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Preface

Sometimes research begins by chance. The main theme of this book, Group Chase
and Escape, is one such example. Neither of the authors knew about the long tradi-
tion of chases and escapes. One of the authors (A. K.) was working on theoretical
models to explain how primitive cells could have consistently grown and divided.
The other author (T. O.) was interested in systems with noise and delay and was
studying models of a random walk with delay. The story of our collaboration dates
back to the summer of 2008 when a book of chases and escapes by Paul J. Nahin was
introduced to the second author by Professor John G. Milton of Claremont Univer-
sity, California, USA. Coincidentally, the authors were together at the University of
Tokyo and came up with the idea of expanding the long-standing problem of chases
and escapes into a multi-particle system.

Our attempt was to bring together two topics of differing nature. Chases and Es-
capes have a long tradition in mathematics, and efforts have been made to obtain
analytical expressions of pursuit curves. On the other hand, collective motion of a
large number of particles is an emerging research area to elucidate universality with
the interests of statistical physics. Here, the high degree of freedom of the system
makes computer simulation a powerful tool. As a first step to connect the two top-
ics, we kept the concept as simple as possible and extended it to a multi-particle
system. This led us to propose the original model released in 2010: each player
chases and escapes individually with the nearest opponent without in-group com-
munication (except excluded volumes of the players). Although simple, the model
shows emergent collective behavior, such as segregation of pursuers and escapees.

It was fortunate that our attempt attracted some interest, and various extensions
of the model have been done. Our intention in writing this book is to summarize
the majority of the models and recent developments as well as to provide related
topics and possible future directions. In this process, with enjoyment, we have also
obtained analytical solutions for a novel problem in chases and escapes.

Collaboration with other colleagues has greatly helped us in extending the mod-
els discussed in this book, and gaining deep insight into the problems. We are par-
ticularly grateful to N. Ito, S. Matsumoto, R. Nishi, T. Nogawa, T. Hosaka, J. G.
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Milton, K. Nishinari, T. Saito and T. Nakamura for working with us. We also thank
T. Vicsek and Y. Sugiyama for many useful discussions.

Hopefully, the readers may find some of their interests and enjoy this book. It is,
however, important to bear in mind that this book is only a proposal. The successful
fusion of the two topics remains to be achieved.

Atsushi Kamimura and Toru Ohira
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Chapter 1

Introduction

The main theme of this book, entitled Group Chase and Escape, is a fusion of two
different directions of mathematical and scientific research fields. One field deals
with the traditional mathematical problems of chases and escapes, and the other is a
more recent emerging field of “self-driven” particles to explain collective motions.

In this introduction, we give an overview of this book by briefly describing back-
grounds and contents of the subsequent chapters. We first describe the two fields:
chases and escapes (section 1.1) and collective motions (section 1.2). Then we move
on to briefly explain our proposal, namely, Group Chase and Escape (section 1.3).
It follows potential applications and challenges of our proposal (section 1.4).

1.1 Chases and Escapes

Situations relating to chases and escapes are ubiquitous in our daily lives. We see
them in detective stories on TV; kids are playing games of tag; cats are chasing
mice, and so on. They have also attracted the interest of mathematicians for a long
time [71].

The oldest formulation of the problem is said to have been done by Leonardo
da Vinci, who considered a cat-chasing-a-mouse problem [32]. The escaping mouse
moves at a constant speed along a straight line, which is perpendicular to the line
connecting the initial positions between them. The chasing cat also moves at a con-
stant speed with its direction always pointing to the mouse.

Though the problem statement is simple, it took over 200 years before the pur-
suit curve of the cat was obtained by Pierre Bouguer in 1732 [10]. After that, this
problem was presented in a book on differential equations by George Boole, who
was a prominent mathematician known for Boolean algebra and logic [9].

A slight generalization of the problem had been studied where the straight line
on which the mouse moves is inclined at an arbitrary angle, but the closed-form
analytical solution in the absolute frame of reference was obtained only recently in
1991 [17], about half a millennium after Leonardo da Vinci’s time!

1© Springer Nature Singapore Pte Ltd. 2019
A. Kamimura and T. Ohira, Group Chase and Escape, 
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2 1 Introduction

Another classic problem from this topic is the case where a target moves in cir-
cular motions. The first appearance of a circular pursuit problem was reported in
the mathematical puzzle section of an English journal called Ladies’ Diary [71].
In the 1748 issue, the problem was stated as a spider chasing a fly moving on a
semicircular pane of glass.

Since then, the circular pursuit problems surfaced occasionally until the end of
19th century, however, progress was not significant probably because the problems
involved coupled nonlinear differential equations and it was generally impossible to
obtain analytical solutions in closed form. The problem was often associated with
A. S. Hathaway, who stated it clearly in 1920 [2].

Apparently, there were no big leaps until we could use computers to draw the
pursuit curves as we will show in Chapter 2.

Investigations of pursuit and evasion problems continue. From around 1990, a
new mathematical formulation was developed by Eliezer and Barton [26, 27, 5]
which allowed one to consider the problems not only in two-dimensional but also
in three-dimensional space. This new approach will be described with examples in
Chapter 2.

The problems of “chases and escapes” have also developed in different direc-
tions. In the mid-twentieth century, connections were found with the field of game
theory. The most notable one was developed into theories of “Differential Games”,
on which R. Issacs published a classic book in 1965 [41]. In these games, the two
players, pursuer and pursued, have strategies so that they can, respectively, mini-
mize and maximize specific objective criteria, which are often the time between the
beginning and the termination of the game, or the event of “capture”. The pursuer
wants to catch the pursued as soon as possible, while the pursued wants to evade for
as long as possible. The central question is to find the optimal strategy for each of
the players to achieve the conflicting objectives.

A representative example in the differential game is called the “homicidal chauf-
feur” problem. In this game, the chauffeur (pursuer) tries to run over and capture the
slower but more maneuverable pedestrian (pursued). The pursuer has a faster speed,
but the pursued has a smaller minimum turn-radius. Surprisingly, various types of
strategies and situations for the two players have been found associated with the
different speeds and the turn-radius ratios.

Other extensions relating to game theories include Search Game Theories [86].
The main theme is that a chaser tries to locate hiders, who can or cannot move
among hiding spots. One notable example is the “Princess and Monster” problem
[104]. These hiding spots can also take different forms, such as being connected by
networks of various kinds.

Another direction is a fusion of the chase and escape problems with classical
mechanics. Analogies and techniques developed in chases and escapes are employed
to obtain analytical solutions of curvilinear motion of a particle on an inclined plane
[92].
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1.2 Collective Motion

The history of investigating multi-particle systems in physics is almost as old as
the beginning of classical mechanics. Johannes Kepler, who analyzed astronomical
data left by Tycho Brahe, investigated relations between geometry and motions of
six planets. As is well known, the Newton’s laws were developed based on the work
of Kepler.

The work by Daniel Bernoulli in the 18th century is considered as the pioneering
work of the kinetic theory of gases. The theory is based on the hypothesis that gases
are composed of a huge number of moving particles. In the 19th century, physicists
including Rudolf J. E. Clausius, James C. Maxwell and Ludwig E. Boltzmann had
further developed the theory leading to statistical physics. Also, the work by Robert
Brown led to the theory of Brownian motion by Einstein. Subsequent experiments
by Jean B. Perrin confirmed the atomic nature of matter as well as the determination
of Avogadro’s number.

Collective behaviors and their functions have been of great interest in the field
of biology. An example includes investigations of brains composed of neural cells,
or neurons [51]. Experimental and anatomical studies begun in the 19th century.
J. E. Purkinje, Cammillo Golgi and Ramon Cajal are the names of the pioneering
scholars. By the beginning of the 20th century, the notion of the brain and central
nervous system as a network of neurons with information processing capability was
established.

Theories of the brain as a neural network were sprung in the 20th century. Semi-
nal work was done by the neurophysiologist Warren McCulloch and the mathemati-
cian Walter Pitts to connect a network of neurons with computations in 1943 [65].
Following the work, various conceptual and mathematical models and algorithms
have been proposed. They include functions of memories, learning, pattern recog-
nition, vision and other sensory systems. Applications to engineering problems and
systems, such as constrained optimization problems and robotics, have also been
vigorously pursued. In recent years, deep multilayer neural networks and associated
algorithms called Deep Learnings have provoked much interest fusing ever more
strongly with the field of artificial intelligence [57].

Another line of research has emerged in recent years on collective motions
[39, 102] of insects, animals, birds, humans, and automobiles. The phenomena of
flocking, grouping and congestions are commonly observed around us. Here, the
line of research treats each entity as a “self-propelled” or “self-driven” particle, and
a group of them as an aggregate of particles. In contrast to physical matter of atoms
and molecules, the movements of the particles are modeled by “coarse-grained”
rules and dynamics, and as a result, one tries to elucidate the generality of rich col-
lective behavior.

Investigations of collective motions have been pursued both experimentally and
theoretically. For example, careful observation of flying patterns of groups of pi-
geons has suggested a possible social hierarchy [70]. It is also found that aero-
dynamic effects are responsible for V-shaped flying patterns of certain birds [82].
Schools of fish such as sardines have been observed and analyzed [33, 34, 81]. The
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reaction time for collective response to disturbances such as attacks by larger fish is
surprisingly short compared to the swimming speed of individuals. Studies of traffic
data have shown for natural congestions without bottlenecks on highways that the
head of congestion commonly moves backward approximately with the speed of
20km/h [94].

Various mathematical models have been proposed for theoretical investigations,
to explain path formation of ants, pedestrian collective motions, flocks of birds and
so on. Among them, we will present two representative theoretical frameworks in
Chapter 3: Vicsek model [99] for flocking behavior and the Optimal Velocity model
[4] for automotive congestions.

1.3 Group Chase and Escape

We have merged these two lines of research to propose a model of “Group Chase
and Escape” [44]. On one hand, it is a simple extension of the traditional chase and
escape problems to multiple players: one group chases another group. On the other
hand, one can also view this proposal as an extension of the self-propelled particles
into a mixture of two groups with different motives. In reality, such situations can be
observed when one group of animals chases another, such as wolves chasing deer.

Mathematical analysis of group chase and escape is very challenging. Therefore,
we have relied mostly on computational simulations to study the problem and show
that a simple model can give rise to rich and complex behavior. In the original pro-
posal of the framework, we first focused on certain quantities such as time for the
total catch, average lifetimes of targets, and “cost” of capture by varying the number
of chasers and targets. We found two qualitatively different regions for the quantities
as a function of the number of chasers.

The most notable behavior of the simple model is the spatial organization of
chasers and targets. To connect the two qualitatively-different regions with the spa-
tial organization, we classify chasing processes into several patterns and introduce
order parameters to characterize them. It is found that the number of targets de-
creases intermittently along with the capture of targets. At each event of the capture,
the spatial organization of chasers changes drastically. Before the event, the chasers
surround the target to be captured, and after that, they move to other remaining
targets toward the next capture. Correspondingly, the order parameters change dras-
tically at the events as well.

After introducing the basic model, we will discuss some of the recent develop-
ments of group chase and escape by extending the model. The developments will be
reviewed by roughly categorizing them into three directions: abilities, reactions and
motions.

The first category, “abilities”, deals with modifications of abilities of the chasers
and the targets for detecting the opponents’ positions. Examples include the effects
of changing and distributing the detection ranges of the chasers. It also suggests a
benefit of division of labor in chasing and escaping.
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The second category, “reactions”, deals with modifications of the relationship of
pursuit and evasion, and the outcome of the “capture”. One investigated example
extends the chasers and the targets to a three-member case [88]. In the example,
three different species, A, B, and C, are considered. The species form a triangular
relation of chasing and escaping: the first species A chases the second species B,
and the species B chases the third species C, which in turn chases the first species
A. Here, the captured member is converted to the member of the chasing group,
for example, the captured B is converted to another member of A. Another related
extension is considered as a vampire problem [75]. In this work, the basic rules
for the chasers and the targets are the same as in the basic model. However, with
some probabilities, the captured target can be converted into a new chaser rather
than simply being removed from the field. It is observed that with this inclusion of
conversion, there is a maximum for the time to catch all the targets when we change
the initial number of targets.

The third category, “motions”, deals with modifications of the movements of
the chaser and the target. Examples include the changes of lattice structures, off-
lattice models, and errors in the movement. We also extend the model to facilitate
interactions within each group. One investigated example is a model where chasers
interact among themselves to repel within a certain distance. This has an effect that
the chasers get less in each other’s way, and they tend to spread over the field. It
is observed that when the number of chasers is small, this interaction works more
effectively to reduce the time for the entire catch.

1.4 Potential Applications and Challenges

The topic of group chases and escapes described above is still at the beginning phase
and there are a number of open problems and potentials for further developments
and applications.

We will first discuss open problems such as the effects of boundary conditions,
characterization of chasing patterns, and development of macroscopic descriptions,
that require some theoretical challenges for further developments.

Then, we will present and discuss possible applications of group chases and es-
capes. The first topic is hunting in nature, in which we will take wolves as one typi-
cal example. One promising direction is to model cooperative hunting and compare
with ethological studies. The second topic is to apply the framework to problems in
engineering such as optimization problems. One attempt with preliminary results is
described to employ the idea of chases and escapes for a combinatorial optimization
problem. Finally, we make a remark by providing a general perspective of living
together.

In the following chapters, we present the main body of the topics as we outlined
in this introduction. The structure of the following chapters is as follows.

In Chapter 2, we introduce two classical examples of chases and escapes: a cat-
chasing-a-mouse problem (Bouguer’s problem), and chases and escapes with circu-
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lar paths. Recent developments are also described to extend the problems to three-
dimensional space.

In Chapter 3, we provide a brief introduction of statistical mechanical approaches
to collective motions. Then, we review two representative models, namely, the Vic-
sek model and the Optimal Velocity model.

In Chapter 4, we introduce a basic model to demonstrate group chase and escape.
We review the behavior of the model obtained by computer simulations and present
analysis to understand the dynamics. In addition, recent developments are described
to modify and extend the basic model.

In Chapter 5, as described above, we discuss some open questions and chal-
lenges. Also, we point out possible applications of group chase and escape to co-
operative hunting by wolves and optimization problems as promising directions for
further developments.



Chapter 2

Chases and Escapes

2.1 Introduction

The main interest of chases and escapes, or pursuit and evasion, is to obtain the
pursuit curve of the chaser(s) and it has a long history [32]. It is said that the origi-
nal formulation of the problem dates back to Leonardo da Vinci, who considered a
cat-chasing-a-mouse problem. Since then, various problems of chases and escapes
have attracted mathematicians, and some analytical results were obtained for spe-
cific setups. Because the analytical treatments are generally challenging, the setups
have been traditionally restricted to one-to-one cases where a chaser pursues a single
target.

In this chapter, we introduce the representative problems of chases and escapes.
We start by describing a pursuit curve obtained by the French mathematician Pierre
Bouguer in 1732 for the cat-chasing-a-mouse problem where the mouse (target)
moves on a straight line. Then, a slight extension of the cat-chasing-a-mouse prob-
lem is proposed in which the target’s path is on an inclined line. Even though this
extension appears to be a small change, the closed-form solution in the absolute
frame of reference was obtained only recently in 1991.

We subsequently turn our attention to another classic problem of circular pursuit
in which the target moves on a circular path. This problem originates from the mid-
18th century, and a clear mathematical formulation was done in 1920. It is noted that
this problem involves coupled nonlinear differential equations and that a closed-
form solution cannot be obtained. Relating to this problem, a new mathematical
formulation was developed by Eliezer and Barton, which allows one to consider the
problem beyond two-dimensional space. We present this formulation with examples
of chases and escapes in three-dimensional space.

Interest in chases and escapes has grown to expand related topics. In particular,
connections with game theories have been developed as an interdisciplinary field of
mathematics, operations research, and economics. Such research topics are typically
called “Discrete Search Games” [86] and “Differential Games” [41]. We do not

© Springer Nature Singapore Pte Ltd. 2019
A. Kamimura and T. Ohira, Group Chase and Escape, 
Theoretical Biology, https://doi.org/10.1007/978-981-15-1731-0_2
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introduce them in detail here, but a brief introduction of discrete search games is
given in Appendix A.

2.2 Chases and Escapes with Straight Lines

Let us start here with one of the simplest representative problems, where the target
moves on a straight line.

2.2.1 Bouguer’s Problem

The first problem is to obtain the pursuit curve of a chaser to a target moving on
a straight line at a constant speed (see Fig. 2.1). The chaser, also with a constant
speed, is required to have its velocity vector pointing to the position of the target.
This problem is called Bouguer’s problem after the French mathematician Pierre
Bouguer, who proposed and solved it in 1732 [10].

The main problems are (A) to obtain the analytical expression of the path of the
chaser in this setup and (B) to obtain the point at which the chaser captures the
target. Both of the problems were solved as follows.

(A) The path of the chaser is given by the following equation with the configurations
in Fig. 2.1. Even though we just present the expression of the equation below, it will
be derived as a special case of the generalized problem in section 2.2.2.

(i) When the speed of the chaser, denoted by vC, is different from that of the
target, denoted by vT , the pursuit curve is written as

y(x) =
n

1−n2 x0 +
1
2
(x0 − x)

⎧⎪⎨
⎪⎩

(
1− x

x0

)n

1+n
−

(
1− x

x0

)−n

1−n

⎫⎪⎬
⎪⎭ , (2.1)

where n = vT/vC denotes the ratio of the speeds of the target to the chaser, and x0 is
the initial position of the target in the x-direction.

(ii) When the speeds of the chaser and the target are equal, the pursuit curve is
written as

y(x) =
1
2

x0

{
1
2

(
1− x

x0

)2

− ln
(

1− x
x0

)}
− 1

4
x0. (2.2)

(B) The position of the point at which the chaser captures the target is given by

(x,y) =
(

x0,
nx0

1−n2

)
,
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Fig. 2.1 Bouguer’s problem: The green line represents the path of the target and the red curve
represents the path of the chaser. (A) When the speed of the chaser is larger than that of the target,
the target is captured at the position marked by the star. (B) When the speed of the chaser is
smaller than that of the target, the chaser cannot capture the target. The initial position of the
target, indicated by the green square, is at (x,y) = (x0,0) with x0 = 10 and that of the chaser,
indicated by the red square, is at (x,y) = (0,0). The green and red arrows, respectively, indicate
the directions of the motion of the target and the chaser along the paths.

which can be finite only if n < 1, i.e., the speed of the chaser is faster than the target.
Otherwise, the capture does not take place as shown in Fig. 2.1(B). Note that this is
also the case when the speeds are the same, corresponding to the path of Eq. (2.2).

Albeit the simplicity of the problem, one can appreciate from the above results
that the analytical expressions are rather intricate.

One can consider variations of the problem. For example, the chaser can move
in the direction to the target’s anticipated position in the future for an interception,
instead of pointing to the target’s current position.
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2.2.2 Chases and Escapes with Inclined Lines

We now generalize Bouguer’s problem [17, 26, 27]. Here, the line on which the
target moves is an inclined straight line. The schematic view is shown in Fig. 2.2.
The target, denoted by E, now moves on an inclined straight line, starting from the
point A = (0,y0). At the same time, the chaser C starts from the origin, O = (0,0).
Let us assume that the target and the chaser move with the constant speeds, vT and
vC, respectively, and that the chaser C always points its velocity vector toward the
target E. The position of E is denoted by (X(t),Y (t)), and the problem is to find the
analytical expression for the path of C whose position is given by (x(t),y(t)).

O

A

x

x

y
y

(0,  y )0

h

α

E

C

Fig. 2.2 Schematic view of the problem for which the target moves on an inclined line. See the
main text for details.

By the condition that the chaser C at (x(t),y(t)) always points its velocity vector
(ẋ(t), ẏ(t)) to the target E at (X(t),Y (t)), there is a relation between their positions,

(X(t),Y (t)) = (x(t)+λ (t)ẋ(t),y(t)+λ (t)ẏ(t)), (2.3)

where λ (t) is a function of time and the dot denotes derivative with respect to time
t. By denoting the ratio of the speeds vT and vC as n = vT/vC, we also have

Ẋ2(t)+ Ẏ 2(t) = n2(ẋ2(t)+ ẏ2(t)). (2.4)

The above set of equations (2.3) and (2.4) are the basic equations of the problem:
three equations to solve for x(t),y(t), and λ (t), given X(t),Y (t), and n. We note that
the expression of the equations is generally applicable to chase and escape problems
in two-dimensional space.
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We now formulate the condition in which the target E moves on a straight line.
Here, let us assume, without the loss of generality, that the speed of E is equal to one
(vT = 1 and n= 1/vC). By taking t as time with this unit, we have Ẋ2(t)+Ẏ 2(t) = 1.
Also the position of the target E is written as (X(t),Y (t)) = (t cosα,y0 + t sinα),
where α denotes the angle of the straight line (see Fig. 2.2). Thus, the following
set of equations is obtained from Eqs. (2.3) and (2.4) with respect to the position
(x(t),y(t)) and the velocity (ẋ(t), ẏ(t)) of C,

ẋ2 + ẏ2 =
1
n2 , (2.5)

x+λ ẋ = t cosα, (2.6)
y+λ ẏ = y0 + t sinα. (2.7)

We have to solve the above set of equations to obtain the analytical expression
for the paths of C. In order to make the calculation simpler, we introduce new co-
ordinates (x̄, ȳ), where the ȳ axis is in the direction of the motion of E, while x̄ is
perpendicular to it with the origin at A (see Fig. 2.2). In the new coordinates, the set
of equations (2.5)–(2.7) is given in a simpler form,

˙̄x2 + ˙̄y2 =
1
n2 , (2.8)

x̄+λ ˙̄x = 0, (2.9)
ȳ+λ ˙̄y = t. (2.10)

We now solve them by eliminating λ from Eqs. (2.9) and (2.10):

ȳ− x̄
dȳ
dx̄

= t. (2.11)

If we further differentiate both sides by x̄, the following equation is obtained:

−x̄
d2ȳ
dx̄2 =

dt
dx̄

. (2.12)

On the other hand, if we divide Eq. (2.8) by ( ˙̄x)2, we get

1+
(

dȳ
dx̄

)2

=
1
n2

(
dt
dx̄

)2

. (2.13)

By eliminating dt
dx̄ from Eqs. (2.12) and (2.13), we arrive at

1+
(

dȳ
dx̄

)2

=

(
x̄
n

)2(d2ȳ
dx̄2

)2

. (2.14)

Since the chaser’s curve is concave downward in the coordinate frame of (x̄, ȳ),
this leads to
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d2ȳ
dx̄2 > 0, (∀x̄). (2.15)

Thus, by taking the square root of Eq. (2.14), the following is obtained with p ≡ dȳ
dx̄ :

√
1+ p2 =

(
x̄
n

)(
d p
dx̄

)
. (2.16)

We can integrate this equation by separating the variables x̄ and p as

d p√
1+ p2

=
n
x̄

dx̄, (2.17)

which leads to
ln
[

p+
√

1+ p2
]
= n(ln x̄− ln x̄c) , (2.18)

or

p+
√

1+ p2 =

(
x̄
x̄c

)n

, (2.19)

where x̄c is a constant of integration. If we take the inverse of both sides, we obtain

1

p+
√

1+ p2
=−p+

√
1+ p2 =

(
x̄
x̄c

)−n

. (2.20)

Equations (2.19) and (2.20) give

p =
dȳ
dx̄

=
1
2

[(
x̄
x̄c

)n

−
(

x̄
x̄c

)−n
]
. (2.21)

We integrate this equation with the following initial conditions at t = 0 to obtain the
pursuit curve,

x̄(t = 0) = y0 cosα, ȳ(t = 0) =−y0 sinα, p(t = 0) =− tanα. (2.22)

Case 1: The speeds of the chaser and the target are different (n �= 1)
The integration of Eq. (2.21) leads to

ȳ =
n

1−n2 y0 (1+nsinα)+
1
2

y0 cosα×[
1

1+n

(
1− sinα

cosα

)(
x̄

y0 cosα

)1+n

− 1
1−n

(
1− sinα

cosα

)−1( x̄
y0 cosα

)1−n
]
.

