
CARNet: Densely Connected Capsules
with Capsule-Wise Attention Routing

Zhi-Xuan Yu, Ye He, Chao Zhu(B), Shu Tian, and Xu-Cheng Yin

School of Computer and Communication Engineering, University of Science
and Technology Beijing, Beijing 100083, People’s Republic of China

zhixuanyu@xs.ustb.edu.cn, YeHe USTB@outlook.com,

{chaozhu,shutian,xuchengyin}@ustb.edu.cn

Abstract. Convolutional neural networks (CNNs) have been proven to
be effective for image recognition, which plays an important role in cyber
security. In this paper, we focus on a promising neural network, capsule
network, which aims at correcting the deficiencies of CNNs. Routing
procedure between capsules, which serves as a key component in capsule
networks, computes coupling coefficients with complicated steps itera-
tively. However, the expensive computational cost poses a bottleneck for
extending capsule networks deeper and wider to approach higher perfor-
mance on complex data. To address this limitation, we propose a novel
routing algorithm named capsule-wise attention routing based on atten-
tion mechanism. With a successful reduction of computational cost in
the routing procedure, we construct a deep capsule network architecture
named CARNet. Our CARNets are proven experimentally to outper-
form other state-of-the-art capsule networks on SVHN and CIFAR-10
benchmarks while reducing the amount of parameters by 62% at most.

Keywords: Cyber security · Image recognition · Capsule network ·
Attention mechanism

1 Introduction

Cyber security becomes more and more important nowadays as cyberspace infil-
trates into our life rapidly. Every day billions of images containing massive
information are generated and transmitted in cyberspace, which poses great
challenges to the security of cyberspace. It is necessary for us to search for more
efficient and robust methods of image recognition to retrieve useful information
from images automatically.

Over the last decade, convolutional neural networks (CNNs) have been widely
used in various challenging tasks in computer vision for its remarkable learning
capacity. CNNs share weights across positions on the image to achieve transla-
tion invariance, which is reasonable but not robust enough when dealing with
complex transformations caused by viewpoint changes or part deformation. To
correct these deficiencies, Hinton et al. [5] proposed a concept of capsule, which
c© Springer Nature Singapore Pte Ltd. 2019
H. Ning (Ed.): CyberDI 2019/CyberLife 2019, CCIS 1137, pp. 309–320, 2019.
https://doi.org/10.1007/978-981-15-1922-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1922-2_22&domain=pdf
https://doi.org/10.1007/978-981-15-1922-2_22

310 Z.-X. Yu et al.

aims to learn features equivariant to transformations resulted from viewpoint
changes. Built upon capsules, capsule networks [6,11] had achieved state-of-the-
art performance on MNIST and smallNORB benchmarks.

However, there is still a large room for capsule networks to approach state-
of-the-art performance on natural image datasets. CapsNets [6,11] comprise
much fewer layers than current well-performed models such as ResNet [4] and
DenseNet [7], which contain hundreds of layers. It has been empirically proven
that neural networks with deeper and wider architecture are more capable of
learning complex hierarchies inside visual entities. Naturally it is worthwhile to
explore a deeper capsule network architecture for enhancing its performance on
complex data. As discussed in [10], simply stacking up fully-connected capsule
layers towards a deep architecture will lead to some undesired problems like
expensive computational cost and gradient vanishing. To address these limita-
tions, we start our work with an analysis of the routing algorithm which involves
complicated computations.

