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Abstract. This paper describes our system submitted for the CCMT
2019 Quality Estimation (QE) Task, including sentence-level and word-
level. We propose a new method based on predictor-estimator architec-
ture [7] in this task. For the predictor, we adopt Transformer-DLCL [17]
(dynamic linear combination of previous layers) as our feature extract-
ing models. In order to obtain the information of translations in both
directions, we use right-to-left and left-to-right two models, concatenate
two feature vectors as whole quality feature vectors. For the estima-
tor, we use a multi-layer bi-directional GRU to predict HTER scores or
OK/BAD labels for different tasks. We pre-train the predictor according to
machine translation (MT) method with bilingual data from WMT2019
EN-ZH task, and then jointly train predictor and estimator with the QE
task data. We also construct 50K pseudo data in different methods in
respond to the data scarcity. The final system integrates multiple single
models to generate results.
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1 Introduction

Quality estimation (QE) refers to the task of evaluating the quality of MT results
without any human annotated references [2]. We participate the CCMT 2019
QE task in both EN→ZH and ZH→EN directions. Each of them consists of two
subtasks: word-level and sentence-level. Word level task is to predict OK/BAD
labels for each word and gap in translation results, corresponding to mistrans-
lation, over-translation and under-translation. Sentence-level task is to predict
the Human-targeted Translation Edit Rate (HTER) scores [14] which represent
the overall quality of the translation results.

In early works, human-crafted features were wildly used. A typical frame-
work was QUEST++ [15] which provided a variety of features and machine
learning methods to build QE models. In recent years, neural models signifi-
cantly improved the performance in this task. Kim et al. [7] proposed a neural
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network architecture called predictor-estimator, which adopted a bilingual recur-
rent neural network (RNN) language model [9] as predictor to extract feature
vectors, and used a bidirectional RNN as estimator to predict QE scores. Fan et
al. [5] introduced a bidirectional Transformer based pre-trained model for fea-
ture extraction, and used 4-dimensional mis-matching features from this model
to improve performance.

In our work, all the tasks we submit share the same model architecture
based on the predictor-estimator. We pre-train left-to-right and right-to-left
deep Transformer models with a large amount of bilingual data as predictor.
Byte-pair-encoding (BPE) [12] tokenization is applied to reduce the number of
unknown tokens. After that, a multi-layer Bi-GRU is used as estimator, and is
jointly trained with predictors using the quality estimation task data. We trans-
form word-level tasks into binary classification problems and sentence-level tasks
into regression problems for estimator model to predict labels or scores with the
feature information extracted by predictor.

To further improve the performance of the predictor, we use target-side mono-
lingual data to construct pseudo-data by various back-translation [3] methods,
including beam search, sampling and sampling-topk [4]. Due to the scarcity of
QE data, we also construct QE pseudo data. We regard real target-side sentences
in bilingual data as personal edited results, and use beam search, sampling or
sampling-topk to construct machine translation results. Finally, we used the TER
tool [14] to generate word-level OK/BAD labels or sentence-level HTER scores.

Our system also employs the ensemble strategy to further improve model
performance. By training multiple sub-models, the final results are fused by
voting or averaging in different tasks.

2 Deep Transformer

A strong and effective feature extraction model is essential for the estimator to
make more accurate predictions. We choose the pre-trained machine translation
model to extract features. Neural Machine Translation (NMT) based on multi-
layer self-attention has shown strong results in many machine translation tasks.
In order to improve the performance of machine translation and extract the
information contained in the sentences more fully, we apply the structure of
Pre-norm Transformer-DLCL. In this section, we describe the details about our
deep architecture as below:

Pre-norm Transformer: For Transformer [16], learning deeper networks [1]
is not easy because of the difficulty to optimize due to the gradient vanish-
ing/exploring problem. But in recent implementations, Wang et al. [17] empha-
sized that the location of layer normalization [8] plays a vital role when training
deep Transformer. In early versions of Transformer, layer normalization is placed
after the element-wise residual addition. While in recent implementations, layer
normalization is applied to the input of every sublayer, which can provide a
direct way to pass error gradient from top to bottom. In this way pre-norm
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Fig. 1. The architecture of our model based on predictor-estimator.