(2.23)

This equation represents the analytical expression of the path of the chaser, C, in
the coordinates of (x̄, ȳ). If one wants the corresponding equation in the original
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coordinates of (x,y), one can make the coordinate transform using

x̄ = xy0 sinα − (y− y0)cosα, ȳ = xcosα − (y− y0)sinα. (2.24)

Examples of the path obtained by numerical simulations are shown in Fig. 2.3.

5 10 15 20 25 30 35

10

20

30

40

2 4 6 8 10

5

10

15

X X

Y Y
(A) (B)

Fig. 2.3 Examples of the pursuit curves with inclined lines. The parameters are (A) n = 0.5,α =
π/4,y0 = 10 and (B) n = 1.5,α = π/4,y0 = 10. The green and red squares indicate the starting
points of the target and the chaser, respectively, and the green and red arrows indicate the directions
of the motion of the target and the chaser along the paths, respectively.

We also note that by setting

x̄ = x0 − x, y0 = x0, α = 0, (2.25)

the problem reduces to the original Bouguer’s problem in section 2.2.1, and Eq.
(2.1) is obtained from Eq. (2.23).

Case 2: The speeds of the chaser and the target are equal (n = 1)
In the case that the speeds of chaser and target are the same, Eq. (2.21) is written

as

p =
dȳ
dx̄

=
1
2

[(
x̄
x̄c

)
−
(

x̄
x̄c

)−1
]
. (2.26)

We integrate this equation with the initial condition
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x̄c =
y0 cos2 α
1− sinα

, (2.27)

leading to the following results:

ȳ =−1
2

(
y0 cos2 α
1− sinα

)
×[

ln
x̄

y0 cosα
− 1

2

{
(1− sinα)x̄

y0 cos2 α

}2

+2
(

1− sinα
cosα

)
tanα +

1
2

(
1− sinα

cosα

)2
]
.

(2.28)

If we set
x̄ = x0 − x, y0 = x0, α = 0, (2.29)

the expression Eq. (2.2) in the previous section 2.2.1 is obtained from Eq. (2.28).

Catching up or not

Using the formulation, we can predict if the chaser can catch up with the target or
not, as a function of the speed ratio n = vT/vC = 1/vC between the two. First, we
note that the distance D between the chaser and the target is proportional to λ from
Eqs. (2.3) and (2.4),

D =
√

(X − x)2 +(Y − y)2 = λvC = λ/n. (2.30)

From Eqs. (2.9) and (2.10), we can see that λ (t) ≥ 0. Also by Eqs. (2.8)–(2.10)
and (2.21), we obtain

λ (t) = nx̄

[
1+

(
dȳ
dx̄

)2
] 1

2

= nx̄

[
1+

1
4

{(
x̄
x̄c

)n

−2+
(

x̄
x̄c

)−n
}] 1

2

=
1
2

nx̄c

[(
x̄
x̄c

)1+n

+

(
x̄
x̄c

)1−n
]
. (2.31)

For the case n < 1, we can see λ → 0 as x̄ → 0. This means that the positions
of the chaser and the target will coincide at x̄ = 0 [Eq. (2.3)]. Thus, the chaser can
catch up. This is intuitively reasonable because, for n < 1, the chaser is faster than
the target. The point of the catch-up (x̄∗, ȳ∗) is given with x̄ = 0 in Eq. (2.23),

(x̄∗, ȳ∗) =
(

0,
ny0(1+nsinα)

1−n2

)
. (2.32)
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On the other hand, for the case with n > 1, the values of λ [from Eq. (2.31)] and
ȳ [from Eq. (2.23)] approach positive infinity as x̄ → 0. This means that the chaser
cannot catch up with the target and the distance between the two increases.

For the case of equal speed n = 1, we expect that the chaser cannot catch up with
the target if they are initially far separated. This can be seen from Eq. (2.31) as

λ =
x̄2

2x̄c
+

x̄c

2
, (2.33)

and it leads to

λ → x̄c

2
=

y0 cos2 α
1− sinα

, (x̄ → 0). (2.34)

This means that there exists a constant distance x̄c/2 between the chaser and the
target even as the time increases, therefore, the chaser cannot catch up with the
target.

2.3 Chases and Escapes with Circular Paths

We now turn our attention to the case of circular motions by the target. While the
problem is traditionally investigated in two-dimensional space, we will give a brief
review on an extension to three-dimensional space, which was done only recently
[5].

2.3.1 The Classic Problem in Two-Dimensional space

Let us first look at the problem in which the target moves in a circle (see Fig. 2.4).
The rules for the chaser and the target are basically the same as that of the case in the
previous section. The chaser always points its velocity vector to the current position
of the target. This problem was first proposed in an English journal called Ladies’
Diary in 1748 [71].

In contrast to Bouguer’s problem, the chaser’s path for this problem cannot be
solved in an analytically closed form. However, certain characteristics are observed
in numerical simulations as illustrated in Fig. 2.4. When the speed of the chaser is
slower than the target, the chaser cannot catch up with the target. After a long time,
however, it also follows a circular path with a smaller radius [Fig. 2.4(a)(b)]. As we
show below, the ratio of radii of the two circles is proved to be the same as the ratio
of the speeds of the chaser and the target. When the speed of the chaser is faster than
the target, the chaser can catch up with the target [Fig. 2.4(c)(d)].

To analyze the movements, we define the problem as shown in Fig. 2.5. The
target moves on a circular path of a radius a, and is pursued by a chaser who can
move n times faster than the target. Suppose that the initial position of the target at
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Fig. 2.4 Circular chase and escape: The green circle is the path of the target moving at a constant
speed starting from (x,y) = (1,0) indicated by the green square. The red curve represents the
pursuit path of the chaser starting from (x,y) = (1.5,0) for (a) and (c), and (x,y) = (0.5,0) for (b)
and (d). Both of the starting points are indicated by the red squares. The ratio of the speeds between
the chaser and the target are n = vT /vC = 2/1 for (a) and (b), and n = 0.95/1 for (c) and (d). The
chaser can catch up with the target for (c) and (d), and never catch up for (a) and (b).

time t = 0 is on the x–axis, at (a,0). Because the target moves on the circular path,
the position of the target is represented by an angle θ as (acosθ ,asinθ). When the
target moves from the initial position (θ = 0) to the present position at θ , a distance
traveled by the target is aθ . Hence, during the time interval, the chaser moves by
a distance of s = naθ to reach the present position at (x,y). It is assumed that the
chaser always points its direction of motion to the target. This makes the tangent at
(x,y) to the chaser’s pursuit curve pass through the target’s instantaneous position.

We denote the angle made by the tangent line and the x–axis by ϕ , and denote
the distance between the chaser and the target by ρ (see Fig. 2.5A). Then, the unit
vector in the direction of the tangent line is written as u = (cosϕ,sinϕ), and the
vector normal to the direction is written as v = (sinϕ,−cosϕ). The length of side
1 (see Fig. 2.5B) is obtained by considering the inner product of p = (x,y) and v as
p ·v = xsinϕ −ycosϕ . On the other hand, the length is also obtained by considering
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φ
(x, y)
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p = (x, y)
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u = (cosφ, sinφ)

v = (sinφ, -cosφ)

ρ

A B

1

2

(a, 0)

Fig. 2.5 (A) Definition of variables to characterize positions and movements of the chaser and the
target. (B) The relative positions of the target and the chaser are extracted from (A).

the triangle of which side 1 is the base and the apex is the position of the target, as
asin(ϕ −θ). Thus, the equation of the tangent line to the chaser’s pursuit curve is
written as

xsinϕ − ycosϕ = asin(ϕ −θ). (2.35)

Similarly, the length of side 2 (see Fig. 2.5B) is also obtained in two ways, and the
equation of the line normal to the tangent line that passes through (x,y) is

xcosϕ + ysinϕ = acos(ϕ −θ)−ρ. (2.36)

By differentiating Eq. (2.35) with respect to θ , one gets

dx
dθ

sinϕ + xcosϕ
dϕ
dθ

− dy
dθ

cosϕ + ysinϕ
dϕ
dθ

= acos(ϕ −θ)
(

dϕ
dθ

−1
)
.

This equation is rewritten as

dx
dθ

sinϕ − dy
dθ

cosϕ +
dϕ
dθ

(xcosϕ + ysinϕ) = acos(ϕ −θ)
(

dϕ
dθ

−1
)
.

From Eq. (2.36), the last term on the left-hand side (in the bracket) is acos(ϕ −θ)−
ρ . Then, we have

dx
dθ

sinϕ − dy
dθ

cosϕ +acos(ϕ −θ)
dϕ
dθ

−ρ
dϕ
dθ

= acos(ϕ −θ)
dϕ
dθ

−acos(ϕ −θ),

or
dx
dθ

sinϕ − dy
dθ

cosϕ −ρ
dϕ
dθ

=−acos(ϕ −θ). (2.37)

From the definition of ϕ , one sees
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dy
dx

= tanϕ.

Also, since the chaser moves by a distance of s = naθ to reach the present position
at (x,y), and

dx
ds

= cosϕ,

then
ds =

dx
cosϕ

= nadθ ,

and so
dx
dθ

= nacosϕ. (2.38)

The chain rule of calculus gives

dy
dθ

=
dy
dx

· dx
dθ

= tanϕnacosϕ,

or
dy
dθ

= nasinϕ. (2.39)

Thus, Eq. (2.37) is rewritten by inserting Eqs. (2.38) and (2.39) as

nacosϕ sinϕ −nasinϕ cosϕ −ρ
dϕ
dθ

=−acos(ϕ −θ),

or

ρ
dϕ
dθ

= acos(ϕ −θ). (2.40)

This equation is one of the differential equations to explain the movements of the
chaser.

Another equation is also obtained as follows. By differentiating Eq. (2.36) with
respect to θ , one gets

dx
dθ

cosϕ − xsinϕ
dϕ
dθ

+
dy
dθ

sinϕ + ycosϕ
dϕ
dθ

=−asin(ϕ −θ)
(

dϕ
dθ

−1
)
− dρ

dθ
.

This equation is rewritten as

dx
dθ

cosϕ +
dy
dθ

sinϕ − dϕ
dθ

(xsinϕ − ycosϕ) =−asin(ϕ −θ)
(

dϕ
dθ

−1
)
− dρ

dθ
.

From Eq. (2.35), the last term on the left-hand side (in the bracket) is asin(ϕ −θ),
and we have

dx
dθ

cosϕ +
dy
dθ

sinϕ −asin(ϕ −θ)
dϕ
dθ

=−asin(ϕ −θ)
dϕ
dθ

+asin(ϕ −θ)− dρ
dθ

,
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or
dx
dθ

cosϕ +
dy
dθ

sinϕ = asin(ϕ −θ)− dρ
dθ

. (2.41)

Thus, Eq. (2.41) is rewritten by inserting Eqs. (2.38) and (2.39) as

na = asin(ϕ −θ)− dρ
dθ

,

or
dρ
dθ

= a [sin(ϕ −θ)−n] . (2.42)

To sum up, the following set of differential equations is obtained by differentiat-
ing Eqs. (2.35) and (2.36) with respect to θ :

ρ
dϕ
dθ

= acos(ϕ −θ), (2.43)

dρ
dθ

= a [sin(ϕ −θ)−n] . (2.44)

It is not possible to solve these equations analytically. However, we are still able
to give some insights into the nature of the chaser’s trajectory. By introducing a
variable ω = ϕ −θ , we have dω/dt = dϕ/dt −1. Here, we assume θ = t because
the target moves on the circular path at a constant speed. Then, Eq. (2.43) becomes

ρ
dω
dt

+ρ = acosω. (2.45)

Also, Eq. (2.44) is written as

dρ
dt

= asinω −an. (2.46)

Differentiating Eq. (2.46) with respect to t, we have

d2ρ
dt2 = acosω

dω
dt

,

or
dω
dt

=
d2ρ/dt2

acosω
.

By substituting it into Eq. (2.45), we obtain

ρ
d2ρ
dt2 +aρ cosω = a2 cos2 ω. (2.47)

This equation suggests that in a steady-state solution which satisfies
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dρ
dt

=
d2ρ
dt2 = 0,

the chaser also moves on a circular path (see Fig. 2.6), so that the chord between the
chaser and the target rotates but its length ρ is a constant, where

ρ = acosω.

At the steady state, one also gets n = sinω from Eq. (2.46). Then,

ρ = a
√

1−n2. (2.48)

Writing the radius of the circular path of the chaser by R, the Pythagorean theorem
says

R2 +ρ2 = a2.

Then,

R =
√

a2 −ρ2 =
√

a2 −a2(1−n2) =
√

a2n2 = na.

Hence, when n ≤ 1, the chaser cannot catch up with the target, and that the chaser’s
pursuit curve eventually becomes a circle with the radius R = na.

ρ

a

Chaser

Target

O R

Fig. 2.6 In the steady state dρ/dt = 0 and d2ρ/dt2 = 0, the chord joining the chaser and the target
rotates, but its length (ρ) remains unchanged.
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2.3.2 Extension to Three-Dimensional Space

In considering general problems of chases and escapes in three-dimensional space,
the following approach can be taken by extending the method described for two-
dimensional space in the previous section. Here, we denote the position of the target
by (X ,Y,Z) and that of the chaser by (x,y,z). The ratio of the speeds between the
two is given by n = vT/vC. We derive the set of equations by the condition that the
chaser always points its velocity vector to the position of the target.

In the same manner as for Eqs. (2.3) and (2.4), one writes

(X ,Y,Z) = (x+λ ẋ,y+λ ẏ,z+λ ż), (2.49)

Ẋ2 + Ẏ 2 + Ẏ 2 = n2(ẋ2 + ẏ2 + ż2). (2.50)

The problem is to obtain the solution for the four functions, x(t),y(t),z(t),λ (t),
from the four first-order non-linear differential equations, given X(t),Y (t),Z(t), and
n. We have assumed that the chasers and the targets are both moving, respectively,
with constant speeds, but this condition can be relaxed as long as the ratio n remains
constant.

Because the set of the differential equations is nonlinear, it is generally difficult
to obtain solutions. Here, we will present only a few special solutions for the setups
explained below without showing derivations in detail. The interested readers may
refer to the paper by Barton and Eliezer [5] for their derivations and other solutions.

2.3.2.1 Circular Cylindrical Helices

The first example is where the target moves in a circular cylindrical helix of con-
stant pitch, a straightforward extension of the two-dimensional circular chases and
escapes in section 2.3.1. The derivation of the path is somehow in the reverse direc-
tion because we first specify the path of the chaser. Let us consider the case where
the chaser is moving in a circular cylindrical helix of equal pitch, which is repre-
sented by the following equation with a constant pitch p:

x = cos t, y = sin t, z =
( p

2π

)
t. (2.51)

Then, from Eq. (2.49), the target is at the location given below:

X = cos t −λ sin t, Y = sin t +λ cos t, Z =
( p

2π

)
(t +λ ) . (2.52)

If we assume that λ is a constant at this point and introduce a new parameter α
by

cosα =
1√

1+λ 2
, (2.53)

one can show that the position of the target (2.52) is rewritten as
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X =
√

1+λ 2 cos(t +α), Y =
√

1+λ 2 sin(t +α), Z =
( p

2π

)
(t +λ ) . (2.54)

This expression represents that the path of the target is a circular cylindrical he-
lix with the radius of

√
1+λ 2 and the pitch p. For these paths, it can be further

shown that n = vT/vC > 1 and that the distance between the chaser and the target
is a constant λ

√
1+ p2/4π2. This indicates that the distance between the two does

not change when the chaser moves slower than the target. Projecting the motions
onto the two-dimensional x− y plane corresponds to the long-time limit case of the
circular chase and escape in section 2.3.1. One example of paths of the chaser and
the target is shown in Fig. 2.7.

X

Y

Z

Fig. 2.7 Circular chase and escape in three-dimensional space: The red helix represents the path
of the chaser starting from the point (1,0,0), while the green one represents the path of the target
starting from (1,2,1/π). The parameters are p = 1.0 and λ = 2.0. The green and red arrows,
respectively, indicate the directions of the motion of the target and the chaser along the paths.

2.3.2.2 Equiangular Spiral Helix

The second example is a spiral. The positions of the chaser and the target are, re-
spectively, given by the following equations:

x = e−t cos t, y = e−t sin t, z = Bt, (2.55)

and
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X = e−t cos(t +π/2), Y = e−t sin(t +π/2), Z = B(t +1), (2.56)

where B is a parameter. One example is shown in Fig. 2.8. At t = 0, the chaser starts
at (1,0,0), while the target starts at (0,1,B) (both starting points are located outside
the space in Fig. 2.8).

X

Y

Z

Fig. 2.8 Circular chase and escape with equiangular spiral helix in three-dimensional space: The
red helix represents the path of the chaser starting from (1,0,0), while the green one represents the
path of the target starting from (0,1,B). The parameter B is set as B = 0.2.

Here, we assume that the chaser and the target move at an equal constant speed
(n = 1). As time progresses, the paths of both the chaser and the target appear as if
they climb up and wind around the z axis. The distance D between the chaser and
the target is greater than B, and approaches B in the limit of infinitely long time, i.e.,
the chaser cannot catch up with the target.

If we set B = 0, the motions of the chaser and the target are restricted to the two-
dimensional plane as shown in Fig. 2.9. In this case, both of them fall into the origin
in the long-time limit.

We can also consider another kind of spiral. For example, the following equations
represent the spirals for both moving toward the origin:

x = e−t cos t, y = e−t sin t, z = Be−2t , (2.57)

X = e−t cos(t +π/2), Y = e−t sin(t +π/2), Z =−Be−2t . (2.58)

In this example, the chaser starts at (1,0,B) to move downwards to the origin,
and the target starts at (0,1,−B) to move upwards to the origin. Typical paths are
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Fig. 2.9 Circular chase and escape with equiangular spiral helix to be projected onto the two-
dimensional plane by fixing B = 0: The red helix represents the path of the chaser, while the green
one represents the path of the target. The green and red arrows, respectively, indicate the directions
of the motion of the target and the chaser along the paths.

shown in Fig. 2.10. We note that, by fixing B = 0, this example also reduces to the
two-dimensional motions as described in Fig. 2.9.
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Y

Z

Fig. 2.10 Circular chase and escape with equiangular spiral-helix in three-dimensional space: The
red helix represents the path for the chaser starting from (1,0,B), while the green one represents
the path for the target starting from (0,1,−B). The parameter B is fixed as B = 1.3. The green and
red arrows, respectively, indicate the directions of the motion of the target and the chaser along the
paths.



Chapter 3

Collective Motion

3.1 Introduction

In everyday life, we observe various kinds of collective behavior [80], for example,
in flocks of birds [12, 36], schools of fish [68], herds of animals [31], colonies of
insects [19], and also in crowds of humans [38] and car traffic [39]. It also appears
at microscopic scales such as colonies of bacteria [100], molecular motors [89], and
also in artificial particles and robots [98]. They often exhibit eye-catching elegant
ordered movements at various scales. Of particular interest is that such behavior
emerges spontaneously, i.e., apparently in the absence of leaders or rulers, or any
pre-established hierarchical structures.

Over the past few decades, an increasing number of attempts have been made to
observe and describe flocking. Based on numerous observations, a tendency to adopt
the direction of motion of the neighbors is the main reason for ordered motion, and
apparently, very similar behavior can occur in different systems. This convinces the
community of physicists to try to understand them as universal behavior in a system
composed of a large number of “self-propelled” agents, and naturally leads to the
idea of applying methods of statistical physics to the description of the collective
behavior of organisms.

One of the main goals of the recent research trends, still to be achieved though, is
to establish a systematic classification of the types, or the universality, of collective
motion applicable to all, from collections of molecules to groups of humans. Mean-
while, flocking has been attracting biologists to answer why they come together,
and what the advantages are to their functions. The main, commonly assumed ad-
vantages of flocking are: 1) defense against predators, 2) more efficient exploration
for resources or hunting, and 3) improved decision making in larger groups.

Since the late 1980s, computer scientists have also recognized the power of
unity from algorithmic viewpoints. The collective behavior of decentralized, self-
organized systems is called swarm intelligence [8, 22]. The main advantage of col-
lective behavior is efficiency for optimization; examples include stochastic diffusion
searching [6], ant colonies [22] and particle swarm optimization [52].
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In this chapter, we briefly introduce concepts of statistical mechanics to explain
phase transition in equilibrium systems. We then introduce two theoretical models
to explain flocking and traffic jams as a phase transition in non-equilibrium systems.

3.2 Brief Introduction of Statistical Mechanical Approach

3.2.1 Phase Transition

The term phase transition is most commonly used to describe transitions between
solid, liquid and gaseous states of matter. Water, the most familiar matter in our
lives, has three states, solid (ice), liquid (water) and gas (vapor). We know that they
are all composed of the same molecules, H2O, but it is amazing to have the states
of the different macroscopic characters only by changing temperatures. In addition,
the transitions between the states have extremely clear and precise regularity. Under
the pressure of one atmosphere, by gradually increasing temperature, ice transition
to water precisely at 0 ◦C, and, as one increases it further, another transition occurs
at 100 ◦C from water to vapor.

Even though physical properties of water, such as density and viscosity, change
between the temperatures 0 and 100 ◦C, the states between them are rather quantita-
tive and can be changed without the macroscopically obvious qualitative differences
of water. Therefore, it is reasonable to characterize, as a “phase”, the collection of
states between which the properties of the system are changed without the qualita-
tive differences.

One may naively expect that the qualitative difference between phases is due to
a qualitative change in each molecule of H2O. For example, one may imagine that
the structure or interaction rules of the molecules sharply change at the temperature
and, consequently, result in the macroscopic character of water. However, based
on statistical mechanics, temperature is just a parameter for microscopic molecules
to determine the “average” of thermal noises, and the energetic character is, actu-
ally, fluctuating between molecules. Therefore, it is impossible for the molecules to
change the structure or interaction rules discontinuously at a specific temperature.

The qualitative differences at phase transitions are not due to qualitative change
of the microscopic rules. Even if the microscopic rules do not change, the qualitative
differences occur when the degree of freedoms (molecules) is sufficiently large in
the system. In other words, the phase transition is a kind of cooperative phenomenon
so that the origins cannot be reduced to characteristics of each component.
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3.2.2 Order Parameters and Symmetry

In a general sense, a phase transition is a process during which a system undergoes
a transition from one phase to another as a function of one or more external parame-
ters (e.g. temperature, pressure etc.). More specifically, phase transitions are defined
by the change of one or more specific variables called order parameters. The order
parameters measure the degree of order across the boundaries between phases. The
name “order” comes from the observations that a phase transition often (but not nec-
essarily) involves a symmetry-breaking process. For example, the cooling of a fluid
into a crystalline solid breaks continuous translation symmetry: each spatial point in
the fluid has the same properties, but each spatial point in a crystal does not unless
the points are chosen from the lattice points of the crystal lattices. Typically, the
high-temperature phase contains more symmetries than the low-temperature phase
due to spontaneous symmetry breaking. Mathematically speaking, the value of the
order parameter is usually zero in a high-temperature disordered phase and non-zero
in a low-temperature ordered phase.

