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Abstract. With the rapid development of CPS technology, the identification
and detection of malware has become a matter of concern in the industrial
application of CPS. Currently, advanced machine learning methods such as deep
learning are popular in the research of malware identification and detection, and
some progress has been made so far. However, there are also some problems.
For example, considering the existing noise or outliers in the datasets of mal-
ware, some methods are not robust enough. Therefore, the accuracy of classi-
fication of malware still needs to be improved. Aiming at it, we propose a novel
method thought the combination of correntropy and deep neural network
(DNN). In our proposed method for malware identification and detection, given
the success of mixture correntropy as an effective similarity measure in
addressing complex dataset with noise, it is therefore incorporated into a popular
DNN, i.e., convolutional neural network (CNN), to reconstruct its loss function,
with the purpose of further detecting the features of outliers. We present the
detailed design process of our proposed method. Furthermore, the proposed
method is tested both on a popular benchmark dataset and a real-world malware
classification dataset, to verify its learning performance.
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1 Introduction

Cyber-physical systems (CPS) refer to a system that integrates computation, net-
working, and physical processes, where embedded computers and networks achieve
real-time control of the physical process through the feedback mechanism [1]. With the
development and popularization of CPS technologies, there are numerous physical
equipments depending on computers and networks to achieve functional expansion,
which will upgrade industrial products and technologies. For those large-scale complex
systems, safety and reliability always are important issues. CPS intimately integrates
the virtual world with the physical world, once the virtual world is attacked, it will
inevitably affect the physical world. Hence, the information protection is essential for
the CPS implementation. For the issue of information security in CPS, it has become
critical to identify and detect malware on Android [2].

Generally speaking, malware refers to any cyber-attack performed in Internet. The
increase of malware has become a serious issue. Due to the serious hazard the malware
has brought to the internet, various methods have been proposed to defense the
malicious software. Currently, there are two main methods to detect and analyze
malware. One is the classical static and dynamic analysis method. Static malware
feature analysis includes compile time, shell information, import functions, suspicious
strings, and some others. For example, an algorithm was designed to achieve statistical
binary content analysis of Fileprint [3], and a statistical value could be calculated to
extract malicious communication pattern [4]. If the sample is highly encrypted, the
static feature analysis may not provide much valuable information, therefore, dynamic
behavior analysis technology is needed, which is also called behavior monitoring. For
example, an approach was proposed for the network analysis of anomalous traffic
events (NATE) [5]. The other one is based on machine learning methods, such as
malware analysis based on long short-term memory (LSTM) [6], one-class support
vector machine based malware detection [7], detecting malware using a deep belief
network (DBN) [8], and many others. Then, with the rapid development of machine
learning algorithms, more and more intelligent methods are accordingly developed to
deal with malware issues.

However, these methods mentioned above also have their limitations. In particular,
there may be noise or outliers in some malware data, and then the robustness of some
methods is not satisfactory enough. Therefore, the accuracy of feature extraction and
classification of malware is necessary to be further improved. In response to these
limitations, motivated by the popular malware classification method on the basis of
deep neural network (DNN) [9], we propose a novel algorithm through the use of a new
similarity measure, i.e., mixture correntropy.

Correntropy is a kernel-based local similarity function [10]. Since one of the sig-
nificant features of correntropy is robust to noise and large outliers [11], it is widely
applied in various fields. Specifically, it can be also used within deep learning
framework to improve the computational performance. For example, the stacked
extreme learning machine was presented with the correntropy-optimized temporal
principle component analysis (CTPCA) [12], furthermore the generalized correntropy-
based stacked autoencoder (GC-SAE) was developed [13]. More recently, on the basis
of correntropy, mixure correntropy is proposed and widely employed in various
applications [14]. Considering that there is no application of mixture correntropy in
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Android malware identification and detection, through the combination of a popular
DNN, i.e., convolutional neural network (CNN) [15], we develop a novel application
by proposing a mixture correntropy-based CNN, and thus using it to improve the
classification accuracy for malware.

The main contributions of this paper can be summarized as follows.

(1) In consideration of those advantages of mixture correntropy in addressing data
more flexibly and stably, it is hereby incorporated into the implementation
framework of CNN, through the reconstruction of loss function in CNN. Then, it
is expected that the learning performance can be further improved by using our
proposed method.

