportion of task view packages with tests has fallen over the last
decade. This does not seem surprising given the uptake of R amongst com-
munities of researchers in applied sciences with little formal programming and
computer science training, such as psychology and ecology.

Figure 4 shows that there is wide variation in test coverage. Even the largest
and fastest growing CRAN task views have very different proportions of packages
with tests (Survival, about 0.23, compared to Web Technologies about 0.66). We
find few clear patterns in the presence of tests over time, between different CRAN
task views, and with metadata such as the number of authors, the size of the
package and the centrality of the package (as measured by the union of the
number of reverse dependencies and reverse imports). Based on these data, we
suggest there is much work to be done in developing methods and opinionated
tools that guide users towards good enough practices.

https://github.com/softloud/proof
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Fig. 3. This panel shows some basic details of tests in R packages listed in CRAN
task views [46]. The measure of interest, test size ratio, was calculated by dividing the
test file size with the overall package source file size from the unofficial CRAN mirror
on GitHub. This is a rough indicator of test coverage, future work should consider
more precise metrics such as those produced by the covr:: package. (a) the distribution
of the ratio of test file size to total package size, test size ratio. (b) scatter plots
demonstrate the relationship between test size ratio and number of authors, overall
package size, and number of packages imported and calling the package, respectively.
(c) the proportion of all task view packages that contain tests over time. (d) boxplot
detailing the distribution of file size ratio over time.
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Fig. 4. (a) shows the change in the number of packages in each CRAN task view over
time. (b) shows the proportion of packages in each CRAN task view that have tests.

4 Tempered Uncertainty and Computational Proof

It’s easy to lie with statistics, but it’s even easier without them [27]. In a com-
putational experimental setting, we often cannot achieve the satisfying precision
offered by a proof. We can, however, adopt good enough practices in sharing
and testing code to increase confidence in our scientific conclusions. Given the
prevalence of generalised linear models, we can think of the practice of much
science as the interpretation of

y ≈ bx,

where: x represents what we know about the data; y, the observed response
of interest that we wish to investigate how it responds to x; and b, the how it
responds, approximated unknown. It may not be possible to provide the rigour of
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a closed-form mathematical solution, but we can aim to temper the uncertainty,
and bolster confidence, in computational arguments via automated testing, ver-
sion control, and other computational outputs.

We suggest there is much work to be done in developing good enough prac-
tices [44] we can ask mathematical scientists to adopt. For example, we do not
have a chance to discuss in this manuscript the role of markdown and html
reporting in reproducible science. Indeed, the question of good enough prac-
tice can be posed for each research output. Less than offering answers, this
manuscript seeks more to suggest there is a rich line of inquiry [28] in the rela-
tionship between scientific truth, mathematical proof, and computational repro-
ducibility and rigour.

4.1 Coda

Returning to Catherine and Hal from Auburn’s Proof [2], we can now imag-
ine her as computational mathematician who provides a compendium of repro-
ducible research. To demonstrate the rigour of her computational work, she
would provide unit tests for the algorithms she had implemented. Catherine
would share her work openly via her GitHub or similar repository, where the
development of her ideas would be timestamped and recorded. The structure
of her research compendium of would be automatically standardised via a tool
such as rrtools:: [24]. At publication, her compendium would be deposited on
a trustworthy, DOI-issuing repository for others to link to and cite.

And she would feel safe asking questions about good enough practice [44],
and how to avoid questionable research practices [13], because there is an under-
standing in the community that no one is trained in all these things, so we are
all always learning.

There would be no struggle, as there was in Auburn’s play, to show that
the mathematician who created these research outputs was Catherine. But that
wouldn’t matter - she and Hal would be having far too much fun collaborating
on the next question.
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Abstract. Adaptive Gauss-Hermite quadrature is used for the compu-
tation of the log-likelihood function for generalized linear mixed models.
The basic first step in this method is to multiply and divide the inte-
grand of interest by a carefully chosen probability density function. The
same first step is used for the computation of this log-likelihood func-
tion using simulations that employ importance sampling. We compare
these two methods by considering in detail a single cluster from a well-
known teratology data set that is modelled using a logistic regression
with random intercept. We show that while importance sampling fails
for this computation, adaptive Gauss-Hermite quadrature does not. We
derive a new upper bound on the error of approximation of adaptive
Gauss-Hermite quadrature. Using this new upper bound, we show that
the feature of this problem that makes importance sampling fail is useful
in disclosing why adaptive Gauss-Hermite quadrature succeeds.

Keywords: Adaptive Gauss-Hermite quadrature · Generalized linear
mixed models · Importance sampling · Maximum likelihood estimation

1 Introduction

For Gauss-Hermite quadrature, Liu and Pierce [1] present a method of trans-
forming the variable of integration so that the integrand is sampled at relatively
important values. This method has found application in the computation of
the log-likelihood function for generalized linear mixed models (GLMM’s), see
e.g. [2–10]. This computation is needed for the evaluation of the maximum likeli-
hood estimate and the observed information matrix. Pinheiro and Bates [2] refer
to the method put forward by Liu and Pierce [1] as ‘adaptive’ Gauss-Hermite
quadrature. The basic first step in this method is to multiply and divide the
integrand of interest by a carefully chosen probability density function (pdf).
The same first step is used for the computation of this log-likelihood function
using simulations that employ importance sampling. As is well-known, see e.g.
p. 102 of [11] and [12], importance sampling needs to be applied with extreme
care to be successful. This raises the question:
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How similar are adaptive Gauss-Hermite quadrature and importance sampling
in the context of the computation of the log-likelihood function for GLMM’s?

If the answer to this question is that they are very similar then we would expect
adaptive Gauss-Hermite quadrature to display the same potential fragility as
importance sampling.

To answer this question, we compare the properties of importance sampling
and adaptive Gauss-Hermite quadrature in the particular context of the compu-
tation of the log-likelihood function for a logistic regression with random inter-
cept. In Sect. 2 we describe this model, the log-likelihood function for this model
and adaptive Gauss-Hermite quadrature in this context. In Sect. 3, we introduce
the teratology data set of Weil [13]. We also show that importance sampling
fails spectacularly, in the sense of leading to an estimator with infinite variance,
for the computation of the log-likelihood function. In Sect. 4 we show that, by
contrast, adaptive Gauss-Hermite quadrature works well for this data set. In
that section we also derive a new upper bound on the error of approximation of
adaptive Gauss-Hermite quadrature (Theorem1). Using this upper bound, we
provide a very detailed explanation for why adaptive Gauss-Hermite quadrature
works well in the context of cluster number 29. This explanation relies on the
fact that a particular function increases faster than any polynomial as its argu-
ment diverges to ∞ or −∞. Interestingly, this property is precisely what causes
the importance sampling method to fail spectacularly (see Remark 1 for details).

2 The Logistic Regression with Random Intercept Model,
Its Log-Likelihood and Adaptive Gauss-Hermite
Quadrature

We consider a logistic regression model with random intercept. Let yi and
xi denote the response and covariate, respectively, for the i’th cluster (i =
1, . . . , N). Let η = (η1, ..., ηN ), where the ηi’s are independent and identically
N(0, σ2) distributed. Also let z = (z1, ..., zN ). Suppose that, conditional on
η = z, the yi’s are independent and yi ∼ Binomial(Ji, πi), where Ji denotes the
size of the i’th cluster and

log
(

πi

1 − πi

)
= β1 + β2 xi + zi

for i = 1, . . . , N . Let β̂1, β̂2 and σ̂ denote the maximum likelihood estimates
obtained from all of the data.

Let φ(t;μ, σ2) denote the N(μ, σ2) pdf, evaluated at t. The additive contri-
bution of a given cluster of size J to the log-likelihood function is, to within an
additive constant, the logarithm of

∫ ∞

−∞

exp
[
(β1 + β2 x + t)y

]
[1 + exp(β1 + β2 x + t)]J

φ(t; 0, σ2) dt, (1)
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where y and x denote the observed response and covariate, respectively, for this
cluster. Obviously, (1) is equal to c(θ, σ) which we define to be∫ ∞

−∞
g(t; θ, σ)φ(t; 0, σ2) dt, (2)

where

g(t; θ, σ) =
exp

[
(θ + t)y

]
[1 + exp(θ + t)]J

,

with θ = β1 + β2 x.
We now describe the adaptive Gauss-Hermite quadrature method for the

computation of c(θ, σ). Let

μ = posterior mode of g(t; θ, σ)φ(t; 0, σ2), considered as a function of t

τ =
[
− ∂2

∂t2
(
log

[
g(t; θ, σ)φ(t; 0, σ2)

])]−1

.

This method is based on employing φ(t;μ, τ2) as an approximation to
g(t; θ, σ)φ(t; 0, σ2). The first basic step in the description of adaptive Gauss-
Hermite quadrature is to write

c(θ, σ) =
∫ ∞

−∞
g(t; θ, σ)φ(t; 0, σ2) dt =

∫ ∞

−∞

g(t; θ, σ)φ(t; 0, σ2)
φ(t;μ, τ2)

φ(t;μ, τ2) dt.

(3)
This step of multiplying and dividing the integrand by a pdf is common to both
importance sampling and adaptive Gauss-Hermite quadrature. We re-express (3)
as

c(θ, σ) =
∫ ∞

−∞
h(t; θ, σ)φ(t;μ, τ2) dt, (4)

where

h(t; θ, σ) =
g(t; θ, σ)φ(t; 0, σ2)

φ(t;μ, τ2)
.

We now change the variable of integration in (4) to z = (t−μ)
/(√

2τ
)

to obtain

c(θ, σ) =
1√
π

∫ ∞

−∞
h
(
μ +

√
2τz; θ, σ

)
exp(−z2) dz. (5)

Let
m∑

i=1

f(zi)wi

be the m-node Gauss-Hermite quadrature approximation to∫ ∞

−∞
f(z) exp(−z2) dz.

The m-node adaptive Gauss-Hermite quadrature approximation to c(θ, σ) is

cm(θ, σ) =
1√
π

m∑
i=1

h
(
μ +

√
2τzi; θ, σ

)
wi. (6)
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3 The Teratology Data and Importance Sampling

We will compare the adaptive Gauss-Hermite quadrature approximation (6) with
importance sampling, using the importance pdf φ(t;μ, τ2) in (4), in the particular
context of the teratology data described by Weil [13]. This dataset lists the
number of rat pups in 16 control litters that survived and the number of rat
pups in 16 treated litters that survived. Each litter is treated as a cluster, so
that the total number of clusters N = 32. The covariate xi takes the value 1 for
a litter i that is treated and the value 0 for a litter i that is a control. For this
dataset, Ji and yi denote the number of pups and the number of surviving pups,
respectively, in litter i. This data is shown in Table 1. The litters are numbered
from 1 up to 32 with the litter in row j and column k allocated the number
i = 8(j − 1) + k.

Table 1. Teratology data set of [13]. This data lists the number of rat pups in 16 control
litters that survived and the number of rat pups in 16 treated litters that survived.

(Number survived, number dead)

Control (13, 0) (12, 0) (9, 0) (9, 0) (8, 0) (8, 0) (12, 1) (11, 1)

(9, 1) (9, 1) (8, 1) (11, 2) (4, 1) (5, 2) (7, 3) (7, 3)

Treatment (12, 0) (11, 0) (10, 0) (9, 0) (10, 1) (9, 1) (9, 1) (8, 1)

(8, 1) (4, 1) (7, 2) (4, 3) (5, 5) (3, 3) (3, 7) (0, 7)

We now describe a simulation method that employs importance sampling for
the computation of (6), using the importance pdf φ(t;μ, τ2) in (4). We suppose
that this simulation consists of M independent simulation runs. Let vi denote
the observation obtained in the i’th simulation run of a random variable with
pdf φ(t;μ, τ2). The importance sampling estimator of c(θ, σ) is

c̃M (θ, σ) =
1
M

M∑
i=1

h(vi; θ, σ).

This is an unbiased estimator of c(θ, σ) and its variance is σ̃2/M , where

σ̃2 =
∫ ∞

−∞

[
g(t; θ, σ)φ(t; 0, σ2)

]2
φ(t;μ, τ2)

dt − c2(θ, σ),

see e.g. [12]. Hence

σ̃2 =
∫ ∞

−∞
r2(t; θ, σ) dt − c2(θ, σ),

where
r(t; θ, σ) = h(t; θ, σ)

[
φ(t;μ, τ2)

]1/2
. (7)
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It may be shown that

r(t; θ, σ) = c0
exp

(
c1 + c2t + c3 t2

)
[1 + exp(θ + t)]J

,

where c0 = (τ/
√

2πσ2)1/2, c1 = θy + μ2/(4τ2), c2 = y − μ/(2τ2), c3 = 1/(4τ2) −
1/(2σ2). It follows from the definition of τ that c3 > −1/(4σ2). If c3 > 0 then
r(t; θ, σ) → ∞ as t → ∞ and as t → −∞. Thus, if c3 > 0 then σ̃2 = ∞ and
importance sampling fails spectacularly. If, however, c3 < 0 then (a) r(t; θ, σ) →
0 as t → ∞ and as t → −∞ and (b) σ̃2 is finite. Of course, even if c3 < 0,
importance sampling may still fail to improve on simple Monte Carlo simulation.

Consider the particular values β1 = 2.6, β2 = −1.1 and σ = 1.3. These
are examples of values that might be encountered during the computation of the
maximum likelihood estimates, which are β̂1 = 2.625651357, β̂2 = −1.082405923
and σ̂ = 1.345703142. For the particular values of β1, β2 and σ that we have
chosen, θ = 2.6 for each litter in the control group and θ = 1.5 for each litter
in the treatment group. For litters 7–12, 14–19 and 21–32, we find that c3 > 0,
so that σ̃2 = ∞ and importance sampling fails spectacularly for these litter
numbers. Figure 1 presents graphs of log r(t; θ, σ), considered as a function of
t, for control litters 12 and 15 and treatment litters 29 and 32. These graphs
confirm that r(t; θ, σ) → ∞ as t → ∞ and as t → −∞. In other words, these
graphs confirm that σ̃2 = ∞ for these litters.
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Fig. 1. Graphs of log r(t; θ, σ) as a function of t for σ = 1.3, θ = 2.6 for a control litter
and θ = 1.5 for a treatment litter. The top two graphs are for control litters 12 and
15. The bottom two graphs are for treatment litters 29 and 32.
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4 The Performance of Adaptive Gauss-Hermite
Quadrature for Cluster 29 of the Teratology Data

The following theorem, which uses a well-known type of argument for bounding
the error of Gauss-Legendre quadrature, see e.g. Atkinson [14] (pp. 277–278),
describes a new upper bound on

∣∣c(θ, σ) − cm(θ, σ)
∣∣.

Theorem 1. Suppose that m, z� and zu, where z� ≤ z1and zu ≥ zm, are given.
Also suppose that J , y, θ and σ are given. For notational convenience let k(z) =
h
(
μ+

√
2τz; θ, σ

)
. Define qm(z) to be the polynomial pm(z) of degree 2m−1 that

minimizes (either exactly or numerically)

max
z∈[z�,zu]

∣∣k(z) − pm(z)
∣∣.

Let em denote this minimized value. Then
∣∣c(θ, σ) − cm(θ, σ)

∣∣ ≤ 2 em + |a�| + |au|, (8)

where

a� =
1√
π

∫ z�

−∞
(k(z) − qm(z)) exp(−z2) dz and au =

1√
π

∫ ∞

zu

(k(z) − qm(z)) exp(−z2) dz.

Furthermore:

If k(z) ≥ qm(z) ≥ 0 for all z ≤ z� then 0 ≤ a� ≤
∫ μ+

√
2τz�

−∞
g(t; θ, σ)φ(t; 0, σ2) dt. (9)

and

If k(z) ≥ qm(z) ≥ 0 for all z ≥ zu then 0 ≤ au ≤
∫ ∞

μ+
√

2τzu

g(t; θ, σ)φ(t; 0, σ2) dt. (10)

Proof. It follows from

∫ ∞

−∞
qm(z) exp(−z2) dz =

m∑
i=1

qm(zi)wi

that

c(θ, σ) − cm(θ, σ) =
1√
π

∫ ∞

−∞
(k(z) − qm(z)) exp(−z2) dz +

1√
π

m∑
i=1

(qm(zi) − k(zi))wi

= a� + au +
1√
π

∫ zu

z�

(k(z) − qm(z)) exp(−z2) dz

+
1√
π

m∑
i=1

(qm(zi) − k(zi))wi.
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Now∣∣∣∣ 1√
π

∫ zu

z�

(k(z) − qm(z)) exp(−z2) dz

∣∣∣∣ ≤ 1√
π

∫ zu

z�

|k(z) − qm(z)| exp(−z2) dz

≤ em
1√
π

∫ ∞

−∞
exp(−z2) dz = em

and∣∣∣∣∣
1√
π

m∑
i=1

{qm(zi) − k(zi)}wi

∣∣∣∣∣ ≤ 1√
π

m∑
i=1

|qm(zi)−k(zi)|wi ≤ em
1√
π

m∑
i=1

wi = em.

The proofs of (9) and (10) are very similar. For the sake of brevity, we present
only the proof of (9). If k(z) ≥ qm(z) for all z ≤ z� then

0 ≤ 1√
π

∫ z�

−∞
(k(z) − qm(z)) exp(−z2) dz ≤ 1√

π

∫ z�

−∞
k(z) exp(−z2) dz

≤
∫ μ+

√
2τz�

−∞
g(t; θ, σ)φ(t; 0, σ2) dt,

by changing the variable of integration from z to t = μ +
√

2 τ z.

This theorem shows that if k(z) ≥ qm(z) for all z ≤ z� = z1 and for all
z ≥ zu = zm for every m in an increasing sequence of values of m then |a�| +
|au| → 0 as m increases through these values, since zm → ∞ as m → ∞ (see
e.g. Szegö [15], p. 130).

Figure 2 presents a graph of k(z) − qm(z) = h
(
μ +

√
2τz; θ, σ

) − qm(z), con-
sidered as a function of z, for litter 29 for adaptive Gauss-Hermite quadrature
with m = 5 nodes. The smallest and largest nodes z1 and zm, respectively, are
shown. This graph shows that, in this case, k(z) ≥ qm(z) for all z ≤ z� = z1 and
for all z ≥ zu = zm.

Table 2 presents the values of em for cluster 29, where z1 and zm are the
smallest and largest nodes for Gaussian-Hermite with m nodes, where m =
3, 5, 7, 9 and 11. Here z� and zu are the lower and upper limits such that z� ≤ z1
and zu ≥ zm. For every value of m in this table, k(z) ≥ qm(z) ≥ 0 for all z ≤ z�

and for all z ≥ zu. In other words, the upper bound on
∣∣c(θ, σ) − cm(θ, σ)

∣∣ that
results from (8), (9) and (10) applies. Note that the values of em in this table
decrease as m increases. Also, since z� decreases and zu increases as m increases,
|a�| and |au| decrease as m increases through the values m = 3, 5, 7, 9 and 11.
Our conclusion from this table is that the upper bound on

∣∣c(θ, σ) − cm(θ, σ)
∣∣

decreases as m increases through these values. Figure 2 and Table 2 were obtained
using the “minimax” command in Maple.

Remark 1. As noted in Sect. 3, if c3 > 0 then r(t; θ, σ) → ∞ as t → ∞ and as
t → −∞, so that σ̃2 = ∞ and importance sampling fails spectacularly. However,
(7) implies that if c3 > 0 then h(t; θ, σ) → ∞, as t → ∞ and as t → −∞, faster
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Fig. 2. Graph of the function k(z) − qm(z) = h
(
μ +

√
2τz; θ, σ

) − qm(z), considered as
a function of z, for litter 29 for adaptive Gauss-Hermite quadrature with m = 5 nodes.
The smallest and largest nodes z1 and zm, respectively, are shown.

Table 2. Values of em for cluster 29, where z1 and zm are the smallest and largest
nodes for Gaussian-Hermite with m nodes. Here z� and zu are the lower and upper
limits such that z� ≤ z1 and zu ≥ zm.

m z� z1 zm zu em

3 −2.100000000 −1.224744871 1.224744871 1.280000000 3.945318530 × 10−8

5 −2.800000000 −2.020182870 2.020182870 2.020182870 1.406266160 × 10−8

7 −3.400000000 −2.651961357 2.651961357 2.651961357 7.927392539 × 10−9

9 −3.930000000 −3.190993202 3.190993202 3.190993202 5.198304537 × 10−9

11 −4.400000000 −3.668470847 3.668470847 3.668470847 3.976752578 × 10−9
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than any polynomial. In other words, if c3 > 0 then k(z) = h
(
μ+

√
2τz; θ, σ

) →
∞, as z → ∞ and as z → −∞, faster than any polynomial. It is this fact than
makes it possible for the condition that k(z) ≥ qm(z) for all z ≤ z� and for all
z ≥ zu to be satisfied. This condition is used in Theorem 1 to bound |a�| and |au|
from above. In other words, the property of the function h(t; θ, σ) of t that leads
to importance sampling failing spectacularly is useful in disclosing why adaptive
Gauss-Hermite quadrature succeeds.

5 Discussion

Adaptive Gauss-Hermite quadrature and importance sampling share the same
basic first step of multiplying and dividing the integrand of interest by a chosen
pdf. However, this is where the similarity between these two methods ends.
Extreme care is required to apply importance sampling effectively. Fortunately
for users of adaptive Gauss-Hermite quadrature for the computation of the log-
likelihood function of GLMM’s this method can be applied effectively without
anywhere near the same level of care.

Acknowledgements. This work was supported by an Australian Government
Research Training Program Scholarship.
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Abstract. We introduce a periodic loss function and corresponding acti-
vation function, to be used for neural network regression and autoencod-
ing task involving periodic targets. Such target features, typically repre-
sented in non-Cartesian coordinates, arise mainly from angular distribu-
tions, but also include repeating time series, e.g. 24-h cycles or seasonal
intervals. To demonstrate the use of this loss function, two different use-
cases within the context of high-energy physics are presented. The first
is a simple regression network, trained to predict the angle between par-
ticles emerging from the decay of a heavier, unstable particle. Next, we
look at the same particle decay, but train an autoencoder to reproduce
all inputs, which include both cyclic and noncyclic features. All examples
show that failing to incorporate the cyclic property of the targets into
the loss and activation function significantly degrades the performance
of the model predictions.

Keywords: Particle physics · Machine learning · Loss function ·
Autoencoder · Regression

1 Introduction

Observables repeating over a given interval appear everywhere within the phys-
ical sciences; these may be angles defined on the interval [0, 2π), or measure-
ments repeating in a daily or a yearly cycle. A model predicting the value of a
periodic observable necessarily needs to incorporate the bounds defined by the
nature of the problem at hand. Particularly in the field of high-energy particle
physics, angular observables are ubiquitous, as particle trajectories are typi-
cally given in cylindrical coordinates. This is due to the design of modern-day
particle detectors, which are built as concentric cylinders incorporating differ-
ent detection technologies. The current leading detectors are located at CERN,
Geneva, observing collisions of atomic nuclei which are accelerated by the Large
Hadron Collider (LHC). The energy density of the collisions resemble those from
moments after the Big Bang, and cause multitudes of energetic particles to
emerge in all directions from the collision point.
c© Springer Nature Singapore Pte Ltd. 2019
H. Nguyen (Ed.): RSSDS 2019, CCIS 1150, pp. 140–147, 2019.
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Fig. 1. Creation of an electroweak boson W± in a proton-proton collision, and subse-
quent decay into an electron or positron e± with its associated electron neutrino.

1.1 Data: Physics Observables from Colliders

Upon successful reconstruction of a collision event, the basic observables avail-
able are the directions of the outgoing particles, along with their energies and
electric charges. Unstable particles may decay before reaching the detector; hence
their existence can only be inferred through their decay products. The resolution
of the reconstructed energy and direction of such an intermediate particle nec-
essarily depends on how well the decay products are measured. While the larger
part of a collision can be measured with high precision, this is typically not the
case for electrically neutral particles, particularly so for the weakly interacting
neutrino, which will always traverse the sensor systems undetected. Although
it cannot be observed directly, the initial conditions of the collision allows us
to constrain the possibility space of its momentum. As the colliding particles
approach each other along the z axis, they have zero energy in the transverse
(x-y) plane, and this property is also conserved after the collision. Hence, if we
observe a net energy imbalance Emiss

xy in the x-y plane after the collision, we can
attribute the ‘missing’ energy to neutrinos travelling in the opposite direction.
This case is investigated further in the next section.

In all following demonstrations, we use realistic, simulated data, for which
the true regression targets are precisely known. The data are generated using
Pythia [7] version 8.2.40, configured to match the collision energy of the LHC at
present. For computational efficiency we simulate only certain physical processes;
the specifics of the processes considered are given in the description of each case
below.

2 Periodic Loss and Activation Function

The crucial part for setting up a loss function L(ypred, ytrue) to be applied to
a periodic target ytrue, where ytrue ∈ [a, b), is that limε→0 L(a, b − ε) should
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Fig. 2. A sketch illustrating the angles of the electron and the neutrino (θe and θν ,
respectively), with respect to the z axis.

evaluate to 0. For ‘standard’ mean squared error loss, this is obviously not the
case, since one would rather obtain the maximum possible difference. To solve
this, we convert ypred and ytrue to points on the unit circle, and take, as a loss
value, the norm of their vector difference. The absolute-value norm corresponds
to mean absolute error (MAE), while the Euclidean norm corresponds to mean
squared error (MSE). The following shows an implementation in python using
the TensorFlow [1] library:

from math import pi
import tensorflow as tf

def to unit circle(yvals):
”””
Convert points in range [a, b) to point on full unit circle
”””
c = 2∗pi/(b-a)
siny, cosy = tf.sin(a+c∗yvals), tf.cos(a+c∗yvals)

return tf.stack(values=[siny, cosy], axis=-1)

def periodic mae(y true, y pred):
”””
Absolute mean error function for periodic target
”””
y t = to unit circle(y true)
y p = to unit circle(y pred)

return tf.mean(tf.norm(y t-y p, axis=1))

For a regression task, one would typically use a linear activation function in the
output layer, affinely combining the outputs of the nodes in the previous layer.
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Fig. 3. Histograms of the input features. Descriptions are given inside the parentheses
and units are provided in the brackets.

We need a final modification, however, to ensure that the range of network
output coincides with the interval on which ytrue is defined. This can be done by
introducing the modulus operator in the activation function of the output layer:

from math import pi

def bounded linear activation(y):
”””
Map y to the range [a, b]
”””
ans = a+tf.mod(y, b)

if ans == 0:
return tf.keras.backend.epsilon()

return ans

The following examples illustrate cases where the combination of these loss and
activation functions is required, and show how ‘common’ loss functions without
the periodic property fail to properly reconstruct the targets.

3 Example 1: Predicting the Angle of an Invisible
Particle

As a first example, we consider the decay of an electroweak boson W− into an
electron e− and an electron neutrino νe. This can for instance take place in
a proton-proton collision at the LHC, via the process depicted in Fig. 1. The
W decays immediately, leaving behind only an electron, which is accurately



144 S. Maeland and I. Strümke

Fig. 4. Three different loss functions are used in a regression network to predict the
angle θ; (a) the logcosh, (b) the mean squared error and (c) a periodic mean squared
error function.

measured by the detector, and a neutrino. As mentioned, the neutrino is unde-
tectable, leaving us only with an energy imbalance Emiss

xy , and no knowledge of
its energy in the z direction. In this example we wish to predict the z-component
of the neutrino momentum, or more specifically, its angle θν relative to the z
axis, as shown in Fig. 2.

