
Chapter 2

Chases and Escapes

2.1 Introduction

The main interest of chases and escapes, or pursuit and evasion, is to obtain the
pursuit curve of the chaser(s) and it has a long history [32]. It is said that the origi-
nal formulation of the problem dates back to Leonardo da Vinci, who considered a
cat-chasing-a-mouse problem. Since then, various problems of chases and escapes
have attracted mathematicians, and some analytical results were obtained for spe-
cific setups. Because the analytical treatments are generally challenging, the setups
have been traditionally restricted to one-to-one cases where a chaser pursues a single
target.

In this chapter, we introduce the representative problems of chases and escapes.
We start by describing a pursuit curve obtained by the French mathematician Pierre
Bouguer in 1732 for the cat-chasing-a-mouse problem where the mouse (target)
moves on a straight line. Then, a slight extension of the cat-chasing-a-mouse prob-
lem is proposed in which the target’s path is on an inclined line. Even though this
extension appears to be a small change, the closed-form solution in the absolute
frame of reference was obtained only recently in 1991.

We subsequently turn our attention to another classic problem of circular pursuit
in which the target moves on a circular path. This problem originates from the mid-
18th century, and a clear mathematical formulation was done in 1920. It is noted that
this problem involves coupled nonlinear differential equations and that a closed-
form solution cannot be obtained. Relating to this problem, a new mathematical
formulation was developed by Eliezer and Barton, which allows one to consider the
problem beyond two-dimensional space. We present this formulation with examples
of chases and escapes in three-dimensional space.

Interest in chases and escapes has grown to expand related topics. In particular,
connections with game theories have been developed as an interdisciplinary field of
mathematics, operations research, and economics. Such research topics are typically
called “Discrete Search Games” [86] and “Differential Games” [41]. We do not
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8 2 Chases and Escapes

introduce them in detail here, but a brief introduction of discrete search games is
given in Appendix A.

2.2 Chases and Escapes with Straight Lines

Let us start here with one of the simplest representative problems, where the target
moves on a straight line.

2.2.1 Bouguer’s Problem

The first problem is to obtain the pursuit curve of a chaser to a target moving on
a straight line at a constant speed (see Fig. 2.1). The chaser, also with a constant
speed, is required to have its velocity vector pointing to the position of the target.
This problem is called Bouguer’s problem after the French mathematician Pierre
Bouguer, who proposed and solved it in 1732 [10].

The main problems are (A) to obtain the analytical expression of the path of the
chaser in this setup and (B) to obtain the point at which the chaser captures the
target. Both of the problems were solved as follows.

(A) The path of the chaser is given by the following equation with the configurations
in Fig. 2.1. Even though we just present the expression of the equation below, it will
be derived as a special case of the generalized problem in section 2.2.2.

(i) When the speed of the chaser, denoted by vC, is different from that of the
target, denoted by vT , the pursuit curve is written as

y(x) =
n

1−n2 x0 +
1
2
(x0 − x)

⎧⎪⎨
⎪⎩

(
1− x

x0

)n

1+n
−

(
1− x

x0

)−n

1−n

⎫⎪⎬
⎪⎭ , (2.1)

where n = vT/vC denotes the ratio of the speeds of the target to the chaser, and x0 is
the initial position of the target in the x-direction.

(ii) When the speeds of the chaser and the target are equal, the pursuit curve is
written as

y(x) =
1
2

x0

{
1
2

(
1− x

x0

)2

− ln
(

1− x
x0

)}
− 1

4
x0. (2.2)

(B) The position of the point at which the chaser captures the target is given by

(x,y) =
(

x0,
nx0

1−n2

)
,
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Fig. 2.1 Bouguer’s problem: The green line represents the path of the target and the red curve
represents the path of the chaser. (A) When the speed of the chaser is larger than that of the target,
the target is captured at the position marked by the star. (B) When the speed of the chaser is
smaller than that of the target, the chaser cannot capture the target. The initial position of the
target, indicated by the green square, is at (x,y) = (x0,0) with x0 = 10 and that of the chaser,
indicated by the red square, is at (x,y) = (0,0). The green and red arrows, respectively, indicate
the directions of the motion of the target and the chaser along the paths.

which can be finite only if n < 1, i.e., the speed of the chaser is faster than the target.
Otherwise, the capture does not take place as shown in Fig. 2.1(B). Note that this is
also the case when the speeds are the same, corresponding to the path of Eq. (2.2).