(2) Our proposed method is used to handle an important but challenging issue in the
guarantee of information security in CPS, which is the Android malware identi-
fication and detection. Compared to other traditional malware detection methods,
the learning performance in relation to accuracy and robustness would be further
improved owing to the use of mixture correntropy.

The remainder of this paper is organized as follows. In Sect. 2, we provide a simple
analysis on the related technologies, including correntropy and mixture correntropy,
CNN, and deep learning-based malware detection. In Sect. 3, the detailed design
process of our proposed method is presented. The experiment results and discussion are
given in Sect. 4. Finally, this paper is concluded in Sect. 5.

2 Background

2.1 Correntropy and Mixture Correntropy

Correntropy. Inspired by information theoretic learning (ITL) [16], correntropy is an
extension of the basic definition of correlation function, which is a similarity measure
function of two random variables (X, Y). It is defined as:

V(X,Y) = Elks (X — )] = [ko(x — y)dFxy(x,y) (1)

where k,(-) denotes any type of kernel function with bandwidth of o, E is the
expectation operator, Fyy(x,y) refers to the joint distribution of (X,Y). Without
mentioned otherwise, the kernel function in this paper takes Gaussian kernel:

ks(x,3) = Gole) = Z—exp(— ) 2)
where e refers to (x — y). Correntropy is symmetric, positive, and bounded, and con-
tains all even moments of arbitrary variables [17]. Since in real-world data processing
tasks, the joint probability density (PDF) of samples is usually unknown, and sample

sets {x;, y,-}f]: | is limited, the sample estimator can be defined as:

~

V(X,Y) =}

M=

2 ko = i) (3)

which is also named as the empirical correntropy.
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Mixture Correntropy. On the basis of correntropy, the concept of mixture corren-
tropy is generated [14]. When correntropy is applied to process data, the kernel
bandwidth ¢ directly affect the performance of the function. Concisely, a small value of
bandwidth allows algorithms to perform better in processing data with noise and
outliers, but it may also lead to a slow convergence. Conversely, a large value of
bandwidth will cause the reduction of robustness. Therefore, the mixture correntropy is
proposed to improve the original algorithm, and it is defined as:

M(X,Y) = Eloks, (¢) + (1 — o)ks, (e)] (4)

where 6; and 6, are bandwidths of two kernel functions, and 0 < o < 1 refers to
mixture coefficient that controls the ratio between two kernel functions. In addition, the
sample estimator can be defined as:

™M=

M(e) = 3 Ylotka (e:) + (1 — )k, (1) (5)

[i

where e; refers to (x; — y;). In this paper, we take the mixture of two Gaussian kernel.
Here, M (e) can be represented as:

M(e) = 154G () + (1 — )G (&) (6)

i=

2.2 Convolutional Neural Network (CNN)

CNN is a type of feedforward neural networks with convolutional computation, and it
can be regarded as a DNN. As one of the representative algorithms of deep learning, it
has been utilized in various fields, such as the image classification [18], object
recognition [19], and natural language processing [20]. CNN mimics the visual per-
ception mechanism of living organisms, and thus can be employed for the supervised
learning and unsupervised learning.

Input % Output
| Convolution | | Pooling | | Convolution | |P0011ng| Fully Connected |

Fig. 1. LeNet-5 model.

Here, we implement a LeNet-5 model [15], which is a common model of CNN. As
shown in Fig. 1, there are 7 layers in LeNet-5, including 2 convolutional layers, 2
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pooling layers, and 3 fully-connected layers. Each layer contains different number of
training parameters. The function of convolutional layer is to extract features from the
input data. Thereafter, the feature graph will be transferred to the pooling layer for
feature selection and information filtering. Fully-connected layers only pass signals to
other fully-connected layers. The feature graph loses its spatial topology in the fully-
connected layers and is expanded as a vector. The output layer uses the softmax
function to output classification labels.

2.3 The Deep Learning-Based Malware Detection

Deep learning, as a kind of advanced data mining strategy in the machine learning area,
has gained tremendous attention and inspired diverse practical applications. To address
the security issues of CPS, a variety of deep learning-based malware detection methods
have been proposed over the years. An originally designed deep learning model was
performed to analyze more than 200 features extracted from static analysis and
dynamic analysis of Android App [21]. Using convolutional and recurrent network
layers, a neural network was constructed to achieve the best features of malware system
[22]. Echo state networks (ESN) and recurrent neural networks (RNN) are utilized for
the projection stage to realize the feature extraction [23]. Because the number of
potential features would be very large, the random projections were explored to reduce
the dimensionality of input data, and several large-scale neural network systems were
trained to implement the classification [24].

