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Abstract. LoRa technology has emerged as an interesting solution for
Low Power Wide Area applications. To support a massive amount of
devices in large-scale networks, it is necessary to design an appropri-
ate parameter allocation scheme for device. LoRa devices provide high
flexibility in choosing settings of communication parameters (includ-
ing spreading factors, bandwidth, coding rate, transmission power, etc),
which results in there are over 6000 settings for choosing. However, the
existing methods mainly focus on the same parameter setting for net-
work deployment. To this aim, the impact of different parameter selec-
tions on communication performance is analyzed first. Then, channel
collision and link budget model are established and implemented in the
NS3 simulator. A dynamic parameter selection method based on orthogo-
nal genetic algorithm (OGA) is introduced to solve the model, ultimately
according to link budget, each device selects its parameter setting, which
minimized collision probability. Finally, simulation results show that the
OGA algorithm proposed in this paper can improve the packet delivery
rate by 30%. Knowing different packet sizes have an impact on net-
work performance, the experiment also evaluated the impact of different
packet sizes on network transmission reliability under different param-
eter setting methods, the introduced OGA has significantly improved
adaptability and scalability of the network in the case of high payloads.

Keywords: Internet of things · LoRa · Low power wide-area
network · Orthogonal genetic algorithm · Parameter combination

1 Introduction

With the continuous development of IoT, its application domains are increasing,
and the number of device deployment is exploding. According to forecasts, the
number of connected IoT devices will continue to grow at a rate of 32% per year
and it is estimated that there will be 500 billion devices connected with wire-
less communication by 2022 [1]. Compared with the Internet, some emerging IoT
applications require merely less memory, bandwidth and processing ability of the
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device to efficiently complete their work [2,3]. Traditional cellular networks and
related technologies have been unable to satisfy the demands for “less of every-
thing” in terms of network capacity, communication range, energy consumption
and cost. Aiming at solving this issue, LPWAN, a very attractive and promising
communication technology, is utilized to carry out the long-range communica-
tion with a large number of devices. And it is gradually applied on the smart
home, metering application and other application fields [4–6]. LPWAN has the
advantage on offering long-range connectivity for low power and low rate end
devices. Therefore, it is suitable for those applications that are delay-tolerant,
only need low data rates and typically require low power consumption. Recently,
small payload packets with low amount of data have been garnered widespread
attention in the IoT industry [7]. For example, for smart meters, each device is
only required to transmit a packet per day. Other similar applications merely
need transmit small amounts of discrete packet such as temperature and humid-
ity. Such applications regularly use low-cost and low-consumption processors.
When using LPWAN technology to transmit packets, the device can operate for
several years with only one battery.

As an emerging LPWAN technology, LoRa has attracted much attention not
only for its low power consumption and low deployment cost, but also for transfer
of messages over a long-range. LoRa is a physical layer technique. Its MAC layer
solution is regarded as LoRaWAN [8]. To keep the system free of complex routing
protocols, LoRa technologies often rely on star topologies, in which end devices
communicate directly with gateways in a single hop [9]. In order to achieve the
scalability of LoRa network, LoRa technologies are required to provide connec-
tivity for a massive number of IoT devices. And a large number of parameter
settings will be generated from massive IoT devices which need to meet dif-
ferent IoT applications with varying communication patterns. LoRa provides a
range of communication parameter settings, including Spreading Factor (SF),
Bandwidth (BW), Code Rate (CR), Transmission Power (TP) and Packet Size
(PS) [10]. Many combination settings are orthogonal and keep communications
from simultaneous collision, it has to be noted that using the same parameters
increases the probability of collision. A packet can have significant variations in
ToA (Time on Air) depending on the selected setting. For example, a 20 bytes
packet can vary between 7 ms and 2.2 s. For this reasons it is indispensable in a
LoRa network that end devices with battery-powered make good transmission
parameter choices.

