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Abstract This paper investigates the role of learning curve models in estimating
construction productivity. Learning curve theory is actively implemented for both
the scheduling and cost estimation of complex construction projects. The purpose of
the research is to assess the suitability of published learning curve models in effec-
tively analyzing the learning phenomenon for substantially complex construction
operations. The research investigates five (5) learning curve models, namely the (a)
Straight-line or Wright, (b) Stanford “B”, (c) Cubic, (d) Piecewise or Stepwise and
(e) Exponential models. The methodology includes the comparative implementation
of each one of the aforementioned models for the analysis of a large infrastructure
project with the use of unit and cumulative productivity data. A two-stage investiga-
tive process for the five models was applied in order to define (a) the best-fit model
for historical productivity data of completed construction activities and (b) the best
predictor model of future performance. The assessment criterion for the suitability
is the deviation of the real construction data from the predictions generated by each
model. The research results indicate that the Cubic model dominates in terms of
its predictive capability on historical data, while the Stanford “B” model is a better
future performance predictor. Future research directions include the extension of the
research scope with the inclusion of more learning curve models in conjunction with
a populated database of historical field data.
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1 Introduction

The estimation of construction productivity takes into account several factors that
reflect themanagerial perspective and philosophy of the project personnel (Panas and
Pantouvakis 2010; Shan et al. 2011). One of the basic factors that affect productivity
is the repetitive nature of construction activities. In view of this fact, the productivity
improvement that is observed in subsequent production cycles of a specific repetitive
construction process (e.g. high-rise building construction) is often attributed to the
learningphenomenon that is developed in relation to the resources that are deployed in
the project (Thomas et al. 1986; Pellegrino and Costantino 2018). In other words, the
productivity of repetitive tasks is improved as the experience of the deployed crews is
increased (Pellegrino et al. 2012). The required time (man-hours) for the completion
of repetitive construction activities is decreased, as the repetitions increase, since
(i) the crews are familiarized with the nature of the works, (ii) the coordination of
the mechanical equipment and the crews is improved, (iii) the project management
discipline is enhanced, (iv) more efficient techniques and construction methods are
implemented, (v)more effective logisticsmanagementmethods are followed and (vi)
the project scope is narrowed, thus limiting theneed for additional corrective activities
(Thomas 2009). Within that framework, the learning phenomenon or learning curve
effect expresses the influence of the human factor, namely the contribution of the
deployed crews’ skill and experience in construction productivity.

The integration of the learning effect in construction productivity studies enhances
the accuracy of time and costmanagement (Lutz et al. 1994), improves project control
and programming (Pellegrino et al. 2012), as well as provides the required scien-
tific evidence for claiming lost workhours (Thomas 2009). However, learning curve
studies have also been criticized for having several limitations such as oversimplifi-
cation of the construction process and implementation of a one-dimensional research
approachwhere the analysis is based on a single learningmodel to interpret the actual
data (Jarkas and Horner 2011; Jarkas 2016). More specifically, the vast majority of
learning curve studies in construction uses the straight-line or Wright model, thus
limiting the presented results’ scope and possibly ignoring the effect of other learn-
ing parameters on the investigated construction process. In that view, this research
intends to conduct a comparative analysis of five (5) established and widely accept-
able learning curve models with the intent to interpret a relatively complex construc-
tion process relating to the realization of a large-scale marine infrastructure project.
The purpose is the examination of each model’s suitability to interpret historical
productivity data and predict future performance, in order to provide project man-
agement executives with the necessary information to reach critical project decisions
(e.g. increase/decrease of project resources deployment). It is, to the authors’ best



Comparative Evaluation of Learning Curve Models … 349

knowledge, the first research attempt to investigate thoroughly the implementation
of learning curve models in marine works from a productivity stance.

The structure of the paper is as follows: First, background information on pertinent
research on learning curve theory is going to be provided, followed by a concise
description of the construction process that served as the research testbed. Then, the
research methodology is going to be delineated and, subsequently, the fitting results
for the selected models will be presented. The main inferences emerging from the
study will be described and, finally, the delineation of future research directions will
conclude the study.

2 Background

2.1 Learning Curves

2.1.1 Theoretical Concepts

Learning curves are used for the graphical representation of the time span, the cost
and/or the labour hours that are required for the execution of a series of “sufficiently
complex” construction activities (Everett and Farghal 1994). The learning curve
theory suggests that the required time (labour hours) for the production of a single
unit (e.g. floor of a high-rise building) is incrementally decreasing as a percentage of
the time that was demanded for the production of the previous unit (UN 1965; Jarkas
and Horner 2011). This percentage is called “learning rate” and is a characteristic
variable for the extent of the learning phenomenon in a single construction activity
(Thomas et al. 1986). From a mathematical point of view, the learning rate coincides
with the inclination of the learning curve. The smaller the value of the learning rate,
the more intense the learning phenomenon, since each subsequent production cycle
is a smaller percentage of the time required for the previous production cycle. For
instance, when the learning rate equals 80%, then the required labour-hours for the
production of a single unit is 20% less than the time needed for the production of the
previous unit. If an activity presents a learning rate equal to 100%, then no learning
phenomenon is developed for that specific task (Jarkas 2016).

