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Abstract
Psychrophiles are found almost in all the ecosystems at low temperatures. They
are of great importance as they act as models to study the mechanics for survival
at low temperature and can be used to extract several enzymes and secondary
metabolites which are useful in various industries say healthcare, food, detergent,
tannery, etc. This chapter focuses on the basic modifications of psychrophiles at
cellular, molecular and functional levels, their applications in different spheres of
life and how these strategies can be mimicked in human lives.
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13.1 Ecological Diversity of Cold-Adapted Microorganisms

Low temperature suits best to psychrophiles for their growth and reproduction. The
cold-adapted microorganisms are present at higher altitudes and in deep blue seas
where the temperature is below 15 �C. Though these ecosystems are too harsh for
survival, still diverse microbial communities survive facing all the challenges with
the help of adaptations at various levels. The challenges include availability of
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nutrients, IR radiations, excessive UV radiations, change in pH and very high
osmotic pressure (De Maayer et al. 2014). Psychrophiles may be autotrophic,
chemotrophic or heterotrophic based on their mode of nutrition. They play an
important role in nutrient turn over and production of biomass in low-temperature
environments and have significant role in various industries. Psychrophilic microbes
find their importance in food preservation and degradation of organic matter in low
temperatures where artificial cold environmental conditions are generated in vitro.
Ironically most of the food spoiling bacteria are adapted to man-made cryo-
environments. Pseudomonas, Psychrobacter, Staphylococcus and Photobacterium
have often been isolated from psychrotolerant bacteria in artificial cold
environments. Some of the factors that govern the existence of the genera in artificial
cold environments have been summarized below:

• Possibility of shift of ambient environment to cold environment
• Possibility of invasion by their own basic cellular and molecular components
• Ability to propagate rapidly
• Presence or absence of oxygen at low temperatures

These genera are considered to be genetically diverse and have mechanisms for
adapting to cold environments.

In addition to the above attributes, marine psychrophiles have cell membranes
made up of lipids that do not harden in cold environment. Moreover, the presence of
catalase atoms in psychrophiles help them to adapt to the natural conditions (higher
concentration of hydrogen peroxide at low temperatures) under which these
microbes endure. Three types of psychrotolerant H2O2-safe microscopic organisms
have been disengaged from channel reservoirs of a fish egg preparing plant that
utilizes H2O2 as a fading operator. Certain varieties of obscure bacterial species exist
with specific varieties of natural adjustment systems (e.g., enzymatic efficiency of
catalase and its cellular localization) contingent upon the natural H2O2 focus and
delicacy of cells. Therefore, it is really hard to surmise general rules that may clarify
the limit with respect to numerous psychrophiles to adjust their genomic and
metabolic highlights to their local cold natural surroundings. The physiological
studies of individual strain of proteins and genes show high level of psychrophilic
adaptation (Rodrigues and Tiedje 2008; Casanueva et al. 2010). Various omics
technologies have been utilized to ponder different capacities in microorganisms
developed under various cold temperatures (Allen et al. 2009; Fondi et al. 2016).
These adaptations work in a synergistic way at both genomic and metabolic levels to
help the microorganism lead a smooth life in cold environment (Math et al. 2012).
One of the example is the adenylate cyclase present in the cell membrane which gets
activated at low temperature, aiding in smooth functioning of metabolic pathways.
Various such cold adaptations will be discussed in detail in this chapter.
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13.2 Effects of Low Temperature on Microbes

Low temperature can affect the microorganism in various ways. Reduction in growth
rate and number of cell, variation in cell composition and nutritional requirements
are some direct effects while other indirect effects include solute solubility, cell
density, nutrient distribution and osmotic adjustment of the membrane. Microbes
sense the decrease in environmental temperature with the help of their cellular
responses like stiffness in their membrane, which is a very important membrane-
associated sensor. Cold signal transduction pathway in microorganism is a
two-component system. The signal with the help of sensors reaches the response
regulator which in turn upregulate the genes involved in membrane fluidity in cold-
adapted microorganism. The lipid bilayer maintains the cell permeability and trans-
portation of essential solutes in liquid–crystalline phase. When temperature
decreases, the functional phase of lipid transits into gel form due to which membrane
fluidity is lost. Gene for fatty acid desaturases includes membrane lipid and protein
phosphorylation and dephosphorylation, which induce phosphorylation of cytosolic
protein (Jagtap and Ray 1999). Composition of fatty acid varies according to
external temperature. At low temperature, there is more unsaturation owing to
saturases, more methyl branching, alteration in fatty chain length, increase in the
ratio of ante-iso to iso branching and change in the ratio of sterol and phospholipid
contents. In 2008, Coa-Hoang et al. stated that cold shock induced membrane injury
which triggered high rate of cell inactivation in microbes like Escherichia coli and
Bacillus subtilis. Other adapting features like secretion of cold-shock proteins
(Czapski and Trun 2014), molecular RNA chaperones, osmotic solutes
(cryoprotectants) (Kawahara et al. 2008), enzymatic denaturation, incorrect protein
tertiary and quaternary structures and intracellular ice formation play a pivotal role in
the existence of microbes in cold environments.

