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Preface

The China Conference on Machine Translation (CCMT), organized by the Chinese
Information Processing Society of China (CIPSC), brings together researchers and
practitioners in the area of machine translation, providing a forum for those in academia
and industry to exchange and promote the latest development in methodologies,
resources, projects, and products, with a special emphasis on the languages in China.

CCMT (previously known as CWMT) events have been successfully held in
Xiamen (2005, 2011), Beijing (2006, 2008, 2010), Harbin (2007), Nanjing (2009),
Xian (2012), Kunming (2013), Macau (2014), Hefei (2015), Urumqi (2016), Dalian
(2017), and Wuyi (2018), featuring a variety of activities including an Open Source
Systems Development (2006), two Strategic Meetings (2010, 2012), and eight Machine
Translation Evaluations (2007, 2008, 2009, 2011, 2013, 2015, 2017, 2018). These
activities have made a substantial impact on advancing the research and development
of machine translation in China. The conference has been a highly productive forum for
the progress of this area and considered a leading and important academic event in the
natural language processing field in China.

This year, the 15th CCMT was held in Nanchang, China, at Jiangxi Normal
University. This conference continued being the most important academic event ded-
icated to advancing machine translation research. It hosted the 9th Machine Translation
Evaluation Campaign, featured two keynote speeches delivered by Lucia Specia
(Imperial College London) and Tao Qin (Microsoft Research Asia), and two tutorials
(CIPSC ATT 18) delivered by Jan Niehues (Maastricht University), Chenhui Chu
(Osaka University), and Rui Wang (NICT). The conference also organized three panel
discussions, bringing attention to the data augmentation techniques in machine trans-
lation, the applications of machine translation techniques, and the research and career
development for Ph.D. students.

A total of 75 submissions (including 21 English papers and 54 Chinese papers) were
received for the conference. All the papers were carefully reviewed in a double-blind
manner and each paper was evaluated by at least three members of an International
Scientific Committee. From the submissions, 10 English papers were accepted. These
papers address all aspects of machine translation, including improvement of translation
models and systems, translation quality estimation, bilingual lexicon induction,
multi-model translation, etc. Apart from the scientific papers, the official report of the
machine translation evaluation campaign is also included in the proceedings.

We would like to express our thanks to every person and institution involved in the
organization of this conference, especially the members of the Program Committee, the
machine translation evaluation campaign, the invited speakers, the local organization
team, our generous sponsors, and the organizations that supported and promoted the
event. Last but not least, we greatly appreciate Springer for publishing the proceedings.

September 2019 Shujian Huang
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Improving Bilingual Lexicon Induction
on Distant Language Pairs

Wenhao Zhu1, Zhihao Zhou1, Shujian Huang1(B), Zhenya Lin2,
Xiangsheng Zhou2, Yaofeng Tu2, and Jiajun Chen1

1 Nanjing University, Nanjing 210023, China
{whzhu,zhouzh}@smail.nju.edu.cn,

{huangsj,chenjj}@nju.edu.cn
2 ZTE Corporation, Shenzhen, China

{lin.zhenya,zhou.xiangsheng,tu.yaofeng}@zte.com.cn

Abstract. Aligning the representation spaces of two languages to
induce a bilingual lexicon achieves attractive results on European lan-
guage pairs. Unfortunately, current solutions perform terribly on distant
language pairs. To address this problem, we analyze existing models for
the lexicon induction task of distant language pairs, such as English-
Chinese. We propose an framework for the task with improved prepro-
cessing, mapping and inference accordingly. Experimental results show
that our proposed approach enhances the accuracy of bilingual lexicons
substantially on English-Chinese, as well as some other distant language
pairs.

Keywords: Natural language processing · Machine translation ·
Bilingual lexicon induction

1 Introduction

The Lexical translation table (or bilingual lexicon) is an essential part of machine
translation (MT). Traditionally, dictionaries for bilingual lexicons are com-
posed manually, which involves massive expert knowledge and expense. Since
the research showing that the representation spaces of two languages can be
aligned through a simple linear mapping [9], bilingual lexicon induction (BLI)
has achieved great success on English-Italy, English-German language pairs and
is drawing increasingly attention recently [7,13,14].

However, existing BLI models perform much worse on distant language pairs
[11]. Intuitively, larger distance between two languages does bring more difficulty
in aligning the two representation spaces. But previous researches do not pay
enough attention on why the accuracy of these methods degrades substantially
on distant language pairs.

In this paper, we make deep analysis of typical BLI models, which consist
of three steps: preprocessing, mapping and inference [1,3,12]. We discuss the
obstacles for applying current model directly to distant language pairs, and try
c© Springer Nature Singapore Pte Ltd. 2019
S. Huang and K. Knight (Eds.): CCMT 2019, CCIS 1104, pp. 1–10, 2019.
https://doi.org/10.1007/978-981-15-1721-1_1
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to improve the induction performance on distant language pairs by improving
each step correspondingly.

More specifically, in the preprocessing step, we verify that “center” [1] is
the key operation which can bring great gain for performance; in mapping, we
propose to use multiple local mappings instead of a single one; in inference, we
propose an approximated searching algorithm to determine the hyper param-
eter K in the CSLS method [8], so that “topic words” could be successfully
distinguished from “hub words”.

To demonstrate effectiveness of our method, quantitative experiments are
conducted on English-Chinese fasttext dataset [6]. Experimental results show
that our methods could tackle observed weaknesses and the improved framework
outperforms existing methods. Furthermore, we demonstrate that our approach
can be applied to other distant language pairs as well.

2 Background

Given the word embedding of two languages as input, the task of bilingual lexicon
induction is to align the two embedding spaces and retrieve word pairs (bilingual
lexicons) as output for downstreaming tasks. There are two popular branches in
researches of BLI. One is the supervised methods, which require aligned word
pairs as a seed dictionary [1,3,12]. Another branch of research is unsupervised
methods, such as self-learning [2,4] and GAN-based models [5,8,15]. Because
unsupervised methods are extremely unstable on distant language pairs, we
mainly discuss the supervised methods in this paper.

For convenience, we will use the following definitions throughout this paper.
We denote source word embedding as X̂ ∈ R

n×d and target word embedding as
Ŷ ∈ R

m×d, each row of which represents a single word vector. We use X ∈ R
t×d

and Y ∈ R
t×d to denote the word vectors of aligned word pairs. So the ith rows

of X and Y represent words that are translation of each other.
Following Artetxe et al. [3], typical supervised BLI models consist of three

main steps: preprocessing, mapping and inference, where the embedding of both
languages are transformed; the mapping function is learned; and finally, the
bilingual lexicon is inferred. We will briefly introduce these steps in the following
subsections.

2.1 Preprocessing

In preprocessing, some simple operations are applied to transform the represen-
tation space before mapping. These operations aim at making embeddings in the
two representation spaces distribute as similarly as possible. Taking source lan-
guage embedding X as an example, Xing et al. [14] proposed the “unit” operation
to ensure word vector Xi∗ is of unit length. Later, Artetxe et al. [1] proposed
the “center” operation, which let the mean of each column vector X∗i to be 0.
Besides, Artetxe et al. [3] presents several other operations, such as “whiten”,
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“re-weight”, “de-whiten”, “reduction”. Please refer to their original paper for
details.

Previous research has demonstrated that all of them contribute to the
improvement of model performance on close-related language pairs. However,
there is no guidance on using these transformations for distant language pairs.

2.2 Mapping

After getting two transformed representation spaces, a mapping function could
be learned to build the mapping between the two, so that the embedding vectors
of aligned pairs stay as close as possible.

The function is usually a linear transformation matrix W . Mikolov et al.
[9] treat it as a linear regression problem. The training objective function is to
minimize the sum of squared Euclidean distances:

argmin
W

∑

i

||Xi∗W − Yi∗||2 (1)

More generally, it can be rewritten into the matrix form of Frobenius norm:

argmin
W

||XW − Y ||2F (2)

Xing et al. [14] propose to add an orthogonal constrain (WTW = I) into
the process, which keeps the monolingual invariance after mapping. The neural
mapping with a hidden state [11] has also been tried but it suffers the severe
overfitting problem. Up to now, orthogonal mapping has become a standard way
to project language space.

With the mapping function, e.g. W , source embedding X̂ and target embed-
ding Ŷ are expected to be projected into the same space.

2.3 Inference

For inference, retrieval methods are used to obtain translation pairs from the
mapped space. For a given word x, its induction translation y is

argmin
y

f(xW, y) (3)

where f is the retrieval function.
Mikolov et al. [9] apply nearest neighbour (NN) to get the corresponding

target word, where cos(·, ·) is used as measure. Dinu et al. [7] find that NN
approach will suffer severe “hubness problem”. More specifically, hub is some
meaningless target words which appear as the nearest neighbour of many source
words. As a result, methods such as invnn [7], invsoftmax [12], and CSLS [8]
are proposed to alleviate this problem.
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Taking speed and accuracy into consideration, CSLS is recognized as the best
way to induce bilingual lexicons. It considers the mean similarity of a source word
x to its target neighbour as:

rT (xW ) =
1
K

∑

y∈NT (xW )

cos(xW, y) (4)

where NT (xW ) is the K nearest target neighbours of source word x; K is a
hyper-parameter, which is usually set as 10. rS(y) can be denoted in the same
way. Thus the whole retrieval function of CSLS is:

CSLS(xW, y) = 2 cos(xW, y) − rT (xW ) − rS(y) (5)

3 Improved Framework

Here we present our contributions to the three steps of the BLI tasks.

3.1 Preprocessing

Current preprocessing operations are weakly explainable. Simply stacking them
can’t ensure the same effect on distant language pairs. We provide an empirical
analysis of the transformations with English-Chinese language pair as an exam-
ple. We find that “unit” and “center” are the most important transformation,
while other transformations do not bring significant improvement. Details of the
empirical analysis are provided in the experiment section (Sect. 4.2).

3.2 Multiple Local Mappings

Previously all research papers use a single matrix W as transformation function
based on the assumption that vector spaces have similar geometric arrangement
[9]. However we doubt it’s not held for distant language pairs and that’s also the
main reason why the model performance degrades under such settings. Experi-
mental results show that a single mapping learns poorly on the training set, let
alone the test set. Similar geometric distribution may only happens locally. A
set of multiple local mappings {Wi}mi=1 rather a single mapping W better model
BLI on distant pairs. The objective function of the local area centered at xc is:

argmin
Wi

∑

xj∈NS(xc)

||xjWi − yj ||2 (6)

Following the objective and method described in Sect. 2.2, multiple local
mappings {Wi}mi=1 can be obtained. Then given a source word x as a test case,
the local mapping whose center is the closest to x will be applied to project it.

The remaining problem is how to produce multiple local mappings. In this
paper, we propose to organize words by their topics. Assume topic word xc are
chosen as the center of a sub seed dictionary, such as “animals” or “politics”,
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which summarizes a bunch of words. Analogous to CSLS, we define NS(xc) as K
nearest source neighbour of xc. For each word pair in the seed dictionary, word
pairs surrounding xc will be put into the sub seed dictionary {(xi, yi), where
xi ∈ NS(xc)}. In this way, multiple sub seed dictionaries centered at different
topic words can be built for training multiple local mappings.

3.3 Approximated Searching

Though CSLS enjoys success in its efficiency and low computation expense, it
still faces some problems in practice. We find that CSLS always confuses “topic
words” with “hub words”, as both have great similarity with neighbour words
which always makes “topic words” punished wrongly as “hub words”.

In Table 1. we list some wrong translation cases. For example, (liquid)
is the so-called topic word. It is always mistaken as “hub words” by CSLS so
that it won’t be chosen as candidate translation.

Table 1. Some representative wrong translation cases in which the CSLS method
punish “topic words” as “hub words” incorrectly.

Original Word Translation Word Ground Truth

(liquid) pressurizing liquid

(secondhand) buyers secondhand

(anyway) surprising anyway

However, we find this phenomena can be changed by setting K value cor-
rectly. This is easy to explain when considering the difference between “topic
words” and “hub words”. When the parameter value is small, both topic word
and hub words have great similarity with neighbour word which makes them
hard to distinguish. As the value raises, it reaches the balance to translate both
type of words correctly. Since the similarity between “topic words” and its neigh-
bour word declines while it is not the case for “hub words”. But if K gets too
large, the accuracy will decline because hub words no more stay closed to its
K-NN words.

In original paper, K is recommended to be set as 10. We observe that induc-
tion accuracy keeps raising if we increase K and then declines when K gets too
large. Therefore we propose an approximated searching algorithm to choose K
in CSLS formula:

– increase K in step of 10 and compute model accuracy on the training set;
– once induction performance declines, we choose K in the last step as optimal

value.
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4 Experiments

4.1 Setup

All of the analysis are conducted on the fasttext dataset [6]. It provides word
vectors of various languages in dimension 300 that are pretrained on Wikipedia
corpus by skip-gram model [10] described in the paper of Bojanowski et al. [6].
The dataset also contains seed dictionary for different language pairs. According
to source word frequency, the top 5000 words and their matched pairs make up
for the training set. The top 5000 to 6500 words and their translation make up
for the test set. The results are evaluated by the final accuracy of the retrieved
bilingual lexicons on the test set.

We present detailed analysis about different steps (Sects. 4.2, 4.3 and 4.4) of
the BLI models, with English-Chinese as an example language. Experiments of
the whole improved framework are then presented, with a comparison to related
studies, across multiple language pairs (Sect. 4.5). Further analysis are provided
in Sect. 4.6.

4.2 Empirical Study of Transformations

We first compare the different transformations used in the preprocessing step.
Following previous work [1], we take an orthogonal matrix as the mapping func-
tion and nearest neighbour as the retrieval method. The results are shown in
Table 2.

Table 2. Accuracy of BLI models that take different combinations of preprocessing on
English-Chinese.

unit center whiten de-whiten re-weight reduction Acc.

27.33%

� 27.13%

� � 42.47%

� � � 42.47%

� � � � 42.47%

� � � � � 42.47%

� � � � � � 42.47%

The results show that “center” brings most performance gain and “unit”
plus “center” is the optimal combination for distant language pairs. Additional
transformation doesn’t help enhancing accuracy but increases computational
burden.

The possible explanation is that, for distant language pairs, two representa-
tion space are far from similar. “unit” and “center” are the simplest but effective
way to normalize the two spaces, which enables the model to learn a high quality
mapping more easily.
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4.3 Employing Multiple Mapping Function

We then study the effect of mapping functions. We doubt whether a single map-
ping is suitable for distant language pairs since the results made by it is not
satisfying. While two distributions differ significantly as a whole, but in the par-
tial aspect the difference is smaller in our observation. Multiple mappings maybe
a better solution, which project vector space part by part. We keep the setting
of using “unit” and “center” in preprocessing and CSLS as the retrieval method.
We manually choose 10 topic words and divided the seed dictionary into 10 sub
groups. Different local mappings are learnt for different groups.

Table 3. Train set accuracy (ACCtr) and test set accuracy (ACCte) of high quality
local mappings on English-Chinese datasets. The last line is the accuracy of baseline.
The next-to-last line is the average accuracy of representative groups.

topic word train dict size ACCtr test dict size ACCte

“animal” 1230 94.74 471 51.15

“culture” 1331 92.95 342 52.34

“education” 1315 92.60 351 51.24

Average 93.43 51.58

Single mapping 45.14 32.47

The results are listed in Table 3. For simplicity, we list the accuracy and
related information of multiple mappings for three representative groups, with
topic words “animal”, “culture”, “education”, respectively. Both the representa-
tive groups and the average results show that the accuracy of using multiple local
mappings is substantially better than a single global map for different groups.
Besides, we find that the baseline model acts poorly on training set which indi-
cates that a single mapping is far from perfect.

However, although multiple local mappings demonstrate their ability by con-
siderable improvements, we do notice that automatically choosing the number
of local mappings and selecting reasonable topic words for each mapping are dif-
ficult. At the current stage, this method is not integrated into our final system.
We leave this as an important future work.

4.4 Inference with Approximated Searching

CSLS usually fails to distinguish “topic words” from “hub words”. But we find
that it can be overcome by tuning K in the formula. To show the effect of
different K, we take two language pairs (English-Chinese and English-German)
as examples, and draw the accuracy curves as K changes in Fig. 1.

As we can see in Fig. 1, the curve keeps raising at the beginning and declines
when K gets too large. To conclude, a medium K suits the case most. Our
proposed approximated searching algorithm can quickly determine a medium K
which ensure it achieves best performance in inference part.
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Fig. 1. Accuracy curve of the model when K in CSLS formula changes. (“EN-ZH” is
English-Chinese, “EN-FI” is English-Finnish)

Table 4. Precision for BLI task compared with previous work. The baseline model
employs an orthogonal mapping as mapping function, CSLS as retrieval metric and no
preprocessing. (“EN” is English, “ZH” is Chinese, “JA” is Japanese, “KO” is Korean,
“FI” is Finnish, “DE” is German)

Distant pairs Closed pairs

EN-ZH EN-JA EN-KO EN-FI EN-DE

Mikolov et al. [9,10] 13.27 14.16 16.11 32.47 61.20

Xing et al. [14] 27.13 2.54 24.64 38.67 68.13

Dinu et al. [7] 27.00 32.49 25.32 43.33 66.33

Artetxe et al. [1] 42.47 45.65 27.03 42.93 70.30

Smith et al. [12] 12.47 1.10 25.05 44.60 71.40

Nakashole et al. [11] 43.27 - - - 68.50

Baseline 32.47 1.71 31.47 47.60 73.37

uc + CSLS 45.33 51.68 31.54 65.76 79.02

Improved 45.80 51.68 32.29 66.08 79.34

4.5 The Improved Framework

Here we present the results of our final framework, which is a combination of
following two improvements: the preprocessing with “unit” and “center” and
CSLS with our searching for K.

