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Abstract
Extreme environments are considered the biodiversity hotspots especially in
terms of microorganisms. Microbiomes of the extreme environment impart
important information about the critical limits for survival and adaptability of
microorganism. Hill and mountain agroecosystems demand distinct microflora
which can endure in these extreme environments and simultaneously perpetuate
their plant growth promontory properties. Microorganism native of the cold
environment is widely distributed in the agroecosystem and has physiologically,
metabolically, and biologically well adapted to such environments. Thus, micro-
bial inoculants from these extreme conditions possessing PGP attributes can be
efficiently utilized for promoting growth and yield of high altitude crops. Numer-
ous plant growth-promoting rhizobacteria (PGPR) from high altitude soils
containing vital enzymes involved in plant growth enhancement have been
reported. These organisms can thus be employed as biofertilizers, biocontrol
agents, and bioremediation for enhancing agricultural productivity.
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16.1 Introduction

Cold and high altitude consisting of permafrost soils, polar ice, glaciers, and snow
cover are widespread on the earth and constitute up to 20% of the Earth’s surface
environments. High altitude environment is a strenuous habitat for the survival of
various plants and microbes. However, agriculture at these ecosystems faces many
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challenges due to low temperature. Genetic modifications and transfer of
low-temperature tolerance into commercially important plants is a complex and
time-consuming process; therefore, a solution for the protection of plants from
chilling and for their growth enhancement involves the application of cold-adapted
PGPR. These are the beneficial microorganisms which reside on the plant’s
rhizospheric regions and enhance their growth directly and/or indirectly, viz.
inhibiting plant pathogenic organisms (biopesticides), degradation of xenobiotics
(bioremediation), or triggering induced systemic resistance (ISR) in plants; releasing
plant growth-promoting substances (phytostimulation) and furnishing vital nutrients
(biofertilizers) (Glick 1995). High altitude soils are of utmost significance since
several ecosystems are subjected to low temperatures and therefore these
environments have been broadly explored for the novel microorganisms (Kumar
et al. 2016). High altitude microbiomes being hot spots of biodiversity are the habitat
of various psychrophiles and psychrotolerant microorganisms, which have been
reported by several authors (Miteva and Brenchley 2005; Pradhan et al. 2010;
Sahay et al. 2013; Yadav et al. 2016). The psychrotrophic PGP microorganisms
reported till date consist of Bacillus, Flavobacterium, Janthinobacterium, Kocuria,
Lysinibacillus, Methylobacterium, Microbacterium, Pseudomonas, Paenibacillus,
Arthrobacter, Providencia, Brevundimonas Serratia, Citricoccus, Azotobacter,
Clostridium, Exiguobacterium, Hydrogenophaga, Burkholderia, Enterobacter, and
Azospirullum (Mishra et al. 2011; Prasad et al. 2014).

16.2 The Necessity of Biofertilizers for Hilly Regions

Agricultural lands at higher altitudes are characterized by poor nutrient conditions,
less fertility, and lesser soil moisture content besides extreme cold and frost in the
winters. There are no improved technologies available for enhancing agricultural
production or, even if available, they are not accessible by the small farmers. Thus,
the condition of the soil in the hilly areas is becoming deteriorated, resulting in a
decline of fertile soil (Jodha and Shrestha 1993). It is therefore needed to investigate
other alternatives for improving crop production so as to upgrade the quality of
living standard of hill population (Partap 1999). The nitrogen fixing microorganisms
and P-solubilizing microorganisms are among the most studied group of the
biofertilizers. However, the use of available commercial biofertilizers in hilly
regions has demonstrated to be unsuccessful (Pandey et al. 1998) Temperate agro-
ecosystems around the world also have short growing periods, which are
interspersed by suboptimal temperatures, thus most microbial processes slow
down or become standstill, thereby affecting the productivity adversely. The cold-
adapted microorganisms are divided into psychrophiles and psychrotolerant. The
psychrophilic microbes inhabit cold areas, such as polar areas, high altitudes, the
deep sea having temperatures between subzero to 15 �C. The psychrotolerant
microbes inhabit regions with a temperature between 4 and 42 �C with temperature
optima above 20 �C (Morita 1975). In hill agriculture, the psychrotolerant
microorganisms are of great significance due to better survival and adaptation at
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low temperature and ability to also grow optimally at a higher temperature. These
microorganisms have been extensively studied and being developed as a potential
biofertilizers nowadays (Table 16.1).

