
Chapter 6
Floquet-Bloch Theory for Semiconductor
Bragg Structure

A. A. Shmat’ko, V. N. Mizernik, E. N. Odarenko, A. S. Krivets
and O. V. Yushchenko

Abstract The problem of Floquet-Bloch waves propagation in a semiconductor
magnetophotonic crystal with a transverse magnetic field was solved. The funda-
mental solutions of the Hill equation in layers that based on the Floquet theory
were obtained in an analytical form. The dispersion equation and its roots are found
explicitly. The analysis of the dispersion properties of the structures depending on
the material parameters of the layers was carried out. The parameters of gyrotropic
layers for the full transmission and reflection of a plane wave for different frequen-
cies through a limited magnetophotonic crystal in modes of surface and bulk waves
are determined.

6.1 Introduction

In recent years, a lot of theoretical and experimental works [1–12] has been devoted
to the problem of the terahertz range electromagnetic waves propagation through the
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periodic thin films (one-dimensional photonic crystals). At the same time, photonic
crystals have been already widely used in different applications of modern science
and technology of the terahertz, microwave and optical ranges. One of the promis-
ing photonic crystals applications is the new terahertz radiation sources developing
with frequency tuning possibility [13–17].Majority of PhC theoretical investigations
are based on the characteristic (dispersion) equation solution and on the periodical
structure transfer matrix. Due to this approach, the properties of isotropic photonic
crystals are well studied both for TE and TM modes [1, 2, 18].

An alternative treatment to the research of PhCs is the Floquet-Bloch theory [19–
22], that based on the fundamental solutions of Hill’s equations and allows to find in
the analytic form not only the dispersion characteristics of PhCs but also expressions
for the fields in each PhC layer [18, 23–28]. However, such researches have been car-
ried out only for isotropic photonic crystals based on two-layers periodic dielectric
structures. Recently, magnetophotonic crystals (MPhCs) which based on gyrotropic
elements with a controlled transverse magnetic field have attracted the particular
attention of researchers. In the case of gyrotropy presence in the medium, its mate-
rial parameters are tensors. The presence of gyrotropic layers in the such structure
provides opportunity to change the material parameters values due to the applied
magnetic field magnitude and, ultimately, to realize electric-type control for the dis-
persion properties of the MPhCs and for the wave propagation characteristics. In this
case, depending on the direction of the applied magnetic field to the gyromagnetic
media, various effects can be observed: the Faraday effect, the magnetic two-beam
refraction, the rotation of the polarization plane, the nonreciprocal phenomena for
forward and backward waves, the presence of surface gyrotropic waves.

Investigations of MPhCs with gyrotropic elements in general case was carried
out mainly by the matrix approach [3, 7, 9, 11]. The Floquet theory approach for
gyrotropic MPCs have not been considered. In this paper the problem based on the
Floquet theory and new fundamental solutions of the Hill’s equation for own waves
in MPhC with gyrotropic semiconductor layers was represented.

6.2 Floquet—Bloch Waves Theory

Let us consider the propagation of electromagnetic waves in a stratified two-layers
periodic structure in general form with gyrotropic discrete layers (one-dimensional
MPhC) (Fig. 6.1). Each of the two layers on the structure period L = a + b is a
gyrotropic semiconductor medium, the dielectric constant of which is characterized
by a tensor of the standard form with the material parameters ↔

ε j , ( j = 1, 2). The
width of one layer is a, and the other one is b.

The dielectric constant tensor of the hyrotropic semiconductor medium of each
layer ( j = 1, 2) has a standard form [29]:
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Fig. 6.1 The model of a
gyrotropic MphC
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Traditionally, the analysis of wave propagation in MPhC is carried out on the
basis of Maxwell’s equations. In the two- a dimensional case

(
∂
∂z = 0

)

from the
Maxwell equations two independent Helmholtz equations can be obtained, each
of which describes TE (transverse electric) or TM (transverse magnetic) waves.
For TE waves the electric field component Ez = 0 (Ex , Ey, Hz), Hz-polarization
(p-polarization). For TM waves the component of the magnetic field Hz = 0
(Hx , Hy, Ez), Ez-polarization (s-polarization). The Helmholtz equations with the
field time dependence exp(−iωt) for these two types of waves may be given as:

∂

∂x

(
1

ε⊥(x)

∂ Hz

∂x

)

+ 1

ε⊥(x)

∂2Hz

∂y2
+ k2μ‖ Hz = 0, (6.1)

∂

∂x

(
1

μ(x)

∂ Ez

∂x

)

+ 1

μ(x)

∂2Ez

∂y2
+ k2ε‖Ez = 0. (6.2)

Here ε⊥ j (x) = ε j

(

1 − ε2aj

ε2j

)

is the effective value of dielectric permeability of

MPhC layers media; μ(x) = μ j is the magnetic permeability of layers. The rela-
tionship of the tangential field components Hy and Ey through the components Ez

and Hz (6.2), (6.3), is determined by the equations:

Ey =
(

1

ikε⊥

)(
∂ Hz

∂x
+ i

εa

ε

∂ Hz

∂y

)

, (6.3)

Hy =
(

1

−ikμ j

)
∂ Ez

∂x
. (6.4)

From the presented (6.1), (6.2) for the both field components Ez , Hz and from
the expressions of the tangential fields (6.3) and (6.4) it follows that the principle of
permutation duality is fulfilled for the two types of TM and TE waves. Further, when
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the field component Ez in (6.1) is replaced by Hz and, at the same time, ↔
ε ↔ −↔