13.2.1 Cell Membrane-Associated Changes

Microorganisms exhibit significant tolerance to chilling by reducing the damage in
their membranes. Downshift in temperature reduces membrane fluidity and induce
permeability in response to increased phase transition of membrane phospholipids
(Cao-Hoang et al. 2010). Cells growing at 37 �C have more saturated fatty acid
content (laurate) while at low temperature the content of laurate decreases and is
substituted by unsaturated fatty acid (palmitoleate), which increases membrane
fluidity and decreases membrane phase separation. Enzyme fatty acid desaturase
causes unsaturation of fatty acids in Bacillus subtilis in preexisting membrane
phospholipids (Aguilar et al. 2001). The gene of enzyme desaturase is regulated
by a sensor called DesK kinase which activates the transcriptional activators DesR at
cold temperature (Albanesi et al. 2004). Figure 13.1 illustrates the mechanism of
unsaturation of already present fatty acids and maintenance of membrane fluidity by
desaturase enzyme.
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13.2.2 Role of Cryoprotectants

Cryoprotectants (CRPs) are small molecules or chemical chaperones that provide
defence mechanism against cold stress (Kawahara et al. 2008). These compounds
include sugars like monosaccharides (glucose, fructose), disaccharides (sucrose,
trehalose, etc.), polyamines, polyols (alcohol sugars such as glycerol and sorbitol)
and amino acids (glycine, alanine, and proline). CRPs may be secreted outside the
cell or may be located at intracellular level. Secreted CRPs can lower the freezing of
water (Bouvet and Ben 2003) while their intracellular counterparts increase the total
internal solute concentrations so as to regulate the osmotic pressure and maintain the
osmolarity prior to freezing. CRPs have been reported in various bacteria like
Lactobacillus, Pseudomonas and Pantoea. During cold shock, glycine betaine
controls the aggregation of cellular proteins and regulates the fluidity of the mem-
brane (Chattopadhyay 2002). Almost similar conditions have been reported in food-
borne pathogen L. monocytogenes, where glycine betaine maintains high osmolarity

Fig. 13.1 Mechanism of
unsaturation of already
present fatty acids by
desaturase enzyme at low
temperature
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at chilling stress (Angelidis and Smith 2003). Another cryoprotectant trehalose
accumulates on both sides of the cell membrane and conserves intracellular water
to stabilize cell membrane against freezing (Sano et al. 1999). Exopolysaccharides
(EPS) synthesized by psychrophiles in cold environment have polyhydroxyls which
prevent ice nucleation of water, enzyme denaturation and lysis of cell (Feng et al.
2014). ESPs store water and minerals and assist in cell aggregation, cell coating and
formation of biofilm (microbial cells adhere to each other within an indigenous
matrix of extracellular polymer) and maintain the viability of cells (Qin et al. 2007).
Fungi Mortierella elongata, has some characteristics which favour their growth at
low temperatures. These features include increased the amounts of intracellular
trehalose, stearidonic acid and absence of ergosterol lipid when subjected to cold
stress (Weinstein et al. 2000). Ergosterol is the main sterol in fungi which makes
lipid membranes more rigid and decrease their membrane permeability; hence,
deficiency of ergosterol causes the membrane more liable to cold-induced damage.
Therefore, M. elongata increases the production of trehalose as an adaptation
method in low temperature. Trehalose is the most effective cryoprotectants in
thermotolerance in the fungi Neurospora crassa and Cunninghamella japonica
(Neves et al. 1991; Tereshina et al. 1991). Dong and Chen found that at 4 �C
cultured cell extracts of Methanolobus psychrophilus R15, there is upregulation of
a new type of adenosine derivative which acts as osmotic solute in cold condition.
Another cryoprotectant Cor26 is accumulated in Pseudomonas fluorescens KUIN-1
bacteria and aspartate inMethanococcoides burtoni in response to cold temperature.
Aspartate is known to increase the affinity of GTP binding to elongation factor
2 while the action of Cor26 is unknown.

13.3 Cold Acclimation Proteins and Cold-Shock Proteins

Psychrophiles release a group of ~20 proteins during steady-state growth at cold
temperature referred as cold-acclimation proteins (CAPs). The level of these proteins
increases constitutively at low temperatures which help microorganism to adapt in
cold climate (Phadtare 2004). They regulate protein synthesis and are essential for
viability in cold condition. RNA chaperone CspA are usually cold-shock proteins
reported in mesophiles and function as Caps in cold-adapted bacteria. The function
of CAPs is not yet explored much; however, it has been revealed that these proteins
regulate cell cycle and cell growth at lower temperature. Pantoea ananas KUIN-3
release a cold acclimation protein, Hsc 25, which has the potential of refolding the
cold-denatured enzymes (Kawahara et al. 2008).

When environmental temperature comes down suddenly, psychrophilic bacteria
show cold-shock response and release cold-shock proteins (Csps). These are (65–75
aa in length) nucleic acid-binding proteins (Czapski and Trun 2014). Cold-shock
proteins neutralize various detrimental effects of fall in temperature and hence
facilitate the cells to adjust with a transient overexpression that affect a number of
molecular and cellular processes (Phadtare 2004). At cryo-temperature, RNA
structures stabilize and become non-dynamic that induce premature transcription
and translation termination. However, protein folding is disorganized, and ribosome
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function is hindered. Csps function as RNA chaperones helping in the sliding of
ribosomes on target mRNA. This activity can be inhibited due to secondary
structures of RNA at cold stress. Due to chaperone activity of Csps, single-stranded
state of RNA is maintained (Barria et al. 2013). All Csps are ancient proteins which
have some key conserved structure which includes five antiparallel strands that
makes a ß-barrel. Csps that comprise a single nucleic acid-binding domain are
known as cold-shock domain (CSD). CSD consists of two RNA binding motifs
referred as ribonucleoprotein 1 and 2 (Lee et al. 2013). These binding motifs open
tightly packed nucleic acid molecules which are inaccessible for translation
(Chaikam and Karlson 2010).