We conduct experiments on both distant and close language pairs and present
results in Table 4. The last two line show performance gain brought by improved
preprocessing and inference respectively. It’s obvious that both parts contribute
to the improvement of accuracy. On top of that, results show that the modified
framework outperforms existing models on distant language pairs in particular.
For distant language pairs, improved framework achieved more than ten percent-
age points on average above the baseline expect on English-Korean. For closed
language pairs, the improvement is much smaller.
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4.6 Further Analysis

Though improved lexicon quality has been achieved by our model, we still want to
figure out what prevents the model inducing perfect lexicon. Therefore we contrast
the error bilingual lexicons with the ground truth and find that the bad cases are
mostly due to synonyms. Some representative mistakes are listed below in Table 5.
We find that the BLI model is so smart that it predicts (tongue) as ear’s trans-
lation where they are already very closed. However the model is not smart enough
to close the gap between (tongue) and the true translation (ear).

Table 5. Some representative wrong translation pairs made by our improved frame-
work on English-Chinese where predicted words have great similarity with correct
translations.

Source Word Predicted Word Ground Truth

ear (tongue) (ear)

myanmar (thailand) (myanmar)

honey (Pomelo) (honey)

plural (singular) (plural)

Therefore in future work, we want to close the gap and predict translation
more precisely instead of choosing synonyms as the target translation. If this
problem is alleviated, the performance of BLI model will boost.

5 Conclusion

In this paper, we make deep analysis on the English-Chinese word translation
task where both languages are familiar to us. Based on comparison and analysis,
we propose three methods to address observed problems. We present an improved
framework with proposed methods for bilingual lexicon induction on distant
language pairs. Experimental results demonstrate that our framework behaves
excellently on distant language pairs and outperforms other existing models.
Furthermore, we analyze wrong translations made by our framework and point
out the gap that blocks model to perform perfectly on distant language pairs. In
the future, we want to complete the algorithm of multiple local mappings and
eliminate the effect brought by synonyms to predict translation more precisely.
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Abstract. Translation quality estimation (QE) has been attracting increasing
attention due to its potential to reduce post-editing human effort. However, QE
still suffers heavily from the problem that the quality annotation data remain
expensive and small. In this paper, we focus on overcoming the limitation of QE
data and explore to utilize the high level latent features learned by the pre-
trained language models to reduce the model’s dependence on QE data and
improve QE performance. Specifically, we propose two strategies to integrate
the pre-trained language features into QE model: (1) a mixed integration model,
where the pre-trained language features are fed into the QE mode combined with
other features; and (2) a constrained integration model, where a constraint
mechanism is used to adjust the reporting bias of our first integration model and
enhance the robustness of the QE model. Experimental results on WMT17 QE
task demonstrate the effectiveness of our approaches.

Keywords: Quality estimation � Machine translation � Pre-trained language
model

1 Introduction

Neural Machine Translation (NMT) has become the state-of-the-art approach to
machine translation in the recent years [1, 2]. However, the translation results of NMT
are still not perfect, due to some big challenges such as the interpretability problem and
the low-resource translation issue. To address this problem, human post-edits by
applying insertion, deletion, and replacement operations are required on the translation
outputs. Thus machine translation QE, which estimates the quality of translation output
without reference at various granularity (sentence/word) levels, can play a crucial role
for reducing human effort of post-editing.

Most studies treat QE as a supervised regression/classification task and train the QE
model with quality-annotated parallel corpora, called QE data. Some of the previous
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researches [3–5] employ useful QE features based on feature engineering work to
improve QE. However, these manual features are usually expensively available. To
solve this problem, some neural networks based models have been applied to QE task
[6–9]. Among them, the recent bilingual expert model [9], which uses a bidirectional
transformer [2] to construct their language model, achieves the state-of-the-art per-
formance on most public available datasets of WMT17/WMT18 QE task.

Although the bilingual expert model performs well in extracting high level joint
latent features, it still can’t fully learn enough rich language features due to its single
and solidified model architecture. On the other hand, recently some promising pre-
trained language models have drawn much attention, such as ELMo [10], OpenAI GPT
[11], BERT [12] and XLNet [22]. These models adopting diverse model architecture,
first pretrain neural networks on large-scale unlabeled text corpora to learn rich lan-
guage features, and then finetune the models on downstream tasks.

Inspired by these factors, we view the pre-trained language features as a useful
supplement to low resource QE data and investigate the strategies of making full use of
these features. Specifically, two strategies are proposed in this paper to integrate the
pre-trained language representations into QE model:

(1) Mixed integration model: We use the recent bilingual expert model as our basic
model and directly feed the pre-trained language features that are combined with
the features learned by the bilingual expert model into the quality estimator of the
QE model. That is, the pre-trained language representation is concatenated with
the language representation of the bilingual expert model as input features for QE.

(2) Constrained integration model: We enhance the above integration model with a
constraint mechanism by using bilingual alignment translation knowledge, which
aims to adjust the reporting bias [21] of the pre-trained language features and
improve the robustness of QE model.

The key contributions of this paper could be summarized as follows:

(1) We propose two simple yet effective strategies to integrate the pre-trained lan-
guage features into QE models. Moreover, these strategies are of strong com-
monality and can be seamlessly applied to other QE models.

(2) We conduct extensive experiments on WMT17 sentence level and word level QE
task and verify the effectiveness of the proposed method. Furthermore, we
comprehensively analyze the effect of various types of pre-trained language
models that are used in our models on QE task and conclude the reasons of these
significant improvements.

2 Related Work

Our research is related to three topics, including NMT, pre-trained language repre-
sentation, and QE for machine translation. We discuss these topics in the following.
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2.1 Neural Machine Translation

Most Neural Machine Translation models are based on a sequence-to-sequence atten-
tional framework [1, 2, 13–15], which contains an encoder and a decoder with an
attention mechanism. Among them, transformer [2] is the dominant NMT model, which
still follows the encoder-decoder architecture, but adopts self-attention networks to
attend to the context and avoids recurrence completely to maximally parallelize training.

2.2 Pre-trained Language Model

Pre-trained language representations have shown the effectiveness to improve many
natural language processing tasks [10–12, 16, 22]. Unlike traditional word type
embeddings [17, 18], ELMo adopts left-to-right and right-to-left LSTM to train the
word representations. Different from ELMo, GPT uses a left-to-right architecture, in
which the previous tokens are considered in the self-attention layers of the transformer.
Unlike GPT, BERT adopts a bidirectional transformer, which allows BERT to capture
features from left and right context in all layers. Compared with previous models,
XLNet is essentially order-aware with positional encodings, and it overcomes some
limitations of BERT, such as the pretrain-finetune discrepancy.

2.3 Quality Estimation for Machine Translation

In recent years, there are many works using neural models to estimate the quality of
machine translation. Kreutzer et al. [6] propose to use the representations of sentences
obtained from neural network for word-level QE task. Kim et al. [8] introduce an
entirely neural approach, which is based on a bidirectional and bilingual recurrent
neural network (RNN) language model. Recently, Fan et al. [9] propose an end-to-end
QE framework for automatically evaluating the quality of machine translation. In their
model, a bidirectional transformer is used to build their novel conditional language
model which is called neural bilingual expert model.

In this paper, we propose two strategies of integrating the pre-trained language
features into our QE models, and our models are developed based on the bilingual
expert model [9]. But, different from the bilingual expert model, our work focuses on
exploring how to effectively use various pre-trained language models with different
strategies to improve QE.

3 Method Description

In this section, we will describe our methods in details. We assume that the features
learned by the pre-trained language models are highly related to the QE task and they
can be viewed as an important supplement to the QE data. Under this assumption, we
aim to explore the method of using the pre-trained language representations for QE
task. In this research, we propose two strategies to integrate the pre-trained language
representations into QE models and introduce two types of models: (1) mixed inte-
gration model, and (2) constrained integration model.

Improving Quality Estimation of Machine Translation 13



3.1 Mixed Integration Model

A pre-trained language model can learn rich and high level latent features on large
unsupervised monolingual corpora, thus, a natural idea of exploiting the model comes
out, that is, the features learned by the pre-trained language model can be fed into the
QE model as input features. For our first method, we take advantage of the pre-trained
language model in a simple and straightforward way. Specially, we follow the work [9]
and construct our QE framework on the basis of the bilingual expert model. In our
framework, we choose a pre-trained language model, such as ELMo, GPT, BERT and
XLNet, as the feature extractor of our model respectively.

Figure 1 illustrates our mixed integration model. The recent bilingual expert model
is used as our baseline model and we directly feed the features learned by the pre-
trained language models into the bilingual expert model. Then the feature vector from
pre-trained language model is concatenated with the feature vector of the bilingual
expert model as input for QE.

After that, the mixed features (from both the pre-trained language model and the
bilingual expert language model) will be fed into a bidirectional LSTM quality esti-
mator. For a sentence-level QE task, the hidden layer representation of the last time
step is mapped to a real value within interval [0; 1] via a sigmoid function. For a word-
level QE task, the hidden layer representation at each time step is mapped to a positive
or negative category (‘OK’ or ‘BAD’ tag).

To handle the problem of out-of-vocabulary words, we use WordPiece [19] to
segment the input words of the pre-trained language model, like BERT, and each word
may be split into several sub-words. For example, the word ORENCIA is split into OR
##EN ##CI ##A, where “##” represents the separator symbol. Since the bilingual
expert model does not conduct the segmentation, we add the vectors of several sub-
words segmented from an original word, and the sum is used as the hidden layer
representation of the original word.

Fig. 1. Illustration of the mixed integration model.
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3.2 Constrained Integration Model

Figure 2 illustrates our constrained integration model. The constrained integration
model is a modification of the mixed integration model. That is, when predicting
quality score, a constraint mechanism is added to adjust the final predicting score,
which enhances the robustness of the QE model. Specifically, we extract and introduce
bilingual alignment knowledge between source words and target words, which is
similar to the information about faithfulness in translation, to adjust the bias of the
features learned by the pre-trained language model. The word alignments table, called
as A, are constructed by using the fast-align tool [20] with both source-to-target and
target-to-source directions on bilingual parallel training datasets.

Definition. Given a source sentence X = {x1, x2,���xi,���xN}and its corresponding
translation sentence T = {t1, t2,���tj,���tK}, where hX; Ti 2 C; C is the bilingual parallel
training dataset, T contains K words and X contains N words. We call word ai an
alignment word of word tj, if hai; tji 2 A and ai 2 X: Assume all the words in sentence
T have a total of N alignment words, where N can be statistically analyzed through the
word alignments table, and assume that the number of co-occurrences of tj and its
alignment word ai in the bilingual parallel training set C is M, tj appears W times in
C. Then we define both the sentence level alignment score and word level alignment
score as yAi . The sentence level alignment score between X and T illustrates the

Fig. 2. Illustration of the constrained integration model.
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alignment rate between source sentence and its target sentence in translation, and it can
be represented as:

yAi ¼ AlignSðX; TÞ ¼ N=K ð1Þ

where we limit that AlignSðX; TÞ� 1.
The word level alignment score between word tj and sentence X indicates their

relevance, and it can be calculated by:

yAi ¼ AlignWðtj;XÞ ¼ M=W ð2Þ

For our mixed integration QE model on sentence level QE task, the source sentence
X and its corresponding translation T will first be fed into the feature extractor, then the
learned hidden representations will be transferred to a bidirectional LSTM quality
estimator, after that, a quality score, which can be represented as a real value within
interval [0; 1], can be calculated through a sigmoid function:

yDi ¼ sigmoidðh � Uþ bÞ ð3Þ

where the sigmoid(�) is a standard nonlinear function; b 2 R is a bias term; U represents
a parameter matrix; yDi is the predictive score for translation result T through our mixed
integration model.

However, this predictive value may not be accurate because the features learned by
pre-trained language model may be biased. To address this issue, we introduce the
bilingual alignment score to adjust the bias. Formally, given a source sentence X and its
translation T, the final quality score of T can be calculated as follows:

yi ¼ ksigmoidðh � Uþ bÞþ ð1� kÞAlignSðX; TÞ ð4Þ

where k represents a weight factor that can be automatically trained by the neural
network; yi is the final predictive score of translation result T; h represents a weight
parameter, and it can be calculated by:

h ¼ tanhðs �W þ bÞ ð5Þ

where s indicates the hidden state at the last time step of the LSTM network; W
represents a parameter matrix.

The parameters in these above steps can be optimized through an end-to-end manner
with the following object function:

loss ¼ 1=n
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � ŷiÞ2

q
ð6Þ

where yi is the predicted value of the translation result, and ŷi is the true value.

Notation. For word level QE task, word tj of the translation T will get a predictive
value through Bi-LSTM quality estimator and sigmoid layer, and it will finally be

16 G. Miao et al.



mapped to a positive or negative category (‘OK’ or ‘BAD’ tag). The predictive score of
word tj can be formalized as:

yi ¼ ksigmoidðh � Uþ bÞþ ð1� kÞAlignWðtj;XÞ ð7Þ

where h represents the hidden layer representation of word tj.

4 Experiments

As we have presented above two different strategies to integrate the pre-trained lan-
guage features into QE models, in the present section we report on a series of exper-
iments on WMT17 QE tasks to test the effectiveness of the proposed strategies.

4.1 Datasets and Evaluation Metrics

We first train the bilingual expert model [9] with large-scale parallel corpus released for
the WMT17/WMT18 News Machine Translation Task, which mainly consists of five
data sets, including Europarl v7, Europarl v12, Europarl v13, Common Crawl corpus,
and Rapid corpus of EU press releases. In addition, the data sets that we use for training
the neural bilingual expert model also include parallel corpus released for the
WMT17 QE Task, which contains source sentences and their corresponding post-
edited translations. It can enable the bilingual expert model to learn more domain
knowledge about the QE data. After data cleaning, the final training data contains about
6 M parallel sentence pairs. Then we test the proposed methods on German-to-English
(de-en) and English-to-German (en-de) QE tasks. Specifically, we use 0.23 M sentence
pairs for training, and 2 K sentence pairs for testing on de-en QE task. For en-de QE
task, we use 0.25 M sentence pairs for training, and 2 K sentence pairs for testing.

For pre-trained language models, BERT uses Google’s open source pre-trained
version multi_cased Base1; ELMo uses the pre-trained Original (5.5B) version2 of the
open source framework AllenNLP; GPT uses open source pre-trained model3 of
OpenAI; and XLNet uses open pre-trained model4 of Carnegie Mellon University.

In this paper we refer to the QE evaluation metrics of WMT. At sentence level,
Pearson, MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and
Spearman are used as evaluation metrics. And at word level, we use F1-OK, F1-BAD,
and F1-Multi to evaluate QE quality.

4.2 Baselines

To illustrate the effectiveness of our work, we compare our methods with the baseline
method as follows:

1 https://github.com/google-research/bert.
2 https://allennlp.org/elmo.
3 https://openai.com/blog/better-language-models.
4 https://github.com/zihangdai/xlnet.
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(1) Bi-Expert: this is the current strongest baseline QE model, called bilingual expert
model, which adopts a language model based on a bidirectional transformer and
achieves the state-of-the-art performance in most public available datasets of
WMT 17/WMT18 QE task.

(2) Bi-Expert+ELMo: this is our mixed integration model, where ELMo is combined
with the bilingual expert model as a feature extractor for QE.

(3) Bi-Expert+GPT: this is our mixed integration model, where GPT is combined
with the bilingual expert model as a feature extractor for QE.

(4) Bi-Expert+BERT: this is our mixed integration model, where BERT is combined
with the bilingual expert model as a feature extractor for QE.

(5) Bi-Expert+XLNet: this is our mixed integration model, where XLNet, the current
state-of-the-art pre-trained language model, is combined with the bilingual expert
model to produce features for QE.

(6) Bi-Expert+ELMo*: this is our constrained integration model, where a constraint
mechanism is used to optimize the objective of integrating ELMo into QE model.

(7) Bi-Expert+GPT*: this is our constrained integration model, where a constraint
mechanism is used to optimize the objective of integrating GPT into QE model.

(8) Bi-Expert+BERT*: this is our constrained integration model, where a constraint
mechanism is used to optimize the objective of integrating BERT into QE model.

(9) Bi-Expert+XLNet*: this is our constrained integration model, where a constraint
mechanism is used to optimize the objective of integrating XLNet into QE model.