16.3 Plant Growth-Promoting Rhizobacteria

The rhizosphere is the surrounding region of the plant roots and is an extremely
conducive environment for the growth of microbes. Rhizospheric bacteria greatly
influence the soil fertility and their beneficial effect towards plant growth is known
since the centuries (Tisdale and Nelson 1975; Beijerinck 1888). The terms
“rhizobacteria” and “plant growth-promoting rhizobacteria” were coined by
Kloepper and Schroth (1978, 1981). However, the term “plant growth-promoting
bacteria” (PGPB) can also be used for such bacterial candidates (Andrews and Harris
2003). The mode of action of PGPR strains is divided into two major categories:
direct and indirect (Fig. 16.1). The direct mechanism involves solubilization of
phosphorus, nitrogen fixation, iron sequestration by siderophores and plant growth
hormones synthesis, etc. (Hellriegel and Wilfarth; Glick 1995). The indirect mode
includes antibiotic production, reduction of iron availability to phytopathogens,
induced systemic resistance, and production of antifungal agents (Verma et al.
2015a, b, 2016). To utilize PGPR for growth promotion, it is inevitable that it
must adapt in the plant’s rhizosphere which is greatly influenced by soil temperature
and type, predation by protozoa, production of antimicrobial compounds by other
soil microorganisms, bacterial growth rate, and utilization of exudates.

16.4 Mechanism of Plant Growth Promotion at Low
Temperature

Cold stress poses adverse impacts on plant growth by either limiting metabolic
reactions or inhibited water uptake due to chilling, chlorosis, wilting, necrosis,
damage of biomolecules, and reduction in osmotic potential of the cell. Under
low-temperature stress, plant cells rigidify their cell membrane due to reduced
fluidity of the cellular membranes, accumulation of cryoprotectants, and increased
potential to tolerate oxidative stress. Plants employ several mechanisms for cold
stress tolerance, however, a net decrease in plant growth and production is observed
under low-temperature conditions (Haldiman 1998). PGPRs play an important role
by helping plants to withstand cold tolerance, as several genes are induced by PGPR
activities which allow plants to tolerate various abiotic stresses. PGPRs principally
help in plant growth promotion in low-temperature condition by two major pro-
cesses: phytostimulation and frost injury protection.
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Table 16.1 Psychrotolerant plant growth promoting bacteria

Microorganism Source Function References

P. syringae Tomato and
soybean

Increase in frost susceptibility by
ice nucleating strains of
P. syringae

Anderson et al.
(1982)

Azospirillum
brasilense

Finger millet,
sorghum, pearl
millet

Increase in yield Subba Rao
(1986)

Pseudomonas
chlororaphis 2E3,
O6

Spring wheat
field

Increased seedling emergence Freitas and
Germida (1992)

Xanthomonas
maltophila

Sunflower Increased germination rate Fages and Arsac
(1991)

Azospirillum
local isolates

Maize, wheat Increase in yield Okon and
Labandera-
Gonzalez
(1994)

Pseudomonas
putida R111,
Pseudomonas
corrugate

Amaranthus
paniculatus

Plant growth and nitrogen content
increased

Kropp et al.
(1996)

Enterobacter
cloacae CAL3

Mung bean
tomato, pepper

Positive seedling growth Mayak et al.
(1999)

Bradyrhizobium
japonicum

Soybeans Improved nodulation and nitrogen
fixation

Zhang et al.
(2003)

Sinorhizobium
meliloti

Alfalfa Growth improvement under cold
and anaerobic (ice encasement)
stresses

Prévost et al.
(2003)

Mycobacterium
sp. 44
Mycobacterium
phlei MbP18
Mycobacterium
bullata MpB46

Triticum
aestivum
cv. Bussard

Increase root and shoot dry mass
and enhance N, P, K uptake

Egamberdiyeva
and Höflich
(2003)

A cold-tolerant
mutant of
Pseudomonas
fluorescens

Vigna radiata Growth promotion at 25 and
10 �C and a 17-fold increase in
siderophore production and
increased rhizosphere
colonization

Katiyar and
Goel (2004)

Burkholderia
phytofirmans
PsIN

Glomus
vesiculiferum—
infected onion
roots

Cold stress tolerance and increase
in total phenolics, photosynthetic
activity in Vitis vinifera

Barka et al.
(2006)

P. putida UW4 Canola plant Promotes plant growth at low
temperature under salt stress and
produces ACC deaminase

Cheng et al.
(2007)

Serratia
marcescens SRM
(MTCC 8708)

Flowers of
summer squash
(Cucurbita pepo)

Increase root and shoot lengths
and N, P, K uptake in Triticum sp.

