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Abstract. Attention mechanism has been proved to be able to improve the
quality of neural machine translation by selectively focusing on partial words of
a source sentence during translation process. Attention mechanism usually
focuses on local attention by using solely the linear index distance of words
while ignores syntax structures of sentences. In this paper, we extend local
attention through syntax distance constraint, and propose an attention mecha-
nism based on a new syntactic branch distance, which simultaneously pays
attention to words with similar linear index distances and syntax-related words.
Based on the English-to-German translation task, experiment results showed
that our model outperforms a recent baseline method with an improvement of
1.61 BLEU points, demonstrating the effectiveness of the proposed model.

Keywords: Neural machine translation � Attention mechanism � Syntactic
branch distance � Syntax structure

1 Introduction

In the past few years, Neural Machine Translation (NMT) has made rapid progresses,
showing superior performance compared to traditional statistical machine translation
[1–3]. Many researchers have conducted extensive research on neural networks and
attention mechanisms in NMT, which has promoted the rapid development of machine
translation. Attention mechanism is critical to improve the translation performance of
sentences in NMT. The research about attention mechanism has been in full swing.
Bahdanau et al. [4] proposed an attentional NMT model (called global attention), which
dynamically capture every contexts of source sentences in each decoding step,
improving the performance of the NMT. Luong et al. [5] further refined global attention
into local attention, selectively focusing source context of the fixed window size in
each decoding step, and experimentally proved its effectiveness in German-to-English
and English-to-German translation tasks. However, traditional attention mechanism,
such as global attention [4] and local attention [5], only focuses on the sequential
structure of sentences and ignores the dependencies between words. This does not
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conform to the rules of syntactic analysis, which may lead to some common syntax
errors and affect the quality of the sentence translation.

In order to address the above problems, we propose a new attention mechanism
based on the syntactic dependency tree of sentences. It simultaneously focuses on the
sequential structure and syntactic structure of sentences for reducing the noise brought
by grammar trees to some extent. In this paper, we propose a new syntactic branch
distance constraint to extend local attention, predicting the encoder state associated
with source words syntactically relating to target words. According to the dependency
tree of a source sentence, a more effective context vector is calculated according to the
syntactic branch distance for predicting target words. Experiments on the ISWLT2017
EN-DE translation task, our model is compared with a recent baseline method and the
results show that our model improves 1.28 BLEU points over the baseline method.

2 Related Work

2.1 Syntax Representation for Neural Network

Researchers are devoted to integrating syntax information into the NMT system to
improve translation performance. Eriguchi et al. [11] used tree LSTM, proposed by Kai
et al. [6], to encode the HPSG syntax tree of the source sentence from bottom to
top. Chen et al. [14] improved existed encoder with a tree encoder from top to bottom.
Chen et al. [12] further extended through a bidirectional tree encoder to learn both
sequence and tree structured source representations. Wang et al. [20] proposed a tree-
based decoder, simultaneously generates a target-side tree topology and a translation,
using the partially-generated tree to guide the translation process. Although these
methods have achieved good results, the tree network used by the encoder and decoder
makes training and decoding somehow slow and is not suitable for large-scale MT
tasks.

There are other works that use syntax information, including grammar concepts,
syntax tree structures and dependency units, and syntax trees for attention. Sennrich
and Haddow [7] used part-of-speech tags, lemmatized forms and dependency labels to
enhance the information carried by each word. In order to better integrate NMT with
syntax trees, Eriguchi et al. [8] combined recursive neural network grammar with
attention-based NMT system, encouraging models to combine grammatical prior
knowledge for translation during training. Li et al. [9] linearized the constituent trees
and encoded them with RNN. Wu et al. [10] proposed a sequence-to-dependency NMT
model, using two RNNs to jointly generate target translations, and constructing their
syntax dependency tree as context to improve word prediction. In order to better
integrate NMT with dependency syntax trees, Wu et al. [13] further utilized the global
knowledge from the source dependency tree to enrich each encoder state from child to
head and head to child. Chen et al. [14] used local dependency unit to extend each
source word to capture the long-distance dependency constraints of the source sentence
and achieve a good translation of long sentences in NMT. Ahmed et al. [21] design a
generalized attention framework for both dependency and constituency trees by
encoding variants of decomposable attention inside a Tree-LSTM cell. These methods
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used grammar tags to extend source words and provide richer contextual information
for word prediction. Due to the linear structure of the RNN, these methods were trained
efficiently.

In this paper, we propose a new syntactic branch distance constraint to extend local
attention and capture the encoder state associated with the source word syntactically
relating to the target word. Rather than improving sequence encoder and decoder with a
tree network direclty, we focus on the attention mechanism in the aspect of the syn-
tactic branch distance of syntax tree without making any modifications to specific
source representation on the basis of linearized representation using the Tree-LSTM
coding syntax tree.