It should be noted that, for each of the models described above, (2) to (5) are our
mixed integration models, and (6) to (9) are our constrained integration models. The
main difference between them is the way they are integrated and the pre-trained lan-
guage features that are integrated.

4.3 Experimental Settings

The main training settings of bilingual expert model are set as the same as that in the
work [9]. Specifically, the vocabulary size is set to 80000; the optimizer uses
LazyAdam; the word vector size is set to 512; the block number is set to 2. Besides, the
quality estimator adopts a bi-LSTM network, where dropout is set to 0.5, batch size is
set to 64, and the hidden layer size is set to 128. To improve the quality of the parallel
corpora, we filtered the source and target sentence with length � 70 and the length ratio
between 1/3 to 3. We applied byte-pair-encoding (BPE) [23] tokenization to reduce the
number of unknown tokens on WMT18 News Machine Translation data sets.

4.4 Experimental Results

Tables 1 and 2 show the QE performance measured at sentence level and word level. It
can be seen that, every one of the two QE methods we proposed, by using the pre-
trained language features, improves the QE performance over all test sets in compar-
ison to the baseline model-bilingual expert QE model.

Comparison with the Baseline Model. The experimental results in Table 1 indicate that
each of the proposed models, whether our mixed integration model or our constrained
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integration model, can significantly improve the baseline model (bilingual expert
model) on sentence level QE task, taking the evaluation metrics Pearson, MAE, RMSE,
and Spearman into consideration. Specifically, our best mixed integration model Bi-
Expert+XLNet can outperform the baseline model by 0.0154 points in term of Pear-
son’s value, and our best constrained integration model Bi-Expert+XLNet* can
improve the baseline model by 0.0206 points in term of Pearson’s value on WMT17
de-en test data sets of sentence level QE task. Furthermore, at word level, the exper-
imental results in Table 2 can also show the effectiveness of our two proposed methods
on QE task. The above experimental results fully verify that the pre-trained language
features are effective for the QE task.

Comparison of our Two Proposed Methods. Experimental results in Tables 1 and 2
show that our proposed constrained integration method has better performance than the
proposed mixed integration method for QE. Empirically, our best constrained inte-
gration model Bi-Expert+XLNet* can outperform the best mixed integration model

Table 1. Comparison with the current strong baseline model (bilingual expert model, called as
Bi-Expert) on WMT17 de-en test dataset of sentence level QE task. Row 2 to row 5 represent
our mixed integration models, and row 6 to row 9 represent our constrained integration models.

# Models Pearson’s " RMSE # MAE # Spearman "
1 Bi-Expert 0.6608 0.1577 0.1112 0.6355
2 Bi-Expert+ELMo 0.6643 0.1553 0.1110 0.6384
3 Bi-Expert+GPT 0.6661 0.1516 0.1092 0.6372
4 Bi-Expert+BERT 0.6747 0.1558 0.0959 0.6523
5 Bi-Expert+XLNet 0.6762 0.1513 0.0964 0.6545

6 Bi-Expert+ELMo* 0.6657 0.1542 0.1108 0.6376
7 Bi-Expert+GPT* 0.6695 0.1525 0.1041 0.6432
8 Bi-Expert+BERT* 0.6749 0.1503 0.0937 0.6539
9 Bi-Expert+XLNet* 0.6814 0.1524 0.0923 0.6558

Table 2. Comparison with the current strong baseline model (bilingual expert model, called as
Bi-Expert) on WMT17 de-en test dataset of word level QE task.

# Models F1-BAD F1-OK F1-Multi

1 Bi-Expert 0.4586 0.9363 0.4294
2 Bi-Expert+ELMo 0.5185 0.9438 0.4893
3 Bi-Expert+GPT 0.5179 0.9389 0.4888
4 Bi-Expert+BERT 0.5239 0.9405 0.4927
5 Bi-Expert+XLNet 0.5286 0.9471 0.5006

6 Bi-Expert+ELMo* 0.5194 0.9469 0.4918
7 Bi-Expert+GPT* 0.5166 0.9395 0.4853
8 Bi-Expert+BERT* 0.5270 0.9447 0.4979
9 Bi-Expert+XLNet* 0.5352 0.9526 0.5098
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Bi-Expert+XLNet by about 0.0052 points in term of Pearson’s value in Table 1. This
phenomenon illustrates that our proposed constrained integration method can effec-
tively optimize and denoise the pre-trained language features.

4.5 Analysis

The Effect of Pre-trained Language Models on QE Task. From the experimental
results, we find out that XLNet and BERT improve the performance of QE more than
other models do. We think it is due to the following three points: (1) The pre-trained
language representations can contribute to the improvement of QE to some extent;
(2) The ability of feature extraction of transformer is stronger than that of LSTM;
(3) Bidirectional language model can capture more features than unidirectional lan-
guage model can do.

Why Pre-trained Language Models Can Work? Experimental results on WMT17
sentence level and word level QE tasks show that the pre-trained high level latent
language features learned by the pre-trained language model can contribute to the
improvement of QE. However, this improvement is likely due to the use of a strong
baseline system - bilingual expert model, since all of the proposed models are devel-
oped based on the bilingual expert model. To verify this assumption is not valid, we
construct a simple additional QE model, which only consists of a pre-trained language
mode, a LSTM and a Multilayer Perceptron (MLP) neural network, without using the
bilingual expert model. The high-level joint features learned by a pre-trained language
model are fed into a LSTM and a Multilayer Perceptron (MLP) neural network, and
end up with a sigmoid function for estimating quality scores/categories. The experi-
mental results on WMT17 en-de sentence level QE task are shown in Table 3. It is
interesting that we find out the performance achieved by the two additional QE models
(row 2 and row 3) is close to the performance achieved by the strong baseline model.
We believe the reason for the improvement of QE is due to the strong feature learning
ability of the pre-trained model itself. The pre-trained language model has learned a
wealth of lexical, syntactic and semantic knowledge based on large corpus, so it can
effectively alleviate the problem of feature sparseness of QE task.

Table 3. Results of sentence level QE on WMT17 en-de test dataset. Row 1 represents the
current strong QE baseline model (bilingual expert model). Both row 2 and row 3 denote our
proposed simple QE models that use BERT and XLNet as feature extractor respectively. Unlike
our previous QE models, the pre-trained language features are the only source of features for QE
in this model.

# Models Pearson’s " RMSE # MAE # Spearman "
1 Bi-Expert 0.6842 0.1453 0.1027 0.7089
2 BERT+LSTM+MLP 0.6745 0.1539 0.1046 0.7102
3 XLNet+LSTM+MLP 0.6857 0.1486 0.1031 0.7054
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5 Conclusion and Future Work

In this paper, we attempt to explore how to effectively improve QE with pre-trained
language features learned by the pre-trained language models, and propose two
strategies to integrate the pre-trained language features into QE models: (1) a mixed
integration model, and (2) a constrained integration model. The first model uses a
mixed method to treat the pre-trained language model as the feature extractor for QE
model, and the second model is enhanced based on our first mixed integration model,
which adjusts and optimizes the first model by using bilingual alignment knowledge.
Experimental results on WMT17 QE task show that our proposed strategies can sig-
nificantly improve the translation QE quality. In particular, our strategies are of strong
commonality and can be seamlessly applied to other QE models.

In the future, we will explore how to apply transfer learning methods to QE task.
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Abstract. Translation quality estimation aims at evaluating the machine
translation output without references. State-of-the-art quality estimation methods
based on neural networks have certain capability of implicitly learning the
syntactic information from sentence-aligned parallel corpus. However, they still
fail to capture the deep structural syntactic details of the sentences. This paper
proposes a method that explicitly incorporates source syntax in neural quality
estimation. Specifically, the parse trees of source sentences are linearized, and
the sequence labels are combined with the source sequence through hierarchical
encoding to obtain a more complete and deeper source encoding vector. The
hidden relationships between the source syntactic structure and the translation
quality are modeled to discover the syntactic errors in the translation. Experi-
mental results on WMT17 quality estimation datasets show that the sentence-
level Pearson correlation score and the word-level F1–mult score can both be
improved by the syntactic knowledge.

Keywords: Quality estimation � Neural networks � Syntactic representation �
Parse tree � Hierarchical encoding

1 Introduction

Recent years have seen great progress in the machine translation technology, especially
with the rapid development of neural machine translation. However, the outputs of
machine translation (MT) systems are still far from being error-free, and it is necessary
to predict the post-editing effort needed for fixing the translations. One way to evaluate
the machine translation results is comparing them with the reference translations as in
the BLEU score. But the manually generated references are difficult to obtain in most
cases. Therefore, the quality estimation (QE) technology aiming at estimating the
quality of MT output without references attracted more and more interest.

The early studies of translation quality estimation are mostly based on feature
engineering. The extracted features include baseline features such as n-grams, lengths
and part-of-speech (POS), and translation quality features measuring fluency, adequacy
and complexity [1]. To reduce the amount of features and the overlapping among them,
feature selection methods such as Gaussian processes [2], heuristic methods [3] and
partial least squares regression [4] are applied. Then machine learning models are
trained to estimate the translation quality. Commonly used machine learning algorithms
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include support vector regression [1], conditional random fields [4] and so on. The
features employed by these methods are mostly shallow bilingual features.

With the development of deep learning technology in recent years, researchers
began to extract deep features through neural networks [5–9]. Compared to traditional
QE methods, neural quality estimation can discover deep bilingual semantic relation-
ships and achieved advanced performance [10–13].

However, current neural QE methods treat a sentence as a sequence of words (or
embeddings in the semantic space) and fail to capture the inherent syntactic structure of
the sentence. In this paper we show that source syntax can be explicitly represented and
incorporated in the neural QE framework to provide further improvements. We lin-
earize the constituency tree or dependency tree of the source sentence, and combine the
sequence labels with the source sequence through hierarchical encoding. In this way,
the bilingual syntactic mappings are learned and the relationship between the source
syntax and the target quality is built. The incorporation of syntactic knowledge can also
alleviate the difficulty in estimating the translation quality of complex sentences.
Experimental results on WMT17 QE datasets show that compared to current state of
the art, the sentence-level Pearson correlation score increased by 1.92% and the word-
level F1–mult score increased by 2.12%.

2 Related Work

Some traditional QE methods attempted to apply syntactic features to the QE task.
Hardmeier et al. [14] use tree kernel features extracted from bilingual parse trees to
predict the post-editing costs of machine translated sentences. Experiments show that
tree kernel features, whether used alone or in conjunction with other features, are
beneficial to predicting post-editing costs. Rubino et al. [15] applied the syntactic
features extracted from the output of different parsers to the QE task, which further
proved the important role of syntactic features in QE. Specia et al. [16] combined the
POS feature and the syntactic features based on dependency structure grammar and
phrase structure grammar for QE task. Kaljah et al. [17] extracted 489 feature pairs
from the constituency tree and dependency tree of the source and target languages.
Finally 144 features are selected and combined with the baseline features and the tree
kernel features for the QE task. Kozlova et al. [18] proposed numeric syntactic features
including the width of bilingual parse tree, the depth of the tree, the proportion of
internal nodes and the number of relative clauses and attributive clauses in the source
language. Martins et al. [19] used syntactic features to detect the syntactic errors in
machine translations in their LINEARQE sequence model. The adopted features
include dependencies, head words, sibling nodes and parent nodes.

The above methods are based on traditional machine learning algorithms and have
difficulty in combining the extracted syntactic features with deep semantic information,
which makes the representation of syntactic features inadequate. The deep learning
algorithms have strong capability of automatically learning feature representations,
which can provide a flexible strategy for adding linguistic knowledge. Therefore,
researchers tried to explicitly incorporate syntactic features into neural network models
in many tasks. In the domain of neural machine translation, researchers incorporated
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syntactic information in the translation process [20–23] to solve the problem that RNN-
based encoder-decoder architecture requires some supervision to effectively learn
syntactic information [24–26]. In the domain of neural QE, Hokamp et al. [27] took
advantage of the neural machine translation model to apply explicit features such as
dependency labels and POS tags to word-level QE and achieved good performance.
This method combines the post-editing task with the QE task and relies on the post-
editing results to optimize the parameters in the process of model training. In our
method, the post-editing results are not necessary, and we show the positive role of
syntactic knowledge on both sentence-level and word-level QE and in different stages
of QE. We also provided empirical analysis to better understand the contribution of
syntax with different task granularities, different grammar types and different sentence
lengths.

3 Syntactic Representation

Generally, syntactic structure can be represented or labelled by two types of grammar.
One is the phrase structure grammar (PSG), and the other is the dependency structure
grammar (DSG). In this paper we propose representation strategies for both types.

3.1 Representation for Phrase Structure Grammar

The phrase structure of a sentence includes all the constituents in the sentence and the
hierarchical syntactic relationship among them. It can be expressed in the form of a
constituency tree as shown in Fig. 1.

Li et al. [23] proposed mixed RNN encoding in neural machine translation. The
constituency tree is linearly parsed into a sequence whose length is about 3 times that
of the source sequence through depth-first traversal. In the QE task, in order to capture
the intrinsic structure of the source sentence and build the relationship between each

Fig. 1. Example of the constituency tree.
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word and the constituents of its context while reducing the impact of sequence length
on RNN, we linearize the constituency tree into phrase label sequences to represent the
phrasal constituent of each word. Specifically, we take the parent node as the syntactic
label for each leaf node. Table 1 gives an example of the representation for phrase
structure grammar.

3.2 Representation for Dependency Structure Grammar

The dependency structure of a sentence implies the dependence relations between
words to obtain local constituents of the sentence. The head contains the main gram-
matical and semantic information. The modifier is semantically subordinate to the head
and plays the role of modifying and supplementing the head. Dependency structure can
be expressed in the form of a dependency tree as shown in Fig. 2.

Similar with the phrase structure representation strategy, we take the head of each
word in a sentence as its syntactic label, and encode the label sequence in the same way
as the source sequence. Table 2 gives an example of the representation for dependency
structure grammar.

Table 1. Sequential syntactic labels for phrase structure grammar.

Source
sentence

NeoSpect ist ein radioaktives Arzneimittel für diagnostische Zwecke

Constituency
tree

((ROOT (S (NN NeoSpect) (VAFIN ist) (NP (ART ein) (ADJA
radioaktives) (NN Arzneimittel) (PP (APPR für) (ADJA diagnostische)
(NN Zwecke)))) ($..)))

Syntactic label S S NP NP NP PP PP PP S

Fig. 2. Example of the dependency tree.

Table 2. Sequential syntactic labels for dependency structure grammar.

Source
sentence

NeoSpect ist ein radioaktives Arzneimittel für diagnostische Zwecke

Dependency
tree

[(‘ROOT’, 0, 5), (‘nsubj’, 5, 1), (‘cop’, 5, 2), (‘det’, 5, 3), (‘amod’, 5, 4),
(‘case’, 8, 6), (‘amod’, 8, 7), (‘nmod’, 5, 8), (‘punct’, 5, 9)]

Syntactic
label

Arzneimittel Arzneimittel Arzneimittel Arzneimittel ROOT Zwecke Zwecke
Arzneimittel Arzneimittel
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4 Neural QE with Source Syntax

4.1 Model Architecture

Predictor-Estimator [7, 9] is one of the best-performing QE architectures available [10–
13]. We also follow this architecture in our work. The neural networks comprise two
sub-networks, namely predictor and estimator.

Predictor is a word prediction model which can be seemed as a feature extraction
module. Given the source and the target sentences, a word in the target sentence is
randomly selected and masked and recovered according to the source and target
contexts. The model adopts the encoder-decoder framework [28] based on bi-
directional RNN. The encoder encodes source sentence to a sentence vector cj, and the
decoder further reflects the context of the predicted target word. The predicted prob-
ability of the target word yj is defined in terms of the source context x and the target
context y−j as follows:

p yjy1; . . .; yj�1; yjþ 1; . . .; yTy ; x
� �

¼ g ~sj�1; s
 
jþ 1

h i
; yj�1; yjþ 1
� �

; cj
� �

where g is a non-linear function which uses ~sj�1; s
 
jþ 1

h i
; yj�1; yjþ 1
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and cj to predict

the probability of the target word yj. ~sj�1; s
 
jþ 1

h i
is the concatenation of~sj�1 and s jþ 1.

~sj�1 and s jþ 1 refer to the hidden state of the forward RNN and the backward RNN in
the target sentence. This value contains the quality information about whether the target
word is correctly translated from the source sentence, so it is extracted in the form of
quality vector as a bilingual feature.

Estimator takes the bilingual feature vectors extracted by the predictor module as
input and builds a bidirectional RNN model. The probabilities of the word-level tags
(OK/BAD) are calculated with the hidden states of each time step of the RNN, and the
sentence-level HTER values (the percentage of editing required to correct the trans-
lation) are calculated with the output of the last step.

4.2 Syntax Modeling

We model the source sentence and its syntactic information with the multi-source
approach [29].

The feature extraction module consists of two RNN encoders sharing parameters.
One encoder maps the source sentence into a vector sequence
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which is more complete and sufficient in
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encoding the source language. This vector is taken as the final vector for decoding,
enabling the quality vectors extracted in the decoding process to contain more syntactic
knowledge.