Routing algorithm in the standard CapsNets routes capsules from low level
to high level according to coupling coefficients, which are computed with multi-
ple iterative steps. From another aspect, the routing procedure can be explained
as a parallel attention mechanism. So we formulate the computation process
as a regression of multiple attention maps and implement the computation of
coupling coefficients by two fully-connected layers. Capsules at one position
are taken as input to the two-layer subnetwork to output coupling coefficients.
Weights in the fully-connected layers are shared across different positions, so
capsules at different positions can be routed according to the same criterion.
As a result, the routing procedure is feasible to be accomplished in one stage
and performed with much less computational cost. We name this novel routing
algorithm as Capsule-wise Attention Routing, since our motivation comes from
attention mechanism. Besides the change in computing coupling coefficients,
another modification is the adoption of 2D convolution with larger kernel to
transform capsules from low level to high level. Since the original matrix multi-
plication is equivalent to 1 × 1 convolution, the modification can be regarded as
an enlargement of the convolutional kernel. To prevent the amount of parame-
ters increasing proportionally to the size of convolutional kernel, we implement
the convolutions with the idea from depthwise separable convolutions [2].

As the computational cost in routing gets successfully reduced, we are able to
build up a deeper capsule network with more capsule layers. We name our model
as CARNet after the routing algorithm we proposed previously. In addition,
we set skip connections between different levels of capsules to help transport
gradient flow into low layers during training. With the skip connections, capsules
at low level can be routed directly to the top capsules and involved in the final
inference.

The rest of our paper is organized as follows. In Sect. 2, we review the related
work on capsule networks. In Sect. 3 we introduce how capsule-wise attention
routing works and elaborate the architecture of CARNet. In Sect. 4, we eval-
uate capsule-wise attention routing and CARNets on four object recognition

CARNet 311

benchmarks including MNIST, Fashion-MNIST, SVHN and CIFAR-10. Finally
we summarize our work and discuss possible future work in Sect. 5.

2 Related Work

Capsule is a neural unit aiming to learn viewpoint-equivariant instantiation
parameters and viewpoint-invariant activation probability of some visual entity
in images. In dynamic capsules [11], a capsule is organized as a vector called acti-
vation vector. Entries of the vector are explained as multiple implicitly defined
instantiation parameters of the visual entity, while the length of the vector is the
probability indicating the presence. In EM capsules [6], instantiation parameters
and activation probability were separately represented by a 4×4 pose matrix and
a logistic unit. The complicated internal structure determines that capsule has
more complicated intra-computation and inter-computation than single neuron.

Routing procedure happens between adjacent capsule layers. Each capsule
in the lower layer will first make predictions for capsules in the higher layer
respectively. If two lower capsules make similar predictions for one higher cap-
sule, they are supposed to be routed to that capsule. For every higher capsule, it
will receive a cluster of predictions from capsules below, and aggregate them as
output. With the routing-by-agreement mechanism, CapsNet not only achieved
state-of-the-art performance on MNIST and smallNORB benchmarks but also
showed out superiority in distinguishing overlapping digits [11] and resisting
white box adversarial attacks [6].

Capsule networks have been further explored in the literature. Wang and
Liu [12] formulated dynamic routing as an optimization problem of minimizing
clustering loss with a KL regularization term and modified the routing pro-
cedure with motivation from solving a clustering object function. Lenssen et
al. [9] proposed group equivariant capsule networks with provable equivariance
and invariance properties. Zhang et al. [15] proposed two fast routing methods
based on kernel weighted density estimation. These works improved the routing
algorithm from different aspects but the networks were still relatively shallow.

Concurrent with our work, Rajasegaran et al. [10] proposed a deep cap-
sule network architecture named DeepCaps with a similar motivation to ours.
DeepCaps includes 17 capsule layers and impressively outperforms the state-of-
the-art capsule networks on Fashion-MNIST, SVHN and CIFAR-10 with much
less parameters than the original CapsNet. DeepCaps maintains the framework
of dynamic routing and adopts 3D convolution to implement the transformation
in routing. Weights among input capsules are shared so that the computational
cost can be reduced. DeepCaps also proposes a class-independent reconstruc-
tion network at the top of network. Different from DeepCaps, we propose a
novel routing algorithm in which the coupling coefficients are computed by a
two-layer subnetwork and the transformation is performed by 2D convolution.
Besides, our model uses skip connections to connect capsules at different levels
in a different way from DeepCaps. And the reconstruction network is not con-
sidered for regularization. Performance of DeepCaps and our proposed approach
will be compared in Sect. 4.