2.2 Attention Mechanism and Local Attention

Neural Machine Translation (NMT) commonly adopts the Encoder-Decoder [1]
framework. NMT uses Recurrent Neural Network (RNN) architecture, such as Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) to obtain long-term
dependencies. For a given word embedding sequence X = x1, x2, ���, x|X|, encoder
typically uses a bidirectional RNN to model the source word sequence and compute a
hidden states representation hi. That is, a forward encoder and a backward encoder
encode sequence X to obtain the hidden sequences of the source sentence H = h1, h2,
���, h|X|,

~hi ¼ f1 ~hi�1; xi
� �

ð1Þ

h
 
i ¼ f2 h

 
i�1; xi

� �
ð2Þ

hi ¼ ~hi; h
 
i

h i
ð3Þ

where f1 and f2 are either GRU(•) or LSTM (•).
The decoder generally adopts conditional RNN with attention mechanism, and

predicts the target sentence Y = y1, y2, ���, y|Y| literally according to the conditional
probability P(yi). The prediction of word in current time step is calculated by the hidden
state vector st, the last generated word yt−1, and the context vector ct, using Eq. (5) and
(6), where g is a nonlinear function ans f3 are either GRU(•) or LSTM (•).

And the loss function of NMT model is defined as Eq. (4):

lossword ¼
XY

t¼1 � log pðytjy\t; xÞ ð4Þ

p ytjy\t; xð Þ ¼ g yt�1; st; ctð Þ ð5Þ

St ¼ f3 st�1; yt�1;Ctð Þ ð6Þ

The context vector ct depends on a sequence of source annotations H = h1, h2, ���,
h|X|. Each annotation hi contains information about the whole source word sequence

Neural Machine Translation with Attention 49



with a strong focus on the parts surrounding the i-th word of the source word sequence.
Here we explain below how the context vector ct are computed in local attention in
detail.

Compared with global attention focusing on all context information, local attention
selectively focuses on a small context window, which can effectively reduce the
computational cost. At the decoding time step i, alignment position pi is generated for
each target word of the batch of sentences using Eq. (7),

pi ¼ S � sigmoid vT tanhðWphiÞ
� �

; pi 2 0; S½ � ð7Þ

where S is the length of the source sentence, hi is the decoder hidden state, and vT and
Wp are model parameters. The context vector ct is then calculated as the weighted sum
of the encoder states within the window [pi – D, pi + D], where D is the empirical
value typically set to 10. Therefore, the weight alij of each source annotation hi is as
follows.

alij ¼ aij exp � s�pið Þ2
2r2

� �
; s 2 pi � D; piþD½ �

0; s 62 pi � D; piþD½ �

(
ð8Þ

The standard deviation r of the Gaussian distribution is empirically set to D/2. In
addition, local attention is paid to the source annotations in the window [pi – D, pi + D]
to calculate the local context vector at current time step. The context vector ct is then
computed as a weighted sum of the annotations hi:

cli ¼
X

j2 pi�D;pi þD½ � a
l
ijhi ð9Þ

It can be seen that the farther away from the center pi, the lower the weight alij
corresponding to source annotation at the position.

3 An Attention Mechanism Based on Syntactic Branch
Distance

3.1 Syntactic Branch Distance

Dependency parsing is one of main methods for syntactic analysis. Its basic task is to
determine the syntactic structure of a sentence or the interdependence of words in a
sentence. Syntactic parsing determines whether the composition of an input sentence
conforms to a given grammar, and constructs a syntax tree to represent the structure of
the sentence and the relationship between the syntactic components of each level, that
is, which words in a sentence constitute a phrase. The dependency syntax tree is a
representation of dependency syntax analysis. The dominators and subordinates of
dependent syntax tags in the dependent syntax tree are described as parent nodes and
child nodes respectively. It expresses formal grammatical rules and constraints as
points connected by trees and the information they carry, so that the dependent
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syntactic analysis of sentences is transformed into a task of finding a spatially con-
nected structure or a set of dependent pairs of the sentence. In other words, it can well
represent a sentence from the perspective of syntactic analysis, and resolve the internal
relations among words in the sentence for acquiring sufficient information from the
dependency tree. The syntax distance, the connecting distance of any two words in the
tree, can be used to describe the close syntax relationship between words. We use
Stanford parser1, which is a Java open source parser based on probabilistic syntax
analysis, to acquire dependency pairs between words of a given sentence and generate a
dependent syntax tree accordingly.