In view of the above problems, some researches have proposed SF adaptive
optimization strategy [8,11,12], which can effectively improve the fairness of
Packet Error Rate (PER) in LoRa network. However, this method does not take
into account the full spectrum of parameters governing such as BW, CR, TP
and PS on scalability of LoRa networks. Considering the shortcomings of existing
methods, in this paper, a model of channel collision and link budget for single-
gateway LoRa network is established and implemented in NS3 simulator. By
solving the model, the parameter combination with minimum collision probabil-
ity obtained. Algorithm for solving multi-objective combinatorial problems with
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exhaustion method, genetic algorithm, simulated annealing algorithm. Consider-
ing that the end device is battery powered, the exhaustive method consumes too
long time and is not suitable for this scenario. Simulated annealing algorithm
is a random algorithm with slow convergence speed and cannot find the global
optimal solution. The Genetic Algorithm (GA) processes the individual chromo-
somes encoded by the parameter set and can simultaneously process multiple
individuals in the population. However, the core operation-crossover operator of
the traditional GA is random in factor segmentation. The search has a certain
blindness to some extent, which reduces the search efficiency of the algorithm.
Therefore, the orthogonal design method is utilized to design crossover opera-
tor, and as a result, crossover operator self-adaptive to adjust the location for
dividing the parents into several sub-vectors, so as to generate the population
of genetic algorithm. In order to achieve a higher user experience quality at a
lower power consumption, by using the dynamic parameter selection method
based on orthogonal genetic algorithm (OGA), the communication device can
independently select SF, BW, CR, TP and other parameters. In summary, the
main work of this paper includes:

• First of all by experiment, a study of the impact of the LoRa transmission
parameters SF, BW, CR, TP and PS on communication performance is ana-
lyzed;

• A channel collision and link budget model are established for single-gateway
LoRa network and implemented in NS3 simulator. An OGA-based dynamic
parameter selection algorithm is proposed. By using the cross-combination
dynamic selection of parameters, the collision probability is minimized;

• By simulating 10,000 end devices with the same PS, PDR was 30% better
than the static deployment. Knowing different packet sizes have an impact on
network performance, the experiment evaluated the impact of different PS on
network transmission reliability under different parameter setting methods.

2 Related Work

To optimize the performance of LoRa, many work mainly focus on how to allo-
cate the wireless resources effectively. Author Peng et al. [11] at SIGCOMM
2018 proposed PLoRa, an ambient backscatter design that enables long-range
wireless connectivity for battery less IoT devices, but the author points out in
the study that the limitation of PLoRa design is that only encoding a data rate
(determined by SF, BW and CR). There are also many other works studied
on performance improvements of network-related parameters. To sum up, the
research on LoRa parameter configuration can be divided into two categories:

The first category is the static deployment method which refers to a setting
where all end devices employ the same parameter. Martin et al. [9] adopted three
static parameter settings for network communication, those are SN1, SN2, SN3.
SN1, which is the longest ToA setting, SN2 is the shortest ToA setting, and SN3
is the default setting. These parameter settings are applied to evaluate the scal-
ability of the LoRa network for the established link model. Thiemo et al. solved
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the problem of interference caused by deploying multiple independent LoRa net-
works in close proximity [12]. All experiments have the same parameter setting
SN1 and SN3. SN3 is similar to SN1 except for a lower CR which reduces the
ToA and leads to fewer collisions. A stronger CR is very energy-costly as packets
contain redundant information, however, better communication performance can
be achieved in areas with burst interference. It is possible to conclude that with
the increase number of end devices, static parameter deployment cannot make
the LoRa scaled well. Therefore, the dynamic configuration and autonomous
selection of LoRa parameters are of great significance for reducing energy con-
sumption of end device and improving network scalability.