In the case of collective motion, the commonly adopted order parameter is the
average normalized velocity φ ,

φ =
1

Nv0
|

N

∑
i=1

vi|, (3.1)

where N is the total number, and v0 is the average absolute velocity of particles in
the system. When the motion of particles is disordered, the velocities of the individ-
ual particles are in random directions; then, the average in Eq. (3.1) gives a small
magnitude of the vector. On the other hand, if the motion of particles is ordered and
the velocities of the particles are in parallel to a specific direction, the average gives
a vector of absolute velocity close to Nv0; therefore, the order parameter φ is close
to one. If the microscopic rules of particles’ motion have rotational invariance (i.e.,
the dynamics of the system are isotropic), the transition from the random motions to
the parallel motion in a specific direction corresponds to a breaking of the rotational
symmetry.

If the order parameter changes discontinuously from one phase to another, we
refer to this kind of phase transition as a first-order transition. On the other hand,
if the order parameter changes continuously but its derivative is discontinuous, the
phase transition is referred to a second-order (continuous) transition.

3.2.3 Critical Exponent

Following conventional definitions in statistical mechanics, the behavior of a system
near second-order transition is often referred to as critical phenomena. Near the
critical point at which phase transition occurs, the behavior of physical quantities to
describe the system such as pressure, density, and heat capacity are characterized by
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critical exponents. The behavior of the physical quantity Φ asymptotically follows
a power law as Φ ≈ |T −Tc|ν (T → Tc), where Tc is the value at the critical point of
the controlled parameter T , and ν is the critical exponent.

The most commonly known example is the transition at the Curie temperature
between ferro- and paramagnetic materials. Above this temperature, some materials
lose their permanent magnetic (ferromagnetic) properties, to be replaced by induced
magnetism (paramagnetism). At this point, the behavior follows for heat capacity
CH(T )≈ |ε|α , magnetization M ≈ |ε|β , and susceptibility ξ ≈ |ε|γ where ε = T−Tc

Tc
.

Interestingly, the values of the critical exponents depend only on a few factors such
as spatial dimensions, symmetry of the system and interaction ranges, and the other
details in the system do not matter. Therefore, different systems sharing the essential
factors exhibit identical behavior of the critical exponent, and such a collection of
systems is referred to as belonging to the same universality class.

Another surprising observation is that these critical exponents are related to each
other and expressions called scaling laws can be formulated, such as α+2β +γ = 2.

3.2.4 Spin Models

One of the most basic models to study the phase transition is the Ising model for
ferromagnetism. The model consists of discrete variables that represent magnetic
dipole moments of atomic spins, and they are in one of two states (+1 or −1) [Fig.
3.1(A)]. The spins are arranged in a lattice and each interacts with its neighbors and
with an external magnetic field. The two-dimensional square-lattice Ising model is
one of the simplest statistical-mechanics models to show a phase transition.

In the absence of an external field, the state (+1 or −1) of each spin flips due to
fluctuations at finite temperatures. At high temperature, the fluctuations are large so
that the state of each spin is almost random, and changes frequently. On the other
hand, at low temperature, the interaction between spins is relevant for determining
the state of the spins. To quantitatively investigate this, energy is defined as the
Hamilton function of the states of the spins on the grids as

H(σ) =−∑
〈i j〉

Ji jσiσ j,

where the sum is over pairs of adjacent spins. The notation 〈i j〉 denotes that the sites
i and j are nearest neighbors, and σi and σ j denote the states of the spins (+1 or
−1), respectively. Ji j denotes the interaction energy between the spins at i and j,
and, for ferromagnetic interactions, Ji j = J > 0 for all pairs. When the spins are in
the same state σi = σ j =+1 or −1, the interaction energy is −J, and, when they are
in the opposite states, the energy is J.

In equilibrium states at temperature T , the probability to occupy a specific
configuration σ is given by the Boltzmann distribution exp{−βH(σ)}/Z, where
β = (kBT )−1 and Z = ∑σ exp{−βH(σ)}. The probability to have a configuration



3.2 Brief Introduction of Statistical Mechanical Approach 29

state with lower energy increases as T decreases. Because the interaction energy is
lower when the spins are in the same state with the neighboring sites, the probability
that the spins are in the same state (+1 or −1) increases as T decreases. Actually,
the model undergoes a phase transition between an ordered and a disordered phase
in two dimensions or more. In the ordered phase, the spins are aligned to be in the
same state, +1 or −1. On the other hand, the spins are randomly in the states of +1
or −1 in the disordered phase.

The magnetization is generally considered as the order parameter, which is the
average value of the spin M = 1

N ∑N
i=1 σi. The magnetization has a non-zero value in

the ordered phase, while it is zero in the disordered phase. The phase transition also
accompanies a symmetry-breaking process: the discrete symmetry breaks between
the spin configurations in which they are aligned to +1 or −1 states. The critical
exponents of the ferromagnetic transition in the Ising model establish an important
universality class in which a variety of different phase transitions share the same
behavior near the critical point. For example, the critical exponents in the spatial
dimension dS = 2 are known as α = 0, β = 1/8 and γ = 7/4; these satisfy the
scaling law α +2β + γ = 2.

The XY model is also one of the basic models in statistical mechanics. In
the model, the spin variable is a two-component unit-vector si = (sx

i ,s
y
i ) [Fig.

3.1(B)]. Using the angle variable θi of the spin, the unit vector is also written as
s = (cosθi,sinθi). The spins are arranged in a lattice and each interacts with its
neighbors. In the Ising model, the spins are in either of up (+1) or down (−1) states.
In the XY model, the spin can rotate in the plane of the lattice.

The energy of the XY model is defined as the Hamilton function of the states of
the spins on the grids as

H(σ) =−J ∑
〈i j〉

si · s j =−J ∑
〈i j〉

cos(θi −θ j),

where the sum is over pairs of the nearest neighbors. The interaction energy is lower
as the two spins are aligned, i.e., as θi is closer to θ j. Even though the XY model
shares the same trends with the Ising model in which the spins are aligned as tem-
perature decreases, the two-dimensional XY model does not exhibit the phase tran-
sition in which the spontaneous magnetization has a non-zero value. More generally,
it is proved as the Mermin–Wagner theorem that continuous symmetries cannot be
spontaneously broken at finite temperature in systems with sufficiently short-range
interactions in dimensions dS ≤ 2. The two-dimensional XY model does not exhibit
the normal second-order phase transition; however, the model is known to exhibit a
different kind of phase transition called the Kosterlitz-Thouless transition.
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(A) (B)

Fig. 3.1 Cartoon of the spin models. (A) Ising model: the spins on each grid of the square lattice
are in one of two states (+1 or −1), denoted by up and down arrows, respectively. (B) XY model:
the state of the spins is written as si = (cosθi,sinθi).

3.3 Collective Motion as Phase Transitions in Non-equilibrium

Systems

Phase transitions can occur in both equilibrium and non-equilibrium systems. In
contrast to phase transitions of the materials composed of atoms and molecules,
collective motion is a truly non-equilibrium phenomenon. On one hand, there are
possible analogies with the equilibrium phenomena, and the language and the char-
acterizations of the various aspects in equilibrium phase transitions are still suitable
for understanding and interpreting observed non-equilibrium phenomena in collec-
tive motions.

On the other hand, there are some specific features of collective motion such as
giant number fluctuations and jamming, which obviously do not occur in systems at
equilibrium.

3.4 Vicsek Model

Among the number of models that have been proposed and developed to explain
collective motion from a microscopic description, the most commonly known and
well-studied one is referred to as the Vicsek model [99]. The Vicsek model has at-
tracted broad interest from wider audiences and is considered as one of the standard
models in the field of collective motions. Several variants are proposed based on the
original model.

One of the first widely known flocking models was made by Reynolds, and the
primary motivation was to produce a visual appearance of coherently flying objects
similar to birds in computer animation: he called the objects “boids” [84]. The boids
move along trajectories determined by three basic steering rules: (a) separation, (b)
alignment, and (c) cohesion. Each object interacts only with its neighboring objects
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within a certain distance (local flock-mates). In separation, each tries to separate
itself in order to avoid crowding local flock-mates and collisions. The alignment
rule keeps each object steering its direction towards the average heading direction
of its surrounding flock-mates. The third rule, cohesion, moves each toward the
average position of local flock-mates, to keep them together.

In order to give a quantitative interpretation of the behavior of flocking, the Vic-
sek model was introduced based on a statistical-physics-type approach and math-
ematical refinement of the computer model for flocking simulations. The model
describes the overdamped dynamics of a collection of N self-propelled particles
characterized by their off-lattice position xi(t)(i = 1, ...,N) at time t. In the model,
all particles move with a fixed speed of v0, and are allowed to change the direction
of their velocity vectors. Reflecting the alignment rule, each particle tries to align
its direction with the average direction of its neighbors within a given interaction
distance of R.

The velocity vi of the i-th particle is given by

vi(t +1) = v0
〈v(t)〉i

R

|〈v(t)〉i
R|

+ f luctuation, (3.2)

where 〈v(t)〉i
R is the average velocity of particles within a circle of radius R centered

at the i-th particle.
The speed of particles is constant and the velocity is updated by changing the

direction based on the average velocity and fluctuations. The fluctuation is intro-
duced in the angle 〈θ i〉 of the average velocity over the surroundings to update the
orientation angle θi. The dynamics of the angle are given by

θi(t +1) = 〈θ i〉(t)+ξ (t), (3.3)

where ξ (t) is the random number taken from a uniform distribution in the interval of
[−ηπ,ηπ]. Hence, the parameter η represents the strength of fluctuations. Finally,
the position of the particle is updated as

xi(t +1) = xi(t)+vi(t +1). (3.4)

The only parameters of the model are the density ρ (the number of particles in a
volume RdS , where dS is the dimension), the velocity v0 and the level of fluctuations
η .

Even though it is simple, the Vicsek model exhibits a rich variety of collective
motion patterns, by varying the parameters and initial conditions. Of particular in-
terest is that the model displays phase transition from a disordered to an ordered
(particles moving in parallel) state as we change fluctuation strength parameter η .
The dynamics of the model are isotropic in space so that no preferred direction is
given a priori. However, when the alignment term is stronger than the noise effect,
the particles collectively develop global orientation: particles move in a specific di-
rection. For order parameter φ , the normalized average velocity is typically suitable
φ = 1

Nv0
|∑N

i=1 vi|, and schematic behavior of the order parameter versus the noise
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Fig. 3.2 Cartoon of the Vicsek model. The velocity of i-th particle (indicated by the red circle)
is given by the average velocity of particles (green filled circles) within a circle of radius R (red
dashed circle) and fluctuations. In the next time step, the particles contributing to the average
velocity can change.

strength η is shown in Fig. 3.3. At low noise levels, the particles collectively move
in a specific direction and φ is close to unity in the ordered phase. On the other hand,
at high noise levels, the particles move in random directions and φ is close to zero
in the disordered phase.

η

Transition point

System size

Large

0

1

Fig. 3.3 Schematic behavior of the order parameter φ as a function of the strength of fluctuations
η . As the noise strength η decreases, the order parameter transitions to increasing. As the system
size increases with fixed density, the transition points become sharp.
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In the original paper, a second-order transition from disordered to ordered phase
was shown to exist. In particular, in the thermodynamic limit, the model was argued
to exhibit a phase transition analogous to the continuous ones in equilibrium systems
as φ ≈ [ηc(ρ)−η ]β and φ ≈ [ρ −ρc(η)]δ , which defines the behavior of the order
parameter φ at the critical point, as in the case of a standard second-order transition,
β and δ are the critical exponents, η is the noise strength, ρ is the particle density.
ηc(ρ) and ρc(η) are the critical noise and density, respectively in the limit of infinite
system size. The continuous nature of the transition has been a matter of some de-
bate. In fact, the type of the phase transition depends on the way in which the noise
is introduced into the system. The original model is so-called angular-noise type in
which the noise perturbs the final angle as in Eq. (3.3), exhibiting the continuous
one. On the other hand, when the noise perturbs velocity of the individual particles
before averaging, the model produces discontinuous first-order phase transitions.

One interesting property in the Vicsek model is its ability to exhibit the long-
range order in two-dimensional space. According to the Mermin–Wagner theo-
rem, continuous symmetries cannot be spontaneously broken at finite temperature
with sufficiently short-range interactions in dimensions dS ≤ 2. In fact, the two-
dimensional XY model does not exhibit long-range order at finite temperatures. The
contradiction could naturally occur because the Vicsek model does not satisfy the
conditions required by the theorem to apply. The following properties of the model
are probably, but not surely, origins of the long-range order: 1) the system is in
non-equilibrium (e.g. particle interactions do not conserve momentum), 2) particles
move and originate effective long-range interactions (flocks merge and dismember,
carrying information across the system), 3) the system is not translationally invariant
(particle positions are distributed inhomogeneously in space).

Another intriguing property of the model is giant number fluctuations. The num-
ber of particles in a fixed area of the system fluctuates over time because the par-
ticles are moving around in the system. The extent of the fluctuations is typically
characterized by the average number of particles 〈n〉 and the standard deviation
Δn =

√
〈(n−〈n〉)2〉. As the average number of particles increases in the area, the

standard deviation also increases. In equilibrium systems, the relationship is gener-
ally written as Δn ∝ 〈n〉α with α = 0.5. In the ordered phase of the Vicsek model,
the standard deviation increases faster (α ≈ 0.8) than the equilibrium relationship,
that is, inhomogeneity of spatial distribution is more giant, and dense and sparse
areas of the particles are more defined.

3.5 Optimal Velocity Model

3.5.1 One Dimension

We introduce here another theoretical model, namely the Optimal Velocity model, to
describe traffic jams on motorways [4]. Studies from engineering, mathematics, op-
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eration research, and physics have suggested a great variety of models from different
modeling approaches (see [39] and references therein for reviews). Among various
models for traffic jams, the model introduced here assumes agent-based modelings
in continuous space, in which each agent (vehicle) follows simple rules of motion
to form collective behaviors. In this sense, the spirit of the model is similar to that
of the Vicsek model [99].

The main principle of the model is to assume that each vehicle has an optimal
velocity as a function of the distance between the vehicle and that is running im-
mediately ahead of it. It models a natural response of a driver of the vehicle: he/she
accelerates the vehicle to shorten the distance if it is too large, and decelerates it if
it is too small.

3.5.1.1 Model

Here, we consider N vehicles, and they are running in a traffic lane of length L
with a periodic boundary condition (see Fig. 3.4). The dynamics of the i-th vehicle
(i = 1,2, ...N) are governed by the following differential equations:

dxi

dt
= vi, (3.5)

dvi

dt
= a{V (xi+1 − xi)− vi}, (3.6)

where xi and vi denote the position and the velocity of the i-th vehicle. The model
introduces an optimal velocity V (ΔX) as a function of the distance ΔX = xi+1 − xi.
Here, the (i+1)-th vehicle is running immediately ahead of the i-th vehicle.

x

Vehicle i Vehicle i+1

xi xi+1 xNxi-1x1

…
…

ΔX = xi+1 - xi

vi

Fig. 3.4 Schematic figure of the one-dimensional optimum velocity model. N vehicles are running
in a traffic lane of length L with a periodic boundary condition. The i-th vehicle at the position xi
with the velocity vi is running immediately behind the (i+1)-th vehicle.

From the right-hand side of Eq. (3.6), the velocity vi increases, i.e., the vehicle
accelerates, if vi is below the optimal velocity V (ΔX), and decreases if vi is above
the optimal. The parameter a (a > 0) is a constant denoting the timescale of the
response of the driver: larger a indicates more rapid responses (acceleration or de-
celeration). We assume that the shape of the function V (ΔX) is as shown in Fig. 3.5:
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it increases monotonically with ΔX for small ΔX , and is saturated at an upper limit
for large ΔX . In the simulations below, we adopt V (ΔX) = tanh(ΔX −2)+ tanh(2).

 0
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 0  2  4  6  8  10

ΔX

V
(Δ

X
)

Fig. 3.5 Shape of the optimal function V (ΔX) = tanh(ΔX −2)+ tanh(2).

3.5.1.2 Stability in Linearized Theory

The model has two free parameters, the density of the vehicles, ρ = N/L, and the
timescale of the responses a.

Equation (3.6) has a uniform solution written as

x(0)n (t) = b̄n+V (b̄)t (3.7)

where b̄ = L/N. We call this solution the “uniform flow” without congestion, in
which vehicles are uniformly distributed with identical spacing b̄, and run with the
same velocity V (b̄).

Let us investigate the stability of the solution by linearizing equations (3.5) and
(3.6). Let yi be a small deviation from the solution x(0)n ,

xn = x(0)n + yn, |yn| � 1. (3.8)

By neglecting higher orders of yn, the linearized equation is obtained as

d2yn

dt2 = a
{

V ′(b̄)(yn+1 − yn)− dyn

dt

}
. (3.9)

The solution of this equation is obtained by expanding the Fourier series with eiαkn

as
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yn = ∑
k

Ak exp(iαkn+ zt) , (3.10)

αk =
2π
N

k (k = 0,1,2, ...,N −1), (3.11)

where z satisfies
z2 +az+aV ′(b̄) = aV ′(b̄)eiαk . (3.12)

Each αk corresponds to each eigenmode, and for a given V ′(b̄), we have a complete
set of the eigenmodes {αk}.

The “uniform flow” is unstable if the amplitude of an eigenmode grows with
time, that is, the real part of z is positive. On the other hand, if the real part is
negative, the oscillation of the mode shrinks. Here we rewrite Eq. (3.12) as

( z
a

)2
+

z
a
+

V ′(b̄)
a

=
V ′(b̄)

a
eiαk , (3.13)

and assume that z = a(u + iv). The solution for u = 0, i.e., z = iav satisfies the
condition

−v2 +
V ′(b̄)

a
+ iv =

V ′(b̄)
a

eiαk . (3.14)

The (V ′(b),α) plane is separated into stable (u < 0) and unstable (u > 0) regions
by the critical curve u(V ′(b̄),α) = 0. From Eq. (3.14), the critical curve satisfies

V ′(b̄) =
a

2cos2 α
2
. (3.15)

In order for the uniform flow to be stable, every u corresponding to the complete set
of αk should be negative. Both sides of Eq. (3.14) are shown in the polar coordinate
plane Fig. 3.6 of (V ′(b),α) for (i) V ′(b̄)/a = 1 and (ii) 1/2. Each solution for αk is
on the circle of radius V ′(b̄)/a in the plane, and the right region from the green curve
corresponds to the u > 0 region. If the circle intersects with the green curve, then
there exists at least one positive u solution, therefore, the flow is unstable. Thus, the
flow is stable if V ′(b̄)< a

2 because u < 0 for all modes αk, and unstable if V ′(b̄)> a
2

because at least one u mode can be positive.
From the linear stability analysis, one can show that the phase diagram is ob-

tained as in Fig. 3.7. The uniform flow of the vehicles is unstable when a < 2V ′(b̄),
where b̄ = L/N . Note that the stability is determined by the values of the sensitivity
a of drivers and the derivative of the optimum velocity function V (b̄).

In the stable region, each vehicle runs at equal interval b̄ = L/N and its velocity
is equal to the optimum velocity for the interval without congestion. However, with
the parameters for the unstable region, small perturbations present in the system
can grow and finally lead to congestion. The most notable prediction by this simple
model is that the phenomena of “natural” traffic jam arise without any bottleneck
such as inherent spatial inhomogeneities on the traffic lane.
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Fig. 3.6 The region of stability criteria in the (V ′(b̄),α) polar coordinate plane for (i) V ′(b̄/a) = 1
and (ii) V ′(b̄/a) = 1/2. The right- and left-hand sides of Eq. (3.14) are shown by red and green
curves, respectively.
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Fig. 3.7 Phase diagram for the stability of the flow. The uniform flow of the vehicles is unstable
when a < 2V ′(b̄), and stable when a > 2V ′(b̄), where a is the sensitivity of the drivers, b̄ = L/N,
and V ′(b̄) is the derivative of the optimum velocity function.
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3.5.1.3 Numerical Simulations

In Fig. 3.8, we show the simulation results with parameters for unstable regions.
Initially, each vehicle runs approximately uniformly. However, small perturbations
introduced in the initial positions gradually destabilize the uniform flow and finally
cause congestion. From the viewpoint of statistical physics, a phase transition occurs
from free-moving phase to congestion phase as the density of vehicles (N/L = 1/b̄)
increases and passes through the certain value.
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Fig. 3.8 Time evolution of the position in x of each vehicle. Different vehicles are denoted by
different colors. Parameters are N = 10, L = 20, a = 1. Initially, each vehicle is located approx-
imately at an equal interval L/N = 2 with small perturbations. The perturbation is introduced to
each vehicle by randomly shifting between [−0.01,0.01] from the position at the equal interval.

This phase transition has also been confirmed by experiments in a circular lane
[94], and further details including an indication of metastability and validity of the
optimum velocity model have been investigated by a larger indoor circuit experi-
ment in the Nagoya Dome [96].

3.5.2 Two Dimensions

The one-dimensional Optimal Velocity model was extended to the two-dimensional
OV model [72, 73] to explain the collective motion of pedestrians and animals.
For the collective motion of pedestrians, the study fits nicely into recent trends of
describing the motion of pedestrians as if they are subject to “social forces”, orig-
inally proposed by Helbing and Molnár [37]. In the approach, we consider each
pedestrian as an agent, and each follows microscopic dynamics of motions which
are determined by interactions between the agents. Similar to Newton’s equation of
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motion, the change of the motion of an agent is caused by forces acting on the agent.
The forces are, however, not directly exerted by the pedestrians’ environment, but
they are a measure for the internal motivations of the individuals to perform certain
actions (movements). Generally, the equation of motion for agent j ( j = 1, ...,N) is
written as

dv j(t)
dt

=
v0

je
0
j(t)−v j(t)

τ j
+∑

i�= j
f ji(t), (3.16)

where the first and second terms on the right-hand side denote self-driven and ex-
ternal forces, respectively. In the self-driven terms, e0

j denotes a unit vector in the
desired direction the agent wants to move, v0

j is the optimum speed, and τ j denotes a
timescale in which the agent adjusts its velocity to the optimum velocity. The exter-
nal forces in the second term denote interactions between agents j and i. Typically,
the interactions are introduced as repulsive forces to model general tendencies to
avoid collisions with the agent i and the boundaries of the system such as walls.

In the original work by Helbing and Molnár [37], the simple social force model
demonstrates the self-organization of several observed collective effects of pedes-
trian behavior. They include the development of lanes in initially disordered pedes-
trian crowds with opposite walking directions, and oscillatory changes of the walk-
ing direction at narrow passages. In addition, a jammed state is observed in which
the oppositely moving particles block each other.