Proteins that are constitutively synthesized in cell are called housekeeping
proteins. Cold shock does not lower the production of these proteins, whereas the
expression of Csps is enhanced with aggravated cold shock (Ermolenko and
Makhatadze 2002). These CSPs reduce the expression of housekeeping gene and
maintain the folding of important proteins. Hence cells adapt for temperature
downshift at slower rate. Chaikam and Karlson (2010) reported that Csps are
actively associated with the maintenance of chromosome folding. CspA was the
first reported cold-shock protein in Escherichia coli (Goldstein et al. 1990). Previ-
ously it was reported that E. coli CspAs consist of nine homologous proteins (CspA
to CspI). CspA consists of 13% of total cell proteins at cold condition while at
37–40 �C it is declined to lower levels (Lee et al. 2013). During cold or before
freezing, Csp proteins are overexpressed in Lactobacillus strains which increase the
survival rate of the cells. Human pathogen Listeria monocytogenes becomes less
virulent under refrigerated condition due to the removal of cspA, cspB, and cspD
genes which regulate the synthesis of the virulence factor listeriolysin O (Schärer
et al. 2013). CspA from psychrophilic Psychromonas arctica was overexpressed in
E. coliwhich increases the rate of cell survival and cold resistance in hosts by tenfold
after repetitive freezing and thawing in polar environments (Jung et al. 2010). In
Antarctic bacterium Psychrobacter sp. G, three CSP genes Csp1137, Csp2039 and
Csp2531 have been identified with their regulatory sequence (Song et al. 2012). Csp
genes of Yersinia enterocolitica 8081 and Yersinia pseudotuberculosis IP32953
share the maximum homology with csp genes of E. coli K-12 W3110 (Kanehisa
et al. 2016). Enteropathogenic Yersinia psychrotrophs (spread by eatables and cause
enteric illness yersiniosis) bear a locus having CspA duplication gene (cspA1 and
A2) (Neuhaus et al. 1999).

13.4 Ice Nucleators and Antifreeze Proteins

Ice nucleators are the proteins that act as an ice crystal surface at low temperature
(0 �C). They induce freezing and control the energy required for ice formation by ice
crystal surface arrangement on water. Some bacteria have the potential of ice
formation at low temperature. These bacteria are reported as “ice plus” bacteria.
They have ice nucleation-active protein (Ina protein) located on the outer bacterial
wall, which act as potent nucleating centre for ice crystals. Erwinia herbicola
produces highly potent ice nucleators which show optimum activity at subfreezing
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temperature (Kozloff et al. 1983). Hirano et al. (1985) found that ice-nucleating
bacteria live on the surface of leaves and induce frost damage when the temperature
goes down. Pantoea (Lindow 1983), Xanthomonas (Kim et al. 1987) and Pseudo-
monas (Obata et al. 1987) are some examples of cryotolerant ice-nucleating bacteria.

Antifreeze proteins (AFPs) are ice-binding proteins that inhibit ice crystal forma-
tion and growth in any bacterium (Gilbert et al. 2005). They control the ice from
melting by binding irreversibly to its surface. AFPs induce high thermal hysteresis
activity and inhibit ice recrystallization even at milli-molar concentrations. Fungal
AFP from a mold Typhula ishikariensis also possesses ice-binding properties
(Cheng et al. 2016). Re-crystallization of ice is robustly reduced due to binding of
antifreeze proteins with multiple ice planes. Ice-nucleating and antifreeze activities
of AFP have also been identified in Arctic rhizobacterium Pseudomonas putida
GR12-2, which is an extracellular glycolipo protein (Muryoi et al. 2004). There are
three domains in ice-nucleating proteins, namely N, R and C. N domain facilitate the
binding of ice-nucleating proteins (INP) to lipids and carbohydrates, and ice forma-
tion and ice nucleation activity are related to R-domain and C-terminal domain
(Kawahara et al. 2008). Yamashita et al. (2002) reported thatMoraxella was the first
reported bacteria in Antarctic region that synthesizes an AFP for its survival in
extreme cryo-environment. Ca2+-dependent AFPs have been reported from
Marinomonas primoryensis bacteria which is dominantly found in Antarctic lake
(Gilbert et al. 2005). Psychrophilic phytopathogenic fungi have extracellular AFPs
which check the freezing of hyphae (Robinson 2001) and make sure the accessibility
of substrate by checking the rate of freezing of nutrients. Hoshino et al. (2009)
reported that various genera belonging to Basidiomycetes, Oomycetes and
Ascomycetes release AFPs which control freezing of extracellular environment
and check the growth of mycelia at very low temperature.