The second category is the dynamic deployment method. Martin et al. [9]
evaluated the impact of dynamic communication parameter selection on PDR.
Three settings SN3, SN4, and SN5 are compared. SN3 is the same as the exper-
iment in static deployment as a comparative experiment. In the case of SN4, set
BW, SF, and CR to minimize ToA (with a constant TP = 14 dBm), SN5 sets
the first ToA determined by BW, SF, CR and minimizes the selection of the TP.
Dynamic parameter settings have significant improvements over static setting
implementation in LoRa. But it has to be considered that this achievement is
not practical and relies on quite optimistic assumptions. First, the minimum ToA
setting has the lowest CR, which fail to provide sufficient protection. Second, due
to environmental changes, it is necessary to re-evaluate selected settings from
time to time and requires implementation of complex protocols to facilitate set-
tings in the LoRa network. EXPLoRa heuristic method [13] aims to effectively
allocate SFs between end devices, and proposes two SF allocation methods,
EXP-SF and EXP-AT. EXP-SF distributed SFs equally among N nodes based
on RSSI, EXPLoRa-AT is a more sophisticated method of transmitting data
packets across SF channels by equalized ToAs. The two aforementioned meth-
ods use same BW, CR and TP, which leads to a higher overall data rate than
in reality. Martin et al. [14] developed a link probing regime which enables us to
quickly determine transmission parameter selection with lower energy consump-
tion, but they did not evaluate the impact of different parameters on network
scalability. Adelantado et al. [15] reported the characteristics and limits of LoRa
according to the relationship between duty cycle and throughput of different PS.
Taoufik et al. [16] pointed out that the consumed energy changes with different
LoRa parameters such as SF, CR, BW, TP and PS. Optimizing these parame-
ters are of great importance for both reducing sensor energy consumption and
network scalability.

Although there have been studies on SF dynamic allocation, this category is
still classified as static deployment in our study because other parameters such
as BW, CR and TP are indeed fixed.
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3 Overview of LoRa

3.1 LoRa Physical Layer Parameter

LoRa uses the CSS modulation combined with the Forward Error Correction
(FEC) to maintain low power and long communication range [17]. LoRa key
properties are: long-range, high robustness, multipath resistance, Doppler resis-
tance and low power [18]. A typical LoRa device provides several main modula-
tion parameters SF, BW, CR and TP. Theses parameters influence the effective
bit-rate of the modulation, its resistance to interference noise and ease of decod-
ing. LoRa’s communication performance can be tuned by varying the selection
of these parameter settings and the LoRa network scalability is determined by
this key factors. BW is the width of frequencies in the transmission band. The
higher is the BW, the shorter is the ToA and the lower is the sensitivity. SF
is the number of bits encoded into each symbol, namely the ratio of chip rate
to symbol rate. Each increase in SF allows a longer communication range, but
doubles ToA and ultimately energy consumption. CR is the FEC code rate used
by LoRa modem to protect from a burst of interference. Depending on the CR
selected, additional robustness can be obtained with interference. A higher CR
offers more protection, but increases ToA. A high TP will result in a higher
RSSI, increasing the range of communication while allowing a lower PER. Max-
imum PS for a LoRa network is 255 bytes. In our testing, the packet sizes were
configured as: 10 bytes, 20 bytes, 30 bytes, 40 bytes, 60 bytes, 80 bytes.

3.2 The Effect of Different Parameter

Each data rate, through the combination of SF, BW, CR and PS, experiences
different ToA, thus different collision probability. Following these considerations,
we analyzed the effects of different parameters on ToA and energy consumption
through experiments. Figure 1 shows the comparison between ToA and energy
consumption with different parameters. It can be seen from the figure that the
ToA of data packets varies significantly with different communication parameter
selections. For example, the ToA of packets of 20 bytes with different parame-
ters varies between 7 ms–2 s. Therefore, the dynamic selection of communication
parameters has a significant impact on the scalability of LoRa network deploy-
ment.

4 System Modeling

In order to study the influence of communication parameters on LoRa network
performance, in this section, we describe system model that are used in the
paper.
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Fig. 1. Effect of different parameter on ToA and Energy.