However, none of the aforementioned methods specifically involved the issue of
robustness in the algorithm. Hence, considering that there may be some noise and
outliers in the malware data, our algorithm is proposed.

3 The Proposed Method

The application programming interface (API) call sequences are firstly inputted into our
proposed method. After preprocessing these data, our mixture correntropy-based
convolutional neural network model is used as a classifier to achieve classification for
malware.

3.1 Training Convolutional Neural Network with Mixture Correntropy-
Based Loss Function

Here, the loss means the cost for predicting the label to be f(x), the predicted label,
instead of the true label. In classification tasks, the algorithm aims to maximize the
similarity between the output and the labels, in other word, the corrrentropy can be
maximized, which is to minimize the expected loss. Therefore, a simple Gaussian
kernel correntropy induced loss function can be defined as:

L(e) =1 — Gyle) (7)

which is called the C-loss function [25].
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The loss function based on two Gaussian kernel mixed correntropy can be defined
as:

L(e) =1—M(e)

1 Ko é? (1—a) ( é? )} (8)
e S [ Fexp( - ) 1 exp( — 5
V21N l:Zl [0'1 p( 20’%) 0> P 203

With our proposed loss function, the pseudo-code of whole process for classifi-
cation tasks is presented in Algorithm 1.

Algorithm 1 Mixture correntropy induced loss CNN

Input: Training set, test set, parameters ¢4 and a,, number of iterations, 7 batch size,
kernel size of each layers, ¢ = 0.
Output: Loss, accuracy (Acc)
1. Construct the CNN model;
2. Train the model:
a. Sample a batch of data from training set;
b.  Process forward propagation through the data, and calculate the mixture
correntropy induced loss according to (8);
c.  Process backward propagation to calculate the gradients;
d.  Update the layer parameters using the gradient;
e. t=t+1.1Ift<T,loop from step a;
3. Process test set in trained CNN model, and calculate Acc.

3.2 Testing Classifier Through Metrics

To evaluate the performance of classification algorithm, the Accuracy (Acc) is defined
as:

TN (9)

_ TP+
ACC = Tp TN, FP FN

where TP, TN, FP, FP refers to true positive, true negative, false positive, and false
positive, respectively.

4 Experimental Results and Discussion

In this section, the experiments on a popular benchmark dataset and a real-world
malware classification dataset are conducted to evaluate the performance of our pro-
posed algorithm. Considering the noise in the real-word malware data is hard to be
removed, to show the strengths of our algorithm clearly, we firstly applied algorithms
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to the original image dataset, and then add noise factor. Here, our experiments are
implemented with Python compiler environment running on a computer with a 1.6
GHZ CPU and an 8 GB RAM.

4.1 Classification Results on Benchmark Dataset

Experimental Results. The comparison is conducted among four methods, including
the support vector machine (SVM), the traditional CNN classifier with the mean square
error (MSE)-induced loss function (CNN+MSE), the CNN classifier with correntropy-
induced loss function (CNN+Correntropy), and our method, i.e., the CNN classifier
with mixture correntropy-induced loss function. In this experiment, we use Fashion-
mnist dataset [26]. As shown in Fig. 2, Fashion-MNIST is a dataset of article images,
each sample is a 28 x 28 grayscale image. There are 10 classes in this dataset, con-
sisting training set of 60,000 examples and a test set of 10,000 examples.

g —
e |

- -

[\l

|

Fig. 2. TIllustration of Fashion-mnist dataset.

Firstly, we apply each algorithm on original dataset, and then we add noise into original
dataset to test the robustness of each algorithm.

Table 1. Performance of each algorithm on original Fashion-mnist dataset.

Algorithm Accuracy
SVM 0.8575
CNN-MSE 0.9147
CNN-Correntropy (¢ = 0.8) 0.9154
CNN-MixCorrentropy (67 = 0.5, 6, = 3, a = 0.5)[0.9170

As shown in Table 1, in the original dataset, the accuracy of CNN-MSE, CNN-
Correntropy and CNN-MixCorrentropy is very close, and is better than that of SVM.
Table 2 presents the performance of four classification method in dataset with Gaussian
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noise. The accuracy of all the algorithms decreases, among which, the accuracy of
SVM decreases significantly, CNN-MixCorrentropy achieves the best performance.
The result shows the robustness of mixture correntropy induced loss function.
Specifically, Figs. 3 and 4 show the loss and accuracy of CNN-MixtureCorrentropy on
the original dataset and on the dataset with noise, respectively.