13.5 Cold-Adapted Enzyme

In low temperature, the rate of chemical reactions is very slow because there is
inadequate kinetic energy to conquer enzyme activation barriers (in ground state
(substrate) and activated state). Psychrophiles release enzymes that show high
specific activities at lower temperatures called as cold-adapted enzymes. These
include cellulases, lipases, proteases, amylases, xylanases, pectinases, keratinases,
esterases, catalases, peroxidases and phytases are perform important role under very
harsh climatic as they represent low activation energy and high catalytic activity
(Kuddus et al. 2011). Reaction rate (kcat) of cold-adapted enzymes is highly
independent of temperature.

Cold-adapted enzymes increase structural flexibility to cope with freezing at low
temperature (Collins et al. 2008). These adaptations involve molecular dynamic
simulations of distinct stabilizing interactions either in the enzyme or at the active
site of enzyme (implicated in catalysis). Some relevant factors include electrostatic
interactions like reduced no of ion pairs, hydrogen bonds and hydrophobic interac-
tion, reduced proline and arginine residues in loops, location of glycine residues,

13 Understanding Cold-Adapted Plant Growth-Promoting Microorganisms from. . . 253



decreased cofactor binding, increased interaction with the solvent and reduced inter-
subunit interactions (Siddiqui and Cavicchioli 2006). Amylases are very common
enzyme found in microorganisms, plants and animals. The α-amylase reported in
Pseudoalteromonas haloplanktis (AHA), also the most studied cold-adapted
enzyme is monomeric, has multiple domains and shows Ca2+- and Cl�-dependent
properties (Siddiqui and Cavicchioli 2006). D’Amico et al. (2003) reported that
activation energy is reduced in psychrophilic α-amylase (35 kJ mol�1) as compared
to thermophilic α-amylase (70 kJ mol�1), so kcat of psychrophilic α-amylase is
increased 21-folds at low temperature. Binding of substrates require low energy,
so binding affinity of cold-adapted enzymes is lesser, and substrate binding is highly
accessible. Several cold-adapted enzymes comprise a more labile and localized
flexibility (flexible catalytic site) than other protein structure (Siddiqui et al. 2005).
In cold-adapted enzymes, buried amino acids are smaller and show lesser
hydrophobicity than their mesophilic and thermophilic counterparts. Hydrolysis
and transesterification of fatty acid esters are catalysed by another class comprising
of hydrolytic enzymes called esterases and lipases. Esterases differ from lipases on
mode of their kinetics and specificity of substrate (Chahiniana and Sarda 2009).
EstSL3 esterase, a novel cold-adapted enzyme from Alkalibacterium sp. SL3, shows
close similarity to lipases extracted from Alkalibacterium and Enterococcus (Wang
et al. 2016). Many cold-adapted enzymes have broad cavities to contain H2O
molecules and/or ligands (Giordano et al. 2015). Cold active pectinases abundantly
used in the food-processing industry isolated from Cryptococcus have pectinolytic
activity (35–36 U/mL at 9 �C) and synthesizes pectinase by glucose as carbon
substrate (Birgisson et al. 2003). Some psychrophilic yeasts reported in Japan have
pectinolytic activity only at 5 �C and are not capable to survive at high temperature
(Tomoyuki et al. 2002). Aureobasidium pullulans strain produces pectinase enzyme
at cryo-temperature which shows higher pectinase activity of 0.7–0.8 U/mL at 12 �C
(Merín et al. 2011). Fungal strains Aspergillus awamori isolated from Himalayan
region not only has maximum pectinase activity but also produce high amount of
psychrophilic xylanases and cellulases (Anuradha et al. 2010)

13.6 RNA Degradosomes in Psychrophiles

Psychrophilic microbes have a multiprotein complex called degradosome which is
engaged with the debasement of delivery moiety RNA and the handling of ribosomal
RNA which is directed by non-coding RNA. The degradosome consists of enzymes
like RNA helicase B, polynucleotide phosphorylase and RNase E (Carpousis 2002;
Feng et al. 2001; Cho 2017). The amount of RNA in any cell varies with time for
instance, in Escherichia coli, the time period of messenger RNA is approximately in
the range of 2–25 min, whereas it may live more in other microscopic organisms.
RNA is degraded even in resting cells, and the resulting nucleotides are reused for
crisp rounds of nucleic acid synthesis. The amount of RNA formed by degradosomes
is significant as related to quality guideline and quality control.
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All life forms have numerous enzymatic tools for debasing RNA, for example,
ribonucleases, helicases, 30-end nucleotidyltransferases, 50-end topping and
decapping catalysts and RNA-restricting proteins which utilize RNA as substrate.
RNA degradosome of Escherichia coli comprises four essential parts: (1) hydrolytic
endo-ribonuclease RNase E, (2) phosphorolytic exoribonuclease PNPase, (3) adeno-
sine triphosphate (ATP)-subordinate RNA helicase (Rh1B), and (4) glycolytic com-
pound enolase. The degradosome of Antarctic bacterium Pseudomonas syringae
contains ribonuclease E and RNA helicase. Polynucleotide phosphorylase is present
in Escherichia coli, and this enzyme controls the quality of ribosomal ribonucleic
acid. But the composition of degradosome of the Antarctic counterpart possess
another exoribonuclease, ribonuclease R. In Escherichia coli, it is well known that
ribonuclease R can degrade RNA molecules, and in this process, it does not require
(ATP) but helicase requires ATP due to which energy is conserved by cells at low
temperatures as well (Purusharth et al. 2005; Hardwick et al. 2010; Carpousis et al.
2009). The metabolic enzyme aconitase is found in C. crescentus and phosphofruc-
tokinase is found in B. subtilis degradosomes though enolase enzyme is present in
both the psychrophiles. The bacteria regularly adjusts the gene expression to survive
in the harsh environments. Ribonucleases (RNases) control the expression of regu-
latory proteins and protein-coding RNA by degradation and maturation.
Exoribonucleolytic capacities are available in polynucleotide phosphorylase
(PNPase) and RNase R in the human pathogen Streptococcus pyogenes. An
exoribonuclease, PNPase is the focal 30-to-50 exoRNase partaking in RNA damage
(Lécrivain et al. 2018; Chandran and Luisi 2006; Chandran et al. 2007). A consider-
able number of the Csp family proteins are in charge of RNA adjustment and
debasement. Moreover, mRNA is stable in cold conditions due to the presence of
chaperon functions of Csps. CspA also destabilizes the secondary structure and
maintains its structure in a single-stranded state, which is necessary for its degrada-
tion. CspE acts in the opposite manner, and it stops RNA degradation. CspE binds to
poly-A tails, which interfere with their degradation by PNPase, and it stops RNA
cleavage by RNase E (Feng et al. 2001; Khemici et al. 2008; Prud’homme-Généreux
et al. 2004). A DEAD-box helicase called DeaD in E. coli is added into the
degradosome which can degrade RNA, under cold conditions.