A regression network with (150, 100, 50, 1) nodes is trained on one million
W decay events. The input features are the three components of the electron
momentum vector, denoted pe

x, pe
y and pe

z, the electron energy Ee, and the energy
imbalance components Emiss

x and Emiss
y . The distributions of the features are

shown in Figure 3. The network is implemented in Keras [3], using ReLU acti-
vation in all except the last layer, with the default setting for random weight
initialisation, and is optimised using Adam [5], again with default settings. Three
different loss functions are tested; unbounded (‘standard’) logcosh, unbounded
MSE, and bounded MSE. We train these networks until an early stopping cri-
terion is met, which is when the loss on the validation dataset has shown no
improvement for 25 consecutive epochs. The distributions of the network pre-
dictions, superimposed on the true target values, are shown in Fig. 4. As can
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Fig. 5. Autoencoder architecture. The dotted circles in the last layer represent nodes
with unbounded linear activation functions, while the shaded circle represents the node
with bounded activation function.

be seen, when using the unbounded loss functions (Fig. 4a and b) the network
fails to properly reconstruct the targets close to the boundaries; this problem
is ameliorated by using the bounded loss and final-layer activation functions
(Fig. 4c).

4 Example 2: Autoencoding Periodic Features

Turning now to autoencoders [2,4,6], the task of these deep neural networks is
unsupervised representation learning, performed in two steps; the first part of
the network, referred to as the encoder, encodes the features into latent rep-
resentations. These latent representations are then used by the second part,
the decoder, to reconstruct the original features. Autoencoders are commonly
used, e.g. for dimensionality reduction in image recognition, which works when
the autoencoder is able to ignore noise while learning relevant structure in the
images [8].

We set up a simple autoencoder to reconstruct the features of the data
in Sect. 3, including θν , meaning it operates on in total seven features, of which
one is periodic whilst the others are not. The encoder consists of an input and
two encoding layers with (7, 48, 5) nodes. The decoder consists of a layer with 48
nodes, followed by two parallel layers; one with six nodes corresponding to the
nonperiodic features, and one with a single node corresponding to the periodic
feature, see Fig. 5. The former output layer is given the standard MSE loss and
linear activation, while the latter has the bounded MSE loss and periodic linear
activation. For comparison, we also train an autoencoder using unbounded MSE
loss for all features. The results are shown in Fig. 6. On the left (Fig. 6a) we
see the reconstructed features using only unbounded MSE, which near-perfectly
recover the nonperiodic features, but fails completely to reconstruct the angle
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Fig. 6. Original and decoded features, using (a) standard unbounded loss and acti-
vation function for all features, and (b) unbounded loss and activation for features 1
through 6, and bounded loss and activation for the periodic θν (lowermost panel). The
axis ranges are not indicated, but are the same as in Fig. 3.

θν . On the right (Fig. 6b) we see the adapted network, which recovers the cor-
rect distribution for θν . We note, however, that this implementation of splitting
the decoder output into parallel layers with different loss functions, introduces a
new hyperparameter, which is the relative weighting to apply to the loss values



Deep Learning with Periodic Features and Applications in Particle Physics 147

of the two output layers. This requires some case-dependent tuning, since the
maximum value of the bounded loss function is limited by its domain, while the
unbounded one can in principle yield arbitrarily large values, hence ‘overwhelm-
ing’ the other.

5 Conclusion

We have shown that when applying neural networks to regression tasks involving
periodic targets, such tasks including also autoencoders, the periodicity of the
targets need to be specifically incorporated into the loss and final-layer activation
functions of the network, in order to accurately reconstruct target values close to
the boundary. An example implementation of these functions is given in Sect. 2.
As a use-case we have investigated a scenario in high-energy physics, where
angular and hence periodic features are frequently encountered.
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Abstract. Inadequate assessment of the agitation associated with clin-
ical outcomes has an adverse impact on a patient’s wellbeing including
under or oversedation. Earlier research found that the majority of nurses
under-estimate more severe pain and over-estimate mild pain.

Empirical distributions of the nurses’ ratings of a patient’s agitation
levels and the administered dose of a sedative are often positively skewed
so that their joint distributions are non-elliptical. Therefore, the high
nurses’ ratings of a patient’s agitation levels may not correspond to the
cases with large doses of sedative.

Copulas measure nonlinear dependencies capturing the dependence
between skewed distributions. Therefore, we propose to use a copula-
based dependence measure between the nurses’ rating of patients’ agita-
tion level and the automated sedation dose to identify the patient-specific
thresholds that separate the regions of mild and severe agitation. Delin-
eating the regions with different agitation intensities allows us to estab-
lish the regions where nurses are more likely to over or under-estimate
the patient’s agitation levels.

This study uses agitation-sedation profiles of two patients collected at
Christchurch Hospital, Christchurch School of Medicine and Health Sci-
ences, NZ. Classification of patients into poor and good trackers based on
Wavelet Probability Band. The best-fitting copula shows that the depen-
dency structure between the nurses’ rating of a patient’s agitation level
and the administered dose of sedative for both patients has an upper
tail. Specifically, the value of the tail threshold is lower and the average
magnitude of the bias in the nurses’ rating of a patient’s agitation level
is smaller for a good tracker compared with a poor tracker.

Establishing the presence of tail dependence and patient-specific
thresholds for areas with different agitation intensities has significant
implications for the effective administration of sedatives. Better man-
agement of agitation-sedation states will allow clinicians to improve the
efficacy of care and reduce healthcare costs.

c© Springer Nature Singapore Pte Ltd. 2019
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1 Introduction

1.1 Background

Earlier research found that the majority of nurses under-estimate more severe
pain and over-estimate mild pain [1]. Optimised sedation management in the
Intensive Care Unit (ICU) is crucial for better pain management, reduced agita-
tion, and survival of patients in ICU. A trend towards lighter sedation has been
evident in many ICUs in Australia and Europe [2]. In Australia, the number of
critically ill patients managed in the emergency department (ED) is increasing
[3]. Between 2011 and 2016, the number of critically ill patients presenting to
the ED increased by nearly 60% [4] with over a third of patients (39%) needing
intubation and mechanical ventilation. Although the care of critically ill patients
traditionally occurs in ICUs, emergency staff are increasingly having to manage
critically ill mechanically ventilated patients for extended periods of time [5].
Pain management is an essential component of quality care delivery for the crit-
ically ill patient. However, as many as 79% of patients experience moderate to
severe pain, whilst intubated and mechanically ventilated from both their initial
reason for presentation (e.g. trauma) and required treatments. Intravenous anal-
gesia is commonly administered to alleviate pain, suffering, adverse physiological
and psychological effects [6], unplanned self-extubation, accidental removal of
invasive monitoring devices, or injury to staff [7].

Several recent studies have emphasised the cost and health-care advantages
of drug delivery protocols based on assessment scales of agitation and sedation.
Typically agitation-sedation cycling in critically ill patients involves oscillations
between states of agitation and over-sedation, which is detrimental to patient
health and increases hospital length of stay (LoS) [8–11]. The goal of the research
specifically in reference [11] was to develop a physiologically representative model
that captures the fundamental dynamics of the agitation-sedation system. The
resulting model serves as a platform to develop and test semi-automated sedation
management controllers that offer the potential of improved agitation manage-
ment and reduce LoS in ICU.

The work of [8,11,12] developed a physiological agitation model which can be
used in feedback protocols for medical decision support systems and eventually
automated sedation administration. A minimal differential equation model to
predict or simulate each patient’s agitation-sedation status over time was pre-
sented in [11] for 37 ICU patients and was shown to capture patient agitation-
sedation (A-S) dynamics (see Table 7 of [13]). Current agitation management
methods rely on subjective agitation assessment and an appropriate sedation
input response from recorded-at-bedside agitation scales [14,15]. The carers then
select an appropriate infusion rate based upon their evaluation of these scales,
their experience, and intuition [16]. This approach usually leads to largely con-
tinuous infusions which lack a bolus-focused approach, commonly resulting in
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over- or under-sedation. Further details of this process can be found in [11]. A
more refined A-S model, which utilised kernel regression with an Epanechnikov
kernel and better captured the fundamental A-S dynamics was formulated later
[10,11].

A-S cycling in critically ill ICU patients is damaging to health. Therefore,
the use of quantitative modelling to enhance understanding of A-S system and
the provision of an A-S simulation platform are key tools in the area of patient
critical care. A Bayesian approach using densities and wavelet shrinkage methods
is suggested as a means to assess a previously derived deterministic, paramet-
ric A-S model [13]. Research on A-S pharmacodynamics by [8,9,12,13,17] has
helped enhance the understanding of the underlying A-S dynamics and enabled
development of advanced protocols for semi-automated sedation administration
technology. This work has successfully challenged the practice of sedating ICU
patients using continuous infusions. Specifically, [13,17] has shown that wavelets
provide a diagnostic and visualization tool to assess A-S models, and provided
alternative numerical metrics of A-S control, using a density estimation approach
via wavelet smoothing and discrete wavelet transform in assessing the validity of
the earlier developed A-S deterministic DE dynamic models (see Table 7 of [13]).

The Bayesian approach of using densities and wavelet shrinkage methods sug-
gested in [13] as a means to assess a previously derived deterministic, parametric
A-S model incorporated two steps to construct a so-called wavelet probability
band (WPB) for the model and use of this as a basis to evaluate whether the non-
parametric regression curve lies within the band. This WPB approach yielded
graphical assessments along with numerical metrics at a patient by patient level.

The WPB was constructed for each of 37 ICU patients, and the time and
duration of any deviations from the WPB were recorded for each patient [13].
A 70% value for a WPB implies that for at least 70% of the time, the estimated
mean value of the given patient’s administered dose of sedative lies within the
band. A density profile was also successfully used to define two alternative met-
rics, the average normalized wavelet density (ANWD) and the relative average
normalized wavelet density (RANWD), as estimates of comparability between
the patient’s simulated and nurses’ recorded rates. The WPB and related statis-
tics were shown to be excellent tools for detecting regions where the nurses’
rating and the automated (modelled) infusion rate do not track, thus providing
ways distinguish between good versus poor trackers [13,17] to help improve and
distil the deterministic A-S model. Therefore, the difference between good and
poor trackers is as follows: a good tracker is a patient whose simulated profiles
was “close” to the mean profile (a majority of the time profile), a poor tracker
is a patient for whom this was not the case [13].

Nurses play a major role in rating a patient’s agitation levels. Assessing the
severity of agitation is a challenging clinical problem as variability related to
drug metabolism for each individual is often subjective. A multitude of previ-
ous studies suggests that nurses tend to underestimate more severe pain and
overestimate mild pain [18,19].
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The empirical distributions of the nurses’ ratings of the patient’s agitation
level and the administered dose of sedative estimated for the full set of 37 patients
shows that both variables have positively skewed distributions [20]. As a conse-
quence, the joint distribution between nurses’ rating and the automated sedation
doses is non-elliptical. In a non-elliptical joint distribution the high nurses’ rat-
ings of a patient’s agitation levels may not necessarily correspond to the cases
with large doses of sedative.

The aim of this paper is to build on an earlier work [20] to address the gap in
the methodology by integrating the non-elliptical dependency structure between
nurses’ rating of a patient’s agitation level and the automated sedation dose
thereby accounting for possible nonlinear relationships between two variables.
A similar approach was used by [21] to capture the non-elliptical dependence
between exchange rates. In an earlier work [20] the tail thresholds were deter-
mined visually, whereas in this paper we employ the dynamic programming
algorithm [22] to establish the tail thresholds.

Copula [23,24] is a multivariate functional form for the joint distribution of
random variables derived purely from pre-specified parametric marginal distribu-
tions of each random variable. The copula-based approach retains a parametric
specification for the bivariate dependency but allows testing of several para-
metric structures to characterise the dependency including one between skewed
distributions. The empirical context in the current paper is a model of nurses’
rating of agitation level with respect to the automated simulated sedation dose.
The copula decomposes the multivariate distribution function of nurses rating of
agitation level and the patient automated dose profile into univariate marginals
and into a function that quantifies their statistical dependency. Linear corre-
lation coefficients are suitable for measuring dependence of elliptical joint dis-
tributions. If conventional correlation measures were applied outside the class
of elliptical distributions and linear relationships, a possibility of pitfalls and
erroneous results could have occurred [24,25].

Copulas allow the strength of dependence to vary in different quantiles.
The Kendall plot is used to determine the quantiles with significantly differ-
ent strength of dependence. Establishing the regions with different agitation
intensities between nurses’ rating of patients’ agitation level and the automated
sedation dose allow us to identify regions where nurses are more likely to over
and under-estimate the patient-specific agitation severity levels.

2 Methodology

This study uses two intensive care unit patients’ agitation-sedation profiles col-
lected at Christchurch Hospital, Christchurch School of Medicine and Health
Sciences, NZ [12,13,17]. Two variables were recorded for each patient: (1) the
nurses’ ratings of a patient’s agitation level and (2) an automated sedation dose.
Infusion data were recorded using an electronic drug infusion device for all admit-
ted ICU patients during a nine-month observation period and requiring more
than 24 h of sedation. Infusion data containing less than 48 h of continuous data,
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or data from patients whose sedation requirements were extreme, such as those
with severe head injuries, were excluded. A total of 37 ICU patients met these
requirements and were enrolled in this study. Approval for this research was
obtained from the Canterbury Ethics Board.

We will use the Kendall plot (K-plot) to determine the bivariate patient-
specific thresholds which split the data into two regions with significantly differ-
ent strength of dependence between nurses’ rating of a patient’s agitation level
and the automated sedation dose: (1) the main region with an approximately
linear relationship and (2) the tail region with a non-linear relationship.

The K-plot [26] adopts the familiar probability plot (Q-Q plot) to detect
dependence. A lack of linearity of the standard Q-Q plot is an indication of non-
normality of the distribution of a random variable. Similarly, in the absence of
association between two variables, the K-plot is close to a straight line, while the
amount of curvature in the plot is characteristic of the degree of dependence in
the data, and is related in a definite way, to the underlying copula. This method
is closely related to the Kendall’s τ -statistic [27], from which it takes the name.

The construction of a K-plot requires ordering Hi, as H(1) ≤ ... ≤ H(n). For
a given pair (Xi, Yi) with 1 ≤ i ≤ n, Hi is defined as follows:

Hi =
1

n − 1
#{j �= i : Xj ≤ Xi, Yj ≤ Yi}. (1)

Now, using the definition of the density of an order statistic, we have the expected
value W(i:n) for the ith order statistic H(i) under the null hypothesis of indepen-
dence for all 1 ≤ i ≤ n:

Wi:n = n

(
n − 1
i − 1

) ∫ 1

0

ωK0(ω)i−1 × {1 − K0(ω)}n−1dK0(ω). (2)

Now to obtain a K-plot, we plot the pairs (Wi:n,H(i)), for 1 ≤ i ≤ n where Wi:n

is the expectation of the ith-order statistic in a random sample of size n, drawn
from the distribution K0 of the Hi, under the null of independence. The form of
the bivariate distribution K0 is given as follows:

K(ω) = K0(ω) = Pr{UV ≤ ω} = ω − ω log(ω), 0 ≤ ω ≤ 1 (3)

where U and V are independent uniform random variables on the interval [0,1].
This choice of K0(ω) is then used to compute the Wi:n required for the plot.

To identify a patient-specific threshold, we employ the dynamic programming
algorithm discussed in Sect. 3.3 of [22] to estimate threshold in the dependence
measure Hi between two variables. The dynamic programming algorithm [22]
captures multiple thresholds, however, to be consistent with the objective of
this paper, we focus on determining the tail threshold. In our context, the tail
threshold corresponds to the highest threshold.

3 Results

In this section, we consider two patients from the pool of 37 patients. The first
patient is a poor tracker (patient 27) and the second patient is a good tracker
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(patient 8). Classification of patients into poor and good trackers based on both
Wavelet Probability Bands (WPB) discussed in [13,17]. While patients 27 has
WPB of 47.27% and is considered a poor tracker, patient 8 has WPB of 87.5%
and is considered a good tracker (see Table 3 in [17]).

First, we provide results for patient 27. The line plot of nurses’ rating of a
patient’s agitation and the automated sedation dose in Fig. 1(a) indicates that
two variables tend to move together most of the time.

The scatter plot with the line of the best fit in Fig. 1(c) shows that most of
the observations are close to the regression line, however, some observations lie
further away from the main cluster of the data. The simple linear regression for
predicting nurses’ rating of a patient’s agitation for patient 27:

ˆScore = 1.06Dose (4)

However, the estimated Eq. (4) is not valid due to the fact that the variance is not
constant as evident from the scatterplot in Fig. 1(c). To identify a patient-specific
threshold, first, we construct the K-plot shown in Fig. 2(a). We use the K-plot
to assess if the dependence between two variables varies in different quantiles.
The K-plot shows strong dependence between the automated sedation dose and
the nurses’ rating. The strength of the dependence is lower in the upper quan-
tiles as the observations are closer to the diagonal line of independence. The
dynamic algorithm applied to the dependence measure Hi between nurses’ rat-
ing of a patient’s agitation level and the automated sedation dose identifies the
tail threshold (178th order statistic) shown as a broken vertical line, see Fig. 2(c).

The identified bivariate threshold corresponds to 6.8 mg/ml for the auto-
mated sedation dose and a score of 5.7 for the nurses’ rating. The histograms
for both variables with thresholds are shown in Fig. 3(a) and (b). Both vari-
ables have positively skewed distributions, therefore the contour plot in Fig. 4(a)
shows that the bivariate relationship between nurses’ rating of patient’s agitation
level and the automated sedation dose for patient 27 is non-elliptical. The long
right tails of both distributions stretch the shape of the joint distribution along
the vertical and horizontal axes. The BiCopSelect function from VineCopula R
package selects survival BB8 copula as the best fitting copula [29]. This copula
has an upper tail dependence, therefore we introduce a tail dummy variable into
the regression model:

ˆScore = 0.79Dose + 4.28(tail == “Yes”) (5)

The slope of 0.79 indicates that, on average when a patient is experiencing a
mild or moderate agitation, nurses tend to under-estimate a patient’s agitation
level. However, when a patient is experiencing a severe agitation, nurses tend
to assign a score that is on average 4.28 points higher than expected for the
patient’s agitation level. This over-estimation occurs one in every seven ratings,
as there are 32 out of a total of 223 occurrences of severe agitation. For patient 27
incorporating the tail dummy variable improved predictions of the nurses rating
by increasing the adjusted R2 values by 17%. The patient-specific thresholds
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(c) The scatter plot with the line of the
best fit (dashed line) for patient 27.
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(d) The scatter plot with the line of the
best fit (dashed line) for patient 8.

Fig. 1. Line plots and scatterplots.

split the data into four quadrants with the top two quadrants representing the
region where nurses tend to over-estimate patients’ agitation level, see Fig. 4(c).
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(d) The Hi measure plot for patient 8 with
the bivariate threshold (dashed line).

Fig. 2. K-plots and the Hi measure plot

Now, we provide the results for patient 8. The line plot of nurses’ rating of a
patient’s agitation and the automated sedation dose in Fig. 1(b) indicates that
both variables tend to move together most of the time.
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(b) The contour plot between nurses rat-
ing and the sedation dose for patient 8.
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(c) The scatterplot with two lines of the
best fit and tail thresholds (dashed lines)
for patient 27.
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best fit and tail thresholds (dashed lines)
for patient 8.

Fig. 4. Contour plots and scatterplots with thresholds
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The scatter plot with the line of the best fit in Fig. 1(d) shows that most of
the observations are close to the regression line, however, some observations lie
further away from the main cluster of the data. The simple linear regression for
predicting nurses’ rating of a patient’s agitation for patient 8:

ˆScore = 1.14Dose (6)

However, the estimated Eq. (6) is not valid due to the fact that the variance is
not constant as evident from the scatterplot in Fig. 1(c). The K-plot in Fig. 2(b)
shows strong dependence between the automated sedation dose and the nurses’
rating. The strength of the dependence is higher in the lower quantiles as the
observations are farther away to the diagonal line of independence. The dynamic
algorithm applied to the dependence measure Hi between nurses’ rating of
a patient’s agitation level and the automated sedation dose identifies the tail
threshold (96th order statistic) shown as a broken vertical line, see Fig. 2(d).

The identified bivariate threshold corresponds to 4.0 mg/ml for the auto-
mated sedation dose and a score of 5.2 for the nurses’ rating. The distribution
of the nurses’ rating is approximately symmetric, however the distribution of
the automated sedation dose is positively skewed, therefore the contour plot in
Fig. 4(b) shows that the bivariate relationship between nurses’ rating of patient’s
agitation level and the automated sedation dose for patient 8 is non-elliptical.
The long right tail of the distribution for the nurses’ rating stretched the shape
of the joint distribution along the vertical axis. The BiCopSelect function from
VineCopula R package selects survival Clayton copula as the best fitting copula
[29]. This copula has an upper tail dependence, therefore we introduce a tail
dummy variable into the regression model:

ˆScore = 0.92Dose + 3.38(tail == “Yes”) (7)

The slope of 0.92 indicates that, on average when a patient is experiencing a
mild or moderate agitation, nurses tend to slightly under-estimate the patient’s
agitation level. Since this estimated coefficient is closer to one, the magnitude of
the systematic under-estimation is slightly lower for patient 8 compared with the
patient 27. However, when a patient is experiencing a severe agitation, nurses
tend to assign a rating that is, on average, 3.38 points higher than expected
for the patient’s given agitation level. This over-estimation occurs one in every
thirteen ratings, as there are 10 out of a total of 127 occurrences of severe
agitation for this patient. For patient 8 incorporating the tail dummy variable
improved predictions of the nurses rating by increasing the adjusted R2 values
by 16%. The patient-specific thresholds split the data into four quadrants with
the top two quadrants representing the region where nurses tend to overestimate
patients’ agitation level, see Fig. 4(d).

4 Conclusion

The aim of the paper was to integrate the non-elliptical dependency structure
between nurses’ rating of a patient’s agitation level and the automated sedation
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dose thereby accounting for possible nonlinear relationships between two vari-
ables. The best-fitting copula shows that the dependency structure between the
nurses’ rating of a patient’s agitation level and the administered dose of sedative
for both patients has an upper tail. Specifically, the value of the tail threshold is
lower for a good tracker compared with a poor tracker. Moreover, the frequency
of the cases with severe agitation is lower for a good tracker compared with a
poor tracker. And finally, the average magnitude of the bias in the nurses’ rating
of a patient’s agitation level is smaller for a good tracker. Overall, the results
show that the estimated copula provides valuable information regarding whether
a tail dummy variable has to be included in the regression model. Incorporating
the tail dummy variable improved predictions of the nurses’ rating by increasing
the adjusted R2 values by a minimum of 16%.

A great variety of copula functions allows for modelling different dependency
structures including dependence between skewed distributions and measuring
nonlinear dependencies. Incorporating the copula-based dependence structure
thresholds into prediction models improves their predictive accuracy and helps
clinicians to make more informed decisions. Moreover, the copula-based depen-
dence modelling can be used for segmenting patients into homogeneous groups
for the purposes of using the most effective treatment plans. Better predictions
and quality of care will have consequent policy implications for improving hospi-
tal performance by achieving better health outcomes, improved access to health
services, and less waste for the same level of healthcare costs.

The copula approach suggested in this paper is generalisable to any study
which investigates the similarity or closeness of bivariate time series of, for exam-
ple, a large number of units (patients, households) and of time series of disparate
lengths and of possibly long length. Hence the aim of future work on the full set
of 37 patients is to generalise the result that the copula approach can accurately
capture the dynamic (temporal) dependence between the nurses’ rating and the
automated infusion dose. Future work will investigate the dependence structure
between the nurses’ rating and the automated infusion dose by identifying both
lower and upper thresholds [30]. Further developments could include investiga-
tion of commonality of thresholds, copula types, and complexity of a dependence
structure for good and bad trackers with the view of segmenting patients into
homogeneous groups for the purpose of using the most effective treatment plans.
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Abstract. We demonstrate the utility of predicting the whole distribution of an
outcome rather than a marginal change. We overcome inconsistent data mod-
elling techniques in a real world problem. A model based on additive quantile
regression and boosting was used to predict the whole distribution of length of
hospital stay (LOS) following colorectal cancer surgery. The model also
assessed the association of hospital and patient characteristics over the whole
distribution of LOS. The model recovered the empirical LOS distribution.
A counterfactual simulation quantified change in LOS over the whole distri-
bution if an important associated predictor were to be varied. The model showed
that important hospital and patient characteristics were differentially associated
across the distribution of LOS. Model insights were much richer than just
focusing on a marginal change. This method is novel for public health and
epidemiological studies and could be applied in other fields of research.

Keywords: Additive quantile regression � Machine learning � Boosting �
Density forecast

1 Introduction

Evidence of an association between hospital or surgeon cancer surgery volume and
better patient outcomes has been mixed [1–7], however, previous analyses have had
important limitations. A 2002 review that examined seven statistical modelling tech-
niques used to assess association between patient factors and length of hospital stay
(LOS) in a cardiovascular setting found that choice of model influenced the conclusion
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of the analyses. In some instances the conclusions were reversed. Model results were
inconsistent due to LOS being a complex phenomenon and unmet assumptions
regarding distributional fit. A small proportion of patients with very long hospital stays
made it inherently difficult for simpler parametric methods to effectively model the data
[8]. These models have been employed also in colorectal cancer (CRC) studies of
association between LOS and provider volume and hence some doubt is cast on both
negative and positive conclusions [1, 9–12]. Some studies have used arbitrary
thresholds for the categorization of LOS and volumes (low, medium and high) [1, 2,
11, 13, 14] which may reduce statistical power [15]. If the skewness of LOS changes as
provider volume changes then arbitrary categorizations of LOS may be problematic
[15–17]. Additionally, heterogeneity due to arbitrary categorizations has prevented
synthesis of findings [3, 18].

A weakness of some hospital patient outcome studies is bias due to unaccounted for
correlations between outcomes within a hospital - sometimes referred to as random
effects [19]. Furthermore, surgeries are performed in the context of a hospital with a
distinct infrastructure and management that affect their outcome [2]. Modelling this
contextual effect may yield important information regarding its association with patient
outcomes such as LOS [20–22]. The systematic differences in patients’ outcomes
across hospitals that persist after differences in patients’ risk profiles have been
accounted for reflect differences in hospitals’ quality of care [23]. In this study we
examined the relationship between LOS following CRC surgery and provider volume
by using a quantile regression model which makes no distributional assumption about
LOS or error terms [24, 25] and avoids arbitrarily categorizing LOS or provider volume
[15]. The model formulation we specified took the individual patient as the unit of
analysis and used the clustering of patients within a hospital to analyse the association
between the hospital context and LOS [20–22]. Furthermore, we did not focus on just a
marginal change, such as a mean or median or some other quantile, but instead
modelled the whole distribution so as to give a more in depth understanding of the
interplay between LOS and hospital and patient characteristics over the whole distri-
bution of LOS [26].

2 Methods

2.1 Data Details

The Victorian Admitted Episode Dataset (VAED) includes all separations (discharges
and transfers) undertaken within all Victorian hospitals. All separations between 1 Jul
2005 and 30 Jun 2015 recorded in the VAED, that included one of 30 ICD-10-AM
Australian Classification of Health Interventions procedure codes for colorectal sur-
gery, as the primary reason for admission, were identified. There were 62,774
admissions for 57,446 patients. Analysis was restricted to admissions whose principal
diagnosis was for CRC, ICD-10-AM codes C18.x to C21.x which resulted in a final
data set of 28,343 admissions for 27,633 patients. Provider volume was defined as the
number of colorectal surgical procedures performed by a hospital within a fiscal year (1
July to 30 June), whether patients had a principal diagnosis of CRC or not. That is,
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annual volume (AV). Length of stay was defined as the number of days from admission
to discharge for the episode of care including transfers to other hospitals and geriatric
and rehabilitation centres.