In the QE module, two bi-directional LSTMs are used to build the model. In the
sentence-level QE task, since the HTER value is a global score to measure the overall
translation quality of the sentence, the prediction of HTER is treated as a regression
problem. One of the bi-directional LSTM models is used to model the quality vectors,
and the last hidden state of the forward and backward LSTM is concatenated as the

final vector ~qm; q
 
m

h i
. The other is used to encode the syntactic information of the

source language, again using the last hidden state as the final vector ~pn; p
 
n

h i
. The two

vectors are concatenated and the HTER value is predicted with the sigmoid function.
Word-level QE aims at predicting the accuracy of each word in the sentence, marking
the correct words as OK and the wrong words as BAD. Therefore, it can be regarded as

Fig. 3. Overall architecture of our neural QE system.
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a binary classification or sequence labeling problem. Different from the sentence-level

QE method, the last hidden state of the bidirectional LSTM ~pn; p
 
n

h i
that encodes the

source syntax is concatenated with the hidden state of each time step of the bidirec-
tional LSTM that models the quality vector. And this vector is used as the hidden state
representation of the target word at each position.

The overall architecture of the neural QE system incorporating syntactic knowledge
is shown in Fig. 3.

We applied the syntactic features of the source language to word-level and
sentence-level tasks respectively. In order to test the effect of source language syntax
on the QE module, we built two models with and without syntactic information in our
experiments.

5 Experimentation

5.1 Experimental Settings

We evaluated the effectiveness of our method on German-English translation quality
estimation task.

Two parts of corpora are used in our experiments. One is the large-scale bilingual
dataset for training the feature extraction module. It comes from the parallel corpus of
WMT machine translation task, including Europarl v7, Common Crawl corpus, News
Commentary v11 and so on. In order to improve the performance of the experiment, we
filtered the corpus and reserved the bilingual sentences less than 70 words and with
bilingual word number ratio between 1/3 and 3. After filtering, about 4.5 million
sentence pairs were obtained. The validation set contains 2489 pairs from New-
stest2015. The other part of the corpora comes from WMT2017 QE task, which is used
for training the QE module. The training set contains 25000 sentence pairs and the
development set contains 1000 pairs. Since the labels of WMT2018 testing dataset has
not been published, we choose the WMT2017 dataset for testing, which has 2000
sentence pairs in total.

We used the Berkeley Parser1 to get the constituency trees of the source sentences,
and the Stanford Parser2 to get the dependency trees. The syntactic labels of the source
language were extracted with the method described in Sect. 3. The statistics of the
datasets are shown in Table 3.

Our QE systems are built upon the TensorFlow deep learning framework. Different
network parameters are set for the feature extraction module and the QE module (see
Table 4 for detail).

1 https://github.com/slavpetrov/berkeleyparser.
2 https://nlp.stanford.edu/software/lex-parser.shtml.
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5.2 Results and Analysis

We evaluated the proposed method on WMT17 testing set. For sentence-level QE,
Pearson correlation score is used to measure the linear correlation between the pre-
dicted HTER value and the actual HTER value. For word-level QE, the performance is
evaluated by F1-mult, which is the product of F1-OK and F1-BAD.

Tables 5 and 6 give the experimental results of the sentence-level and the word-
level QE task, respectively. We reimplemented the state-of-the-art system built on the
predictor-estimator framework [7] as our baseline (referred to as P-E in the tables). P
(+PSG)-E and P(+PSG)-E(+PSG) refer to the systems incorporating the PSG-based
syntactic representations only in the predictor and in both predictor and estimator.
Similarly, P(+DSG)-E and P(+DSG)-E(+DSG) refer to the systems incorporating the
DSG-based syntactic representations.

Table 3. Statistics of the bilingual dataset and the QE dataset.

Dataset Data Sentences

Bilingual dataset Training 4,500,000
Development 2489

QE dataset Training 25,000
Development 1,000
Testing 2,000

Table 4. Neural network parameter settings.

Parameters Predictor Estimator

Layers 2 1
Hidden-dim 512 128
Word-dim 512 512
Batch size 64 64
Optimizer Lazyadam Lazyadam
Source vocabulary size 120000 120000
Target vocabulary size 120000 120000
Node type LSTM LSTM

Table 5. Results of the sentence-level QE task.

System Pearson’s r Spearman’s q MAE RMSE

P-E 0.6636 0.6013 0.1057 0.1452
P(+PSG)-E 0.6757 0.6117 0.1045 0.1431
P(+PSG)-E(+PSG) 0.6789 0.6133 0.1040 0.1425
P(+DSG)-E 0.6811 0.6146 0.1038 0.1422
P(+DSG)-E(+DSG) 0.6828 0.6152 0.1034 0.1419
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From the above tables, we can see that both sentence-level and word-level QE are
improved by adding syntactic knowledge. In the sentence-level task, the system with
syntax modeling in both modules performs best, improving the Pearson correlation
score by 1.92% compared to the baseline system. In the word-level task, the system
with syntax modeling in only the predictor module performs best, improving the F1-
mult score by 2.12%.

According to the results, the systems with DSG perform better than those with
PSG. This may be due to two reasons. First, phrase structure is more about the physical
positional relationship between the constituents in the sentence. But dependency
structure can reflect the deep semantic modification relationship between the words in a
sentence, thus containing deeper syntactic information than phrase structure. Second, in
our method, since the dependency labels are extracted from the source word sequence
and combined with it, the two sequences are tied in a closer way. Therefore, coupling
the source sequence with the DSG-based labels is more helpful to the feature extraction
process.

Experimental results also show that for word-level QE, the performance of incor-
porating syntax in both predictor and estimator is not as good as in the predictor itself.
We believe that this is because of the mismatching in the lengths of the syntactic
sequence and the source sequence. We take only the last hidden state of the source
syntax encoding as the syntactic representation for the whole sentence, and combine it
with the quality vector of each word. This strategy is beneficial for the sentence-level
regression problem, but it has some limitation in the word-level sequence labeling
problem in affecting the quality vectors of the target words.

We also evaluated the effect of syntactic knowledge on complex sentences. It is
difficult to directly measure the syntactic complexity of source sentences. However, the
increase of sentence lengths is often accompanied by the increase of syntactic com-
plexity. Therefore, we divided sentences into different lengths, and the sentences with
similar lengths are classified into the same category, approximately indicating that the
syntactic complexities of these sentences are similar. The experimental results of dif-
ferent sentence lengths on the sentence-level and word-level QE tasks are statistically
analyzed as shown in Figs. 4 and 5.

Table 6. Results of the word-level QE task.

System F1-BAD F1-OK F1-mult

P-E 0.5486 0.9134 0.5011
P(+PSG)-E 0.5742 0.9042 0.5192
P(+PSG)-E(+PSG) 0.5713 0.9019 0.5153
P(+DSG)-E 0.5770 0.9052 0.5223
P(+DSG)-E(+DSG) 0.5720 0.9087 0.5198
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In order to find out whether there is statistical difference between the systems which
incorporate the syntactic representations and the baseline system, we made a significant
difference analysis on the sentence-level QE task. The results showed that all the
systems with syntax modeling significantly outperformed the baseline at the p < 0.05
level, especially the P(+PSG)-E(+PSG) and P(+DSG)-E systems significantly outper-
formed the baseline at the p < 0.01 level.

The figures show that when the sentence lengths are less than 20, the MT per-
formance is good, and the bilingual syntactic structures tend to be consistent, so the
effect of explicitly incorporating syntactic knowledge in the QE method is not obvious.
However, with the increase of sentence lengths, the translation quality decreases, and
the target syntactic structure tends to differ from the source structure. In these cases, our
methods show their superiority, which proves that the syntactic information can
effectively improve the QE accuracy of complex sentences by discovering the syntactic
errors in the translation.

In terms of parameter amount and system speed, due to the large vocabulary used in
the training process, the number of training parameters is relatively large. After
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introducing syntactic knowledge, about 10 million new parameters are introduced, and
the training speed is slightly slower (about 10%) than the baseline system with a single
GPU.

6 Conclusion and Future Work

This paper proposes a method that explicitly incorporates syntactic knowledge to
address the inadequacy of syntactic feature extraction in the neural QE framework.
Through extracting PSG-based and DSG-based syntactic labels and encoding them in
the state-of-the-art predictor-estimator model, the syntactic information shows a posi-
tive impact on both sentence-level and word-level QE tasks.

In our method, in order to alleviate the long-distance dependency problem, only
part of the phrase structure is used to guide the process of word prediction, which
makes the PSG-based syntactic information insufficiently exploited. Therefore in the
next step we will focus on further improving the syntax representation strategy. At the
same time, the effect of syntactic knowledge is less prominent in the estimator module
on word-level QE task. So we will also try to use an alignment mechanism to merge the
syntactic labels and the quality vector sequence of the target words in our future work.
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Abstract. Multimodal machine translation which combines visual information
of image has become one of the research hotpots in recent years. Most of the
existing works project the image feature into the text semantic space and merged
into the model in different ways. Actually, different source words may capture
different visual information. Therefore, we propose a multimodal neural
machine translation (MNMT) model that integrates the words and visual
information of image independently. The word itself and different key similarity
information of an image are independently fused into the text semantics of the
word, thereby assisting and enhancing the textual semantic and corresponding
visual information of different words. And then we use them for the calculation
of the context vector of the attention of decoder of our model. In this paper,
different experiments are carried out on the original English-German sentence
pairs of the multimodal machine translation dataset, Multi30k, and the
Indonesian-Chinese sentence pairs which is manually annotated by human.
Compared with the existing MNMT model based on RNN, our model has a
better performance and proves the effectiveness of it.

Keywords: Multimodal machine translation � Image visual feature �
Independent fusion � Attention mechanism

1 Introduction

Multimodal machine translation [1] is designed to create a machine translation model
that can process information from multiple modalities, such as text, speech, video and
image. Compared with the text-only neural machine translation (NMT) model, the
multimodal neural machine translation (MNMT) model aims to achieve better trans-
lation performance by combining more information other then text. This paper is
mainly for MNMT tasks that combine text and image.

Based on the advantages of MNMT models, multimodal neural machine translation
studies have received a lot of attentions in recent years. Most of previous works use the
image feature (including the global image feature and regional image feature) as a
whole information to be fused into the model. For example, Vinyals et al. [2] used pre-
trained CNN as encoder of the seq2seq model, trying to capture different interaction
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information of image and text in image caption task. Huang et al. [3] extracted the
reginal features and the global features from image and regarded them as pseudo words
as input to the end-to-end multimodal machine translation model. Calixto et al. [4]
incorporated the global image features into the attention based NMT in three different
ways so as to enhance the performance of the image on text-only machine translation.

These works integrate image features into the NMT model without considering that
different words in a sentence may capture different semantic parts of an image. For
example, the corresponding English source sentence of Fig. 1 is “Three men in red and
white striped shirts, white pants, and black hats hold flags.” In this sentence, we can
see that the word “shirts” captures the visual semantic of the clothes in the image and
the word “striped” captures the visual semantic of the design of the clothes in the
image. If the image feature is simply fused into the model, like used as pseudo words,
to initialize encoder or decoder’s hidden state, the semantic information of different
parts of an image and the words of source sentence cannot be obtained.

The work of Calixto et al. [5] and Caglayan et al. [6] take this into account, but they
only consider them at the step of decoding time. Calixto et al. [5] proposed two
separate attentions on the end of decoder to learn to attend to parts of the image and
source words independently. Caglayan et al. [6] calculated a visual context vector at
decoding time and concatenated them to the original context vector as one of their
fusion models in MNMT. In fact, different words in the source sentence have different
visual semantic information for different parts of the same image. And these inde-
pendent semantic interaction information between source words and different parts of
the same image can be used to enhance the context vector information at the end of
decoder side, thus improving the overall translation performance. Therefore, each word
itself can be independently fused with different key similarity semantic information of
an image, these independent fusion information can be used to enhance the text
semantics and visual information of each word of the sentence.

Based on this motivation, we propose a MNMT model that integrates the visual and
text semantic information of words independently. The model use the extracted local
image features, let their key visual information and each word semantic information in
the source sentence independently fused into the word’s new combined semantic space.
It means that the combined semantic space of each source word contains the words

Fig. 1. A sample from dataset of multi30k. English: Three men in red and white striped shirts,
white pants, and black hats hold flags. (Color figure online)
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semantic representation and the similarity of the word with different region semantics
of the image. In this paper, we also propose to use max pooling on the local image
features to extract global image representation to initialize decoder’s hidden state. In
this way, the decoder can consider the source words information as well as the different
visual information corresponding to each word, and the whole information of the
image, so as to better decoding and output of translated text. The main contributions of
this paper are as follows:

(1) We propose a multimodal neural machine translation model that independently
integrates the visual information and words’ semantic information, so that enco-
der’s output can capture different key features contained in an image and integrate
them independently into the semantic space of the word itself. And we use it to
calculate the attention of decoder, getting better context vector that contains text
and visual information of different words. To the best of our knowledge, this is the
first work that integrate different words and image independently as the end of
encoder and use it for the attention on the end of decoder.

(2) We also apply max pooling on the extracted local image features to get global
image feature. And we use it to initialize decoder’s hidden state for further fusion
of visual information. Experiments on Multi30k dataset shows that our model can
improve the result on MNMT task.

2 Our Model

2.1 Architecture of Our Model

The framework of the classical Neural Machine Translation (NMT) is a sequence-to-
sequence translation model based on encoder and decoder. The input end is the source
language word sequence X ¼ x1; x2; x3; . . .; xMð Þ, and he output end is the target lan-
guage word sequence Y ¼ y1; y2; y3; . . .; yNð Þ. The NMT model hopes to learn the
maximum probability P (Y | X) translated from X to Y, so as to learn the conditional
probability distribution of training set data.

Fig. 2. The whole architecture of our model.
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In this paper, we follow the work of Luong [9] which is the classical seq2seq NMT
framework with attention mechanism, the architecture of our model is shown in Fig. 2.
We will introduce our model from five parts: Encoder of our model, Independent fusion
of words and image, Decoder of our model using visual semantic attention, Fusion of
global visual features of image and Model training.

2.2 Encoder of Our Model

We use Bi-LSTM to encode the source language sentence. The forward LSTM receives
the each word embedding and the previous LSTM cell’s output from left to right and

the output sequence is h1
!
; h2;
�!

. . .; hN
�!� �

. The backward LSTM receives the each word

embedding and the previous LSTM cell’s output from right to left and get

h1
 
; h2
 
; . . .; hN

 �� �
. Their calculations are shown in Eqs. (1) and (2). Wx is a source

words embedding matrix. Each time step, the output hidden state is the concatenation

of forward and backward’s output hi ¼ ~hi; h
 
i

h i
. So the final output of text words

encoder is h ¼ h1; h2; . . .; hNð Þ.

~hi ¼ fenc Wx xi½ �;~hi�1
� �

ð1Þ

h
 
i ¼ fenc Wx xi½ �; h

 
iþ 1

� �
ð2Þ

2.3 Independent Fusion of Words and Image

In order to get each word’s corresponding visual information to the same image, we
propose an independent fusion mechanism of words and image. Firstly, we calculate
the similarity scores of each word and different local image features from the same
image, and get the key visual information and concatenate it to the corresponding
word’s encoded hidden state.

The image features is extracted by the 50-layer Residual network (ResNet-50) of
He et al. [7] which is pre-trained on ImageNet [8]. These local image features are
activations of the res4f layer, which can be seen as encoding of image in a 14 * 14
regions, and each region is represented by a 1024 dimension features. We transform
these 3 dimension features into a 196 * 1024 matrix A ¼ a1; a2; . . .; a196ð Þ. Here aj can
be seen as one of the reginal visual feature of the image.

For each aj, we use encoder’s output hi to calculate the score gi;j, as shown in
Eq. (3), we then normalized the score into probabilities using softmax operation, as
shown in Eq. (4), and where L = 196. The hi’s corresponding visual information vi can
be calculated by Eq. (5). And we concatenate it to hi to get the new representation h

0
i,

which means that h
0
i contains the words semantic representation and the similarity of

the word with different region semantics of the image. The equation is as (6).
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gi;j ¼ ðhTi WaÞðWimgajÞ ð3Þ

bi;j ¼ softmax gi;1; gi;2; ::; gi;L
� �� �

j ð4Þ

vi ¼
XL

j¼1 bi;j Wimgaj
� � ð5Þ

h
0
i ¼ hTi Wa; vi

� � ð6Þ

2.4 Decoder of Our Model Fusing Visual Semantic Attention

We use attention mechanism proposed by Luong et al. [9], so that the decoder can
consider the current word’s expected alignments information with the source words.
The equations of attention mechanism are shown in (7)–(10).

Firstly, we compute an expected alignment et;i between each source word’s hidden
state hi, as in Eq. (7). We use hi instead of h

0
i in (6) which is concatenated with visual

information is because that it will prevent the model from learning in our experiment.
So here we still use hi to compute the attention score. Then, we use softmax to
normalize these expected alignments et;i and get model’s attention weights at;i, shown
as Eq. (8). And we use them and h

0
i to compute the time-dependent context vector ct, as

shown in (9). So that the context vector ct can contain both text and visual information
at the same time.