312 Z.-X. Yu et al.

3 CARNet

In this section, the details of the proposed capsule-wise attention routing algo-
rithm and the architecture of CARNet are presented.

3.1 Capsule-Wise Attention Routing

Consider an intermediate capsule layer that processes Nl input capsules and
outputs Nl+1 capsules. We denote the i-th capsule in layer l at some position by
u(x,y)
i ∈ R

al , where (x, y) is the coordinate of capsule and al is the dimension of
activation vector.

First, capsules at one position are concatenated as a vector u(x,y). Since the
computation of coupling coefficients across positions are performed in the same
way, we omit the coordinate for clarity below. Then we pass u to two cascaded
fully-connected layers to regress the log prior probabilities h ∈ R

Nl×Nl+1 . We
choose vector u as the input of the subnetwork because u is supposed to aggre-
gate all the semantic information of its local receptive field at current layer,
which can help generate more proper coupling coefficients. The computation of
h is written as:

h = W2 · g (W1u + b1) + b2, (3.1)

where g (·) is the ReLU function. We reorganize vector h into an Nl×Nl+1 matrix
and subsequently feed it to the softmax function to get coupling coefficients c.

ûi|j = cijui, cij =
exp (hij)∑
k exp (hik)

, (3.2)

where cij is the coupling coefficient of capsule i and capsule j, ûi|j is a weighted
activation vector passed from capsule i to capsule j. Each capsule in the higher
layer will receive NL weighted activation vectors from the lower layer and then
transform them into the higher capsule space. Dynamic routing implements the
transformation from low level to high level by matrix multiplication (1 × 1 con-
volution), which makes no use of features in the neighbourhood. Here we adopt
2D convolution with larger receptive field to perform the transformation.

In details, for capsule j, all the weighted capsules {ûi|j | 1 ≤ i ≤ Nl} are
concatenated to be ûj , which is followed by a Conv-BN-ReLU block to generate
output capsule vj . Parameters in the blocks are not shared among higher cap-
sules, so these parallel blocks can learn part-whole relationship independently of
each others.

These convolutions are performed parallelly in capsules, which are equivalent
to group convolutions. So we implement the parallel convolutions with inspira-
tion from depthwise separable convolution [2], which splits the original convolu-
tional operation into a depthwise convolution and a pointwise convolution. First,
we concatenate the weighted capsules and perform depthwise convolution on it.
Second, we separate the tensor back to the form of capsules and perform point-
wise matrix multiplication. When the receptive field is 1 × 1, we would omit the

CARNet 313

Algorithm 1. Capsule-wise attention routing algorithm.

Input: The set of capsules in layer l, U = {u(x,y)
i | u(x,y)

i ∈ R
al , 1 ≤ i ≤ Nl, 1 ≤ x ≤

Wl, 1 ≤ y ≤ Hl}, where Nl is the number of capsules, Wl and Hl are the width
and height of the feature map.

1: procedure Routing(U)
2: for every position (x, y):
3: u ← [u1;u2; . . . ;uNl];
4: h ← W2 · g (W1u + b1) + b2;
5: for every capsule i in layer l:
6: for every capsule j in layer (l + 1):
7: cij = exp (hij) /

∑
k exp (hik)

8: ûi|j ← cijui;
9: ûj ← [

û1|j ; û2|j ; . . . ; ûNl|j
]
;

10: for every capsule j in layer (l + 1):

11: Ûj ← {û(x,y)
j | 1 ≤ x ≤ Wl, 1 ≤ y ≤ Hl};

12: Vj ← Conv-BN-ReLUj(Ûj);
return V = {Vj}

first step and perform the second step only, which is equivalent to the transfor-
mation in dynamic routing. By this method, we avoid using convolution for each
capsule tensor iteratively and take advantage of the speed-up of convolution. In
addition, for kernel size k > 1, our implementation would reduce the amount of
parameters used for transformation by

ΔNparam = k2Nlal + NlalNl+1al+1 − k2NlalNl+1al+1. (3.3)

Since k2 � Nlal for every layer l in practice, so the reduction rate of parameters
is nearly 1/k2, which is considerable even when k = 3.

