
Chapter 11
Features of the Microstructure
of Multilayered (TiAlSiY)N/MoN
Coatings Prepared by CA-PVD
and Their Influence on Mechanical
Properties
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Abstract Thin nanolayered coatings composed of the consequent alternation of
multi-element (TiAlSiY)N and binaryMoN layerswere deposited by the cathodic arc
deposition. The elemental composition, phase structure,microstructure andmechani-
cal properties of the coatingswere studied bywell-established experimentalmethods:
SEM, EDS, XRD, TEM, and microindentation. It was found that (TiAlSiY)N/MoN
coatings had a complex chemical composition, which preferably consisted of a mix-
ture of Ti, Al and Si nitrides. The preferential crystallographic orientation along
(200) plane was found for all samples. TEM results showed that investigated coat-
ings composed of ununiform nano-scale multilayered structures with modulation
periods ranged from 20 to 32 nm. The maximum microhardness of the deposited
coatings reached 1087HV0.1.
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11.1 Introduction

Designing of the multilayered films that improving the properties of the coated mate-
rials is a difficult task but in case of its successful fulfillment obtained material
gained improved hardness, wear resistance, temperature stability and better perfor-
mance [1–6]. Synthesis of alternating nanoscale layers consisting of various mate-
rials is a particularly promising strategy through the design of atomic-scale archi-
tectures. The results reported in works [7–23] prove that multilayered coatings of
simple-composition, such as TiN/ZrN, CrN/AlN, ZrN/CrN, TiN/NbN, CrN/MoN,
TiN/MoN, TiN/CrN demonstrate the significant improvement of mechanical and tri-
bological properties, as well as better thermal and corrosion resistance compared to
the monolayer films.

Nowadays, a novel tendency, in which the multielement and multilayered strate-
gies for the synthesis of functional coatings based on transition metal nitrides, metal-
loids, and refractory elements are combined, starts to develop widely [24–33]. Chen
et al. [34] investigated TiAlSiN-based monolayers and multilayered coatings fab-
ricated by the cathodic arc evaporation. It was shown that the deposition method
exceedingly enhanced adhesive strength and toughness. According to the results of
milling tests, the lifetime for TiAlSiN coated substrates increased by approximately
172%. Tribology experiments did by Çalışkan’s [35] indicated that the nanocom-
posite TiAlSiN/TiSiN/TiAlN multilayered coating had a higher value of load (LC3)
at almost 44% and longer functioning time than single layer TiN and TiAlN coat-
ings. The work-team of the manuscript [36] investigated the TiAlN, TiAlSiN and
TiAlN/TiAlSiN multilayered coatings deposited by magnetron sputtering. Obtained
results pointed out that multilayered composite demonstrated enhanced adhesion
strength compared with TiAlSiN. Therefore, a multilayered concept of TiAlSiN-
based coatings arises much interest and can be used for the protection of cutting tools
and working parts used in different industrial processes, where the high hardness,
wear and corrosion resistance, and thermal stability at over 1100 K are required.

It is suggested that the addition of a low amount of Yttrium to the TiAlSiN
alloy will improve the high-temperature oxidation resistance. The nitride of TiAlSiY
will maintain high hardness as the formation of YO2 phase at the grain boundaries
is possible. This phase blocks inward diffusion of oxygen and outward diffusion
of metal components of the coating because Yttrium has a high affinity towards
Oxygen [37–42]. Considering all these advantages, the study of TiAlSiYN-based
multilayered coatings presents great scientific interest.

The main focus of this work is concentrated on the detailed microstructural
research of recently developed multilayered (TiAlSiY)N/MoN coatings and the
establishment of the effect of their structural features on mechanical properties.
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11.2 Methods and Experiments

11.2.1 Deposition Technology

Cathodic arc deposition (CA-PVD) is a widely applied method for the deposition
of nitride-based coatings. The primary advantage of this technique lies in its ability
to produce highly ionized plasma. Ion energies of plasma produced by CA-PVD
can be further increased or tuned due to a negative potential applied to the substrate.
Application of a direct current substrate bias during deposition leads to the formation
of coatings with dense structure and well adhesion. However, this technological
parameter increases residual compressive stresses of the coatings that influence on
mechanical and tribological properties of the coated material [43–45].

Multi-purpose cathodic arc evaporation system was utilized to deposit multilay-
ered coatings using circular TiAlSiY andMo targets operated at the cathode currents
of 100 and 150 A, respectively.