4.1 Channel Collision Model

The LoRaWAN physical layer supports adjustable SFs, SFs ∈ [7, 12] and spread
spectrum signals with different SFs have good orthogonality and can transmit
in the same channel simultaneous without interference [19]. As shown in Fig. 2,
in LoRaWAN, it is assumed that the available SFs are SF9 and SF11, and the
following three cases are transmitted in the channel. In case 1, on account of
two SFs 11 arrive at different channels simultaneously, they can be successfully
received and decoded. In the case 2, SF9 and SF11 are in the same channel,
and due to their orthogonality, collisions can be avoided. In the case 3, the
same SF9 arrives at the same channel simultaneously, causing a collision to
occur. When there are multiple SFs transmitting on the channel, two collide
occur: Two packets with same SF arriving at the same channel simultaneous
cause a collision, thus causing data packet loss. Collisions with the same SF: the
probability of at least one collision with the same SF using the random access
formula, as shown in Eq. (1):

Pcoll,sf = 1 − e−2Gsf (1)

where Gsf is the amount of packets generated during the transmission of one
packet with SF.

The transmission time of a packet Tsf in LoRa is given by Eq. (2)

Tsf =
L
Rb

(2)

Rb is bit-rate that can be expressed as:

Rb = SF × BW

2SF
× CR (3)
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Fig. 2. Multiple access under the orthogonal SF.

the amount of traffic generated per unit of time λ is given by

λ =
N

Ti
(4)

Ti the average packet inter arrival time per end device. The amount of traffic
Gsf generated during the transmission of one packet using SF is

Gsf = λ∂sfTsf (5)

where ∂sf is the fraction of devices using the same SF. Finally, the probability
of collision can be expressed as

Pcoll,sf = 1 − e−2[ 2
sf

sf
L

BW×cr ∂sfλ] (6)

The probability of packet collision during transmission is closely related to the
combination of these parameters and ∂sf , which is the variable used to optimize
the PDR. Therefore, the channel collision model is established as the objective
function to improve PDR by dynamically selecting the combination of parame-
ters, so as to improve the reliable transmission of the network.

4.2 Link Budget Model

The solution to our problem is not merely to minimize the probability of colli-
sion, but also to increase the correct reception of the gateway. The gateway is
determining the reception depending on the receive sensitivity. These parameters
also have significant influence on the receive sensitivity [20]. The increase of BW
will reduce the sensitivity of the receiver, while the increase of SF will increase
the sensitivity of the receiver. The evaluation and analysis of link budget depend
on link parameters such as SNR and receive sensitivity, and receive sensitivity
is positively correlated with SNR. The SNR is calculated as follows:

SNR =
2sf × Prx

BW × NF × K × T
(7)

where Prx, NF , K and T are the received power, receiver architecture noise
figure, the Kelvin constant, the temperature respectively. The sensitivity can be
defined in the following equation:

SR(SF,BW ) = −174 + 10log10(BW ) + NF + SNR (8)
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Equation (8) depicts the Lpath expression, Thus, real path loss in LoRa can be
mathematically defined as:

Lpath =
Ptx

SR(SF,BW )
(9)

In wireless communication, the MCL is defined as the maximum link budget
allowed for each value of SF, BW and TP. To ensure correct signal demodulation,
Lpath must be smaller than MCL:

p =
{

1 MCL > Lpath

0 else
(10)

where MCL is determined based on the sensitivity of the gateway and TP used
by the end device as follows:

MCL = TP − SR(SF,BW ) (11)

4.3 Packet Delivery Rate

In this paper, we define reliability as the ratio of the packets successfully received
by the gateway to the total number of packets transmitted from the end device
over a period of time. The main evaluation metric used in the simulation to esti-
mate the performance is called packet delivery rate (PDR). The packets trans-
mitted from the end device fail to deliver if they could not satisfy the condition
mentioned in (10). The Lpath defined in (9) refers to the average statistical path
loss in the city environment. However, in real-life scenarios, path loss fluctuates
and exact path loss is hard to estimate. This happens because wireless commu-
nication is effected by several unpredictable factors [21–23] such as the blocking
of signals caused by large obstacles, fluctuation caused by weather conditions.
Therefore, in order to simulate the real scenario as much as possible, we need to
fully consider the impact of these parameters on communication.