Finally, the context vector ct is used in computing the decoder’s hidden state, as
shown in Eq. (10), Where Wy½~yt�1� is the word embedding predicted in previous time
step, st�1 is decoder’s previous hidden state.

et;i ¼ hTi Wast�1 ð7Þ

at;i ¼
exp et;i

� �
PN

j¼1 exp et;j
� � ð8Þ

ct ¼
XN

i¼1 at;ih
0
i ð9Þ

st ¼ fdec Wy½~yt�1�; st�1; ct
� � ð10Þ

2.5 Fusion of Global Visual Features of Image

For better make use of the visual information, we propose to apply max pooling to get
the global image feature, and use it to initialize decoder’s hidden state. Firstly, we get
the max value of each dimension for local image features. And input them to a feed
forward neural network to project image features into the same vector space of
decoder’s hidden state. Together with the final output of encoder’s two direction’s
LSTM to compute s0, as shown in Eq. (11).
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s0 ¼ tanh Wdi
~hN ; h

 
1

h i
þ bdiþWvV

� �
ð11Þ

2.6 Model Training

The model is trained and optimized by minimizing the negative loglikelihood, the
equation are shown as (12) and (13), where h is the parameter of the model, N is the
number of samples in training set, xn is the input sequence of source language, yn is the
output sequence of target language. And ct is the context vector at decoding time step t,
yt is the target word and st is decoder’s hidden state at time step t.

min
h

1
N

XN

n¼1�logphðynjxnÞ ð12Þ

p ytjy1; . . .; yt�1; xð Þ ¼ g yt�1; st; ctð Þ ð13Þ

3 Experiment

3.1 Dataset

We use Multi30k1 dataset as our dataset in the experiment. Multi30k dataset is a
multilingual expansion of the original Flickr30k2 dataset for image description gen-
eration task. Each image in Multi30k consists of an English sentence description and a
German sentence translated by professional translators. In Multi30k, the training set,
validation set and test set contains 29,000, 1,014 and 1,000 images respectively, each
image has one sentence pair (the original English description and its German
translation).

As for the preprocess of the dataset, we use Moses scripts3 to tokenize, normalize-
punctuation and trucase both English and German sentences. We use the training set of
Multi30k to train the model, and validation set for model selection and test set for
evaluation. We use BLEU4 [10] to measure the quality of the result.

3.2 Experiment Setup

We use Bi-LSTM as our encoder, both direction’s hidden states are 512 dimensions.
The source and target word embeddings are 512 dimensions and both are trained jointly
with our model. Our decoder is a single direction LSTM with 512 dimensions hidden
states. We choose Adam optimizer [11] with initial learning rate 0.001. The batch size
is set to 40 and a total of 26 epochs are trained. If the perplexity of the model does not

1 http://www.statmt.org/wmt16/multimodal-task.html.
2 http://shannon.cs.illinois.edu/DenotationGraph/.
3 https://github.com/moses-smt/mosesdecoder.
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decrease on validation set for continuous 4 epochs, a learning rate decay mechanism is
performed, decayed one-half of the original. We apply early stop when training the
model, if the learning rate decay happens for 5 times, training is halted. Beam search
[12] is used when translating on test and beam search size is 10.

3.3 Experimental Results and Analysis

In order to verify the performance of our model, we use several baseline models for
comparison, they are Huang et al. [3], Calixto et al. [4], Calixto et al. [5], Caglayan
et al. [6], and Elliott et al. [13].

The work of Huang et al. [3] proposed a MNMT model that fuses regional images,
together with the entire image as pseudo words. The work of Calixto et al. [5] used two
independent attention mechanisms for text and images, and their image features are
extracted in the same way in the paper. The work of Calixto et al. [4] incorporated
global image feature extracted by pre-trained VGG-19 [14] to initialize the decoder’s
hidden state. The work of Caglayan et al. [6] modulated each target embedding with
global image feature, which is extracted by ResNet pool5 layer, using element-wise
multiplication. The work of Elliott et al. [13] used the imagination method. They see
multimodal translation into two sub-tasks, learning to translate and learning visually
grounded representations.

Experimental Results on English to German
Table 1 shows the results on English to German sentence pairs of Multi30k. We carry
experiments in 3 different methods to fuse image features. Local_Only only uses the
regional image features that are independently fused with the source words encoded
hidden states, Global_Only only use the transformed image features as the global
representations to initialize the decoder’s hidden state, and a combination of two
methods is Global_Local.

As can be seen in Table 1, Local_Only performs better than the model of Calixto
et al. [5] while using the same regional image features. For Calixto et al. [4] and
Caglayan et al. [6] that only use global image representation, the result of our model of
Local_Only improve 1.66 and 0.36 BLEU scores respectively. Moreover, our Glo-
bal_Local model achieves best result in the experiments, which means that considering
the overall information of the image and the key image visual features, the model can
have different emphasis when translating, thereby improving the translation quality.

Table 1. The results on English to German sentence pairs.

Models BLEU4

Baseline Huang et al. [3] 36.5
Calixto et al. [4] 37.3
Calixto et al. [5] 36.5
Caglayan et al. [6] 37.8
Elliott et al. [13] 36.8

Our method Local_Only 38.16
Global_Only 38.38
Global + Local 38.54
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Results on Indonesian to Chinese
In this paper, we also evaluate the model on low-resource language data. For this
experiment, we manually translate the English and German sentence pairs of the val-
idation and test set to Indonesian and Chinese. As for the training set of Multi30 k, we
use Google translation4 to translate the English to German sentence pairs into the
corresponding Indonesian and Chinese.

Table 2 shows the results of our 3 different models and the baseline model is text-
only NMT, which is based on attention mechanism and does not incorporate any visual
information of the image. As we can see from Table 2, three MNMT models outper-
form the pure text-only NMT model. And Global_Local model still has best result and
1.92 BLEU scores higher than Text-Only NMT which shows that of the effectiveness
of our model.

3.4 Case Study

To better demonstrate the effectiveness our model, we conducted a case study of the
results on the test set. Due to better understanding of the Chinese, we selecte the
Indonesian to Chinese translation for case study. Figures 3 and 4 are the results of 2
cases from different models.

From Fig. 3, we can see the good translation quality of our model even on longer
sentences. The Local_Global model translates more accurately and the phrases “白色

卡车” and “白色建筑” are generated at the same time, while Local_Only and Glo-
bal_Only only translate “白色卡车” and miss the latter. Local_Only and Local_Global
accurately generates the “霓虹绿色安全背心” while Text_Only NMT does not
translate the word “霓虹”. When predicting the word “灰色”, NMT does not do well
while our multimodal models able to translate it successfully. It seems like that the
MNMT can take into account the image features when translating.

Figure 4 shows that our three MNMT models accurately translate the colors of the
characters in the images, while the Text_Only NMT still has a mistake. It prove again
that the visual information helps enhance the translation quality. At the same time,
Local_Only model miss the verb “穿着” which leads to the problem that the sentence is
not smooth.

Table 2. The results on Indonesian to Chinese.

Models BLEU4

Baseline Text-only NMT 27.48
Our method Local_Only 28.80

Global_Only 29.04
Global + Local 29.40

4 https://translate.google.com/.
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4 Related Work

Machine translation developed rapidly since statistical machine translation methods
occurred [15–18], such as phrase-based statistical machine translation methods and
other methods fused with different structures [19–21]. In recent years, machine
translation has shifted from statistical-based methods to neural network based methods,
and most of neural network based method focus on seq2seq model architecture.

Source sentence: 
Seorang pria yang mengenakan kemeja abu-abu, celana jeans biru dan rompi keselamatan hijau neon sedang 

berdiri di jalur kereta api dengan truk putih dan bangunan putih di latar belakang.

Reference: 

Text-only NMT: 

Local_Only: 

Global_Only: 

Local_Global: 

Fig. 3. One case of translation comparision by different models.

Source sentence: Tiga pria yang berkemeja bergaris-garis merah dan putih, celana putih, dan topi hitam memegang bendera.

Reference: 

Text-only NMT: 

Local_Only: 

Global_Only:

Local_Global:

Fig. 4. Another case of translation comparision by different models. (Color figure online)
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In 2013, Kalchbrenner et al. [22] proposed a neural machine translation based on
distributed continuous representation. This neural network apply an end-to-end method
and it is an early research in the field of machine translation that propose the concept of
NMT. Cho et al. [23] and Sutskever et al. [12] improved the mothod which better
promoted machine translation based on neural network model. In subsequent studies,
attention mechanism are used to NMTand achieve better results. Bahdanau et al. [24]
introduced attention mechanism based on the work Cho et al. [23]. Luong et al. [9]
improved on Bahdanau et al. [24] ’s work and proposed local and global attention
mechanism. Besides use RNN to implement seq2seq model, some researchers began to
use CNN to build the model [25, 26]. Gehring et al. [27] proposed an encoder-decoder
architecture totally based on CNN. Vaswani et al. [28] use Transformer for seq2seq
modeling. Transformer abandoned the traditional RNN structure and only use self-
attention for feature extraction, and achieved good result in text-only NMT.

Multimodal machine translation has become one of the research hotpots in recent
years. Vinyals et al. [2] proposed a IDG model, which use pre-trained CNN as encoder
of the seq2seq model. Calixto et al. [5] proposed two separate attentions on the end of
decoder to learns to attend to parts of an image and source words independently. Huang
et al. [3] used R-CNN [29] to obtain regional images, together with the entire image are
input into VGG-19 to extract image features and regard them as pseudo words and
input to the model. Calixto et al. [4] used the global image features and incorporated
them in 3 ways: as pseudo words, to initialize encoder’s and decoder’s hidden state.
Caglayan et al. [6] extracted global and local image features and try to fused them in
different way.

Most existing RNN-based MNMT works have been done to fuse the visual
information (global or local visual representation) of the image from different aspects to
the model’s encoder or decoder, to improve the performance of machine translation.
However, since the key visual information of the image captured by each word is
different, so we propose to capture independent key visual information for each word at
encoding time step, and apply to attention mechanism. So the model can see the words’
semantic information and the unique visual information of each word, so as to improve
the translation result.

5 Conclusion

In this paper, we propose a multimodal machine translation model which integrates
word and visual information independently for better decoding in the NMT model. By
integrating each word itself with the different similarity information of the image into
the text semantics of the word, the attention at the end of decoder can capture not only
the word semantic but also the different parts of visual information, so as to have a
better context vector of our model.

Our models were tested on the Multi30k dataset from English to German sentence
pairs and from Indonesian to Chinese sentence pairs. The results show that the models
we proposed have better improvement compared to the existing baseline system (in-
tegrate image visual semantic information into translation model by different aspects).
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Especially in Indonesian-Chinese dataset which is a low-resource language dataset, the
results of the experiments verify the validity of our proposed model in this paper.

In the future, we will further explore the multimodal machine translation from two
aspects: (1) Further discuss the better extraction methods for different local and global
features of images and improve the result of MNMT task; (2) Further discuss the
research of MNMT model based on non-RNN, such as Transformer.
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Abstract. Attention mechanism has been proved to be able to improve the
quality of neural machine translation by selectively focusing on partial words of
a source sentence during translation process. Attention mechanism usually
focuses on local attention by using solely the linear index distance of words
while ignores syntax structures of sentences. In this paper, we extend local
attention through syntax distance constraint, and propose an attention mecha-
nism based on a new syntactic branch distance, which simultaneously pays
attention to words with similar linear index distances and syntax-related words.
Based on the English-to-German translation task, experiment results showed
that our model outperforms a recent baseline method with an improvement of
1.61 BLEU points, demonstrating the effectiveness of the proposed model.

Keywords: Neural machine translation � Attention mechanism � Syntactic
branch distance � Syntax structure

1 Introduction

In the past few years, Neural Machine Translation (NMT) has made rapid progresses,
showing superior performance compared to traditional statistical machine translation
[1–3]. Many researchers have conducted extensive research on neural networks and
attention mechanisms in NMT, which has promoted the rapid development of machine
translation. Attention mechanism is critical to improve the translation performance of
sentences in NMT. The research about attention mechanism has been in full swing.
Bahdanau et al. [4] proposed an attentional NMT model (called global attention), which
dynamically capture every contexts of source sentences in each decoding step,
improving the performance of the NMT. Luong et al. [5] further refined global attention
into local attention, selectively focusing source context of the fixed window size in
each decoding step, and experimentally proved its effectiveness in German-to-English
and English-to-German translation tasks. However, traditional attention mechanism,
such as global attention [4] and local attention [5], only focuses on the sequential
structure of sentences and ignores the dependencies between words. This does not
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conform to the rules of syntactic analysis, which may lead to some common syntax
errors and affect the quality of the sentence translation.

In order to address the above problems, we propose a new attention mechanism
based on the syntactic dependency tree of sentences. It simultaneously focuses on the
sequential structure and syntactic structure of sentences for reducing the noise brought
by grammar trees to some extent. In this paper, we propose a new syntactic branch
distance constraint to extend local attention, predicting the encoder state associated
with source words syntactically relating to target words. According to the dependency
tree of a source sentence, a more effective context vector is calculated according to the
syntactic branch distance for predicting target words. Experiments on the ISWLT2017
EN-DE translation task, our model is compared with a recent baseline method and the
results show that our model improves 1.28 BLEU points over the baseline method.

2 Related Work

2.1 Syntax Representation for Neural Network

Researchers are devoted to integrating syntax information into the NMT system to
improve translation performance. Eriguchi et al. [11] used tree LSTM, proposed by Kai
et al. [6], to encode the HPSG syntax tree of the source sentence from bottom to
top. Chen et al. [14] improved existed encoder with a tree encoder from top to bottom.
Chen et al. [12] further extended through a bidirectional tree encoder to learn both
sequence and tree structured source representations. Wang et al. [20] proposed a tree-
based decoder, simultaneously generates a target-side tree topology and a translation,
using the partially-generated tree to guide the translation process. Although these
methods have achieved good results, the tree network used by the encoder and decoder
makes training and decoding somehow slow and is not suitable for large-scale MT
tasks.

There are other works that use syntax information, including grammar concepts,
syntax tree structures and dependency units, and syntax trees for attention. Sennrich
and Haddow [7] used part-of-speech tags, lemmatized forms and dependency labels to
enhance the information carried by each word. In order to better integrate NMT with
syntax trees, Eriguchi et al. [8] combined recursive neural network grammar with
attention-based NMT system, encouraging models to combine grammatical prior
knowledge for translation during training. Li et al. [9] linearized the constituent trees
and encoded them with RNN. Wu et al. [10] proposed a sequence-to-dependency NMT
model, using two RNNs to jointly generate target translations, and constructing their
syntax dependency tree as context to improve word prediction. In order to better
integrate NMT with dependency syntax trees, Wu et al. [13] further utilized the global
knowledge from the source dependency tree to enrich each encoder state from child to
head and head to child. Chen et al. [14] used local dependency unit to extend each
source word to capture the long-distance dependency constraints of the source sentence
and achieve a good translation of long sentences in NMT. Ahmed et al. [21] design a
generalized attention framework for both dependency and constituency trees by
encoding variants of decomposable attention inside a Tree-LSTM cell. These methods
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used grammar tags to extend source words and provide richer contextual information
for word prediction. Due to the linear structure of the RNN, these methods were trained
efficiently.

In this paper, we propose a new syntactic branch distance constraint to extend local
attention and capture the encoder state associated with the source word syntactically
relating to the target word. Rather than improving sequence encoder and decoder with a
tree network direclty, we focus on the attention mechanism in the aspect of the syn-
tactic branch distance of syntax tree without making any modifications to specific
source representation on the basis of linearized representation using the Tree-LSTM
coding syntax tree.

2.2 Attention Mechanism and Local Attention

Neural Machine Translation (NMT) commonly adopts the Encoder-Decoder [1]
framework. NMT uses Recurrent Neural Network (RNN) architecture, such as Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) to obtain long-term
dependencies. For a given word embedding sequence X = x1, x2, ���, x|X|, encoder
typically uses a bidirectional RNN to model the source word sequence and compute a
hidden states representation hi. That is, a forward encoder and a backward encoder
encode sequence X to obtain the hidden sequences of the source sentence H = h1, h2,
���, h|X|,

~hi ¼ f1 ~hi�1; xi
� �

ð1Þ

h
 
i ¼ f2 h

 
i�1; xi

� �
ð2Þ

hi ¼ ~hi; h
 
i

h i
ð3Þ

where f1 and f2 are either GRU(•) or LSTM (•).
The decoder generally adopts conditional RNN with attention mechanism, and

predicts the target sentence Y = y1, y2, ���, y|Y| literally according to the conditional
probability P(yi). The prediction of word in current time step is calculated by the hidden
state vector st, the last generated word yt−1, and the context vector ct, using Eq. (5) and
(6), where g is a nonlinear function ans f3 are either GRU(•) or LSTM (•).