A composite multi-element cathode had the following elemental ratio Ti—
58 at. %; Al—38 at. %; Si—3 at. %, Y—1 at. %. The composite cathode was
sintered using the spark plasma sintering unit. The purity of Mo cathode was 99.8%.
The nitrogen with a purity of 99.95% was fed into the chamber as reaction gas
through the control facility. A constant nitrogen pressure of 0.53 Pa was constantly
kept during the deposition process. The coatings were deposited onto a 321S51 steel
substrates of 18 × 20 × 2 mm size. The substrates stopped in front of each cathode
for 1 min for the deposition of alternating layers. The deposition time for the films
was 1 h.

11.2.2 Investigation Methods

The surface of the deposited samples was examined by scanning electron micro-
scope (JEOL) (JEM-7001TTLS). The cross-section of the coatings was prepared
and studied by the focused ion beam (FIB) (JEOL JEM-9320). ImageJ program was
used to calculate the total and bilayer thickness of experimental composites [46].
The TEM and EDS investigations were conducted using a JEOL ARM 200F oper-
ated at 200 keV. The X-ray diffraction (XRD) investigations were carried out using
a PANalytical diffractometer equipped with a CuKα X-ray source with PIXcel 3D
detector. XRDmeasurements were carried out in the θ–2θ mode and obtained results
were used to determine the phase state, preferred orientation and crystallite size. The
hardness tests were carried out using the statistical microindentation method taking
into account the area of the tip imprint. The Shimadzu HMV-GMicro Vickers Hard-
ness Tester equipped with a tetrahedral diamond pyramidal tip with an angle of 136°
between the opposite faces was used. The delay time after reaching the specified
load was 10 s.
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11.3 Results and Discussion

11.3.1 Surface Morphology and Elemental Composition

The morphology of the surface of experimental coatings has a rather rough tex-
ture due to a large number of drop constituents that can be seen in Fig. 11.1a. This
phenomenon is typically observed for CA-PVD products and attributed to the tech-
nological process when active gas in the vacuum chamber extensively undergoes a
reaction with the evaporatedmaterial and forms solid refractory compounds [47–50].
The EDS spectrum of the surface elemental composition of investigated coatings is
shown in Fig. 11.1b.

Fig. 11.1 Results of SEM with EDS analysis of multilayered (TiAlSiY)N/MoN coatings: surface
image (a); EDS spectrum and elemental composition (b)
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The surface topography of the (TiAlSiY)N/MoN coatings, studied using 3D
model, ensured the estimation of some surface peculiarities, which include: the aver-
age roughness (0.27 μm), the texture aspect ratio (0.86) and the maximum height of
droplet constituents (8 μm).

11.3.2 Phase State and Microstructure

The diffraction spectra of the multilayered coatings show a strong (200) preferential
orientation and low contribution from (111), (220) and (311) planes of fcc-TiN phase
(Fm3 m space group) (ICCD: 04-001-2272) (see Fig. 11.2). The (200) diffraction
peak has been shifted toward lower angles comparing with bulk values. It indicates a
decrease of the inter-planar distance for (200) plane (d = 2.1043 Å) and related with
the incorporation of Al to the coating. The broad shoulder of the (200) peak ranged
from 45.15° to 50.5° can be assigned to the formation of the solid solutions of (Ti,
Si)N and (Ti, Al)N that have generated in a result of the substitution of Si and Al for
Ti in TiN lattice [51–53]. It is because the ionic radiuses of Si4+ (0.041 nm) and Al3+

(0.053) ions are smaller than that of Ti3+ (0.075 nm) ion. Additionally, it possibly
indicates the formation of highly disordered or even amorphous-like phase in the
coatings [37]. The presence of the hexagonal δ-MoN phase (P63mc space group) is
submitted by (112) and (211) peaks (ICCD: 00-064-0129).

The average crystallite size calculated using the Scherrer method from (200)
reflection is approximately 12 nm. The intensities of other reflections are too low for
a correct estimation of the average crystallite size.

Fig. 11.2 Typical XRD
pattern of multilayered
(TiAlSiY)N/MoN coatings
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Fig. 11.3 TEM images of the cross-sectional view of multilayered (TiAlSiY)N/MoN coatings:
coating-substrate zone (a); TEM-EDS elemental mapping of the surface zone (b)

The microstructure of the layers and interfaces, as well as elemental composition
of (TiAlSiY)N/MoN coatings, have been analyzed from cross-section analysis by
means of TEM and EDS. As shown in Fig. 11.3a distinct interface can be seen at
the boundary between the steel substrate and the first nitride layer being deposited.
The micrographs suggest that the appearance of the MoN layers is darker compared
with the lighter contrast of the multi-element (TiAlSiY)N layers. This is because
of the higher atomic number of MoN layers [37, 54, 55]. The total thickness of the
experimental coatings is approximately 7 μm.