The self-organization due to the collective effects of pedestrian behavior is also
observed in the Optimal Velocity model by naturally extending the one-dimensional
model to two-dimensions as we will explain below. The equation of motion for a
particle with the index j is given by

dx j(t)
dt

= v j(t), (3.17)

dv j(t)
dt

= a

[{
V0 +∑

k
F(xk(t)−x j(t))

}
−v j(t)

]
, (3.18)

where x j = (x j,y j) and xk = (xk,yk) are the position of j-th and k-th particles, re-
spectively. V0 is a constant vector to express “desired velocity”: a particle moves
with the desired velocity when there is only a single particle in the system. Equation
(3.18) corresponds to Eq. (3.16) by replacing the sensitivity a with 1/τ j, V0 with
v0

je
0
j(t), and the summation term of F with the interaction term of f ji(t). The vector

F indicates interactions between particles, and

F(xk −x j) = f (rk j)(1+ cosφ)nk j, (3.19)
f (rk j) = α

[
tanhβ (rk j −b)+ c

]
, (3.20)

where rk j = |xk −x j|, cosφ =
V0·(xk−x j)

|V0|rk j
and nk j = (xk −x j)/rk j. The strength of the

interaction is determined by the distance rk j between j-th and k-th particles and the
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angle φ between xk −x j and V0. Because of the term (1+ cosφ), a particle is more
sensitive to particles in front than those behind.

Types of the interaction are controlled by the parameter c. For c =−1, the inter-
action is repulsive, f < 0. For −1 < c < 1, the interaction can be repulsive for short
distance and attractive for long distance. Here, the model with only repulsive in-
teractions can be applied to pedestrians and the model with repulsive and attractive
interactions are applied to explaining the collective motion of animals.

For the repulsive interaction (c=−1), homogenous flow is a solution to the equa-
tions in which particles are moving in the desired direction by forming a triangular
structure, and linear stability analysis can be done to obtain the phase diagram to
see how unstable modes arise depending on the parameters [72].

Also, in the counter flow, the model exhibits a lane formation similar to that of
pedestrian flow. When half the number of particles have the desired velocity in the
opposite direction, clear lanes can be formed; a typical snapshot is shown in Fig. 3.9.
The lane formation is stable probably for parameters with which the unidirectional
flow is stable. When the distance between particles is smaller than the critical value
above which the flow is stable, particles cannot move smoothly, and a blocking state
emerges where their motion is prevented by other particles moving in the opposite
direction (Fig. 3.10).

Fig. 3.9 Formation of lanes in the counter flow. Red and green particles prefer to move upward
and downward, respectively. Parameters are N = 300, L = 30, a = 2, b = 1.0, c = −1, α = 0.25,
β = 2.5.

The effect of the attractive interaction on the stability has been also studied [73].
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Time

Fig. 3.10 Development of blocking state in the counter flow. Parameters are N = 500, L = 30,
a = 2, b = 1.0, c =−1, α = 0.25, β = 2.5.



Chapter 4

Group Chase and Escape

4.1 Introduction

We have combined the research fields of “Chases and Escapes” and “Collective
Motion” described in the previous chapters to propose a concept of “Group Chase
and Escape” [44] by investigating simple models.

One can view the concept as a natural extension of chases and escapes, which are
typically investigated in one-to-one cases, to multiple players. On the other hand, the
models we explain below also fit into a kind of collective motion with two groups
of self-propelling particles whose aims (preferred movements) dynamically change
with their opponents’ positions [101]. It can be also viewed as an ideal simplification
of phenomena such as hunting of a group of deer by a pack of wolves.

As the basic model, we first introduce in section 4.2 a simple rule for chasers
and targets: each chaser prefers to get closer to the nearest target, while each target
wants to get away from the nearest chaser. Even with this simple rule, mathematical
analysis of group chase and escape is quite intricate and challenging. Instead, we
adopt computational simulations to investigate the models.

In order to understand the nature of the model, we first calculate macroscopic
quantities, i.e., the time to catch all the targets from initial conditions, and average
lifetimes of targets. In particular, we see how the quantities depend on the number
of chasers and/or initial targets in section 4.2.1. We found two qualitatively different
regions for the time to catch all the targets as a function of the number of chasers.
Although the time monotonically decreases as the number of chasers increases, it
shows faster decreases in a region with a smaller number of chasers, while the de-
crease is slower in a region with a large number of chasers.

To explain the two distinctive regions from microscopic viewpoints of chasing
processes, we have introduced order parameters to classify the capturing process in
section 4.2.2. In the region with the smaller number of chasers, spatial segregations
of chasers and targets are commonly observed, and the number of targets decreases
in an intermittent way. The introduced parameters are capable of explaining the
intermittent decreases of targets.

© Springer Nature Singapore Pte Ltd. 2019
A. Kamimura and T. Ohira, Group Chase and Escape, 
Theoretical Biology, https://doi.org/10.1007/978-981-15-1731-0_4
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After describing the basic model, we turn our attention to extending the model
for possible applications to real problems. A variety of extensions of the basic model
are described and discussed in section 4.3: extending the two groups of chasers and
targets to three groups, a model which introduces conversion of captured targets to
chasers, to include effects of interactions among chasers, differences in speed, the
lattice structures, and delay in chasing processes.

4.2 Basic Model

Let us describe the basic model, which we proposed in [44]. We consider a two-
dimensional square lattice of size Lx × Ly. Periodic boundary conditions are im-
posed.1 Here, we consider excluded volume of particles so that at most one particle,
a chaser or a target (escapee), can occupy each site.

The chasers and targets play tag by hopping between the sites. The following
rules are applied for hopping: a target moves to evade its nearest chaser, while a
chaser hops to close in on its nearest target. Here, we denote positions of a target
and a chaser, respectively, by (xT ,yT ) and (xC,yC). The distance between them is
calculated as

d =
√

(xT − xC)2 +(yT − yC)2. (4.1)

Each target calculates the distance for all chasers in order to identify the chaser with
a minimum d, i.e., the nearest to the target. If there are more than two chasers who
are equally near (equal d), the target chooses one of them randomly. Then, the target
hops to its nearest site in the direction to increase the distance from the chaser. The
hopping rule is shown in Fig. 4.1. Generally, the target has two or three possible
sites to which to hop. In the case of two possible sites (Fig. 4.1(A)), one of them
is chosen with an equal probability 1/2. When the target has three possible sites to
increase the distance (Fig. 4.1(B)), one of these is chosen with an equal probability
1/3.

Similarly, the rule for each chaser is defined such that it hops to close in on its
nearest target. A chaser determines the nearest target by calculating distances in the
same way as for a target. The chaser, then, hops to its nearest site that decreases
the distance. Generally, each chaser has a single site to hop to (Fig. 4.1(B)), or two
possible sites to choose from with equal probability 1/2 (Fig. 4.1(A)).

By the excluded volume of particles introduced here, if the chosen sites are oc-
cupied, chasers and targets cannot move, except in “catch events” explained below,
and they stay in their original sites. (Here, we first choose one of the nearest sites
by the probabilities above, so that the chasers or the targets do not move even if the
other nearest sites are empty.)

When a target is in a site nearest to a chaser, the chaser catches the target by
hopping to the site, and then the target is removed from the system. We call this a

1 Validity of the conditions to real problems is discussed in Chapter 5.
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Target

Chaser Chaser

Target

(A) (B)

Fig. 4.1 Hopping rules for chasers and targets. While chasers hop to close in on their nearest
targets, targets hop to evade their nearest chasers. Dotted arrows from chaser to target indicate
that the chaser hops to close in on the target, and the target hops to get away from the chaser. Solid
arrows show possible hopping directions with indicated probabilities. (A) Generally, they have two
choices. (B) When the chaser and the target are in the same x or y-axis, the chaser has one choice,
while the target has three choices.

“catch event”. After the catch, the chaser pursues the remaining targets in the same
manner.

We now describe how we proceed with computer simulations. Initially, N0
C

chasers and N0
T targets are randomly distributed in the lattice. In accordance with

the above hopping rules, every chaser and target are to hop by one site (this implies
that we are considering the case that the speeds of chaser and targets are the same).
To do this, we first determine the next hopping site for chasers and targets. Then,
we move all chasers (the update is done in a random sequential order). If a chaser
hops to a site a target occupies, the chaser catches the target, and the caught targets
are removed from the field. After this, we move all the remaining targets.

Consequently, the number of targets, NT , monotonically decreases along with
the catches, while the number of chasers, NC, remains a constant N0

C. It is note-
worthy here that we assume the timescales in the chase and escape processes are
much shorter than typical lifetimes of particles, thus intrinsic birth and death of
chasers and targets are not considered in the basic model. A possible extension
is discussed in section 4.3. Simulations are carried out until all targets have been
caught by chasers, i.e., NT = 0. The results are averaged over 104 samples.
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4.2.1 Simulation Results

4.2.1.1 Lifetimes of Targets

First, let us define the time length for the entire catch T as the simulation steps it
takes for the chasers to catch all the targets. Their distribution is shown in Fig 4.2.
Since the time T can be also interpreted as a “lifetime” of the final target, Fig. 4.2
represents the probability distribution of the lifetime. When the number of chasers
NC is larger than that of targets NT , the distribution basically shows a parabolic shape
on the log–log scales, suggesting a log-normal distribution. This distribution can be
obtained even when both chasers and targets are moving as conventional symmetric
random walks (see also section 5.3.1.2). However, as NC decreases and approaches
values approximately equal to NT , it deviates from the log-normal distribution, re-
flecting the effect of chase and escape.

  

Fig. 4.2 Distribution of time for the entire catch T for the numbers of chasers NC = 10,100,500.
The linear size of the system is Lx = Ly = 100 and the initial number of targets is N0

T = 10. Modified
from [44]. c© Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP Publishing.
CC BY-NC-SA

Naturally, the time T decreases as the number of chasers increases because it
is intuitively reasonable that the targets are caught up sooner when there are more
chasers. We note that because we are considering the case where the chasers and the
targets have the same speeds, an individual chaser generally cannot catch up with
targets. Thus, the catch event typically occurs when chasers surround each individ-
ual target, as depicted in Fig. 4.3. Although an individual chaser independently tries
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Fig. 4.3 Snapshots of a catch event with time evolution from left to right. Red and green circles de-
note chasers and target, respectively. Modified from [44]. c© Deutsche Physikalische Gesellschaft.
Reproduced by permission of IOP Publishing. CC BY-NC-SA

to catch a target, it appears as if the group of chasers cooperates to catch a target. In
section 4.2.2, we try to quantify this group behavior.

If we further look at the lifetime distribution of all targets, then we obtain the
results shown in Fig. 4.4. The distribution first shows large drops at the left (at the
point the lifetime is equal to one), then increases and peaks at a typical time, which
gets shorter (shifts to the left) for a larger number of chasers. After the peak, it
decreases again.

The large drops at the point the lifetime is equal to one indicate that a number
of catch events occur at the initial first step. This is because, in the initial condition,
targets can be positioned in the nearest neighboring sites to chasers, i.e., d = 1. Then,
the targets are caught by the chasers in the next step. However, if the initial distances
between targets and chasers are larger than d = 1, the targets can momentarily evade
the chaser. Then, the number of catch events decreases, causing the drop in the
figure.

Besides the first drop, the distribution has a peak. The value of these peak po-
sitions can be inferred as a typical lifetime of the targets. It can be interpreted to
represent a timescale for chasers to form a spatial structure from the random initial
condition to surround and catch targets.

Let us now turn our attention to investigate how the lifetimes of the longest-living
(final) and typical targets change with the numbers of chasers NC and initial targets
N0

T . The lifetime of the final targets is equal to the time for the entire catch T , as
described above. The typical lifetime is defined here as τ = ∑ t(Nt−1

T −Nt
T )/N0

T ,
where Nt

T denotes the number of targets at t so that (Nt−1
T − Nt

T ) represents the
number of targets with a lifetime t. In Fig. 4.5, we show how T and τ change with the
number of chasers NC for a fixed N0

T = 10. Both T and τ show similar dependences.
For moderately small NC, the lifetimes decrease as N−α

C with α ≈ 3. The power-
law dependence is valid for a region where the ratio of NC to N0

T is less than ap-
proximately 5. However, as NC increases further, the lifetimes show a crossover to
slower decreases, which are approximately fitted by another power law N−0.75

C . At
the right end, both of them approach one where the sites are filled with chasers so
that both typical and longest-living targets can survive only in one time step. The
two distinctive regions are found and characterized by the different dependences on
the number of chasers. Even though the powers of the dependences sensitively de-
pend on the details of the model, the two distinctive regions are generally observed
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Fig. 4.4 Lifetime distribution of targets for NC = 10, 100, and 500. Parameters are identical with
those of Fig. 4.2. Modified from [44]. c© Deutsche Physikalische Gesellschaft. Reproduced by
permission of IOP Publishing. CC BY-NC-SA
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Fig. 4.5 Lifetime of final (T ) and typical (τ) targets as a function of NC for fixed NT = 10. The
power-law dependences N−3

C and N−0.75
C are also shown as dotted lines. Modified from [44]. c©

Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP Publishing. CC BY-NC-
SA
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N0
T

Fig. 4.6 Lifetime of final (T ) and typical (τ) targets as a function of NT for fixed NC = 100.
Modified from [44]. c© Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP
Publishing. CC BY-NC-SA

in subsequent studies (see section 4.3). As we will show in section 4.2.2, the two
regions are also characterized by typical catching processes.

We next investigate how the lifetimes change with the initial number of targets
N0

T for a fixed NC = 100, as shown in Fig. 4.6. As NT increases, the lifetime of final
targets monotonically increases. On the other hand, the lifetime of typical targets
peaks around NT = 103 and slightly decreases again. We show typical snapshots
in Fig. 4.7. From the initial condition, targets evade chasers at first by producing
clusters of targets. As shown in the left snapshot, we can see the clusters of targets
appear where targets get close to each other. Then a group of chasers gets closer to
the clusters to catch up targets. It is intuitively efficient for the group of chasers to
catch targets by surrounding the cluster of targets because the number of targets can
be caught, more or less, by a single enclosure event. The peak of the lifetime may
represent such effects.

Also, it is of interest to know the most “efficient” number of chasers NC for
a given number N0

T of targets. We have evaluated this by focusing on a quantity
c = NCT/N0

T : the number of work-hours T for which NC chasers are deployed (total
cost) divided by the initial number of targets N0

T . Thus, this quantity represents the
unit cost for the group of chasers to finish the task per target.



50 4 Group Chase and Escape

Fig. 4.7 Snapshots of the system for NC = 100 and N0
T = 1000. Red and green points represent

chasers and targets, respectively. Clusters of targets are typically observed during the chasing and
escaping processes. Modified from [44]. c© Deutsche Physikalische Gesellschaft. Reproduced by
permission of IOP Publishing. CC BY-NC-SA

We have plotted this unit cost function for different chasing and escaping rules
in Fig. 4.8. Here, the cost is plotted by changing the number of chasers NC for a
fixed N0

T . We found that there is a minimum in this cost for the chase and target case
(indicated by C&T). This means there is an optimal number of chasers N∗

C to finish

     

Fig. 4.8 Cost c = NCT/N0
T vs. the number of chasers NC for N0

T = 10 in following four cases: the
original chasers and targets (C&T), both chasers and targets are random walkers (RW), targets are
random walkers (TRW), and chasers are random walkers (CRW). Modified from [44]. c© Deutsche
Physikalische Gesellschaft. Reproduced by permission of IOP Publishing. CC BY-NC-SA
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the given chasing task most efficiently. When the speed of targets is as fast as that of
chasers, an individual chaser cannot catch up with targets, so it cannot finish the task
alone by itself. Instead, a group of chasers catches a target by surrounding it so that
the target cannot escape from them. In this case, a number of chasers substantially
more than targets is necessary to finish the task efficiently. On the other hand, as the
number of chasers exceeds the optimal number to surround the targets, excessive
chasers result in increased cost. The right side of the figure, NC = 9990, confirms
that the system is fully occupied, so that the targets are caught in one simulation
step, leading to the cost c = 1×9990/10 = 999 ∼ 103.

Such a minimal cost is realized as a result of both chase and escape processes. In
Fig. 4.8, we also show the costs in different cases: both or either chaser and target
follow a random walk process in which the chasers/targets randomly hop to one
of the four nearest neighboring sites. We observe that when the targets are random
walkers (TRW), the cost monotonically increases along with the number of chasers.
On the other hand, when the chasers (CRW) or both (RW) are random walkers, they
monotonically decrease.

4.2.2 Quantitative Analysis of Chasing Processes

In this subsection, we investigate the chasing processes of our model in more detail.
One of the most fascinating features of the model is the spatial segregation of chasers
and targets (Fig. 4.7). In order to quantitatively analyze and characterize this, we
classify chasing processes into several patterns.

As a simple classification, we focus on one-particle-to-many-opponents situa-
tions in chasing processes. Fig. 4.9 shows the classified patterns of chasers in which
many chasers pursue one target (A to C), and those of targets in which many tar-
gets escape from one chaser (D to F). The situation of each pattern is explained as
follows:

(A) A number of chasers follow a target in a linear formation.
(B) Chasers surround a target. A catch of the target typically follows this pattern.
(C) One chaser drives a target into a group of chasers. This is a transient behavior
often observed leading to pattern B.
(D) Targets escape in a linear formation from a single chaser.
(E) Targets scatter away from a chaser isotropically or by dividing into small
groups. This pattern frequently appears right after a chaser invades into a cluster
of targets.
(F) One chaser runs after a target, while nearby targets escape in different direc-
tions of the chaser.

In order to highlight the advantages of group formations, we introduce order param-
eters qk and pk to distinguish the above patterns. By this characterization, we clarify
relations between the microscopic pursuit patterns and the macroscopic quantities
introduced in the previous subsection.
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(A) (B) (C) 

(D) (E) (F) 

Fig. 4.9 Chasing and escaping patterns characterized by parameters q and p. Situations A, B, and C
represent patterns of chasers around a target with corresponding values of q. In contrast, situations
D, E, and F represent patterns of targets around a chaser with corresponding values of p. Modified
from [49] with permissions ( c© 2015 Springer Japan).

First, let us introduce a parameter qk to distinguish patterns A to C, to reflect the
viewpoint of targets. At each time step, we focus on every remaining target indexed
by k, and the nC

k + 1 chasers (nC
k ≥ 1) which chase the target k. Here, we index the

nearest chaser as i = 0 and the other chasers as i = 1, ...,nC
k . For each target k, we

define the order parameter qk as

qk =
1

nC
k

nC
k

∑
i=1

(r̂ik · r̂0k +1), (4.2)

where r̂0k denotes a unit vector pointing the direction from the nearest chaser i = 0
to the target k, while r̂ik are unit vectors from the i-th chaser to the target k. Fig.
4.10(i) illustrates the calculation of qk when the target k is chased by two chasers.
By this parameter, the three patterns A, B, and C can be characterized as qk ∼ 2,1,
and 0, respectively. We also introduce the average of qk for all the remaining ÑT
targets which are chased by more than two chasers,

q̄ =
1

ÑT

ÑT

∑
k=1

qk. (4.3)
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i = 1,...,nC
k

(j = 0,...,nC
k)

ψi

A unit vector from the nearest chaser(j=0) to the target(k): A unit vector from the chaser(k) to the nearest target: 

The inner product between the unit vectors:

Definition of qi
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Fig. 4.10 Illustrations for calculating order parameters (i) qk and (ii) pk for the case of three play-
ers. Modified from [49] with permissions ( c© 2015 Springer Japan).

In the catching events, pattern B is frequently observed because the chasers need
to surround the target. The advantage of this parameter q is that we can identify
and distinguish pattern B from patterns A and C, irrespective of the group size and
spatial inhomogeneities of chasers, because of the angular sensitivity of the inner
product.

Fig. 4.11 shows the time evolution of q̄ for different numbers of chasers. When
the number of chasers is much larger than the initial number of targets (NC = 200;
blue curve), almost all targets are initially surrounded by chasers. Thus the initial
q̄ is close to one. In addition, q̄ is almost constant through the time course because
most of the targets are immediately caught with pattern B. On the other hand, when
the number of chasers is as small as the initial number of targets (NC = 10; red
curve), q̄ initially fluctuates, and eventually approaches two. This result indicates
that the remaining targets generally evolve to be chased by a group of chasers as
in pattern A. This can be explained as follows. The catching event typically results
in aggregation of chasers as in pattern B. After the event, the chasers tend to chase
the same single nearest target, leading to pattern A, as the remaining targets become
small. For an intermediate number of chasers (NC = 30; green curve), a dominant
pattern in the final stage depends on initial configurations, therefore, the values of q̄
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Fig. 4.11 Time evolution of order parameter q̄ (the average of qk) for the numbers of chasers,
NC = 10,30,200. Initially 10 targets are randomly placed on the square lattice with Lx = Ly = 100.
On the right, the chasing patterns for qk ≈ 2,1,0 are shown for a reference. Modified from [49]
with permissions ( c© 2015 Springer Japan).

are between one and two. A ratio of samples in which pattern A appears increases
as the number of chasers decreases.

Now let us turn our attention to capturing patterns by examining the time evolu-
tion of q̄ and the number of targets, NT (t). In Fig. 4.12, we show q̄ and NT (t) for the
parameters N0

T = 10 and NC = 5. The values of q̄ fluctuate just below the value two
(red curve), but it clearly shows spike-like decreases at the decrement timings of
targets (green curve). This indicates that the chasing patterns of chasers, typically in
pattern A, transiently change to patterns B and C, to surround and capture targets. At
capturing events, chasers aggregate, and after the capture, they form a larger group,
typically, to chase a single nearest target. This makes the rapid recovery of the value
of q̄ to two.

This parameter q̄ also explains the two distinct regions of the time for the en-
tire catch T and typical lifetime τ of targets in Fig. 4.5 (also in [44]). As shown in
Fig. 4.13, the times T and τ have two different regions in the dependences on NC,
approximately fitted by the two power laws N−3

C and N−0.75
C , and the boundary be-

tween the two regions is approximately at NC = 50 for N0
T = 10. With parameter q,

it is clarified that the difference between the two regions comes from a different fre-
quency in the appearance of patterns A, B and C. As explained in Fig. 4.11, q̄ stays
near one (pattern B) when NC is much larger than N0

T , and q̄ at approximately two
(pattern A) appears frequently when NC becomes smaller. Here, we quantify them
by calculating the ratio φ of simulation samples which achieve q̄ > 1.8 through the
time course from the initial configuration until catching all targets. In Fig. 4.13, the
boundary between the two regions approximately coincides with the point of φ ∼ 0.
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In short, for the region of small NC, pattern A is dominant, while for the region of
large NC, almost all targets are rapidly captured with pattern B or C.

The parameter q clarifies how a single target is pursued by a group of chasers.
However, the parameter is not sufficient for explaining all the behavior the model
exhibits. In particular, when the number of targets is larger than that of chasers,
N0

T > NC, drastic decreases in NT are observed as shown later, and the parameter
is insufficient to quantify the observation. The drastic decrease in NT suggests that
a cluster of aggregated targets is formed, and a number of chasers round up the
targets. To confirm this, we introduce another parameter p to reflect the viewpoint
of chasers.