Albeit the simplicity of the problem, one can appreciate from the above results
that the analytical expressions are rather intricate.

One can consider variations of the problem. For example, the chaser can move
in the direction to the target’s anticipated position in the future for an interception,
instead of pointing to the target’s current position.
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2.2.2 Chases and Escapes with Inclined Lines

We now generalize Bouguer’s problem [17, 26, 27]. Here, the line on which the
target moves is an inclined straight line. The schematic view is shown in Fig. 2.2.
The target, denoted by E, now moves on an inclined straight line, starting from the
point A = (0,y0). At the same time, the chaser C starts from the origin, O = (0,0).
Let us assume that the target and the chaser move with the constant speeds, vT and
vC, respectively, and that the chaser C always points its velocity vector toward the
target E. The position of E is denoted by (X(t),Y (t)), and the problem is to find the
analytical expression for the path of C whose position is given by (x(t),y(t)).

O

A

x

x

y
y

(0,  y )0

h

α

E

C

Fig. 2.2 Schematic view of the problem for which the target moves on an inclined line. See the
main text for details.

By the condition that the chaser C at (x(t),y(t)) always points its velocity vector
(ẋ(t), ẏ(t)) to the target E at (X(t),Y (t)), there is a relation between their positions,

(X(t),Y (t)) = (x(t)+λ (t)ẋ(t),y(t)+λ (t)ẏ(t)), (2.3)

where λ (t) is a function of time and the dot denotes derivative with respect to time
t. By denoting the ratio of the speeds vT and vC as n = vT/vC, we also have

Ẋ2(t)+ Ẏ 2(t) = n2(ẋ2(t)+ ẏ2(t)). (2.4)

The above set of equations (2.3) and (2.4) are the basic equations of the problem:
three equations to solve for x(t),y(t), and λ (t), given X(t),Y (t), and n. We note that
the expression of the equations is generally applicable to chase and escape problems
in two-dimensional space.
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We now formulate the condition in which the target E moves on a straight line.
Here, let us assume, without the loss of generality, that the speed of E is equal to one
(vT = 1 and n= 1/vC). By taking t as time with this unit, we have Ẋ2(t)+Ẏ 2(t) = 1.
Also the position of the target E is written as (X(t),Y (t)) = (t cosα,y0 + t sinα),
where α denotes the angle of the straight line (see Fig. 2.2). Thus, the following
set of equations is obtained from Eqs. (2.3) and (2.4) with respect to the position
(x(t),y(t)) and the velocity (ẋ(t), ẏ(t)) of C,

ẋ2 + ẏ2 =
1
n2 , (2.5)

x+λ ẋ = t cosα, (2.6)
y+λ ẏ = y0 + t sinα. (2.7)

We have to solve the above set of equations to obtain the analytical expression
for the paths of C. In order to make the calculation simpler, we introduce new co-
ordinates (x̄, ȳ), where the ȳ axis is in the direction of the motion of E, while x̄ is
perpendicular to it with the origin at A (see Fig. 2.2). In the new coordinates, the set
of equations (2.5)–(2.7) is given in a simpler form,

˙̄x2 + ˙̄y2 =
1
n2 , (2.8)

x̄+λ ˙̄x = 0, (2.9)
ȳ+λ ˙̄y = t. (2.10)

We now solve them by eliminating λ from Eqs. (2.9) and (2.10):

ȳ− x̄
dȳ
dx̄

= t. (2.11)

If we further differentiate both sides by x̄, the following equation is obtained:

−x̄
d2ȳ
dx̄2 =

dt
dx̄

. (2.12)

On the other hand, if we divide Eq. (2.8) by ( ˙̄x)2, we get

1+
(

dȳ
dx̄

)2

=
1
n2

(
dt
dx̄

)2

. (2.13)

By eliminating dt
dx̄ from Eqs. (2.12) and (2.13), we arrive at

1+
(

dȳ
dx̄

)2

=

(
x̄
n

)2(d2ȳ
dx̄2

)2

. (2.14)