Selvakumar
et al. (2008b)

(continued)
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16.4.1 Phytohormones and Phytostimulation

Phytohormone production is one of the major ways of promoting plant growth
(Glick et al. 1998; Spaepen et al. 2007). Phytohormones are organic molecules,
which can impact the physical and metabolic processes of plants and act as chemical
messengers (Fuentes-Ramírez and Caballero-Mellado 2006). Microbes producing
the plant growth hormones are Klebsiella pneumoniae, Proteusmirabilis, Pseudo-
monas vulgaris, Bacillus, Escherichia produce auxin cytokinins, gibberellins and
ABA (Bric et al. 1991; Griffith and Ewart 1995).

16.4.1.1 Indole Acetic Acid (IAA) Production
IAA is the major plant hormone which is responsible for cellular division and
elongation in the plants (Tsavkelova et al. 2006). Many PGPRs have the capability

Table 16.1 (continued)

Microorganism Source Function References

Pseudomonas
sp. NARs9

Rhizosheric soil
Amarnath, NW
Indian
Himalayas

Increase germination rate, shoot
and root lengths in Triticum sp.

Mishra et al.
(2009)

Pseudomonas
lurida

Rhizosphere of
Himalayan
plants

Protects plant from chilling stress Bisht et al.
(2014)

Fig. 16.1 Mechanism of plant growth promotion by plant growth promoting rhizobacteria
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to produce IAA (Timmusk et al. 1999). It can be synthesized using tryptophan or
without it (Spaepen et al. 2007). Moreover, Selvakumar et al. (2008a, b) have
isolated two IAA producing PGPRs, viz. Serratia marcescens SRM and Pantoea
dispersa 1A from Himalayan regions. These microbes were found to increase weight
and nutrient uptake by wheat plants growing at low temperature. Moreover, IAA
producing Pseudomonas sp. PGERs17 and NARs9 strains have been isolated by
Mishra et al. (2008, 2009) which were able to enhance seed germination rate and
plant length of wheat seedlings growing at cold temperature.

16.4.1.2 ACC-Deaminase Production
1-aminocyclopropane-1-carboxylate (ACC) deaminase is an enzyme which
stimulates plant growth positively. It helps in regulating ethylene levels in plants.
Higher concentrations of ethylene inhibit plant growth (Cheng et al. 2007). The
extent of ethylene and its production is tightly regulated by various transcriptional
and post-transcriptional factors, which in turn are controlled by the environmental
conditions (Hardoim et al. 2008). In low-temperature conditions, ethylene levels in
plants result in decreased plant growth and development (Bottini et al. 2004).
Microbes capable of ACC deaminase production, arrest plant ACC, and cleave it
to form ammonia and a-ketobutyrate, which are readily metabolized by the bacteria.
This results in a decrease in detrimental outcomes of ethylene which promotes plant
growth (root, shoot and biomass) and stress tolerance (Glick et al. 2007). Barka et al.
(2006) demonstrated enhanced cold resistance and ACC deaminase activity by
Burkholderia phytofirmans in grapevine. Six psychrotolerant strains have been
isolated from leaf apoplastic sap of cold-adapted wild plants by Tiryaki et al.
(2019). The isolates were found to possess ACC deaminase activity and were able
to secrete the different extracellular proteins under cold stress.

16.4.2 Frost Injury Protection

Various plant parts (stem, leaves, buds, and flowers) behave differently to freezing
injury thus making it complicated. Ice nucleation in plants is due to induction by
various catalytic sites available in microbes found in different plant parts (Lindow
1983). Plants are substantially damaged under the chilling conditions, not only of
low nutrient availability or poor hormone production but majorly due to frost
settlement on plants and ice crystallization within cells. Every year huge losses in
the agricultural sector occur because of crops damaged by freezing injury.
Microorganisms adapt various strategies to cope with this chilling stress.