5 Proposed Solution

In this section, we will explain in detail the proposed method. First, we specify
the feasibility of the proposed method. Following it, we describe the implemen-
tation process of the algorithm. With small data rate and resource limited LoRa
end device, configuration of optimal settings becomes challenging. Especially
when the number of end device is large, how to utilize an appropriate dynamic
selection algorithm becomes particularly important. For the LoRa parameter,
the set S= {SF, BW, CR, TP}, where SFs ∈ [7, 12] has 6 levels, BW = 125 kHz,
250 kHz and 500 kHz have 3 levels, CR = 4/5, 4/6, 4/7, 4/8 have 4 levels, and
there are 13 levels in TP ∈ [2, 14]. When N nodes are considered, the search space
for optimal parameter for each node is N6×4×3×13, this optimization problem
can easily be solved by GA. The advantage of GA is reflected in the extensiveness
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of the representation of the feasible solution. The object it deals with is not the
parameter itself, but the individual gene obtained by encoding the parameter set
and can simultaneously process multiple individuals in the population, which is
very suitable for parameter configuration in LoRa network.

5.1 OGA Dynamic Selection

Although GA has been successfully applied in many optimization problems.
However, a large number of studies have shown that traditional GA has many
shortcomings [25], such as premature convergence and poor local search ability.
Crossover operator imitates the natural process of chromosome gene recombina-
tion, and the core operation of GA. In the traditional way to carry out crossover
operation, the location of factor segmentation is randomly generated and the
search has certain blindness, which greatly reduces the search efficiency of the
algorithm. In order to solve this problem, this paper adopts OGA as a solution
to the problem, by integrating the orthogonal design into crossover operator, the
position of the segmentation of the individual factors of the parent generation
can be adjusted adaptively to generate the population of the GA. Among many
combination parameters of LoRa, the two parent individuals involved in the
crossover operation are: p1: (7, 125, 1, 2), p2:(8, 250, 2, 5). If the first and second
dimensions of p1 and p2 are denoted as factor 1, third and fourth are considered
as factor 2 respectively, the position of factor segmentation is shown in the dotted
line in the equation. In this way, the cross operation of p1 and p2 is transformed
into a two-factor, two-level experimental problem. Finally, orthogonal design is
arranged in orthogonal table to generate offspring population p1, as shown

{
p1 = (7, |125 , 1, 2)
p2 = (8, |250 , 2, 5) ⇒ p1 =

⎧⎪⎪⎨
⎪⎪⎩

(7, 125, 1, 2)
(7, 250, 2, 5)
(8, 125, 1, 2)
(8, 250, 2, 5)

(12)

After the three methods are utilized to segment the factors, eight descendant
individuals including two fathers are generated. In the multi-point crossover
operation, the cross combination method exists in various ways. As the num-
ber of intersections increases, the number of combination methods will increase
sharply, and the number of intersections and the position of the cross operation
are adaptively adjusted hence improve search efficiency. The specific method of
factor segmentation is shown in step 1 of the algorithm. In the N-dimensional
space, set Q parents involved in the recombination be p1, p2, . . . pQ. Each parent
involved in the recombination was regarded as a level of the orthogonal design,
namely the Q level. Then, each parent was divided into T groups, and each
group was considered as one factor. In this way, the recombination problem of Q
parent individuals is transformed into the orthogonal design problem of Q level
and T factor. The whole algorithm flow is as follows: (1) The Q parent individ-
uals involved in the recombination were considered as a level of the orthogonal
design, and the i-th level was denoted as βi, i ∈ {1, 2, 3, · · · Q} (2) The specific
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grouping method is: randomly generate T − 1 integers, that is k1, k2..., kT−1,
and satisfy the requirement that 1 < k1 < k2 < ... < kT−1 < N . Individual
X = (X1,X2 . . . , XN ) is divided into T parts, each of which represents a factor
of individual X. ⎧⎪⎪⎨

⎪⎪⎩

f1 = (x1, x2, · · · , xk1)
f2 = (xk1+1, xk1+2, · · · , xk2)
· · ·
fT =

(
xkT−1 , xkT−1+1, · · · , xN

) (13)

Therefore, the Q levels of the i-th factor can be expressed as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fi(1) =
(
βki−1+1,1