13.7 Plant Growth Promotion by Agricultural Microbes in Cold
Climate

The psychrophilic microorganisms help in the growth of plants under adverse
conditions, their promotion and adaptations under harsh environments such as
extremes of temperatures, high salt conditions, extremes of pH and drought stresses
and are termed as plant-associated extremophilic microorganisms. They possess
diverse plant development advancing characteristics, and hence, these productive
and potential organisms might be used as biofertilizers to enhance the productivity
and maintain the well-being of soil giving a push to the highly talked sustainable
agriculture (Verma et al. 2016).

13 Understanding Cold-Adapted Plant Growth-Promoting Microorganisms from. . . 255



Certain strains of rhizospheric microorganisms, known as plant growth-
promoting bacteria (PGPB), invigorate plant development and wellness. Various
microorganisms promoting the yields are significant for keeping up the supportabil-
ity of harvest generation in horticulture. Microorganisms related with harvests can be
rhizospheric, phyllospheric, and endophytic based on their location. The rhizosphere
contains roots and is affected by the addition of substrates that influence microbial
action. A number of microorganisms are found to be associated with the plant
rhizosphere which helps in the growth and development of the plant belonging to
genera Azospirillum, Bacillus, Pseudomonas, Rhizobium, etc. (Verma et al. 2014).
The epiphytic microorganisms are most versatile in nature as they endure high
temperature (40–55 �C) and UV radiation. The phyllospheric microorganisms
include Agrobacterium, Pseudomonas, etc. which can survive in harsh conditions
such as extremes of temperature (Nutaratat et al. 2014).

The endophytic living beings are those microorganisms that colonizes in various
aerial and subaerial parts of the plant, viz. root, stem or seeds without expediting any
ruinous effect on the host plant. These microorganisms have been extracted from
plants including wheat (Verma et al. 2013), soybean, pea, common bean, chickpea,
pearl millet and rice (Suman et al. 2016). Various examples of endophytic microbial
species are Achromobacter, Azoarcus, etc. (Verma et al. 2014). Microscopic
organisms isolated from harsh temperature conditions are adjusted to live under
stressful temperature conditions. Many optimizations have been used to isolate
psychrotolerant and psychrophilic microbes from soil. The growth of cold-tolerant
Antarctic bacterium can be increased by supplementing the minimal media
supplements like amino acids which improved the growth rate of psychrophilic
bacteria when the temperature was lowered from 11 �C to almost freezing point of
water, i.e. 5 �C.

Indole-3-acetic acid (IAA) is a vital phytohormone secreted by PGPR which
enhances overall plant development (Selvakumar et al. 2008). This IAA-secreting
capacity of psychrophilic microorganisms acts as a marker tool for their identifica-
tion while looking at the physiological or environmental conditions. Auxin produc-
tion in microscopic organisms is controlled by the proline amino acid-dependent
pentose phosphate pathway (Sahay et al. 2017). Pantoea dispersa and Serratia
marcescens show their maximum IAA-creating capacity at 4 and 15 �C, respec-
tively. Seed treatment with these bacterial strains significantly improved plant
biomass and supplement take-up of wheat seedling developed at cold temperatures.
Introduction of seeds with these mentioned strains upgraded the seed germination,
root growth and shoot lengths of wheat plantlets developed at low temperatures
(Sahu and Ray 2008).

Another bacterial framework that influences plant advancement is the nearness of
compound 1-aminocyclopropane-1-carboxylate (ACC) deaminase. This catalyst
enhances the overall development and improvement of plants. Bacterial strains
that have ACC deaminase can diminish the ethylene combination even in virus
infections, thus curbing the negative impact on plants. Plants having ACC deami-
nase may adjust to this troublesome situation by cutting down ethylene level similar
to normal stresses. Few psychro-tolerant bacteria producing ACC deaminase
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promote plant development even at low temperature that too under high osmotic
pressure.