The microstructure of (TiAlSiY)N/MoN composites consists of columnar grains
with an average of width ranges from 40 to 120 nm. They are oriented in such a
way that the longer axes of the grains are parallel to the growth direction of the
coating. The columnar microstructure is typical of the coatings deposited at low
temperature and low gas pressure in CA-PVD process. Evident straight and sharp
interfaces between (TiAlSiY)N and MoN layers are identified. It is pronounced due
to the immiscibility of (TiAlSiY)N and MoN layers. The samples do not display any
inter-lamella cracking indicating good adhesion. The thin layers of both deposited
condensates have minor disparity expressed as the insignificant imperfection of the
thickness of the layers in cross-sectional images. The modulation period extracted
from the TEM image is ranged from 20 to 32 nm. Spherical defects start to appear
in the bulk of the coating close to the surface. Their average size is approximately
350 nm and elemental composition mostly consists of Ti, Si and N elements (see
Fig. 11.3b).

The SAED patterns indicate that nanocomposite coatings have polycrystalline
structures with a preferred δ-TiN phase (NaCl-type structure). The separation of
some diffraction rings becomes extremely difficult to fulfill in electron microscopy,
due to the small differences in the inter-atomic spacing. There is no indication of
rings corresponding to the appearance of Si3N4 that could indicate the formation of
solid (Ti, Si)N in the investigated area.
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Fig. 11.4 Values of Vickers microhardness of experimental multilayered (TiAlSiY)N/MoN
coatings and monolayer coatings based on constituent elements [60–63]

11.3.3 Microhardness

It is known that multilayered hard coating formed on the steel surface definitely
increases the hardness of the coated material. In particular, multilayered (TiAl-
SiY)N/MoN coatings show considerably enhanced hardness (see Fig. 11.4) due to
the several factors, which are: multilayered strengthening, which promotes impeding
dislocation motion across the interfaces and the difference in elastic modulus of the
layers [56, 57]; Hall-Petch strengthening, based on the increasing of volume fraction
of grain boundaries with high interfacial energies [58]; Orowan strengthening, which
acts in structures with nanometer modulation wavelength [59].

For all experimental coatings, it was observed a strong tendency of decreasing
intensity and broadening of the width of the TiN (200) peak, which is in the result
of the diminution of the grain size or the residual stress induced in the crystal lat-
tice [64–68]. It is also suggested that the Si incorporation reduced the crystallites
size and the residual stress and, hence, has ensured the hardening of nanolayered
(TiAlSiY)N/MoN coatings.

11.4 Conclusions

(TiAlSiY)N/MoNmultilayered coatingswere successfully fabricated by the cathodic
arc deposition onto steel substrates under the following deposition condition: arc
currents applied to the evaporators were 100 A for the multi-component TiAlSiY
cathode and 150 A for molybdenum one; constant substrate bias was-200 V and
working gas pressure was 0.53 Pa. The obtained composites had fairly linear lay-
ers and well-defined interfaces between layers. The general coatings thickness was
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approximately 7 μm, while the bilayer thickness varied from 20 to 32 nm. The
main phase of TiN had the preferential crystal growth of (200) plane. The average
crystallites size was approximately 12 nm. The hardness measurements showed that
multilayered (TiAlSiY)N/MoN composites exhibited improved hardness when com-
pared with the MoNx, TiN, (TiAl)N or (TiAlSi)N films, that reached the value of
1087HV0.1.
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61. M.Wang, S.Miyake, inLubrication—Tribology, Lubricants andAdditives, ed. byD.W. Johnson
(Intech Open, 2018), pp. 77–100

62. A.K. Sahu, S.S. Mahapatra, in Additive Manufacturing of Emerging Materials, ed. by B.
AlMangour (Springer, 2019), pp. 29–53

63. L. Gmelin, Gmelin Handbook of Inorganic Chemistry, 8th edn. (Springer, 1990)
64. M. Diserens, J. Patscheider, F. Levy, Improving the properties of titanium nitride by incorpo-

ration of silicon. Surf. Coatings Technol. 108–109, 241–246 (1998). https://doi.org/10.1016/
S0257-8972(98)00560-X

65. X. Chu, S.A. Barnett, Model of superlattice yield stress and hardness enhancements. J. Appl.
Phys. 77, 4403–4411 (1995). https://doi.org/10.1063/1.359467

66. A.D. Pogrebnjak, V.I. Ivashchenko, P.L. Skrynskyy, O.V. Bondar, P. Konarski, K. Załęski, S.
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