
Chapter 1

Introduction

The main theme of this book, entitled Group Chase and Escape, is a fusion of two
different directions of mathematical and scientific research fields. One field deals
with the traditional mathematical problems of chases and escapes, and the other is a
more recent emerging field of “self-driven” particles to explain collective motions.

In this introduction, we give an overview of this book by briefly describing back-
grounds and contents of the subsequent chapters. We first describe the two fields:
chases and escapes (section 1.1) and collective motions (section 1.2). Then we move
on to briefly explain our proposal, namely, Group Chase and Escape (section 1.3).
It follows potential applications and challenges of our proposal (section 1.4).

1.1 Chases and Escapes

Situations relating to chases and escapes are ubiquitous in our daily lives. We see
them in detective stories on TV; kids are playing games of tag; cats are chasing
mice, and so on. They have also attracted the interest of mathematicians for a long
time [71].

The oldest formulation of the problem is said to have been done by Leonardo
da Vinci, who considered a cat-chasing-a-mouse problem [32]. The escaping mouse
moves at a constant speed along a straight line, which is perpendicular to the line
connecting the initial positions between them. The chasing cat also moves at a con-
stant speed with its direction always pointing to the mouse.

Though the problem statement is simple, it took over 200 years before the pur-
suit curve of the cat was obtained by Pierre Bouguer in 1732 [10]. After that, this
problem was presented in a book on differential equations by George Boole, who
was a prominent mathematician known for Boolean algebra and logic [9].

A slight generalization of the problem had been studied where the straight line
on which the mouse moves is inclined at an arbitrary angle, but the closed-form
analytical solution in the absolute frame of reference was obtained only recently in
1991 [17], about half a millennium after Leonardo da Vinci’s time!
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Another classic problem from this topic is the case where a target moves in cir-
cular motions. The first appearance of a circular pursuit problem was reported in
the mathematical puzzle section of an English journal called Ladies’ Diary [71].
In the 1748 issue, the problem was stated as a spider chasing a fly moving on a
semicircular pane of glass.

Since then, the circular pursuit problems surfaced occasionally until the end of
19th century, however, progress was not significant probably because the problems
involved coupled nonlinear differential equations and it was generally impossible to
obtain analytical solutions in closed form. The problem was often associated with
A. S. Hathaway, who stated it clearly in 1920 [2].

Apparently, there were no big leaps until we could use computers to draw the
pursuit curves as we will show in Chapter 2.

Investigations of pursuit and evasion problems continue. From around 1990, a
new mathematical formulation was developed by Eliezer and Barton [26, 27, 5]
which allowed one to consider the problems not only in two-dimensional but also
in three-dimensional space. This new approach will be described with examples in
Chapter 2.

The problems of “chases and escapes” have also developed in different direc-
tions. In the mid-twentieth century, connections were found with the field of game
theory. The most notable one was developed into theories of “Differential Games”,
on which R. Issacs published a classic book in 1965 [41]. In these games, the two
players, pursuer and pursued, have strategies so that they can, respectively, mini-
mize and maximize specific objective criteria, which are often the time between the
beginning and the termination of the game, or the event of “capture”. The pursuer
wants to catch the pursued as soon as possible, while the pursued wants to evade for
as long as possible. The central question is to find the optimal strategy for each of
the players to achieve the conflicting objectives.

A representative example in the differential game is called the “homicidal chauf-
feur” problem. In this game, the chauffeur (pursuer) tries to run over and capture the
slower but more maneuverable pedestrian (pursued). The pursuer has a faster speed,
but the pursued has a smaller minimum turn-radius. Surprisingly, various types of
strategies and situations for the two players have been found associated with the
different speeds and the turn-radius ratios.

Other extensions relating to game theories include Search Game Theories [86].
The main theme is that a chaser tries to locate hiders, who can or cannot move
among hiding spots. One notable example is the “Princess and Monster” problem
[104]. These hiding spots can also take different forms, such as being connected by
networks of various kinds.