Since the chaser’s curve is concave downward in the coordinate frame of (x̄, ȳ),
this leads to
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d2ȳ
dx̄2 > 0, (∀x̄). (2.15)

Thus, by taking the square root of Eq. (2.14), the following is obtained with p ≡ dȳ
dx̄ :

√
1+ p2 =

(
x̄
n

)(
d p
dx̄

)
. (2.16)

We can integrate this equation by separating the variables x̄ and p as

d p√
1+ p2

=
n
x̄

dx̄, (2.17)

which leads to
ln
[

p+
√

1+ p2
]
= n(ln x̄− ln x̄c) , (2.18)

or

p+
√

1+ p2 =

(
x̄
x̄c

)n

, (2.19)

where x̄c is a constant of integration. If we take the inverse of both sides, we obtain

1

p+
√

1+ p2
=−p+

√
1+ p2 =

(
x̄
x̄c

)−n

. (2.20)

Equations (2.19) and (2.20) give

p =
dȳ
dx̄

=
1
2

[(
x̄
x̄c

)n

−
(

x̄
x̄c

)−n
]
. (2.21)

We integrate this equation with the following initial conditions at t = 0 to obtain the
pursuit curve,

x̄(t = 0) = y0 cosα, ȳ(t = 0) =−y0 sinα, p(t = 0) =− tanα. (2.22)

Case 1: The speeds of the chaser and the target are different (n �= 1)
The integration of Eq. (2.21) leads to

ȳ =
n

1−n2 y0 (1+nsinα)+
1
2

y0 cosα×[
1

1+n

(
1− sinα

cosα

)(
x̄

y0 cosα

)1+n

− 1
1−n

(
1− sinα

cosα

)−1( x̄
y0 cosα

)1−n
]
.

(2.23)

This equation represents the analytical expression of the path of the chaser, C, in
the coordinates of (x̄, ȳ). If one wants the corresponding equation in the original
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coordinates of (x,y), one can make the coordinate transform using

x̄ = xy0 sinα − (y− y0)cosα, ȳ = xcosα − (y− y0)sinα. (2.24)

Examples of the path obtained by numerical simulations are shown in Fig. 2.3.
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Fig. 2.3 Examples of the pursuit curves with inclined lines. The parameters are (A) n = 0.5,α =
π/4,y0 = 10 and (B) n = 1.5,α = π/4,y0 = 10. The green and red squares indicate the starting
points of the target and the chaser, respectively, and the green and red arrows indicate the directions
of the motion of the target and the chaser along the paths, respectively.

We also note that by setting

x̄ = x0 − x, y0 = x0, α = 0, (2.25)

the problem reduces to the original Bouguer’s problem in section 2.2.1, and Eq.
(2.1) is obtained from Eq. (2.23).

Case 2: The speeds of the chaser and the target are equal (n = 1)
In the case that the speeds of chaser and target are the same, Eq. (2.21) is written

as

p =
dȳ
dx̄

=
1
2

[(
x̄
x̄c

)
−
(

x̄
x̄c

)−1
]
. (2.26)

We integrate this equation with the initial condition
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x̄c =
y0 cos2 α
1− sinα

, (2.27)

leading to the following results:

ȳ =−1
2

(
y0 cos2 α
1− sinα

)
×[

ln
x̄

y0 cosα
− 1

2

{
(1− sinα)x̄

y0 cos2 α

}2

+2
(

1− sinα
cosα

)
tanα +

1
2

(
1− sinα

cosα

)2
]
.

(2.28)

If we set
x̄ = x0 − x, y0 = x0, α = 0, (2.29)

the expression Eq. (2.2) in the previous section 2.2.1 is obtained from Eq. (2.28).