Table 2. Performance of each algorithm on Fashion-mnist dataset with normal distribution
Gaussian noise (noise factor = 0.3).

Algorithm Accuracy
SVM 0.6765
CNN-MSE 0.8489
CNN-Correntropy (¢ = 0.8) 0.8575
CNN-MixCorrentropy (61 = 0.5 65 = 4 a = 0.3) | 0.8605

0007 —— Training Loss
—— Validation Loss
0006 T
0005
0004

0.003

—— Training Accuracy
Validation Accuracy

0 5 10 15 20 25
Iteration

Fig. 3. Loss and accuracy of CNN-MixtureCorrentropy on the original dataset.

Impact of Parameters ¢; and 4,. In the experiments, we set up different values of
and a5, and apply them into Fashion-mnist dataset with noise. We define that 6, < a5.
Figure 5 shows the results, which implies that when 0 < ¢ < 1, for different values of
o1 and 6», the performance is basically the same. But when we set 6, > 1, the accuracy
decreases significantly.

Additionally, as shown in Fig. 6, when we set 0 < | < 1, the value of o basically
does not affect the performance of our algorithm.
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Fig. 4. Loss and accuracy of CNN-MixtureCorrentropy on the dataset with noise.
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Fig. 6. Performance of CNN-MixtureCorrentropy (6, = 0.2, 6, = 10).

4.2 Classification Results on a Real-World Malware Dataset

One of the most efficient ways in analyzing the malware data is to extract API call
information [27]. The Windows API is a set of predefined Windows functions that
control the behavior of various parts of Windows. Each action of the user triggers the
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execution of one or more functions to tell Windows what is happening. API call
information can be obtained statically and dynamically [28].

In this test task, we generate our dataset by randomly selecting malware samples
from two malware datasets, Dasmalwerk [29] and VirusShare [30], and then use
Cuckoo Sandbox to analyze malicious files. Dasmalwerk and VirusShare are the
datasets of different types of executable malware from Internet. From the reports
generated by Cuckoo, API call information is extracted (Fig. 7).

NtAllocateVirtualMemory NtFreeVirtualMs y NtAllo firtualM y  GetFileType
NtAllocateVirtualMemory SetErrorMode LdrLoadDIl LoadStringA
LdrGetDIlIHandle NtAllocateVirtualM y NtFreeVirtualM y INtAIl irtualMemory
GetSystemTimeAsFileTime  NtAllot 1M Y NtFreeVirtualMs Yy NtAllocateVirtualMemory
GetFileAttributeswW NtCreateMutant GetSystemTimeAsFileTime NtOpenKey

Fi EXW L Irce FindResourceExW LoadResource
GetFileAttributesW NtCreateMutant GetSystemTimeAsFileTime NtOpenKey
GetSystemTimeAsFileTime  LdrGetDlIHandle LdrGetProcedureAddress  GetFileType
GetSystemTimeAsFileTime  LdrGetDlIHandle LdrGetProcedureAddress  GetFileType
NtAllocateVirtualMemory SetErrorMode LdrLoadDIl LoadStringA
GetSystemTimeAsFileTime  LdrGetDIHandle LdrGetProcedureAddress  GetFileType
GetFileAttributeswW NtCreateMutant GetSystemTimeAsFileTime NtOpenKey
GetSystemTimeAsFileTime  LdrGetDIIHandle LdrGetProcedureAddress  GetFileType
LdrGetProcedureAddress LdrGetDlIHandle NtAllocateVirtualMemory  GetFileType
LdrGetProcedureAddress LdrGetDIIHandle LdrGetProcedureAddress  LdrGetDliHandle
SetErrorMode NtCreateFile NtAllocateVirtualMemory  SetFilePointer
GetSystemTimeAsFileTime  Setl ilter NtAllo irtualM y C
NtAllocateVirtualMemory NtFreeVirtualM y NtAllo firtualM y  GetFileType
GetSystemTimeAsFileTime  LdrGetDIHandle LdrGetF di ddi SetUnhandl ionFil
RegOpenKeyExA NtClose NtQueryAttril ile L il

MessageBoxTimeoutA

LdrGetDIIHandle

LdrGetProcedureAddress

LdrGetDIIHandle

GetSystemTimeAsFileTime  LdrGetDIIHandle LdrGetF SetUnt ionFil
GetSystemTimeAsFileTime  NtAllo 1M Y NtFreeVirtualMi y NtAI irtualMemory
GetSystemTimeAsFileTime  LdrGetDIIHandle LdrGetProcedureAddress  GetFileType

Fig. 7. A part of malware API call report.