Transformer is more efficient for training than post-norm (vanilla Transformer)
when the model goes deeper.

Transformer-DLCL: In addition, a dynamic linear combination of previous
layers method [17] was used in Transformer model. Transformer-DLCL employed
direct links with all previous layers and offered efficient access to lower-level
representations in a deep stack. An additional weight matrix Wl+1 ∈ RL×L was
used to weight each incoming layer in a linear manner. This method can be
formulated as:

Ψ(y0, y1...yl) =
l∑

k=0

W l+1
k LN(yk) (1)

Equation 1 provided a way to learn preference of layers in different levels of
the stack, Ψ(y0, y1...yl) was the combination of previous layer representation.
Furthermore, this method is model architecture free which can be integrated with
either pre-norm Transformer or relative position Transformer [13] for further
enhancement. The details can be seen in Wang et al. [17].

We used Transformer-DLCL model with 25 layers in encoder, and show
the performance improvement of Transformer-DLCL vs. Transformer-base and
Transformer-Big in Table 1.
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Table 1. BLEU score and � BLEU [%] on WMT ZH→EN and EN→ZH newstest2017.

Task Model BLEU �BLEU

ZH→EN Transformer-Base 26.58 –

Transformer-Big 27.09 +0.51

Transformer-DLCL-25L 27.55 +0.97

EN→ZH Transformer-Base 25.54 –

Transformer-Big 26.59 +1.05

Transformer-DLCL-25L 27.30 +1.76

3 System

3.1 Architecture

The model architecture of the whole system is presented in Fig. 1. It consists
of two parts: a predictor which joint left-to-right and right-to-left Pre-norm
Transformer-DLCL, and an estimator with a multi-layer Bi-GRU. Predictor is
used to extract semantic information from given machine translation results,
according to source-side sentences. In order to fully consider the forward and
backward information in the sentences, we use the left-to-right and right-to-left
translation models to extract the bidirectional semantic information indepen-
dently, and then fuse them to obtain the quality vectors. After that, the quality
vector is fed into the bidirectional GRU to predict the HTER score or OK/BAD
labels. We first pre-train forward and backward translation models, then jointly
train the estimator with the predictor to maximize the evaluation capability of
the system.

3.1.1 Deep Bi-Predictor
The sequence-to-sequence based Transformer models [16] are powerful in extract-
ing information and have been proven to be strong in many translation tasks.
The Pre-Norm Transformer-DLCL further improves the feature extraction abil-
ity. The encoder receives the input sequence x = {x0, x1...xn},and maps it to a
vector z = {z0, z1...zn} of the same length,which contains the source sentence
feature. The decoder inputs the translation sequence y = {y0, y1...ym} and gen-
erates a top-level representation containing sufficient semantic and grammatical
information.

Due to the existence of the decoder mask, the unidirectional model can not
observe the future information. In order to make the vector extracted by the
model contain sufficient context knowledge, we use left-to-right and right-to-
left translation models respectively, and extract the feature vectors l2r and r2l
independently. We get the final quality vector by concatenating way (q = [l2r :
r2l]).
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3.1.2 Bi-GRU Estimator
RNN is widely used to solve sequence generation problem. And we use a Bi-
GRU as our estimator. The Bi-GRU consists of two parts, forward and back-
ward. It reads quality vector q, calculate the forward hidden states (

→
h1, · · · ,

→
hT )

and backward hidden states (
←
h1, · · · ,

←
hT ) respectively, where T is the sequence

length. We get the representation of each word by concatenating the forward hid-

den state
→
hj and the backward one

←
hj , hj = [

→
hj ,

←
hj ]. We convert the word-level

tasks into classification problems, and Eqs. 2 and 3 show our goals on the word
and gap tasks, respectively. Sentence-level tasks are converted to a regression
problem, refer to Eq. 4.

arg min
T∑

j=1

cross entropy (yj ,W1hj) (2)

arg min
T∑

j=0

cross entropy (yj ,W2Conv(hj ,hj+1)) (3)

arg min ‖h − sigmoid (W3hT )‖22 (4)

where h is the real HTER score, yj is real labels, W1, W2 and W3 is trainable
parameter matrices, and T is the length of the target-side. cross entropy is
the cross entropy loss (with logits). Conv is a convolution operation that fuses
information from adjacent locations for predicting gap tags.