Catching up or not

Using the formulation, we can predict if the chaser can catch up with the target or
not, as a function of the speed ratio n = vT/vC = 1/vC between the two. First, we
note that the distance D between the chaser and the target is proportional to λ from
Eqs. (2.3) and (2.4),

D =
√

(X − x)2 +(Y − y)2 = λvC = λ/n. (2.30)

From Eqs. (2.9) and (2.10), we can see that λ (t) ≥ 0. Also by Eqs. (2.8)–(2.10)
and (2.21), we obtain

λ (t) = nx̄

[
1+

(
dȳ
dx̄

)2
] 1

2

= nx̄

[
1+

1
4

{(
x̄
x̄c

)n

−2+
(

x̄
x̄c

)−n
}] 1

2

=
1
2

nx̄c

[(
x̄
x̄c

)1+n

+

(
x̄
x̄c

)1−n
]
. (2.31)

For the case n < 1, we can see λ → 0 as x̄ → 0. This means that the positions
of the chaser and the target will coincide at x̄ = 0 [Eq. (2.3)]. Thus, the chaser can
catch up. This is intuitively reasonable because, for n < 1, the chaser is faster than
the target. The point of the catch-up (x̄∗, ȳ∗) is given with x̄ = 0 in Eq. (2.23),

(x̄∗, ȳ∗) =
(

0,
ny0(1+nsinα)

1−n2

)
. (2.32)
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On the other hand, for the case with n > 1, the values of λ [from Eq. (2.31)] and
ȳ [from Eq. (2.23)] approach positive infinity as x̄ → 0. This means that the chaser
cannot catch up with the target and the distance between the two increases.

For the case of equal speed n = 1, we expect that the chaser cannot catch up with
the target if they are initially far separated. This can be seen from Eq. (2.31) as

λ =
x̄2

2x̄c
+

x̄c

2
, (2.33)

and it leads to

λ → x̄c

2
=

y0 cos2 α
1− sinα

, (x̄ → 0). (2.34)

This means that there exists a constant distance x̄c/2 between the chaser and the
target even as the time increases, therefore, the chaser cannot catch up with the
target.

2.3 Chases and Escapes with Circular Paths

We now turn our attention to the case of circular motions by the target. While the
problem is traditionally investigated in two-dimensional space, we will give a brief
review on an extension to three-dimensional space, which was done only recently
[5].

2.3.1 The Classic Problem in Two-Dimensional space

Let us first look at the problem in which the target moves in a circle (see Fig. 2.4).
The rules for the chaser and the target are basically the same as that of the case in the
previous section. The chaser always points its velocity vector to the current position
of the target. This problem was first proposed in an English journal called Ladies’
Diary in 1748 [71].

In contrast to Bouguer’s problem, the chaser’s path for this problem cannot be
solved in an analytically closed form. However, certain characteristics are observed
in numerical simulations as illustrated in Fig. 2.4. When the speed of the chaser is
slower than the target, the chaser cannot catch up with the target. After a long time,
however, it also follows a circular path with a smaller radius [Fig. 2.4(a)(b)]. As we
show below, the ratio of radii of the two circles is proved to be the same as the ratio
of the speeds of the chaser and the target. When the speed of the chaser is faster than
the target, the chaser can catch up with the target [Fig. 2.4(c)(d)].

To analyze the movements, we define the problem as shown in Fig. 2.5. The
target moves on a circular path of a radius a, and is pursued by a chaser who can
move n times faster than the target. Suppose that the initial position of the target at



16 2 Chases and Escapes

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

(a) (b) 

(c) (d)

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

Fig. 2.4 Circular chase and escape: The green circle is the path of the target moving at a constant
speed starting from (x,y) = (1,0) indicated by the green square. The red curve represents the
pursuit path of the chaser starting from (x,y) = (1.5,0) for (a) and (c), and (x,y) = (0.5,0) for (b)
and (d). Both of the starting points are indicated by the red squares. The ratio of the speeds between
the chaser and the target are n = vT /vC = 2/1 for (a) and (b), and n = 0.95/1 for (c) and (d). The
chaser can catch up with the target for (c) and (d), and never catch up for (a) and (b).

time t = 0 is on the x–axis, at (a,0). Because the target moves on the circular path,
the position of the target is represented by an angle θ as (acosθ ,asinθ). When the
target moves from the initial position (θ = 0) to the present position at θ , a distance
traveled by the target is aθ . Hence, during the time interval, the chaser moves by
a distance of s = naθ to reach the present position at (x,y). It is assumed that the
chaser always points its direction of motion to the target. This makes the tangent at
(x,y) to the chaser’s pursuit curve pass through the target’s instantaneous position.