And the loss function of NMT model is defined as Eq. (4):

lossword ¼
XY

t¼1 � log pðytjy\t; xÞ ð4Þ

p ytjy\t; xð Þ ¼ g yt�1; st; ctð Þ ð5Þ

St ¼ f3 st�1; yt�1;Ctð Þ ð6Þ

The context vector ct depends on a sequence of source annotations H = h1, h2, ���,
h|X|. Each annotation hi contains information about the whole source word sequence
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with a strong focus on the parts surrounding the i-th word of the source word sequence.
Here we explain below how the context vector ct are computed in local attention in
detail.

Compared with global attention focusing on all context information, local attention
selectively focuses on a small context window, which can effectively reduce the
computational cost. At the decoding time step i, alignment position pi is generated for
each target word of the batch of sentences using Eq. (7),

pi ¼ S � sigmoid vT tanhðWphiÞ
� �

; pi 2 0; S½ � ð7Þ

where S is the length of the source sentence, hi is the decoder hidden state, and vT and
Wp are model parameters. The context vector ct is then calculated as the weighted sum
of the encoder states within the window [pi – D, pi + D], where D is the empirical
value typically set to 10. Therefore, the weight alij of each source annotation hi is as
follows.

alij ¼ aij exp � s�pið Þ2
2r2

� �
; s 2 pi � D; piþD½ �

0; s 62 pi � D; piþD½ �

(
ð8Þ

The standard deviation r of the Gaussian distribution is empirically set to D/2. In
addition, local attention is paid to the source annotations in the window [pi – D, pi + D]
to calculate the local context vector at current time step. The context vector ct is then
computed as a weighted sum of the annotations hi:

cli ¼
X

j2 pi�D;pi þD½ � a
l
ijhi ð9Þ

It can be seen that the farther away from the center pi, the lower the weight alij
corresponding to source annotation at the position.

3 An Attention Mechanism Based on Syntactic Branch
Distance

3.1 Syntactic Branch Distance

Dependency parsing is one of main methods for syntactic analysis. Its basic task is to
determine the syntactic structure of a sentence or the interdependence of words in a
sentence. Syntactic parsing determines whether the composition of an input sentence
conforms to a given grammar, and constructs a syntax tree to represent the structure of
the sentence and the relationship between the syntactic components of each level, that
is, which words in a sentence constitute a phrase. The dependency syntax tree is a
representation of dependency syntax analysis. The dominators and subordinates of
dependent syntax tags in the dependent syntax tree are described as parent nodes and
child nodes respectively. It expresses formal grammatical rules and constraints as
points connected by trees and the information they carry, so that the dependent
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syntactic analysis of sentences is transformed into a task of finding a spatially con-
nected structure or a set of dependent pairs of the sentence. In other words, it can well
represent a sentence from the perspective of syntactic analysis, and resolve the internal
relations among words in the sentence for acquiring sufficient information from the
dependency tree. The syntax distance, the connecting distance of any two words in the
tree, can be used to describe the close syntax relationship between words. We use
Stanford parser1, which is a Java open source parser based on probabilistic syntax
analysis, to acquire dependency pairs between words of a given sentence and generate a
dependent syntax tree accordingly.

Generally, the context vector of current time step is obtained by respectively
aligning all the encoder states with alignment weights, and the decoder predicts the
target word at the next time step by using the context vector. In the traditional attention
mechanism, the alignment weight is given by the linear index distance of words in a
source sentence. That is to say, in the sequential structure of a sentence, the smaller the
index distance between a word and the current source word to be translated, the greater
the alignment weight of the word, the greater the contribution it makes to target word
prediction when the source word is translated. However, the use of linear index dis-
tance is not rigorous, since the linear distance only considers the order in which the
words appear in the sentence but ignores the deep structure of the sentence, disre-
garding the syntactic structure of the sentence and the inter-word dependencies,
including composition, context, etc. For example, the three words in Fig. 1, “gave”,
“went” and “fly” are in the same branch of a dependency tree, and the syntax distances
between them are small, <“gave”, “went”, dsyntax = 1>, <“gave”, “fly”, dsyntax = 2>,
<“went”, “fly”, dsyntax = 1>. These values indicate that the words have a close syntax
relationship, but it is obvious that the linear index distance between them is large,
<“gave”, “went”, dlinear = 5>, <“gave”, “fly”, dlinear = 12>, <“went”, “fly “, dlin-
ear = 7>. Meanwhile, the traditional attention mechanism is inclined to ignore these
syntax connections, resulting in translation of the linearly adjacent but less syntax
related words are set with greater alignment weights, while words that are more syntax-
related and farther away in linear distance are set with less alignment weight, which
cause some syntax errors during translation.

To address the mentioned problems, this paper introduces the prior knowledge of
syntax tree based on the local attention, and make modifications to the commonly used
syntax distances to proposed a new syntactic branch distance, for obtaining more
accurate source sentence information when generating target words. Given a source
sentence X with dependency tree T, each node represents a source word xi. For source
word as root node, since it has strong syntax relationship with all the words in the
sentence, we compute the path length of all remaining words reaching the root word
through tree T to obtain syntactic branch distance sequence of source word. That is, this
calculates the effective context vector to translate the root node based on the encoder
state of all source words and the weighted average of the alignment weights. For source

1 https://nlp.stanford.edu/nlp.
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word in leaf node and internal node positions, according to whether the remaining
words and current word are in the same branch on the tree T, two situtations are
considered. For words that are in the same branch, we define syntactic branch distance
of the source word as the level deviations between other words and the source word in
syntax tree. For words that are not in the same branch, we set the syntactic branch
distance value to the depth of dependency tree of the sentence. The significance of this
setting is firstly to reduce the influence of these words on different orders and inter-
ference noise to the translated source words. Second, during the translation process,
since there still convey many useful information in different branch words, it can be
combined with the translated source words to form some phrases, so the empirical
value is necessarily set to the depth of syntax tree. Therefore, unwanted noise words
can be removed to some extent to ensure proper attention to the word on different
branches. Generally, the words on the same branch of a dependency tree are highly
correlated with their currently translated source words, thus corresponding alignment
weights are large, while the words on other branches have relatively low alignment
weights.

As shown in Fig. 2, the syntactic branch distance between the words “affect” and
“people” is 2 for the source word is a root node. For a source word is in leaf node or
internal node, the syntactic branch distance between the words “these” and “people” is
1, while syntactic branch distance between “these” and “dangerous” is 4 (depth of the
dependency tree) for they are not in the same branch. Similarly, each word in the tree is
traversed according to the order of source word and the corresponding syntactic branch
distance sequence is computed. Finally, all sequences are combined into a syntactic
branch distance mask matrix of the sentence. The obtained syntactic branch distance
mask matrix is thus shown in Fig. 3.

Fig. 1. An example of words in the same branch of a dependency tree
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3.2 The Attention Mechanism Based on Tuned Branch Syntax Distance

In order to solve the problem of inaccurate focused source context of local attention, we
propose an attention mechanism based on a new syntactic branch distance, aiming at
integrating accurate and effective syntax knowledge with attention mechanism to
improve the accuracy of source-side context information.

We use the seq2seq model framework, which mainly consists of a encoder model
by a bidirectional RNN, a decoder model by a conditional RNN and a generator which

Fig. 2. The dependency syntax tree T and syntactic branch distance calculation for a given
stentence (yellow dotted line denotes root nodes, while red and green lines denote the same
branch and different branch in leaf and internal nodes, respectively) (Color figure online)

Fig. 3. The syntactic branch distance mask matrix M of the sentence (Each line represents a
syntactic branch distance mask for a source word, where h is the depth of syntax tree)
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depend on conditional probability. Besides, further improvement work is conducted in
the attention mechanism. First, the alignment source position pi is learned for each
target word by the Eq. (7) at the current decoding time step i. After that, the alignment
weights constrain by syntactic branch distance through source position pi and syntactic
branch distance matrix M are calculated using Eq. (10):

ebsij ¼ eij exp �
M pi½ � j½ �
� �

2

2r2

� �
ð10Þ

Furthermore, the standard deviation r is set to h/2 in our experiments, where h is
empirically set to be the depth of syntax tree of a given sentence and it is similar to the
order of syntax tree level. First of all, the syntactic branch distance value of a word not
in the same branch is set to be depth of dependency tree of the sentence. Secondly, all
syntactic branch distances of words can be obtained from the hierarchy of a syntax tree.
In order to remove unwanted noise words to some extent without losing proper
attention to words on different branches, we set the largest syntactic branch distance to
be the depth number of syntax tree.

l is the length of the sentence, and absnij is normalized considering all the syntactic
branch distances of current source word, i.e., the row of syntactic branch distance mask
corresponding to the current source word.

absnij ¼
exp ebsij

� �
P

k2M pi½ � k½ �\h exp ebsik
� � ; j 2 0; l½ � ð11Þ

Finally, the context vector cbsi is calculated as the weighted sum of the source
annotations of attention by the weights alignment of the attention of single grammar
branch distance.

cbsi ¼
XJ
j

absnij hj ð12Þ

4 Experiments and Results

4.1 Expreiment Settings

To evaluate the effectiveness of our proposed model, the commonly applied standard
dataset IWSLT 20172 is used as the evaluation dataset. 204936 dual-language sen-
tences in English and German is used as training data. The supplementary dev2010
dataset is as the validation data set, and tst2010, tst2011, tst2012, tst2013, tst2014 are
used as testing data sets.

2 https://sites.google.com/site/iwsltevaluation2017/Dialogues-task.
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We use a local attention proposed by Luong et al. [5] as a baseline method. The
local attention is improved on the basis of global attention. The local attention
mechanism selectively focuses on the context of a window in which current source
word is located in, and considers that the context can benefit decoder on the prediction
of next generated word. Experiments prove that it not only reduce the computational
cost, but also outperforms global attention on translation performance in terms of
BLEU score.

The NMT model used in the experiment is implemented based on Nematus codes
by Sennrich et al. [16]. We use the Stanford parser (Chang et al. [17]) to generate
dependency trees for source sentences. Our model limits the source and target
vocabulary size to 50 K and the maximum training sentence length to 50. We randomly
shuffle our training data set in each epoch. The batch size is 40, the word embedding
dimension is 512-dimensions, the hidden layer dimension is 1024-dimensions, and the
decoded beam size is 12. The default dropout technique in Nematus is used on all the
layers (Hinton et al. [18]). Our NMT model choose ADADELTA as the optimizer
(Zeiler et al. [15]), and trains about 400,000 small batches. It runs on a single
GeForce GTX 1080 GPU for 2 days. The case-sensitive 4-gram NIST BLEU score
(Papineni et al. [19]) is used as the evaluation metric.

4.2 The Results

The performance comparison of our model with the baseline is conducted and the
results is shown as Table 1. From the table, the translation results of attention NMT
based on the syntactic branch distance constraint (as SbdAtt) on the IWSLT 2017
testing dataset is 23.49. Compared with global attention (as GlobalAtt), our proposed
LocalAtt-SBD has increased 1.61 BLEU points on average. This indicates that, com-
pared with global attention focusing on global information, our method acquires more
accurate context information during the translation process, which effectively improves
translation performance.

In terms of the baseline local attention (as LocalAtt), our proposed LocalAtt-BSD
has increased by 2.45 BLEU points on average, demonstrating that our method can
learn more source dependency information to effectively improve the translation per-
formance of NMT. The proposed syntactic branch distance attention can capture more
translation information than linear distance attention to improve word prediction.

Table 1. Results on EN-DE translation tasks of different attention mechanism

EN-DE dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015 avg

GlobalAtt 19.87 21.94 24.45 21.93 22.72 20.05 22.22 21.88
LocalAtt 20.31 21.05 22.56 20.69 22.11 19.36 21.22 21.04
SbdAtt 22.67 24.00 25.29 22.54 25.02 21.42 23.55 23.49
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5 Conclusion

This paper tried to integrate the prior knowledge of syntactic analysis with traditional
attention mechanism to improve translation performance. An attention mechanism
based on tuned branch syntax was proposed. Syntax-directed selective attention on the
word associated with source word, including the cases of the same branch and different
branch with the source word, was proposed for the predication of target words.
Experiment results on the IWSLT2017 showed that the proposed model outperformed
the local attention baseline method. In the future, we will extend the experiment to
other languages (such as Chinese-English) to test the scalability of the model and the
applicability on long sentences.

Acknowledgements. This work was supported by National Natural Science Foundation of
China (No.61772146).

References

1. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700–1709
(2013)

2. Cho, K., Merrienboer, B.V., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning
phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078 (2014)

3. Sutskever, I., Vinyals, O., Le, Q.V.: Sutskever, I., et al.: Sequence to sequence learning with
neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473 (2015)

5. Luong, M.T., Sutskever, I., Le, Q.V., et al.: Addressing the rare word problem in neural
machine translation. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Vet. Med. 27(2), 82–86
(2014)

6. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

7. Sennrich, R., Haddow, B.: Linguistic input features improve neural machine translation. In:
Proceedings of the First Conference on Machine Translation, Berlin, Germany, pp. 83–91.
ACL (2016)

8. Eriguchi, A., Tsuruoka, Y., Cho, K.: Learning to parse and translate improves neural
machine translation. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada, pp. 72–78. ACL (2017)

9. Li, J., Xiong, D., Tu, Z., Zhu, M., Zhou, G.: Modeling source syntax for neural machine
translation. In: Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics, Vancouver, Canada, pp. 688–697. ACL (2017)

10. Wu, S., Zhang, D., Yang, N., Li, M., Zhou, M.: Sequence-to-dependency neural machine
translation. In: Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1), Vancouver, Canada, pp. 698–707 (2017)

56 R. Peng et al.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1503.00075


11. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural machine
translation. In: Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics, Berlin, Germany, pp. 823–833 (2016)

12. Chen, H., Huang, S., Chiang, D., Chen, J.: Improved neural machine translation with a
syntax-aware encoder and decoder. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, Vancouver, Canada, pp. 1936–1945 (2017)

13. Wu, S., Zhou, M., Zhang, D.: Improved neural machine translation with source syntax. In:
Proceedings of the Twenty Sixth International Joint Conference on Artificial Intelligence,
IJCAI-2017, pp. 4179–4185 (2017)

14. Chen, K., Wang, R., Utiyama, M., Liu, L., Zhao, T., et al.: Neural machine translation with
source dependency representation. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copenhagen, Denmark, pp. 23–32 (2017)

15. Zeiler M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.
5701 (2012)

16. Sennrich, R., Firat, O., Cho, K., et al.: Nematus: a toolkit for neural machine translation. In:
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics, Valencia, Spain, pp. 65–68 (2017)

17. Chang, P.C., Tseng, H., Jurafsky, D., Manning, C.D.: Discriminative reordering with
Chinese grammatical relations features. In: Proceedings of the Third Workshop on Syntax
and Structure in Statistical Translation, Boulder, Colorado, pp. 51–59 (2009)

18. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving
neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.
0580 (2012)

19. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA, pp. 311–318 (2002)

20. Wang, X., Pham, H., Yin, P., Neubig, G.: A tree-based decoder for neural machine
translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 4772–4777(2018)

21. Ahmed, M., Samee, M. R., Mercer, R. E.: Improving tree-LSTM with tree attention. In:
Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing,
pp. 247–254(2019)

Neural Machine Translation with Attention 57

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580


Phrase-Based Chinese-Vietnamese
Pseudo-Parallel Sentence Pair Generation

Jiaxin Zhai1,2, Zhengtao Yu1,2(&), Shengxiang Gao1,2,
Zhenhan Wang1,2, and Liuqing Pu1,2

1 School of Information Engineering and Automation,
Kunming University of Science and Technology, Kunming 650500, China

ztyu@hotmail.com
2 Artificial Intelligent Key Laboratory of Yunnan Province,

Kunming University of Science and Technology, Kunming 650500, China

Abstract. The lack of Chinese-Vietnamese parallel corpus has resulted in poor
translation of Chinese-Vietnamese neural machine translation. In order to solve
this problem, we propose a phrase-based Chinese-Vietnamese pseudo-parallel
sentence pair generation method. This method expands the corpus of Chinese-
Vietnamese neural machine translation and improves the performance of
Chinese-Vietnamese neural machine translation. Firstly, based on the small-
scale Chinese-Vietnamese parallel corpus, the method selects the phrase module
according to the phrase syntactic structure information. Then this method
combines word alignment information with replacement rules. Finally, the
method achieves the expansion of Chinese-Vietnamese pseudo-parallel corpus.
Experiments show that this method can effectively generate Chinese-Vietnamese
pseudo-parallel sentence pairs and improve the performance of Chinese-
Vietnamese neural machine translation.

Keywords: Phrase structure syntax � Phrase replacement � Pseudo-parallel
sentence pair generation � Chinese-Vietnamese � Neural machine translation

1 Introduction

Neural mechanical translation can only achieve better results by training large-scale
parallel corpora. Chinese-Vietnamese neural machine translation is a neural machine
translation of resource scarcity types. It is difficult to obtain large-scale parallel corpus
of Chinese-Vietnamese in a short time. Pseudo-parallel sentence pair generation is one
of the important methods to extend pseudo-parallel corpus. Many researches have
shown that pseudo-parallel corpora can also effectively improve the performance in
neural machine translation of resource scarcity types.