The introduction of p is analogous to that of q. At each time step, we focus on
every chaser indexed by k, and nT

k +1 targets escaping from the chaser k. The order
parameter, pk, for the chaser k is defined as

pk =
1

nT
k

nT
k

∑
i=1

(r̂ki · r̂k0 +1), (4.4)

and

p̄ =
1

NC

NC

∑
k=1

pk, (4.5)

¯

¯

Fig. 4.12 Time evolution of the pattern parameter q̄ (red) and the ratio of the remaining targets,
NT (t)/N0

T (green), for the parameters N0
T = 10 and NC = 5. On the left, the chasing patterns for

qk ≈ 2,1,0 are shown for a reference. Modified from [49] with permissions ( c© 2015 Springer
Japan).
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Fig. 4.13 Dependence of the time for the entire catch T , typical lifetime τ and the ratio of simu-
lation runs φ on the number of chasers NC . The quantity φ denotes the ratio of simulation samples
which achieve q̄ > 1.8 during the time course from an initial condition until all the targets are
captured. Modified from [49] with permissions ( c© 2015 Springer Japan).

where r̂k0 and r̂ki denote unit vectors in the directions toward the chaser k from
the nearest (i = 0) and i-th targets (i = 1, ...,nT

k ) escaping from it, respectively. Fig.
4.10(ii) also illustrates the calculation of pk when two targets escape from the chaser
k. By this parameter, the three patterns D, E, and F can be characterized as pk ∼ 2,1,
and 0, respectively. These patterns are illustrated in Fig. 4.9.

The introduction of p, together with q, helps us understand the drastic decrease of
the number of targets. As an example, Fig. 4.14 shows the time evolution of p̄ (green
curve), q̄ (red curve) and NT (t) (blue curve) with N0

T = 50 and NC = 10. The dras-
tic decrease of NT (t) occurs around t = 2700. Before the event, p̄ (green) remains
around two for a certain period. This indicates that the targets form an aggregated
cluster to escape from a chaser (see pattern D in Fig. 4.9), and it is also confirmed by
the upper left snapshot in Fig. 4.14. After the drastic decrease, p̄ rapidly decreases
approximately to one exhibiting pattern E (Fig. 4.9). The simultaneous behavior of p̄
and drastic decrease of NT (t) explains the collective catch by a round up of chasers.

When the initial number of targets (N0
T ) is fixed to be small (Here, we fix N0

T =
10), each individual chasing and escaping process is reflected in the time evolution
of the averages p̄ and q̄. As we increase the number of particles and expand the
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Fig. 4.14 Time evolution of q̄, p̄ and NT (t)/N0
t around a drastic decay of target with N0

T = 50 and
NC = 10. Modified from [49] with permissions ( c© 2015 Springer Japan).

system size, such an individual chasing and escaping may not be reflected well by p̄,
q̄ because they are averaged over particles. However, we suggest that the parameters
are still useful to characterize typical (dominant) behavior of the system.

Here, we show such an example: the system size is expanded to Lx = Ly = 2048
(Fig. 4.15). Even in this larger system, the parameters show similar behavior if the
number of targets is sufficiently low. In this case, the averages p̄ and q̄ can reflect
the dynamical changes of qk and pk of each individual k because the inner products
in the definition of qk and pk are less sensitive to the number of chasers and targets,
and spatial irregularities of particles. Also in this case, samples in which q̄ reaches
two disappear for NC/L2 > 0.01, where L denotes a linear system size.

On the other hand, for a higher density of targets, the parameters exhibit differ-
ent behavior. Fig. 4.15 shows the time evolution of q̄ and p̄ with N0

T = 218,NC =
214,215,216. In the cases N0

T > NC, pattern B is initially dominant for the chased
targets as q̄ ∼ 1. In addition, p̄ ∼ 1 indicates that the dominant pattern at the initial
stage is pattern E, i.e., most of the targets momentarily escape. In the middle stage
[10 ≤ t ≤ 100], a plateau region appears in q̄ and p̄ for each NC. This indicates that
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Fig. 4.15 Time evolution of q̄, p̄ and NT (t)/N0
T with N0

T = 218,NC = 214,215,216. The system size
is Lx = Ly = 2048. Modified from [49] with permissions ( c© 2015 Springer Japan).

the ratio of appearance in the patterns is constant while the number of targets is de-
creasing (see dashed curves in Fig. 4.15). The values of q̄ in this region increase as
NC decreases. In contrast, p̄ is greater than one but far less than two, therefore, tar-
gets escape almost with pattern E and occasionally with pattern D. This behavior of
q̄ and p̄ leads to a consequence that, in the plateau region, the majority of targets es-
cape when the chasers chase a relatively small number of targets. This behavior can
be interpreted as if the number of targets work as “decoy” targets because chasers
are attracted only to the targets.

After the plateau region, the values start to fluctuate as the remaining targets
become small. It is noteworthy that the value of q̄ gets closer to two even though
NC/L2 > 0.01. This is not observed when the initial density of targets is low. It
indicates that pattern A occurs more likely when chasers chase a number of “decoy”
targets during the initial and the plateau stages.

4.3 Recent Developments in Group Chase and Escape

In this section, we review and discuss a variety of extensions and modifications of
our original model described in section 4.2. The developments can be roughly cat-
egorized from the viewpoint of models into three: abilities, reactions and motions.
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Developments in abilities refer to modifications of the abilities of the agents for de-
tecting the opponents’ positions. Developments in reactions refer to modifications
of the model on how the targets change their species and mortality when they are
captured; in the original model, the targets are removed from the system. Finally,
developments in motions refer to modifications on rules of spatial movements and
restrictions of particles.

4.3.1 Abilities

As one of the directions to extend the model, we consider two examples for the
agents to restrict their abilities to detect the opponents’ positions. The first example
is the case when each chaser has limited search distance to find the nearest target.
The second example is the case when the abilities of chasers to detect the targets’
positions are distributed in the group.

4.3.1.1 When Each Chaser has Limited Search Distance for the Nearest

Target

We can extend our model to include the search range of each chaser [44]. In the
basic model, chasers can find targets over an unlimited distance. However, in reality,
chasers search for targets in their vicinities. This is also the same for targets. Targets
may be able to recognize the existence of only nearby chasers.

The search range l can be introduced as follows. When a chaser searches for the
nearest target, the search area is limited to the range

√
(xT − xC)2 +(yT − yC)2 < l,

where (xC,yC) and (xT ,yT ), respectively, denote the positions of the chaser and the
target in x and y-directions. If the chaser finds a target in the search range, it moves
with the chase-and-escape hopping. If not, it follows the random-walk hopping.
For the movement of targets, the search range can also be introduced in the same
manner. Here we note that the model is equivalent to the random walkers if the
value of l is zero. On the other hand, the model approaches the basic model as the
range increases to the system size. As shown in [44], the time for the entire catch
T decreases as l increases, and it exponentially approaches the time TC&T for the
original chase-and-escape case.

The system can exhibit interesting spatial structure when the search range is
different between chasers and targets [44]. For example, we assume an unlimited
search range for targets, while the range for chasers is sufficiently short. For an ap-
propriately low number of chasers, targets gather in relatively low-density areas of
chasers and momentarily hide from chasers because the short-range chasers cannot
recognize their positions (Fig. 4.16). After a long time, chasers can find the group of
targets and finally catch them. Examining the catching processes in relation to such
spatial pattern formations remains an interesting topic to be investigated.
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Fig. 4.16 Snapshots of the system with time evolution from left to right. While targets (green
dots) have unlimited search range, chasers (red dots) have the search range l = 5. The numbers of
chasers and targets are fixed to NC = N0

T = 100. Modified from [44]. c© Deutsche Physikalische
Gesellschaft. Reproduced by permission of IOP Publishing. CC BY-NC-SA

4.3.1.2 When the Search Range is Distributed among Chasers

We also consider another extension of our model. This extension is to distribute
the search ability among chasers. For example, in the group of chasers, some could
have a long search range, while the others follow the random-walk hopping or have
a short search range.

One example is where a group of chasers consists of two types: smart chasers
and random walkers. Here, we refer to chasers with unlimited search range as smart
chasers. On the other hand, the random walkers have a search range of zero. The
cost we introduced as c = NCT/N0

T enables us in this case to quantify the efficiency
of the chasing. Here we assume that all the targets have unlimited search range.

In Fig. 4.17, we show the cost as a function of the number of smart chasers NS
C.

The two curves indicate the two cases: One (red curve) is the case when only the
NS

C smart chasers are present in the system and pursue the targets, and the other
(green curve) is the case when NC −NS

C random walkers also join the pursuit in
addition to NS

C smart chasers (the total NC is fixed to 100). For both cases, the cost
monotonically decreases as the number of chasers increases. In particular, for the
mixed group of smart chasers and random walkers, a small number of smart chasers,
say five to ten, drastically drop the cost. One interesting question is, when only a
small number of smart chasers are available, which strategy will be better: let only
the smart ones chase targets, or should random walkers join them? The cost clarifies
that which strategy is better depends on the number of available smart chasers: for a
small number of smart chasers, the latter case (green curve) is more efficient, while
if many smart chasers available, the former strategy (red curve) gives lower costs.

Another study investigates the effect of smart chasers and random walkers on the
average time for the entire catch [62]. By introducing random walks to the chasers,
they show that the average time is reduced through the formation of pincer attack
configuration. Here, the chasing in a “division of labor” way is essential to the re-
duction of the time because such an effect is not observed when all the chasers
uniformly mix the strategies of chasing and random hopping.
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A recent study suggests an enhancement of collective efficiency by the coexis-
tence of highly stochastic ants and normal or weakly stochastic ants in the same
colony to achieving the optimal foraging behavior [91]. This highlights the impor-
tance of the division of labor in insect societies [7].
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Fig. 4.17 Cost c = T NC/N0
T by changing number of smart chasers NS

C for fixed N0
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from [44]. c© Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP Publishing.
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4.3.2 Reactions

In the original model, captured targets are removed from the system to model typical
predator–prey interactions: predators kill their prey to feed on them. This model
assumes the timescales in the chase–escape processes are much shorter than typical
lifetimes of organisms and reproduction timescales of chasers. An infectious disease
may be one of the possible exceptions where capturing events and increase in the
number of chasers are directly related, thus, one cannot neglect birth of chasers.
Susceptible targets can be infected to become additional infective chasers when the
targets are touched by the chasers.

Nishi et al. investigate such a vampire problem [75], in which a target converts to
a chaser when captured, instead of removing it as in the original model. Numerical
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simulations show that the conversion causes the lifetimes of targets to show non-
monotonic dependence on the initial number of targets, resulting in the existence of
a maximum lifetime. We will explain the results in the following subsection.

Sato extends the problem to a three-species case [88]. He considers three kinds
of species A, B, and C; particles in species A act as chasers for species B, those in
species B are the chaser for species C, and those in species C are the chasers for
species A. The particle converts to a chaser when captured, thus, the total number of
the three species is constant. Using a mean-field approximation, the time evolutions
of the ratios of species are given by

d
dt

(
NA

N0

)
= 4

N0

NS

NA

N0

(
NB

N0
− NC

N0

)
, (4.6)

d
dt
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N0
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N0
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N0
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N0

)
, (4.7)

d
dt
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N0

)
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N0
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NC

N0

(
NA

N0
− NB

N0

)
, (4.8)

where NA, NB, NC, respectively, denote the number of A, B, and C. NS denotes the to-
tal number of sites in the system, and N0 = NA +NB +NC. The factor 4 indicates the
number of nearest neighbor sites for each particle in the square lattice. The solution
for the ratio of species A, B, and C shows oscillations of species with constant phase
intervals. For example, an increase in number of A, at a first moment, results in a
decrease of B, and an increase of C. The increase of C results in a decrease of A and
an increase of B. Then the increase of B causes a decrease of C and an increase of A.
In this way, the three species cyclically oscillate and coexist. Numerical simulations
of a random-walk model also confirm the oscillation and coexistence of the three
species.

In the model of chasing and escaping for the three-species case, the numbers of
species also show oscillatory behavior in the initial stage of simulations. In contrast,
he finds that the chasing and escaping make the system unstable and, consequently,
one of the species dominates the system and the other two species become extinct.

4.3.2.1 Vampire Problem

Here, we briefly review the work by Nishi et al., who investigated a vampire problem
[75]. In this extension, a target can be converted to a chaser when captured, instead
of being removed as in the original model.

In the extended model, the basic rules of motion for the chasers and targets are
the same as in the basic model. However, we introduce a possibility of converting
the captured target into a new chaser rather than simply removing it from the system.
This process is shown in Fig. 4.18. We assume that these removal and conversion
actions take place with probability 1−PV and PV , respectively.

If the removal action is chosen, the chaser hops to the position of its nearest target
and the target is removed as in the basic model. On the other hand, if the conversion
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Fig. 4.18 In the vampire problem, the captured target (indicated by green) is converted to a new
chaser (red) with a probability PV , and is removed as in the original model with a probability 1−PV .

action is chosen, the chaser does not move, and the nearest target is converted into a
new chaser. We note that PV = 0 corresponds to a situation in which all the captured
targets are removed, leading to the original model. PV = 1 represents the case in
which all the captured targets become chasers.

In order to investigate the effect of this extension, we performed numerical sim-
ulations. The size of the system is Lx = Ly = 100. We have N0

C chasers and N0
T

targets at the start, and randomly distribute them over the square lattice. We mea-
sure the time for the entire catch T and the typical lifetime of targets defined as
τ = Σ t(Nt−1

T −Nt
T )/N0

T . We average the times T and τ for 1000 samples. Also, for
comparison, we simulate the random walk model, where both chasers and targets
follow a simple random walk.

We compute T and τ as a function of N0
T with a fixed initial number of chasers as

N0
C = 100. We chose the probability of conversion as PV = {0,0.25,0.5,0.75,1} and

results are shown in Figs 4.19 and 4.20. The essential result in Fig. 4.19 is that the
quantity T has maxima for the cases PV > 0 in both the chasing-and-escaping and
the random-walking models. This was not observed with the basic model without
conversion (PV = 0). If we turn our attention to τ , the maxima exist, irrespective of
the conversion, for the chasing and escaping. For the random walking case, however,
τ stays almost constant at PV = 0 and monotonically decreases with increasing N0

E
for PV > 0.
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Fig. 4.19 Relation between the time for the entire catch T and the initial number of targets N0
T

with various PV for the two cases: chases and escapes (C & E) and random walks (RW). Modified
from [75] with permissions ( c© 2011 Elsevier B. V.).
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Fig. 4.20 Relation between the typical lifetime τ and the initial number of targets N0
T with various

PV for the two cases: chases and escapes (C & E) and random walks (RW). Modified from [75]
with permissions ( c© 2011 Elsevier B. V.).



4.3 Recent Developments in Group Chase and Escape 65

T

N
0

c

T

1

10

102

103

104

1 10 102 103 104

N0
C

C&E: Pv = 0
0.25
0.5
0.75
1.0

RW: Pv = 0
0.25
0.5
0.75
1.0
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T = 100. Modified from [75]

with permissions ( c© 2011 Elsevier B. V.).

We can understand these results qualitatively. First, the existence of a maximum
T can be explained as follows. In the basic group-chase-and-escape model (PV = 0),
T increases as N0

T increases. When N0
T is small, the conversion process would not be

relevant because the increase of chasers by the catch-up of targets is small. However,
as N0

T increases, the chasers catch targets more frequently and convert them into new
chasers leading to, probably, a fast spread of a chain of conversions. This spread
would drastically decrease the entire lifetime T . Hence, these two factors lead to
the maximum of T as a function of N0

T . The same argument would be applied to
the existence of the maximum of τ for the chasing and escaping case. Also, the
monotonic decrease of T for the random walkers can be attributed to the factor of
the spread of conversions. Note that the maximum τ in PV = 0 was observed in the
original model (Fig. 4.6). For the random walk cases, it is noteworthy that, in Fig.
4.19, the time T with N0

T = 1 (left end) is larger than the time with N0
T = 5000 (right

end) for large values of PV , i.e., chasing just one target without conversions takes
longer than chasing 5000 targets with frequent conversions.

We also plot the time T as a function of N0
C in Fig. 4.21. The initial number

of targets is fixed at N0
T = 100, and the probability PV of the conversion is set as

{0,0.25,0.5,0.75,1}. The other parameters are the same as in Figs 4.19 and 4.20.
For the chasing and escaping cases, the time T for different PV converges for

larger N0
C. In other words, the lines do not depend on PV above the critical number
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of the initial chasers. On the other hand, there is a spread in the slope approximately
below the critical number of the initial chasers around N0

C ≈ 40: T decreases as
PV increases. It is noteworthy that the decrease of T by the conversion is more
significant for the case of chase and escape than the random walker.

The difference in the relevance of conversions below and above the critical num-
ber of initial chasers reflects the essential number of chasers to catch the targets. In
concrete, there is a critical number of chasers, beyond which adding more chasers
is not as effective. Our results indicate that this critical number also exists even with
conversions PV > 0. This understanding is consistent with the result showing that
the critical point does not depend on PV > 0, but is dictated by a large number of
chasers.

Up to now, the number of targets monotonically decreases by the catch-up events,
irrespective of the processes of removal and conversions so that the targets are bound
to become extinct. The conversions from targets to chasers make the situation more
advantageous for the chasers. One may consider additional processes for targets to
resist extinction. Proliferation processes for the targets can be one such example.
Interested readers are referred to the original publication [75].

In summary, we introduced a conversion rule from captured targets to chasers.
We found, through numerical simulations, that the conversion rule provides the op-
timum initial number of targets to produce the maximum lifetime T for the group
of targets. While this maximum is also observed in the random walk rule, the con-
version does not affect the qualitative difference with respect to the changes in the
initial number of chasers.

4.3.3 Motions

One of the essential motions in the original model is that chasers and targets move
with an equal speed. Different speeds of chasers and targets drastically change the
catching process, because the fast chasers do not need to surround their targets to
capture them. This suggests the two distinct regions of the time for the entire catch
would not be observed in this case and, in fact, the region for the small number of
chasers vanishes when the speed of chasers is faster than that of targets. Iwama and
Sato found that only a few fast chasers are sufficient for this observation [42]. As
intuitively expected, the effect of fast chasers is more relevant for the region with
the small number of chasers than that with the large number.

The lattice structure also plays an essential role in spatial restrictions of particles’
movement. While the square lattice would give the simplest model, investigations
on various lattice structures can be considered if it alters the surrounding dynamics
of chasing and escaping: one such example is the honeycomb lattice [105].

Individual-based off-lattice models with pursuit and evasion have been developed
by Angelani [1] as well as by the present authors [63]. Angelani develops an off-
lattice model based on the modeling of self-propelled organisms by Vicsek et al.[99]
explained in section 3.4. The velocity of each particle, labeled by i, is updated by
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vi(t +Δ t) = v0v̂i
(int)(t), (4.9)

where v̂i
(int) is a unit vector, determined by following intra- and intergroup interac-

tions:
v̂i

(int) = Rη [v̂i
(al.)]+β fi

(rep.) + γfi
(CT ). (4.10)

The first term describes the self-propulsion and alignment effect, where the particle
i tends to align with an average velocity summed over the particles within a circle
of radius R centered at the particle i. The operator Rη describes the effect of noise,
as introduced in the Vicsek model. The second term describes a repulsive force
preventing particle overlap. The third term describes the chase or escape force, and
he chooses the form

f̂i
(CT )

= pr̂iki , (4.11)

where ki denotes the closest target (chaser) to any chaser (target) within a radius rs
(sighting radius) of particle i, riki = ri − rki , p = −1 for chasers and p = +1 for
targets.

Two distinct catch regimes are observed: a fast regime at a high ratio of predators
to prey, and a slow regime when the ratio is less than about 5, in agreement with the
results in the lattice models. Further, “spike-like” events are also observed, corre-
sponding to cage trapping of a prey coop by many predators converging on it. In
addition, he also considers another form of the escape force for targets, by weighted
average over particles within the sighting radius as

fi
(T ) = ∑

j∈S(sight.)
i

h(ri j)r̂i j, (4.12)

where h(r) is the weight function as a function of distance r. He examines two
weight functions, the power law h(r) = r−w, and the exponential h(r) = e−kr. Par-
ticularly in the case where targets move faster than chasers vT/vC > 1, the weight
average strategy improves the efficacy of escaping: the survival time has a maximum
with an optimal weight exponent w = 2, and k = 1.

Recently, Janosov et al. have proposed a bio-inspired realistic agent-based model
in continuous space and discrete time within closed boundaries for the case when
the target is significantly faster than the chasers. Their framework includes three
important and general features in various predator–prey systems: inertia, time de-
lay and noise. In addition to the existence of an optimal number of chasers in two
and three dimensions, their approach reproduces more realistic properties of pursuit
observed in nature, such as emergent encircling and the target’s zigzag motion [43].

Qualitatively different dynamics by the effect of time delay can also be demon-
strated by extending the circular chase and escape problem introduced in section
2.3, with a state-dependent time delay (see Appendix B). In the problem, a target
moves on a circular path with a constant velocity, while a chaser moves towards
the target and tries to capture it. Here, we introduce a time delay τ for the chaser
to recognize the position of the target, and τ is defined as an increasing function of
the distance ρ between the chaser and the target as τ ∝ ρ . As a result, the chaser’s



68 4 Group Chase and Escape

pursuit curve points to past positions of the target by the time τ . The dynamics of
the chaser become exquisitely sensitive to the relative positions of the chasers and
targets, and produce a complex chasing trail of the chaser [77].

The effect of time delay is also essential to model virtual stick balancing, an
experimental paradigm for investigating complex visuomotor tracking tasks [67].
Here, trajectories of tracking a target resemble pursuit curves of a chaser (see Ap-
pendix C).

4.3.3.1 When Fluctuations Affect the Movements of Chasers/Targets

Fluctuations and noises inevitably arise and are widely relevant in a variety of sys-
tems. For example, predatory microbes hunt their prey by chemotaxis, in which
they sense the concentration of a chemical which is secreted by the prey and dif-
fuses through the space [90]. The signal of the chemical is typically noisy, and
detection and decision-making by the predator are also implemented by inherently
stochastic chemical reactions. Even though some biochemical signaling pathways
can efficiently extract relevant information from the noise signals [54, 55, 47], the
effect of fluctuations in their movements remains elusive.

We propose here another extension by modifying the motions of particles to in-
troduce such fluctuations. In the original hopping rule, chasers/targets must choose
the next site to decrease/increase distances to the nearest targets/chasers. We in-
troduce fluctuations to these decisions. When a chaser chooses the next hopping
site, the hopping probabilities are defined as follows. For each of the four nearest-
neighbor sites, we define Δ li = ±1 where i denotes the indexes of the four sites
(i = 1,2,3,4). If hopping to a site i decreases the distance to the nearest target, we
assume Δ li = −1. If it increases, we assume Δ li = 1. Then, we define the hopping
probability of the chasers as pC

i = exp(−Δ li/Tf )/Σi exp(−Δ li/Tf ), where we in-
troduce Tf as a “temperature”. In the same manner, we define Δ li for targets. When
hopping to a site i increases the distance from the nearest chaser, we assume Δ li = 1.
If it decreases, we assume Δ li = −1. We define the hopping probability for targets
as pT

i = exp(Δ li/Tf )/Σi exp(Δ li/Tf ).
When the temperature Tf is sufficiently high, the value of Δ li is not relevant and

the hopping probability is approximately equal to the random-walk model, i.e., the
chasers/targets hop to one of the four neighboring sites, each with a probability 1/4.
As the temperature decreases, the hopping probability increases for chasers/targets
to decrease/increase the distance, approaching the chase-and-escape model.