2.2 Modelling Details

As it was conceivable that LOS and provider volume were not necessarily linearly
related, we used an additive quantile regression (AQR) model which does not require a
predetermined functional fit but instead determines the best fit from the data [15, 25,
27, 28]. The specification we used was based on a formulation by Mundlak [29] and is
in a class commonly referred to as a ‘within and between’ effects model [20, 22, 30]. It
required that we enter both AV and mean annual volume (MAV). Mean annual volume
(MAV) was defined for each hospital as the mean of all AV over the number of years
the hospital operated within the 10 year study period. Not all hospitals performed
colorectal surgical procedures in every study year [2]. The within effect was modelled
by AV. It estimated the effect on LOS within hospitals as AV varied and its inter-
pretation is equivalent to any fixed effect estimator [30]. The between effect was
modelled by MAV. Due to the model formulation used, it estimated the effect on LOS
if a patient were to attend another hospital with a different MAV, that is, the hospital
contextual effect [20, 21, 23]. This method draws comparisons across hospitals and
estimates the effect of hospital choice on patient LOS, or in other words, hospitals’
quality of care or efficiency regarding LOS [23]. The model was adjusted for various
patient and hospital factors that may confound the association between provider vol-
ume and LOS [19, 31–33].

We tested how well the model represented the data by predicting the empirical
cumulative distribution (CDF) of LOS and assessed its fit. We refer to this as the
recovered distribution. As the model formulation estimated the effect on LOS if a
patient were to attend another hospital [20, 21, 23], we used the model to simulate the
change in LOS if CRC patients were to have counterfactually attended a hospital that
the model indicated to be more LOS efficient. We predicted each percentile 1 to 99
which were combined to obtain the predicted CDF of LOS [26]. This was termed the
counterfactual CDF. The area under the counterfactual CDF was calculated and
compared to the area under the recovered CDF. As the area under each CDF directly
related to the total sum of LOS days, the difference in areas estimated the change in
total sum of LOS due to this hypothetical experiment. This enabled us to calculate a
dollar value for the difference by allowing $1000 per LOS day [34]. A 95% confidence
interval (CI) was computed for the estimated change. Statistical significance was set at
the 0.05 level.

2.2.1 Boosting to Assess Variable Selection and Functional Fit
To aid model building and variable selection we used boosting [15, 26, 35–37].
Boosting is a statistical algorithm in the class of machine learning methods. It deter-
mines the most appropriate model by optimizing the fit to the data while limiting over
fitting. It will discard variables, along with their proposed functional fit that do not aid
optimization where optimization is defined as the largest reduction in the model fit error
at each iterative step. For the actual form of the loss function to determine model fit
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error, please see [38]. Hence it is a variable and functional form selection method that
does not resort to heuristic techniques such as ad hoc stepwise variable selection [24]. It
also works well in the setting of many predictors with possibly high correlation
between them [38]. We used component-wise gradient boosting [38]. Continuous
variables may be entered simultaneously as linear and non-linear components into the
model and the boosting process is able to determine which variable and which func-
tional fit aids model fit to the signal in the data. Categorical variables are entered
linearly. This process is thoroughly described in the following references [15, 24, 26,
37]. Intrinsic to this method is the choice of step length and optimal number of
iterations. We used the default of 0.1 for step length. General cross validation
(GCV) was used to choose 5000 as an optimal number of iterations. We carried this out
with the freeware R version 3.3.3 [39], using the package mboost [24, 40]. All con-
tinuous variables were mean centered as recommended for the boosting algorithm [24,
25]. We assessed possible random effects [14] by including a random intercept for
hospital into the boosting process where hospital was represented by a dummy variable.

2.2.2 Model Specification for Additive Quantile Regression with Boosting
The following model was implemented using the boosting algorithm:

Qt LOSð Þ modelled with intercept
þ fnl mean annual surgery volumeð Þ þ fl mean annual surgery volumeð Þ
þ fnl annual surgery volumeð Þ þ fl annual surgery volumeð Þ
þ fnl ageð Þ þ fl ageð Þ
þ fnl daily surgery admissionsð Þ þ fl daily surgery admissionsð Þ
þ fnl Elixhauser comorbidity scoreð Þ þ fl Elixhauser comorbidity scoreð Þ
þ fnl year of dischargeð Þ þ fl year of dischargeð Þ
þ fnl cyclic month of dischargeð Þ þ fl month of dischargeð Þ
þ fl sexð Þ þ fl ASAð Þ þ fl cancer siteð Þ þ fl metastatic cancerð Þ
þ fl laparoscopeð Þ þ fl admission typeð Þ þ fl separationmodeð Þ
þ fl hospital typeð Þ þ fl collocatedð Þ þ þ fl surgical procedureð Þ
þ fri hospital campusð Þ;

ð1Þ

where: Qt = modelled quantile, t = 1 to 99;

fnl ¼ non linear function;

fl ¼ ordinary linear squares function for continuous or categorical data;

fnl cyclic ¼ non linear function using cyclic splines;

fri ¼ random intercept to adjust for correlations in LOS outcomes within a hospital:

2.2.3 Recovering the Unconditional Predicted Quantile
As with ordinary linear regression that predicts a mean of a dependent variable con-
ditional on independent covariates, quantile regression also predicts quantiles of the
distribution conditional on independent covariates. That is, if we refer to the quantiles
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we are modelling as Q zð Þ for the zth quantile and the vector of covariates as x, then we
are modelling bQ zjxð Þ, where bQ indicates an estimate of Q. To obtain the unconditional
estimate Q zð Þ we need to average out the effect of x over the distribution that the
sample is drawn from. That is,

Q zð Þ ¼
Z þ1

�1
f xð ÞQ̂ zjxð Þdx ð2Þ

where f xð Þ is the joint probability distribution of the covariates. We don’t know the
mathematical formulation for f xð Þ, however, the above expression is equivalent to

E bQ zjxð Þ
h i

, that is, the mean of bQ zjxð Þ: Since our sample is clearly representative of

f xð Þ and the number of estimates is very large (28,343 = the sample size), taking the
mean will converge to Q zð Þ by the law of large numbers.

2.2.4 Smoothing Count Data – a Technicality
Due to the combination of LOS being a count variable and the estimation of the
conditional quantile involves a non-smooth objective function, a certain amount of
smoothness needs to be imposed on the data. This is done by adding a specific form of
random noise, referred to as jittering, which preserves the one to one relationship
between the jittered and un-jittered data. Hence the model estimates based on the
jittered data are readily converted to their un-jittered values. This is well described by
Machado and Silva [41]. To accomplish this, we used the dither function in the R
package quantreg [42]. The counts were recovered from the modelled jittered LOS by
applying Theorem 2 by Machado and Silva [41],

bQ zjxð Þ ¼ ceiling jittered bQ zjxð Þ
n o

� 1
h i

ð3Þ

where bQ zjxð Þ is the estimated quantile conditional on x, the vector of covariates, and
ceiling[n] denotes the smallest integer greater than or equal to n.

2.2.5 Building the Second Additive Quantile Regression Model Without
Boosting
We used the results of the boosting to build a second AQR model. The boosting
indicated that random effects for hospital was not important for predicting LOS and that
all entered variables may be important for predicting LOS except for Elixhauser (co-
morbidity) score, co-location status and sex – see Fig. 1. Month and separation mode
were the strongest predictors in the sense of reduction of model fit error by up to
approximately 3 and 1 respectively for some of the percentiles. Other variable con-
tributions were below about 0.5 for all percentiles. Although boosting suggested that
sex was not an important variable, we still included it due to its generally important
relevance in epidemiological studies. This decision was eventually justified, see
Sect. 3.3.4 below. Boosting also suggested that non-linear fits for MAV, AV, age and
month better predicted LOS than linear but a linear fit for year and number of daily
colorectal surgery admissions better predicted LOS. We still entered the number of
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daily admissions and year as a non-linear fit as model regularization would likely result
in a linear fit without taxing degrees of freedom.

The variables that were indicated as important for predicting LOS were then
entered into the second AQR. This was done without including random effects for
hospital as suggested by the boosting. The AQR was applied with a regularization of
the model fit to the data to reduce over fitting and to increase prediction accuracy. This
is done by the calculation of smoothing parameters for the continuous variables and the
use of a least absolute shrinkage and selection operator (lasso) for the categorical
variables [27, 35, 36]. The selection of the smoothing parameter for each continuous
variable is first initiated on a univariate basis. These initial values are then passed onto
a function, along with a starting value for the lasso, which then recalibrates them over
the whole parameter space for each model fit to each percentile. These functions and
the R computer code for their implementation are well described by Koenker [27].

This is the specification of the second AQR model that we implemented following
variable selection by the boosting process.

Qt LOSð Þ modelled with intercept

þ fnl mean annual surgery volumeð Þ þ fnl annual surgery volumeð Þ
þ fnl ageð Þ þ fnl daily surgery admissionsð Þ þ fnl year of dischargeð Þ
þ fl month of dischargeð Þ þ fl sexð Þ þ fl ASAð Þ þ fl cancer siteð Þ
þ fl metastatic cancerð Þ þ fl laparoscopeð Þ þ fl admission typeð Þ
þ fl separation modeð Þ þ fl hospital typeð Þ þ fl surgical procedureð Þ:

ð4Þ

The second AQR was carried out with the R package quantreg [42] and was
compared to the boosted model.

2.2.6 Comparing the AQR Models - with Boosting to Without Boosting
The models were compared in four ways. Firstly we used the continuous ranked
probability score (CRPS) [26, 43, 44] as formulated by Gneiting and Ranjan to
compare density forecasts [43] - see Eq. 6 in their paper. Secondly, we calculated the
Akaike information criterion (AIC) for each percentile and added the results. We
defined the AIC as 2 * (number of variables - logarithm of the likelihood). Thirdly we
compared by eye how well the graph of the recovered distribution represented the
actual empirical distribution of LOS. We termed this graphical fit. Fourthly, we
computed the areas under the graphs of the empirical and recovered distribution,
between the 1st and 99th percentiles and compared them. A recovered distribution
should give an area close to the area under the empirical distribution. Computing the
area under the graph was done using the R package flux using the auc function [45].

Table 1 compares model capability of both models in recovering the empirical
distribution of LOS. Although the boosted model had overall lower AIC, due to the
importance of the continuous ranked probability score (CRPS) for comparing density
forecasts, the superior approximation of the area under the graph and better graphical fit
(Fig. 2) we proceeded with the second AQR model in assessing the association
between provider volume and LOS.
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Table 1. Model performance indicators. See Sect. 2.2.6.

Boosted model 2nd AQR

CRPS
Lower is better

4.27 3.95

Total AIC over 1–99%
Lower is better

12,173,948 19,758,132

Area under graph ratio to empirical LOS
Close to 1 is better

0.95 1.02

Fig. 1. Variable and functional fit importance indicated by boosting. The scale is total reduction
in model fit error over all iterations. See Sects. 2.2.1 and 2.2.5.
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Fig. 2. The empirical distribution of LOS in black compared to the recovered distribution by the
AQR models in red: A without boosting; B: with boosting. (Color figure online)
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3 Results

For the sake of brevity we present the important results that illustrate the utility of our
model.

3.1 Mean Annual Volume Association with LOS

The model graphs (Fig. 3) indicate that hospitals’ performances (contextual effect)
regarding patient LOS varied greatly for all percentiles and that this variation was not
systematically associated with MAV. At almost any point in the graph, looking left or
right displays both lower and higher LOS. The graphs display initial falls in LOS for
MAV up to 33 approximately which are then followed by marked variation, with low
points in LOS at MAV of 122.1 and 245.8 and a high point at 105.6 MAV. The former
two MAV had the lowest LOS over all percentiles 40 and 20 times respectively while
the latter had the highest 89 times. For all percentiles, the p values from an F statistic
for model fit were less than 1 � 10−6.

3.2 Counterfactual Prediction of Change in LOS Contingent on Change
in MAV

To carry out the counterfactual prediction, we selected the hospital with MAV of 122.1
as an LOS efficient hospital due to its consistent association with reduced LOS over
many percentiles. There were 68 hospitals that had MAV of 122.1 or less and they
generated 106,488 LOS days (27.5%) from 7,979 episodes of care (28.1%). The
counterfactual prediction estimated a fall of 8.5% in total LOS over all patients and
hospitals, p < 0.007, with 95% CI (2.9%, 14.6%). This equated to a reduction of
32,842 total LOS days, 95% CI (11,225, 56,434 days) or a predicted saving of about
$32 million in present day terms over the ten year study period by allowing approx-
imately $1000 per LOS day [34]. Figure 4 demonstrates that, for the counterfactual
experiment, the predicted savings mainly came from reduced LOS for patients who had
LOS between percentiles 14 and 94.

By using the model’s counterfactual prediction capacity, an index of performance
with a 95% CI can be obtained for any hospital. The prediction would immediately
indicate if the hospital was performing better, worse or at about the same level as all
other hospitals. If performing the counterfactual experiment, using the hospital being
assessed as the basis of comparison, resulted in a 5% drop in total LOS then that
hospital would have an index of .95 with an associated confidence interval. Lower than
1 indicates superior efficiency, higher than 1 inferior and 1 no difference. This index is
independent of any distributional or model fit assumptions or arbitrary categorization.
For the analysis of LOS, the Victorian Auditor General’s report resorted to using
trimmed data in a linear regression. This method may be subject to statistical objections
if a mean is not representative of the whole data and because information in the tail(s)
of the distribution, that may represent patients who may not fit the profile of a mean
patient, is discarded [25, 34, 46, 47].
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Our model could be used in national or international settings as it can allow for
nesting in those levels, and so help assess hospital efficiency in regard to LOS in
broader contexts. This would assist with synthesis of future international studies when
in the past, diverse categorization methods had impeded synthesis. It can be extended
to analyse variation between hospitals regarding other outcomes such as mortality and
readmission following CRC surgery.

3.3 Further Results for Patient and Hospital Factors

3.3.1 Laparoscope Use – See Fig. 5
Use of laparoscope was associated with reduced LOS. There were growing reductions
of between 0.5 to 4 days with increasing LOS percentile which indicated the impor-
tance of laparoscope use, where possible, for helping to reduce unnecessarily long
LOS. Use of laparoscope was the main modifiable feature of our analysis. This sug-
gested where possible, use of laparoscope is important for patient outcomes and
resource allocation, as observed and recommended by others [11]. This is an example
of where, if solely a marginal change had been predicted, the result would have been
just one coefficient comparing laparoscope use to non – use. The one coefficient would
have represented an overall average effect and would have been graphically illustrated
as a flat line across all percentiles. Instead, with quantile regression, we see how the
effect due to laparoscope use varied over across all percentiles of LOS. This obser-
vation holds for all the presented variable results. All p values for all coefficients over
all percentiles were less than 1 � 10−4.

3.3.2 Separation Mode – See Fig. 6
It is evident from Fig. 6 that discharge to transition care, an aged care residential
facility, other acute hospital or a statistical separation contributed heavily to protracted
LOS with between 2–50 days greater than patients who were transferred to home. This
difference increased with increasing LOS percentile. Left against medical advice shows
no association with LOS as the coefficients for nearly all percentiles are close to zero
and non-significant. It seems that patients who died in hospital after colorectal cancer
surgery did so either early in their hospital stay or at the end of a protracted stay. The p
values for all statistically significant coefficients, were mainly less than 0.01.

There may be some scope for improvements in LOS for patients who are trans-
ferred for extended care to other acute hospitals, rehabilitation or geriatric care centres.
These patients had between 2–50 days more LOS compared to patients who were
transferred to home which accounted for 104,497 days (27%) of total LOS. If with
vigilant follow up and management, a modest 10% of these days were to be saved, that
would have amounted to a saving of about 10,400 days and a potential saving of about
$10 million in present terms over the 10 year study period [34].
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Fig. 3. Model estimates for between hospital differences (contextual effect) in the association
between annual volumes and LOS; A-percentiles 5–75, B-percentiles 75–95, both in intervals of
5. Red lines are percentiles 5, 25, 50, 75 and 95. The lines are dotted between 279.6 and 566.7 as
there were no hospitals with MAV between these values. A few of the percentile fits display
quantile crossing (see Sect. 3.4). All p values, from an F statistic that assessed model fit for
percentiles 1–95, were less than 1 � 10−6. (Color figure online)
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Fig. 5. The association between laparoscope use and LOS. Use of laparoscope is compared to
non-use of laparoscope. The shading represents the coefficient 95% CI for each percentile.

Fig. 4. In black we have the recovered distribution. Red is the counterfactual distribution
obtained by setting all MAV to 122.1 and all AV to the same AV in each year as generated by the
hospital with MAV of 122.1. (Color figure online)
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Fig. 6. Model estimates for the association between separation mode and LOS for all percentiles
1–99. These coefficients use separation to private residence or accommodation as the reference
level. The shading represents the coefficient 95% CI for each percentile.
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3.3.3 Month of Year – See Fig. 7
Please note the months are within a fiscal year and are ordered from July to June.
Compared to July, month of year differences in LOS ranged between −4.6 to 3.9 days
over all percentiles but the bulk of differences were between −0.5 to 0.5 days. The
larger magnitudes were for the higher LOS percentiles of 90 or more. Except for
January, all months mostly had lower LOS than July but only May, June, October and
December showed consistency (Fig. 7C) and strong statistical evidence (Fig. 7B) for
this difference. January tended to have higher LOS however, zero was not extreme for
this relative difference compared to July (Fig. 7C) as can also be seen by lack of
statistical significance (Fig. 7B). Most likely these monthly effects were due to sea-
sonally adjusted hospital administration factors rather than an environmental seasonal
effect.

The association between month of year and LOS was a surprise finding. This is
more likely to reflect seasonally modified discharge practices rather than seasonal
environmental factors [48] and so may potentially be another modifiable feature. If the
same efficiencies that seem to have applied to discharges in May, June, December and
October were to be applied to discharges in all other months of the year, then poten-
tially there could have been reductions of approximately 1000–2000 days of LOS
which would translate to savings of between $1 million to $2 million dollars
approximately over the 10 year study period.

Adding these savings and savings due to better management of separation mode
(see Sect. 3.3.2) to savings reaped from increased hospital efficiency indicated in the
main results (see Sect. 3.2), potential total savings due to improved LOS efficiency
could be more than $4 million per year for CRC surgery.

3.3.4 Sex - See Fig. 8
For percentiles up to about 20 there were no statistical differences between LOS for
women and men. For higher percentiles we see a gradual decrease for women to about
3 days less LOS compared to men. This may be related to being in better general health
at surgery due to health promoting behaviours that are more likely to be exhibited by
women than men.

3.4 Quantile Crossing

When the predicted unconditional quantiles are combined to recover the full distri-
bution, the monotonicity of the cumulative distribution function (CDF) may not be
retained. That is, at times a predicted value of LOS that does not respect the strictly
increasing property of quantiles may be produced by a model. This has been referred to
as quantile crossing [25, 28]. We used the process of monotone rearranging to restore
the required monotonicity property to the CDF for the recovered distribution of LOS
[26, 49]. The rearrangement process was based on mathematical results by Hardy,
Littlewood and Polya [50, 51] and was implemented with the rearrangement function in
the R package, quantreg [42].
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Fig. 7. A - Coefficients for month of year compared to July for percentiles 1–99. B - p values for
month coefficients for percentiles 1–99. White indicates a p value > 0.05. C - Distribution of
coefficients for each month.
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Quantile crossing may also occur when generally modelling the association
between different quantiles of a dependent variable as a function of an independent
variable. This occurred in this study a small number of times in modelling the asso-
ciation between quantiles of LOS and mean annual volume, annual volume and age of
patient – only the results for mean annual volume, Fig. 3, are displayed for brevity
purposes. It is evident that fitted lines (functions) for a few of the percentiles cross the
lines of other percentiles. The advantage of quantile regression in not requiring global
distributional assumptions but instead using the data near the specified quantile,
sometimes has the disadvantage of producing quantile crossing. That is, in modelling
one quantile, quantile regression is ignorant of other quantiles [25]. However, quantile
crossing usually occurs in sparse areas of the data and is also sensitive to outlier values
for the independent covariate (quantile regression is robust to dependent variable
outlier values) [25, 52]. Linear regression may also be affected by these conditions [25].
The 99th LOS percentile for age was affected by both conditions as the 99th percentile is
a sparse region of the data and there was a patient of 103 years of age. For mean annual
volume and annual volume, there was a clear outlier with a relatively large distance
from the next lowest values and no intervening values (dotted lines in those graphs).
The fit determined by data to the left of the dotted line cannot anticipate lack of data to
the right. If quantile crossing occurs substantially often, then this may indicate model
misspecification [25]. Quantile crossing is an area of ongoing research [25, 49].

4 Discussion

Our model presented itself as a useful method for assessing provider performance
regarding LOS, adjusted for pertinent patient and hospital factors [19]. The additive
quantile regression approach proved a suitable method to cope with the difficulties

Fig. 8. Model estimates for the association between sex and LOS for all percentiles 1–99. These
coefficients are based on comparison of women to men as the reference level. The shading
represents the coefficient 95% CI for each percentile.
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inherent in analysing LOS due to its greatly skewed distribution and non-linear asso-
ciation with provider volume. Assuming a distributional fit or arbitrary categorization
of LOS and focusing only on the mean would not have allowed the assessment of
associations with LOS over its entire distribution. Imposing a linear fit causes non-
linear associations to go undetected, if present in the data. Focusing on only one
parameter, such as a mean, would have assumed that change in mean LOS would have
translated equally to all patients or that the “average” patient was representative of all
patients. It is quite possible that there may be important changes in the tails of a
distribution yet, the mean is unchanged [25]. A linear, Cox or logistic regression would
have resulted in only one (average) coefficient for all percentiles and would not have
given any insight into differential associations across LOS percentiles. That is, focusing
only on mean outcomes may cause important information about patients who may not
fit well into the frame of average to go unobserved.

General linear models focus on marginal change in the outcome variable dependent
on predictive factors, however it is quite possible that there is a multifaceted inter-
change between the outcome and predictive factors which may vary for different levels
of the outcome. If we aim to understand the full impact of possible predictors on an
outcome, predicting a marginal change is not sufficiently meaningful [26, 53–55]. To
model a possible multifaceted interchange between predictors and outcomes, we need
to examine change in the outcome, conditional on the predictor, across the outcome
distribution in its entirety or at least a sufficiently representative number of percentiles.
Our model obtained a more realistic idea of the change in the outcome variable,
conditioned on important covariates, by predicting all percentiles. This has been
likened to the difference between calculating only “what changes” compared to “who
changes” and by how much [46] where, in our case, surgery patients were the who.
These are ongoing and important issues for epidemiological studies and data analysis
generally [47].

Our model did not assume any distributional fit which may bias estimates or reduce
sensitivity to detect associations if the assumption is an over simplification and
therefore not justified [56]. John Tukey referred to this as having more honest foun-
dations for data analysis [47]. Furthermore, we did not use any arbitrary categorical
definitions of the outcome, or continuous predictors which has hindered synthesis of
past studies. John Ioannidis in his seminal work, Why Most Published Research Papers
are False, stated in his 4th Corollary that the greater the flexibility in designs, defini-
tions, outcomes, and analytical modes in a scientific field, the less likely the research
findings are to be true [57].

Although we used a Mundlak formulation in our example, it is not necessary to do
so. The basic idea of predicting the outcome distribution can be used in any typical
regression formulation for a continuous or count outcome. Our model was further
complemented by shrinkage and penalization to obtain more accurate estimates and
reduce statistical error [19, 27].

Our model did have the limitation of being data hungry. A large sample size is
required to reliably employ our model especially if many covariates are entered into the
analysis. However, this age of big data somewhat mitigates this limitation. Our model
is also computer resource intensive. To predict percentiles 1–99 and run the counter-
factual simulation took approximately 70 min on a 64-bit PC with 64 GB RAM and a
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Xeon® 3.5 GHz CPU but 5.5 h on a 64-bit PC with 16 GB of RAM and an i5 2.5 GHz
CPU. The recalibration of the lasso and smoothing parameters over the whole
parameter space for each model fit for percentiles 1–99, took approximately 36 h on a
64-bit PC with 16 GB of RAM and an i5 2.5 GHz CPU.

This model can only be applied to continuous or count outcomes but there has been
some recent work that has applied quantile regression to time to event data and work
that seeks to apply it to binary response data [25].

5 Conclusion

Predicting the whole outcome distribution was useful in providing an in depth
description of the complexity of the associations between hospital and patient factors
across the whole distribution of LOS. The facility of the model to indicate change over
the whole distribution is useful where predicting a change in mean or median outcome
is an oversimplification of the data and does not provide insight that is sufficiently
indicative and real-world. With sufficient data, our model can be applied to any con-
tinuous or count outcome. Improvements in optimizing the time to predict the per-
centiles and calculate lasso and smoothing parameters are required. As far as we can
tell, this method is novel for public health and epidemiological studies and may have
further uses in these areas as well as other fields of scientific research.
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Abstract. Nowadays, digital devices and the internet make our life remarkably
easy since a massive number of daily activities can be carried out simply
through the internet. Internet of Things (IoT) devices are increasingly employed
in diverse industries with a wide range of purposes such as sensing or collecting
environmental data. The development of IoT brings many opportunities but also
many security challenges. Recently, the presence of IoT in a numerous number
of applications and their improving computing and processing abilities make
them a vulnerable attack target. Hence, developing a method that is capable of
proactively detect and prevent malware in IoT is a perpetual demand. In the
recent years, machine learning techniques have been applied in the field of
malware detection and achieved acceptable results, however; these approaches
have inherently a challenging step called feature extraction. Therefore, we need
a method that has the ability to automatically extract features which is signifi-
cantly time-consuming and error-prone process. The introduction of deep
learning, a new area of artificial intelligence, helps the malware detection by
automating the feature extraction due to its multi-layer training. This paper
proposes a novel architecture of Convolutional Neural Network (CNN) that
utilizes raw bytes as input and eliminates the need to extract high-level features
manually. In addition, we benefit from the reputed embedding techniques to
generate numerical vectors of bytes since deep networks only accept numerical
vectors as input. Our results indicate that the proposed approach can achieve
high detection rate of malware among IoT devices, outperforming traditional
machine learning based methods which reveals the merit of deep learning
techniques in IoT malware detection.

Keywords: Malware detection � Internet of Things � Deep learning � CNN �
Embedding � Word2vec

1 Introduction

Electronic devices and the Internet are rapidly becoming a vital part of our daily life. It
is essential to make digital devices significantly secure because they work with sen-
sitive data that needs high level of privacy. In fact, this gain in acceptance has not come
without its costs. A huge number of computer attacks occur yearly and diverse types of
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malware are designed with different destructive intentions to infiltrate IoT devices and
threaten the users’ security and privacy [1].

A typical deployment of Internet of Things (IoT) consists of a wide pervasive
networks of Internet-connected devices, Internet-connected vehicles, sensors, embed-
ded systems and other devices or systems that autonomously sense, store, transfer and
process collected data [2]. Owing to the growing popularity of Internet of Things
(IoT) devices and the lack of approaches capable of providing security for these
devices, they can be highly vulnerable to malware attacks [3]. According to the
Kaspersky Lab, the majority of IoT devices assessed in 2016 were insecure, most of
these devices had either default password or unpatched vulnerabilities. This means that
IoT devices can be easily targeted and compromised by malware. Therefore, we need
specialized tools, techniques and procedures for making IoT networks secure and
collecting, preserving and analyzing residual evidences of IoT environments.

Malware (short for malicious software) is a software created to deliberately actu-
alize the detrimental intent of an attacker [4]. Malware can be categorized in several
groups in terms of their specifications and purposes such as viruses, Trojans, botnets,
worms, spyware and backdoors [5]. Gaining access to private systems, stealing user’s
confidential information or infecting files on system are merely some of security attacks
that can be carried out by malware and caused drastic damages as well as financial loss
to users.

Signature-based methods, which are based on the unparalleled binary patterns of
each malicious sample, have been employed by commercial anti-malware [6–8]. The
complexity and diversity of malware samples are swiftly increased each year which
makes the efficiency of signature-based techniques remarkably blur since they are only
able to detect pre-known malware and they fail to detect obfuscated and unknown
samples. According to these drawbacks of traditional anti-malware approaches,
researchers are persuaded to find a series of intelligent methods using machine learning
techniques to deal with samples [9, 10].

In general, special models are built in machine learning techniques in order to learn
from input data and then to process unseen samples. These input data should be in the
form of features such as integers or floating numbers, Boolean and categorical values.
Owing to the fact that the efficiency of machine learning approaches is highly
dependent on the input features, selecting and processing features are the most chal-
lenging steps. In fact, desirable results cannot be achieved if proper features not
extracted, even if we have a robust classifier. Two methods are available to analyze and
extract features from files: dynamic [11] and static analysis [9, 12].