Activation probability of a capsule still depends on the length of the acti-
vation vector as in [11]. But we don’t squeeze the length of vector into [0, 1] at
the end of routing by the squashing function. We only compute the activation
probability by function

P (v) =
‖v‖2

1 + ‖v‖2 (3.4)

if the probability is needed. We skip the vector-squashing operation in the inter-
mediate capsules and choose ReLU as the activation function to prevent gradient
vanishing.

Capsule-wise attention routing computes the coupling coefficients by a two-
layer subnetwork, turning the mechanism behind from routing-by-agreement to
routing-by-learning. In this way, we avoid computing coupling coefficients itera-
tively and reduce the cost. Besides, since the computation of coupling coefficients
and the low-to-high transformation can both be implemented by convolutional
operations, the speed of inference can be accelerated with GPUs. Thanks to
the reduction of computational cost in each capsule layer, we can cascade more
capsule layers to attain a higher learning capacity.

314 Z.-X. Yu et al.

3.2 CARNet Architecture

The architecture of our proposed CARNet is shown in Table 1. Similar to the
standard capsule networks, our deep capsule network starts with several convolu-
tional layers, which extract low-level features from the original image. Then the
feature map is reorganized into the form of capsule tensor and passed through
cascaded capsule layers. At the top of the network, we compute the prediction
probability of each category based on the corresponding capsule. The details of
CARNet are demonstrated as follows.

Table 1. CARNet architecture for SVHN and CIFAR-10. Note that “conv” in the
table refers to Conv-BN-ReLU block and “CAR” is short for “capsule-wise attention
routing”. All the convolutional layers are performed with padding except the ones with
superscript “∗”. Layers bracketed together comprise a capsule block.

Stage Output Size Nchannel Ncapsule Natom Layer

Convolution

32 × 32 128 − − conv(5 × 5, stride 1)

16 × 16 256 − − conv(3 × 3, stride 2)

16 × 16 256 − − conv(3 × 3, stride 1) ×3

Primary
Capsules 16 × 16 − 32 8 reshape

Capsule−1.x 4 × 4 − 16 8

⎡

⎢
⎢
⎣

CAR(3 × 3, stride 1)

CAR(3 × 3, stride 2)

CAR(3 × 3, stride 1)

⎤

⎥
⎥
⎦ × 2

Capsule−2.x 2 × 2 − 16 8

⎡

⎢
⎢
⎣

CAR(1 × 1, stride 1)

CAR(3 × 3, stride 1)∗

CAR(1 × 1, stride 1)

⎤

⎥
⎥
⎦

Final
capsules 1 × 1 − 10 16 CAR(2 × 2, stride 1)*

Probability
computing 1 × 1 − 10 − P (v) = ‖v‖2

1+‖v‖2

Low-Level Feature Extraction. CapsNet proposed in [11] uses a single con-
volutional layer with a relatively large receptive field to extract low-level fea-
tures from the image. The convolution is performed without padding, so a large
receptive field can help scale down the size of feature map and further reduce
the computational cost in the subsequent capsule layers. While in CARNet, to
reap the benefit of deeper networks, we replace the single convolutional layer by
multiple cascaded convolutional layers with smaller receptive field. And we also
use convolutions with zero padding to keep the size of some feature maps fixed.

CARNet 315

Skip Connections. We combine three cascaded capsule layers as a single cap-
sule block and set short paths to connect capsule blocks at different levels. The
aim of short paths is to downsample lower capsules to make their size consistent
with higher ones and then merge them together.