13.7.1 Nitrogen Fixation

Nitrogen fixation is a very essential process in the soil which is performed by many
bacterial species that have the capacity to absorb atmospheric nitrogen and convert it
into nitrogenous substances that furnish important nutrients for plants. These
microbes synthesize the nitrogenase enzymes that form ammonia from nitrogen
N2. These processes require biological energy in the form of adenosine triphosphate
(ATP). The nitrogen-fixing microbes may be free-living or symbiotic. The basic
source of energy for some of the nitrogen-fixing microbes living freely is sunlight
while others depend on organic matter present in soil. Soil microorganism Azoto-
bacter is an aerobic heterotroph, and Clostridium species are active in conditions that
do not have oxygen. Both the groups of microorganisms (free-living and symbiotic)
can fix only minimal amounts of nitrogen, but still they are important for the survival
of various plants in the environment.

Symbiotic microbes thrive on plant roots, forming root nodules. Rhizobium is an
important member of this group which lives symbiotically with various members of
leguminaseae family (peas, clover, beans, peanuts, soybeans). Frankia is an actino-
mycete associate with several plant families including species of temperate region
trees, for example, Alnus andMyrica, the arid-region Acacia, and the tropical-region
Casuarina and Ceanothus. Crop rotation helps to introduce good amounts of N2 into
the soil for efficient crop production.

Cyanobacteria have a pioneering role in fixing atmospheric nitrogen. They are
very active in media which is very shallow such as flooded rice fields and marshy
areas. An aquatic microbe, Anabaena, lives in a shallow medium in association with
Azola which is a water fern, and its symbiosis can produce a high quantity of
nitrogen per hectare annually, which is sufficient for rice production.

Nitrogen cycle involves various processes such as fixation, ammonification,
nitrification and denitrification. Each step involves specialized microbes, and the
consequences depend on the physiological state of the soil. The nitrogen cycle in the
soil is also affected by the atmospheric processes. Partial removal of nitrogen in the
soil releases N2O, which is a very harmful and strong greenhouse gas responsible for
global warming. Carbon dioxide and methane are other greenhouse gases that come
out from the soil in special circumstances. N2 fixation in the deep Arctic or Atlantic
Ocean is the most important source of nitrogen where nitrogen is limited in system.
N2 fixation that occurs in ice-free summer waters contributes up to 30% of the N2

fixation in the Arctic Ocean. Nitrogen fixation in freshwater is relatively common at
high altitudes, but still nitrogen fixation in oceans is considered to be common. In
Arctic region, when ice melts due to increase in temperature, the net production of
nitrogen is increased in Arctic Ocean due to marine nitrogen fixers (Arrigo et al.
2012). A sufficient amount of nitrogen fixers is required to increase the productivity
of nitrogen via Arctic nitrogen cycle which affects the primary producers that form

13 Understanding Cold-Adapted Plant Growth-Promoting Microorganisms from. . . 257



the foundation of the food chain (Popova et al. 2012). This data helps us to conclude
that N2 fixation can also occur at minimum temperatures (Moisander et al. 2010) and
at very high altitudes (Sohm et al. 2011; Díez et al. 2012) where it was believed that
nitrogen fixation would not be possible.

13.7.2 Phosphate Solubilization

The availability of phosphorus is very important for the cultivation of healthy crops
to cope up with the universal requirement of food. Various metabolic and physio-
logical processes like energy transfer, photosynthesis, respiration, signal transduc-
tion and nitrogen fixation in plants of the family leguminaceae require P as essential
macronutrient. Although P is the most abundant macronutrient found in almost all
types of soils, it acts as the major limiting factor for the plant growth because of its
unavailability to plants. Inorganic P occurs mostly in insoluble mineral complexes in
soil, some are present in chemical fertilizers, and the plants are unable to absorb the
insoluble and precipitated forms. Soil microorganisms help in the transformation of
phosphorus and make it easily available to plant roots as they possess the ability to
solubilize and mineralize phosphorus from inorganic phosphorus (Rodriduez et al.
1999). P-solubilizing bacteria and fungi have been isolated from both rhizospheric
and non-rhizospheric soils and phyllosphere (Zaidi et al. 2009). In addition to
bacteria and fungi, various microbial species that exhibit P solubilization capacity
are actinomycetes and algae. Examples of P solubilization microorganisms are
Pseudomonas species, Bacillus species, Rhodococcus species, Arthrobacter species,
Serratia species, Chryseobacterium species, etc. (Wani et al. 2005; Chen et al.
2006), Azotobacter species (Sharma et al. 2013), Xanthomonas species (Srinivasan
et al. 2012), Enterobacter species, etc., (Zhu et al. 2012), and Vibrio species and
Xanthobacter species (Babalola and Glick 2012). The Rhizobium species that fixes
atmospheric nitrogen to the host plants also show P solubilization property. Rhizo-
bium species and Crotalaria species (Jorquera et al. 2011) increase the P content in
plants by making P easily available to plants. Kushneria species is a halophilic
bacteria that was extracted from the soils of Daqiao saltern on the eastern coast of
China, which have proved to be very beneficial for saline soils. Phosphate-
solubilizing fungi include strains of Fusarium, Alternaria, Sacchromyces, etc. For
better usage of amassed phosphorus in soils their use is very promising in the form of
biofertilizers enhancing sustainable agriculture one step further (Richardson and
Simpson 2011).