We dynamically control the number of layers of the Bi-GRU according to
different data volumes. At the same time, we also try the self-attention layer
and self-attention layer + Bi-GRU architectures as estimator, finding there is
no better performance. But we use them as candidate models for ensemble to
enhance diversity.

3.1.3 BPE Matrix
BPE is introduced to reduce the number of unknown tokens in many NLP tasks.
And we also apply it to our model. But there is a problem in word-level task. The
length Lb of quality vector extracted by predictor is different from the number
Lw of tokens in sentence. We follow Fan et al. [5] to solve this problem by a
Lw ×Lb sparse matrix, which average the features of subwords corresponding to
one word token, and reduce the length of quality vector from Lb to Lw.

3.2 Data Construction

3.2.1 Bilingual Data for Pre-training
We use WMT 2019 ZH-EN parallel data to pre-train our predictors, which con-
sists of CWMT, wikititles-v1, NewsCommentary-v14 and UN corpus. After filter-
ing, about 11M sentences pair is selected. Furthermore, we use 6M monolingual
data from WMT 2019 to construct pseudo data by back-translation [3] in both
directions. All parallel data is segmented by NiuTrans [18] word segmentation
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toolkit. After the preprocessing, we train BPE [12] models with 32, 000 merge
operations for both sides respectively.

3.2.2 Quality Estimation Data
The dataset for QE task consists of three parts: source sentences, machine trans-
lations and QEscore (HTER score for sentence level or OK/BAD labels for word-
level). The amount of data provided by CCMT 2019 QE task is no more than
15K. We think it isn’t enough to train a strong model, so we construct 50K
pseudo data using parallel data from WMT 2019. To obtain high quality bilin-
gual data, we use machine translation model and language model to score par-
allel data. First, we use the translation model to score the real bilingual data
by forced decoding. Secondly, we use the language model to score the source
and target sentences, and combine the three scores to sort the real data, select
the data with the higher score. After obtaining high-quality bilingual data, we
decode them in a variety of ways to obtain machine-translated data, including
beam search [11], sampling-topk. We regard the target sentences of bilingual
data as personal edited data, and generate the sentence-level HTER score or the
word-level labels using TER tool [14].

In addition, we find the ratio of OK/BAD labels in word gap subtask is about
20:1, which means the BAD labels between words corresponding to missing trans-
lations is too few and it’s hard to predict BAD label for trained model. So we
randomly drop some word in our machine translation results to improve the
number of BAD label between words.

3.3 Model Ensemble

In MT systems, ensemble decoding method is wildly used to boost translation
quality via integrating the predictions of several single models at each decode
step. We try a similar approach in QE task. However, we find that ensemble
method is expensive when it comes to more model fusion. It can’t try to combine
more models in a limited time, so we adopt an external fusion method:

• We select twelve high-scoring single models using different model architectures
or datasets, and decode 12 results as candidates.

• Calculate all combinations of twelve models externally.
• For different combinations, word-level tasks, we use the voting method to

ensemble, and the sentence-level we average HTER score.
• Pick the best performing model combination.

In this way, we quickly try out all the combinations of candidates in a short
time, and it is easier to pick the optimal combination.

4 Experiments and Results

We implement our QE models based on Fairseq [10]. Transformer-DLCL models
are pre-trained on eight 1080Ti GPUs. We use the Adam optimizer with β1 =
0.97, β2 = 0.997 and ε = 10−6. The training data is reshuffled after finishing
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Table 2. Word-level word result on CCMT QE valid2019. We use a jointly l2r and r2l
Transformer-DLCL as a predictor and Bi-GRU as an estimator to jointly train with
different datasets.