16.4.2.1 Ice Nucleation Proteins
Ice crystal formation involves ice nucleation and ice growth. Each class of ice crystal
controlling protein targets any one of these. Ice nucleation proteins (INPs) activate
the development of ice crystals and successive freezing around high subzero
temperatures (Kawahara 2008). However, ice nucleation maybe reduced by most
PGPR strains, which produce either antifreeze proteins or ice-nucleating protein
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complexes that inhibit ice recrystallization or cold acclimation proteins. Ice nucle-
ation proteins (INPs) mimic ice crystal surface and thus reduce supercooling and
encourage freezing at temperatures higher than subzero. INPs are hydrophilic in
nature and present as anchors on the cell membrane surface and have ice-binding
sites (Xu et al. 1998). Erwinia herbicola INPs are huge multimeric proteins with
subunits having a size from 120 to 150 kDa and belong to a structurally homologous
class of proteins (Kawahara 2008). Its N-terminal domain has hydrophobic nature
and is globular in shape and comprises 15% portion of the total protein. The
N-terminal domain also binds to polysaccharides, lipids, and other INPs (Kajava
and Lindow 1993) and thus this binding allows the INP to anchor to the cell
membrane. This results in the formation of an organized assembly for higher activity
of INPs (Govindarajan and Lindow 1988). CRD is assumed to be the site of ice
interaction (Kawahara 2008). Innumerous microbes having ice nucleation property
have been reported (Kawahara 2008). P syringae and are highly potent microbes
possessing ice nucleation activity (Kozloff et al. 1983). Several other bacterial
genera including Pseudomonas, Pantoea, Xanthomonas, and Erwinia have also
been reported to possess ice nucleation property (Lindow et al. 1978; Obata et al.
1990). Bacteria possessing INPs are termed as “ice plus” bacteria (Maki et al. 1974;
Lee et al. 1995). INPs help in ice crystallization at a temperature above subzero. The
bacteria which don’t have INPs are termed as “ice minus” bacteria and thus nucleate
ice at low temperatures. Increase in frost receptiveness of soyabean and tomato was
found, when ice plus P. syringaewere sprayed on leaves of these plants in cold stress
condition (Anderson et al. 1982). Ice nucleation genes in P. syringae have been
identified, which has led to the formation of “ice minus” mutant. This mutant has
been found to be inactive in ice nucleation of plants leaves (Xu et al. 1998). These
mutants can further be used for controlling the ice nucleating activity of bacteria and
thus helps plants to overcome freezing injury. Lindow (1983) identified the
ice-nucleating factor from P. syringae by deletion mutation. A strain of naturally
occurring P. fluorescens has been registered commercially as Frostban B for the
protection of pear trees (Lindow 1997; Wilson and Lindow 1993). Lindow and
Panopoulous (1988) carried out field experiments using P. syringe on potatoes and
strawberries and concluded that the incidence of frost injury was significantly lower
in inoculated potato plants than in uninoculated control plants in several natural field
frost events. Tiryaki et al. (2019) have isolated several psychrotolerant microbes
which were found to reduce freezing injury and ice nucleation and thus can be
utilized for enhancing the cold tolerance in the crops.

16.4.2.2 Antifreeze Proteins (AFPs)
AFPs are the proteins possessing the capability to alter the structure of the ice crystal
and restrict recrystallization of the ice (Raymond and DeVries 1977; Knight et al.
1988). The antifreeze proteins have two main activities: thermal hysteresis and
restriction of ice recrystallization (Kawahara 2008). Thermal hysteresis involves a
non-colligative reduction in the freezing temperature; this is called as freezing
hysteresis. It also may involve slight elevation in melting temperature termed as
melting hysteresis (Gilbert et al. 2005; Celik et al. 2010). Inhibition of ice
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recrystallization is the second antifreeze activity which makes small ice crystals by
inhibiting ice recombination. These small ice crystals are energetically more favored
than bigger ones. Antifreeze proteins when present in bound form reduce water
movement between the ice crystals and don’t allow the smaller ice crystal grains to
destabilize small ice crystal grains, thus ice recrystallization is minimized (Yu et al.
2010). As compared to thermal hysteresis, comparatively smaller amounts of anti-
freeze proteins induce inhibition of ice recrystallization (Kawahara 2008). The
presence of thermal hysteresis proteins in bacteria was reported by Duman and
Olsen (1993) and a strain of Moraxella sp. was the first example of an Antarctic
bacterium that was found to produce an AFP (Yamashita et al. 2002). AFPs are also
assumed to help in the stabilization of biological membranes and preserve cell
integrity (Collins and Margesin 2019). AFPs from Pseudomonas putida GR 12–2
were discussed by Muryoi et al. (2004). The antifreeze protein, AfpA, was isolated
from Pseudomonas putida GR12–2 and found to have a size of 164 kDa. AfpA was
found to consist of both sugar and lipid moieties. Muryoi et al. (2004) also isolated
the gene responsible for encoding this AfpA. The greater similarity between AfpA
and proteins associated with cell wall was found rather than between Afp A and
INPs. AfpA protein sequence was found to be more hydrophobic in the region that is
involved in the formation of ice template than INPs as disclosed by the hydropathy
plots. This suggests the different nature of the interaction of AFPs and INPs with ice
(Muryoi et al. 2004).