Generally, the context vector of current time step is obtained by respectively
aligning all the encoder states with alignment weights, and the decoder predicts the
target word at the next time step by using the context vector. In the traditional attention
mechanism, the alignment weight is given by the linear index distance of words in a
source sentence. That is to say, in the sequential structure of a sentence, the smaller the
index distance between a word and the current source word to be translated, the greater
the alignment weight of the word, the greater the contribution it makes to target word
prediction when the source word is translated. However, the use of linear index dis-
tance is not rigorous, since the linear distance only considers the order in which the
words appear in the sentence but ignores the deep structure of the sentence, disre-
garding the syntactic structure of the sentence and the inter-word dependencies,
including composition, context, etc. For example, the three words in Fig. 1, “gave”,
“went” and “fly” are in the same branch of a dependency tree, and the syntax distances
between them are small, <“gave”, “went”, dsyntax = 1>, <“gave”, “fly”, dsyntax = 2>,
<“went”, “fly”, dsyntax = 1>. These values indicate that the words have a close syntax
relationship, but it is obvious that the linear index distance between them is large,
<“gave”, “went”, dlinear = 5>, <“gave”, “fly”, dlinear = 12>, <“went”, “fly “, dlin-
ear = 7>. Meanwhile, the traditional attention mechanism is inclined to ignore these
syntax connections, resulting in translation of the linearly adjacent but less syntax
related words are set with greater alignment weights, while words that are more syntax-
related and farther away in linear distance are set with less alignment weight, which
cause some syntax errors during translation.

To address the mentioned problems, this paper introduces the prior knowledge of
syntax tree based on the local attention, and make modifications to the commonly used
syntax distances to proposed a new syntactic branch distance, for obtaining more
accurate source sentence information when generating target words. Given a source
sentence X with dependency tree T, each node represents a source word xi. For source
word as root node, since it has strong syntax relationship with all the words in the
sentence, we compute the path length of all remaining words reaching the root word
through tree T to obtain syntactic branch distance sequence of source word. That is, this
calculates the effective context vector to translate the root node based on the encoder
state of all source words and the weighted average of the alignment weights. For source

1 https://nlp.stanford.edu/nlp.
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word in leaf node and internal node positions, according to whether the remaining
words and current word are in the same branch on the tree T, two situtations are
considered. For words that are in the same branch, we define syntactic branch distance
of the source word as the level deviations between other words and the source word in
syntax tree. For words that are not in the same branch, we set the syntactic branch
distance value to the depth of dependency tree of the sentence. The significance of this
setting is firstly to reduce the influence of these words on different orders and inter-
ference noise to the translated source words. Second, during the translation process,
since there still convey many useful information in different branch words, it can be
combined with the translated source words to form some phrases, so the empirical
value is necessarily set to the depth of syntax tree. Therefore, unwanted noise words
can be removed to some extent to ensure proper attention to the word on different
branches. Generally, the words on the same branch of a dependency tree are highly
correlated with their currently translated source words, thus corresponding alignment
weights are large, while the words on other branches have relatively low alignment
weights.

As shown in Fig. 2, the syntactic branch distance between the words “affect” and
“people” is 2 for the source word is a root node. For a source word is in leaf node or
internal node, the syntactic branch distance between the words “these” and “people” is
1, while syntactic branch distance between “these” and “dangerous” is 4 (depth of the
dependency tree) for they are not in the same branch. Similarly, each word in the tree is
traversed according to the order of source word and the corresponding syntactic branch
distance sequence is computed. Finally, all sequences are combined into a syntactic
branch distance mask matrix of the sentence. The obtained syntactic branch distance
mask matrix is thus shown in Fig. 3.

Fig. 1. An example of words in the same branch of a dependency tree
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3.2 The Attention Mechanism Based on Tuned Branch Syntax Distance

In order to solve the problem of inaccurate focused source context of local attention, we
propose an attention mechanism based on a new syntactic branch distance, aiming at
integrating accurate and effective syntax knowledge with attention mechanism to
improve the accuracy of source-side context information.

We use the seq2seq model framework, which mainly consists of a encoder model
by a bidirectional RNN, a decoder model by a conditional RNN and a generator which

Fig. 2. The dependency syntax tree T and syntactic branch distance calculation for a given
stentence (yellow dotted line denotes root nodes, while red and green lines denote the same
branch and different branch in leaf and internal nodes, respectively) (Color figure online)