Construction method F1-OK F1-BAD F1-multi

– 0.8353 0.5673 0.4739

High quality bilingual 0.8642 0.5897 0.5096

Bilingual-beam 0.8735 0.5747 0.502

Bilingual-sampling-topk 0.8691 0.5795 0.5036

Bilingual-round-trip 0.8632 0.5833 0.5035

each training epoch, and we batch sentence pairs by target-side sentences lengths,
with 8192 tokens per GPU. Large learning rate and warmup-steps are chosen
for faster convergence. We set max learning rate as 0.002 and warmup-steps as
8000. For the jointly training predictor-estimator architecture, we train it on one
1080Ti GPU, 1024 tokens per step. And we set max learning rate as 0.0005 and
warmup-steps as 200.

Moreover, due to the lack of BAD labels in the word-level tasks are relatively
small, the model tends to predict all labels as OK in the inference stage. So we
introduce the bad-enhanced parameter, strengthen the weight of the BAD label
when calculating the loss, thereby improving the ability of the model to predict
BAD. Next, we will show details in the following subsections.

4.1 QE Pseudo Data

We compare different method on the task of ZH2EN word-level. The following
will introduce the method we use.

• Use high-quality bilingual data such as newtest2016, newtest2017, and use the
target as the result of personal editing, and decode the source to construct
dataset by sampling-topk.

• The data selected from the bilingual data, and the pseudo datasets decoded
by the beam search [11] or the Sampling-topk.

• We translate the monolingual data in target side to the source sentences, and
then translate generated sentences back to target side, this method names
round-trip [6]. The detail results are shown in Table 2.

The round-trip and sampling-topk methods are mainly aimed at the unbal-
anced distribution of OK and BAD labels in word-level tasks. We increase the
number of BAD tags by introducing noise during the decoding process. The
Table 2 shows that pseudo-data using high-quality bilingual constructs delivers
the greatest performance improvement in the same architecture. However, there
are no significant differences in the average label distribution in the results by
introducing noise in a variety of ways. We speculate that the target language in
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Table 3. Word-level result on CCMT QE valid2019. We use GRU as an estimator to
jointly train using officially available data.

Task Precitor F1-OK F1-BAD F1-multi

ZH2EN word-level word Transformer-base 0.8932 0.4618 0.4125

Transformer-Big 0.8946 0.4709 0.4212

Deep Transformer-DLCL 0.8477 0.5078 0.4305

ZH2EN word-level gap Transformer-base 0.9511 0.1682 0.1600

Transformer-Big 0.9516 0.1976 0.1881

Deep Transformer-DLCL 0.9552 0.1981 0.1892

EN2ZH word-level word Transformer-base 0.8896 0.4043 0.3597

Transformer-Big 0.8904 0.4176 0.3718

Deep Transformer-DLCL 0.8727 0.4309 0.3761

EN2ZH word-level gap Transformer-base 0.9585 0.1454 0.1394

Transformer-Big 0.9472 0.149 0.1411

Deep Transformer-DLCL 0.9493 0.1533 0.1455

high-quality bilingual data is closer to the personal editing results, and the gen-
erated tags are more consistent with the real data, which makes the model more
accurate. Different datasets are also used to increase data diversity in model
fusion.

4.2 Different Predictor

Our model base on the predictor-estimator architecture. Recent research shows
that the Transformer [16] has powerful information extraction capability. There-
fore, we use the translation model as a predictor to extract the semantic infor-
mation contained in the sentence. At the same time, we empirically believe that
a stronger translation model can bring greater performance improvement to the
QE task. In order to verify the impact of the pre-trained translation model on
the QE model, we conduct multiple experiments with different left-to-right pre-
dictors and the same estimator. The result of word-level is shown on Table 3,
Sentence-level on Table 4.

From the Tables 3 and 4, we find the estimator has better performance with
more powerful translation model.