16.4.3 Biological N Fixation (BNF)

BNF involves the enzymatic reduction of atmospheric nitrogen to biologically
available form. The available form of nitrogen: nitrate and ammonium have high
biological demand but are found only in small amounts. Therefore biological
nitrogen fixation is a significant process and acts as a source of fixed nitrogen
(N) in many habitats (Vitousek and Howarth 1991; Arp 2000). Microorganisms
are the living constituent of the ecosystem which plays an important role in the
conversion of elements; including N2 fixation (Atlas and Bartha 1998; Madigan et al.
2000) Innumerous microorganisms capable of fixing atmospheric nitrogen have
been reported.

16.4.3.1 Nitrogenase
All the diazotrophs use nitrogenase enzyme for the process of nitrogen fixation. It
catalyzes the reduction of atmospheric dinitrogen to ammonia coupled with the
reduction of protons to hydrogen (Kim and Rees 1994). Nitrogenase is made of
two multisubunit metalloproteins consisting of iron (Fe) protein (dinitrogen reduc-
tase) and the molybdenum-iron protein (MoFe), called dinitrogenase (Howard and
Rees 1996). Nitrogenase is coded by the nifHDK genes; these are commonly present
in contiguous array in the genome. Component I of nitrogenase is made of two
hetero dimers and has a molecular weight of about 250 kDa. Component I contains
the active site of N2 reduction.
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Component II is a homodimer and has molecular weight 70 kDa and is coded by
the nifH gene. This unit integrates the hydrolysis of ATP to electron transfer.
Component I and Component II proteins both contain Fe-S centers which are
coordinated amongst the subunits. In the conventional enzymes, Fe-S centers also
contain Mo, whereas in “alternative” and “second alternative” nitrogenases in place
of Mo, V and Fe are present, respectively. The nifH genes present in all of these
nitrogenase enzymes are highly conserved (Howard and Rees 1996). Both types of
alternative nitrogenases include nifH, however also include a third protein in the
place of the Mo protein that is coded by nifG (nifDGK) (Burgess and Lowe 1996;
Eady 1996). The reduction carried out by nitrogenase requires 16 ATP and
8 electrons per molecule reduced and thus energetically quite costly. Nitrogenase
under in vitro conditions is also quite sensitive to the presence of oxygen and
becomes inactivated by its presence.

16.4.3.2 Diazotrophy in Low-Temperature Conditions
Cold temperatures condition impose several detrimental effects on nodulation effec-
tiveness of rhizobia, delays root infection and may also suppress nodule function
(Lynch and Smith 1994). Reduction in the synthesis of Nod metabolites by Rhizo-
bium leguminosarum trifolii is also observed under low temperature thus suppresses
nodulation and results in low yield of legumes (McKay and Djordjevic 1993).
Prévost et al. (2003) selected cold-adapted rhizobia (Mesorhizobium sp. and Rhizo-
bium leguminosarum) from Canadian soils, biochemical studies revealed higher
production of CSPs in these strains. Eleven nodulation genes have been
characterized from arctic Mesorhizobium strain N33, and the Nod factors involved
in the specificity of nodulation have been identified by Prévost et al. (2003). The
nodulation genes of rhizobia, nodABCIJ genes are clustered into a single transcrip-
tional unit. The nodABCIJ genes are required for Nod factor’s synthesis (Dénarié
et al. 1992). The nodA gene of Mesorhizobium strain N33is not present adjacent to
the nodB genes, unlike in other rhizobia. The nodBCIJ genes of Mesorhizobium
strain N33 are found to be homologous in sequence to those of other rhizobia, except
for the 30-coding region of the nodC gene (Cloutier et al. 1996a). The presence of
nodAFEG genes inMesorhizobium strain N33 stipulates that the nod gene content of
this arctic strain is analogous to that of S. meliloti (Cloutier et al. 1996b, 1997). The
Nod factor of this arctic Mesorhizobium strain has been characterized by Poinsot
et al. (2001). Its basic structure consists of a lipochito-oligosaccharide made up of
oligomers of five N-acetyl glucosamine residues linked by β-1,4- glycosidic linkage
and 6-O-sulfated at the reducing end.