, βki−1+2,1
. . . , βk,1

)
fi(2) =

(
βki−1+1,2

, βki−1+2,2
. . . , βk,2

)
· · ·
fi(Q) =

(
βki−1+1,Q

, βki−1+2,Q
. . . , βk,Q

)
(14)

(3) Select orthogonal table and M descendants were generated according to the
orthogonal table ⎧⎪⎪⎨

⎪⎪⎩

(f1(b1,1), f2(b1,2), · · · fT (b1,T ))
(f1(b2,1), f2(b2,2), · · · fT (b2,T ))
· · ·
(f1(bM,1), f2(bM,2), · · · fT (bM,T ))

(15)

Algorithm 1. Dynamic selection algorithm
1: function OPTIMAL SETTING(Pcoll,sf )
2: Connection ← FALSE
3: Si, T = 0 initializes
4: Select and crossover in (13)(14)(15)
5: while ( doT > 30)
6: Si = {SF, BW, CR, TP}
7: Calculate Lpath givenPcoll,sf from (9)
8: while s in Si do
9: Calculate MCLs from (11)

10: if MCLs > Lpath then
11: Connection ← TRUE
12: if Pcoll,sf < 4% then
13: Si{opt} ← s
14: else
15: return NULL
16: return Si

The proposed OGA uses dynamic selection of optimal setting Si based on
estimated path loss, depending on the parameter combination with a mini-
mum probability of collision, as per (11). In this paper, each settings is a
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combination of independently varying SF, BW, CR and TP and thus is a
subset of S = {SF,BW,CR,TP}. At the beginning, the proposed method ini-
tializes Si by using orthogonal design method to generate the initial pop-
ulation S = (7, 125, 1, 2), (7, 500, 4, 11), (8, 250, 2, 5), (8, 500, 3, 14), (9, 500, 3, 8),
(9, 125, 2, 8), (10, 125, 4, 11), (10, 250, 1, 5), (11, 125, 3, 2), (11, 250, 4, 14), as it gen-
erate among all possible settings in LoRa transmission. Then set the maximum
iterations T = 30, the initial iteration T = 0. After generating the population, it
is first determined whether the number of iterations is reached. Random select
two parent individuals to perform three cross operations at different positions.
Calculate the fitness value (Lpath) of the candidate solution, that is, the process
of the above multi-point cross, hence generate the child generation population
t + 1. The probability of selection = individual fitness value/total fitness value.
The method then iterates over all possible setting and chooses the Si which
minimum collision possibility (fitness value) is within 4% for successful commu-
nication.

6 Evaluation and Results of Simulation Experiments

We used NS3 simulator to evaluate the scalability of LoRa networks. Since large-
scale network deployment would be prohibitively expensive, it is not feasible to
evaluate the scalability of such LoRa networks in real scenarios. For scalability,
we focus on the capacity of a single gateway. This section presents the numerical
results of the proposed method. We calculated PDR with respect to the total
number of devices ranging from 0 to 10,000. The parameters in the experimental
simulation are shown in Table 1.

Table 1. Parameters set.

Parameters Values

End device 0–10000

SF 7–11

BW 125 kHz, 250 kHz, 500 kHz

CR 4/5, 4/6, 4/7, 4/8

λ 60 ms

PL 20B

6.1 The Impact of Parameter Selection

In this subsection, we first present the results of simulations with different SFs
as a function of the number of end devices (up to 5000). Figure 3 shows PDR
with different SFs from 7 to 12. We can see that PDR decreases when the
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number of end device increases. The SF7 has better PDR compared with the
others due to its short ToA but its range is reduced. Figure 4 shows the PDR
with different SFs and CR. We can conclude that the higher CR (4/8) experience
better PDR because it provide more protect. This means selection of parameters
has a significant impact on network performance.

Fig. 3. The impact of SF selection. Fig. 4. The impact of CR and SF selection.