Accordingly, a group of machine learning techniques called deep learning is
selected in this article to automatically perform the complicated feature extraction
process. It has motivated a large number of prosperous applications in image classi-
fication, speech recognition and natural language processing. A multi-layer deep
learning can come up with a high-level representation of data by associating features.
Hence, it can provide pre-training multiple layers of feature detectors from the lowest to
the highest level to build the final classification model [13]. Moreover, using the deep
architecture leads to the simultaneous execution of feature extraction and dimension
reduction.
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This paper introduces a new architecture of CNN that applies raw bytes of files as
input. Since the length of byte sequences is different for each file, we employ the
header (usually the first 1024 bytes) of files as the input of CNN. Furthermore, the input
of deep network should be vectors with identical size, thus embedding techniques are
implemented in this article to create fixed size and unique numerical vectors for each
byte. Since embedding techniques are often used in text classification problems so we
treat each byte as a word and apply word2vec embedding method.

The remainder of this paper is organized as follows. In Sect. 2, some related works
conducted in this field will be discussed. Our proposed method and its required
background is described step by step in Sect. 3. In Sect. 4, experimental results are
presented to evaluate our method and compare it to other relevant approaches. Finally,
conclusion of our work and a discussion of possible future work is considered in
Sect. 5.

2 Related Works

In this section some of the similar recent works done in the field of malware detection
will be explained.

Farrokhmanesh et al. [14] proposed a static byte-level approach which is imple-
mented by voice processing technique. In this method, malware detection problem is
treated as music classification due to the same content of music and malware files that
both of them are an ordinal sequence of components (malware is a sequence of bytes
and music is sequence of notes). In fact, bytes of an executable file are converted to
MIDI instructions by the goal of generating a real Audio file. To acquire features of
audio files, algorithms for feature extracting in music classification are utilized. The
most challenging and the main flaw of this work is ascertaining the strategies for
converting bytes to music notes. Since conversion strategy has direct impact on the
final results, it should be able to convert a byte into simultaneous notes in such a way
that they can be distinguishable by feature extraction algorithms.

Hashemi et al. [15] provided an image-based approach to detect unknown malware.
They used the idea that different behaviors of benign and malware files create different
micro-patterns that can be utilized to distinguish between files of each class. First, each
executable file is converted to gray scale image by two techniques named row repre-
sentation and Markov chain. Then, Local Binary Pattern (LBP) method is employed to
extract micro-patterns from created images. They used KNN machine learning clas-
sifier to classify samples.

Xiao et al. [16] introduced a detection method based in deep learning to distinguish
android malware from trusted applications. As regards to the fact that there is some
semantic information in system call sequences of android as the natural language, they
treat one system call sequence as a sentence in the language and construct a classifier
based on the Long Short-Term Memory (LSTM) language model. In the classifier, at
first two LSTM models are trained respectively by the system call sequences extracted
from malware and those from benign applications. Then, two similarity scores are
calculated respecting to the benign and malware models. Finally, the classifier defines
whether the application under analysis is malicious or trusted by the greater score.
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A heterogeneous deep learning framework for intelligent malware detection is
proposed by Ye et al. [17] which is based on the Windows Application Programming
interface calls (API) extracted from the portable executable (PE) files. Their model
composed of an AutoEncoder stacked up with multi-layer restricted Boltzmann
machines (RBMs) [18] and a layer of associative memory to detect newly unknown
malware.

Gibert et al. [19] developed a file agnostic deep learning system that learns visual
features from executable files for classifying malware into different families. Their idea
was motivated by the visual similarity between malware samples of the same family.
Visualization techniques are beneficial for detecting variations in samples since they
have the ability to capture minor changes while keeping the global structure. Hence,
malware executables were visualized as gray scale images and then a convolutional
neural network was trained on the representation of malware’s binary content as gray
scale images. Their proposed neural network consists of an input layer and three 4-
stage feature extractors learning hierarchical features through convolution, activation,
pooling and normalization layers and classify malware samples intro various families at
the end.

In another research, a deep learning based method is introduced by Cui et al. [20]
for detecting malware variants. First, malicious codes were converted to gray scale
images which were then delivered to the convolutional neural network as input to
classify malware samples into their corresponding families. Usually, the number of
malicious code variations differs greatly among various code families which is called
data imbalance problem. To resolve this issue, they designed a data equilibrium
approach based on the bat algorithm that can deal with a huge volume of variations and
work well across malware families.

3 Proposed Method

We design a novel architecture for malware detection problem by the help of CNN
[21], one of the robust deep learning networks employed in various areas. Our CNN
has an effectual layout of layers demonstrating remarkably more acceptable and
preferable results in comparison with simple architecture of CNN. As stated before, our
method applies raw bytes of files directly as dealing with bytes is easier and faster than
using the source code [18]. Also, raw bytes are always available while high-level
features may not be possible to be obtained properly in some cases like when anti-
disassembling techniques are applied [9]. Indeed, in this paper each file is considered as
a sequence of bytes.

Deep learning algorithms only accept numerical vectors as input, hence it is
required to convert bytes to vectors before delivering them to the CNN. Due to this,
embedding techniques are applied in this paper with respect to their remarkable per-
formance in generating numerical vectors. Generally, embedding is the name of a
group of approaches used in text processing to create vectors for each word of a
sentence. In fact, the identical structure of executable files and sentence (both of them
consist of a sequence of something, sentence is the sequence of words and file is the
sequence of bytes) motivates us to apply word embedding techniques and benefit from
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them to generate more intelligent numerical vectors for bytes. Therefore, each byte in
the byte sequence is treated as a word in the sentence and a unique numerical vector is
generated for each byte value by the help of embedding approaches.

Different embedding approaches are provided with a wide range of capabilities that
are applied in various fields in accordance to their application. One-hot encoding is one
of the most rudimentary embedding techniques created vectors in an uncomplicated
way [22]. In this method, a list is firstly created containing all of the distinct words of
the text and consecutive indexes are assigned to these words. Then, to represent each
word in vector form, an embedding vector with the specified size equivalent to the
length of the list is generated. All of the value of this vector is zero except where
associated to the index of the target word which its value is one.

One-hot encoding produces vector for each word independently regardless the other
words, thus these vectors are not effectual enough as they cannot provide any helpful
information related to the meaning of the word, its relation with others that are
semantically close to this word, its position in the text, etc. In other words, one-hot
encoding vectors are not informative and that’s the reason we have employed the other
group of embedding methods in this paper called word2vec.

3.1 Word2vec Model

Word2vec names a group of embedding models which recently gained notable pop-
ularity in the analysis of natural language text [22]. It is interesting to know that, these
models are two-layered shallow networks employed by deep learning models. They
take a large corpus of text as input and create a vector space of words. In comparison to
the dimensionality of one-hot embedding space which is the size of the list of distin-
guished words, the dimensionality of the word2vec embedding space is usually lower
and also its vectors are denser. The models designed based on the word2vec are
considerably effective and achieved reasonable results. Continuous Bag of Words
(CBOW) [22] and Skip-Gram [22] are the two eminent architectures of word2vec.

Our proposed embedding network is based on the Skip-Gram model that converts
the byte values of each file to numerical vectors. Skip-gram architecture attempts to
predict the surrounding words, given the center word. In word2vec models, after the
completion of learning process, each word in the text has a distinctive embedding
vector with predefined size. Regarding the fact that these vectors are generated by
considering their position in the sentence, they have the ability to prevail over the
momentous drawback of one-hot encoding. Therefore, by utilizing this superb property
of word2vec, the distance between the vectors of semantically close words is marginal.
One of the important novelties of this paper is the implementation of embedding
techniques in the field of malware detection.

The overall structure of our introduced word2vec network is depicted in Fig. 1. As
stated before, we treat each byte as a word and create embedding vectors for all of the
byte values. It is essential to remark that, only the header part of each executable file
(which is usually the first 1024 bytes) is chosen in this work as input since they contain
valuable information about the file. Also, despite of the better results that may obtained
using all bytes of each file, the computational complexity and processing time are
increased considerably. In the first step, the header bytes of all training samples are
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extracted and the frequency of each byte in the dataset is calculated. Then, bytes are
arranged in descending order with respect to their frequencies to build a dictionary
which maps each byte to its index. Consequently, index 1 of the dictionary refers to the
byte with the highest frequency and the last index that in our case is 256 (the total
number of distinct bytes), is assigned to the byte with the lowest frequency.

It can be seen from Fig. 1 that our byte2vec network takes two one-hot vectors as
input and produces a value between 0–1 in the output. This value implies that how
much the first input byte is similar to the second corresponding input byte. Since each
byte has 256 different modes, the length of the input one-hot vectors should be 256. In
our network, each sample is read byte by byte and when a byte is selected as a target, it
is delivered to the network as the first input byte. Then, n random bytes from its context
and n random bytes from out of its context called negative bytes are chosen that each
time one of them is opted as the second input byte. In Skip-Gram, a window with
predefined size is considered which the context, negative and target bytes are defined
based on this window. Accordingly, bytes surrounded the target byte are determined as
context and those that are outside the window are negatives. Therefore, byte2vec
network is trained in a way that each time for a target byte, if the second input is a
context byte, the output value is set to be 1, otherwise the output value is 0.

The most momentous part of this network is the embedding matrix which is located
in the next layer and provided the final embedding vectors of bytes supplied to the deep
learning network as the output of word2vec model. The size of this matrix is considered
to be 256 * d, where d is the length of embedding vectors. In this article, the value of d
is specified to be 50, therefore the size of our embedding matrix is 256 * 50. After the
training of word2vec model, each row of this matrix represents the embedding vector
generated for the associated byte value.

Fig. 1. Overall structure of the proposed word2vec model
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This matrix is initialized randomly and updated during the training procedure
regarding the values of input bytes to generate effectual numeric vectors. The element-
wise multiplication is applied between the input one-hot vectors and the embedding
matrix; as a result, the value of all the rows of matrix became 0 except two rows that are
relevant to the input indexes. It is significant to note that, these two rows are the
produced embedding vectors of the target byte and its negative or context bytes utilized
as the numerical vectors of byte values after the completion of training process. Then,
these rows are retrieved from the matrix and a dot product operation is performed
between them to evaluate the similarity. Ultimately, the achieved similarity is passed to
a sigmoid layer to assign label 0 or 1. Label 1 implies that the input byte pair has been
(target and context) and 0 is and indicative of the (target and negative) pair.

To train our byte2vec model, the window size in the Skip-Gram is defined to be 5.
Indeed, each training sample is scanned to pick a target byte along with the 5 context
bytes from within the windows of bytes around the target and 5 negative bytes outside
the window are opted randomly. Also, it is required to set a label of 0 or 1 depending
on whether the supplied byte is context or negative. To ensure that truly similar bytes
have vectors with high similarity score, the embedding matrix is updated regularly
through the back-propagation of errors. As mentioned before, we consider only the
header part of each executable file, so that these steps are carried out for the total bytes
of each header. Once training is completed, each row of the embedding matrix is
considered as the embedding vector for the associated byte.

3.2 The Proposed CNN Architecture

As mentioned before, our introduced deep network considers each executable file as a
sequence of raw bytes. One of the most outstanding characteristics of this network is
that, it is endeavored to train a neural network which has the ability of extracting n-
gram patterns simultaneously with different size (2-gram, 3-gram, 4-gram, etc.) from
bytes. These patterns are employed to make a distinction between malware and benign
files. To reach our goal, we modified the layout of basic CNN model in such a way that
its filters can be able to exploit n-gram features from the byte sequences.

In typical approaches, it is very difficult to find a salutary algorithm for extracting
diverse features of n-grams from input bytes; whereas in our method, various n-grams
(ex. 2-gram) are obtained automatically and concurrently by taking the advantages of
the properties of CNN. Additionally, we generalized the initial CNN to a parallel
network in order to make the possibility of simultaneous extraction of n-gram features
with several values of n and then use them as the feature set. Indeed, the implemen-
tation of these procedures in commonplace networks and methods is severely hard and
time-consuming. Thus, our proposed approach can exploit varied set of features for
different n-grams with diverse values of n in a straightforward way and significantly
short time. Moreover, several features can be considered for each size of n which leads
to attain more acceptable results. Owing to the utilization of embedding vectors, bytes
which frequently appear close to each other in the dataset, have more similar vectors
and this has a remarkable influence on the quality of produced n-gram features com-
pared to the other methods that directly consider the value of each byte.
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The overall structure of our proposed network is illustrated in Fig. 2. Due to the
fact that this network employs filters in parallel, we called it Parallel-CNN. The input of
our Parallel-CNN is a two-dimensional matrix (n, d); the first dimension (n) is the
number of byte sequences extracted from each file that in our case is equal to the
number of header bytes (usually the first 1024 bytes). The second dimension (d) is
always fixed and equal to the size of the embedding vectors obtained in the previous
step which is defined to be 50 in this paper. In the convolution layer, 3 filters with
different size and number are utilized in parallel and simultaneously. As shown in
Fig. 2, filters are two-dimensional (f, d) similar to the input matrix and their second
dimension (d) is exactly identical to the second dimension of input. It is essential to
note that, these parallel filters give us the ability to extract n-gram features from the
input and in fact this is one of the most valuable properties of the deep learning
algorithms and peculiarly our Parallel-CNN which can exploit wealthy features
automatically.

Next, filters are placed concurrently on the input to carry out the convolutional
operation; an element-wise multiply between filter and part of the input (n) which is
equal to the size of the considered filter. Notice that the weights of these filters are
initialized randomly at first then updated by back-propagation during training along
with the rest of the network’s parameters. We choose 3 parallel filters (f) with different
size and number (k). Consequently, the output of the convolution layer will be multiple

Fig. 2. The overall structure of the proposed method
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scalar lists (3 * k) with the size of n – f + 1. For example, if we have 20 of each filter,
the output of this layer is 60 (3 * 20) scalar lists.

In the max pooling layer, the maximum value of each list is selected, therefore, the
output of this layer will be 3 * k number of scalars. It is significant to remark that, we
assessed the two other functions of pooling, average and minimum pooling, but the
results of max pooling are much more desirable.

In the next layer, all the achieved scalars are concatenated to form a single and
fixed-size vector as a final feature that is independent from the size of filters. Finally, to
allocate a label for each input data, a two-class Softmax function is applied to the last
layer which is a linear layer to determine the possibility distribution of labels (malware
and benign). Hence, each label that has the highest possibility is opted as the true label
of the input file.

It should be noted that, the more the number of parallel filters, the more acceptable
the final results; nevertheless, computational complexity and the processing time of our
model will be strikingly escalated. To assess the performance of our method, different
number and size of filters are specified and the results of our conducted various
experiments are provided in the next section.

4 Experiments and Results

To evaluate our method, various experiments are conducted and their results are pro-
vided in this section. Since the purpose of our method is malware detection of IoT, two
datasets with different type of files are used to evaluate the performance of our CNN.
This section considers the experimental results on each dataset and the impact of
different parameters on the final accuracy of our method. Also, we compare our
introduced CNN model with other malware detection techniques.

4.1 Dataset

Our experiments are carried out on two datasets. Dataset 1 is an android dataset
comprises of the program file format of android files called apk. DREBIN [23, 24] is an
android malware dataset contains 5560 samples from 179 different malware families. In
this article, a subset of DREBIN includes 2000 files is selected as malware dataset.
Also, for benign dataset, 2000 apk files are randomly downloaded from Google Play
Store which are opted from various categories such as game, entertainments, learning
programs, etc. To be insure that these files are not contain malicious content, we
scanned them with ESET NOD32 and Kaspersky.

Dataset 2 is created from 280 malwares and 270 benign samples for ARM-based
IoT applications [25]. All of our malware samples were selected utilizing VirusTotal
Threat Intelligence platform. Moreover, all goodware were collected form a number of
official IoT App stores like Pi Store.
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4.2 Experimental Environment and Evaluation Metrics

All the experiments of this paper are accomplished on the machine with the following
specifications: Hardware: Intel Core i7 8700k with 12 threads, 32.0 GB of RAM,
GeForce GTX 950 with 2 GB of VRAM as GPU. Software: Ubuntu 16.04 and Python
3.0. Also, we have used Tensorflow with Keras [26] library of Python for creating deep
learning network with different layers. As deep learning algorithm can run both on the
CPU and GPU, we choose GPU due to the high rapidity.

Common machine-learning evaluation metrics are applied to assess the results of
this paper. These are True Positive Ratio (TPR), False Positive Ratio (FPR), Precision,
Recall, Accuracy and F-measure (F1) [27].

4.3 Experiments

In this section, first, the experiments on different parameters of the proposed model are
considered. Then, our Parallel-CNN is compared to other malware detection methods
and the achieved results are discussed in details.

Experiments on Different Parameters of the Proposed Network. This section
provides the results of experiments carried out with various values of parameters of our
model. As mentioned before, three parallel filter set are used simultaneously by our
Parallel-CNN, hence we have two different parameters which affect the detection
results: the number and the size of each parallel filter.

As regards to the structure of filters and input matrix, our network is capable of
extracting n-gram features from input. Therefore, by considering different filter sizes,
various n-grams are achieved concurrently. Obviously, this represents the effectiveness
of employing deep learning techniques and peculiarly the proposed layout of CNN
which can easily and automatically extract features. Moreover, the number of each
parallel filter have a remarkable impact on appropriately detecting malware. This
parameter is equal to the number of features exploited from input data, thus the higher
the number of filters, the more the information obtained from data.

Due to the fact that, by considering the whole content (bytes) of a file, size of the
input matrix will be huge and processing will take more time and memory, we choose
only the header of each file as it is the most informative part of files. To determine the
sensitiveness of our model to these parameters, experiments are accomplished on both
datasets. Since the essence of files in these datasets is completely different, our
parameters are tuned for each of them separately to better comprehend the effectiveness
of them. The results of experiments on Dataset 1 and Dataset 2 are represented in
Tables 1 and 2, respectively. In all of our experiments we consider 80% of data for
training and the rest for the testing phase.

From the results, it is clear that by increasing the number of each parallel filter,
results are growth slightly. Indeed, more features can be extracted from files by rising
the number of filters and this leads to the more accurate malware detection. On the
other hand, a large number of filters may enhance the computations and time of
processing. Also, the size of filters has a considerable impact on the final accuracy. It is
essential to note that, by performing various experiments with different filter sizes, we
figured out that beyond a certain value, an increment in size does not have significant
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effect on accuracy and even in some cases it reduces the results marginally. Further-
more, it should be said that we examined various number of filters and understood that
beyond a certain number of filters (which is in our case is 64) the accuracy stay constant
or decrease which is caused by overfitting. Hence, the larger number of filters will not
always make better results since it leads to the higher computation time as well as lower
accuracy.

By comparing the results on both Datasets, it can be seen that the experiments on
Dataset 2 (IoT Dataset) achieve significantly better results. As mentioned before,
Dataset 1 consists of android apk files. It should be noted that apk is the format of
android’s executable files and it is identical to a zip file which contain all of the files of
android program. In this apk package, dex file is most important among others that
includes the most valuable information about the application. Accordingly, we extract
the byte of dex to perform our experiments. It seems that, the difference between the
structure of android dex and other types of executable files causing the results to be
lower on this dataset.

According to the results, it is obvious that by considering only the header of the file,
the accuracy of the proposed method is reasonable. It is not astounding, because header
is a short-sized piece of data that is strikingly informative and is the only part of the file
that is not encrypted. It is possible that by employing high-level features like opcodes,
we can achieve better results, but our goal is to demonstrate that malware detection is
prone to increasing the speed and simplicity without disassembling.

Experiments on Comparison with Other Malware Detection Methods. In this
section, the proficiency of our method is compared with Farrokhmanesh et al. [14],

Table 1. Result of different number and size of filters on Dataset 1 (FN = Filter Number in each
parallel filter set & FS = Filter size, ACC = Accuracy)

FN FS = (2, 3, 4) FS = (3, 4, 5) FS = (4, 5, 6)

ACC FPR TPR F1 ACC FPR TPR F1 ACC FPR TPR F1

8 0.9245 0.1120 0.9376 0.9201 0.9367 0.0845 0.9416 0.9328 0.9486 0.0763 0.9499 0.9418

16 0.9410 0.0923 0.9491 0.9398 0.9541 0.0812 0.9562 0.9491 0.9673 0.0701 0.9702 0.9635

64 0.9626 0.0532 0.9745 0.9583 0.9695 0.0501 0.9736 0.9623 0.9710 0.0745 0.9571 0.9694

Table 2. Result of different number and size of filters on Dataset 2 (FN = Filter Number in each
parallel filter set & FS = Filter Size, ACC = Accuracy)

FN FS = (2, 3, 4) FS = (3, 4, 5) FS = (4, 5, 6)

ACC FPR TPR F1 ACC FPR TPR F1 ACC FPR TPR F1

8 0.9804 0.090 0.9378 0.9498 0.9855 0.118 0.9743 0.9654 0.9862 0.091 0.9667 0.9651

16 0.9877 0.054 0.9596 0.9688 0.9862 0.082 0.9637 0.9651 0.9899 0.062 0.9742 0.9744

64 0.9935 0.027 0.9778 0.9832 0.9971 0.009 0.9891 0.9925 0.9987 0.017 0.1 0.9965
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Hashemi et al. [15], Gibert et al. [19], Cui et al. [20] and Xiao et al. [16]. To have a
better analysis, all of the malware detection approaches that are selected for comparison
utilize raw bytes similar to our Parallel-CNN model. We ran all of these methods on the
same environment explained in Sect. 4.2. It should be mentioned that the best
parameter values of our technique achieved in previous section are employed in these
experiments in order to compare them with other malware detection methods. Results
on Dataset 1 and Dataset 2 are provided in Tables 3 and 4, respectively. Also, Table 5
represents the comparison of running time with other approaches. Running times are
obtained by getting average among 10 times of executing the network.

In spite of the fact that the accuracy of our method in these experiments is higher
than others, it cannot be argued that it performs always better than other approaches. It
is obvious that the f-measure of our Parallel-CNN is marginally greater than Far-
rokhmanesh et al. [14] method while Hashemi et al. [15] obtained less f-measure in
detecting malware on Dataset 1 compared to our technique. Our goal is to depict that
with the help of deep learning algorithm, appropriate feature extraction is accomplished
and accuracy is enhanced sensibly. Also, it can be concluded that although Gibert et al.
[19] and Cui et al. [20] are capable of detecting malware with reasonable accuracy, they
consume a huge amount of time. This issue is caused by the visualization of samples
which needs much more time for processing compared with the raw bytes.

Table 3. Results of comparison with other malware detection methods on Dataset 1

Classifier TPR FPR Accuracy F-measure

Proposed method 0.9571 0.0745 0.9710 0.9694
Hashemi et al. [15] 0.8993 0.0843 0.9087 0.8995
Farrokhmanesh et al. [14] 0.9560 0.0340 0.96 0.9608
Gibert et al. [19] 0.9387 0.0735 0.9406 0.9317
Cui et al. [20] 0.9255 0.1120 0.9346 0.9221
Xiao et al. [16] 0.9358 0.099 0.9094 0.7110

Table 4. Results of comparison with other malware detection methods on Dataset 2

Classifier TPR FPR Accuracy F-measure

Proposed method 0.9571 0.0745 0.9710 0.9694
Hashemi et al. [15] 0.8974 0.181 0.9652 0.9099
Farrokhmanesh et al. [14] 0.9816 0.072 0.9906 0.9764
Gibert et al. [19] 0.9410 0.081 0.9819 0.9531
Cui et al. [20] 0.8392 0.099 0.9602 0.8912
Xiao et al. [16] 0.9720 0.054 0.9325 0.7959
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5 Summary and Conclusion

The fast pace of development and nature of IoT environments causes a lot of security
and forensics challenges. In this paper, a parallel and novel architecture of CNN is
designed which works by raw bytes with the purpose of IoT malware detection. The
layout of filters in our network are considered in a way that give us the ability to extract
n-gram features from the input data. To generate numerical vectors for bytes, we
applied word2vec, one of the most powerful word embedding methods which are
gained a noticeable acceptance among text classification researches. In fact, we choose
word2vec because its produced vectors are meaningful and demonstrates the similarity
between bytes. It is essential to note that, to work with embedding technique, each byte
in a sequence is considered as a word in sentence and a scalar vector is created for each
byte. Due to the byte-level essence of our method, it does not require any disassem-
bling compared to other machine learning methods which are wasted a great amount of
time for disassembling and exploiting features. Indeed, we directly utilized files to
create models with raw bytes and classify unseen instances. Additionally, as deep
learning methods are capable of automatically extracting features, the need of finding
an effective feature extraction algorithm which is one of the most challenging steps
among other machine learning methods is eliminated.
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Abstract. Possible Neurological Deterioration (ND) of patients with Traumatic
Brain Injury (TBI) is difficult to identify especially the mild and moderate
injuries. When ND happens, death or lifelong disability is prevalent. Early
prediction of possible ND would allow medical and healthcare institutions to
provide the needed medical treatment. This paper presents the results that show
Machine Learning (ML) can be used to create predicative models with high
prediction rates even with a small set of patient records (219 patient records with
54 variables). From the patient records, 20 randomized data sets with precon-
ditions on the testing and training data were created and fed to selected Artificial
Neural Network (ANN) and Classification Algorithms. Preconditions on testing
and training data can affect the prediction models created by the different
algorithms. The best prediction models created by the ANN algorithms (mul-
tilayer perceptron (MLP), recurrent neural network (RNN), and long short-term
memory (LSTM)) and two classification algorithms (linear regression and
logistic regression algorithms) are considered acceptable and could be applied as
medical decision support to identify patients that may potentially have ND.
Early prediction of a possible ND of a patient can now be easily carried out as
soon as his or her records and medical test results are ready and match the 54
variables needed for prediction.

Keywords: Machine learning � Neurological deterioration prediction �
Traumatic brain injury � Small data set
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EDH - Epidural Hematoma
FN - False Negative
FP - False Positive
GCS - Glasgow Coma Scale
ICH - Intra-cerebral Hematoma/ Contusion
IVH - Intraventricular Hemorrhage
LSTM - Long Term Short Term Memory
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ND - Neurological Deterioration
NN - Neural Network
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RNN - Recurrent Neural Network
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TBI - Traumatic Brain Injury
TN - True Negative
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1 Background

The severity of a traumatic brain injury (TBI) is often difficult to accurately classify and
predicting the outcome in the first few hours of the trauma especially in mild and
moderate injuries [2]. Errors of TBI management in emergency rooms (ER) and TBI
preventable deaths are not common [19].

However clinical signs that MTBI patients will have neurological deterioration
(ND) does not show during the first examination. MRI and CT scan results are often are
normal. The medical staff will have to monitor these patients if they think (judgment call
based on experience) ND may occur. What if ND occurs to patients that they think ND
will not happen? This is a bad situation to a patient. Neurological deterioration is a clinical
worsening of a brain, defined as a decrease of � 2 GCS points � 4 SIP score points,
lasting longer than 8 h, requires surgical intervention, and or resulting in death [20].

Traumatic brain injury (TBI) continues to be a prevalent cause of death or lifelong
disability worldwide [1–3]. TBI occurs with greater frequency than other neurological
disorders [4]. Management errors of TBI in Emergency Rooms and TBI preventable
deaths are also high [19].

Among TBI cases, 90% are categorized as mild TBI (MTBI) [5]. In general, MTBI
is characterized by a 10% risk for intracranial abnormalities (epidural/subdural
hematoma or contusion) and a 1% risk of intracranial hematoma with the need for
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immediate surgery [5]. Therefore, it is important to recognize the clinical signs and
provide immediate medical treatment. However the clinical signs can only be seen after
a new CT is taken after neurological deterioration (ND) takes place. The ND status is
considered the main determinant in the treatment strategy for MTBI patients. To be
able to predict that ND may occur, the medical staff can prepare in advance for any
treatment strategy and/ or surgery operations. Currently there is no guideline or definite
criteria to determine or predict possible ND of MTBI patients.