One of the enzymes that cause P solubilization is glucose dehydrogenase which is
a membrane-bound enzyme and causes oxidation of glucose to gluconic acid. The
gluconic acid is then converted to 2-ketogluconic acid and 2,5-diketogluconic acid
by the action of enzymes. P is solubilized effectively by 2-ketogluconic acid as
compared to gluconic acid. Although most of the studies on P solubilizing
microorganisms were performed at mesophilic temperatures but some reports are
also available of studies at low temperatures such as 10 �C (Vassilev et al. 2006).
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P mineralization means debasement of the remaining portion of the molecule after
solubilization of organic phosphorus which results in dissolution of Ca-P
compounds. Phytase is another enzyme responsible for organic P mineralization.
This enzyme causes the formation of phosphorus from organic materials which are
stored in the form of phytate in soil (Yi et al. 2008). Other enzymes involved in P
mineralization are NSAPs (non-specific acid phosphatases) which remove the phos-
phate group from phosphoester bonds of organic compounds. Various non-specific
acid phosphatase (NSAPs) enzymes released by P-solubilizing microorganisms
belonging to the family of phosphormonoesterases. The acid phosphatase enzymes
play an important role in solubilization, though alkaline phosphatases are also
present. Various solubilization and mineralization processes that involve different
enzymes play an important role in recycling of phosphorus.

13.7.3 Stress Management

Cold-tolerant microbes permanently sustain low temperature in cryo-environments
such as deep sea, mountains, and polar regions. These organisms are also known as
psychrotolerant, psychrotroph, or psychrophiles as they grow better at very low
temperatures (Morita 1975). Psychrophiles can overcome two main challenges
because of their unique properties: First challenge is the survival of psychrophiles
at very low temperatures because if there is decrease in temperature, the biochemical
reactions are affected exponentially. Second, the viscous aqueous environments are
considerably increased as temperature is decreased. Their growth rate is maximum
between temperatures of 2 and 12 �C (Xu et al. 2003).

The membrane functions are also affected, which leads to decreased membrane
fluidity and the loss of membrane functions. The physical properties of membranes
are affected by fatty acid composition, and it changes with the environment of the
microbes. In general, reduced temperature produces a higher content of branched
fatty acids both saturated and unsaturated (Pandey et al. 2004). Another adaptation
of psychrophiles is an increased content of big and more compact head groups of
lipids, proteins, and carotenes (Deming 2002). In some psychrophiles, there is less
non-polar carotenoid pigment synthesis (Chintalapati et al. 2004).

Microbial activity at temperatures around �20 �C occurs in normal water inside
the ice. These contain increased concentrations of sodium chloride (NaCl) or other
particulate matters which maintain the fluid flow. Different factors such as hydro-
static and osmotic pressure, solar radiations, availability of nutrients and stress also
strongly affect the growth of psychrophilic microbes. Various specialized proteins
are expressed in microbes when they are subjected to sudden change in temperatures.
These proteins are involved in cellular processes like protein folding and the control
of membrane fluidity (Russell 2000). In psychrophiles, Caps are expressed at low
temperatures though they are similar to the Caps present in mesophiles. This shows
that a sensory system that senses temperature is present in psychrophiles, and these
thermosensors sense membrane fluidity as well (Arthur and Watson 1976).
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Anti-freeze proteins (AFPs) or ice-restricting proteins have been recognized in
microorganisms living in Antarctic lake (Gilbert et al. 2005) that can tie to ice
precious stones in an expansive surface and brings down the temperature at which
a life form can openly develop (Jia and Davies 2002). AFP from certain organisms is
Ca2+-reliant and hyperactive ice surfaces and control ice precious. AFPs bind to
stone development and recrystallization by bringing down the point of solidification
(warm hysteresis) (Krembs et al. 2002).

Other molecules that have an important role in protecting psychrophiles against
cold conditions are disaccharide trehalose and exopolysaccharides. Trehalose binds
the molecules together and helps in the prevention of protein denaturation and
protein aggregation (Nichols et al. 2005). The trehalose disaccharide also
rummage-free radicals and stabilize cellular membranes under cold climatic
conditions. Increased concentrations of exopolysaccharides have been found in
bacteria of sea of Antarctica water (Muryoi et al. 2004) and in sea ice of Arctic
water (Nichols et al. 2005). These change the physiological environment of bacterial
cells, participate in adhering of cells to surfaces and retain water, increase the
nutrient concentration, retain and save extracellular enzymes against cold denatur-
ation, and most importantly, it acts as cyoprotectant (Tosco et al. 2003). EPS have
elevated amounts of polyhydroxyl which brings down the point of solidification of
water. EPS can likewise trap water, supplements and metal particles and encourage
surface grip, cell collection and biofilm arrangement and may likewise assume a job
in securing extracellular catalysts against cold denaturation and autolysis. EPS have
high levels of polyhydroxyl which lowers the freezing point of water (Campanaro
et al. 2011). EPS influenced the species colonization and survival of the present
organisms in the natural surroundings near the oceans ice by lowering the rate of
development of ice because of higher saltiness (Mykytczuk et al. 2011).