6.2 End Device Distribution Assessment

We define the ratio of devices using SF i as ∂i. The motivation of our study is
to optimize the PDR in environments where a large number of devices can use
the same SF, thus the biased deployment must be considered. The optimized
distribution of end devices (∂7, ∂8, ∂9, ∂10, ∂11, ∂12) is (0.3, 0.1, 0.1, 0.2, 0.3, 0).
The sum of the devices allocated by all SF is the total number of devices in
the network. Although SF12 provides a larger coverage, it also increases the
probability of collision, so we neglect its allocation. The network is serviced by
a gateway located in the center of a circle with a radius of 8 km. The device
distribution is shown in the Fig. 5.

Fig. 5. End device distribution
without SF = 12.

Fig. 6. PER control parameter selection
within 4%.
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6.3 Scalability Analyses

Before assessing PDR, first analyzes the PER of TP and DR determined by
different SF, BW and CR, and the Fig. 6 of the DR value of 1 to 6. The SF, BW,
and CR corresponding to the DR are shown in Table 2, according to the basic
trend is rising with the increase of power, in the case of DR for 1 and 2, may be
affected by the power of saturated, the overall PER are relatively low. Figure 6
shows the parameter selection with the set fitness value controlled within 4%.

Table 2. SF, BW and CR corresponding to different DRs.

DR SF BW CR

1 11 125 kHz 4/6

2 10 250 kHz 4/5

3 9 125 kHz 4/8

4 8 500 kHz 4/5

5 7 125 kHz 4/7

6 7 250 kHz 4/5

100 200 300 400 500 600 700 800 900 1000
End Device

0

0.2

0.4

0.6

0.8

1

PD
R

LoRaAT LoRaTS OGA

Fig. 7. Compare with dynamic parameter settings of PDR under 1000 device.

Figure 7 shows the PDR of the dynamic parameter method LoRa-TS and
LoRa-AT under 1000 end device. With the increase number of end devices, the
proposed method of dynamic parameter selection has a significant improvement
on PDR. The Fig. 8 shows a comparison of PDRs for different dynamic methods
of up to 10,000 end devices. The method in NS3, for each end device, by dynam-
ically assigning the SF of lowest PER below a certain threshold and employed
same parameters such as BW, CR and TP, the PDR based on OGA method was
always high regardless of the number of end devices. In SN5, dynamic parameter
selection is used, the minimum ToA and minimum TP are selected each time.
When the number of end devices is less than 2000, there is no obvious difference
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in PDR, but when the number of end devices is large, the OGA method proposed
in this paper has obvious advantages, it is worth noting that above situations
all have the same PS with 20B.

The proposed OGA method also has some advantages in terms of PS. We
change the PS for end devices and measure the corresponding PDR. From the
Fig. 9, it can be seen that the PDR difference between different methods is not
obvious when the payload is smaller as the gateway is not saturated. As the
PS increases and the gateway becomes saturated, however, increasing the PS
decreases the capacity, as expected. Specially, for 200 devices, the PDRs achieved
for payload size of 80 are improved about 70%, which is quite significant.

0 2000 4000 6000 8000 10000
End Device

0

0.2

0.4

0.6

0.8

1

PD
R

NS-3
SN5
OGA

Fig. 8. Different dynamic param-
eter settings of PDR under 10000
device.

10 20 30 40 50 60 70 80
PS

0.2

0.4

0.6

0.8

1

PD
R

SN1
SN2
SN3
OGA

Fig. 9. Different PS of the PDR with 200
devices.

7 Conclusions

In this paper, The OGA method is introduced to solve the established channel
collision and link budget model, which made the parameters of LoRa network
selected dynamically. By the above method, the minimized collision probabil-
ity parameter combination of which probability is 30% higher than the static
parameter could be obtained. It is verified that LoRa network can be well scale
by dynamic parameter selection. LoRa can support the deployment of a large
number of applications, such as smart meters, smart parking and street light-
ing. However, most support multiple applications over a single current network
deployment studies only support network simulation using a single IoT appli-
cation, and different IoT applications have different data requirements on the
amount of data to be transmitted and quality of service requirements. So our
next step is to study application’s data generation rate for different applications.
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