16.4.4 P Solubilization

Soil phosphate is found mainly in organic and inorganic forms. Phosphates are
generally found in its insoluble forms and therefore not accessible to plants. Inor-
ganic P of soil mostly consists of insoluble mineral composites; most of these
emerge after usage of chemical fertilizers. These mineral complexes are mostly
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precipitated and thus cannot be drawn by plants. Organic matter accounting for
20–80% of soil phosphate is the major pool of immobilized phosphate in soil
(Richardson 1994). Phosphate solubilizing microbes (PSM) can convert bound
form of phosphate to the available form and thus, contributes in the plant growth.
PSM employ several mechanisms for P solubilization, which include: (1) producing
organic acids, siderophores to dissolve bound P, (2) mineralization of inorganic P
through enzymes (3) liberation of P by substrate degradation (McGill and Cole
1981). PSM also work as a sink of P, by immobilization of P even under very low
concentration of soil P. Phosphate solubilizing microbes on starvation, predation, or
death also act as a source of P to plants (Butterly et al. 2009).

16.4.4.1 Inorganic P Solubilization
Mineral phosphate dissolving ability in most microbes is attributed to the synthesis
of organic acid (Whitelaw 2000; Maliha et al. 2004). These organic acids may lower
the pH, enhance chelation of ions bound to P, and may form metal ion complexes
(Ca, Fe, Al) which remain in association with insoluble P (Omar 1998; Zaidi et al.
2009). H2PO4

�, which is found mostly in low pH soils, is a soluble form of inorganic
phosphate vitally present in the soil. Production and liberation of organic acid by
phosphate solubilizing microbes results in acidification of the cells and the surround-
ings and the protons substitute the cations bound to phosphate thus leading to
discharge of P ions from mineral P (Goldstein 1994). The important organic acids
liberated by PSM include lactic acid, aspartic acid, and tartaric acid (Venkateswarlu
et al. 1984), citric acid and oxalic acid (Kim et al. 1997), gluconic acid (Di-Simine
et al. 1998). Subsequently, gluconic acid is thereafter transformed to
2,5-diketogluconic acid and 2-keto-gluconic acid (Goldstein 1995; Bar-Yosef et al.
1999). The 2-keto-gluconic acid thus formed is much more efficient in solubilizing
phosphate than gluconic acid (Kim et al. 2002). Expression of the MPs gene in
E. coli HB101 bestowed it with the potential to produce gluconic acid and thus
solubilize hydroxyapatite (Goldstein and Liu 1987). Babu-Khan et al. (1995) cloned
gabY gene (also associated with gluconic acid production) and MPs gene from
Pseudomonas cepacia. The results showed sequence similarity with membrane-
bound protein rather that of GA synthesis. Gluconic acid is however made only if
a functional glucose dehydrogenase (gcd) gene is expressed in E. coli strain.

16.4.4.2 Organic P Solubilization
Mineralization of organic P (Po) in the soil is a highly crucial process for phosphorus
cycling in any agricultural system. Phosphorus may be liberated from its organic
forms majorly by three groups of enzymes: (1) Nonspecific phosphatases dephos-
phorylate the phosphoester or phosphoanhydride bonds of organic P, (2) Phytases
(3) Phosphonatases, responsible for cleaving C-P bonds in organophosphonates.

16.4.4.2.1 Nonspecific Acid Phosphatases (NSAPs)
NSAPs produced by bacteria are made by three molecular families (Kim et al. 1998).
These enzymes work by scavenging phosphoester and thus provide the cell with
vital nutrients (release inorganic P from sugar and nucleotides) (Beacham 1980;
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Wanner 1996). Phosphomonoesterases are classified into alkaline and acid
phosphomonoesterases, depending on the optimum pH range (Jorquera et al. 2008;
Nannipieri et al. 2011).