We denote the angle made by the tangent line and the x–axis by ϕ , and denote
the distance between the chaser and the target by ρ (see Fig. 2.5A). Then, the unit
vector in the direction of the tangent line is written as u = (cosϕ,sinϕ), and the
vector normal to the direction is written as v = (sinϕ,−cosϕ). The length of side
1 (see Fig. 2.5B) is obtained by considering the inner product of p = (x,y) and v as
p ·v = xsinϕ −ycosϕ . On the other hand, the length is also obtained by considering
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a

Chaser

φ
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ρ

φ-θ

a

p = (x, y)

O
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u = (cosφ, sinφ)

v = (sinφ, -cosφ)

ρ

A B

1

2

(a, 0)

Fig. 2.5 (A) Definition of variables to characterize positions and movements of the chaser and the
target. (B) The relative positions of the target and the chaser are extracted from (A).

the triangle of which side 1 is the base and the apex is the position of the target, as
asin(ϕ −θ). Thus, the equation of the tangent line to the chaser’s pursuit curve is
written as

xsinϕ − ycosϕ = asin(ϕ −θ). (2.35)

Similarly, the length of side 2 (see Fig. 2.5B) is also obtained in two ways, and the
equation of the line normal to the tangent line that passes through (x,y) is

xcosϕ + ysinϕ = acos(ϕ −θ)−ρ. (2.36)

By differentiating Eq. (2.35) with respect to θ , one gets

dx
dθ

sinϕ + xcosϕ
dϕ
dθ

− dy
dθ

cosϕ + ysinϕ
dϕ
dθ

= acos(ϕ −θ)
(

dϕ
dθ

−1
)
.

This equation is rewritten as

dx
dθ

sinϕ − dy
dθ

cosϕ +
dϕ
dθ

(xcosϕ + ysinϕ) = acos(ϕ −θ)
(

dϕ
dθ

−1
)
.

From Eq. (2.36), the last term on the left-hand side (in the bracket) is acos(ϕ −θ)−
ρ . Then, we have

dx
dθ

sinϕ − dy
dθ

cosϕ +acos(ϕ −θ)
dϕ
dθ

−ρ
dϕ
dθ

= acos(ϕ −θ)
dϕ
dθ

−acos(ϕ −θ),

or
dx
dθ

sinϕ − dy
dθ

cosϕ −ρ
dϕ
dθ

=−acos(ϕ −θ). (2.37)

From the definition of ϕ , one sees
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dy
dx

= tanϕ.

Also, since the chaser moves by a distance of s = naθ to reach the present position
at (x,y), and

dx
ds

= cosϕ,

then
ds =

dx
cosϕ

= nadθ ,

and so
dx
dθ

= nacosϕ. (2.38)

The chain rule of calculus gives

dy
dθ

=
dy
dx

· dx
dθ

= tanϕnacosϕ,

or
dy
dθ

= nasinϕ. (2.39)

Thus, Eq. (2.37) is rewritten by inserting Eqs. (2.38) and (2.39) as

nacosϕ sinϕ −nasinϕ cosϕ −ρ
dϕ
dθ

=−acos(ϕ −θ),

or

ρ
dϕ
dθ

= acos(ϕ −θ). (2.40)

This equation is one of the differential equations to explain the movements of the
chaser.

Another equation is also obtained as follows. By differentiating Eq. (2.36) with
respect to θ , one gets

dx
dθ

cosϕ − xsinϕ
dϕ
dθ

+
dy
dθ

sinϕ + ycosϕ
dϕ
dθ

=−asin(ϕ −θ)
(

dϕ
dθ

−1
)
− dρ

dθ
.

This equation is rewritten as

dx
dθ

cosϕ +
dy
dθ

sinϕ − dϕ
dθ

(xsinϕ − ycosϕ) =−asin(ϕ −θ)
(

dϕ
dθ

−1
)
− dρ

dθ
.