The learning curve theorymay be applied to the effort (typicallymeasured in units
of time) related to individual units or to the cumulative average time to complete a
number of units (Farghal and Everett 1997; Jarkas and Horner 2011). If the first
category of data is used, then the analysis is based on “unit data”, whereas when
the second category of data is utilized the analysis falls under the “cumulative data”
label. As to the latter, the cumulative average time is the average time required to
install or complete a given number of units. It is computed by taking the total time
required to install or construct a given number of units divided by the number of units
completed (Hinze and Olbina 2009). Although in construction settings it is often
most convenient to use the cumulative average time, this research adopts both types
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of data (unit and cumulative), in order to provide a more robust research framework.
In terms of the applied analytical tools, most published research in learning curve
productivity analysis adopts the statistical approach for the elaboration of field data
(Thomas et al. 1986; Everett and Farghal 1997; Couto and Texeira 2005; Pellegrino
et al. 2012; Ammar and Samy 2015; Srour et al. 2016), thus the same approach
has been implemented in the current research as well. Regarding the projects’ scope
for the implementation of learning curve theory, it ranges from concreting activities
(Couto and Texeira 2005), to new buildings construction (Pellegrino et al. 2012)
and reaching the realization of large-scale infrastructure works (Everett and Farghal
1997; Naresh and Jahren 1999).

2.1.2 Learning Curve Models

The learning curve phenomenon is studied through the use of specific mathematical
models, which interpret the variation of productivity in relation to critical factors
such as the number of units. There are five (5) main types of learning curve models
whose concise description is as follows (Thomas et al. 1986; Everett and Farghal
1994):

• Straight-Line Model (or Wright): It was first formulated by Wright in 1936
and is so named because it forms a straight line when plotted on a log-log scale
(Lee et al. 2015). There are two types of Straight-line learning curve models which
differ depending on either unit data or cumulative average are used. The underlying
assumption of the model is that the learning rate (expressed as a percentage)
remains constant throughout the duration of the activity (Thomas et al. 1986). The
learning rate, L, can be derived from the slope of the logarithmic form by using
L = 2−n, where n is the slope of the logarithmic curve (Srour et al. 2016). It is the
most commonly used model in construction research (Jarkas 2016) because of its
simplicity and its ability to provide acceptable precision (Srour et al. 2018).

• Stanford “B” Model: It was developed, by the Stanford Research Institute in
1940’s. This model is considered a modified Straight-line model which includes
a factor “B” to represent the number of units of prior experience and shifts the
learning curve downward (Badiru 1992; Srour et al. 2016). It assumes that the
Straight-line model is the normal situation provided the crew has no experience
resulting from performing similar activities or constructing similar units in the
immediate past. The value of “B” fluctuates within the range of 0–10 (Gottlieb
and Haugbølle 2010; Mályusz and Pém 2014). A crew with no prior experience
will have a value “B” equal with zero, while an experienced crew may have an
experience factor of four or higher (Thomas et al. 1986).

• Cubic Model: Carlson (1973) proposed the Cubic model and indicated that a
further enhancement of the Straight-line model can be achieved using a curve
with multiple slopes (Hijazi et al. 1992). This model assumes that the learning rate
is not a constant variable because of the combined effects of previous experience
and the levelling off of productivity as the activity nears completion. Factors “C”
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and “D” are estimated using the basic equation of the model and another data point
along the curve.

• Piecewise or StepwiseModel: It is a linearized approximation of the Cubic model
with three distinct phases, while each one has a constant learning rate. On a log-
log plot, this model appears as three straight line segments with different slopes.
As seen on Fig. 1 the first segment represents the operation-learning phase, while
the second segment starts at point xp1 and denotes the phase where the learning
phenomenon develops. The third segment initiates at point xp2 and represents the
end of the routine-acquiring phase. Hence, this point is also called the “standard
production point” as no significant further improvement of productivity is observed
beyond that point (Thomas et al. 1986).

• Exponential Model: It was developed by the Norwegian Building Research Insti-
tute in 1960 (U.N. 1965). It is based upon the rule that part of time/cost per unit is
fixed and the other part of time/cost per unit, which can be reduced by repetition,
will be reduced by one-half after a constant number of repetitions (Zahran et al.
2016). The ultimate or lowest cost or man-hours or time per unit at the end of
the routine-acquiring phase (Yult) must be known along with constant “H” which
represents a “Halving Factor”, namely the number of units required for that part
of the unit cost which can be reduced by repetition to one-half. A learning curve
model for cumulative data was not presented (Thomas et al. 1986).