In this experiment, our proposed algorithm is specifically applied to binary clas-
sification task for malware. Aiming that distinguish the malware samples and normal
benign sample, we need sufficient quantity of both malware samples and benign
samples. We downloaded portable application from Internet and tested them by anti-
virus software. If the application is safe, we take it as a benign sample. Firstly, we
randomly select the same amount of benign sample and malware sample, precisely, 200
samples of each class. As shown in Fig. 8, the word vector is input into CNN model
and trained for multiple times. Dropout is used to prevent over fitting. The output of the
model is the predicted label. Input size is (400, 995, 128), which refers to (sample
number, maximum number of API calls, embedding). SVM is a classical and common
classification method, thus, we take SVM as one of comparison algorithm. We use five-
fold cross validation, the original data is randomly partitioned into 5 subsamples. For
each time, 4 subsamples are used as train data, 1 subsample is used as test data, which
means we take 320 samples as train set, 80 samples as test set. The process is then
repeated 5 times. The final Accuracy (Acc) is defined as:

5
Acc =13 Acc;
i=1

(10)

where Acc; refers to the accuracy of each time.
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A input: | (None, 995,128, 1) dropout_3: Dropout input: | (None, 247, 31, 32)

conv. mput: InputLayer —>| dr - 3: Dr

P putay output: | (None, 995, 128, 1) output: | (None, 247, 31, 32)
input: one, 995,128, 1 input: one, 247, 31, 32

conv2d_3: Conv2D i Ll ) flatten_2: Flatten P L )
output: | (None, 995, 128, 32) - output: (None, 245024)
mput: one, 995, 128, 32 i - 502
max_pooling2d_3: MaxPooling2D i o ) input: | (None, 245024)

- dense_3: Dense
output: | (None, 497, 64, 32) = output: (None, 128)

l l

mput: | (None, 497, 64, 32)
output: | (None, 495, 62, 32) dropout_4: Dropout

input: one, 495, 62, 32 l
max_pooling2d_4: MaxPooling2D ad Ll ) . A iput: | (None, 128)
output: | (None, 247, 31, 32) dense_4: Dense

I output: (None, 2)

mput: | (None, 128)
output: | (None, 128)

conv2d_4: Conv2D

Fig. 8. Processing model.

Table 3. Performance of each algorithm on a real-world malware dataset.

Algorithm Accuracy
SVM 0.7387
CNN-MSE 0.8025
CNN-Correntropy (¢ = 0.7) 0.7937
CNN-MixCorrentropy (617 = 0.4 6, = 3 a=0.5)|0.8156

The word2vec method is used to transfer text document into vectors. Table 3 shows
the accuracy of each algorithm. CNN with different lose function perform better than
SVM. Obviously, CNN with mixture correntropy loss function performs best. Because
of the noise factors in the real-world malware dataset, our method shows the strongest
robustness among four algorithms. Moreover, we also find that compared to MSE loss
function, mixture correntropy loss function has faster convergence speed, demonstrated
in Fig. 9.
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Fig. 9. Performance of convergence on training set.

5 Conclusion

This paper aims at dealing with a challenging issue in the achievement of malware
identification and detection in CPS application, which is the Android malware classi-
fier. Staring from the general analysis of related work on mixture correntropy and
CNN, in this paper we present a novel malware identification and detection method on
the basis of our proposed CNN classifier with mixture correntropy-induced loss
function. Then, compared to other traditional classifiers, the data cloud be handled
more flexibly and stably with a higher classification accuracy and a better robustness
through the use of our mixture correntropy-based CNN model, due to the incorporation
of mixture correntropy especially used to outlier learning problems. In the experiments,
the classification performance of our proposed method and other popular algorithms are
compared on a benchmark dataset and a real-world Android malware dataset. The
experimental results verify the effectiveness and efficiency of our method.
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