Let us denote the input and output of the n-th capsule block by Un and Vn.
Due to the convolutional operations in the capsule block, Vn would get a smaller
size than Un. We use a 1 × 1 pooling with the same stride and padding (as the
convolutional layer) to downsample the input Un. So the receptive field of the
downsampled tensors U′

n are center-aligned to the receptive field of Vn at every
position. Subsequently U′

n and Vn are concatenated and fed to the next capsule
block, i.e. Un+1 = [U′

n;Vn]. In this way, lower capsules with the same receptive
field centers are preserved and delivered to any higher capsule blocks by the skip
connections, which means capsules at all levels would make contribution to the
final result of classification. In other words, every capsule block is allowed to
receive all the outputs of its preceding capsule blocks to generate its own output
(Fig. 1).

Capsule Block

Downsampling

Concatenation

Fig. 1. Short paths connecting capsules in different levels.

Implementation Details. At the bottom of CARNet, we set five convolutional
layers to extract features with 256 channels from input image. Each convolutional
layer is followed by a BN layer and an activation function ReLU. Then we split
up the tensor into 32 tensors with 8 channels, termed primary capsules. Primary
capsules are subsequently fed to three cascaded capsule blocks. Every capsule
layers in the blocks output 8D-capsules of 16 types. Skip connections merge
capsules from preceding capsule blocks and transport them to the next capsule
block. Finally, the primary capsules and capsules from three capsule blocks would
be merged and fed to the final capsule layer to generate 10 16D category-specified
capsules, from which we compute the recognition probability by Eq. 3.4.

3.3 Loss Function

The loss function we adopted is margin loss proposed in [11], defined as

L = max(0,m+ − ‖vt‖)2 + λ
∑

i�=t

max(0, ‖vi‖ − m−)2, (3.5)

316 Z.-X. Yu et al.

where t is index of the correct category. We use m+ = 0.95 and m− = 0.05 as the
upper bound for the correct category and lower bound for the wrong category.
The weight for losses from wrong categories λ is set as 0.5 for the whole training
procedure.

4 Experiments

We empirically evaluated our capsule-wise attention routing and CARNet on
four object recognition benchmarks including MNIST, Fashion MNIST, SVHN
and CIFAR-10. Each of them collects images from 10 categories. We implemented
CARNet in TensorFlow [1] framework and trained our models on GTX 1080 Ti
GPUs. We used Adam optimizer [8] for the training and set the initial learning
rate as 0.001, which would get reduced by 0.5 every 20,000 steps.

4.1 Datasets

MNIST and Fashion-MNIST. MNIST is a dataset of handwritten digit
images while Fashion-MNIST is a dataset of fashion product images. MNIST and
Fashion-MNIST provide images of the same amount (60,000 images for training
and 10,000 for test) and in the same format (28×28 greyscale image). All images
are captured in white background. For every training image, we randomly shifted
it in every directions by up to 2 pixels. No preprocessing was performed for the
test images.

SVHN. The Street View House Numbers dataset provides 32×32 RGB images
containing numbers in natural scene. A large number of images are available
for training (604,388) and test (26,032). Our training and test were performed
without data preprocessing and data augmentation.

CIFAR-10. CIFAR-10 dataset is also a natural image dataset. The objects in
images come from objects in our daily life. 50,000 training images and 10,000 test
images are provided. The images are also 32 × 32 color images. During training,
we perform random shift, random horizontal flipping and random adjustment of
brightness and contrast as the data preprocessing. Both the training images and
the test images are normalized to have zero mean and unit standard variance
before they were fed to the network.

4.2 Capsule-Wise Attention Routing in CapsNet

To evaluate the effectiveness of our novel routing algorithm, we first designed an
experiment to compare capsule-wise attention routing with dynamic routing in
a shallow capsule network.