Fig. 3. The syntactic branch distance mask matrix M of the sentence (Each line represents a
syntactic branch distance mask for a source word, where h is the depth of syntax tree)
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depend on conditional probability. Besides, further improvement work is conducted in
the attention mechanism. First, the alignment source position pi is learned for each
target word by the Eq. (7) at the current decoding time step i. After that, the alignment
weights constrain by syntactic branch distance through source position pi and syntactic
branch distance matrix M are calculated using Eq. (10):

ebsij ¼ eij exp �
M pi½ � j½ �
� �

2

2r2

� �
ð10Þ

Furthermore, the standard deviation r is set to h/2 in our experiments, where h is
empirically set to be the depth of syntax tree of a given sentence and it is similar to the
order of syntax tree level. First of all, the syntactic branch distance value of a word not
in the same branch is set to be depth of dependency tree of the sentence. Secondly, all
syntactic branch distances of words can be obtained from the hierarchy of a syntax tree.
In order to remove unwanted noise words to some extent without losing proper
attention to words on different branches, we set the largest syntactic branch distance to
be the depth number of syntax tree.

l is the length of the sentence, and absnij is normalized considering all the syntactic
branch distances of current source word, i.e., the row of syntactic branch distance mask
corresponding to the current source word.

absnij ¼
exp ebsij

� �
P

k2M pi½ � k½ �\h exp ebsik
� � ; j 2 0; l½ � ð11Þ

Finally, the context vector cbsi is calculated as the weighted sum of the source
annotations of attention by the weights alignment of the attention of single grammar
branch distance.

cbsi ¼
XJ
j

absnij hj ð12Þ

4 Experiments and Results

4.1 Expreiment Settings

To evaluate the effectiveness of our proposed model, the commonly applied standard
dataset IWSLT 20172 is used as the evaluation dataset. 204936 dual-language sen-
tences in English and German is used as training data. The supplementary dev2010
dataset is as the validation data set, and tst2010, tst2011, tst2012, tst2013, tst2014 are
used as testing data sets.

2 https://sites.google.com/site/iwsltevaluation2017/Dialogues-task.
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We use a local attention proposed by Luong et al. [5] as a baseline method. The
local attention is improved on the basis of global attention. The local attention
mechanism selectively focuses on the context of a window in which current source
word is located in, and considers that the context can benefit decoder on the prediction
of next generated word. Experiments prove that it not only reduce the computational
cost, but also outperforms global attention on translation performance in terms of
BLEU score.

The NMT model used in the experiment is implemented based on Nematus codes
by Sennrich et al. [16]. We use the Stanford parser (Chang et al. [17]) to generate
dependency trees for source sentences. Our model limits the source and target
vocabulary size to 50 K and the maximum training sentence length to 50. We randomly
shuffle our training data set in each epoch. The batch size is 40, the word embedding
dimension is 512-dimensions, the hidden layer dimension is 1024-dimensions, and the
decoded beam size is 12. The default dropout technique in Nematus is used on all the
layers (Hinton et al. [18]). Our NMT model choose ADADELTA as the optimizer
(Zeiler et al. [15]), and trains about 400,000 small batches. It runs on a single
GeForce GTX 1080 GPU for 2 days. The case-sensitive 4-gram NIST BLEU score
(Papineni et al. [19]) is used as the evaluation metric.

4.2 The Results

The performance comparison of our model with the baseline is conducted and the
results is shown as Table 1. From the table, the translation results of attention NMT
based on the syntactic branch distance constraint (as SbdAtt) on the IWSLT 2017
testing dataset is 23.49. Compared with global attention (as GlobalAtt), our proposed
LocalAtt-SBD has increased 1.61 BLEU points on average. This indicates that, com-
pared with global attention focusing on global information, our method acquires more
accurate context information during the translation process, which effectively improves
translation performance.

In terms of the baseline local attention (as LocalAtt), our proposed LocalAtt-BSD
has increased by 2.45 BLEU points on average, demonstrating that our method can
learn more source dependency information to effectively improve the translation per-
formance of NMT. The proposed syntactic branch distance attention can capture more
translation information than linear distance attention to improve word prediction.

Table 1. Results on EN-DE translation tasks of different attention mechanism

EN-DE dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015 avg

GlobalAtt 19.87 21.94 24.45 21.93 22.72 20.05 22.22 21.88
LocalAtt 20.31 21.05 22.56 20.69 22.11 19.36 21.22 21.04
SbdAtt 22.67 24.00 25.29 22.54 25.02 21.42 23.55 23.49
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5 Conclusion

This paper tried to integrate the prior knowledge of syntactic analysis with traditional
attention mechanism to improve translation performance. An attention mechanism
based on tuned branch syntax was proposed. Syntax-directed selective attention on the
word associated with source word, including the cases of the same branch and different
branch with the source word, was proposed for the predication of target words.
Experiment results on the IWSLT2017 showed that the proposed model outperformed
the local attention baseline method. In the future, we will extend the experiment to
other languages (such as Chinese-English) to test the scalability of the model and the
applicability on long sentences.

Acknowledgements. This work was supported by National Natural Science Foundation of
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