Fig. 4.22 shows the time for the entire catch T as a function of the temperature
Tf for different numbers of initial targets N0

T . The number of chasers NC is fixed
to 100. For all lines, on the left and right ends, the values of time for the entire
catch are equal to those of the original chase-and-escape and random-walk models,
respectively. In between, we found non-trivial behavior. When N0

T is small (for lower
curves), the time monotonically increases from left to right. However, when N0

T
becomes large to the order of NC (for upper curves), they show a minimum around
Tf = 1. Here, we note that the shapes of the distributions also change with Tf . But



4.3 Recent Developments in Group Chase and Escape 69

T

Fig. 4.22 Time for the entire catch, T , as a function of temperature Tf . Curves from top to bottom
are for N0

T = 500,200,100,50,20,10,5,2,1. For all lines, we fix NC = 100. Modified from [49]
with permissions ( c© 2015 Springer Japan).

we confirmed that the distribution with Tf ∼ 1 is clearly located at a smaller value
of time compared to those of the chase-and-escape and random-walk models.

Interestingly, a certain amount of fluctuation reduces the time, making it easier
for chasers to catch targets [46]. We may relate this observation to a phenomenon
called “Stochastic Resonance” [103, 11, 28]. Stochastic resonance has been studied
in various fields from the stance that an appropriate level of noise or fluctuation
can provide constructive or beneficial effects. In particular, we note the similarity of
collective effects of stochastic resonance with a simple model of a computer network
traffic, where the appropriate level of fluctuation in the direction of passing packets
by routers led to reducing the overall congestion of the network [76].

We also consider a case where chasers and targets have different “temperatures”,
respectively, TC

f and T T
f . In Fig. 4.23, we show the time for the entire catch as

functions of TC
f and T T

f . When we change the temperature TC
f for chasers with fixed

T T
f for targets, the time monotonically increase with TC

f and it rapidly increases
around TC

f = 1. On the other hand, when we change T T
f for targets with fixed TC

f
for chasers, the time monotonically decreases with T T

f and, in particular, shows
a rapid decrease around T T

f = 1. The case where there exists a minimum around
Tf = 1 in Fig. 4.22 is obtained by tracing the surface of T in Fig. 4.23 with T T

f = TC
f

(see the caption for details). This result suggests that the synchronous changes of
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Fig. 4.23 Time for the entire catch, T , as functions of temperatures TC
f and T T

f . The case where
there exists a minimum around Tf = 1 in Fig. 4.22 is obtained by tracing the surface of T by fixing
T T

f = TC
f . Imagine that one draws a line on the surface, starting from the point TC

f = T T
f = 10−2

(indicated by the red circle) to the direction of the arrow. At first, the values of the time T along
the line are approximately constant (in the yellow region), but the line gradually penetrates into
the green region, i.e., the time along the line decreases. Tracing the line further, it again enters
the yellow region, thus, the time along the line increases. In this way, the time T has a minimum
around TC

f = T T
f = 1 in Fig. 4.22. Here, we fix NC = 100 and N0

T = 200. Modified from [49] with
permissions ( c© 2015 Springer Japan).

the “temperatures” between chasers and targets are essential to achieve the non-
monotonic dependence of the time in Fig. 4.22.

4.3.3.2 Interaction among Chasers

As another extension to motions of the basic model, we include a new element: a
local communication among chasers such that the chasers do not get too close to
each other. We name this extension the chasers’ local interaction (CLI) strategy. It
can be considered as an extension to reflect realistic situations. For example, this
kind of intentional repulsion among chasers has been observed in real wolf-pack
huntings [69]. A study to include such interactions in a simulation model with a
single target is shown to reproduce some aspects of a wolf-pack hunting ethogram.
We investigate the effect on the collective behaviors of group chase and escape.

The model is extended by adding a rule for the chasers’ motion. A chaser focuses
on the nearest player (chaser or target) and moves by the following rule.

(A) When the nearest player for the chaser 1 is a target 1, chaser 1 moves to a
site to approach target 1.
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(B) When the nearest player to chaser 1 is another chaser 2, chaser 1 moves to a
site to get away from chaser 2.

Rule (A) is the same as in the basic model, while rule (B) is the new addition to
introduce the repulsive interactions between chasers. Fig. 4.24 shows an example of
this new rule.

Target

Chaser 2

Chaser 1

(B)(A)

Target

Chaser 2

Chaser 1

1

1

1/2

1/2

1/2

1/2

1/3 1/3

1/3

1/3 1/3

1/3

Fig. 4.24 Moving rules of chasers’ local interaction (CLI) strategy for chasers (red circle) and
targets (green circle). Solid arrows are the possible moving directions with indicated probabilities.
(A) This is when the nearest neighbor to chasers is a target. Hence, chaser 1 and chaser 2 move
to close in on the target, and chaser 1 has two choices and chaser 2 has one choice to move to the
target in this example. (B) This is when the nearest neighbor for a chaser is another chaser. Hence,
chaser 1 moves away from chaser 2, and chaser 1 has two choices to get away from chaser 2 in this
example. Modified from [87] with permissions ( c© 2015 Elsevier B. V.).

We now present how this extension affects the collective behavior of the basic
model. Numerical simulations are carried out using the basic model and the CLI
strategy on a two-dimensional square lattice Lx = Ly = 100 with a periodic boundary
condition.

First, let us show the spatial spread of chasers by the CLI strategy. Representative
snapshots are shown in Fig. 4.25. They clearly indicate that the chasers with CLI
strategy spread out over the field more than those in the basic model.

We next examine the difference quantitatively. Simulations are carried out for
three different numbers of targets N0

T = 10,25 and 50 with different number of
chasers. Fig. 4.26 shows the time for the entire catch T and the cost function c =
NCT/N0

T . They are averaged over 1000 individual runs.
We observe that when the numbers of the chasers are small, the CLI strategy

works more effectively than the hopping rule in the basic model, i.e., the time for
entire catch T are reduced from the basic model for each N0

T . This suggests that
the spatial spread of chasers as observed in Fig. 4.25 effectively help surround the



72 4 Group Chase and Escape

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

(A) (B)

Fig. 4.25 Typical snapshots in (A) the basic model and (B) the model with the CLI strategy. The
numbers of chasers NC and the initial targets N0

T are 25. Red and green circles represent chasers
and targets, respectively. The snapshots are at when the numbers of surviving targets decrease
to NT = 5. We can clearly see that approximately three aggregates of chasers are formed for the
basic model, but no such aggregates are formed for the CLI strategy. Modified from [87] with
permissions ( c© 2015 Elsevier B. V.).

targets and, consequently, chasers can complete the capture of all targets within a
shorter time. Also, with the CLI strategy, the decrease of the time T by increasing
the number of chasers is less evident compared to the basic model. On the other
hand, when the numbers of chasers are large, the CLI strategy performs worse than
the basic model, i.e., it takes more time to catch all targets than the case in the
basic model. In this case, the field is substantially covered by chasers so that the
CLI strategy appears to obstruct other chasers’ movement rather than spreading.
Hence, direct motions to the targets work better for chasing than spatial spreading
of chasers.

We also investigate how the numbers of remaining targets decrease with simu-
lation steps in both cases. For the basic model, aggregates of chasers are formed
as the number of targets decreases, and they effectively make it more difficult for
the chasers to impound targets. Therefore, we expect that, as the number of remain-
ing targets gets smaller, the simulation steps between successive catching events get
longer.

Fig. 4.27 compares the number of the remaining targets along with the simulation
steps for N0

T = 10,25 and 50. At the beginning of each simulation, the number of
remaining targets decreases linearly with simulation steps so that the chasers catch
the targets at approximately constant step intervals in both the basic model and that
with the CLI strategy. However, for the basic model, the steps it takes to catch next
targets get remarkably long, as the number of remaining targets decreases (blue
curve). Indeed, we observe that catching a few final targets takes up a large portion
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(C) The number of initial targets N0
T = 50
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Fig. 4.26 For the three initial numbers of targets (A) N0
T = 10, (B) 25 and (C) 50, (i) the time for

entire catch T and (ii) the cost function c as a function of the number of chasers NC are shown,
where the solid curve (red) is for the model with the CLI strategy and the dotted curve (blue) is for
the basic model. The data is obtained for NC = 5,10,25,50,100,250,500,1000 and 5000. Note the
logarithmic scale. Modified from [87] with permissions ( c© 2015 Elsevier B. V.).
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of the total time for entire catch T , when the initial number of targets is less than
the number of chasers. On the other hand, for the model with the CLI strategy, the
chasers catch the targets approximately at a constant rate throughout the simulations.
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Fig. 4.27 Evolution of the number of remaining targets. The initial numbers of targets N0
T are (A)

10, (B) 25, and (C) 50. The solid curve (red) is the model with the CLI strategy and the dotted
curve (blue) is for the basic model. For all cases, NC = 25. Modified from [87] with permissions
( c© 2015 Elsevier B. V.).

When the number of chasers is large, on the other hand, the CLI strategy gives
negative effects, i.e., it takes more time to catch all the targets than the basic model.
Fig. 4.28 shows how the number of remaining targets decreases along with the sim-
ulation steps: the original model surpasses the CLI strategy with increasing number
of chasers.

Overall, the interaction among chasers to spread out over the field is more ef-
fective when their number is small. In particular, the effectiveness is notable at the
final stage of catching a few remaining targets. On the other hand, with a substantial
number of chasers, a strategy with direct motions toward targets works better. Inves-
tigation of the effect of switching the strategies between spreading and chasing in
real examples is one of the perspectives to be investigated for possible applications
of the model.

Here, we investigate the direct interaction among chasers to spread out over the
field. In Appendix D, we discuss a possibility of such spreading, even in the absence
of interactions, in relation to developing strategies in game theory.
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Fig. 4.28 Evolution of the number of remaining targets with different numbers of chasers NC . The
solid curve (red) is for the CLI strategy, and the dotted curve (blue) is for the original model. The
initial number of the targets is N0

T = 25. Modified from [87] with permissions ( c© 2015 Elsevier
B. V.).



Chapter 5

Potential Applications and Challenges

5.1 Introduction

We have reviewed in Chapter 4 the basic model and its extensions of group chase
and escape. Naturally, there are still a fair number of open problems and directions
relating to the topic ranging from realistic modelings for applications of the results
to empirical observations in both technical and conceptual aspects.

In this final chapter, we discuss some of these issues relating to group chases and
escapes and provide possible future directions for further developments. We start
with theoretical issues relating to the basic model.

First, it is pointed out that the boundary conditions play crucial roles in chasing
and escaping processes. The periodic boundary conditions we imposed in the basic
model may not be as relevant to real situations where solid boundaries exist, and the
effects of walls affect the results. However, the basic model still elucidates the gen-
eral tendency of having an optimal number of chasers given the number of targets.
Methods to evaluate more quantitatively the effects of boundary conditions need to
be developed.

Second, characterizations of chasing patterns and their dependence on initial con-
ditions are challenging issues. We observe two patterns of chasing: one is a linear
formation chasing from one direction and the other is the surrounding formation
around the targets. These patterns appear in a mixed manner, and sometimes co-
exist over the field. We have introduced several quantities to characterize these;
however, it is not trivial to fully characterize and quantify all the chasing patterns.
In particular, some initial conditions are more likely to lead to a certain configu-
ration pattern of chases and escapes. How the stability, as well as co-existence of
multiple patterns, are linked to initial configurations is yet to be explored.

Third, possible developments of macroscopic continuum description of group
chase and escape are discussed. The basic model we propose for chasing and es-
caping is based on microscopic units of chasers and targets. In contrast, the macro-
scopic continuum description in terms of spatial density and the average velocity
is often useful for its numerical efficiency, analytical investigations and comparison
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with empirical data. We briefly review the macroscopic description for flocking and
traffic models.

We then turn our attention to potential applications of group chases and escapes.
The first possible example is hunting in nature. Even though it is not common, we
have some species which perform cooperative hunting of prey, such as lions, wolves,
and dolphins. Ethological and theoretical studies suggest the possibility that a rather
simple set of rules is enough to explain the chases and escapes in reality. Also, the
classical theoretical model of predator–prey systems is the Lotka–Volterra equation.
It will be a promising problem to compare the behavior of group chase and escape
models with the solutions of such differential equations. Nonlinear dependence of
the efficiency of hunting on the size of groups, also observed in the basic model, is
another interesting topic to explore further from ethological perspectives.

The second example is to apply the chase and escape processes to optimiza-
tion problems. There have been numerous recent works in the field of Collective
Intelligence and Swarm Intelligence, in which an interest of the field is whether
intelligence can emerge from a large number of autonomous agents. One of the rep-
resentative problems for such emergent intelligence is an optimization problem. We
describe here one such attempt to apply the idea of group chases and escapes for the
problems. In concrete, an algorithm is developed for a constrained combinatorial
optimization problem called the Traveling Salesman Problem. The algorithm has
shown some promise in that the idea of group chases and escapes could be gener-
ally utilized for optimization problems.

Finally, we provide a sketch of a broader perspective for the benefit of a pack and
living together.

5.2 Issues of the Basic Model

5.2.1 Boundary Conditions

One of the relevant criticisms of the basic model is the boundary conditions. Their
role is non-trivial in the chasing context. Strictly speaking, the periodic boundary
condition we introduced in the basic model corresponds to the case of chases and
escapes on a torus, a surface of revolution generated by revolving a circle in three-
dimensional space about an axis coplanar with the circle. The geometry is ideal and
convenient for simulating the system; however, applications to specific real situa-
tions would not be straightforward. For example, in the case of chasing, there may
be an event such that an already escaped particle suddenly reappears at the back
of the chasing group and it is the slowest chaser who may catch it. This kind of
edge effect can also occur when motions of chasers and targets are restricted on a
spherical surface.

On the other hand, what kind of boundary condition is appropriate is highly non-
trivial and probably depends on aspects of the system one wants to investigate. If
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one introduces fixed walls at the boundaries, events of the sudden appearance of
agents, mentioned above, could be avoided. However, the effects of walls definitely
affect the results because they introduce an additional way of pursuing; for example,
the chasers can drive the target into a corner of the walls to catch it. This may reduce
or enhance the effect of increasing the number of chasers studied in the basic model,
and the shapes of the walls may also change the results.

The ambiguity of the boundary conditions suggests the difficulty of elucidating
the general behavior of group chase and escape. One of the expectations in our
attempt of the group chase and escape is that, even though the pursuit curves in
one-to-one cases are highly sensitive to specific setups as outlined in Chapter 2, the
introduction of a large degree of freedom (particles) results in a kind of regularity,
analogous to that in statistical mechanics, in a sense that the behavior of the system
does not depend on the details of the setup. One pessimistic view is, however, in
the case of chasing and escaping, such a universal behavior does not exist. On the
other hand, the general tendency of having the optimum number of chasers, given
the number of targets, seems to exist in the different geometry of systems.

In any cases, quantitative methods to evaluate the relevance of the boundary con-
ditions to specific problems remain to be developed for possible applications of the
basic models to real problems.

5.2.2 Characterization of the Chasing and Escaping Processes

In order to understand the nature of the model, we introduce the time for catching all
the targets from the initial conditions, and clarify the two distinct regions with dif-
ferent numbers of chasers (see Fig. 4.5). The quantity is intuitively reasonable as a
measure of efficient chasing and escaping because objectives of the group of chasers
and targets are, respectively, to decrease and increase the time, naturally reflecting
the conflicting behavior of the system. However, the quantity is measurable only in
cases that all the targets are captured in finite simulation times, and there may be
other appropriate candidates to characterize typical chasing and escaping processes.
In fact, how much the quantity is sensitive to the initial condition is still not suffi-
ciently clarified. In the basic model, the distribution of the time has a single peak
(Fig. 4.2) so that there seems no clear evidence that the initial condition drastically
changes the time.

On the other hand, we found that there are two typical chasing patterns observed
in our simulation. In pattern A in Fig. 4.9, a number of chasers follow a target in
a linear formation. In pattern B in Fig. 4.9, a number of chasers surround a target,
and a catch-up event typically follows. The two distinctive regions of the time corre-
spond to how frequent the chasing pattern A appears, and more frequent appearance
of pattern A prolongs the time because it takes more time to shift to surrounding the
target to catch it.

One non-trivial perspective of the chasing and escaping processes is that if there
may be a case that, in several independent and identical samples, some samples de-
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velop chasing pattern A, i.e., it takes a longer time to catch the targets, while the
other samples do not and all the targets are caught, maybe by pattern B, within a
relatively short time. Then one may say that the chasing patterns within the for-
mer/latter samples share a kind of similarity, more than the samples between the
former and the latter samples. In this case, the distribution of the chasing pattern
takes a non-trivial form in the system, reflecting the existence of multiple stable
configurations of chasing. Even though we do not find any clues to characterize
such behavior in the basic model, the viewpoints may provide another promising
direction of studying chasing and escaping.

5.2.3 Possibility of Developing Continuum Theory

The method of modeling we adopted in the basic model is based on simplified units
(chasers and targets) to simulate the collective behavior of large ensembles. The
approach has now a history, especially in statistical mechanics, in which particles
originally represented atoms or molecules. Such “individual-based” modelings are
becoming useful with the rapid increase in computing power and a growing appre-
ciation of “simulations” to understand the system.

In parallel with the “microscopic” models, developments of macroscopic mod-
els are also of particular interest to explain the dynamics of the system. While the
macroscopic models are restricted to describing the collective behavior in terms of
the spatial density ρ(x, t) and the average velocity v(x, t) as a function of the posi-
tion x and time t, they are often preferred for their numerical efficiency, and their
suitability for analytical investigations and comparison with empirical data.

Substantial efforts have been devoted to developing hydrodynamic equations in
the field of collective motion. Here, we briefly introduce two representative exam-
ples for flocking and traffic flow.

The first theory for the Vicsek model was introduced by Toner and Tu [97]. Anal-
ogous to the Navier–Stokes equation, they derived the continuous, long-wavelength
description by writing down the general equations of motion for the velocity field v

and density ρ consistent with the symmetries and conservation laws of the problem.
The only symmetry of the system is rotation invariance: all the directions of

space are equivalent to other directions. It suggests that the continuous equations of
motion cannot have a special direction a priori. In addition, it is noteworthy that the
model does not have Galilean invariance, that is, changing the velocities of all the
particles by a constant velocity does not leave the model invariant.

By keeping only the lowest-order terms in spatial gradients and time derivatives
of v and ρ , the resulting equations are

∂tv+λ1 (v ·∇)v+λ2 (∇ ·v)v+λ3∇
(|v|2)

= αv−β |v|2v−∇P+DL∇(∇v)+D1∇2v+D2 (v∇)2
v+ξ , (5.1)
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P = P(ρ) =
∞

∑
n=1

σn (ρ −ρ0)
n (5.2)

and

∂tρ +∇(ρv) = 0. (5.3)

In Eq. (5.1), DL,D1,D2 are diffusion constants and ξ is an uncorrelated Gaussian
random noise. The λ terms on the left-hand side of the equation are the analogs of
the convective derivative of the coarse-grained velocity field v in the conventional
Navier–Stokes equation. Here, the absence of Galilean invariance allows the terms
with λ2 and λ3, in addition to the term with λ1. If the Galilean invariance holds, it
requires λ2 = λ3 = 0 and λ1 = 1. The terms with α,β > 0 enable the equation to
have a solution of v with non-zero magnitude, corresponding to the ordered phase.
The pressure P depends on the local density only as Eq. (5.2), where ρ0 is the mean
of the local number density, and σn denotes a coefficient in the pressure expansion.
Eq. (5.3) represents the conservation of mass (the number of particles).

The first macroscopic traffic model was developed by Lighthill and Whitham
[58], and Richards [85]. Their fluid-dynamic model is based on the fact that the
number of vehicles is constant in a one-dimensional lane. This conservation of ve-
hicles leads to the continuum equation

∂ρ(x, t)
∂ t

+
∂Q(x, t)

∂x
= 0, (5.4)

where Q(x, t) = ρ(x, t)V (x, t) is the product of the density ρ(x, t) and the average
velocity V (x, t), indicating the traffic flow per lane.

If one introduces the total derivative

d
dt

=
∂
∂ t

+V
∂
∂x

, (5.5)

describing temporal changes in a coordinate system moving with velocity V (x, t),
then Eq. (5.4) is rewritten as dρ(x, t)/dt =−ρ(x, t)∂V (x, t)/∂x. From this, one can
conclude that the vehicle density increases in time (dρ/dt > 0), when the velocity
decreases in the course of the lane (∂V/∂x < 0), and vice versa.

The first steady-state speed density relation was introduced by Greenshields, who
proposed a linear relationship,

V (ρ) =Vmax

(
1− ρ

ρmax

)
, (5.6)

where Vmax is the maximum velocity and ρmax is the maximum density of the road.
By inserting Q(x, t) = ρ(x, t)V (x, t) into Eq. (5.4), we obtain

∂ρ
∂ t

+U(ρ)
∂ρ
∂x

= 0, (5.7)
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where
U(ρ) =

dQ
dρ

=V (ρ)+ρ
dV
dρ

.

This is a nonlinear wave equation to describe the propagation of kinematic waves
with velocity U(ρ). Because dV (ρ)/dρ < 0, U(ρ) < V (ρ). Thus, the kinematic
waves always propagate backward with respect to the average velocity V (x, t) of
the traffic, with the speed u(ρ) = U(ρ)−V (ρ) = ρdV (ρ)/dρ ≤ 0. The U(ρ) is
the speed of the characteristic lines and depends on density. Because the speed in
congested areas is lower, the characteristic lines intersect. This gives rise to changes
of wave profile and to the formation of shock waves.

The macroscopic models are often very instructive and sometimes useful for ana-
lytical investigations and numerical efficiency. Development of macroscopic models
to explain aspects of chasing and escaping in terms of the spatial density and the av-
erage velocity remains one of challenging and potentially important future problems
for applications of our results.

5.3 Potential Applications

5.3.1 Hunting in Nature

Here, we briefly review the works in classical and ethological studies on hunting in
nature, and appreciate the importance of group size.

5.3.1.1 Wolf-Pack

In nature, situations relating to chases and escapes arise in predator–prey interac-
tions and hunting. Though it is not common, group or cooperative hunting has been
observed in certain species. Examples include lions [93], wild dogs [21], wolves
[66], bottlenose dolphins [29], and Stegodyphid spiders [79]. Observations of hunt-
ing behaviors by these species have been performed to understand what kinds of
communications and interactions exist to make such cooperations possible.

As a representative example, we briefly describe a computational model of wolf-
pack hunting [66]. Northern gray wolves are known to perform group hunting on
moose and bison. It has been argued that cooperation and social hierarchies in packs
increase the efficiency of hunting prey. The basis of these arguments is two types
of hunting behaviors: ambush and relay chasing. Ambush is the strategy that one
or more wolves hide and wait for prey being chased by other pack members. Relay
chasing is a cooperative and continuous chase where multiple members in the pack
take alternate turns to play different roles.

In a recent work [69], however, a hypothesis is proposed that the wolf-pack hunt-
ing is rather a collective emergent motion arising from simple rules. In other words,
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the hypothesis argues that no sophisticated mechanisms are necessary such as inten-
tional behavior, high skills of communication, and the social hierarchy for wolf-pack
hunting. This view is similar in spirit to the mathematical models of Boids and the
Vicsek model.

To justify the hypothesis, the authors proposed two rules for each member in a
wolf pack [69]. Here, each wolf in the pack is assumed to follow these rules au-
tonomously.

Rule 1: A wolf moves towards the prey until a pre-determined minimum safe
distance to the prey is reached.

Rule 2: Once the wolf reaches the safe distance, it moves away from the other
wolves at the safe distance.