There are three methods to generate pseudo-parallel corpora now. They are the
method of back translation [1], the method of retelling [2–5], and the method of data
augmentation [6]. These methods use a small amount of parallel corpus to generate
pseudo-parallel corpora. But these specific methods are different. The back translation
based method uses monolingual corpus resources to generate pseudo-parallel corpora
in the iterative process of the neural machine translation model. The retelling based
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method uses external resources to reproduce the bilingual parallel corpus. The method
based on data enhancement uses the information of parallel corpus, and replaces the
module under the certain rules to realize the generation of pseudo-parallel corpus.

The method based on data enhancement can achieve better results without intro-
ducing additional resources. Therefore, this paper uses the method of data enhancement
to realize the generation of Chinese-Vietnamese pseudo-parallel corpora. This method
is also called a phrase-based Chinese-Vietnamese pseudo-parallel sentence pair gen-
eration method. This method firstly realizes the word alignment and phrase syntactic
structure analysis for small-scale Chinese-Vietnamese parallel corpus. Then the method
extracts the Chinese-Vietnamese aligned noun phrase (NP) and verb phrase (VP) ac-
cording to the word alignment information and the phrase syntactic structure infor-
mation of the parallel sentence pair, and form a collection of Chinese-Vietnamese
alignment phrases. Finally, according to the phrase syntactic parsing tree of the Chinese
and Vietnamese parallel sentence pairs, we find the NP and VP structures at different
depths. At the same time, we use the set of aligned phrases to replace the phrases in the
sentence, and use the language model to verify the newly generated sentences, and
finally generate the Chinese and Vietnamese pseudo-parallel sentence pairs.

2 Related Work

In recent years, domestic and foreign scholars have studied the methods of corpus
generation for small-scale parallel corpora, and have achieved a series of results. On the
premise of not introducing additional resources, He et al. [5] proposed a paraphrase
method based on dependency analysis and sentence generation. The method obtains a
dependency tree by performing dependency analysis on sentences, and then generates
multiple natural language sentences from the dependency tree. The sentence generated
by this method has no lexical change compared to the original sentence. However, this
method has changed the word order and improved the quality of machine translation
without introducing additional resources. Fadae et al. [6] proposed the method of TDA
(Translation Data Augmentation) to generate pseudo-parallel sentence pairs. The
method first replaces the common words in the parallel sentence pairs with the rare
words, and obtains the pseudo-parallel sentence pairs. To ensure that the pseudo-
parallel sentence pairs are grammatically and semantically correct, the method uses a
language model to filter pairs the pseudo-parallel sentences pairs. The pseudo-parallel
sentence pair through the screening mechanism is the training corpus that can be used
as a neural machine translation. Cai et al. [7] use data enhancement technology to
expand the training data of resource-starved languages. The method first blocks the
sentence and then finds the two most similar modules in the sentence. Finally, by
forming a new sentence by adjusting their position, we have realized the extension of
the pseudo-parallel sentence pair.

These results have effectively expanded the scale of translation corpus and
improved the performance of machine translation. He et al. [5] adjust the order of
statistical machine translation by changing word order. Fadae et al. [6] and Cai et al. [7]
did not consider sentence structure complexity when they use module substitution to
generate pseudo-parallel corpora. This method leads to grammatical semantic errors in

Phrase-Based Chinese-Vietnamese Pseudo-Parallel Sentence Pair Generation 59



the sentence. We believe that the granularity of words is too small, and there is a one-
to-many problem in the process of word alignment. Therefore, there will be gram-
matical and semantic errors in the sentence during the replacement process. There is
also the problem that the replaced alignment words do not match in the sentence. The
smallest translation unit is composed of multiple words. It is difficult to have a one-to-
many problem. However, if we perform module replacement without the instruction of
syntactic information, it is prone to grammatical errors.

In order to solve these problems, this paper proposes a phrase-based method for
generating Chinese and Vietnamese pseudo-parallel sentence pairs. In this method, we
use the phrase syntax structure information to guide the phrase replacement process.
This approach not only avoids one-to-many problems, but also avoids syntactic errors
in the replacement process.

3 Phrase-Based Extension Model of Chinese-Vietnamese
Pseudo-Parallel Sentences

This section focuses on the Chinese and Vietnamese phrase extraction and alignment,
as well as the phrase replacement rules. Figure 1 is the overall frame diagram of this
document.

Fig. 1. Phrase-based Chinese and Vietnamese pseudo-parallel sentence pair generation model
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3.1 Chinese-Vietnamese Sentence Structure

The main syntactic components of Chinese and Vietnamese are arranged in the same
order, and the order of the modifiers is inconsistent in most cases. Modern linguistics
has found that all languages in the world seem to have the same structure [8].

(1) A sentence (ROOT) consists of at least one simple clause (IP);

ROOT ! IP� ð1Þ

(2) A simple clause (IP) consists of a noun phrase (NP) and a verb phrase (VP);

IP ! NP VP ð2Þ

(3) A noun phrase (NP) is composed of the qualifier (det), the adjective (A), and the
noun (N);

NP ! det A�N ð3Þ

(4) A verb phrase (VP) consists of a noun phrase (NP) and a verb (V).

VP ! NP VP ð4Þ

There are other phrase structures in Chinese and Vietnamese sentences, such as
prepositional phrases (PP). This article mainly uses noun phrases (NP) and verb
phrases (VP) as phrases. In particular, the noun phrase (NP) here has only one word.

3.2 Chinese-Vietnamese Phrase Alignment

There are not natural spacers between words in Chinese sentences. Although there are
spaces in Vietnamese sentences. However, spaces are used as spacers for syllables.
A syllable is probably not a separate word. We use Stanford University’s Stanford NLP
[9] toolkit for word segmentation and syntactic structure analysis of Chinese and
Vietnamese corpora. At the same time, we use GIZA++ [10] to perform the Chinese-
Vietnamese word alignment processing, and obtain the Chinese-Vietnamese word
alignment information.

After the syntactic parsing of the Chinese-Vietnamese parallel sentence pairs, we
can obtain the phrase syntactic structure tree of the parallel sentence pairs. Figure 2
(a) is a syntactic parse of the Chinese phrase structure syntax tree. Figure 2(b) is the
corresponding Vietnamese phrase structure syntax tree. The phrase structure syntax
tree of the Chinese and Vietnamese parallel sentence pairs is similar. Both the NP
phrase and the VP phrase in the sentence are at the same depth in the tree, and the
components that make up the phrases are similar.
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Since the Chinese-Vietnamese parallel sentence pairs have similar syntax struc-
tures, we find all NP nodes and VP nodes in the tree. And we use each NP node and VP
node as the root node to form multiple subtrees, each subtree is the phrase in this
article. Then we use the word alignment information, the depth information of the
node, and the node information of each subtree to perform the phrase alignment.
Table 1 is the phrase after the alignment of the Chinese and Vietnamese parallel
sentences.

(a) 

(b) 

Fig. 2. Chinese and Vietnamese syntax tree.
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For the phrase consisting of at least two words, we add it to the collection of
Chinese and Vietnamese aligned phrases. For an NP phrase containing only one word,
if the word is a rare word (the frequency of occurrence in the corpus is less than C),
then we add this NP phrase block to the set of Chinese-Vietnamese aligned phrases.

3.3 Phrase Replacement

Phrase structure syntax analysis can transform sentences into tree structures. The
structure of this tree puts the words in the right place, and the structure of the tree is
modular [8]. In the phrase syntax tree, the noun phrase NP and the verb phrase VP are
like the components of a certain shape. According to the rules of the phrase structure
syntax tree, we can insert or replace one component (phrase) arbitrarily with another
component (phrase).

Therefore, the rules for the replacement of phrases in this article are mainly:

(1) The same phrase can be replaced. That is, the NP phrase in the sentence can only
be replaced with the NP phrase, and the VP phrase can only be replaced with the
VP phrase.

(2) Each sentence replaces only one phrase at a time, and the new sentence pair no
longer replaces the phrase.

This substitution rule can not only change the word frequency information of the
corpus, but also change the structural information of the sentence. When we replace the
other phrase blocks with a noun phrase consisting of only one rare word, we can
increase the frequency of occurrence of rare words and enhance the generalization
ability of rare words. When the phrases of different sizes are replaced, the structural
information of the sentence is also changed.

Figure 3(a) is a phrase replacement for changing the word frequency information,
and Fig. 3(c) is a phrase replacement for changing the syntax structure.

In Fig. 3(a), we also replace the NP phrase in the Chinese-Vietnamese parallel
sentence with an NP phrase in the Chinese-Vietnamese aligned phrase set, which
changes the corpus frequency information. In Fig. 3(b), we replace the NP phrase
consisting of one word in a sentence with a more complex NP phrase, which changes
the structural information of the sentence.

Table 1. Alignment phrases in Chinese-Vietnamese parallel sentence pairs.

phrase Chinese Vietnamese

1 (NP(PN 这个(This))(AD 爱笑的

(laughing))(NN 男孩(boy)))
(NP(PN Cậu(This))(NN bé(boy))(AD
hay cười này(laughing)))

2 (VP(VV 叫(is))(NP(NN 小明

(Xiaoming))))
(VP(VV là(is))(NP(NN Xiaoming
(Xiaoming))))

3 (NP(NN 小明(Xiaoming))) NP(NN Xiaoming(Xiaoming)))
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3.4 RNN-Based Language Model Verification Mechanism

We believe that the Chinese and Vietnamese sentence pairs generated under the
guidance of the phrase structure syntax information have fewer grammatical errors, but
many sentence pairs have semantic errors. In order to judge whether the Chinese and
Vietnamese sentences obtained by phrase substitution conform to the grammatical and
semantic features, we use the verification mechanism of the RNN-based language
model. The verification mechanism can predict the probability of occurrence of the next
word according to the context of the text, and can further calculate the probability of
occurrence of the entire sentence. In theory, when the grammatical semantics of the
corpus of the training language model is correct, sentences with wrong grammatical
semantics will get lower scores.

(a)

(b) 

Fig. 3. The rules of phrase replacement
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In order to ensure that the generated Chinese-Vietnamese sentence pairs are correct
in syntax and semantics, we constructed Chinese and Vietnamese language models for
verification. The specific process is shown in Fig. 4.

Figure 4 is the flow of the RNN-based language model verification mechanism.
The Chinese language model and the Vietnamese language model were trained using
Chinese Wikipedia corpus and Vietnamese Wikipedia corpus. For the generated
Chinese-Vietnamese sentence pairs, we use the Chinese language model and the
Vietnamese language model to score Chinese sentences and Vietnamese sentences.
This score is the probability that a sentence will appear. If the score of the sentence is
higher, it means that the higher the probability of the sentence appearing, the higher the
probability that the sentence is correct in grammatical semantics. When the score of a
sentence is less than the threshold we set, we think that the sentence is the wrong
sentence, and filter out the sentence of the Chinese-Vietnamese sentences. Only when
the Chinese sentences and Vietnamese sentences in the Chinese and Vietnamese
sentences are screened by the language model, we use the Chinese and Vietnamese
sentence pairs as the Chinese and Vietnamese pseudo-parallel corpus for training the
Chinese and Vietnamese neural machine translation models.

For the selection of the language model threshold, we use the language model to
score the monolingual corpus of the corresponding language, and separately calculate
the lowest score in the monolingual corpus, which is used as the threshold of the
corresponding language model.

4 Experiment

4.1 Data Settings

This paper is based on the small-scale parallel sentence pairs of Chinese and Viet-
namese to generate Chinese-Vietnamese pseudo-parallel sentence pairs. Therefore, we
will use the 120,000 Chinese-Vietnamese parallel sentence pairs crawled from the
Internet as the sentence pairs to be expanded.

Before performing pseudo-parallel sentence pairs based on phrase substitution, we
also need to perform a series of pre-processing work on Chinese-Vietnamese parallel
corpus, including word segmentation, word alignment, phrase extraction, and phrase
alignment.

Fig. 4. Language model verification mechanism.
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4.2 Experimental Results

In this paper, we mix Chinese-Vietnamese parallel corpus with Chinese-Vietnamese
pseudo-parallel corpus in different proportions. Through this approach, we verify the
influence of the generated Chinese and Vietnamese pseudo-parallel corpus on the
translation of the Chinese and Vietnamese neural machines. The benchmark experi-
ments in this paper are RNNSearch [11], GNMT [12], and Transformer [13]. The
benchmark experiment was trained by the Chinese and Vietnamese parallel corpora,
and the corpus size was 125 k parallel sentence pairs. According to the ratio of 2:1, 1:1,
1:2, 1:5 (parallel corpus: pseudo-parallel corpus), we mix parallel corpus and pseudo-
parallel corpus. Then we trained the RNNSearch, GMT, and Transformer models with
the mixed corpus. Table 2 shows the experimental results of the baseline model and the
addition of pseudo-parallel corpus. The evaluation index is the value of BLEU.

After joining the Chinese-Vietnamese pseudo-parallel corpora, the performance of
the Chinese and Vietnamese neuromachine translations has generally improved. For the
RNNSearch model, when the mixing ratio of the Chinese-Vietnamese parallel corpus
and the Chinese-Vietnamese pseudo-parallel corpus is 1:2, the value of the BLEU is the
highest. For the GNMT model, when the mixing ratio of the Chinese-Vietnamese
parallel corpus and the Chinese-Vietnamese pseudo-parallel corpus is 1:5, the value of
the BLEU is the highest. For the Transformer model, when the mixing ratio of the
Chinese-Vietnamese parallel corpus and the Chinese-Vietnamese pseudo-parallel cor-
pus is 1:5, the value of the BLEU is the highest. In general, the more pseudo-parallel
corpora generated by the method of this paper, the better the performance of Chinese-
Vietnamese neural machine translation. Table 3 is a partial pseudo-parallel sentence
pair generated by the phrase block replacement to generate pseudo-parallel sentence
pairs.

From the experimental results, the generated Chinese-Vietnamese pseudo-parallel
sentence pairs have higher quality. In the pseudo-parallel sentence pairs between
Chinese-Vietnamese, there may be cases where Chinese and Vietnamese cannot be
completely translated because of the word alignment. However, since this situation is
rare, we believe that the generated Chinese-Vietnamese pseudo-parallel sentence pairs
have higher quality.

Table 2. Experimental results after adding pseudo-parallel corpus.

Mixed ratio
(parallel: pseudo-parallel)

RNNSearch GNMT Transformer

– 13.43 14.21 18.63
2:1 13.86 14.49 18.86
1:1 14.08 14.83 19.15
1:2 14.70 15.20 19.63
1:5 14.55 15.57 20.06
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5 Summary

This paper proposes a pseudo-parallel corpus generation method based on small-scale
Chinese-Vietnamese parallel corpora. We transform the generation of pseudo-parallel
corpus into the replacement and recombination of elements between sentences. We
combine the noun phrase (NP) and the verb phrase (VP) in the phrase structure syntax
tree into a phrase block. Then we reorganize the sentences based on the principle that
phrases of the same nature can be replaced. Finally, we use the language model to
grammatically and semantically constrain the newly generated sentences, and achieve
the purpose of generating pseudo-parallel sentence pairs with correct grammatical
semantics. The experimental results show that the proposed method can generate
Chinese-Vietnamese pseudo-parallel corpus with high quality, which effectively
improves the performance of Chinese-Vietnamese neural machine translation.
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Table 3. Pseudo-parallel sentence pair generation results based on phrase substitution.

Chinese Vietnamese

这是西班牙的EUPHORE粉尘和烟雾研究

实验室。(This is the EUPHORE dust and
smoke research laboratory in Spain.)

ĐâylàPhòngnghiêncứukhóibụi EUPHORE ở
Tây Ban Nha. (This is the EUPHORE dust
and smoke research laboratory in Spain.)

这是西班牙的科学仪器。(This is the
Spanish scientific instruments.)

Đâylàmộtcôngcụ khoa họctừTây Ban Nha.
(This is the Spanish scientific instruments.)

这是西班牙的最大的科学会议。(This is
the largest scientific conference in Spain.)

Đâylàhộinghị khoa họclớnnhất ở Tây Ban
Nha. (This is the largest scientific conference
in Spain.)

这是西班牙的头条新闻。(This is the
headline news of Spain.)

Đâylà tin tứctiêuđềcủaTây Ban Nha. (This is
the headline news of Spain.)

这是一场全球性的品牌推广活动。(This is
a global branding event.)

Đâylàmộtsựkiệnthươnghiệutoàncầu. (This is
a global branding event.)

这是我的第二本书。(This is my second
book.)

Đâylàcuốnsáchthứhaicủatôi. (This is my
second book.)

这是一场狩猎游戏吗? (Is this a hunting
game?)

Đâycóphảimộttròsăntìmkhông? (Is this a
hunting game?)
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Abstract. The goal of China Conference on Machine Translation (CCMT
2019) Shared Task on Quality Estimation (QE) is to investigate automatic
methods for estimating the quality of Chinese$English machine translation
results without reference translations. This paper presents the submissions of our
team for the sentence-level Quality Estimation shared task of CCMT19. Con-
sidering the good performance of neural models in previous shared tasks of
WMT, our submissions also include two neural-based models: one is Bi-
Transformer which proposes the model as a feature extractor with a bidirectional
transformer and then processes the semantic representations of source and the
translation output with a Bi-LSTM predictive model for automatic quality
estimation, and the other BiRNN architecture uses only two bi-directional RNNs
(bi-RNN) with Gated Recurrent Units (GRUs) as encoders, and learns repre-
sentation of the source and translation sentence pairs to predict the quality of
translation outputs.