From Eq. (2.35), the last term on the left-hand side (in the bracket) is asin(ϕ −θ),
and we have

dx
dθ

cosϕ +
dy
dθ

sinϕ −asin(ϕ −θ)
dϕ
dθ

=−asin(ϕ −θ)
dϕ
dθ

+asin(ϕ −θ)− dρ
dθ

,
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or
dx
dθ

cosϕ +
dy
dθ

sinϕ = asin(ϕ −θ)− dρ
dθ

. (2.41)

Thus, Eq. (2.41) is rewritten by inserting Eqs. (2.38) and (2.39) as

na = asin(ϕ −θ)− dρ
dθ

,

or
dρ
dθ

= a [sin(ϕ −θ)−n] . (2.42)

To sum up, the following set of differential equations is obtained by differentiat-
ing Eqs. (2.35) and (2.36) with respect to θ :

ρ
dϕ
dθ

= acos(ϕ −θ), (2.43)

dρ
dθ

= a [sin(ϕ −θ)−n] . (2.44)

It is not possible to solve these equations analytically. However, we are still able
to give some insights into the nature of the chaser’s trajectory. By introducing a
variable ω = ϕ −θ , we have dω/dt = dϕ/dt −1. Here, we assume θ = t because
the target moves on the circular path at a constant speed. Then, Eq. (2.43) becomes

ρ
dω
dt

+ρ = acosω. (2.45)

Also, Eq. (2.44) is written as

dρ
dt

= asinω −an. (2.46)

Differentiating Eq. (2.46) with respect to t, we have

d2ρ
dt2 = acosω

dω
dt

,

or
dω
dt

=
d2ρ/dt2

acosω
.

By substituting it into Eq. (2.45), we obtain

ρ
d2ρ
dt2 +aρ cosω = a2 cos2 ω. (2.47)

This equation suggests that in a steady-state solution which satisfies
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dρ
dt

=
d2ρ
dt2 = 0,

the chaser also moves on a circular path (see Fig. 2.6), so that the chord between the
chaser and the target rotates but its length ρ is a constant, where

ρ = acosω.

At the steady state, one also gets n = sinω from Eq. (2.46). Then,

ρ = a
√

1−n2. (2.48)

Writing the radius of the circular path of the chaser by R, the Pythagorean theorem
says

R2 +ρ2 = a2.

Then,

R =
√

a2 −ρ2 =
√

a2 −a2(1−n2) =
√

a2n2 = na.

Hence, when n ≤ 1, the chaser cannot catch up with the target, and that the chaser’s
pursuit curve eventually becomes a circle with the radius R = na.

ρ

a

Chaser

Target

O R

Fig. 2.6 In the steady state dρ/dt = 0 and d2ρ/dt2 = 0, the chord joining the chaser and the target
rotates, but its length (ρ) remains unchanged.
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2.3.2 Extension to Three-Dimensional Space

In considering general problems of chases and escapes in three-dimensional space,
the following approach can be taken by extending the method described for two-
dimensional space in the previous section. Here, we denote the position of the target
by (X ,Y,Z) and that of the chaser by (x,y,z). The ratio of the speeds between the
two is given by n = vT/vC. We derive the set of equations by the condition that the
chaser always points its velocity vector to the position of the target.

In the same manner as for Eqs. (2.3) and (2.4), one writes

(X ,Y,Z) = (x+λ ẋ,y+λ ẏ,z+λ ż), (2.49)

Ẋ2 + Ẏ 2 + Ẏ 2 = n2(ẋ2 + ẏ2 + ż2). (2.50)

The problem is to obtain the solution for the four functions, x(t),y(t),z(t),λ (t),
from the four first-order non-linear differential equations, given X(t),Y (t),Z(t), and
n. We have assumed that the chasers and the targets are both moving, respectively,
with constant speeds, but this condition can be relaxed as long as the ratio n remains
constant.

Because the set of the differential equations is nonlinear, it is generally difficult
to obtain solutions. Here, we will present only a few special solutions for the setups
explained below without showing derivations in detail. The interested readers may
refer to the paper by Barton and Eliezer [5] for their derivations and other solutions.