4.3 Different Estimator

After determining the architecture of the predictor, we try a variety of archi-
tectures as the estimator, including GRU, Bi-GRU and self-attention. We take
the task of the ZH-EN word-level as an example. In Table 5, we show different
prediction results in different architectures.
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Table 4. Sentence-level result on CCMT QE valid2019. We use GRU as an estimator
to jointly train using officially available data.

Task Precitor Person’s

ZH2EN sentence-level Transformer-base 0.5548

Transformer-Big 0.5645

Transformer-DLCL 0.5699

EN2ZH sentence-level Transformer-base 0.4696

Transformer-Big 0.4872

Transformer-DLCL 0.5071

Table 5. ZH2EN word-level word result on CCMT QE valid2019. We use a jointly l2r
and r2l Transformer-DLCL as a predictor.

Estimator F1-OK F1-BAD F1-multi

GRU 0.8731 0.5427 0.4738

Bi-GRU 0.8642 0.5897 0.5096

Self-attention 0.8165 0.5265 0.4299

Self-attention + Bi-GRU 0.8511 0.5519 0.4697

We use real data and high-quality bilingual constructed pseudo-data total
30k as jointly training data. We can observe that Bi-GRU performs significantly
better than other architectures with the same dataset. However, due to the pos-
sibility of data scarcity that makes complex architecture trained inadequately,
we also try to increase the amount of pseudo-data for the self-attention layer and
self-attention + Bi-GRU architecture. We found that increasing the amount of
data lead to the performance improvement of more complex estimator architec-
tures. But it’s still a little worse than the Bi-GRU. We use them as seed models
for system integration to increase diversity.

4.4 Ensemble

We construct multiple sub-models through different model architectures and
data sets, and integrate the results of multiple systems externally on all tasks to
further improve the stability and performance of the system. We use the left-to-
right Transformer-DLCL as the predictor and the GRU as the estimator to build
our baseline system. Table 6 shows the final results of all of our participating
tasks.
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Table 6. All word-level and sentence-level result on CCMT QE valid2019.

System ZH2EN

Word-level word Word-level gap Sentence-level

F1-OKF1-BADF1-multi F1-OKF1-BADF1-multiPerson’s

Baseline 0.8477 0.5078 0.4305 0.9552 0.1981 0.1892 0.5699

+Bi-GRU 0.8673 0.5215 0.4523 0.9556 0.2116 0.2022 0.5802

+r2l predictor 0.8353 0.5673 0.4739 0.9570 0.2583 0.2472 0.5831

+Pseudo data 0.8642 0.5897 0.5096 0.9615 0.2776 0.2669 0.5830

+Ensemble 0.8767 0.6152 0.5393 0.9622 0.2887 0.2778 0.6164

System EN2ZH

Word-level word Word-level gap Sentence-level

F1-OKF1-BADF1-multi F1-OKF1-BADF1-multiPerson’s

Baseline 0.8727 0.4309 0.3761 0.9493 0.1533 0.1455 0.5071

+Bi-GRU 0.8932 0.4692 0.4199 0.9671 0.1669 0.1614 0.5501

+r2l predictor 0.898 0.4695 0.4217 0.9596 0.179 0.1718 0.5537

+Pseudo data 0.8941 0.4762 0.4258 0.9656 0.2083 0.2011 0.5491

+Ensemble 0.8974 0.4886 0.4385 0.9715 0.2283 0.2218 0.5861

5 Conclusion

This paper describes our systems for CCMT19 Quality Estimate tasks including
both word-level and sentence-level.

We adopt predictor-estimator architecture, use Transformer-DLCL as Predic-
tor based on deep network [1], and combine left-to-right and right-to-left models
to further enhance predictor’s feature extraction capabilities. Estimator adopts
the Bi-GRU and uses the quality vector extracted by predictor to predict for
different tasks.

At the same time, we further improve the performance of the translation
model as predictor and the prediction performance of estimator by artificially
constructing pseudo-data. In addition, a external ensemble algorithm is helpful
to search a robust combination of models.
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