Furthermore, managing TBI is expensive and labor intensive [6]. TBI treatments
are highly time sensitive, and the possibility of patient improvement and survival can
be increased if optimal and prompt decisions are made during the course of treatment.
Therefore, the accurate prediction of the outcome would allow medical and healthcare
institutions to offer treatment that balances the expenses with the limited available
resources.

As a branch of artificial intelligence, machine learning (ML) is widely used in
medicine for classification and prediction, and there is currently an active ongoing
study into existing predictive models based on ML methods [7]. Medical interest in ML
has grown because of its advanced analytical capabilities [8]. Furthermore, ML is seen
as a means of (i) improving management strategies, (ii) informing patients/family
members accordingly about expectations, and (iii) facilitating the designs of future
clinical trials [9, 10]. Therefore, ML predictive studies have been conducted for TBI.

One review reported that TBI outcome prediction was the most-studied topic in
neurology [8]. Reference [11] used an artificial neural network (ANN) model to predict
outcomes after mild severe head injury. Their research was focused on predicting the
five categories of the Glasgow Outcome Score (death, persistent vegetative state, severe
disability, moderate disability, and good recovery); the predictions of their model had
an accuracy of 75.8%. Reference [12] compared ANN and logistic regression models in
their ability to predict outcomes in head trauma on the basis of clinical data. Reference
[6] used several ML techniques (e.g., logistic regression, decision trees, Bayesian
networks, and neural networks) to accurately predict the outcome of a severe head
injury. Their study demonstrated highly accurate predictions with logistic regression
and decision trees; consequently, a hybrid predictive model was developed by com-
bining both algorithms. Reference [13] demonstrated the importance of ranking vari-
ables according to their importance, and they created simple models to accurately
predict the clinical outcomes for TBI patients. Their results can help clinicians improve
management strategies and make better clinical decisions. Logistic regression models
and Bayesian network analysis have been employed to assess the associations of key
variables with the other remaining variables. Reference [14] developed a
Bayesian ANN model that can forewarn of possible hypertensive events that could lead
to neurological deterioration (ND) of TBI patients in the ICU. This model allows for
more attentive monitoring and earlier clinical assessment to mitigate the onset of
hypotension.

The aforementioned studies are evidence of the growing literature on the use of ML
for TBI. However, a prediction model for Mild TBI isn’t available. There is also no
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clear guideline in predicting neurological deterioration in MTBI. The physician in-
charge will do his best to judge the situation given the patient data and based on
experience. When ND happens, death or lifelong disability is prevalent. Therefore a
clear guideline or a prediction model for predicting ND on MTBI patients is essential.
The aim of this study is to identify a robust predictive ML model that could help
medical practitioners make better clinical decisions for the early management of MTBI
patients. This study also aims to present different ML algorithms that can be used in
creating prediction models for predicting ND for patients with MTBI.

Now the question is: Can we use machine learning in predicting possible neuro-
logical deterioration in MTBI? During the course of finding the answer to this question,
that following problems or opportunities to work on were encountered: (1) Patient Data
Privacy, (2) Small Data Set, and (3) What machine learning algorithms to use.

2 Methods

2.1 Data Collection and Preprocessing

Patient data in South Korea are protected by privacy laws and it is also difficult to use
them even permission due to authorization rules. We were able to collect only 219
MTBI patient records from the hospital that gave us authorization. The records are
composed of only the first examination data of each patient from January 2014 to May
2018. Even though we were authorized to use the patient records for our research, we
decided to convert the data into binary format in case we need to allow other data
scientists to test our findings. We also used “OneHot Encode” to make sure that there
really is no identifying value in the binary data set except 0 and 1. Figure 1 shows the
conversion process.

In this process, we only allow the physician or neurosurgeon to identify the vari-
ables that he considered can contribute in predicting ND of MTBI patients. He came up
with 54 fields and the 55th field is the ND outcome as shown in Table 1.

Fig. 1. Converting patient data to binary data.

Prediction of Neurological Deterioration of Patients 201



Table 1.

No. Fields Criteria having a value of 1
otherwise 0

1 Age � 65
2 Sex Male
3 Hypertension Patient has
4 Diabetes Patient has
5 Blood diseases Patient has
6 Chronic liver disease Patient has
7 Chronic arthritic disease Patient has
8 Solid Cancer Patient has
9 Antiplatelet agent Patient has
10 Anticoagulant Patient has
11 GCS 13 GCS 13
12 GCS 14 GCS 14
13 GCS 15 GCS 15
14 SBP <90
15 SBP = 90 to <140 ¼ 90 to <140
16 SBP > 140 >140
17 Pulse normal If normal
18 Pulse More than 100 pulse tachycardia >100
19 Pulse rate < 60 <60
20 Respiratory Rate >20
21 Body temperature >37.5
22 WBC count (109/L) >10
23 Hemoglobin <12
24 Platelet count >100
25 Prothrombin (INR) � 1.2
26 Prothrombin (s) >14
27 aPTT (s) >40
28 CT time (h) after an accident < 3 <3 h
29 CT time (h) after an accident = 3 to 12 3 to 12 h
30 After CT crash hour (h) = 12 or more 12 h or more
31 Subdural hematoma Patient has
32 Epidural hematoma Patient has
33 Intracerebral hematoma/contusion Patient has
34 SAH Patient has
35 IVH Patient has
36 Dominant lesion, type SDH Patient has
37 Dominant lesion, type EDH Patient has

(continued)
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2.2 Training and Validation Datasets

A total of 219 patient records were used in this study, with 25 cases having ND.
Among the records, 80% (175 cases) were used as training data and 20% (44 cases)
were used as validation data. Given that there were only few ND cases, we needed to
create supervised datasets. We used the stratification process so that we can set con-
ditions on the data sets. Each dataset that we generated had at least 5 (20%) and no
more than 12 (50%) ND cases in the test data set. We created 20 datasets and fed into
the different non-neural and neural network algorithms. Figure 2 shows the flow of
producing the prediction results for validating this research. The past MTBI patient
records and the conversion to binary data are in a shaded box to show that it is only
accessible by physicians or any authorized hospital personnel.

(continued)

No. Fields Criteria having a value of 1
otherwise 0

38 Dominant lesion, type ICH Patient has
39 Dominant lesion, type SAH Patient has
40 Dominant side Left (0)|Right (1) Patient has
41 Supratentorial location Patient has
42 Infratentorial location Patient has
43 Interhemispheric location Patient has
44 Maximal thickness EDH/SDH (mm) = 0 ¼ 0
45 Maximal thickness EDH/SDH (mm) � 0 to <5 > 0 to <5
46 Maximal thickness EDH/SDH (mm) > 5 5 and more
47 Size of ICH (cc) = 0 0
48 Size of ICH (cc) = *10 >0 to <10
49 Size of ICH (cc) = 10 10 and more
50 Midline shift (mm) = 0 0
51 Midline shift (mm) = *5 > 0 to � 5
52 Midline shift (mm) > 5 > 5
53 Skull fracture Patient has
54 Basal Cistern Compression Patient has
55 Neurological deterioration Patient has
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2.3 Modeling Methods Using Neural Network and Non-neural Network
Algorithms

The 20 datasets were fed into different non-neural and neural network algorithms which
are considered commonly used binary classifiers to create predictive models. All ML
algorithms we used were from KERAS and Scikit-Learn, both are conveniently
accessible and easy to use. We chose three neural network classification algorithms
from the Keras library [15], namely, multilayer perceptron (MLP), recurrent neural
network (RNN), and long short-term memory (LSTM), and six classification algo-
rithms from the scikit-learn library [16], namely, linear regression, decision tree clas-
sifier, support vector machine, k-nearest-neighbors classifier (KNeighborsClassifier),
naive Bayes classifier (GaussianNB), and logistic regression. We also used scikit-learn
metrics to generate the receiving operating characteristics (ROCs) for each prediction
model which we consider as the best in each group of results.

We used the confusion matrix as guide in the statistical performance measures we
used. Figure 3 shows the confusion matrix where P represents patients with neuro-
logical deterioration and N represents without neurological deterioration. TP represents
the number of patients correctly predicted with neurological and TN represents the
number of patients correctly predicted without neurological deterioration. FP represents

Fig. 2. The flowchart on testing and training the 20 data sets
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the number of patients without neurological deterioration but incorrectly predicted with
neurological deterioration. FN represents the number of patients with neurological
deterioration but incorrectly predicted without neurological deterioration.

The formula of the statistical performance measures that we that used in identifying
prediction models that can be useful for predicting ND are as follows:

True Positive Rate ¼ TP= TPþFNð Þ ð1Þ

True Negative Rate ¼ TN= TNþFPð Þ ð2Þ

False Positive Rate ¼ FP= FPþ TNð Þ ð3Þ

Precision ¼ TP= TPþFPð Þ ð4Þ

True Positive Rate is also known as sensitivity or recall. True Negative Rate is also
known as Specificity. Sensitivity is the ability of a model to correctly identify the
possibility of ND of MTBI patients. Specificity relates to the model’s ability to cor-
rectly reject the possibility of having ND of MTBI patients. Precision is the accuracy of
predicting ND and how often it is correct. False Positive Rate is the proportion of all
negatives that still yield positive prediction outcomes. The specificity of the prediction
is equal to 1 minus the false positive rate. AUC will also be created to show a model’s
ability to distinguish ND outcome. We consider this grading system as our guide to
select the best model: more than 0.90 are considered excellent, 0.80 to 0.90 are good,
within 0.70 and 0.80 are satisfactory, and less than 0.70 are poor [18].

Fig. 3. The confusion matrix
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3 Results

Twenty randomized data sets were created from MTBI patients (n = 219) and marked
DS#1 to DS#20 respectively. Each data set is fed into 9 machine learning algorithms
for ND predictions and obtained prediction results. Table 2 shows the summary of the
algorithms’ number of created models with sensitivity and/or precision is greater than
0.70.

Tables 3, 4, 5, 6, 7 and 8 showing each algorithms’ models with either sensitivity
or precision greater than 0.70. Both sensitivity and precision that are satisfactory or
better is the criteria for selecting and ranking a prediction model.

Table 2. Number of models with either sensitivity or precision greater than 0.70.

Algorithms Sensitivity Precision Average Both Highest Ave Best DS

MLP 8 4 5 3 0.86 #3
RNN 11 4 5 3 0.86 #5
LSTM 7 3 5 1 0.77 #3
Linear regression 7 4 3 2 0.83 #2
Logistic regression 11 2 3 1 0.80 #5
SVM 1 0 0 0 0.60 –

Kneighbor 7 0 0 0 0.60 –

Decision tree 1 5 1 0 0.76 –

GausianNB 0 15 0 0 0.51 –

Table 3. MLP models with either sensitivity or precision greater than 0.70.

Multilevel perceptron (MLP)
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S, PR) Rank

3 7 6 36 1 1 0.86 0.97 0.86 0.86 1st

5 5 4 37 1 2 0.67 0.97 0.80 0.73 –

8 7 3 37 4 0 1.00 0.90 0.43 0.71 –

9 5 4 38 1 1 0.80 0.97 0.80 0.80 2nd

19 6 4 37 2 1 0.80 0.95 0.67 0.73 –

Table 4. RNN models with either sensitivity or precision greater than 0.70.

Recurrent neural network (RNN)
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S, PR) Rank

3 7 6 36 1 1 0.86 0.97 0.86 0.86 2nd

5 5 5 37 0 2 0.71 1.00 1.00 0.86 1st

8 7 3 37 4 0 1.00 0.90 0.43 0.71 –

9 5 4 38 1 1 0.80 0.97 0.80 0.80 3rd

19 6 4 38 2 0 1.00 0.95 0.67 0.83 –

206 G. R. Caracol et al.



Table 9 shows the best models from each algorithm that was able to create pre-
diction with either sensitivity or precision greater than 0.70.

Figure 4 shows the ROC of each best model from the algorithms in Table 9.

Table 5. LSTM models with either sensitivity or precision greater than 0.70.

Long short term memory (LSTM)
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S, PR) Rank

1 5 4 37 1 2 0.67 0.97 0.80 0.73 –

3 7 5 36 2 1 0.83 0.95 0.71 0.77 1st

5 5 4 37 1 2 0.67 0.97 0.80 0.73 –

8 7 3 37 4 0 1.00 0.90 0.43 0.71 –

19 6 4 38 2 0 1.00 0.95 0.67 0.83 –

Table 6. Linear Regression models with either sensitivity or precision greater than 0.70.

Linear Regression
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S,PR) Rank

2 6 5 36 1 2 0.71 0.97 0.83 0.77 1st

3 7 5 35 2 2 0.71 0.95 0.71 0.71 2nd

6 4 4 38 2 0 1.00 0.95 0.67 0.83 –

Table 7. Logistic Regression models with either sensitivity or precision is greater than 0.70

Logistic Regression
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S,PR) Rank

1 5 4 37 1 2 0.67 0.97 0.80 0.73 –

5 5 4 38 1 1 0.80 0.97 0.80 0.80 1st

6 4 3 38 3 0 1.00 0.93 0.50 0.75 –

Table 8. Decision Tree model with either sensitivity or precision greater than 0.70.

Decision Tree
DS# P TP TN FP FN S sensitivity Specificity PR precision Average (S,PR) Rank

3 7 6 34 1 3 0.67 0.97 0.86 0.76 –

Table 9. Best model in each algorithm.

Best Models

Algorithm P TP TN FP FN S sensitivity Specificity PR
precision

Average (S,
PR)

Data
Set

AUC Rank

MLP 7 6 36 1 1 0.86 0.97 0.86 0.86 #3 0.950 2nd

RNN 5 5 37 0 2 0.71 1.00 1.00 0.86 #5 0.964 1st

LSTM 7 5 36 2 1 0.83 0.95 0.71 0.77 #3 0.913 5th

Linear
Reg

6 5 36 1 2 0.71 0.97 0.83 0.77 #2 0.965 4th

Logistic
Reg

5 4 38 1 1 0.80 0.97 0.80 0.80 #5 0.969 3rd
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4 Discussion

Early prediction of neurological deterioration of MTBI patients is considered very
challenging. Management errors of TBI in emergency rooms and TBI preventable
deaths are high [19]. Using machine learning for neurological deterioration in MTBI is
also considered very challenging since data from patients are difficult to collect due to
privacy laws and authorization rules from hospitals. In this study, we were able to only
have 219 MTBI records. We decided to convert these patient data into binary format
using “One Hot Encode” with many considerations in mind. Converting these data into
binary format will allow us to use and even share it without leaking or providing patient
details. Having 219 patient records and with only 25 with ND, conditions must be set in
creating training and testing sets. This process is called stratification. We generated 20
stratified data sets and fed them to the 9 algorithms that are considered classifiers.

Five (5) algorithms namely: MLP, RNN, LSTM, Linear Regression and Linear
Regression were able to produce relevant results. However four (4) algorithms namely:
SVM, KNeighbors Classifier and Decision Tree didn’t produce well. This could be the
result of the type of data that we have – binary values.

From the 20 generated data sets or 180 models (9 algorithms x 20 data sets) created,
RNN’s DS #5 is considered the best model for predicting neurological deterioration in
MTBI patients. RNN’s DS#5 has a precision of 1.0 or 100% and a sensitivity of .71 or
71%.

Even though the sensitivity is only 71%, all patients with the possibility of having
neurological deterioration are predicted because the precision is 100%. Those patients
without ND but were predicted as having ND will just be given more monitoring which
is considered good for the patient.

Fig. 4. ROC of the best prediction models in MLP, RNN, LSTM, linear regression and logical
regression
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5 Conclusion

One of the aims of this study is to identify a robust predictive ML model that could
help medical practitioners make better clinical decisions for the early management of
MTBI patients. This study was able to create a usable prediction model in RNN DS#5.

The other aim of this study is identify ML algorithms that can create prediction
models with small data sets. This study was also able to identify the MLP, RNN,
LSTM, linear regression, and logistic regression algorithms can create predictive
models that may be useful even with a small data set.

Furthermore this study was able to create prediction models with data values that
are in binary value. Creating and sharing prediction models and even the actual data
sets to other data scientists and or medical practitioners can be done without providing
patient detail. It has a potential of creating a big binary data set if neurosurgeons and or
hospitals can agree on the standard way in identification of variables to be used in
prediction process.
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Abstract. The R package rcosmo was developed for handling and ana-
lysing Hierarchical Equal Area isoLatitude Pixelation (HEALPix) and
Cosmic Microwave Background (CMB) radiation data. It has more than
100 functions. rcosmo was initially developed for CMB, but also can
be used for other spherical data. This paper discusses transformations
into rcosmo formats and handling of three types of non-CMB data:
continuous geographic, point pattern and star-shaped. For each type of
data we provide a brief description of the corresponding statistical model,
data example and ready-to-use R code. Some statistical functionality
of rcosmo is demonstrated for the example data converted into the
HEALPix format. The paper can serve as the first practical guideline to
transforming data into the HEALPix format and statistical analysis with
rcosmo for geo-statisticians, GIS and R users and researches dealing
with spherical data in non-HEALPix formats.

Keywords: Spherical data · Spatial statistics · rcosmo · HEALPix ·
Random field · Spatial point process · Directional · Star-shaped

1 Introduction

The package rcosmo was developed to offer the functionality needed to han-
dle and analyse Hierarchical Equal Area isoLatitude Pixelation (HEALPix) and
Cosmic Microwave Background (CMB) radiation data. Comprehensive software
packages for working with HEALPix data are available in Python and MAT-
LAB, see, for example, [8,9] and [10]. The main aim of rcosmo was to provide
a convenient access to big CMB data and HEALPix functionality for R users.

The package has more than 100 functions. They can be broadly divided into
four groups:

– CMB and HEALPix data holding, subsetting and visualization,
– HEALPix structure operations,
– geometric methods,
– statistical methods.
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ery Project DP160101366.
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The detailed summary of rcosmo structure, HEALPix, geometric and statistical
functionality is provided in [5]. Technical description and examples of the core
rcosmo functions can be found in the package documentation on CRAN [6]. This
paper addresses a different important problem of using rcosmo for spherical-
type data in non-HEALPix formats.

rcosmo was initially developed for CMB data that are HEALPix indexed
and can be represented as GIS (geographic information system) raster images
and modelled as random fields. However, there are other spherical coordinate sys-
tems and statistical models. Spherical data are of main interest for geosciences,
environmetric and biological studies, but most of researches in these fields are
not aware about advantages of the HEALPix data structure or do not have
ready-to-use R code to transform their data into HEALPix formats. The aim
of this publication is to demonstrate how to deal with three different types
of non-CMB/non-HEALPix data. First, we consider continuous geo-referenced
observations that are modelled by random fields. The second type of data are dis-
crete spherical data that can be given as realisations of spatial point processes.
Finally, the analysis of irregularly star-shaped geometric bodies is presented.
Real data examples and illustrations of basic rcosmo statistical functions are
given for each of the three types.

To reproduce the results of this paper the current version of the pack-
age rcosmo can be installed from CRAN. A development release is available
from GitHub (https://github.com/frycast/rcosmo). A reproducible version of
the code and the data used in this paper are available in the folder “esearch
materials” from the website https://sites.google.com/site/olenkoandriy/.

2 Coordinate Systems for Spherical Data Representation

The HEALPix representation is the key element for indexing spherical data in
rcosmo. This section recalls the main spherical coordinate systems and intro-
duces basics of HEALPix. The following sections will demonstrate conversion
from different data representations into the HEALPix format.

To index locations of observations the vast majority of spatial applications
dealing with spherical data use one of the following coordinate system: Carte-
sian, geographic, spherical or HEALPix. The Cartesian and spherical coordinate
systems are often appear in mathematical description of models. The geographic
coordinates are the main indexing tools in GIS, Earth and planetary sciences,
while HEALPix has become very popular in recent cosmological research dealing
with CMB data.

For simplicity, this section considers the unit sphere with radius 1. Using
the Cartesian coordinate system of the three pairwise orthogonal basis vectors
denoted by (1, 0, 0), (0, 1, 0) and (0, 0, 1), a location on the sphere is specified
by a triplet (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1), where x, y, z ∈ R and
||(x, y, z)|| =

√
x2 + y2 + z2 = 1.

https://github.com/frycast/rcosmo
https://sites.google.com/site/olenkoandriy/


Spherical Data Handling and Analysis with R Package rcosmo 213

The spherical coordinates (θ, ϕ) of a point are obtained from (x, y, z) by
inverting the three equations

x = sin(θ) cos(ϕ), y = sin(θ) sin(ϕ), z = cos(θ),

where θ ∈ [0, π] and ϕ ∈ [0, 2π).
For a point with the spherical coordinates (θ, ϕ) its geographic coordinates

will be written as (θG, ϕG). Geographic coordinates are obtained from spherical
coordinates by setting

ϕG =
{

ϕ, for ϕ ∈ [0, π],
ϕ − 2π, for ϕ ∈ (π, 2π), and θG =

π

2
− θ.

Thus ϕG ∈ (−π, π] and θG ∈ [−π/2, π/2]. When representing Earth’s surface in
any of the above coordinate systems we align the x-axis with the Earth’s Prime
Meridian, and have the z-axis pointing north. Commonly ϕG is referred to as
longitude and θG is referred to as latitude and the both are often measured in
degrees instead of radians.

HEALPix is a Hierarchical Equal Area Isolatitude Pixelation of the sphere.
Detailed derivations of the HEALPix coordinates can be found in [7]. First, the
unit sphere is divided into 12 equatorial base pixels. A planar projection of the
base pixels is given in Fig. 1. The base pixelation divides the sphere into one
equatorial and two polar regions. Referring to the indices shown in Fig. 1, pixels
5, 6, 7 and 8 are “equatorial”; pixels 1, 2, 3 and 4 are “north polar”; and pixels
9, 10, 11 and 12 are “south polar.”

5

9

1

6

10

2

7

11

3

8

12

4

Fig. 1. HEALPix base pixel planar projection as 12 squares.

The base pixelation is defined to have the resolution parameter j = 0. For
resolution j = 1, each base pixel is subdivided into 4 equiareal child pixels. This
process is repeated for higher resolutions with each pixel at resolution j = k
being one of 4 child pixels from the subdivision of its parent pixel in resolution
j = k − 1. At any resolution j, the number Ns of pixels per base pixel edge is
Ns = 2j and the total number of pixels is T = 12N2

s .
During this subdivision, pixel boundary and centre locations are chosen in

such a way that all pixel centres lie on 4Ns − 1 rings of constant latitude, mak-
ing it easy to implement various mathematical methods, in particular Fourier
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transforms with spherical harmonics. Pixel indices are then assigned to child
pixels in one of two ways, known as the “ring” and “nested” ordering schemes.
In the ring ordering scheme, indices are assigned in the increasing order from
east to west along isolatitude rings, and then increasing north to south, as in the
example shown in Fig. 2. In the nested ordering scheme the children of base pixel
b ∈ {1, 2, . . . , 12} are labelled with T/12 consecutive labels as shown in Fig. 3.
This nested ordering scheme allows efficient implementation of local operations
such as nearest-neighbour searches.
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Fig. 2. HEALPix pixelation at resolution j = 1 in ring ordering scheme.
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Fig. 3. HEALPix pixelation at resolution j = 1 in nested ordering scheme.

3 Continuous Geographic Data

In this section we demonstrate how rcosmo can be applied to handle contin-
uous geo-references observations. Such observations are usually collected over
dense geographic grids or obtained as results of spatial interpolation or smooth-
ing. Continuous geographic data are common in meteorology, for example, maps
with temperature, precipitation, wind direction, or atmospheric pressure val-
ues. Other examples of continuous data are land elevations, heights above mean
sea level, and ground-level ozone measurements. There are also other numerous
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environmetrics examples. These data are usually represented and visualised as
topographic/contour maps or GIS raster images. In geographic applications it is
often assumed that the Earth has a spherical shape with a radius about 6378 km,
but with an elevation that departs from this sphere in a very irregular manner.
Therefore, most applied methods for the above data are based on spherical sta-
tistical models.

Traditionally theoretical models that are used for the continuous type of
data are called random fields in statistics or spatially dependent variables in
geostatistics. Below we introduce basic notations and background by reviewing
some results about spherical random fields, see more details in [13] and [15].

We will denote a 3d sphere with radius 1 by

S
2 =

{
x ∈ R

3 : ‖x‖ = 1
}
.

A spherical random field on a probability space (Ω,F ,P), denoted by

T = {T (θ, ϕ) = Tω(θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, ω ∈ Ω} ,

or T̃ = {T̃ (x),x ∈ S
2}, is a stochastic function defined on the sphere S

2.
The field T̃ (x) is called isotropic (in the weak sense) on the sphere S

2 if
ET̃ (x)2 < ∞ and its first and second-order moments are invariant with respect
to the group SO(3) of rotations in R

3, i.e.

ET̃ (x) = ET̃ (gx), ET̃ (x)T̃ (y) = ET̃ (gx)T̃ (gy),

for every g ∈ SO(3) and x,y ∈ S
2. This means that the mean ET (θ, ϕ) =

constant and that the covariance function ET (θ, ϕ)T (θ′, ϕ′) depends only on
the angular distance Θ = ΘPQ between the points P = (θ, ϕ) and Q = (θ′, ϕ′)
on S

2. A wide class of non-isotropic random field models can be obtained by
adding a deterministic component Tdet(θ, ϕ) to the field T .

As an example of a spherical random field we use the total column ozone data
from the Nimbus-7 polar orbiting satellite, see more details in [3]. This data set
provides measurements of the total amount of atmospheric ozone in a given
column of 1o latitude be 1.25o longitude grid. The CSV file available from the
website https://hpc.niasra.uow.edu.au/ckan/dataset/tco contains 173405 rows
with the measurements recorded on the 1st of October, 1988. We will be using
the fields lon: longitude, lat: latitude and ozone: TCO level 2 data.

First we demonstrate how to use rcosmo to transform the geographic refer-
enced ozone data to the HEALPix representation. The R code below loads the
ozone data from the file toms881001.csv into R. Then geographic coordinates
are transformed to spherical ones in radians. Finally, the function HPDataFrame
creates an rcosmo object at the resolution 2048, i.e. on the 50,331,648 nodes
grid.

> library(rcosmo)
> library(celestial)
> totalozone <- read.csv("toms881001.csv")

https://hpc.niasra.uow.edu.au/ckan/dataset/tco


216 D. Fryer and A. Olenko

> sph <- geo2sph(data.frame(lon = pi/180*totalozone$lon, lat =
pi/180*totalozone$lat))

> df1 <- data.frame(phi = sph$phi, theta = sph$theta,
I = totalozone$ozone)

> hp <- HPDataFrame(df1, auto.spix = TRUE, delete.duplicates
= TRUE, nside = 2048)

Now we transform the result to an object of the CMBDataFrame class, which
is the main class for statistical and geometric analysis in rcosmo.

cmb <- as.CMBDataFrame(hp)
> str(cmb)
Classes ’CMBDataFrame’: 173251 obs. of 3 variables:
$ I : num 222 216 202 197 200 ...
$ theta: num 2.75 2.78 2.81 2.83 2.85 ...
$ phi : num 4.35 4.34 4.34 4.33 4.33 ...
- attr(*, "coords")= chr "spherical"
- attr(*, "ordering")= chr "nested"
- attr(*, "nside")= int 2048
...

To visualise the data we first centre them by subtracting the mean and then
rescale to use the rcosmo colour scheme.

> cmb$I1 <- (cmb$I-mean(cmb$I))/100000
> plot(cmb, intensities = "I1", back.col = "white", size = 10)

Now we add the coastline of Australia to the obtained 3d plot. We use the
R package map to extract longitude and latitude coordinates of the Australian
boarder. Then, similarly to the above code we transform the border coordinates
to a CMBDataFrame object and plot it on the ozone map.