μ,
it passes to (6.2). These facts allow us to simplify the consideration of a general
electrodynamics problem and to limit for ourselves only one wave type (TE or TM)
implementations for any type of medium. Equations (6.1) and (6.2) can be reduced
by using the method of separation of variables to one type of equations of the Hill’s
equation with periodic coefficients [19–22], namely:

∂

∂x

(

p(x)
∂ X

∂x

)

+ q(x)Xz = 0, (6.5)

where p(x) and q(x) is the periodical coefficients which are determined by expres-
sions p(x) = 1

ε⊥ j (x)
, q(x) = p(x)

(

k2μ‖ j (x)ε⊥ j (x) − β2
)

for TE waves and

p(x) = 1
μ⊥ j (x)

, q(x) = p(x)
(

k2ε‖ j (x)μ⊥ j (x) − β2
)

for TM waves. β is the wave

propagation constant along the axis Oy(exp(±iβy)). Substitution ∂2

∂y2 = −β2 is
used when the variables are separated in (6.1).

The one-dimensional (6.5) is the Hill’s equation [19–22] with periodic functions
p(x) and q(x) such that p(x + L) = p(x), q(x + L) = q(x). Equation (6.5) with the
corresponding boundary conditions is the boundary Sturm-Liouville problem. The
boundary conditions for finding solutions to (6.5) are related to the continuity of the
tangential components of the magnetic

Hz(x, y) = X(x)eiβy

and electric

Ey(x, y) =
(

1

ikε⊥

)(
∂ X(x)

∂x
− β

εa

ε
X(x)

)

fields at the boundaries of the layers and reduced to the following equations:

X1(a) = X2(a),

1

ε⊥1

(
∂ X1(a)

∂x
− β

εa1

ε1
X1(a)

)

= 1

ε⊥2

(
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− β

εa2

ε2
X2(a)

)

. (6.6)

In addition to these boundary conditions, we use the Floquet theorem to relate
solutions on the MPhC period, namely:

ρX1(0) = X2(0 + L),

ρ
1

ε⊥1

(
∂ X1(0)

∂x
− β

εa1

ε1
X1(0)

)
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= 1
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)

. (6.7)

Using the Hill’s equation solution in the form X(x) = Aψ1(x) + Bψ2(x) we
obtain the following fundamental solutions for the functions ψ1(x) and ψ2(x):

ψ1(x) =

⎧
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, (6.8)
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Using the Floquet theorem and (6.7), we obtain in general the characteristic
equation for the definition of a constant ρ = ei K L , namely:

(

ρ + ρ∗) = 2 cos K L = 1

ε⊥2

[

ψ ′
2(L) − β

εa2

ε2
ψ2(L)

]

+ ψ1(L),

which, taking into account fundamental solutions of the Hill’s (6.8), (6.9), takes the
following form for determining the Floquet wave number K = KT E in the MPhC
TE waves:
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Note that the dispersion (6.10) exactly coincides with the equation which was
obtained by the transfer matrix method [11].
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The fundamental solutions of the Hill’s (6.8), (6.9) make it possible analyti-
cally to determine the reflection and transmission coefficients for a plane wave that
propagates through a bounded MPhC.
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The minimum values of the |TN |2min are determined by the expression
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6.3 Analysis of Results

Let’s turn to analysis of the waves propagation in MPhC that contains the semicon-
ductor plasma and the dielectric layers. Two cases are considered for positive and
negative values of the effective permittivity of semiconductor plasma for the single
MPhC layer.

Figure 6.2 shows the dispersion characteristic as a dependence of the Floquet-
Bloch wave number KT E L on the frequency parameter ωL

2πc (dotted blue curves).
This dispersion characteristicwas calculatedwith following parameters of theMPhC:
a = 0.2L; ε1 = 18; ε2 = 2.5; εa1 = 10. Forbidden zones are accented by shaded
areas. The dependence of the limited MPhC reflection coefficient |R|2N on ωL

2πc for
N = 6 periods is represented on the same figure.

The same dependencies as in Fig. 6.2 only for negative values ε1⊥ < 0 and
εa1 = 20 are shown in Fig. 6.3. The transition from positive to negative magnitudes
is accompanied not only by the transmission and forbidden zones location changes
but also by their width.
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Fig. 6.2 Dispersion
characteristics of the
magnetophotonic crystal
(dotted curves) and
reflectance for positive
effective value of
permittivity (solid curve)

Fig. 6.3 Dispersion
characteristics of the
magnetophotonic crystal
(dotted curves) and
reflectance for negative
effective value of
permittivity (solid curve)

The number of the reflection (transmission) coefficient maximums in the band-
width is equal (N − 1), and their value is determined by the expression |RN |2max =
1 − |TN |2min.

Figures 6.4 and 6.5 show spatial distributions of fields Re Ey in layers for two
cases: full passing (Fig. 6.4, ωL

2πc = 0.6231) in the transmission zone and full reflection
in the forbidden zone (Fig. 6.5, ωL

2πc = 0.7).

6.4 Conclusions

Ananalytical theory of gyrotropic plasmaMPhC for determining eigenfunctions, dis-
persion characteristics, reflection and transmission coefficients of TM modes with
arbitrary plasma layers material parameters have been developed. The obtained char-
acteristics allow to construct the theory of controlled waveguide structures, whose
guided surfaces can be Bragg reflecting surfaces from the considered MPhCs.
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Fig. 6.4 Spatial distribution
of the tangential component
of electric field in
magnetophotonic crystal
(transmission zone)

Fig. 6.5 Spatial distribution
of the tangential component
of electric field in
magnetophotonic crystal
(forbidden zone)
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