CARNet 317

We trained a wider version of CapsNet1, in which the number of intermediate
capsules increased to 32 and the dimensions of activation vectors increased to
8 and 16 in primary capsule layer and final capsule layer. Then we got another
model by replacing the dynamic routing procedure with two layers of capsule-
wise attention routing in the final capsule layer. Note that we don’t set recon-
struction networks for both of them. Details of the networks are depicted in
Table 2.

As shown in Table 3, CapsNet with capsule-wise attention routing consumes
only half of parameters in its couterpart but achieves higher accuracies on both
SVHN and CIFAR-10. The replacement of routing procedure also helps to speed
up the training of CapsNet by about 50%.

Table 2. Architectures of two capsule networks. “CapsNet*” represents CapsNet with
capsule-wise attention routing. Number n in “dynamic routing×n” indicates the iter-
ation times in dynamic routing.

Stage Nchannel Ncapsule Natom

Layer

CapsNet CapsNet*

Convolution 64 − − conv(9 × 9, stride 1)

Primary

capsules

256 − − conv(9 × 9, stride 2)

− 32 8 reshape & vector squashing

Final

capsules
− 10 16

transformation CAR(5 × 5, stride 1)

dynamic routing×3 CAR(4 × 4, stride 1)

Probability
computing − 10 − P (v) = ‖v‖ P (v) = ‖v‖2

1+‖v‖2

Table 3. Accuracies (%) of CapsNet and CapsNet* on SVHN and CIFAR-10.

Model Param. FPS SVHN CIFAR-10

CapsNet 3.96M 1.12K 95.82 81.80

CapsNet* 1.94M 1.68K 96.83 82.56

4.3 Performance of CARNet

We trained our CARNet on four benchmarks and compared the performance
with proposed capsule networks. We also evaluated the effect of skip connections
1 The CapsNet we trained is wider than CapsNet for SVHN [11], which consists of a

convolutional layer with 64 channels, a primary capsule layer with 16 6D-capsules
and a final capsule layer with 10 8D-capsules.

318 Z.-X. Yu et al.

in our model. In Table 4 we list out the error rates achieved by our models,
CapsNet, DeepCaps and variants of ResNet and DenseNet. All the results are
achieved by single model.

As capsule network goes deeper, the performance gets improved accordingly
especially on natural image datasets. CARNet without skip connections leads
the performance of capsule networks on SVHN and CIFAR-10 and performs
close to the state-of-the-art capsule networks on MNIST and Fashion-MNIST.
While with skip connections, the performance can be further improved on four
benchmarks. Our best model achieves an accuracy of 97.72% on SVHN and
92.46% on CIFAR-10 that surpass DeepCaps by 0.56% and 1.45% respectively.

Besides, CARNets also show out a more efficient capability of utilizing param-
eters than the existing capsule networks. CARNet consumes 3.96M parameters,
which can be cut down to 2.73M when the skip connections are removed. The
amount of trainable parameters in CARNet is less than CapsNet for MNIST
(8.2M) or DeepCaps for CIFAR-10 (7.22M), and much less than other well-
performed CNN-based models listed in Table 4. The efficiency of utilizing param-
eters comes from the use of convolutions in the transformation step in capsule-
wise attention routing, which allows capsules to leverage local features when
learning part-whole relationship inside the visual entity. On the other hand, the
increment in the amount of parameters is controlled within an acceptable limit
thanks to the implementation based on depthwise separable convolutions.

Table 4. Accuracies (%) on MNIST, Fashion-MNIST, SVHN and CIFAR-10 datasets.
“SC” is short for “skip connections”. Results in bold are the best in the domain of
capsule networks.