> library(maps)
> library(mapdata)
> aus<-map("worldHires", "Australia", mar=c(0,0,0,0), plot =FALSE)
> aus1 <- data.frame(aus$x,aus$y)
> aus1 <- aus1[complete.cases(aus1),]
> sph1 <- geo2sph(data.frame(lon = pi/180*(aus1[,1]+180),

lat = pi/180*(aus1[,2])))
> df2 <- data.frame(phi = sph1$phi,theta = sph1$theta, I = 1)
> hp1 <- HPDataFrame(df2, auto.spix = TRUE, delete.duplicates

= TRUE, nside = 2048)
> cmb1 <- as.CMBDataFrame(hp1)
> plot(cmb1, size = 10, col = "black", add=TRUE)

Setting the country to China

> chi <- map("worldHires", "China", mar=c(0,0,0,0), plot =FALSE)
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Fig. 4. Total column ozone map with Australia and China boundaries.

and repeating the above commands will add the boundaries of China to the plot.
The result is shown in Fig. 4.

Now the data are in the HEALPix format and rcosmo functions can be
used to analyse them. For example, the following code first computes the sample
mean alpha of the total column ozone data. Then rcosmo commands exprob
and extrCMB estimate the exceedance probability above the level alpha and get
three largest ozone values and their locations within the spherical window win1.

> alpha <- mean(cmb[,"I", drop = TRUE])
> alpha
[1] 298.4333
> win1 <- CMBWindow(theta = c(0,pi/2,pi/2), phi = c(0,0,pi/2))
> exprob(cmb, win1, alpha,intensities = "I")
[1] 0.3557902
> extrCMB(cmb, win1, 3, intensities = "I")
A CMBDataFrame
# A tibble: 3 $\times$ 4

I theta phi I1
<dbl> <dbl> <dbl> <dbl>

1 179. 3.07 3.32 -0.00119
2 180. 2.96 4.21 -0.00119
3 180. 2.94 4.27 -0.00118

To compute the estimated entropy for the ozone measurements within the
region win1 one can use

> entropyCMB(cmb, win1)
[1] 2.214391
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4 Point Pattern Data

In this section we demonstrate rcosmo handling of geographic point pattern
data. Comparing to continuous geographic data these points are not densely
regularly spaced and often have random spatial locations. Some classical exam-
ples include studies of settlement distributions, locations of trees, seismological
events, data aggregated over a set of zones to specific “central” locations. Spatial
point data are also common in geographical epidemiology studies that deal with
disease mapping, clustering and finding locations of possible sources. These data
are usually represented and visualised as GIS vector images.

In statistical applications random spatial patterns of points are often mod-
elled by spatial point processes. Points usually represent locations of objects and
the associated marks are used to record properties of these objects.

A spatial point process X is a random countable subset of the sphere S
2. This

process is a measurable mapping defined on the probability space (Ω,F ,P) and
taking values in finite/countable sets of points from S

2. For every Borel subset
A ⊂ S

2 the corresponding random variable N(A) denotes the number of points in
this subset. For simplicity we restrict our consideration to simple point processes
that have realizations with no coincident points.

The distribution of a point process X is defined by the joint distributions of
the numbers of points (N(A1), ..., N(Ak)) in the subsets A1, ..., Ak ⊂ S

2, k ∈ N.
A point process on S

2 is isotropic if its distribution is invariant under the group
SO(3). The mean measure of a point process X assigns to every subset A ⊂ S

2

the expected number of points in this subset.
The most popular point processes in applications are Poisson and Cox point

processes. More details on the theory and applications of spatial point processes
can be found in [1,4] and the references therein.

As an example we use the Integrated Global Radiosonde Archive (IGRA)
measurements. They were collected from radiosondes and pilot balloons at over
2700 stations, [11]. Observations include locations of stations, temperature, pres-
sure, wind direction and speed, etc. For the following analysis we used latitudes
and longitudes of stations and their elevations above sea level. The TXT file
igra2-station-list.txt with IGRA stations data was downloaded from the website
https://www1.ncdc.noaa.gov/pub/data/igra/ and saved as a CSV file.

First, the records with missing information were removed. As some missing
locations were coded by “−9999” they were also deleted. Then the longitude was
recorded using the range [0, 360].

> x <- read.csv("igra2-station-list.csv", header=FALSE)
> x1 <- x[,c("V2","V3","V4")]
> x1 <- x1[complete.cases(x1),]
> x1 <- x1[x1$V3>-300,]
> x1$V3 <- x1$V3 + 180

Similar to Sect. 3, data were transformed to the CMBDataFrame class with
the variable “I” denoting stations’ elevation above sea level.

https://www1.ncdc.noaa.gov/pub/data/igra/
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> sph <- geo2sph(data.frame(lon = pi/180*x1$V3, lat =
pi/180*x1$V2))

> df1 <- data.frame(phi = sph$phi, theta = sph$theta, I = x1$V4)
> cmb <- as.CMBDataFrame(hp)
> str(cmb)
Classes ‘CMBDataFrame’ : 2688 obs. of 3 variables:
$ I : num 10 16 4 378 433 ...
$ theta: num 1.272 1.145 1.13 0.93 0.931 ...
$ phi : num 2.06 4.1 4.11 4.31 4.34 ...
- attr(*, "coords")= chr "spherical"
- attr(*, "ordering")= chr "nested"
- attr(*, "nside")= int 2048

...

After a rescaling the locations of IGRA stations were plotted with darker
colours corresponding to higher elevated stations.

> cmb$I1 <- (cmb$I-mean(cmb$I))/1000000
> plot(cmb,intensities = "I1", size = 3, back.col = "white",

add=TRUE)

Similar to Sect. 3 the boundaries of Australia and China were added to ref-
erence stations positions, see the resulting Fig. 5. It is obvious that the stations
are not uniformly distributed over the globe and much higher elevated in China
than in Australia.

Fig. 5. Locations of IGRA stations and Australia and China boundaries.

As the data are in the HEALPix format a few rcosmo functions were
employed to analyse them. For example, the first Minkowski functional fmf can
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be used to estimate a relative area of HEALPix locations with the elevation
above sea level.

> fmf(cmb, 0, intensities = "I")/(dim(cmb)[1]*pixelArea(cmb))
[1] 0.9869792

The minimum angular geodesic distance between IGRA stations was com-
puted by

> minDist(cmb)
[1] 0.00049973

The marginal distribution plots in Fig. 6 show that elevation departs from
the uniform distribution with respect to geographic coordinates.

> plotAngDis(cmb, intensities = "I")

Fig. 6. Distribution of the elevation with respect to spherical angles.

5 Directional Data

This section demonstrates how to use rcosmo with directional and shape data.
In this publication we restrict our consideration only to star-shaped data. More
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details on other models and methods in statistical directional and shape analysis
can be found in [12] and [14].

In contrast to geographic data in Sects. 3 and 4, directional data are not
necessarily located on a sphere, but rather are observed in radial directions
from a common centre. However, they are usually indexed by points of the unit
sphere. Directional and shape data are common in various fields. For example, in
geo-sciences (direction of the Earth’s magnetic pole, epicentres of earthquakes,
directions of remnant rock magnetism), biology (movement directions of birds
and fish, animal orientation), in physics (optical axes of crystals, molecular links,
sources of cosmic rays), etc.

The main statistical tools to model and investigate directional data are cir-
cular and spherical distributions and statistics, see, for example, [12]. Probably
the simplest spherical distribution is the uniform one with the constant density
1/(4π) for all x ∈ S

2. This is the only distribution that is invariant under both
rotations and reflections. An important directional statistic is the sample mean
direction, which is computed as the direction of the sum

∑n
i=1 xi of the observed

set of unit vectors xi ∈ S
2, i = 1, ..., n.

Many of directional methods can be translated from spheres to star-shaped
surfaces, with additional marks representing radial distances to observations.
A body U in R

3 is called star-shaped if there is a point x0 ∈ R
3 such that for

every x ∈ U , the segment joining x0 and x belongs to U . The corresponding
body’s surface is also called star-shaped. The marks containing radial distances
can be used to statistically investigate and compare various geometric properties
of star-shaped data. For example, to estimate the mean directional asymmetry
in a solid spherical angle ω one can use the excess from the overall mean distance

∑
xi∈ω ||xi − x0||
#i : xi ∈ ω

/ ∑
xi∈U ||xi − x0||
#i : xi ∈ U

,

where # denotes a number of cases.
In this section we consider the shape data of the brain substructure amyg-

dala studied in [2]. Structural abnormalities of amygdala are related to func-
tional impairment in autism. The data consist of amygdala MRI measurements
of 46 control and autistic persons and contain their group identifiers, age, left and
right amygdala surface coordinates. The MATLAB file chung.2010.NI.mat avail-
able from the website http://pages.stat.wisc.edu/∼mchung/research/amygdala/
includes 2562 surface points for each person.

First we load the full data set into R

> library(R.matlab)
> mat <- R.matlab::readMat("chung.2010.NI.mat")

Then we select two persons 10 and 13 (control and autistic) of the same
age 17. Cartesian coordinates of left amygdala sampled points of person 10 were
transformed by first centring them and then converting to spherical coordinates.
The corresponding 3d plot is shown in the first Fig. 7.

http://pages.stat.wisc.edu/~mchung/research/amygdala/
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> p1 <- data.frame(mat$left.surf[10,,])
> p1 <- apply(p1, 2, function(y) y - mean(y))
> library(rgl)
> plot3d(p1)
> library(sphereplot)
> p1s <- as.data.frame(car2sph(p1, deg = FALSE))
> names(p1s) <- c("theta", "phi", "I")

Fig. 7. Sampled points of left amygdala surfaces of persons 10 and 13.

In contrast to Sects. 3 and 4, now we let rcosmo to find an nside resolution
that separates points so that each belongs to a unique pixel. Then we save the
data as a CMBDataFrame and create a new variable I1 with rescaled distances
||xi − x0|| to use the rcosmo colour scheme.

> hp1 <- HPDataFrame(p1s, auto.spix = TRUE)
> cmb1 <- as.CMBDataFrame(hp1)
> cmb1
A CMBDataFrame
# A tibble: 2,562 $\times$ 3
I theta phi
<dbl> <dbl> <dbl>
1 7.82 0.470 0.0289
2 8.24 0.474 3.05
3 8.87 2.65 0.00577
4 8.15 2.67 3.10
5 8.19 1.62 0.464
...
> pix(cmb1) <- pix(hp1)
> cmb1$I1 <- (cmb1$I-mean(cmb1$I))/1000
> plot(cmb1,intensities = "I1",back.col = "white", size = 3,

xlab = ’’, ylab = ’’, zlab = ’’)
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We repeat the same steps for the left amygdala of person 13. The second Fig. 7
shows sampled points of the left amygdala of this person. The spherical plots
in Fig. 8 use colours to represent the values of ||xi − x0|| in the corresponding
directions for each person.

Fig. 8. Heat maps of ||xi − x0|| for persons 10 and 13.

To analyse and compare shapes of the amygdalae we first use directional
histograms. For example, Fig. 9 shows that directional distributions of sampled
points with respect to θ are almost identical. Similar results were obtain for ϕ
directions. Thus, directional sampling rates of amygdalae for persons 10 and 13
are almost identical.

> hist(cmb1$theta)
> hist(cmb2$theta)

Fig. 9. Distributions of sampled points with respect to θ for persons 10 and 13.

However, basic statistical analysis of the variable I containing values of the
sampled radial distances ||xi −x0|| shows differences in the shapes of the control
and autistic cases:



224 D. Fryer and A. Olenko

> mean(cmb1$I)
[1] 7.525838
> mean(cmb2$I)
[1] 8.396525
> fmf(cmb1, alpha=mean(cmb1$I))
[1] 0.0003348093
> fmf(cmb2, alpha=mean(cmb1$I))
[1] 0.0004266883

Person 13 has larger amygdala. The area where the observed values of ||xi −x0||
exceed the mean value mean(cmb1$I) for person 13 is larger by more than 27%
than for person 10.

To confirm that the difference between two subjects is not only in the amyg-
dalae’ sizes, but also in their shapes, one can study relative asymmetries. The
rcosmo command CMBWindow was used to select a spherical angle. Then,
means of 10 largest values of ||xi − x0|| in this angle were computed by the
function extrCMB and normalised by the overall mean values.

> win1 <- CMBWindow(theta = c(pi/2,pi,pi/2), phi = c(0,0,pi/2))
> mean(extrCMB(cmb1, win1, 10)$I)/mean(cmb1$I)
[1] 0.6875167
> mean(extrCMB(cmb2, win1, 10)$I)/mean(cmb2$I)
[1] 0.75863

The results demonstrate that not only absolute but also relative asymmetries of
amygdalae for the control and autistic persons are different.
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Abstract. The two unobservable state variables representing the short
and long term factors introduced by Schwartz and Smith in [16] for
risk-neutral pricing of futures contracts are modelled as two correlated
Ornstein-Uhlenbeck processes. The Kalman Filter (KF) method has been
implemented to estimate the “short” and “long” term factors jointly
with unknown model parameters. The parameter identification problem
arising within the likelihood function in the KF has been addressed by
introducing an additional constraint. The obtained model parameter esti-
mates are the Maximum Likelihood Estimators (MLEs) evaluated within
the KF. Consistency of the MLEs is studied. The methodology has been
tested on simulated data.

Keywords: Kalman Filter · Parameter estimation · Partially observed
linear system

1 Introduction

Over more than four decades stochastic processes have been used for modelling of
commodity futures prices. In early studies, the commodity prices were modelled
using a geometric Brownian motion, [3]. For pricing of commodity derivatives,
the mean-reverting processes were used for the first time in [8]; they are also
known as Ornstein-Uhlenbeck (O-U) processes, primarily introduced in [14] for
modelling of velocity process of Brownian particle under friction.

This work is based on the paper by Schwartz and Smith in [16], where the
O-U two-factor model was used for modelling of short and long equilibrium
commodity spot price levels. A commodity spot price St is modelled as the sum
of two unobservable factors χt and ξt. Both processes χt and ξt are represented as
the mean-reverting processes. In the mean-reverting model, when the commodity
price is higher than the equilibrium price level, some new suppliers will enter the
market and create downward pressure on the prices. Conversely, when the price
is lower than the equilibrium price level, some high-cost suppliers will exit the
market and put upward pressure on the prices. In the short term, due to these
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movements, the price fluctuates temporarily, and it will eventually converge to
its equilibrium level over the long term.

Kalman’s filtering technique for estimation of the state variables using his-
torical futures prices remains popular for its ability to reproduce realistic com-
modity futures term structure, see e.g. [1]. In [5], the authors improved the
performance of the Kalman Filter by deriving the commodity spot prices from
futures prices which have had incorporated an analyst’s forecasts of spot prices.
In [4], the Kalman Filter is used to study the effect of stochastic volatility and
interest rates on the commodity spot prices using the market prices of long-dated
futures and options. The Kalman technique was used in [15] for calibration and
filtering of partially observable processes using particle Markov chain Monte
Carlo approach. The authors of [6] developed the extended Kalman Filter for
estimation of the state variables in the two-factor model for the commodity spot
price and its yield developed in [17].

Our motivation is driven by the fact that the parameter estimation problem
in the linear system using the Kalman Filter cannot be overlooked whilst the
estimation of the state variables remains the priority. In the different setup the
parameter estimation problem for bivariate O-U process using Kalman Filter
has been studied in [7,13].

In this paper, we conduct the simulation study where the Kalman Filter is
deployed for estimation of the model parameters jointly with the components
of the logarithm of spot price process, which is used in the pricing formula for
the futures contracts. In Sect. 2, we provide the notation and analytical formu-
lae used for the formulation of linear partially observable system specific for
commodity futures pricing given in [16]. In Sect. 3, we present the details of our
implementation of KF algorithm designed for estimation of the parameters of the
multi-dimensional partially observable linear system jointly with the estimation
of unobserved state variables χt and ξt. The results of the simulation study are
presented in Sect. 4.

2 Two-Factor Model

In this section, we provide a brief description of Schwartz-Smith’s model
from [16]. We discuss the risk-neutral setup used for futures pricing and present
the formulae for futures prices, incorporating the short and long term dynamic
factors.

2.1 A Commodity Spot Price Modelling

We model the logarithm of the spot price St using the additive model,

log(St) = χt + ξt,

where χt and ξt are the short and long dynamic factors, respectively. We assume
that changes in χt are temporary and it converges to 0 in a long term, following
an O-U process

dχt = −κχtdt + σχdZχ
t ,
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with the mean 0. The changes in the equilibrium level of ξt are expected to
persist and the process itself is assumed to be mean-reverting

dξt = (μξ − γξt)dt + σξdZ
ξ
t .

The processes Zχ
t and Zξ

t are correlated standard Brownian motions with
dZχ

t dZξ
t = ρχξdt, and ρ = ρχξ. Given the initial values χ0 and ξ0, χt and ξt

are jointly normally distributed with expected value

E[(χt, ξt)] = (e−κtχ0,
μξ

γ
(1 − e−γt) + e−γtξ0), t ≥ 0 (1)

and covariance matrix

Cov[(χt, ξt)] =

(
1−e−2κt

2κ σ2
χ

1−e−(κ+γ)t

κ+γ σχσξρχξ

1−e−(κ+γ)t

κ+γ σχσξρχξ
1−e−2γt

2γ σ2
ξ

)
. (2)

Derivations of (1) and (2) are given in AppendixA. Therefore, the logarithm of
the spot price is normally distributed with mean

E[log(St)] = e−κtχ0 +
μξ

γ
(1 − e−γt) + e−γtξ0

and variance

V ar[log(St)] =
1 − e−2κt

2κ
σ2

χ +
1 − e−2γt

2γ
σ2

ξ + 2
1 − e−(κ+γ)t

κ + γ
σχσξρχξ.

Hence St, the commodity spot price, is log-normally distributed and

E(St) = exp(E[log(St)] +
1
2
V ar[log(St)]),

or
log[E(St)] = e−κtχ0 +

μξ

γ
(1 − e−γt) + e−γtξ0

+
1
2

(
1 − e−2κt

2κ
σ2

χ +
1 − e−2γt

2γ
σ2

ξ + 2
1 − e−(κ+γ)t

κ + γ
σχσξρχξ

)
, (3)

where μξ

γ is the mean parameter, σχ and σξ are the volatilities, γ and κ are so-
called the speed of mean-reversion parameters of χ and ξ processes, respectively.

2.2 Risk-Neutral Approach to Spot Price Modelling

In this section we introduce two additional parameters which can be interpreted
as the market price of commodity spot price risk. The approach stems from the
risk-neutral pricing theory for futures, developed in [3]. Hence, the Schwartz-
Smith’s model with additional parameters can be rewritten as follows

dχt = (−κχt − λχ)dt + σχdZχ∗
t ,
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dξt = (μξ − γξt − λξ)dt + σξdZ
ξ∗
t ,

where the parameters λχ and λξ appear as the risk-neutral mean correction
terms. Under the risk-neutral measure, χt and ξt are also jointly normally dis-
tributed with mean

E∗[(χt, ξt)] = (e−κtχ0 − λχ

κ
(1 − e−κt),

μξ − λξ

γ
(1 − e−γt) + e−γtξ0)

and covariance matrix

Cov[(χt, ξt)]∗ = Cov[(χt, ξt)].

The logarithm of commodity spot price is normally distributed with mean

E∗[log(St)] = e−κtχ0 − λχ

κ
(1 − e−κt) +

μξ − λξ

γ
(1 − e−γt) + e−γtξ0

and variance
V ar∗[log(St)] = V ar[log(St)].

The spot price is log-normally distributed with

log[E∗(St)] = E∗[log(St)] +
1
2
V ar∗[log(St)] = e−κtχ0 + e−γtξ0 + A(t), (4)

where
A(t) = −λχ

κ
(1 − e−κt) +

μξ − λξ

γ
(1 − e−γt)

+
1
2

(
1 − e−2κt

2κ
σ2

χ +
1 − e−2γt

2γ
σ2

ξ + 2
1 − e−(κ+γ)t

κ + γ
σχσξρχξ

)
.

In (4) the parameters λχ and λξ appear due to the adjustment made in (3).

2.3 Risk-Neutral Approach to Pricing of Futures

A futures contract is defined as an agreement to trade or own an asset in the
future, [12]. We are interested to know what is the price of such contract at
present. Let F0,T be the current market price of the futures contract with matu-
rity T . For elimination of arbitrage, colloquially known as a “free-lunch”, the
futures price must be equal to the expected commodity spot price at its deliv-
ery time T . Hence, under the risk-neutral measure from Sect. 2.2, assuming zero
interest rate, we obtain

log(F0,T ) = log[E∗(ST )] = e−κT χ0 + e−γT ξ0 + A(T ).

We denote

xt =
(

χt

ξt

)
, c =

(
0

μξ

γ (1 − e−γΔt)

)
, G =

(
e−κΔt 0

0 e−γΔt

)
,
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Δt is the discretization width.
Let wt be a column-vector of normally distributed random variables,

E(wt) = 0

and
W = Cov(wt) = Cov[(χΔt, ξΔt)].

In discrete time, we will obtain the following AR(1) dynamics for the bivariate
state variable xt

xt = c + Gxt−1 + wt. (5)

The relationship between xt and the observed futures prices is given by

yt = dt + F ′
txt + vt, (6)

where
y′

t = (log(FT1), log(FT2), . . . , log(FTn
)),

d′
t = (A(T1), A(T2), . . . , A(Tn)),

Ft =
(

e−κ(T1−t), e−κ(T2−t), . . . , e−κ(Tn−t)

e−γ(T1−t), e−γ(T2−t), . . . , e−γ(Tn−t)

)
,

and vt is a n × 1 vector of independent, normally distributed random variables
E(vt) = 0 and Cov(vt) = V and T1, T2, ..., Tn are the futures maturity times.
We assume that V is a diagonal matrix with the vector v = (s21, s

2
2, . . . , s

2
n)

of non-zero elements on the diagonal. The number of the futures contracts is
n. Let Ft be a σ-algebra generated by the futures contracts up to time t and
θ = (κ, γ, μξ, σχ, σξ, ρ, λχ, λξ, v) be a vector of unknown parameters. The model
(5)–(6) is similar to the model discussed in Chapter 3, [10].

The conditional log-likelihood function of y = (y1, y2, . . . , ynT
) is

l(θ; y) =
nT∑
t=1

p(yt|Ft−1),

where p(yt|Ft−1) is the probability density of yt given the information available
until t − 1 = t − Δ and nT is the number of time-points. We assume that the
prediction errors et = yt − E(yt|Ft−1) have a multivariate normal distribution,
then the log-likelihood function is

l(θ; y) = −nnT log(2π)
2

− 1
2

nT∑
t=1

[log(det(Lt|t−1)) + e′
tL

−1
t|t−1et] (7)

where Lt|t−1 = Cov(et|Ft−1). The vector of unknown parameters θ will be esti-
mated by maximising the log-likelihood function from (7). However, the maximi-
sation of l(θ; y) is inhibited by the parameter identification problem. This fact
can be proved analyticaly by mathematical induction since the prediction error
et and covariance matrix Lt|t−1 are invariant to label switching of coordinates
of xt.
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3 Kalman Filter

In this section, we are using Kalman Filter to estimate the unobservable vector
of state variables xt = (χt, ξt)′ using simulated yt. We recall the Eqs. (5) and (6)
for xt and yt, respectively

xt = c + Gxt−1 + wt,

yt = dt + F ′
txt + vt.

For initialisation of the Kalman Filter we use the expectation and covariance
matrix, suggested in [2]

a0 = E(x0) =
(

0,
μξ

γ

)′

and

P0 = Cov(x0) =

⎛
⎝ σ2

χ

2κ
σχσξρχξ

κ+γ
σχσξρχξ

κ+γ

σ2
ξ

2γ

⎞
⎠ .

The flowchart for Kalman Filter is given in Fig. 1. The recursive process is con-
structed by starting at x0 ∼ N(a0, P0).

Step 1
x0 ∼ N(a0, P0)

Step 2
at|t−1 = Gat−1 + c

Pt|t−1 = GPt−1G
′ +W

Step 3
et = yt − dt − F ′

tat|t−1

Lt|t−1 = F ′
tPt|t−1Ft + V

Step 4
Kt = Pt|t−1Ft(Lt|t−1)−1

at = at|t−1 +Ktet

Pt = (I − KtF
′
t )Pt|t−1

yt

Fig. 1. Flowchart for Kalman Filter.

Next, we will evaluate the conditional expected value at|t−1 and the conditional
covariance matrix Pt|t−1 of the state vector xt. At Step 3 the new observation yt

is entered and we calculate the prediction error et and covariance matrix Lt|t−1.
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Next, we update at and Pt through the Kalman’s gain matrix K. Finally, we
calculate the log-likelihood function at time t

lt = − log(det(Lt|t−1)) − e′
tL

−1
t|t−1et.

We complete the recursive process from t = 1 to nT by summing up all lt’s to
obtain the log-likelihood function

l(θ; y) =
nT∑
t=1

lt.

Then we maximise l(θ; y) for obtaining the conditional maximum likelihood esti-
mate (MLE) of θ.

The overview of R packages for Kalman Filter is given in [19]. The R packages,
which were adapted to this study DSE [9], KFAS [11] and ASTSA [18], were
mostly sensitive to the choice of the initial values of the model parameters.

4 Simulation Study

In this section, we present the results of the simulation study conducted for pur-
poses of validating the use of Kalman Filter for estimation of the state vector xt

jointly with the model parameters θ. The simulation study has been programmed
as follows.

1. Set θ = (κ, γ, μ, σχ, σξ, ρ, v) as the vector of true values.
2. Simulate xt and yt using the true values of parameters set in θ.
3. Set the intervals for searching of unknown parameters. Locate the grid over

the Cartesian product of these intervals.
4. Do grid-search for finding the “best” initial vector θ0.
5. Maximise the log-likelihood function l(θ; y) using the “best” initial vector θ0.

For circumventing the parameter identification problem in x vector, we added
the constraint κ ≥ γ. In Schwartz-Smith’s model, the speed of mean-reversion
parameter γ of the long term factor ξt is naturally dominated by κ, the speed
of mean-reversion of the short term factor χt.
Obtain θ̂, the MLE of θ.

6. At θ̂ obtain the estimates of the state variables χ̂ and ξ̂.

The grid search for the “best” initial set of the parameters’ values allowed to
overcome the problem of sensitivity to the initial values.

Further, for simplicity we assume λχ = λξ = 0 and s21 = s22 = ... = s2n = s2.
The model parameter estimates obtained by using the above procedure (1–6)

are presented in Table 1.
For some sample sizes n from the range (500, 8000), the “best” initial values

are given in Table 2. These initial values were used for obtaining the correspond-
ing optimal model parameter estimates in Table 1.
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Table 1. θ̂ for n ∈ [500, 8000]; NLL stands for −l(θ; y).

n κ γ μ σχ σξ ρ s NLL

500 1.2775 0.0350 −0.1037 1.3910 0.1811 −0.9517 0.0301 −12805

1000 1.4973 0.9896 −2.0078 1.1990 0.5409 −0.3623 0.0299 −25612

2000 1.5327 0.9834 −1.9932 1.2579 0.4351 −0.3604 0.0297 −51376

4000 1.4895 1.0139 −2.0361 1.3376 0.4736 −0.5880 0.0300 −102549

6000 1.4711 0.9913 −1.9931 1.3526 0.4261 −0.6439 0.0300 −153904

8000 1.4938 0.9960 −2.0008 1.3198 0.3936 −0.6078 0.0300 −205120

True (θ0) 1.50 1.00 −2.00 1.30 0.30 −0.70 0.03

Table 2. “Best” initial values for θ̂.

n κ γ μ σχ σξ ρ s

500 2.2525 0.7575 1.7500 1.5025 1.0050 −0.5000 0.5000

1000 1.5050 0.7575 −0.5000 1.0050 1.5025 −0.5000 0.7500

2000 0.7575 0.7575 −2.7500 1.5025 1.5025 0.5000 0.5000

4000 2.2525 0.7575 1.7500 1.0050 1.5025 0.5000 0.2500

6000 1.5050 1.5050 −0.5000 0.5075 1.5025 0.5000 0.2500

8000 2.2525 0.7575 −0.5000 0.5075 1.0050 −0.5000 0.2500

The convergence of the parameter estimates can be seen in Fig. 2, where the
estimation errors θ̂i − θi, i = 1, 2, ..., 7 are plotted versus the sample size n, θ is
the vector of true parameter values.