They performed computer simulations to analyze a case of wolf-pack behavior in
which there are a single prey and several wolves. Here, they assume that the speed
of wolves is faster than that of the prey.

The formation of the pack depends on initial positions of the wolves and the
motion of the prey. When the pack is located far away from the safe distance, the
wolves move directly toward the prey. If the prey does not move, then as the pack
reaches the safe distance, they start to spread over a circle centered at the prey. This
is analogous to the encircling formation observed in real wolf-pack hunting.

On the other hand, relay chasing hunting and ambushing formations arise de-
pending on the way the prey moves.

Thus, some of the wolf-pack behavior can be explained without assuming intel-
ligent communication and social hierarchy in a pack. It will be interesting if their
work is extended to consider cases of multiple prey. Then, it would be an example
of group chases and escapes which can be compared with observations in the real
world.

5.3.1.2 Lotka–Volterra Equations

Natural predator–prey systems have been attracting much interest and the most com-
monly known classical model is the Lotka–Volterra equations. The equations are a
pair of first-order nonlinear differential equations to describe the population dynam-
ics of prey and predators:

dx
dt

= ax−bxy,

dy
dt

= cxy−dy,

where x and y are the number of prey and predators, respectively, and a, b, c, and d
are positive parameters.

The first equation describes the dynamics of prey. The model assumes an unlim-
ited food supply, and the prey reproduce exponentially unless subject to predation:
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the first term ax represents the assumption. The rate of predation is assumed to be
proportional to the rate at which the predators and the prey meet, represented by the
term bxy. The second equation describes the dynamics of the predator. In the equa-
tion, the first term cxy represents the growth of the predator population. Here, the
different constant c is used because the rate at which the predator population grows
is not necessarily equal to the rate at which it consumes the prey. The second term
dy represents the loss/death of the predators. The equations have periodic solutions
and both prey and predators coexist.

Because of the advances of computer technology, the commonly used model
schemes shifted from population dynamics based on differential equations to dis-
crete individual-based models. Still, the differential equations play essential roles
to explain some aspect of the individual-based model. For example, the log-normal
distribution of time for the entire catch T (for NC = 100 and 500 in Fig. 4.2 of
Chapter 4) can be explained as follows. One can write the differential equations
corresponding to the setup of the basic model in which the number of targets de-
creases by encounters with the chasers. If we denote the number of chasers and
targets, respectively, by nC and nT , the decreases in nT are written as

dnT

dt
=−knCnT ,

where k is a rate constant. The number of chasers remains a constant so that
the solution for nT gives nT = nT (0)exp(−knCt). By rewriting the equation as
d log(nT )/dt = −knC, one can see that the quantity log(nT ) decreases by the con-
stant rate knC. If one assumes that the constant rate fluctuates with a normal dis-
tribution by stochastic elements of the system, the number of targets nT exhibits a
log-normal distribution.

5.3.1.3 Cooperative Hunting - Relevance of Group Size

The Lotka–Volterra equations assume that the rate of hunting events is proportional
to the number of predators. It might be intuitively reasonable to assume that the rate
is proportional to the number of predators if solitary hunting is dominant. However,
the effect of interactions among predators, i.e., cooperative hunting, could give rise
to non-trivial nonlinear effects.

Actually, previous field studies have reported that increases in group size above a
certain threshold reduce their success per capita. Data from a range of social preda-
tors suggest that success initially increases, then levels off, or even declines with
group size despite apparent cooperation among predators. Several studies show that
carnivore hunting success peaks at 2–5 hunters and remains constant or declines
over larger group sizes [79, 60].

Two relevant factors are commonly accepted for the nonlinear dependence: in-
terference and free-rider. The interference factor explains the nonlinear dependence
because individual predators impede each other’s actions. Even if the predators are
proficient, simple overcrowding of predators can inhibit the ability of each predator
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and consequently, the hunting success can reach a limit or be reduced. The free-rider
can also contribute to the dependence because in large groups individual predators
withhold effort to participate in successful hunting while remaining nearby to get
access to the prey.

5.3.2 Optimization Problems

Along with increasing interest in collective motions, emergence of intelligence from
a large number of autonomous agents is actively explored in the field of artificial in-
telligence. Such a direction of research is called Collective Intelligence [61] and
Swarm Intelligence [35]. Researchers from various fields of robotics, information
sciences, control engineering, biology, and physics are joining to expand the devel-
oping research area. We briefly present here one application of group chases and
escapes in this direction.

One of the main problems in the field is called a constrained combinatorial opti-
mization problem, in which the objective is to find the minimum (or maximum) of
a target function. Often, local updating algorithms are employed to incrementally
search for the minimum state. The main difficulty associated with such algorithms
is, however, the existence of multiple local minima in the target function. Through
the course of incremental optimization, it is commonly difficult for the system to
escape from the local minima because one cannot find incrementally better states or
combinations by local updating rules at these local minima, even though there exists
the global optimum state. Thus, providing a solution to overcome this problem to
reach the global optimum is one of the main issues, and various algorithms such as
simulated annealing [53, 14] have been developed.

Let us consider here one such representative example of the constrained opti-
mization problems, namely, the Traveling Salesman Problem [18]. A task for the
salesman is to travel multiple N cities once and only once, but the salesman wants
to minimize the total traveling path length, thus, the length represents the target
function. The problem is easily solved when N is small because one can compare
all the possible paths, but it becomes considerably difficult with increasing N as the
number of possible paths increases explosively.

We number all the N cities by integers (1,2, ...,N), and each possible path to
visit all the N cities is represented by a permutation of the N numbers. For each
possible path, we refer to a state and a “cost” is defined as the total traveling path
length. The task is to find a permutation (a path) with the minimum cost, out of
(N − 1)! permutations. Here, each closed path is represented by N permutations
(the salesman would return to the starting city, and the N permutations represent the
same closed path with different starting city). Thus, the number of possible different
paths is N! divided by N, i.e., (N −1)!.

Methods of local updating of states have been developed to find the optimum
path [59]. One example of local updating is to pick two cities randomly and ex-
change their position as a permutation. If the permutation leads to a shorter total
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path length, we accept the new state, otherwise discard it. We repeat this process
aiming to minimize the total path length. However, the state is commonly trapped
at a local minimum state (permutation) from which one cannot improve the target
function by the same updating rule.

To overcome the problem, an idea is employed from group chase and escape [78]
(see Fig. 5.1). First, we prepare several states (permutations) and calculate their path
length. Then, we designate the best state with the shortest length as an escapee and
all the other states as chasers. For each round of updating, the escapee performs the
local updating for a better state with a shorter length, while the chasers update their
state so that they approach the escapee by a prescribed distance measured between
permutations. After the updating, we evaluate all the states and choose the best
one with the shortest length to be the escapee for the next round. This process is
repeated until a steady state is achieved. We expect that the states assigned as the
chasers may find a better state during their approaches to the escapee, and can help
avoid the trapping problem with local minima.

We apply the above algorithm to the Traveling Salesman Problem with 52 cities,
for which the shortest path is known.1 Fig. 5.2(A) shows the known shortest path
which length is approximately 7544. On the other hand, Fig. 5.2(B) shows one ex-
ample of the path obtained by the proposed algorithm with chase and escape. To
highlight the overlap between the two lines, the two paths are shown together in
Fig. 5.2(C).

Also, we evaluate the proposed algorithm by comparing with simple parallel mul-
tiple searches, given the same number of initial states, in Fig. 5.3. The algorithm
with chase and escape performs better because it finds a shorter path faster than the
simple algorithm.

The algorithm with chase and escape can be extended in various directions. For
example, we can assign multiple escapees in addition to the best one with the short-
est length. Also, a combination with other optimization algorithms such as the sim-
ulated annealing [53, 14] can be envisioned. Further applications of group chases
and escapes are expected not only in optimization but also to other problems in
engineering.

1 The following website has a collection of Traveling Salesman Problems. We have
used one with 52 cities, named in the list as berlin52.tsp and berlin52.opt.tour.
http://elib.zib.de/pub/Packages/mptestdata/tsp/tsplib/tsp/index.html
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Designate  or Exchange Multiple States:  Lower Cost   = Escapee

                                                                              Higher Cost  = Chasers

 Escapee seeks lower cost

 (Gradient Descent)

 Chasers update closer to Escapee 

Randomize one of  them to perform

neighboring search, then gradient 
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               the Same?
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Fig. 5.1 Implementation of chase and escape to the optimization problem of finding the global
minimum of the target function. Modified from [78] with permissions ( c© 2015 International So-
ciety of Artificial Life and Robotics).



88 5 Potential Applications and Challenges

500 1000 1500

200

400

600

800

1000

1200

500 1000 1500

200

400

600

800

1000

1200

500 1000 1500

200

400

600

800

1000

1200

500 1000 1500

200

400

600

800

1000

1200

(A)

(B)

(C)

Fig. 5.2 Traveling Salesman Problem with 52 cities. (A) The line shows the known shortest path.
This optimal path length is approximately 7544. (B) One example of the path for the problem
obtained with our algorithm using chase and escape. This path length is approximately 7940. (C)
The two paths in (A) and (B) are shown together to highlight the overlap. Modified from [78] with
permissions ( c© 2015 International Society of Artificial Life and Robotics).
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Fig. 5.3 The path distance length generated in time by the “Simple” and “Chase and Escape” algo-
rithms. The algorithm with chases and escapes performs better because it finds a shorter path faster
than the simple algorithm. Modified from [78] with permissions ( c© 2015 International Society of
Artificial Life and Robotics).

5.3.3 A Sketch

To provide a general perspective on the power of living together, we quote here
from Crowds and Power by Elias Canetti [13]. The work was based on empirical
observations and studies from psychological and anthropological viewpoints.

From earliest times the pack has had f our different forms, or functions. They all have
something fleeting about them, and each changes easily into another, but it is important to
determine first of all the respects in which they differ. The truest and most natural pack is
that from which our word derives, the hunting pack; and this forms wherever the object of
the pack is an animal too strong and too dangerous to be captured by one man alone. It
also forms whenever there is a prospect of a mass of game, so that as little as possible of
it shall be lost. If the slaughtered animal is very large, a whale or an elephant for example,
its size means that it can only be brought in and divided up by numbers of men working
together, even if it was originally struck down by one or two individuals. Thus the hunting
pack enters the stage of distribution. Distribution need not always be preceded by hunting,
but the two stages, or states, are closely connected and should be examined together. The
object of both is the prey; and the prey alone, its behaviour and nature, whether alive or
dead, determines the behaviour of the pack which forms with it as object.

The second type of pack is the war pack, and this has much in common with the hunting
pack and is, indeed, connected with it by many transitional states. It postulates a second
pack of men, and is always directed against what it feels to be one, even where this has not
yet had time to form. In earlier times its object was often a single life, one man on whom
it had to take revenge. In the certainty with which it knows its victim it comes particularly
close to the hunting pack.
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The third type is the lamenting pack. This forms when a member of a group is torn from
it by death. The group is small and feels every loss as irreplaceable, and unites for the
occasion into a pack. It may be primarily concerned with keeping back the dying man, or
with snatching from him, before he disappears completely, as much of his life as it can
incorporate into itself; or it may want to propitiate his soul so that it does not become an
enemy to the living. In any case, action of some kind is felt to be necessary, and there are
no human beings anywhere who forgo it entirely.

Fourthly, I shall summarise a variety of phenomena which, in spite of all their diversity,
have one thing in common: the intent to increase. Increase packs are formed so that the
group itself, or the living beings, whether plants or animals, with which it is associated,
should become more. They manifest themselves in dances to which a definite mythical
significance is attributed. Like the other packs they are found everywhere where there are
men living together; and what they express is always the group’s dissatisfaction with its
numbers. One of the essential attributes of the modern crowd, namely its urge to grow, thus
appears very early, in packs which are not themselves capable of growth. There are rites
and ceremonies which are intended to compel growth and, whatever one may think of their
effectiveness, the fact remains that, in the course of time, they have resulted in the formation
of large crowds.

The group chase and escape we proposed in this book would be mainly cate-
gorized into an attempt to model the first type of pack, the hunting pack. Besides,
the vampire problem presented in section 4.3.2.1 may also include the form of the
increase pack because the chasers pursue the targets in order to increase their group.

Recent works by one of the authors [45, 48, 50] highlight the benefit of being
together in the form of the increase pack. The works specifically consider how a
few biomolecules got together to increase at the primitive stage of life. To increase
the molecules, each of the molecules should be properly replicated so that the se-
quences of the polymer molecules are copied to transfer the information. The sim-
plest reaction scheme for such a replication is X → 2X , in which the replication
of the molecule X occurs with the template molecule X to produce another copy
of X (Fig. 5.4A). This results in exponential growth of the population. How such
complex molecules capable of self-replication could have first arisen attracts much
interest because this kind of reaction is the basis for one of the main hypotheses on
the origin of life, namely, the RNA world [30] which premises that self-replicating
molecules precede the beginning of life.

There are still, however, a number of conceptual problems even if one assumes,
in any way, such a self-replicating molecule appeared. First, the self-replication pro-
cess is much harder than one might guess because numerous copying errors, or mu-
tations, arise. At the primitive stage of life, inevitable copying errors occur. Because
typical functional molecules are substantially long enough and most of the errors
hinder the molecule’s ability, the bad mutations accumulate over time and it fails to
continue replicating the sequences to maintain the functions. This problem is called
error catastrophe [23].

Theoretical studies have shown that such a problem can be avoided if different
kinds of molecules catalyze the replication of each other [24, 25]. For example,
instead of one type of molecule, there could have been two types (X and Y ), each of
them able to duplicate itself only if the other one was present as
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Fig. 5.4 (A) The simplest scheme for a replication is X → 2X , in which the replication of the
molecule X occurs with the template molecule X to produce another copy of X . (B) Two types of
molecules (X and Y ) are able to duplicate themselves with the aid of the other type. The parasites
(X ′) also duplicate with the aid of the other type (Y ), but they do not help the other’s replication.
(C) If the system is compartmentalized into a number of “protocells”, the cells with good copies
can continue growth, while those dominated by parasites cannot grow and are selected out.

X +Y → 2X +Y, Y +X → 2Y +X . (5.8)

Here, the pair of molecules can increase in proportional to the square of the con-
centrations. By this way, errors would not accumulate because when one molecule
produced a defective copy of itself, that copy would not help the second molecule to
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Fig. 5.5 Schematics of the behavior after the replication of Y. The green semitransparent particles
represent the X molecules. The red particles represent the Y molecules, located deep within the
clusters. Time evolves from the left to the right.

replicate. Then, the concentration of the second molecule would fall, and as a result,
the ability of the defective first molecule to replicate decreases.

But this model also has a problem because many parasitic copies could still be
replicated with the help of others, while the parasites do not help the other’s repli-
cation (X’ in Fig. 5.4B). Such parasites increase and dominate the space, therefore,
finally resulting in keeping the good copies from reaching each other.

The introduction of compartment-level selection, in addition to the molecules’
level, can find a way to overcome the problem of parasites [64, 95]. If the system
is compartmentalized into a number of “protocells” [83], the cells with good copies
can continue growth, while those dominated by parasites cannot grow and are se-
lected out [Fig. 5.4C].

But how do the molecules get together and organize growth and divisions of
such protocells, even in the absence of sophisticated mechanisms? To answer this,
we consider the two types of molecules X and Y , catalyzing the replications of each
other as in Eq. (5.8). Here, we give three essential assumptions: i) the replication
rate of one type, say Y , is much slower and that of the other, X , is much faster; ii)
the fast-replicating type X degrades faster while the slow type Y lasts longer, and
iii) the molecules are giant so that the excluded volume effect is relevant.

Fig. 5.5 shows the behavior of the system under the assumptions. Here, repli-
cations of X (green) occur fast only where the Y molecules (red) are present. In
contrast, the degradations of X are also fast so that X molecules diffused away from
the Y s die out. This results in a formation of clusters of X molecules around each
of the Y molecules. In the clusters, the molecules are crowded so that each interacts
only with nearby molecules. In this sense, the clusters have the effect of compart-
ments, and in fact, the clusters play the role of the units of selection: those with the
good ones can grow, while those dominated by parasites cannot grow (see [45] for
detail).

In addition, the cluster shows a division process synchronous with each replica-
tion of the slow molecule Y . When the replication of Y occurs, the two molecules
of Y are in the crowd of X , and each helps the replications of X . Therefore, as the
two Y s diffuse away to the size of the cluster, the number of X molecules distribute
around each of the Y molecules. This completes the division process. Because the
division occurs after the replication of Y , it appears as if the growth of the clusters
is controlled by the minority species Y .
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The relevance of “minority” is generally attributed to controllability and evolv-
ability of the system. For example, a simple model suggests that in guiding animal
groups, only a very small proportion of informed individuals is required to achieve
great accuracy [20]. In the context of primitive cells, it is suggested that if the num-
ber of gene copies in the system is infinitely large, a “good” mutation in a gene is
hindered by the majority of other genes so that there is no coupling of phenotype
(growth) with genotype [56, 74]. Thus, Darwinian evolution is essentially stopped.
The advantage of having multiple copies is also discussed because multiple copies
can avoid a loss of the genes at division events when an accurate segregation mech-
anism of genes is absent. The above study suggests that the accurate segregation
mechanism may be possible even at a primitive stage of life, i.e., earlier than when
modern prokaryotes arose.



Appendix A

Discrete Search Game on Graphs

We introduce here a variation of chases and escapes called Discrete Search Games.
In the problem, a target chooses one post from many finite distinct posts, and stays
there to hide from a chaser. The chaser repeatedly hops from one post to another
until he/she finds the target. In this context, the target and the chaser are often called
the hider and the searcher, respectively.

The problem is formulated by a graph with vertices and edges. The vertices rep-
resent the posts, one of which is chosen by the hider to stay at. The searcher moves
from one vertex to another only when they are connected by an edge. In other words,
the game is a problem of chases and escapes on a graph, except that the hider does
not move and the searcher does not recognize the location of the hider.

The purpose of the game for the hider is to hide as long as possible in general.
On the other hand, that for the searcher is to find the hider in as small a number of
hops as possible. Then, the main interest is the minimum number of hops, V , from
the start of the game until the finding of the hider, given the network structure of the
graph.

From the setup of the game, the following conditions are satisfied:

• The upper limit of V is given by the shortest path length with which all the
vertices are visited by the searcher.

• V is finite.
• V depends on the structure of the graph, i.e., the number of vertices and how they

are connected by the edges.

Here, we introduce the following three types of graphs; complete graph, cyclic
graph, and linear graph (Fig. A.1). A complete graph is a graph in which every pair
of vertices is connected by an edge. Thus, the searcher can hop from one to any other
vertex. A cyclic graph consists of N vertices {x1,x2,x3, . . . ,xN} such that a vertex xi
is only connected to xi+1 and xi−1 for 1 < i < N. The vertex xN is connected to xN−1
and x1, and the vertex x1 is connected to x2 and xN . Here, the searcher can hop only
two neighboring vertices. A linear graph is obtained by deleting the edge between
xN and x1 from the cyclic graph.

© Springer Nature Singapore Pte Ltd. 2019
A. Kamimura and T. Ohira, Group Chase and Escape, 
Theoretical Biology, https://doi.org/10.1007/978-981-15-1731-0

95



96 A Discrete Search Game on Graphs

(A) (C)(B)

Fig. A.1 Three types of graphs for N = 5 vertices: (A) a complete graph, (B) a circular graph, (C)
a linear graph.

Interestingly, it turns out that for all the above types of graphs, the value of V can
be calculated explicitly as

V =
1
2
(N +1). (A.1)

We sketch the outline of the proof in the case of the linear graph. Here, we assume
that the hider chooses one vertex out of N vertices with equal probability of 1/N.
Let us denote the vertex as xk (1 ≤ i ≤ N). As the searcher does not recognize the
position of the hider, the best strategy for the searcher is to minimize the path to
cover all vertices. It is realized only for the two cases of starting from either end
x1 or xN , and moving in one direction. If the searcher starts from x1, then he/she
can find the hider after k steps. On the other hand, if starting from the other end xN ,
the hider is found after N − k+ 1 steps. Because the searcher should assume that
the hider is at x j in the ranges of 1 ≤ j ≤ N/2 and N/2 ≤ j ≤ N with the equal
probability of 1/2, the best strategy is to choose the two options accordingly. Then,
the value of V can be calculated as

V =
1
2

k+
1
2
(N − k+1) =

1
2
(N +1). (A.2)

For the case of the other two types of graphs, the searcher can have more options
for his/her paths to visit the entire vertices. It can be shown, however, that the value
of V is the same as in the case of the linear graph (see [86]).

Discrete search games on the graphs can be extended into different directions.
One such example is to include a “missing” factor that the searcher fails to find
the hider with some probabilities even though the hiding vertex is visited. One can
consider such situations when the searcher is careless, or when the hider can occa-
sionally escape from the searcher in some other way. Another extension is that the
hider can also move among the vertices. One classic example is called the Monster–
Princess problem, where the princess (the hider) moves in the hope that she can
evade the monster (the searcher) for as long as possible. These extensions naturally
complicate the problem and the solutions are more intricate (see [41] and [71]).



Appendix B

Chase and Escape with Delays

In this section, we introduce another extension of chases and escapes where delays
in pursuits are present [77]. The factor of delays is inevitably present in reality
because it takes a finite time to transmit a signal from an object. For example, if
we point to the location of the sun in the sky, the position is actually where it was
about eight and a half minutes in the past. Another example is a delay caused by
maneuvering a ship or a plane to point to the position of the target.

Delays often bring rather complex behavior in dynamical systems, and various
examples have been investigated. As a first step to consider delays in chases and
escapes problems, we extend the circular pursuit problem discussed in section 2.3.1.

We introduce a state-dependent time delay into the original circular pursuit prob-
lem. It is assumed that the signal from the target takes some time (delay) to reach the
chaser. Then, the chaser points not to the target’s present position as in the original
model, but to its past position by a time delay τ .

If τ is constant, then the problem can be mapped to the original problem with a
different target’s initial position. Thus the pursuit task is qualitatively unchanged: a
constant delay is equivalent to the introduction of a fixed phase shift.

However, more complex behavior appears when τ is an increasing function of the
distance ρ between the chaser and the target. To show this, we consider the simplest
case: τ is a linear function of ρ as τ = τ0ρ , where τ0 is a constant scale factor. Here,
the chaser’s precision in pointing to the target’s position decreases in proportion to
the distance between them.

We rely on computational simulations to investigate the extended model with
state-dependent delays. Fig. B.1 shows the behavior of the chaser and the target as a
function of τ . Increases of τ0 lead to a variety of trajectories for the chaser with the
target moving in the unit circular path.

We observe that, when the speed of the target is faster than that of the chaser,
the chaser cannot catch the target, irrespective of the presence of delay (Fig. B.1b
without delay and Fig. B.1e with delay). In contrast, when the speed of the target is
slower than that of the chaser and without delay, the chaser can catch the target (Fig.
B.1a). However, with the delay increases beyond a critical value, the chaser cannot
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catch the target (Figs B.1c, d, and f–h). As the delay increases, trajectories of the
chaser can be quite complex (Figs B.1c–h).

As mentioned above, the complex trajectories of the chaser in Fig. B.1 arise
because τ is a function of the distance ρ . To give an insight why the simple linear-
dependency results in the complex trajectories, we consider a change in ρ by a
movement of the chaser in a short time interval dt. If ρ increases, then τ increases
in the next step. This decreases the chaser’s precision for the target’s position in
the next time interval. On the other hand, if ρ decreases, then the chaser points to
the present target’s position more accurately. The change of ρ is determined only
by the relative position of the chaser and the target. One expects that if the spatial
distribution of the change is rough and saw-toothed, the trajectory of the chaser is
inevitably complex because the chaser should change its velocity very frequently.