Model Param. MNIST F-MNIST SVHN CIFAR-10

ResNet v2 [5] 10.2M − − − 95.38

ResNeXt [13] 68.1M − − − 96.42

DenseNet [7] 27.2M − 95.40 98.41 96.26

Wide ResNet [14] 36.5M − 95.90 − 95.83

WRN + Random Erasing [16] 36.5M − 96.35 − 96.92

CapsNet [11] 8.2M 99.75 93.62 95.70 −
FREM [15] 8M 99.62 93.80 − 85.70

HitNet [3] − 99.68 92.30 94.50 73.30

DeepCaps [10] 7.22M 99.72 94.46 97.16 91.01

CARNet w/o SC (Ours) 2.73M 99.72 94.30 97.61 91.88

CARNet with SC (Ours) 3.96M 99.74 94.46 97.72 92.46

5 Conclusion

In this paper, we proposed a novel routing algorithm, capsule-wise attention
routing, which uses a two-layer subnetwork to regress coupling coefficients as

CARNet 319

multiple attention maps. We adopted 2D convolution to replace the linear trans-
formation so that local features can be utilized in transforming capsules from
low level to high level. In addition, we formulated the parallel transformation
among capsules as group convolutions and implemented it with the inspiration
from depthwise separable convolutions. The new implementation was consistent
with the original transformation in dynamic routing and was proven to help
utilize parameters more efficiently.

Based on capsule-wise attention routing, we further proposed a deep capsule
network called CARNet. We stacked multiple capsule layers in our model and set
skip connections to densely connect different levels of capsules. CARNet achieved
state-of-the-art performance on MNIST and Fashion-MNIST and outperformed
the state-of-the-art capsule network on SVHN and CIFAR-10, which are both
datasets containing natural images. It is an inspiring step of capsule networks
to approach the state-of-the-art performance on natural image datasets, but the
performance gap still exists between capsule network based models and the state-
of-the-art CNN models. In the future, we plan to explore more efficient routing
algorithm and make further attempt to deepen the capsule network architecture
for better performance on complex data.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China under Grant 61703039 and Beijing Natural Science Foundation under
Grant 4174095.

References

1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous dis-
tributed systems. CoRR abs/1603.04467 (2016)

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, 21–26 July 2017, pp. 1800–1807 (2017)

3. Deliège, A., Cioppa, A., Droogenbroeck, M.V.: HitNet: a neural network with cap-
sules embedded in a hit-or-miss layer, extended with hybrid data augmentation
and ghost capsules. CoRR abs/1806.06519 (2018)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778 (2016)

5. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In:
Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol.
6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21735-7 6

6. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, 30 April–3 May 2018, Conference Track Proceedings (2018)

7. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269
(2017)

https://doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.1007/978-3-642-21735-7_6

320 Z.-X. Yu et al.

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

9. Lenssen, J.E., Fey, M., Libuschewski, P.: Group equivariant capsule networks. In:
Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada,
3–8 December 2018, pp. 8858–8867 (2018)

10. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S.,
Rodrigo, R.: DeepCaps: going deeper with capsule networks. CoRR abs/1904.09546
(2019)

11. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In:
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 Decem-
ber 2017, pp. 3859–3869 (2017)

12. Wang, D., Liu, Q.: An optimization view on dynamic routing between capsules. In:
6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, 30 April–3 May 2018, Workshop Track Proceedings (2018)

13. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transfor-
mations for deep neural networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp.
5987–5995 (2017)

14. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference 2016, BMVC 2016, York, UK, 19–22 September
2016 (2016)

15. Zhang, S., Zhou, Q., Wu, X.: Fast dynamic routing based on weighted kernel density
estimation. In: Lu, H. (ed.) ISAIR 2018. SCI, vol. 810, pp. 301–309. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-04946-1 30

16. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. CoRR abs/1708.04896 (2017)

https://doi.org/10.1007/978-3-030-04946-1_30

	CARNet: Densely Connected Capsules with Capsule-Wise Attention Routing
	1 Introduction
	2 Related Work
	3 CARNet
	3.1 Capsule-Wise Attention Routing
	3.2 CARNet Architecture
	3.3 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Capsule-Wise Attention Routing in CapsNet
	4.3 Performance of CARNet

	5 Conclusion
	References