The paths of the estimated state variables χ̂ and ξ̂ were obtained through
Kalman Filter along with the simulated trajectories of χ and ξ and their 95%-
Confidence Intervals (CIs) based on the true values of the model parameters are
presented in Fig. 3.

Fig. 2. Componentwise estimation error plots for θ versus n.
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Fig. 3. Estimated (n = 8000), χ̂t, ξ̂t and simulated χt, ξt paths with their 95% CI.

Fig. 4. Estimated Ŝt and simulated St with its 95% CI.

The plots of the paths of the estimated Ŝt = exp(χ̂t + ξ̂t) and the spot prices
St = exp(χt + ξt) computed using the simulated paths of χ and ξ along with
95% CI based on the true model parameter values θ are presented in Fig. 4.
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In the AWS Australian Sydney computing center, for computations in Matlab
we used c5.18xlarge instances (CPU 36) taking 10 h for n = 8000.

5 Conclusions

In this paper, the parameter estimation problem has been studied in the lin-
ear partially observable system, which is specific for commodity futures prices
developed in the Schwartz-Smith’s two-factor model in the risk-neutral setting.
In the simulation study, the Kalman Filter algorithm has been implemented and
tested for estimation of the parameters of the bivariate O-U process x jointly
with the estimation of its unobserved components χ and ξ. In this study, we
suggested the remedy for rectifying the parameter identification problem arising
within MLE procedure in the Kalman Filter. The simulation study illustrated
the robustness of the grid-search and consistency of the estimates of the model
parameters and state vector x.

A Derivations of (1) and (2)

In Sect. 2.1, we define the components of a bivariate Ornstein-Uhlenbeck process
as

dχt = −κχtdt + σχdZχ
t (8)

dξt = (μξ − γξt)dt + σξdZ
ξ
t , (9)

where dZχ
t , dZξ

t ∼ N(0,
√

Δt) are correlated standard Brownian motions. Here
we show how to derive (1) and (2). Firstly, from (8),

Δχt = −κχtΔt + σχ

√
Δtεχ.

Therefore,
χt+1 = (1 − κΔt)χt + σχ

√
Δtεχ. (10)

Similarly, from (9), we get

ξt+1 = (1 − γΔt)ξt + μξΔt + σξ

√
Δtεξ, (11)

where εχ, εξ ∼ N(0, 1). Let Corr(εχ, εξ) = ρ and w =
(

σχ

√
Δtεχ

σξ

√
Δtεξ

)
, then

W = V ar(w) =
(

σ2
χΔt ρσχσξΔt

ρσχσξΔt σ2
ξΔt

)
. (12)

Let Xt =
(

χt

ξt

)
, c =

(
0

μξΔt

)
and G =

(
1 − κΔt 0

0 1 − γΔt

)
. Then from (10)

and (11) we get
Xt+1 = c + GXt + wt+1.
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Let φ = 1 − κΔt, ψ = 1 − γΔt. Then

E(Xt) =
(

(1 − κΔt)χt−1

(1 − γΔt)ξt−1 + μξΔt

)

=
(

(1 − κΔt)nχ0

(1 − γΔt)nξ0 + (1 − γΔt)n−1μξΔt + ... + (1 − γΔt)0μξΔt

)

=

(
φnχ0

ψnξ0 + μξΔt 1−(1−γΔt)n

γΔt

)

=
(

φnχ0

ψnξ0 + μξ

γ (1 − ψn)

)
, (13)

and

V ar(Xt) = G ·V ar(Xt−1) ·G′ +W = GnV ar(X0)(G
′)n +Gn−1W (G′)n−1 + ...+G0W (G′)0.

If we assume V ar(X0) = 0, we can get

V ar(Xt) = Gn−1W (G′)n−1 + ... + G0W (G′)0

=

(
σ2

χΔt
∑n−1

i=0 φ2i ρσχσξΔt
∑n−1

i=0 (φψ)i

ρσχσξΔt
∑n−1

i=0 (φψ)i σ2
ξΔt

∑n−1
i=0 ψ2i

)

=

(
σ2

χΔt 1−φ2n

1−φ2 ρσχσξΔt 1−(φψ)n

1−φψ

ρσχσξΔt 1−(φψ)n

1−φψ σ2
ξΔt 1−ψ2n

1−ψ2

)
. (14)

When n → ∞, Δt = t/n → 0, Δt2 = 0, then

φn = (1 − κt

n
)n → e−κt,

ψn = (1 − γt

n
)n → e−γt,

(φψ)n = (1 − (κ + γ)t/n)n → e−(κ+γ)t,

1 − φ2 = 2κΔt, 1 − ψ2 = 2γΔt, 1 − φψ = (κ + γ)Δt.

From Eqs. (13) and (14), we have

E(Xt) =
(

e−κtχ0

e−γtξ0 + μξ

γ (1 − e−γt)

)

and

V ar(Xt) =

⎛
⎝ σ2

χ

2κ (1 − e−2κt) ρσχσξ

κ+γ (1 − e−(κ+γ)t)
ρσχσξ

κ+γ (1 − e−(κ+γ)t) σ2
ξ

2γ (1 − e−2γt)

⎞
⎠ ,

in the linearised form V ar(XΔt) ≈ W from (12).
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Abstract. Income inequality measures are often used as an indication
of economic health. How to obtain reliable confidence intervals for these
measures based on sampled data has been studied extensively in recent
years. To preserve confidentiality, income data is often made available in
summary form only (i.e. histograms, frequencies between quintiles, etc.).
In this paper, we show that good coverage can be achieved for bootstrap
and Wald-type intervals for quantile-based measures when only grouped
(binned) data are available. These coverages are typically superior to
those that we have been able to achieve for intervals for popular mea-
sures such as the Gini index in this grouped data setting. To facilitate
the bootstrapping, we use the Generalized Lambda Distribution and also
a linear interpolation approximation method to approximate the under-
lying density. The latter is possible when groups means are available. We
also apply our methods to real data sets.

Keywords: Histograms · Inequality measures · Bootstrap confidence
intervals · Generalized Lambda Distribution

1 Introduction

Income data are generally made available in binned formats by governing bodies
to preserve the confidentiality of the individual participants. Obtaining infer-
ences from such summary information has been recently discussed by Deduwaku-
mara and Prendergast (2018), in the context of obtaining confidence intervals
for quantiles using estimates of the underlying distribution using grouped data.
As we will show in what follows, we can obtain reliable confidence intervals for
some inequality measures using bootstrap and Wald-type approaches.

Motivated by these findings, we compare the interval estimators for inequal-
ity measures when the data are available in grouped form only. For comparison,
we use the well-known Gini, Theil and Atkinson indices and the newly proposed
quantile ratio index (Prendergast and Staudte 2018). We begin by introduc-
ing these measures before discussing some distribution estimation strategies in
Sect. 3. In Sect. 4, we report findings of simulations for interval estimators of the
inequality measures. Two real data examples are presented in Sect. 5, followed
by a brief discussion in Sect. 6.
c© Springer Nature Singapore Pte Ltd. 2019
H. Nguyen (Ed.): RSSDS 2019, CCIS 1150, pp. 238–252, 2019.
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2 Some Inequality Measures

Let f , F and Q denote the density, distribution and quantile functions respec-
tively for the population of interest. For p ∈ [0, 1], let xp = Q(p) = F−1(p)
denote the p-th quantile. We find it convenient to consider continuous proba-
bility distributions to model incomes while acknowledging that, in practice, a
population of incomes has a finite number, N , of individuals. Let x1, . . . , xn

denote a simple random sample of incomes from the population and let x̂p be
the estimated p-th quantile.

2.1 Gini Index

Suppose X ∼ F where X represents a randomly chosen income from the popu-
lation and let μ = E(X) denote mean income. Easily the most commonly used
inequality measure is the Gini index (Gini 1914), which measures the deviation
of the income distribution from perfect equality. It can be defined as,

G = 1 − 1
μ

∞
∫

0

[1 − F (x)]2 dx

with G ∈ [0, 1]. Here, G = 1 indicates that one individual holds all wealth (e.g.
one individual with income greater than zero) and G = 0 represents the equality
of incomes for all. The Gini index can be estimated for a simple random sample
of size n, with the ordered values of x1, . . . , xn by,

Ĝ =
2

∑

i ixi

n
∑

i xi
− n + 1

n
.

For more details on the Gini index and estimation see, for example, Dixon et al.
(1988) and Damgaard and Weiner (2000).

2.2 Theil Index

Based on information theory, Theil (1967) proposed an entropy-based measure
which is defined to be

T =

∞
∫

0

(x

μ

)

log
(x

μ

)

f(x) dx

where T ∈ [0,∞). In practice where a population consists of finite number of N
incomes, the upper bound is ln(N). The Theil index can be estimated by

̂T =
1
n

∑

i

xi

x̄
ln

(

xi

x̄

)

where x̄ is the sample mean and where ̂T ∈ [0, ln(n)]. Further properties of the
Theil index can be found in Theil (1967), Allison (1978) and Shorrocks (1980).
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2.3 Atkinson Index

The Atkinson index was initially introduced by Atkinson (1970). This measure
depends on the sensitivity parameter, ε (0 < ε < ∞), which represents the level
of inequality aversion. As this parameter increases, more weight is shifted to the
distribution at the lower end and vice versa. It is defined as

A = 1 −
⎡

⎣

∞
∫

0

(x

μ

)1−ε

f(x) dx

⎤

⎦

1
1−ε

where A ∈ [0, 1].
Atkinson values represent the proportion of total income that would be

needed to achieve an equal level of social welfare if incomes were perfectly dis-
tributed. Depending on the value of ε, the sample estimate is

Â =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 − 1
x̄

(

1
n

∑

i

x1−ε
i

) 1
1−ε

, for 0 ≤ ε < 1

1 − 1
x̄

(

∏

i

xi

) 1
n

, for ε = 1

We use the value of ε = 0.5 for our analysis which is the default value used in
the package ineq (Zeileis 2014) in R software (R Core Team 2017). More details
for the Atkinson index can be found in Atkinson (1970), Biewe and Jenkins
(2006) and Shorrocks (1980).

2.4 Quantile Ratio Index

Prendergas and Staude (2018, 2019) introduced the quantile ratio index (QRI)
which uses the ratio of symmetric quantiles and which is simpler than similarly
defined inequality measures given by Prendergast and Staudte (2016b). The QRI
is denoted as

I = 1 −
1

∫

0

xp/2

x1−p/2
dp = 1 −

1
∫

0

R(p) dp

where I ∈ [0, 1]. Note that R(p) is the ratio of symmetric quantiles so that I
can be seen to be based on the average ratio of incomes chosen symmetrically
from the poorer and richer halves of the incomes respectively. For a suitably
large J , I is estimated as J−1

∑

j

[

1 − ̂R(pj)
]

where pj = (j −1/2)/J and ̂R(pj)
is the ratio of the estimated (pj/2)-th and (1 − pj/2)-th quantiles. Prendergast
and Staudte (2018) show that J = 100 is large enough to obtain good estimates
of I and so this will be our choice in what follows.
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3 Density Estimation Methods

We now consider two methods for estimating the density from grouped data. The
first requires bins and frequencies, and the second also requires the bin means.
The methods were used by Dedduwakumara and Prendergast (2018) to obtain
intervals for quantiles from histograms.

3.1 GLD Estimation Method

Due to flexibility in approximating a wide range of distributions, the Generalized
Lambda Distribution (GLD) is commonly used and particularly favoured in fields
such as economics and finance. Defined in terms of its quantile function, several
parameterizations for the GLD exist. Following is the FKML parameterization
for the GLD given by Freimer et al. (1988) which is often favoured since it is
defined for all parameter choices, with the only restriction being that the scale
parameter must be greater than zero. The GLD quantile function is

Q(p) = λ +
1
η

[

(pα − 1)
α

− (1 − p)β − 1
β

]

. (1)

The GLD has been used in different contexts to obtain various interval esti-
mators (e.g. Su 2009; Prendergast and Staudte 2016a) when the full data set
is available. However, using the percentile matching methods presented by Kar-
ian and Dudewicz (1999) and Tarsitano (2005), the GLD parameters can still
be estimated when data is in grouped format with frequencies and bins. This
method is available in the bda package (Wang 2015).

3.2 Linear Interpolation Method

The linear interpolation method was proposed by Lyon et al. (2016) as a method
of estimating the underlying distribution of binned data when the group (bin)
means are also available. Within each bin, a linear density is estimated using the
lower and upper bounds of the bin and the associated mean, and the final bin
is fitted with an unbounded exponential tail. The slope of the linear density is
determined by the mean in relation to the bin midpoint. Closed form solutions
for the density and the quantile functions are extensively provided by Lyon et
al. (2016) and following is a summary of the density results.

Assume there are J intervals in the grouped data bounded by [aj−1, aj), j =
1, . . . , J where a0 > −∞ and aJ = ∞. Let the midpoint, mean and relative
frequency of the jth bin be denoted by xc

j , x̄j and ̂fj . The linear density for the
jth bin is

hj(x) = αj + βjx, x ∈ [aj−1, aj) (2)
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where the estimates of αj , βj are given by,

̂βj = ̂fj

12(x̄j − xc
j)

(aj − aj−1)3
, α̂j =

̂fj

aj − aj−1
− ̂βjx

c
j . (3)

The density estimate for the final unbounded interval using an exponential
tail is provided by,

hJ(x) =
η

λ
exp

{

− (x − aJ−1)
λ

}

(4)

where η̂ = ̂fJ and ̂λ = x̄J − aJ−1.

4 Interval Estimators Using Grouped Data

In this section, we propose and describe our bootstrap and Wald-type methods
to produce intervals for inequality measures using grouped information. The
variance of the QRI estimator depends on the underlying income distribution
density function applied to income quantiles (Prendergast and Staudte 2018).
Therefore, provided we can obtain good estimates of the density from grouped
data, then the QRI is well-suited to obtaining Wald-type intervals in this setting.
Aside from bootstrapping, to obtain the variance of, for example, the Gini index,
it is common to use the jackknife approach or other methods that require the full
data set. Consequently, obtaining an approximation to the variances for the Gini,
Thiel and Atkinson measure estimators from grouped data is not straightforward
and therefore an area for further research.

For the bootstrapping procedure, we obtain the bootstrap samples from the
estimated quantile function arising from the estimated GLD or linear interpo-
lation densities. We then use the percentile bootstrap interval described below.
While there are other bootstrap methods available that often have improved
performance over the percentile method, they require the full data set and it is
not immediately clear on how to use them when data is only available in grouped
format; e.g. the bootstrap t interval requires the variance of the estimator, the
BCa method (Efron 1987) and Efron’s ABC method (Diciccio and Efron 1992)
requires the full sample data to calculate the acceleration parameter. However,
we did try a variation of the bootstrap t interval whereby the α parameter was
estimated as usual, but where the estimate and its standard error were also
approximated from the bootstrap samples given the lack of the full data set.
Coverages were usually no better, and often worse than those for the percentile
approach so we do not present them in what follows for brevity. Further vari-
ations of bootstrap methods to accommodate the lack of the full data set may
result in improved results and this is an area for future research.

Bootstrap Confidence Intervals. In the following algorithm, we describe the
estimation of percentile bootstrap confidence intervals in detail.
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Step 1: Estimate the GLD and linear interpolation densities using available
summary information of bin points and frequencies (and bin means for
the linear interpolation approach).

Step 2: Take 500 bootstrap samples of size n using the estimated quantile func-
tions from the two estimation methods using the inverse transform sam-
pling method. That is, randomly generate n numbers, y1, . . . , yn in [0, 1]
from the uniform distribution and then the ith observation for the jth
bootstrap is yji = ̂Q(yi) where ̂Q is the estimated quantile function.

Step 3: Construct the percentile bootstrap 95% confidence intervals by taking
the 2.5% and 97.5% quantiles of the 500 bootstrapped estimates of the
inequality measures.

For the GLD method, we consider the available bin points as the empirical
percentiles in the percentile matching method, providing the estimated param-
eters for the GLD. By using the GLD quantile function (Sect. 3.1) and the esti-
mated parameters, we can easily take the bootstrap samples using the inverse
transform sampling method as in Step 2. For the linear interpolation approach,
we use the following two quantile functions to generate data depending on the
value of p (Lyon et al. 2016). For the bounded interval of [aj−1, aj), the following
quantile function is used for p ∈ [0, 1) is,

x̂p =
−α̂j +

√

2̂βjp + ̂Cj

̂βj

(5)

where, ̂Cj = [α̂2
j − 2̂βj

̂Fj−1 + 2̂βjα̂jaj−1 + ̂β2
j (aj−1)2], ̂βj and α̂j as in (3).

Further the fitted exponential tail yields the following quantile function when
the cumulative relative frequency up to final (J th) interval is denoted by ̂FJ ,

x̂p = aJ−1 − ̂λ ln

(

1 − p − ̂FJ−1

η̂

)

. (6)

Wald-Type Confidence Intervals for the QRI. Obtaining confidence inter-
vals for the QRI from full data sets is studied by Prendergast and Staudte
(2018). The variance of the estimator depends on the density function and quan-
tiles. Therefore, given a good estimation of the density which in turn would be
expected to give good estimates to quantiles, QRI intervals from grouped data
are possible.

The (1 − α) × 100 confidence interval for I is given by Î ± z1−α/2

√

Var(Î),

where Var(Î) is adopted from Prendergast and Staudte (2018) where we use
J = 100. Here, z1−α/2 is the 1 − α/2 percentile from the standard normal dis-
tribution. Var(Î) consists of the variances and co-variances terms of ratios of
symmetrically chosen quantiles (see Prendergast and Staudte 2018). We then
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require estimates for population quantiles and density function. As described
earlier, first we estimate the underlying density and quantile functions using the
GLD and linear interpolation methods. Then those estimated quantile functions
can be used to estimate the symmetrically chosen quantiles.

5 Simulations and Examples

We begin by reporting our findings for simulation studies conducted with a
variety of distributions before considering real data examples.

5.1 Simulations

To assess coverage, we consider the lognormal distribution with μ = 0 and
σ = 1 and the Singh-Maddala distribution with parameter values a = 1.6971,
b = 87.6981 and q = 8.3679 where these parameters were from fitted US family
incomes reported by McDonald (1984). We also consider the Dagum distribution
with the parameter choices of a = 4.273 b = 14.28 and p = 0.36 which were used
in Kleiber (2008) and were estimated from fitted US family incomes in 1969.
The χ2

2, Pareto type II distribution with scale one and shape equal to two and
the exponential distribution with rate one were also considered. Table 1 provides
the population inequality values of each measure.

Table 1. True values of inequality measures for each distribution.

F Gini Theil Atkinson I

Lognormal 0.520 0.500 0.221 0.664

Singh-Maddala 0.355 0.206 0.106 0.579

Dagum 0.335 0.191 0.097 0.548

χ2
2 0.500 0.423 0.215 0.702

Pareto (2) 0.667 1.000 0.383 0.740

Exponential (1) 0.500 0.423 0.215 0.702

Weibull (10) 0.067 0.007 0.004 0.167

From Table 2 for quintile-grouped data and using the linear interpolation
method, intervals for I produces coverage probabilities close to the nominal
level of 0.95 together with narrow mean width for all settings and with both
bootstrap and the Wald-type intervals. Given that the computation of the inter-
val is much more efficient for the Wald-type interval, there does not appear to be
an advantage for using the bootstrap. However, for the Gini, Theil and Atkinson
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Table 2. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from quintiles estimated using linear
interpolation method at nominal level 95%, each based on 1000 replications and 500
bootstrap repetitions.

F n Bootstrap Wald-type

Gini Theil Atkinson I I

Lognormal 50 0.788 (0.164) 0.734 (0.327) 0.785 (0.129) 0.947 (0.162) 0.968 (0.163)

100 0.813 (0.119) 0.761 (0.250) 0.804 (0.097) 0.960 (0.112) 0.965 (0.112)

250 0.837 (0.075) 0.720 (0.161) 0.813 (0.062) 0.967 (0.069) 0.962 (0.070)

500 0.840 (0.054) 0.650 (0.115) 0.798 (0.045) 0.955 (0.048) 0.956 (0.049)

Singh-Maddala 50 0.909 (0.128) 0.921 (0.151) 0.911 (0.072) 0.948 (0.165) 0.949 (0.164)

100 0.925 (0.091) 0.927 (0.108) 0.914 (0.052) 0.933 (0.114) 0.959 (0.116)

250 0.940 (0.058) 0.948 (0.069) 0.938 (0.034) 0.933 (0.072) 0.947 (0.072)

500 0.946 (0.041) 0.952 (0.049) 0.946 (0.024) 0.941 (0.050) 0.948 (0.051)

Dagum 50 0.902 (0.128) 0.886 (0.143) 0.869 (0.069) 0.939 (0.169) 0.946 (0.168)

100 0.914 (0.093) 0.902 (0.105) 0.904 (0.051) 0.952 (0.117) 0.951 (0.118)

250 0.902 (0.059) 0.878 (0.067) 0.893 (0.033) 0.940 (0.073) 0.948 (0.074)

500 0.925 (0.042) 0.891 (0.048) 0.918 (0.024) 0.943 (0.052) 0.954 (0.052)

χ2
2 50 0.930 (0.158) 0.939 (0.285) 0.931 (0.126) 0.954 (0.170) 0.964 (0.170)

100 0.930 (0.111) 0.933 (0.204) 0.930 (0.090) 0.955 (0.117) 0.952 (0.118)

250 0.938 (0.071) 0.939 (0.131) 0.939 (0.058) 0.951 (0.072) 0.952 (0.073)

500 0.948 (0.050) 0.950 (0.093) 0.946 (0.041) 0.945 (0.051) 0.960 (0.051)

Pareto (2) 50 0.633 (0.172) 0.391 (0.490) 0.603 (0.177) 0.968 (0.163) 0.969 (0.162)

100 0.637 (0.121) 0.351 (0.373) 0.590 (0.131) 0.970 (0.112) 0.971 (0.113)

250 0.571 (0.077) 0.172 (0.242) 0.484 (0.084) 0.949 (0.069) 0.959 (0.070)

500 0.500 (0.054) 0.083 (0.173) 0.362 (0.060) 0.973 (0.048) 0.961 (0.049)

Exponential (1) 50 0.916 (0.158) 0.934 (0.288) 0.921 (0.126) 0.939 (0.169) 0.965 (0.170)

100 0.929 (0.111) 0.938 (0.204) 0.924 (0.090) 0.952 (0.116) 0.966 (0.118)

250 0.936 (0.071) 0.949 (0.131) 0.935 (0.058) 0.929 (0.072) 0.962 (0.073)

500 0.943 (0.050) 0.945 (0.093) 0.947 (0.041) 0.961 (0.050) 0.963 (0.051)

measures, the coverages are comparatively weaker but improves as the sample
size increases for most of the distributions.

Table 3 shows that the intervals based on the GLD and quintiles for the Gini,
Theil and Atkinson measures have poor coverage. Coverages are typically very
good for the QRI intervals, albeit more conservative than those using the linear
interpolation method. However, coverages become low for the lognormal suggest-
ing that quintiles do not provide enough information to get a good approximation
using the GLD.



246 D. S. Dedduwakumara and L. A. Prendergast

Table 3. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from quintiles estimated using GLD
method at nominal level 95% for, each based on 1000 replications and 500 bootstrap
repetitions.

F n Bootstrap Wald-type

Gini Theil Atkinson I I

Lognormal 50 0.495 (0.168) 0.406 (0.387) 0.598 (0.150) 0.967 (0.173) 0.974 (0.172)

100 0.446 (0.117) 0.366 (0.260) 0.510 (0.101) 0.975 (0.126) 0.971 (0.105)

250 0.373 (0.071) 0.269 (0.141) 0.453 (0.059) 0.899 (0.085) 0.924 (0.065)

500 0.271 (0.049) 0.165 (0.090) 0.359 (0.039) 0.661 (0.063) 0.713 (0.046)

Singh-Maddala 50 0.862 (0.134) 0.937 (0.151) 0.953 (0.090) 0.979 (0.168) 0.989 (0.180)

100 0.783 (0.094) 0.920 (0.107) 0.930 (0.063) 0.984 (0.119) 0.973 (0.125)

250 0.735 (0.060) 0.918 (0.068) 0.911 (0.040) 0.974 (0.075) 0.955 (0.078)

500 0.646 (0.042) 0.887 (0.048) 0.803 (0.028) 0.965 (0.054) 0.925 (0.056)

Dagum 50 0.844 (0.133) 0.955 (0.140) 0.988 (0.085) 0.990 (0.174) 0.988 (0.192)

100 0.759 (0.094) 0.909 (0.099) 0.991 (0.060) 0.991 (0.123) 0.981 (0.132)

250 0.561 (0.060) 0.799 (0.063) 0.982 (0.038) 0.982 (0.079)) 0.959 (0.083)

500 0.299 (0.042) 0.575 (0.045) 0.981 (0.027) 0.967 (0.057) 0.941 (0.059)

χ2
2 50 0.652 (0.169) 0.544 (0.359) 0.749 (0.158) 0.980 (0.170) 0.989 (0.172)

100 0.583 (0.121) 0.488 (0.269) 0.663 (0.111) 0.971 (0.117) 0.978 (0.118)

250 0.605 (0.073) 0.512 (0.147) 0.666 (0.065) 0.970 (0.073) 0.979 (0.073)

500 0.568 (0.051) 0.467 (0.096) 0.624 (0.044) 0.974 (0.051) 0.969 (0.051)

Pareto (2) 50 0.558 (0.237) 0.508 (1.029) 0.609 (0.289) 0.973 (0.161) 0.989 (0.161)

100 0.579 (0.197) 0.549 (1.056) 0.607 (0.251) 0.971 (0.111) 0.977 (0.111)

250 0.626 (0.152) 0.647 (0.982) 0.663 (0.201) 0.968 (0.069) 0.972 (0.069)

500 0.650 (0.123) 0.697 (0.903) 0.687 (0.169) 0.976 (0.048) 0.977 (0.049)

Exponential (1) 50 0.653 (0.172) 0.559 (0.388) 0.722 (0.163) 0.973 (0.169) 0.980 (0.171)

100 0.589 (0.119) 0.513 (0.259) 0.667 (0.110) 0.970 (0.117) 0.983 (0.118)

250 0.578 (0.074) 0.483 (0.151) 0.651 (0.066) 0.982 (0.073) 0.973 (0.073)

500 0.561 (0.051) 0.470 (0.095) 0.615 (0.044) 0.973 (0.051) 0.969 (0.051)

When the data is summarised in deciles rather than quintiles (i.e. more bins
and more information), Table 4 shows improved coverage is achieved with the
GLD method. However, coverage is still poor for the Gini, Theil and Atkinson
measures when compared to the good coverages achieved for the QRI. Again,
the similar coverages for the bootstrap and Wald-type intervals suggest that the
Wald-type is a good choice since it is simple and quick to compute.
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Table 4. Empirical coverage probabilities and average widths (in brackets) of Boot-
strapped interval estimates of inequality measures from deciles estimated using GLD
method at nominal level 95% for, each based on 1000 replications and 500 bootstrap
repetitions.