Another direction is a fusion of the chase and escape problems with classical
mechanics. Analogies and techniques developed in chases and escapes are employed
to obtain analytical solutions of curvilinear motion of a particle on an inclined plane
[92].
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1.2 Collective Motion

The history of investigating multi-particle systems in physics is almost as old as
the beginning of classical mechanics. Johannes Kepler, who analyzed astronomical
data left by Tycho Brahe, investigated relations between geometry and motions of
six planets. As is well known, the Newton’s laws were developed based on the work
of Kepler.

The work by Daniel Bernoulli in the 18th century is considered as the pioneering
work of the kinetic theory of gases. The theory is based on the hypothesis that gases
are composed of a huge number of moving particles. In the 19th century, physicists
including Rudolf J. E. Clausius, James C. Maxwell and Ludwig E. Boltzmann had
further developed the theory leading to statistical physics. Also, the work by Robert
Brown led to the theory of Brownian motion by Einstein. Subsequent experiments
by Jean B. Perrin confirmed the atomic nature of matter as well as the determination
of Avogadro’s number.

Collective behaviors and their functions have been of great interest in the field
of biology. An example includes investigations of brains composed of neural cells,
or neurons [51]. Experimental and anatomical studies begun in the 19th century.
J. E. Purkinje, Cammillo Golgi and Ramon Cajal are the names of the pioneering
scholars. By the beginning of the 20th century, the notion of the brain and central
nervous system as a network of neurons with information processing capability was
established.

Theories of the brain as a neural network were sprung in the 20th century. Semi-
nal work was done by the neurophysiologist Warren McCulloch and the mathemati-
cian Walter Pitts to connect a network of neurons with computations in 1943 [65].
Following the work, various conceptual and mathematical models and algorithms
have been proposed. They include functions of memories, learning, pattern recog-
nition, vision and other sensory systems. Applications to engineering problems and
systems, such as constrained optimization problems and robotics, have also been
vigorously pursued. In recent years, deep multilayer neural networks and associated
algorithms called Deep Learnings have provoked much interest fusing ever more
strongly with the field of artificial intelligence [57].

Another line of research has emerged in recent years on collective motions
[39, 102] of insects, animals, birds, humans, and automobiles. The phenomena of
flocking, grouping and congestions are commonly observed around us. Here, the
line of research treats each entity as a “self-propelled” or “self-driven” particle, and
a group of them as an aggregate of particles. In contrast to physical matter of atoms
and molecules, the movements of the particles are modeled by “coarse-grained”
rules and dynamics, and as a result, one tries to elucidate the generality of rich col-
lective behavior.

Investigations of collective motions have been pursued both experimentally and
theoretically. For example, careful observation of flying patterns of groups of pi-
geons has suggested a possible social hierarchy [70]. It is also found that aero-
dynamic effects are responsible for V-shaped flying patterns of certain birds [82].
Schools of fish such as sardines have been observed and analyzed [33, 34, 81]. The
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reaction time for collective response to disturbances such as attacks by larger fish is
surprisingly short compared to the swimming speed of individuals. Studies of traffic
data have shown for natural congestions without bottlenecks on highways that the
head of congestion commonly moves backward approximately with the speed of
20km/h [94].

Various mathematical models have been proposed for theoretical investigations,
to explain path formation of ants, pedestrian collective motions, flocks of birds and
so on. Among them, we will present two representative theoretical frameworks in
Chapter 3: Vicsek model [99] for flocking behavior and the Optimal Velocity model
[4] for automotive congestions.

1.3 Group Chase and Escape

We have merged these two lines of research to propose a model of “Group Chase
and Escape” [44]. On one hand, it is a simple extension of the traditional chase and
escape problems to multiple players: one group chases another group. On the other
hand, one can also view this proposal as an extension of the self-propelled particles
into a mixture of two groups with different motives. In reality, such situations can be
observed when one group of animals chases another, such as wolves chasing deer.

Mathematical analysis of group chase and escape is very challenging. Therefore,
we have relied mostly on computational simulations to study the problem and show
that a simple model can give rise to rich and complex behavior. In the original pro-
posal of the framework, we first focused on certain quantities such as time for the
total catch, average lifetimes of targets, and “cost” of capture by varying the number
of chasers and targets. We found two qualitatively different regions for the quantities
as a function of the number of chasers.