The combination of cytoplasmic ice crystals is incited by cell solidifying. The
accumulation of substances like sucrose, glycine, betaine and mannitol results in the
bringing down of the point of solidification of cytoplasm consequently giving
assurance against solidifying.

Ongoing transcriptome investigations have demonstrated that introduction to cold
temperatures initiates a fast up-guideline of qualities engaged with layer biogenesis,
for example, unsaturated fat and LPS biosynthesis, peptidoglycan biosynthesis,
glycosyltransferases and outer membrane proteins (Deming 2002). Similar genomic
studies have additionally uncovered that genes engaged with the synthesis of cell
membrane are overexpressed in the genomes of psychrophilic microorganisms.
General membrane transport proteins are elevated as seen by transcriptomic
contemplates, against the lower dispersion rates over the cell layers experienced at
colder temperature (Qiu et al. 2006). Specifically, the dimensions of peptide
transporters are expanded which encourages cold and hyperosmotic stress which
improves the take-up of supplements (Reva et al. 2006).

Another class of layer smoothness modulators are carotenoid pigments. Both
polar and non-polar carotenoid pigments are delivered by different Antarctic
microorganisms and have been proposed to keep up layer smoothness and aid in
keeping up equalization amid changes in temperatures (Fig. 13.1). Wax esters
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additionally assume a significant job in cool balanced film ease. In Psychrobacter
urativorans, they may represent up to 14% of the cell lipid content, and in
P. arcticus, the wax ester synthase is constitutively communicated, paying little
heed to the development temperature (Sung et al. 2011).

13.8 Industrially Important Cold Enzymes

Psychrophilic microorganisms produce enzymes that can sustain low temperature
and other stresses of cold climatic conditions. These enzymes are used in paper,
pulp, pharmaceutical and food industries (Whitman 1998). Psychrozymes or cold-
adapted enzymes can sustain temperatures between 10 and 5 �C. There is an
increasing demand of psychrozymes in industries because of their withstanding
nature in adverse conditions. Nowadays more attention is paid on the use of proteins
isolated from cold-loving microorganisms as they act at their optimum temperature
enhancing the recovery of the products of enzymatic reaction (D’Amico et al. 2006).

The psychrozymes have the ability to degrade a wide range of polymeric
substances and the substance that can produce enzymes like amylases, cellulases,
pectinases, β-galactosidase, oxidases, protease and lipase. A huge amount of money
is invested in psychrozymes worldwide due to their extreme potential. The industri-
ally important psychrozymes are used in the fields of food industry (such as
pectinase, β-galactosidase), bio-polishing of textile products and detergent formula-
tion industries. Moreover, these psychrozymes are also used in bioremediation (such
as oxidases), for biotransformations (methylases and aminotransferases) (Okuyama
et al. 1999) and in biomedical applications. Psychrozymes are used in:

1. Industrial processes including food technology
2. Bioremediation and other pollution control technologies
3. Medical and other pharmaceutical uses

Psychrozymes have many benefits such as high specific activities at low temper-
ature, they can offer many other advantages like saving energy, saving volatile
compounds, contamination prevention and easy inactivation of enzymes. Most of
the food industries treat the products with psychrozymes for maintaining the quality
of food during their transportation and storage. Psychrozymes are also frequently
utilized in detergent and textile industries. Similarly pectinases and cellulases are
used in the clarification of fruit juices; proteases helps in the removal of fish skin.

Apart from food industry, psychrozymes are used for the low-temperature bio-
degradation, and they are best alternatives to physicochemical methods for the
bioremediation of solids and waste waters polluted by hydrocarbons, oils and lipids
(Violot et al. 2005). Biodegradation with psychrozymes have several advantages
over other existing traditional methods. It has been observed that the treatment of
contaminated soil with psychrozymes is much more cost-effective than traditional
methods such as incineration, storage or concentration. In 1997, Brun et al. studied
the recombinant Antarctic Pseudoalteromonas haloplanktis which secretes toluene-
0-xylene monooxygenase (T0MO). This enzyme efficiently converts several
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aromatic compounds into their corresponding catechols in a broad range of temper-
ature. It has been suggested that the genetically engineered Antarctic bacterium is
used in the bioremediation of contaminated marine environments. The interest on
psychrozymes have increased greatly because of their high activity at low
temperatures which offers potential economic benefits (Margesin and Schinner
1994). For example, the “peeling” of leather by cold adapt protease can be done
with normal water instead of at 37 �C. An important achievement in the field of cold-
adapted enzymes has been the construction of a host-vector system that allows the
overexpression of genes in psychrophilic bacteria even at low temperatures which
prevents the formation of inclusion bodies and protects heat-sensitive gene products.
A single PUFA is produced using psychrozymes, rather than the complex mixture
which is yielded from fish or algal oils.

13.9 Conclusion

Microbes play a vital role in sustainable environment and affect both flora and fauna
of any ecosystem. Cold environment has its own challenges which can be countered
by using the strategies used by nature. Exploring the adaptations used by
psychrophiles help us to mimic them in our day to day life. Many low-temperature
microbes have a great role to play in all low temperature-based industries.
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