The mathematical expressions for the estimation of productivity based on the
aforementioned learning curve models (LC models) are summarized in Table 1 and
their graphical representation is depicted in Fig. 1.

Fig. 1 Shape of various learning curve models (adopted from Thomas et al. 1986)
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Table 1 Mathematical expressions for learning curve models

LC model Mathematical expression

Straight-line Y = A * X−n or logY = logA − n * logX

Stanford “B” Y = A * (X + B)−n or logY = logA – n * log(X + B)

Cubic logY = logA – b * logX + C * (logX)2 + D * (logX)3

Piecewise logY = logA − n1 * logX − n2 * J1 * (logX − logxp1) −
n3 * J2 * (logX − logxp2)

Exponential Yu = Yult + (A − Yult)/(2 * X/H)

Where (in order of appearance) Y = unit or cumulative average cost, man-hours or time; A =
cost or man-hours or time of first unit; X = unit number; n =
slope of logarithmic curve; B = factor describing the crew’s
prior experience; b = initial logarithmic slope at the first unit;
C = quadratic factor; D = cubic factor; n1 = slope of the
first segment; n2 = additional slope of the second segment;
n3 = additional slope of the third segment; xp1 = first point
where the slope changes; xp2 = second point where the
slope changes; J1 = 1 when X > xpl, 0 otherwise; J2 = 1
when X > xp2, 0 otherwise; Yu = unit cost or man-hours or
time for unit X; Yult = ultimate man-hours per unit at the
end of routine-acquiring phase; H = constant named
“Halving Factor”

2.2 Caisson Construction Operations

In general, floating caissons are prefabricated concrete box-like elements with rect-
angular cells that are suited for marine and harbor projects and are usually cast on
floating dry docks (Panas and Pantouvakis 2014). Due to the standardized shape of
the caissons and the repetitive nature of the works, since caissons are always con-
structed in batches, the concreting process is most commonly executed with the use
of the slipforming construction technique. Slipform is a sliding-form construction
method, which is used to construct vertical concrete structures (Zayed et al. 2008).
Generally, the concreting and slipforming process comprises three sub-phases (see
Fig. 2): (i) slipform assembling phase, (ii) slipforming phase (including an initial
concreting phase) and (iii) slipform dismantling phase. Although Pantouvakis and

Fig. 2 Floating caisson production cycle
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Panas (2013) identified nineteen activities for the construction of a caisson, this study
focuses only on the aforementioned activities, because a fundamental prerequisite
for the learning phenomenon to develop is for productivity improvements to be able
to occur as a result from repeating “sufficiently complex” activities (Thomas 2009).
As such, in the case of caissons construction operations, only these activities were
found to inherently possess such characteristics, since the observed productivity of
the other activities did not fluctuate significantly during the construction phase. For
space limitation reasons, the total caisson construction process is going to be analyzed
in this paper with no particular focus on individual activities.

3 Research Methodology

A large-scale marine project served as the case study for the current research. The
project was completed in 2012 and comprised the construction of 34 caissons (Panas
and Pantouvakis 2018). A two-stage investigative process for the five learning curve
models was applied in order to define (a) the best-fit model for historical productivity
data of completed construction activities and (b) the best predictor model of future
performance (Everett and Farghal 1994). The solver function of MS Excel (version
2010) has been used in conjunction with the least squares method, so as to determine
the optimum learning curve models parameters.

Stage A: Assessment of Best Fit Model with Historical Productivity Data

The analysis is conducted for both unit and cumulative data. The least square method
is used in order to determine the optimumfitting curve. Pearson’s coefficient of deter-
mination (R2) is the preferredmetric for the evaluation of eachmodel’s robustness and
fluctuates from 0 to 1.00. The closer the R2 values to 1.00, the better the correlation
of the fitted data to the selected model.

Stage B: Assessment of Best Prediction Model for Future Performance

The analysis is confined to the unit data. As proposed by Everett and Farghal (1994),
productivity data are divided in half, so as for the first 17 caissons to become the
“historical data” and the next 17 caissons to be the future data. As before, the least
squaresmethod is used in conjunctionwith the Pearson’s coefficient of determination
for the estimation of thefirst 17 caissons (R2

1–17). Subsequently, the computed learning
curves (1–17 caissons) are extended from the 17th to the 34th caisson. Taking into
account that Pearson’s coefficient of determination (R2) is not valid for correlating
points with best-fit curves outside the range of points used to determine the best-fit
curve, a new metric is used as follows (Everett and Farghal 1994):

E f =
(∑ {∣∣y′

m+i − ym+i

∣∣/ym+i

} ∗ 100
)
/k, for i = 1 to i = k

where: m = the number of caissons to be fitted; k = the number of caissons to be
predicted, y′

m+i = the value found on the extension of the best-fit curve; ym+i =
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the actual measured values; Ef = average percentage error, which ranges from 0%
indicating a perfect correlation between the extended best-fit curve and the actual
data to large positive values indicating no correlation.