2.3.2.1 Circular Cylindrical Helices

The first example is where the target moves in a circular cylindrical helix of con-
stant pitch, a straightforward extension of the two-dimensional circular chases and
escapes in section 2.3.1. The derivation of the path is somehow in the reverse direc-
tion because we first specify the path of the chaser. Let us consider the case where
the chaser is moving in a circular cylindrical helix of equal pitch, which is repre-
sented by the following equation with a constant pitch p:

x = cos t, y = sin t, z =
( p

2π

)
t. (2.51)

Then, from Eq. (2.49), the target is at the location given below:

X = cos t −λ sin t, Y = sin t +λ cos t, Z =
( p

2π

)
(t +λ ) . (2.52)

If we assume that λ is a constant at this point and introduce a new parameter α
by

cosα =
1√

1+λ 2
, (2.53)

one can show that the position of the target (2.52) is rewritten as
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X =
√

1+λ 2 cos(t +α), Y =
√

1+λ 2 sin(t +α), Z =
( p

2π

)
(t +λ ) . (2.54)

This expression represents that the path of the target is a circular cylindrical he-
lix with the radius of

√
1+λ 2 and the pitch p. For these paths, it can be further

shown that n = vT/vC > 1 and that the distance between the chaser and the target
is a constant λ

√
1+ p2/4π2. This indicates that the distance between the two does

not change when the chaser moves slower than the target. Projecting the motions
onto the two-dimensional x− y plane corresponds to the long-time limit case of the
circular chase and escape in section 2.3.1. One example of paths of the chaser and
the target is shown in Fig. 2.7.

X

Y

Z

Fig. 2.7 Circular chase and escape in three-dimensional space: The red helix represents the path
of the chaser starting from the point (1,0,0), while the green one represents the path of the target
starting from (1,2,1/π). The parameters are p = 1.0 and λ = 2.0. The green and red arrows,
respectively, indicate the directions of the motion of the target and the chaser along the paths.

2.3.2.2 Equiangular Spiral Helix

The second example is a spiral. The positions of the chaser and the target are, re-
spectively, given by the following equations:

x = e−t cos t, y = e−t sin t, z = Bt, (2.55)

and
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X = e−t cos(t +π/2), Y = e−t sin(t +π/2), Z = B(t +1), (2.56)

where B is a parameter. One example is shown in Fig. 2.8. At t = 0, the chaser starts
at (1,0,0), while the target starts at (0,1,B) (both starting points are located outside
the space in Fig. 2.8).

X

Y

Z

Fig. 2.8 Circular chase and escape with equiangular spiral helix in three-dimensional space: The
red helix represents the path of the chaser starting from (1,0,0), while the green one represents the
path of the target starting from (0,1,B). The parameter B is set as B = 0.2.

Here, we assume that the chaser and the target move at an equal constant speed
(n = 1). As time progresses, the paths of both the chaser and the target appear as if
they climb up and wind around the z axis. The distance D between the chaser and
the target is greater than B, and approaches B in the limit of infinitely long time, i.e.,
the chaser cannot catch up with the target.

If we set B = 0, the motions of the chaser and the target are restricted to the two-
dimensional plane as shown in Fig. 2.9. In this case, both of them fall into the origin
in the long-time limit.

We can also consider another kind of spiral. For example, the following equations
represent the spirals for both moving toward the origin:

x = e−t cos t, y = e−t sin t, z = Be−2t , (2.57)

X = e−t cos(t +π/2), Y = e−t sin(t +π/2), Z =−Be−2t . (2.58)

In this example, the chaser starts at (1,0,B) to move downwards to the origin,
and the target starts at (0,1,−B) to move upwards to the origin. Typical paths are
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X

Y

Fig. 2.9 Circular chase and escape with equiangular spiral helix to be projected onto the two-
dimensional plane by fixing B = 0: The red helix represents the path of the chaser, while the green
one represents the path of the target. The green and red arrows, respectively, indicate the directions
of the motion of the target and the chaser along the paths.

shown in Fig. 2.10. We note that, by fixing B = 0, this example also reduces to the
two-dimensional motions as described in Fig. 2.9.

X

Y

Z

Fig. 2.10 Circular chase and escape with equiangular spiral-helix in three-dimensional space: The
red helix represents the path for the chaser starting from (1,0,B), while the green one represents
the path for the target starting from (0,1,−B). The parameter B is fixed as B = 1.3. The green and
red arrows, respectively, indicate the directions of the motion of the target and the chaser along the
paths.
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