16.4.4.2.2 Other Phosphatase Enzymes
The phytases can liberate P from the phytic acids. Phytic acid is the principal source
of inositol and the prime form in which phosphate is stored in plants parts (seeds and
pollens). Phytate is also the chief constituent of soil organic phosphate (Richardson
1994), however, plants have limited capability to procure this form of phosphate
directly from phytate.

16.4.4.3 Cold-Tolerant PSB
Phosphate solubilization by microbes is a prominent process, due to the criticality of
phosphorus in plant nutrition. A cold-tolerant mutants of Pseudomonas fluorescens
was formed by Mishra and Goel (1999) which was capable of solubilizing phos-
phate. This capability was also determined by Mishra and Goel (1999). The
Nitrosoguanidine treatment was used to construct the mutants of three different
strains of P. fluorescens (ATCC13525, PRS9, and GRS1). Das et al. (2003) have
also prepared P solubilizing P. fluorescens mutants. Katiyar and Goel (2003) also
reported enhanced growth of wheat and mung bean by P. fluorescensmutants at low
temperatures. Moreover, the P solubilizing mutants were also developed for
psychrotrophic strain of P.corrugata, isolated from IHR (Trivedi and Sa (2008).

Native soil bacteria are found to be excellently acclimatized to the distinct
climatic conditions of the particular regions and thus can be exploited (Paau 1989;
Malviya et al. 2012; Kumar et al. 2013). The establishment of indigenous strains in
the rhizosphere of crops is also comparatively more stable (Höflich et al. 1994;
Selvakumar et al. 2009a, 2011). Till date, various bacterial species having the ability
to solubilize inorganic phosphates and growth at low temperatures have been
described from alpine and sub-alpine regions and are listed in Table 16.2. Several
other bacterial species belonging to CT-PSB isolated till date include Pseudomonas
fluorescens, P. lurida, P. corrugate, Pantoea agglomerans, P. dispersal,
Tetrathiobacter sp., Bacillus subtilis and Exiguobacterium acetylicum (Pandey
and Palni 1998; Egamberdiyeva and Höflich 2003; Pandey et al. 2006a, b;
Selvakumar et al. 2008a, b). Enterobacter ludwigii PS1, a cold-tolerant phosphate
solubilizing bacterial strain isolated from Seabuckthorn rhizosphere of Indian trans-
Himalaya (Dolkar et al. 2018). The isolate was also produced auxin, siderophore,
and hydrogen cyanide and was reported to enhance the growth of tomato on seed
bacterization (Selvakumar et al. 2009b).

16.4.5 Siderophore Producing Bacteria

Iron works as a cofactor of several enzymes involved in oxidation and reduction
reactions thus is a vital micronutrient for plants. Majority of Fe found in the soil
occurs in insoluble forms (ferric hydroxide), thus is not easily accessible to plants
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even in soils having high iron content. Iron accessibility to the plants is also
restricted due to instantaneous oxidation of ferrous to ferric state (Neilands 1995).
Several microbes have developed unique methods for the incorporation of iron, viz.
synthesis of siderophores. Furthermore, siderophores can be divided into
hydroxymates, catecholates, and their mixtures (Neilands 1981).

Two different pathways are involved in the biosynthesis of siderophores:
(a) dependent on nonribosomal peptide synthetases (NRPS) (Gehring et al. 1997;
Keating et al. 2000) (b) NRPs independent (Quadri et al. 1999; Challis 2005; Oves-
Costales et al. 2009). Nonribosomal peptide synthetases are huge multienzyme
complexes involved in the biosynthesis of several biologically important peptidic
products without an RNA template (Crosa and Walsh 2002; Grünewald and
Marahiel 2006). In general NRPS consists of three domains: (a) adenylation domain
(b) peptidyl carrier protein domain (PCP or thiolation), and (c) condensation domain,
responsible for the assembly of a wide range of amino, hydroxy, and carboxy acids
in various combinations to produce polypeptides with high structural variability
(Finking and Marahiel 2004). The adenylation domain is responsible for activating
and recognizing the amino acid, which is thereafter bound by a cofactor in the
thiolation domain and then is integrated into the growing polypeptide chain by
peptide bond formation by the condensation domain. Eventually, the polypeptide
chain is liberated from the synthetase by a cyclization process catalyzed by the C
terminal thioesterase domain (Kohli et al. 2001). The genes responsible for coding
the enzymes involved in the biosynthesis of aryl acids (2,3-dihydroxybenzoic acid
(DHB) and salicylate) and NRPSs are controlled by the Fur repressor (Ratledge and
Dover 2000; Quadri et al. 1999). In E. coli enterobactin biosynthesis, the product of
genes entB, entC, and entA are involved in the synthesis of DHB. Once the aryl acid
(DHB) is synthesized, it together with amino acids (L-serine) leads to the assembly