The most notable behavior of the simple model is the spatial organization of
chasers and targets. To connect the two qualitatively-different regions with the spa-
tial organization, we classify chasing processes into several patterns and introduce
order parameters to characterize them. It is found that the number of targets de-
creases intermittently along with the capture of targets. At each event of the capture,
the spatial organization of chasers changes drastically. Before the event, the chasers
surround the target to be captured, and after that, they move to other remaining
targets toward the next capture. Correspondingly, the order parameters change dras-
tically at the events as well.

After introducing the basic model, we will discuss some of the recent develop-
ments of group chase and escape by extending the model. The developments will be
reviewed by roughly categorizing them into three directions: abilities, reactions and
motions.

The first category, “abilities”, deals with modifications of abilities of the chasers
and the targets for detecting the opponents’ positions. Examples include the effects
of changing and distributing the detection ranges of the chasers. It also suggests a
benefit of division of labor in chasing and escaping.
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The second category, “reactions”, deals with modifications of the relationship of
pursuit and evasion, and the outcome of the “capture”. One investigated example
extends the chasers and the targets to a three-member case [88]. In the example,
three different species, A, B, and C, are considered. The species form a triangular
relation of chasing and escaping: the first species A chases the second species B,
and the species B chases the third species C, which in turn chases the first species
A. Here, the captured member is converted to the member of the chasing group,
for example, the captured B is converted to another member of A. Another related
extension is considered as a vampire problem [75]. In this work, the basic rules
for the chasers and the targets are the same as in the basic model. However, with
some probabilities, the captured target can be converted into a new chaser rather
than simply being removed from the field. It is observed that with this inclusion of
conversion, there is a maximum for the time to catch all the targets when we change
the initial number of targets.

The third category, “motions”, deals with modifications of the movements of
the chaser and the target. Examples include the changes of lattice structures, off-
lattice models, and errors in the movement. We also extend the model to facilitate
interactions within each group. One investigated example is a model where chasers
interact among themselves to repel within a certain distance. This has an effect that
the chasers get less in each other’s way, and they tend to spread over the field. It
is observed that when the number of chasers is small, this interaction works more
effectively to reduce the time for the entire catch.

1.4 Potential Applications and Challenges

The topic of group chases and escapes described above is still at the beginning phase
and there are a number of open problems and potentials for further developments
and applications.

We will first discuss open problems such as the effects of boundary conditions,
characterization of chasing patterns, and development of macroscopic descriptions,
that require some theoretical challenges for further developments.

Then, we will present and discuss possible applications of group chases and es-
capes. The first topic is hunting in nature, in which we will take wolves as one typi-
cal example. One promising direction is to model cooperative hunting and compare
with ethological studies. The second topic is to apply the framework to problems in
engineering such as optimization problems. One attempt with preliminary results is
described to employ the idea of chases and escapes for a combinatorial optimization
problem. Finally, we make a remark by providing a general perspective of living
together.

In the following chapters, we present the main body of the topics as we outlined
in this introduction. The structure of the following chapters is as follows.

In Chapter 2, we introduce two classical examples of chases and escapes: a cat-
chasing-a-mouse problem (Bouguer’s problem), and chases and escapes with circu-
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lar paths. Recent developments are also described to extend the problems to three-
dimensional space.

In Chapter 3, we provide a brief introduction of statistical mechanical approaches
to collective motions. Then, we review two representative models, namely, the Vic-
sek model and the Optimal Velocity model.

In Chapter 4, we introduce a basic model to demonstrate group chase and escape.
We review the behavior of the model obtained by computer simulations and present
analysis to understand the dynamics. In addition, recent developments are described
to modify and extend the basic model.

In Chapter 5, as described above, we discuss some open questions and chal-
lenges. Also, we point out possible applications of group chase and escape to co-
operative hunting by wolves and optimization problems as promising directions for
further developments.
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