F n Bootstrap Wald-type

Gini Theil Atkinson I I

Lognormal 50 0.754 (0.262) 0.733 (0.963) 0.762 (0.273) 0.926 (0.156) 0.948 (0.156)

100 0.789 (0.209) 0.787 (0.892) 0.781 (0.227) 0.943 (0.108) 0.953 (0.109)

250 0.760 (0.152) 0.761 (0.749) 0.756 (0.173) 0.938 (0.068) 0.943 (0.068)

500 0.740 (0.113) 0.744 (0.585) 0.730 (0.130) 0.927 (0.048) 0.920 (0.048)

Singh-Maddala 50 0.791 (0.148) 0.760 (0.248) 0.769 (0.103) 0.912 (0.160) 0.958 (0.161)

100 0.781 (0.102) 0.756 (0.167) 0.747 (0.068) 0.922 (0.111) 0.965 (0.113)

250 0.786 (0.060) 0.748 (0.083) 0.715 (0.037) 0.941 (0.070) 0.954 (0.071)

500 0.756 (0.041) 0.706 (0.052) 0.660 (0.025) 0.945 (0.050) 0.955 (0.050)

Dagum 50 0.735 (0.146) 0.631 (0.222) 0.740 (0.101) 0.898 (0.163) 0.937 (0.167)

100 0.744 (0.099) 0.632 (0.138) 0.733 (0.067) 0.941 (0.115) 0.956 (0.118)

250 0.709 (0.060) 0.564 (0.074) 0.685 (0.039) 0.957 (0.073) 0.960 (0.074)

500 0.710 (0.042) 0.499 (0.047) 0.681 (0.027) 0.957 (0.052) 0.949 (0.052)

χ2
2 50 0.807 (0.202) 0.783 (0.551) 0.845 (0.196) 0.941 (0.165) 0.958 (0.166)

100 0.775 (0.141) 0.736 (0.392) 0.803 (0.134) 0.954 (0.115) 0.952 (0.116)

250 0.799 (0.084) 0.763 (0.216) 0.779 (0.077) 0.969 (0.071) 0.959 (0.072)

500 0.753 (0.057) 0.714 (0.136) 0.742 (0.050) 0.970 (0.050) 0.957 (0.051)

Pareto (2) 50 0.747 (0.283) 0.682 (1.374) 0.775 (0.355) 0.930 (0.159) 0.948 (0.160)

100 0.787 (0.236) 0.745 (1.414) 0.800 (0.312) 0.945 (0.110) 0.939 (0.111)

250 0.815 (0.185) 0.817 (1.370) 0.839 (0.258) 0.935 (0.068) 0.911 (0.069)

500 0.812 (0.149) 0.856 (1.244) 0.845 (0.214) 0.905 (0.048) 0.928 (0.048)

Exponential (1) 50 0.802 (0.200) 0.762 (0.537) 0.822 (0.192) 0.920 (0.165) 0.953 (0.167)

100 0.830 (0.142) 0.780 (0.395) 0.826 (0.135) 0.943 (0.115) 0.959 (0.116)

250 0.785 (0.087) 0.743 (0.232) 0.781 (0.080) 0.968 (0.071) 0.957 (0.072)

500 0.756 (0.057) 0.720 (0.139) 0.748 (0.051) 0.972 (0.050) 0.953 (0.051)

In Fig. 1 we look at what happens to estimates using the linear interpolation
method for each measure (e.g. an estimate based on a bootstrap sample) as skew
increases. In this case, we use the lognormal distribution while increasing the σ
parameter from 0.5 to 2. The estimates are centered according to the true value
so a value of zero indicates a perfect estimate. We exclude the Theil index from
the analysis since its upper bound is unrestricted. As the distribution becomes
more skewed, the Gini and Atkinson estimators have an increase in bias and
variability whereas the quantile-based measure (I ) indicates smaller variability
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Fig. 1. Boxplots of 1000 centered (with respect to the true values) simulated estimates
of inequality measures from quintiles, estimated using linear interpolation method from
the Lognormal distribution with mean 0 and various standard deviation values where
n = 250

and smaller bias throughout for all of the choices of σ. This helps to explain why
the coverages are poor for the Gini and Atkinson measures.

6 Applications

6.1 Example 1: Household Income Reported with Group Means

In this example, we present household income data reported with group means by
the Survey of Consumer Finances and Expenditures carried out by the Macquarie
University and the University of Queensland which can be found in Podder
(1972) and Kakwani and Podder (1976). The data is summarised in Table 5.

The confidence intervals produced by 500 bootstrapped samples using the
linear interpolation (LI) and GLD methods are given in Table 6. As the final
interval is unbounded, we arbitrarily set the upper limit of that bin to $500,000.
As can be seen, the confidence intervals and the estimates generated by the two
methods are similar.



Interval Estimators for Inequality Measures Using Grouped Data 249

Table 5. Australian household income data for 1967-68

Income Number of households Mean income

Below $1000 310 674.39

$1000–$2000 552 1426.10

$2000–$3000 1007 2545.79

$3000–$4000 1193 3469.35

$4000–$5000 884 4470.33

$5000–$6000 608 5446.60

$6000–$7000 314 6460.93

$7000–$8000 222 7459.14

$8000–$9000 128 8456.66

$9000–$11000 112 9788.38

$11000 and over 110 15617.69

Table 6. Interval and point estimates of the inequality measures generated using the
linear interpolation (LI) and GLD methods for the data presented in Table 7.

Method Bootstrap Wald-type

Gini Theil Atkinson I I

LI 0.319 0.178 0.088 0.509 0.510

(0.311, 0.327) (0.168, 0.188) (0.084, 0.092) (0.503, 0.517) (0.502, 0.517)

GLD 0.329 0.177 0.104 0.519 0.521

(0.321, 0.337) (0.165, 0.190) (0.098, 0.109) (0.512, 0.528) (0.513, 0.529)

6.2 Example 2: Comparison of Equalized Disposable Household
Income Data

In this example, we compare two assumed-independent income distributions
reported in deciles from ABS (2011) (see Table 7) to assess whether the income
inequality measures of the two distributions are significantly different from one
another. It is simple to adapt the previous intervals to the two-sample setting.
For example, for the bootstrap approach we simply estimate the difference at
each iteration and then form the interval by taking percentiles from the boot-
strapped differences. For the Wald-type approach we can get the variance of the
difference as a sum of the variances for each estimator of the QRI. For estimation
purposes, the highest income has been considered as $5000 for both years.

From Table 8, it can be seen that all intervals for the difference in the mea-
sures do not include zero. These intervals then suggest that income inequality
has change over the years. We can conclude that inequality of the equalized dis-
posable household income in Western Australia has been significantly increased
from 1996-97 to 2009-10.
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Table 7. Equalized disposable household income at top of selected percentiles ($) in
Western Australia.

Percentile 1996-97 2009-10

10th 263 347

20th 311 454

30th 364 565

40th 434 663

50th 518 770

60th 586 882

70th 665 1071

80th 778 1296

90th 955 1652

Table 8. Point and interval estimates of inequality measures generated using GLD
method for Equalized disposable household income in Western Australia presented in
Table 7

Year Bootstrap Wald-type

Gini Theil Atkinson I I

1996-97 Average Est. 0.262 0.107 0.053 0.488 0.489

CI (0.253, 0.271) (0.099, 0.115) (0.049, 0.057) (0.473, 0.503) (0.483, 0.496)

2009-10 Average Est. 0.326 0.174 0.083 0.538 0.538

CI (0.318, 0.334) (0.163, 0.185) (0.079, 0.088) (0.528, 0.548) (0.531, 0.545)

Difference Average Est. 0.064 0.067 0.030 0.050 0.049

CI (0.051, 0.077) (0.054, 0.08) (0.025, 0.037) (0.032, 0.07) (0.040, 0.058)

7 Discussion

To preserve confidentiality, it is common for income data to be summarised in
grouped format. We therefore considered interval estimators for several mea-
sures, including the popular Gini index and a newly proposed quantile-based
measure, the QRI. Since grouped data contains bin boundaries and frequencies
(and therefore quantile estimates of the data), the QRI is naturally suited to
this setting. We showed that bootstrap intervals and a Wald-type interval, both
using estimated densities form the grouped data, had typically excellent coverage
(i.e. close to nominal). The other measures, however, often had intervals with
poor coverage. Further research could include consideration of how to get good
approximations to the variances of the Gini, Theil and Atkinson estimators when
dealing with grouped data. This was possible for the QRI since the variance of
the estimator can be approximated using the estimated density function. For
the other measures it is not so straightforward. In summary, when faced with
grouped data, if confidence intervals are needed then the QRI is a good option
for measuring inequality.
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Abstract. Properties of the model averaged tail area (MATA) confi-
dence interval proposed by Turek and Fletcher (CSDA 2012) depend
critically on the data-based weights assigned to each tail area equation.
By restricting attention to weights based on exponentiating minus AIC/2
and other similar weights it is not possible to find a MATA confidence
interval with the desired minimum coverage probability. In the simple
scenario that there are two nested normal linear regression models over
which we average, a weight function is proposed that results in a MATA
interval with correct minimum coverage for many combinations of the
known quantity that the coverage depends on. This weight function is
shown to outperform current popular choices of weight functions for the
MATA interval.

Keywords: Optimized weight · Coverage probability · Expected
length

1 Introduction

Model selection can be a difficult process when there are many suitable candidate
models for a given data set. Once one has decided on an appropriate model, infer-
ence is usually made assuming that this model had been chosen a priori. Thus
the uncertainty arising from model selection is not adequately accounted for. In
response to this problem, Turek and Fletcher (2012) have proposed the model
averaged tail area (MATA) confidence interval. The endpoints of this MATA
interval are obtained by solving a weighted average of the tail area equations
that define the confidence interval endpoints for each model. Fletcher (2018)
illustrates the application of the MATA interval to some ecological data sets.
The coverage probability and expected length of this MATA interval depend
critically on the data-based weights assigned to each tail area equation. Follow-
ing Buckland et al. (1997), Turek and Fletcher (2012) consider weights propor-
tional to the exponential of minus AIC/2, AICc/2 and BIC/2, where AICc is
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AIC corrected for small samples. By restricting attention to weights based on
exponentiating minus AIC/2 and other similar weights it is not possible to find
a MATA confidence interval with the desired minimum coverage probability.

In this paper we propose a new weight function for the MATA confidence
interval for the simple scenario that there are two nested linear regression models
with normally distributed random errors over which we average: the full model
and a simpler model. The simpler model is obtained from the full model by set-
ting τ , a linear combination of the regression parameters, to 0. The parameter of
interest θ is a distinct specified linear combination of the regression parameters.
Let ̂θ and τ̂ denote the least squares estimators of θ and τ , respectively. Let
γ = τ/(var(τ̂))1/2 and γ̂ = τ̂ /(var(τ̂))1/2. Large values of γ̂2 provide evidence
against the simpler model. Thus, any reasonable model weight should be a con-
tinuous decreasing function of γ̂2. In this simple scenario, the weight functions
based on exponentiating minus AIC/2, AICc/2 and BIC/2 are of the form

w(γ̂2; d, n,m) =
1

1 + (1 + γ̂2/m)n/2 exp(−d/2)
,

where n is the dimension of the response vector, p is the dimension of the regres-
sion parameter vector, m = n − p and d is equal to 2 for AIC, 2n/(m − 1) for
AICc and ln(n) for BIC.

Kabaila, Welsh and Mainzer (2016) introduce a new class of weight functions,
based on exponentiating criteria related to Mallows’ CP , that have the form

wM(γ̂2; d,m) =
1

1 + (1 + γ̂2/m)m/2 exp(−d/2)
.

Note that wM(γ̂2; d,m) differs from the weight functions based on exponentiating
minus AIC/2, AICc/2 and BIC/2 only in the power m/2 in the denominator.
Kabaila, Welsh and Mainzer (2016) conclude that, in the simple scenario under
consideration, the MATA confidence interval with weight function wM(γ̂2; d =
0,m) outperforms the MATA confidence interval with weight function based on
AIC or BIC in terms of coverage probability and scaled expected length, where
the scaling is with respect to the standard interval based on the full model with
the same minimum coverage probability as the MATA interval. Therefore, we
use the MATA interval with weight function wM(γ̂2; d = 0,m) as the standard
against which we compare MATA intervals based on new weight functions.

It follows from Kabaila, Welsh and Mainzer (2016) that the weight function
wM(γ̂2; d = 0,m), and other weight functions in the class of weight functions that
depend only on m and γ̂2, result in a MATA interval with coverage probability
and scaled expected length that are functions of m, the known correlation ρ =
corr(̂θ, τ̂) and the unknown parameter γ. As illustrated by Fig. 1, the MATA
confidence interval obtained using the weight wM(γ̂2; d = 0,m) performs poorly
for some values of ρ. The main innovation in the present paper is that we optimize
the weight function within the class of weight functions that depend only on m
and γ̂2 to find a MATA interval with the correct minimum coverage probability
(so that it is an ‘exact’ confidence interval) for all ρ satisfying 0 ≤ |ρ| ≤ 0.9.
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The paper is structured as follows. The MATA confidence interval for the
case of two nested linear regression models is described in detail in Sect. 2. The
new optimized weight function is introduced in Sect. 3, and an empirical example
to illustrate the properties of the MATA confidence interval is given in Sect. 4.
The remainder of the paper describes the computational method used to find the
parameters of the new optimized weight function (Sect. 5) and considerations for
improving the optimized weight function further (Sect. 6).

2 Description of the MATA Confidence Interval

We may describe the MATA confidence interval generally as follows. Suppose
that we have K models, indexed by k. Also suppose that θ is the scalar parameter
of interest which has an interpretation that is the same for all of these models.
Let ̂θk denote the usual estimator of θ, under the model k. Also let sek denote
the standard error of ̂θk, under the model k. Finally let w1, . . . , wK denote data-
based weights. Suppose that Gk, the exact or approximate cdf of (̂θk − θ)/sek,
is known for m = 1, . . . ,K. The MATA confidence interval for θ is obtained by
supposing that

K
∑

k=1

wk Gk

(

̂θk − θ

sek

)

(1)

has approximately a U(0, 1) distribution. The upper and lower endpoints of the
MATA confidence interval with nominal coverage probability 1 − α are given by
the solutions for θ of the equations (1) = α/2 and (1) = 1 − α/2, respectively.

In this paper we consider the case that there are two nested linear regres-
sion models over which we average. Let Y be a n-vector of responses, X be
a known n × p model matrix with p < n linearly independent columns, β be
an unknown parameter p-vector and ε ∼ N(0, σ2In), where σ2 is an unknown
positive parameter. The full model is given by

Y = Xβ + ε.

Let a and c be specified nonzero p-vectors, and let t be a specified number.
The reduced model is the full model with τ = c�β − t = 0. Suppose that the
parameter of interest is θ = a�β. Define ̂β to be the least squares estimator
of β. Then ̂θ = a�

̂β and τ̂ = c�
̂β − t are the least squares estimators of

θ and τ , respectively. Also let σ̂2 be the usual unbiased estimator of σ2, i.e.
σ̂2 = (Y − X ̂β)�(Y − X ̂β)/(n − p). Define vθ = Var(̂θ)/σ2 = a�(X�X)−1a

and vτ = Var(τ̂)/σ2 = c�(X�X)−1c. The known correlation between ̂θ and τ̂

is ρ = a�(X�X)−1c/(vθvτ )1/2. Let γ = τ/(σv
1/2
τ ) and denote the estimator of

γ by γ̂ = τ̂ /(σ̂ v
1/2
τ ).

Suppose that w : [0,∞) → [0, 1] is a decreasing continuous function, such
that w(z) approaches 0 as z → ∞. Let Fν denote the distribution function of
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Student’s t-distribution with ν degrees of freedom. For the scenario considered
here, (1) becomes

w(γ̂2)Fm+1

(

(

m + 1
γ̂2 + m

)1/2
δ − ρ γ̂

(1 − ρ2)1/2

)

+
(

1 − w(γ̂2)
)

Fm (δ) , (2)

where δ = (̂θ − θ)/(σ̂v
1/2
θ ). Define δu to be the solution in δ of the equation

(2) = u. The MATA confidence interval for θ with nominal coverage probability
1 − α is given by

[

̂θ − v
1/2
θ σ̂ δ1−α/2, ̂θ + v

1/2
θ σ̂ δα/2

]

.

We focus on two properties of the MATA confidence interval to assess its
performance: the coverage probability and the scaled expected length, where the
scaling is with respect to the standard confidence interval based on the full model,
with the same minimum coverage probability as the MATA confidence interval.
Exact expressions for the coverage probability and scaled expected length of this
MATA confidence interval are given by Theorems 1 and 2 of Kabaila, Welsh and
Abeysekera (2016). These exact expressions allow us to evaluate the coverage
probability and scaled expected length of the MATA confidence interval without
the use of simulations or large sample approximations. Because m and ρ are
known, we denote the coverage probability and scaled expected length of the
MATA interval by CP (γ) and SEL(γ), respectively.

3 The New Optimized Weight Function

We consider the new optimized weight function with the form

wO(z) = exp
(

−
(

b0 + b1 z1/2 + b2 z + b3 z3/2
))

,

where z = γ̂2. This form of weight function is the result of a wide-ranging
search for a form of weight function that, when optimized, leads to a MATA
confidence interval with excellent coverage and scaled expected length properties.
The parameters b0, b1, b2 and b3 of wO(z) are chosen by minimizing SEL(γ = 0),
subject to constraints on CP (γ), SEL(γ) and wO(z). That is, we constrain
CP (γ) ≥ 1 − α for all γ, we constrain SEL(γ) to be less than or equal to a
specified upper bound, denoted by SELmax, for all γ and to be close to 1 at a
specified γ value, and we constrain wO(z) to be a decreasing continuous function
that approaches 0 as z → ∞. A description of the computational method used
to find the parameters b0, b1, b2 and b3 of wO(z) is given in Sect. 5. This weight
function has the advantage that all of it’s derivatives are continuous and that
it depends on relatively few parameters. Note that the weight function wO(γ̂2)
depends on m through the optimized values of b0, b1, b2 and b3. In other words,
like wM (γ̂2; d = 0,m), this weight function depends only on m and γ̂2.
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3.1 Performance of the Optimized Weight Function

We evaluate the performance of the MATA confidence interval with the new
optimized weight function wO(γ̂2) by comparing the coverage probability and
scaled expected length of this confidence interval against the coverage probability
and scaled expected length of the MATA confidence interval with weight function
wM (γ̂2; d = 0;m). We have chosen to compare wO(γ̂2) with wM (γ̂2; d = 0;m) for
the following reasons. Kabaila (2018) provides an upper bound on the minimum
coverage probability of the MATA confidence interval for weights proportional
to exp(−BIC/2) and exp(−AIC/2). Based on this upper bound, a model weight
based on the BIC is not recommended. Kabaila, Welsh and Mainzer (2017)
suggest that, for appropriate values of d, properties of the MATA confidence
interval for the weight function wM (γ̂2; d;m) are comparable to properties of the
MATA confidence interval for weight functions based on AIC and BIC. These
authors also observe that using the weight function wM (γ̂2; d;m), as opposed
to w(γ̂2; d;n;m), reduces the number of known quantities that determine the
coverage probability and scaled expected length of the MATA confidence interval
from 4 to 3, thereby providing a considerable gain in simplicity of analysis. Note
that wO(γ̂2) and wM (γ̂2; d = 0;m) belong to the same class of weight functions,
i.e. weight functions that depend only on m and γ̂2.

For ρ ∈ {0.3, 0.6, 0.9} and m = 23, Fig. 1 presents graphs of CP (γ), SEL(γ)
and the weight function of the 95% MATA confidence interval, for both weight
functions wM (z; d = 0,m) (left side of figure) and wO(z) (right side of figure). For
m = 23, we obtain the parameters of wO(z) to be b1 = 0.9387, b2 = 0.8942, b3 ≈
0 and b4 ≈ 0. Note that if SEL(γ) < 1 then the MATA interval is, on average,
shorter than the standard interval (based on the full model) with the same
minimum coverage probability for this given γ. Figure 1 illustrates the following
properties. The optimized weight function wO(z) takes a lower value when z = 0
and initially decays with increasing z much more rapidly than the weight function
wM (z; d = 0,m). The MATA confidence interval with optimized weight function
wO(z) has minimum coverage probability very close to 0.95, whereas the MATA
confidence interval with weight function wM (z; d = 0,m) has minimum coverage
probability substantially less than 0.95. The MATA confidence interval with
optimized weight function wO(z) has scaled expected length less than 1 when
γ = 0, |maxγ SEL(γ)−1| not too much larger than |SEL(γ = 0)−1|, and scaled
expected length that approaches 1 as γ becomes large. By comparison, the MATA
confidence interval with weight function wM (z; d = 0,m) has |maxγ SEL(γ)−1|
much larger than |SEL(γ = 0)−1| for ρ ∈ {0.6, 0.9}, and does not approach 1 as
γ increases for any value of ρ ∈ {0.3, 0.6, 0.9}. Therefore, the MATA confidence
interval with optimized weight function wO(z) performs much better than the
MATA confidence interval with weight function wM (z, d = 0,m).

4 Empirical Example

In this section we consider the supervisor performance data set found in Chatter-
jee and Hadi (p. 58–59, 2012). The response Y is the employee’s overall rating of
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the job being done by the supervisor. The covariates are: X1: handles employee
complaints, X2: does not allow special privileges, X3: opportunity to learn new
things, X4: raises based on performance, X5: too critical of poor performance,
X6: rate of advancing to better jobs. For further information on this data set,
we refer the reader to pages 58–59 of Chatterjee and Hadi (2012). For this data
set, X has n = 30 rows and p = 7 columns (6 variables and an intercept). Thus
m = n − p = 23. We are interested in a confidence interval for the expected
value of the response of individual 25. Therefore, a = (1, 54, 42, 28, 66, 75, 33).
Let c = (0, 0, 0, 0, 1, 0, 0) and t = 0 so that the simpler model is the full model
without X4. The known correlation between ̂θ and τ̂ is ρ = 0.7196.

Figure 2 presents graphs of CP (γ) and SEL(γ) where m = 23, ρ = 0.7196
and 1 − α = 0.95, for both wM(z; d = 0,m) (plots on the left hand side of
this figure) and wO(z) (plots on the right hand side of this figure). Similarly
to Fig. 1, minγ CP (γ) is less than 0.95 for the weight function wM(z; d = 0,m)
and very close to 0.95 for the weight function wO(z). Also, |minγ SEL(γ)−1| is
much smaller than |maxγ SEL(γ) − 1| for the weight function wM(z; d = 0,m).
However, these quantities are comparable for the weight function wO(z).

5 Computational Method Used to Find the Parameters
of the New Optimized Weight Function

We obtain the parameters b0, b1, b2 and b3 of wO(z) in MATLAB using fmincon,
which carries out nonlinear constrained optimization. The objective function
which is to be minimized is SEL(γ = 0).

We use the following algorithm to ensure that CP (γ) ≥ 1 − α for all γ,
SEL(γ) ≤ SELmax for all γ and wO(z) is a decreasing continuous function that
approaches 0 as z → ∞. We specify the following constraints on wO(z) and
the parameters of wO(z): b0 ≥ 0, if b3 = 0 then b1 ≥ 0 and b2 ≥ 0, otherwise
b22 ≤ b1b3 and b3 ≤ 0. We also initialize the algorithm as follows. We specify the
sets ΓCP = {0, 1.6, 1.8, 2, 4, 6} and ΓSEL = {2, 3, 4, 5, 6}. These sets were chosen
after an initial exploration of the behaviour of the functions CP (γ) and SEL(γ).

1. Run fmincon to compute the parameters that describe the weight func-
tion such that SEL(γ = 0) is minimized, subject to the constraints on wO

described above and the constraints that (a) CP (γ) ≥ 1 − α for all γ ∈ ΓCP ,
(b) SEL(γ) ≤ SELmax for all γ ∈ ΓSEL and (c) SEL(10) ≤ 1.005.

2. Compute the coverage probability, scaled expected length and weight function
for an evenly spaced fine grid of values between 0 and γmax = 10. If all
constraints are satisfied then we have found the parameters of wO and we
stop. If, on the other hand, any of the constraints are not satisfied then go to
the next step.

3. If CP (γ) < 1 − α for any γ ∈ [0, γmax] then add γ̃ to the set ΓCP , where
γ̃ is the value of γ that minimizes CP (γ). If SEL(γ) > SELmax for any
γ ∈ [0, γmax] then add γ to the set ΓSEL, where γ is the value of γ that
maximizes SEL(γ). Go to step 1.
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Fig. 1. Graphs of the coverage probability, scaled expected length and weight function
of the MATA interval, for weight functions wM (z; d = 0, m) (left side of figure) and
wO(z) (right side of figure), for ρ ∈ {0.3, 0.6, 0.9} and m = 23.

Although the known correlation ρ does not appear in the expression for
wO(z), the optimization method described above (to choose the parameters b0,
b1, b2 and b3) results in this weight function implicitly depending on ρ. Interest-
ingly, we found that if the coverage probability satisfies the constraints on CP (γ)
and SEL(γ) for ρ = ρ̃, where ρ̃ ∈ [0, 1), then it also satisfies these constraints
for all ρ satisfying |ρ| ≤ |ρ̃|. By obtaining the parameters of wO(z) for ρ = 0.9
we obtain a new class of optimized weight functions that, for 0 ≤ |ρ| ≤ 0.9,
results in a MATA confidence interval with correct minimum coverage proba-
bility, maximum and minimum scaled expected lengths which are comparable
distances from 1 and scaled expected length approximately 1 when the data
provide evidence against the simpler model.
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Fig. 2. Graphs of the coverage probability and scaled expected length of the MATA
interval with weight functions w(z; d = 0, m) (left side of figure) and the new optimzed
weight function wO(z) (right side of figure), where ρ = 0.71964 and m = 23.

6 Can We Do Better if We Optimize the Weight Function
for both m and ρ?

In this section we explore how much better the MATA confidence interval can
perform when the weight function is allowed to also depend on the value of
ρ. We consider again the supervisor performance data set described in Sect. 4.
For a fair comparison, we specify that the maximum scaled expected length of
the MATA interval with weight function that has been optimized for both ρ
and m and the maximum scaled expected length of the MATA interval with
weight function wO(z) should be the same. Thus, we set SELmax = 1.05 in the
algorithm described in Sect. 4. The improvement can then be seen by comparing
the minimum scaled expected lengths of the MATA interval for the two different
optimized weight functions. Figure 3 compares the performance of wO(z) (plots
on the left hand side of this figure) with the weight function which has been
optimized for both m and ρ (plots on the right hand side of this figure). The
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maximum and minimum scaled expected lengths of the MATA interval with
weight function wO(z) are 1.0316 and 0.9734, respectively. The maximum and
minimum scaled expected length of the MATA interval with weight function
optimized over ρ and γ are 1.0500 and 0.9459, respectively. Figure 3 illustrates
that, for this example, there is not a great deal to gain by optimizing the weight
function over both ρ and m.
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Fig. 3. Graphs of the coverage probability and scaled expected length of the MATA
confidence interval with weight function wO(z) (left side of figure) and weight function
which has been optimized over both m and ρ (right side of figure), where ρ = 0.71964
and m = 23.

7 Conclusion

Properties of the MATA confidence interval depend critically on the data-based
weights assigned to each tail area equation. In this paper we consider the case
where there are two nested normal linear regression models over which we aver-
age. We have introduced a new class of optimized weight functions that, for
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0 ≤ |ρ| ≤ 0.9, result in a MATA confidence interval with correct minimum cov-
erage probability, maximum and minimum scaled expected lengths which are
comparable distances from 1 and scaled expected length approximately 1 when
the data strongly contradicts the simpler model. This weight function is shown to
perform much better, in terms of coverage probability and scaled expected length
of the resulting MATA interval, than the best weight function found by Kabaila,
Welsh and Mainzer (2017). This improvement in performance easily outweighs
the increased time required for the computation of the MATA interval using the
new optimized weight function.

In the simple scenario of two nested linear regression models, Kabaila, Welsh
and Mainzer (2017) proved that the MATA confidence interval with weight func-
tions of the kind considered in this paper belong to a subclass of the class of
confidence intervals defined by Kabaila and Giri (2009). Since the MATA confi-
dence interval is not optimal in the class of confidence intervals given by Kabaila
and Giri (2009), it is not the best confidence interval to use in this scenario. How-
ever, the MATA confidence interval has the attractive property that it is easily
computed in more complicated scenarios, such as when there are more than two
nested linear regression models. We hope that the guidance given here on how
to choose the weight function for the MATA confidence interval in the simple
scenario of two nested linear regression models can aid the choice of the weight
function for the MATA confidence interval in more complicated scenarios.
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