Table 16.2 Phosphate solubilization and growth promotion by psychrotolerant bacteria

Microorganism Source Function References

Pseudomonas
putida (B0)

Soil from
central
Himalayas

P-solubilization, antagonistic to
Alternaria alternaria, Fusarium
oxysporum

Pandey et al.
(2006a, b)

Pseudomonas
sp. PGERs17

Garlic root P-solubilization, antagonistic to
pathogen

Mishra et al.
(2008)

Pantoea dispersa
IA

NW Indian
Himalayas

Involved in P-solubilization, IAA
production, HCN production, increase
in root and shoot lengths in Triticum sp.

Selvakumar
et al.
(2008a)

Acinetobacter
rhizosphaerae
BIHB 723

Rhizosphere of
Hippophae
rhamnoides

P-solubilization, IAA, ACC deaminase
production Hordeum vulgare

Gulati et al.
(2009)

Exiguobacterium
acetylicum IP

Rhizosphere of
apple tree

P-solubilization, IAA production, HCN
production, increase root and shoot
lengths and N, P, K uptake in Triticum
sp.

Selvakumar
et al.
(2009a, b)

Pseudomonas
lurida M2RH3

Rhizosphere of
radish plant

P-solubilization, root and shoot length
increased and N, P, K uptake

Selvakumar
et al. (2011)
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of enterobactin by the NRPSs. The enterobactin NRPS system consists of three
enzymes EntE, EntB (C terminal), and EntF responsible for enterobactin assembly
(Ehmann et al. 2000). Apart from the global repressor Fur, there are several
transcriptional regulators that control siderophore biosynthesis and utilization.
These generally function as activators by recognizing intracellular or extracellular
iron-siderophore complex. These regulators are divided into several groups, which
includes: (1) alternative sigma factors, e.g., the FecA-FecR-FecI regulatory proteins
in E. coli (Enz et al. 2000; Braun and Mahren 2005), the FpvI/Pvd-FpvRFpvA
system in P. aeruginosa (Mettrick and Lamont 2009) (2) the 2-component sensory
transduction system (Dean and Poole 1993) (3) AraC-type regulators, e.g. the PchR
in P. aeruginosa (Youard and Reimmann 2010), PdtC in P. stutzeri (Morales and
Lewis 2006).

Siderophores production by microbes possesses an edge in the survival of both
plants and bacterial species, due to the elimination of several pathogenic fungus and
microbes present in the rhizosphere by reducing the available iron (Masalha et al.
2000; Wang et al. 2000). The siderophores produced in the rhizosphere arrest Fe in
the rhizosphere and thus restrict the amount of iron needed by the various
phytopathogens. Therefore the production of siderophores is also a biocontrol
method against several soil borne plant pathogens. A cold-tolerant mutant of Pseu-
domonas fluorescens was developed by Katiyar and Goel (2003) which was able to
produce siderophore. The mutant strain Pseudomonas fluorescens was reported to
help in the growth of Vigna radiata at 25 �C and 10 �C (McBeath 1995; Negi et al.
2005). Several biocontrol agents against Pythium, Sclerotium rolfsii, Rhizoctonia
solani, and Fusarium oxysporum have been isolated by Selvakumar et al. (2009a, b).
Further, Mishra et al. (2008) have described HCN and siderophore producing cold-
tolerant strain Pseudomonas sp. It also showed antagonistic properties against many
phytopathogenic fungi (S. rolfsii, R. solani, Pythium sp. and F. oxysporum) (Mishra
et al. 2008; Malviya et al. 2009).

16.5 Conclusion and Future Perspectives

Hill ecosystems are familiar with the exclusive agricultural as well as agro-forestry
methods. Identification of immense tremendous capabilities of the microbial
resource colonizing such ecosystems globally is making its mark. Development of
cold-adapted bioinoculants is of utmost importance for increasing agricultural pro-
ductivity at higher altitudes. Several cold-tolerant microorganisms have already been
characterized for PGP ability. A detailed account of genes and enzymes involved in
low temperature mediated plant growth promotion can assist in achieving the desired
bio inoculants.
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