4 Results

Stage A: Assessment of Best Fit Model with Historical Productivity Data

Table 2 summarizes each model’s performance, while Figs. 3 and 4 give a graphical
representation of the results. There is a clear indication that the Cubic model demon-
strates the best fitting results for unit data relating to the total caisson construction
process. The Exponential model gives the least favorable adjustment, without being
unacceptable, though, in absolute terms. These results enhance previous research
and denote that the best fit model depends on the location and the nature of each
project. For the cumulative data, again the Cubic model gives the best predictions.
In fact, the cubic learning curve almost coincides with the real data. The other three
models give a correlation coefficient very close to 1.00 which denotes a generally
satisfactory prediction capability for all learning curve models.

In principle, the correlations for the cumulative data are better than the equivalent
ones for the unit data, since the former give a more smooth graphical representation

Table 2 Correlation (R2) of learning curve models for historical productivity data

Data type Learning curve models

Straight-line Stanford “B” Cubic Piecewise Exponential

Unit 0.9530 0.9327 0.9781 0.9573 0.9256

Cumulative 0.9940 0.9890 0.9985 0.9941 –
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of the learning phenomenon. Comparing the Cubic and Piecewise models with the
Straight-line model for the unit data there is a practically insignificant difference of
2.51% and 0.43% respectively (p < 5%). The same results for the cumulative data
range at the amount of 1.96% and 0.05% respectively (p< 5%). This fact corroborates
the tendency of the construction industry to characterize the Straight-line model as
more “user-friendly” since (a) it yields similar results with the other LC models,
(b) is much simpler in its implementation in terms of the required input data and
parameters and (c) less assumptions are needed to be made.

Stage B: Assessment of Best Prediction Model for future performance

As depicted in Table 3, the best prediction model for future performance based on
unit data is Stanford “B”, since the average percentage error has a value of Ef (18–34)
= 5.7%, which denotes good correlation between actual data and the extended curve.
It is generally acceptable that Stanford “B” model simulates with acceptable accu-
racy complex construction processes, especially in large-scale projects. A graphical
representation of the learning curve models’ predictions is depicted in Fig. 5. The
results for the Cubic and Piecewise models verify the findings of Everett and Farghal
(1994), who claimed that these models are not a good predictor for future activities.

Table 3 Results of LC
models for future
performance prediction with
unit data

LC Model R2
(1–17) and Ef (18–34) values for

learning curve (LC) models

R2
(1–17) Ef (18–34) (%)

Straight-line 0.9629 11.33

Stanford “B” 0.9626 5.75

Cubic 0.9767 17.42

Piecewise 0.9628 16.21

Exponential 0.9096 6.87
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More specifically, the Cubic model has the best value for R2
(1–17), but also presents

the largest error margin of Ef (18–34) = 17.42. Also note in Fig. 5, that the extension
line of the Cubic model seems to increase significantly beyond the 25th caisson. A
similar, but opposite trend is found for the Piecewise model as well, while it presents
fairly equivalent error value (Ef (18–34) = 16.21). Although, both models appear to be
a reasonable predictor, these models deviate from the actual data for long-term pre-
diction, since the extended curves continue upward or downward towards unrealistic
values.

5 Conclusions

The conducted research demonstrated that the learning effect was intensely present
in the studied project, which resulted in significant improvements in caissons con-
struction productivity. All five (5) learning curve models were scrutinized for unit
and cumulative historical productivity data and yielded a coefficient of R2 > 0.90,
which denotes a strong correlation to real data. The Cubic model has proven to be
the best performer in terms of its adjustment capability to the historical data.

In terms of the future performance prediction capability, unit data was solely
used for all learning curve models. Stanford “B” model was found to be the best
predictor, with the Exponential and Straight-line model being quite close in terms of
predictability. Therefore, it is beyond doubt that learning curve theory is an efficient
and effective tool for assessing historical and predicting future productivity data in
the case of caisson construction operations.

Possible research extensions could be developed in the area of future performance
predictions, by adopting different data representation techniques such as (a) cumula-
tive average data, (b) moving average data and (c) exponential weighted average. The
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research scope may be enhanced with the inclusion of other (non-classic) learning
curve models (e.g. DeJong, Knecht, hyperbolic models), which were excluded from
the current study due to brevity reasons. The enhancement of the already established
historical project database with even more data covering similar activities is deemed
necessary, so as to be able to structure a future performance prediction tool with
inherent flexibility to simulate different work scenarios and feed project executives
with valuable insights for informed decision making.
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