To visualize the spatial distribution, we take (xT ,yT ) = (1,0) as the present po-
sition of the target. Here, we fix the radius of the circle a = 1. The chaser is located
at (xC,yC) = (r cosλ ,r sinλ ) (see Fig. B.2). The distance ρ between the chaser and
the target is written as

ρ =

√
(r cosλ −1)2 +(r sinλ )2 =

√
1+ r2 −2r cosλ .

The delay is defined as τ = τ0ρ . By taking the angular velocity of the target as ω , the
target’s position in the past by time τ is given by (xτ

T ,y
τ
T ) = (cos2πωτ ,−sin2πωτ),

to which the chaser at (xC,yC) points its velocity. The direction of velocity of the
chaser is written as

(vx,vy)≡ (cos2πωτ − r cosλ ,−sin2πωτ − r sinλ ).

This, in turn, enables us to compute the position of the chaser with this velocity in
the future by dt as

(x′C,y
′
C) = (r cosλ +dtvx/V,r sinλ +dtvy/V ),

where V =
√

v2
x + v2

y/VC and VC is the speed of the chaser.

After time dt, the position of the chaser is at (x′C,y
′
C) as shown above, and that of

the target is approximated to the first order in dt as (1,2πωdt). Then, we derive the
distance ρ ′ between them at time dt as

ρ ′ =
√

(r cosλ +dtvx/V −1)2 +(r sinλ +dtvy/V −2πωdt)2

=
√

ρ2 +Δρ ,

where

Δρ=
{

v2
x/V 2+(vy/V−2πω)2}dt2+2

{
vx(r cosλ−1)/V+(vy/V−2πω)r sinλ

}
dt.
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Fig. B.1 Examples of pursuit trajectories of the chaser (red) with the distance-dependent de-
lays. The blue curves indicate the circular path on which the target moves. The scale factor and
speed ratio [τ0,n] are given as (a)[0,1.01], (b)[0,0.5], (c)[500,1.01], (d)[500,1.5], (e)[500,0.5],
( f )[1050,1.01], (g)[700,1.5], (h)[1500,1.01]. Here, the target’s velocity is given as v = 0.05 (the
period the target takes to go around the unit circle is T ≈ 126). Reproduced from [77].
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Target (xT, yT)
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Fig. B.2 Position of the chaser and the target.

The sign of Δρ , thus, tells us whether the distance between them increases (when
Δρ > 0) or decreases (when Δρ < 0) by the movement.

Figs B.3 to B.6 show the spatial distribution of the sign of Δρ as a function
of the chaser’s position (xC,yC), with relevant parameters set as ω = 1, VC = 1,
dt = 0.001, and τ0 = 0,10,100,1000. In the plots, the target is located at (xT ,yT ) =
(1,0). The color at each point represents the absolute value of Δρ , and they are
shown separately for the cases Δρ is positive and negative. For all the cases, there is
a tendency that the change is negative, Δρ < 0, if the chaser is in the upper half of
the plane, i.e., the chaser gets closer to the target. This is because, from the position
of the target at (xT ,yT ) = (1,0), the target moves into the upper (positive y) part of
the plane.

Without delay (Fig. B.3), the structure of Δρ is quite smooth. As we increase
the delay, however, with larger τ0 (Figs B.4–B.6), they have complex structures,
suggesting that a small difference of the chaser’s position relative to the target can
sensitively affect the increase or decrease of the distance ρ .

We also consider the case as a reference, where we assume the target does not
move in dt. In Fig. B.7, we plot the change of the distance between the chaser
(xC,yC) and the point (1,0) for the case of τ0 = 10000. In this case, the intricate
pattern is symmetric with respect to the x axes as expected.

In summary, we show that even a simple model with a state-dependent delay
can bring complex trajectories to the chase and escape problems. Even though the
detailed studies remain in the future, it will be of interest to see how delay can
change the qualitative behavior of “group chase and escape”.
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(a) Δρ > 0 (b) Δρ < 0

Fig. B.3 |Δρ | for the case of τ0 = 0 plotted as a function of initial position of the chaser. Darker
color reflects the smaller value of |Δρ | (no data for white region). Reproduced from [77].

(a) Δρ > 0 (b) Δρ < 0

Fig. B.4 |Δρ | for the case of τ0 = 10 plotted as a function of initial position of the chaser. Darker
color reflects the smaller value of |Δρ | (no data for white region). Reproduced from [77].

(a) Δρ > 0 (b) Δρ < 0

Fig. B.5 |Δρ | for the case of τ0 = 100 plotted as a function of initial position of the chaser. Darker
color reflects the smaller value of |Δρ | (no data for white region). Reproduced from [77].
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(a) Δρ > 0 (b) Δρ < 0

Fig. B.6 |Δρ | for the case of τ0 = 1000 plotted as a function of initial position of the chaser. Darker
color reflects the smaller value of |Δρ | (no data for white region). Reproduced from [77].

(a) Δρ > 0 (b) Δρ < 0

Fig. B.7 |Δρ | for the case of τ0 = 10000 with the fixed target at (1,0), plotted as a function of the
position of the chaser (xC,yC). Darker color reflects the smaller value of |Δρ | (no data for white
region). Reproduced from [77].



Appendix C

Virtual Stick Balancing

We have discussed predator–prey interactions as an example of chases and escapes
in section 5.3.1.2. Besides that, a tracking task is observed in a number of biological
and social systems where the task can be modeled as chases and escapes. For exam-
ple, our eyes track motions of an object in sight continuously. As a result, we can
perform rather well the task of tracking targets which move along a complex and
rapidly changing trajectory. Such a tracking task is modeled in general as chases
and escapes with delays. Here, delays occur as a result of various factors such as
time taken to identify the target, to formulate a strategy and then to act upon it.

As a typical example of the tracking task, we present here a study of virtual stick
balancing (VSB) [67]. VSB is an experimental paradigm which has been well suited
for investigating complex visuomotor tracking tasks. It requires a subject (human)
to track a target dot that moves on the computer screen by a pointer controlled
through a computer mouse. The name, “virtual stick balancing”, reflects that the
task is considered as a model of balancing a stick vertically on a fingertip. In the
real stick balancing, a subject tries to control the motion of his/her fingers so that
the stick does not fall. The task is often performed well by tracking a point of the
stick visually and controlling our movements. The advantage of VSB is that relevant
parameters such as task difficulty can be easily adjusted.

Two different approaches are mainly adopted to model VSB. The first approach
considers VSB as a problem of stabilizing an unstable fixed-point with time-delayed
feedback and noisy fluctuations. The second approach considers VSB as a chase
and escape problem with delays and fluctuations. We will adopt here the second
approach.

We describe the setup of VSB. The subject is asked to move a computer mouse
in order to keep both the mouse position (pointer or cursor) and a moving target dot
on the computer screen as long as possible (the screen is a 20-inch CRT monitor
with a 75 Hz refresh rate).

The dynamics of the target are given by the following equation:

d2

dt2 T = R(T−C), (C.1)
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where C = (Cx,Cy) and T = (Tx,Ty) are the positions of the mouse cursor and the
target on the two-dimensional screen, respectively. The dynamics describe that an
acceleration of the target decreases with decreasing distance between the target and
the cursor. If the subject can locate his/her cursor close to the position of the target,
the target does not accelerate much and pointing is successful. The dynamics are
qualitatively analogous to the balance control of sticks on a fingertip in which the
subject can control the stick well and the stick is close to its vertical position. On the
other hand, once the cursor is far from the target, the target accelerates and moves
away from the mouse cursor. This corresponds to the case of failure of controlling
stick so that it falls faster as it tilts away from its vertical position. Thus, it is rea-
sonable to assume that the difficulty of the pointing (balancing) task is controlled by
the parameter R: the pointing task gets more difficult as R increases.

We now show results of the experiments. Fig. C.1 shows the average balancing
time (time duration a subject can keep the target dot on the computer screen) of
the VSB experiment for up to 14 subjects. The value of R is set at approximately
5.25[s−2]. Each subject was asked to practice for up to seven days over a two-week
period. Each day, about 25 trials were taken to calculate the average balancing time.
Each circle corresponds to each subject. Six subjects participated for all seven days,
and the solid curve represents the average balancing time over these six subjects. We
observe that the balancing time distributes among subjects and the time increases
as the skill improves by practice. The improvement is about threefold for the six
subjects.

Number of Days Practiced
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Fig. C.1 Average virtual stick balancing time (in seconds) measured for 14 subjects who practiced
up to seven days over a two-week period for R ≈ 5.25. At least 25 trials were used to estimate the
average time. Six subjects participated on all seven days, and the solid curve shows the average
time (the average of the averages) of the six subjects. Modified from [67] with permissions ( c©
2013 The Institute of Electronics, Information and Communication Engineers).
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Fig. C.2 Tracking error, E[C(t),T (t)], as a function of time measured at two different levels of task
difficulty. (a) Data for R ≈ 2.5 is for two consecutive trials (separated by vertical dashed line) and
(b) for R ≈ 5.4 for 19 consecutive trials (separated by vertical solid lines). For R ≈ 2.5 the subject
stopped at a given trial voluntarily and for R ≈ 5.4 each trial ended when the target escaped off the
computer screen. Data was taken at a 75 Hz sampling rate. Modified from [67] with permissions
( c© 2013 The Institute of Electronics, Information and Communication Engineers).

In order to quantify the balancing skill, the tracking error E[C(t),T (t)] is defined
as the distance between the cursor and the target on the computer screen:

E[C(t),T (t)] = |C−T|=
√

(Cx −Tx)2 +(Cy −Ty)2, (C.2)

where Tx,Ty and Cx,Cy are the (x,y) coordinates of the target and the cursor respec-
tively.

The tracking error is recorded for R ≈ 2.5 and R ≈ 5.4 for one subject (Fig. C.2).
The time series show burst-like characteristics, in which the distance between the
cursor and the target intermittently becomes large. Here, for R ≈ 2.5, the subject
reported little difficulty with the task (the subject voluntarily stopped the task at ≈ 5
minutes to avoid fatigue). On the other hand, for R ≈ 5.4, the task was difficult for
the subject and the target always ran off the computer screen. This was observed
even when the subject improved his/her skill by repeated trials. Trial-to-trial vari-
ability was also considerable as shown in the figure.

In order to characterize difficulties of the task from another viewpoint, we com-
pute the complementary cumulative distribution function (CCDF) from the empir-
ical data. The CCDF function Fccd f (s) is defined as a probability that the tracking
error E[P(t),T (t)] is larger than s,

Fccd f (s) = Prob(s < E[C(t),T (t)]). (C.3)

For the six subjects, this function is plotted on the log–log scale (Fig. C.3). It
is clearly observed that, for all subjects, the occurrences of smaller errors are more
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E[C(t), T(t)]
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Fig. C.3 Log–log plots for the complementary cumulative distribution function (CCDF), Fccd f (s),
as a function of the tracking error, E[C(t),T (t)], for the six subjects with two different levels of task
difficulty: R ≈ 2.5 (dashed lines) and R ≈ 5.25 (solid lines). Modified from [67] with permissions
( c© 2013 The Institute of Electronics, Information and Communication Engineers).

notable for R ≈ 2.5 indicating the balancing task in VSB is less difficult compared
to the cases for R ≈ 5.25.

In order to explain the observation, we propose a simple model based on random
walks. As a first step, we consider two interacting random walks in one–dimensional
space with discrete time and space: one is the target and the other is the cursor. The
target is assumed to move randomly as modeled by a simple symmetric random
walk. Then, the probability PT (y, t) that the target is at spatial position y at time t is
given by

PT (y, t +1) =
1
2

PT (y−1, t)+
1
2

PT (y+1, t), PT (y,0) = δy,0. (C.4)

On the other hand, the subject moves the cursor based on a visual feedback with
delays. We model this effect by a delayed random walker whose movement is biased
toward the position of the target. Then the probability, PC(x, t), of the position of the
cursor x at time t is influenced by the position y of the target at time t − τ steps in
the past, following

PC(x, t +1) = ∑
y

1
2
{1−β (x−1− y)}P(x−1, t : y, t − τ)

+∑
y

1
2
{1+β (x+1− y)}P(x+1, t : y, t − τ), (C.5)

where β is a positive parameter controlling the bias between the two random walk-
ers. P(x, t : y, t − τ) is the mixed joint probability with the target at the position y at
t − τ and the cursor at the position x at t. This model accounts for the two elements
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Fig. C.4 Movements of the mouse cursor (thicker lines) and the target dot (thinner lines) in the
VSB. D(x,y) represents the distance from a common reference point as the origin to the positions
of the cursor and the target. (a) The coupled delayed random walk model with β = 0.5. The delay
is introduced as τ = 20. (b) The experimental observation of VSB for R ≈ 2.5. (c,d) Two different
trials showing escapes for R ≈ 5.4. Modified from [67] with permissions ( c© 2013 The Institute of
Electronics, Information and Communication Engineers).

in the VSB experiment: fluctuation of the perception of the movements and delays
in the control of the mouse cursor.

When τ = 0, the cursor has a bias to move closer to the target by the terms with
β . By setting τ > 0, the bias can be controlled to depend on the position of the target
in the past. As a result, the dynamics become more complicated because the delay
τ can result in the movement of the cursor either toward or away from the target.

We compared the behavior of this coupled delayed random walk model to the
experimental results. Fig. C.4 shows representative examples of the movements of
the mouse cursor and the target: Fig. C.4(a) shows a result of the model, Fig. C.4(b)
shows the observations with R ≈ 2.5, and Fig. C.4(c,d) show observations with R ≈
5.4 in the experiment.

For both our model and experimental observations, an oscillatory behavior is
observed in the trajectories of the cursor and the target. This suggests that the time
delay causes “over-shoot” of the cursor by the subject in the tracking task. As the
skill improves by practice, the oscillatory behavior is less noticeable.

Also, we observe occasional events in which the cursor moves in an unexpected
way so that the tracking error E[P(t),T (t)] increases. They are indicated by up and
down arrows. In the coupled delayed random walk model, such events have little
effect because they do not affect the movement of the target (it follows just the sym-
metric random walk). Also, the model neglects inertia of the random walks, which
may result in strong over-shoots as seen in the experimental data. In the experi-
ments, such occasional increases of the error can be enhanced by the dynamics of
the target. For R ≈ 2.5, however, the subject can typically move the mouse cursor
fast enough so that he/she can manage to control the target. On the other hand, for
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R ≈ 5.4, the increases lead to enhancements in E[P(t),T (t)] with which the subject
cannot manage the mouse cursor fast enough to overcome. As a result, the target
typically escapes off the computer screen resulting in a failure of the task.

The statistical results in the VSB experiments can be also explained by the
coupled delayed random walk model. Fig. C.5 plots on the log–log scales the
CCDF function Fccd f (s) = Prob(s < E[C(t),T (t)]) against a “normalized” error
Ê = E[C(t),T (t)]/E[0.5]. Here E[0.5] is the error which gives the median of the
CCDF function, i.e, Fccd f (E[0.5]) = Prob(E[0.5]< E[C(t),T (t)]) = 0.5. The model
is in a relatively good agreement with the experiment in the range Ê < 101, partic-
ularly for R ≈ 5.25. On the other hand, discrepancies are noticeable in the range
Ê > 101, particularly for R ≈ 2.5. The discrepancy in the large error Ê can arise be-
cause the subject can manage and regain the control of the target for R ≈ 2.5, even
once the mouse cursor is located far from the target. For R ≈ 5.25, such corrections
typically fail and the task is stopped so that the large errors are rarely recorded in
the experiment.

Fig. C.5 Comparison of the model (dots) with the experimental results with the log–log plot of
the CCDF function against the normalized error: VSB for R ≈ 2.5 (dashed–dotted lines) and VSB
for R ≈ 5.25 (dashed lines). Parameters are the same as in Fig. C.3. Modified from [67] with
permissions ( c© 2013 The Institute of Electronics, Information and Communication Engineers).

Further issues remain to be investigated. One is the effects of inattention and
blinking of the subject’s eyes. Intuitively, inattention and eye blinking increase the
failure of the task in which the target escapes from the screen. In the experiment,
however, we were not able to identify a causal relationship between the length of
inattention time and the failure of the task. At this point, one could say that origins of
large tracking errors, which lead to the failure, are mainly from the intrinsic dynam-
ics of the tracking, and the effects of inattention and blinking would be secondary.
This view is supported by the fact that the occasional unexpected movements are
also observed in the coupled delayed random walk model.



Appendix D

Minority Games

The concept of group chase and escape shares a similarity with a class of prob-
lems in game theory. First, conflict of interests exists between the players: chasers
and targets. Each chaser tries to capture a target as soon as possible. On the other
hand, each target tries to survive as long as possible. Second, each player takes ac-
tions independently from the others’ actions. For both chasers and targets, the action
(movement) is determined only from the distance to the nearest opponent. Yet, from
our simulations, the players collectively behave as if they cooperate within each
group.

The Minority Game [16] is one of such problem to share the two characteristics:
conflict of interests and independent pursuit of its own interest. As described below,
the game also exhibits collective behavior of players as if they are cooperative.

The Minority Game was initiated by a problem named after a small bar, El Farol
Bar, in Santa Fe, United States [3, 40]. A fixed number of people independently
decide to go to this small bar or to stay at home every Thursday. If all the people go
there, it is no fun because the bar is crowded. The problem is to avoid the crowd at
the bar. One can have a better time if he/she chooses to go there when the number
of people is small at the bar. In contrast, it is better to stay home when too many
people go there. Each player has to decide without communications with others or
knowledge of the status of the bar.

This “El Farol Bar” problem is generally extended and formulated as binary bet-
ting by a fixed number of players. A player wins if the number of players is smaller
for the same bet, i.e., if one belongs to the minority group. The critical question is
“What is the best strategy for each player to win the game?” If every player follows
the same deterministic strategy, all the players make the same choice and no one can
belong to the minority group. More interesting is if one introduces multiple strate-
gies and each player chooses one of them in a probabilistic manner. These “mixed
strategies” can produce an equilibrium state where every player has a chance to win
on average.

As an example of the Minority Game, we introduce here a simple game called
the Standard Minority Game, proposed by [15]. We consider N (odd integer) play-
ers, and they play a repeated game of binary betting. The game assumes that each
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player decides on one of the two choices, in each time step, based on a strategy card
that the player independently prepares in advance. The strategy card determines the
next choice, given the winning history of the previous m (memory) time steps. An
example of the strategy table card for m = 3 is shown in Fig. D.1; we label the
two choices of betting as “0” and “1”. Here, the information of the winning history
is available to all the players. The history is then updated according to the current
outcome of every time step.

For each time step, the winning outcome is either of the two choices. Then, the
winning history of the m steps has 2m combinations. For each of the combinations,
the next choice is defined in the strategy card, as shown in Fig. D.1. And, for each
combination of the m-step history, the next choice is either of 0 or 1. Thus, 22m

different strategy cards can be produced. With m = 3, one can produce 28 = 256
strategy cards. For example, if m = 3, there are 23 = 8 combinations of the win-
ning history. When the winning history of the immediate m = 3 steps is “010”, the
strategy card in Fig. D.1 determines the next choice is “0”.

The game assumes that each player is allowed to hold s strategy cards, out of the
22m

cards. Each player randomly chooses the cards in advance, and they cannot be
altered or exchanged during the game.

0 00 1

0 01 0

0 10 0

1 11 1

1 10 1

0 11 1

1 01 0

1 00 0

Fig. D.1 One example of the strategy table card for m = 3. For each of the 23 = 8 combinations of
the winning history (the left three columns), the next choice is determined as the rightmost column.

At the beginning of the game, the history used for the next choice is randomly
generated, and it is updated according to the winning outcome. For example, if the
randomly-generated history is “110” (m = 3), then, the history is updated to “101”
if the group of the choice “1” wins, and to “100” if the group of the choice “0” wins.

Each player uses the s strategy cards as follows. The player assigns points for
each card with the initial value of 0. In each step, the player bets according to the
strategy card with the highest points among his/her s strategy cards (if multiple cards
have the highest points, one is chosen randomly). If the player wins, then the points
of the strategy card increase by one, otherwise, the points decrease by one.
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The game was investigated by computer simulations. Here, the number of players
is fixed at N = 201. The number of strategy cards each player can hold is varied as
s∈ {2,5,10,16,32,64} with the memory m= 3,4. For each set of {s,m}, the betting
is repeated up to 104 times in the game.

Fig. D.2 shows typical time series of the number of winning players (the number
of players in the minority group) with two holding strategies (s = 2). The time series
are shown for the memory m = 3 [(a); red], m = 4 [(b); blue], and the case when the
players select the choices randomly with equal probability of 1/2 [(c); gray].

The numbers of the winning players with strategy cards [(a), (b)] are closer to
the maximum of 100, compared to the random case (c). In addition, the fluctuation
in the number is less with strategy cards.

In order to characterize their statistics, we show in Fig. D.3 the average (a) and
the standard deviation (b) for the number of winning players as a function of s. As
a reference, we also show the case in which all the players randomly choose either
of the options without any strategies. In this case, the average is approximately 94.9
and its standard deviation is approximately 5.2.

For both m = 3,4, the average number of the winning players decreases with the
number of holding strategies s. In addition, the standard deviations increase with
s. Surprisingly, when s is smaller than ≈ 16 (m = 3), the average number of the
winning players is larger than that of the random case. This means that more players
can win the game than in the random case, by following their own interests with a
smaller number of strategies.

We also show in Fig. D.4 the number of wins, i.e., how many times each player
won for all the N = 201 players in 104 bets in the game. For the memory m = 3
[(a); red] and 4 [(b); blue], the number of wins falls mostly within a range of 4800
to 5000. On the other hand, the number is mostly below 4800 for the random case
[(c); gray]. Thus, most of the players have higher winning numbers than in the case
of random choices.

Hence, given the appropriate sets of parameters of {s,m}, all the players can en-
joy a fair number of wins, almost all of which have higher winning numbers than in
the case of random choices. These results look as if the players cooperate to max-
imize the benefit of all the players, even though each player independently makes
decisions to seek his/her own interest. This counter-intuitive behavior results from
various factors. Relevant factors have been discussed and investigated, including
the assumption of the model that all the players refer to the same winning history,
and how the result of betting is affected by a small change of individual players’
decisions.

It is one of the promising perspectives to study if the framework of the Minority
Game is applied to extend the chasing and escaping strategies in group chases and
escapes. For example, when too many chasers try to move toward a single target,
chasers tend to block each other’s way. This intimately suggests that the number of
chasers should not be biased to a specific target to efficiently catch all the targets. On
the other hand, it might be better also for the targets to distribute themselves across
the spatial field to avoid being rounded up. It would be interesting to develop effi-
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Fig. D.2 Typical time series of the number of the winning players with two holding strategies. (a)
m = 3 (red) (b) m = 4 (blue), and (c) the case where the players select the choices randomly with
equal probability of 1/2 (gray). Data is taken for 100 bets between the time [9900,10000].

cient strategies for both chasers and targets, even though each player independently
moves to seek its own interest.
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Fig. D.4 For each of the N = 201 players, we show the number of wins, i.e., how many times
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number of holding strategies is set to s = 2.
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