Keywords: Quality Estimation � Transformer � Translation evaluation

1 Introduction

Quality estimation (QE) refers to the task of measuring the quality of machine trans-
lation (MT) system outputs without reference to the gold translations (Blatz et al. 2004;
Specia et al. 2013). QE can be performed on multiple granularities, including at word
level, sentence level, or document level. QE results can be particularly useful during the
costly Post-Edition (PE) process, the process of manually correcting MT output to
achieve a publishable quality. QE indicates if an MT unit (i.e. a word, a phrase, a
sentence, a paragraph or a document) is worth post-editing.

The QE task is usually cast as a supervised regression or classification task, with a
rather small amount of manually annotated or/and post-edited data. This data can be
labelled using automatic metrics towards post-edited references.

QE has been a shared task of WMT since 2012. Early work on this problem
mainly focused on hand-crafted features with simple regression/classification models
(Ueffing and Ney 2007; Bicici 2013). Traditional baseline models have two modules:

© Springer Nature Singapore Pte Ltd. 2019
S. Huang and K. Knight (Eds.): CCMT 2019, CCIS 1104, pp. 69–76, 2019.
https://doi.org/10.1007/978-981-15-1721-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1721-1_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1721-1_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1721-1_7&amp;domain=pdf
https://doi.org/10.1007/978-981-15-1721-1_7


human-crafted rule-based feature extraction model via QuEst++1 (Specia et al. 2015);
and an SVM regression with an RBF kernel as well as grid search algorithms for
predicting how much effort is needed to fix translations to acceptable results or a
sequence-labeling model with CRFsuite toolkit2 to predict which word in the trans-
lation output needs to be edited. A recently proposed predictor-estimator model with
stack propagation (Kim et al. 2017) is a recurrent neural network (RNN) based feature
extractor and quality prediction model that ranked first place in WMT17. Another
novel method is to train an Automatic Post-Editing (APE) system and adapt it to
predict sentence-level quality scores and word-level quality labels (Martins et al. 2017).
Alibaba’s system with Transformer architecture outweighs all other systems in the QE
task of WMT 2018 (Wang et al. 2018).

This paper presents our submitted systems for Chinese-English and English-
Chinese sentence-level QE tasks in CCMT2019. Which consists two neural models:
one is Bi-Transformer QE and the other is Bi-RNN QE.

The Bi-Transformer QE has two phases: feature extraction and quality estimation.
In the phase of feature extraction, it extracts high-level latent joint semantics and
alignment information between the source and the translation output, relying on the
“feature extractor” introduced by (Fan et al. 2018) as a prior knowledge model, which
is trained on large-scale parallel corpus. The high-level latent semantic features
exported from the prior knowledge model are fed into a predictive model in the phase
of quality estimation, with which the scoring prediction for the sentence-level task.

The Bi-RNN QE architecture uses two bi-directional RNNs (bi-RNN) with Gated
Recurrent Units (GRUs) as encoders to learn the representation of the source and
translation sentence pair. The representations of the source and of the automatic
translation are learned independently.

In the following sections, we will describe the two models in detail and conduct
experiments for the task participation.

2 Systems Description

2.1 Bi-Transformer

The overall model architecture of the proposed Bi-Transformer is illustrated in Fig. 1.
The Bi-Transformer QE contains two main modules: a feature extractor and a quality
estimator.

Feature Extractor
The feature extractor extracts features representing latent semantic information of the
source and translation pair. These features will be fed into the quality estimator to
estimate the translation quality.

The feature extractor uses self-attention mechanism and transformer neural
networks (Vaswani et al. 2017) to construct a bidirectional transformer architecture

1 https://www.quest.dcs.shef.ac.uk/.
2 www.chokkan.org/software/crfsuite/.
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(Fan et al. 2018), serving as a conditional language model. It is used to predict every
single word in the target sentence given the entire source sentence and its context. The
feature extractor consists of three sub-modules: the first is a transformer encoder for the
source sentence, the second are forward and backward encoders for the target sentence
with the masked self-attention in the transformer decoder module, and third is recon-
struction for the target sentence. Once the feature extractor is fully trained, we can use
the prior knowledge to extract the features for the subsequent translation quality
estimator.

And the bi-directional LSTM (Graves and Schmidhuber 2005) is appropriate in the
QE situation. Our system employs the feature extractor and the quality estimation based
on Bi-LSTM.

Then, we will show the method to train the feature extractor with a parallel corpus
including source and target sentence (s, t) pairs. According to the Bayes rule, we can
write the posterior distribution of the latent variable as follow:

p zjt; sð Þ ¼ pðtjz; sÞpðzjsÞ
pðtjsÞ ð1Þ

where s represents the tokens sequence of source sentence, t for target sentence, and z is
the latent variable to represent the encoded source sentence. Because the integral
p tjsð Þ ¼ R

pðtjzÞpðzjsÞdz is usually intractable, we propose a variational distribution
q(z|t,s) to approximate true posterior by minimizing exclusive Kullback-Leibler
(KL) divergence. We maximize the following function:

maxEq zjt;sð Þ p tjzð Þ½ � � DKLðqðzjt; sÞjjpðzjsÞÞ ð2Þ

In analogous to most VAE models (Kingma and Welling 2013), the expected log-
likelihood is commonly approximated by a practical surrogated term:

Fig. 1. Architecture of Bi-Transformer
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Eq zjt;sð Þ p tjzð Þ½ � � p tj~zð Þ;~z� q zjt; sð Þ ð3Þ

There are three modules in total, self-attention encoder for the source sentence,
forward and backward self-attention encoders for target sentence, and the reconstructor
for the target sentence, where the first two modules represent the proposed posterior
approximation q(z|s,t) and the third reconstruction process corresponds to p(t|z).

The conditional independence with the following factorization:

p tjzð Þ ¼
Y

k
pðtkj~zk; z kÞ ð4Þ

p zjs; tð Þ ¼
Y

k
qð~zkjs; t\kÞq z kjs; t[ k

� �
ð5Þ

where the bidirectional latent variable z includes all ~zk; z
 
k

n o
. Latent variables~zk, z

 
k are

sampled from qð~zkjs; t\kÞ and qðz kjs; t[ kÞ respectively, assuming to follow the

Gaussian distribution. The latent representation zk ¼ Concat ~zk; z
 
k

� �
, the entire latent

variable is z. The embedding concatenation of two neighbor tokens is
Concat etk�1 ; etkþ 1

� �
.

Quality Estimator
As for the Bi-LSTM Quality Estimator part, the sentence-level score prediction can be
formulated as a regression problem with the objective function:

~h1:T ; h
 
1:T ¼ Bi� LSTMðffkgTk¼1Þ ð6Þ

argminjjh� sigmoidðwT ½ h!T ; h
 

T �Þjj22 ð7Þ

where~hT and h
 
T are the hidden states of the last time stamps of the Bi-LSTM’s output,

h represents the translation score (HTER) and w is a vector, and fk ¼
Concat ~zk; z

 
k; etk�1 ; etkþ 1

� �
is the extracted features from feature extractor for QE

training data (s, m).

2.2 Bi-RNN

The proposed Bi-RNN QE system employs two bi-directional RNNs as encoders to
learn the representation of the (source, MT) sentence pairs. A bi-RNN typically cal-
culates a forward sequence of hidden states (~h1; . . .;~hJ ), and a backward sequence of

hidden states (h
 
1; . . .; h

 
J). The hidden states ~hj and h

 
j are concatenated to obtain the

resulting representation hj. In our approach, source and MT bi-RNNs are trained
independently, as illustrated in Fig. 2.
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The two representations are then combined via concatenation. However, sentence-
level QE scores reflect some importance of words within a sentence. Thus, weights
should be applied to those representations. Such weighting is provided by the attention
mechanism.

/j¼
exp WahTj

� �
PJ

k¼1 exp WahTk
� � ð8Þ

The resulting sentence vector is thus a weighted sum of word vectors:
v ¼PJ

j¼1/j hj. A sigmoid output layer takes this vector as input and produces real-
value quality scores.

3 Experiments

We submit the systems to sentence-level QE tasks in Chinese-English (C-E) and
English-Chinese (E-C). In this part, we will provide a detailed description of the
datasets together with the results for our submitted systems for each of these tasks.

Fig. 2. Architecture of Bi-RNN
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3.1 Data Settings

Data for the Tasks
Table 1 shows the official dataset provided by CCMT 2019 sentence-level QE tasks.

Data for Bi-Transformer System
To train the feature extractor in the system of Bi-Transformer, we use the official
parallel corpus released for the CWMT2018 Machine Translation task, Datum2017,
which includes 1M sentence pairs. We then filtered the corpus with the criteria that
length of sentences is equal to or less than 80.

Implementation Details
For Bi-Transformer system, the number of layers for the self-attention encoder and
forward/backward self-attention decoder are all set as 2, where we use 8-head self-
attention in practice. The number of hidden units for feed-forward sub-layer is 512. The
feature exactor is trained on 4 TITAN Xp GPUs for about 1.5 days until convergence.
For translation QE model, we use Bi-LSTM with one layer, and it is trained on 1
TITAN Xp GPU.

For Bi-RNN system, we use Gated Recurrent Units (GRUs) (Cho et al. 2014) as
RNNs, and the following hyperparameters: word embedding dimensionality = 300,
vocabulary size = 30K, size of the hidden units of the encoder = 50. The model is
trained to minimize the mean squared error loss using the Adadelta optimizer (Zeiler
2012) on 1 GTX 1080 GPU.

3.2 Data Preprocessing

The data are preprocessed before training the models. Chinese sentences are word
segmented with HanLP toolkit3 and English data are tokenized with tokenizer tool4 in
the Moses decoder.

3.3 Evaluation Results

In order to compare the performance, we train both character-based and word-based
models for each submitted system for the tasks. and Pearson’s correlation coefficient is
used as the primary evaluation metric to estimate the quality of prediction.

Table 1. Data for CCMT 2019 sentence-level QE tasks

Task Training Dev Test

C-E 10070 1143 1384
E-C 14789 1381 1444

3 https://github.com/hankcs/HanLP.
4 https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer.
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As the organizers have not provided the gold labels for the test set, we can only
obtain the results from the dev sets, as shown in Table 2.

As shown in above table, in C-E QE task, performance of Bi-Transformer are better
than Bi-RNN under character-based and word-based setting. Inside the Bi-Transformer
model, both the two settings have almost the same results. For another model, word-
based setting achieves 0.02 higher than character-based. Meanwhile, in E-C direction,
Bi-RNN slightly outperforms Bi-Transformer, and both word-based settings are higher
than character-based inside the two models. In a word, except the character-based Bi-
Transformer in C-E task, all the results of other word-based training are better than
those of character-based.

From the translation directions, both systems for C-E are all better than those for E-
C under the same training setting, which is consistent with the results of QE tasks for
Chinese$English in last year’s CWMT.

4 Conclusion

This paper introduces our submissions to the sentence-level Quality Estimation tasks
for Chinese-English and English-Chinese in CCMT 2019. We proposed two models
named Bi-Transformer and Bi-RNN with both character-based and word-based training
setting. Both the two systems are competitive in the QE tasks, but considering its
simplicity and independence from external resources, as well as less training time, Bi-
RNN may be more suitable for certain scenarios such as low-resource languages.

In the future, we plan to train the systems with larger size of corpus, and incor-
porate pretrained (contextual) embeddings and cross-lingual embeddings with the
NMT module in the systems.

Acknowledgment. This work is supported by China Postdoctoral Science Foundation (CPSF,
Grant No. 2018M640069).

Table 2. Evaluation results of our systems on dev set

System Training C-E(r) E-C(r)

Bi-Transformer Character-based 0.319 0.227
Word-based 0.317 0.237

Bi-RNN Character-based 0.296 0.229
Word-based 0.310 0.240
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Abstract. This paper describes the NICT’s neural machine translation
systems for Chinese↔English directions in the CCMT-2019 shared news
translation task. We used the provided parallel data augmented with
a large quantity of back-translated monolingual data to train state-of-
the-art NMT systems. We then employed techniques that have been
proven to be most effective, such as fine-tuning, and model ensembling, to
generate the primary submissions of Chinese↔English translation tasks.

Keywords: Neural machine translation · CCMT-2019 · NICT

1 Introduction

This paper presents the neural machine translation (NMT) systems built
for National Institute of Information and Communications Technology
(NICT)’s participation in the CCMT-19 shared News Translation Task for
Chinese↔English directions. Specifically, we used the Transformer architecture
to build our translation systems. We then employed techniques that have been
proven to be most effective, such as back-translation, fine-tuning, and model
ensembling, to generate the primary submissions of Chinese↔English translation
tasks. All of our systems are constrained, i.e., we used only the parallel and
monolingual data provided by the organizers to train and tune our systems.
This system is also a part of our system for WMT19 [1]1.

The remainder of this paper is organized as follows. In Sect. 2, we present
the data preprocessing. In Sect. 3, we introduce the details of our NMT systems.
Empirical results obtained with our systems are analyzed in Sect. 4 and we
conclude this paper in Sect. 5.

2 Datasets

2.1 Data

As parallel data to train our systems, we used all the provided parallel data for all
our targeted translation directions. The training data for the Chinese↔English
1 The Chinese-English task is jointly held by CCMT-2019 and WMT19. Therefore,

part of these two system description papers are overlapped.

c© Springer Nature Singapore Pte Ltd. 2019
S. Huang and K. Knight (Eds.): CCMT 2019, CCIS 1104, pp. 77–81, 2019.
https://doi.org/10.1007/978-981-15-1721-1_8
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(ZH↔EN) translation tasks consists of two parts: (1) we selected the first 10
million lines of the News Crawl 2018 English corpus according to the finding
of [6,11], (2) the corresponding synthetic data was generated through back-
translation [5,8].

2.2 Pre-processsing

We applied tokenizer and truecaser of Moses [4] to the English sentences. For
Chinese, we used Jieba2 for tokenization but did not perform truecasing. For
cleaning, we filtered out sentences longer than 80 tokens in the training data
by using Moses script clean-n-corpus.perl, and replaced characters forbidden by
Moses. Tables 1 and 2 present the statistics of the parallel and monolingual data,
respectively, after pre-processing.

Table 1. Statistics of our pre-processed parallel data

Language pair #Sentence pairs #Tokens

Chinese English

Chinese↔English 24.8M 509.9M 576.2M

Table 2. Statistics of our pre-processed monolingual data

Language #Sentences #Tokens

English 338.7M 7.5B

Chinese 130.5M 2.3B

3 MT Systems

3.1 NMT

We used Marian toolkit [2]3 to build competitive NMT systems based on the
Transformer [10] architecture. We used the byte pair encoding (BPE) algorithm
[9] for obtaining the sub-word vocabulary whose size was set to 50,000. The
number of dimensions of all input and output layers was set to 512, and that
of the inner feed-forward neural network layer was set to 2048. The number
of attention heads in each encoder and decoder layer was set to eight. During
training, the value of label smoothing was set to 0.1, and the attention dropout
and residual dropout were set to 0.1. The Adam optimizer [3] was used to tune
the parameters of the model. The learning rate was varied under a warm-up
strategy with warm-up steps of 16,000. We validated the model with an interval
2 https://github.com/fxsjy/jieba.
3 https://marian-nmt.github.io.

https://github.com/fxsjy/jieba
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of 5,000 batches on the development set and selected the best model according to
BLEU [7] score on the development set. All our NMT systems were consistently
trained on 4 GPUs,4 with the following parameters for Marian (Table 3):

Table 3. Parameters for training Marian.

--type transformer --max-length

100 --transformer-dim-ffn 4096

--dim-vocabs 50000 50000 -w 12000

--mini-batch-fit --valid-freq 5000

--save-freq 5000 --disp-freq 500

--valid-metrics ce-mean-words perplexity

translation --quiet-translation

--sync-sgd --beam-size 12

--normalize=1 --valid-mini-batch

16 --keep-best --early-stopping

20 --cost-type=ce-mean-words

--enc-depth 6 --dec-depth 6

--tied-embeddings --transformer-dropout

0.1 --label-smoothing 0.1

--learn-rate 0.0003 --lr-warmup 16000

--lr-decay-inv-sqrt 16000 --lr-report

--optimizer-params 0.9 0.98 1e-09

--clip-norm 5 --exponential-smoothing

3.2 Back-Translation of Monolingual Data

The so-called “back-translation” of monolingual has been shown to be one of
the most efficient ways to exploit monolingual data for NMT [8]. It is simply to
translate target monolingual data into the source language, using a pre-trained
target-to-source NMT models, in order to produce a new synthetic parallel
data that can be used to train NMT models. We concatenated the resulting
synthetic parallel data to the original parallel data to train better NMT models.
For En→Zh, we back-translated the entire XMU Chinese monolingual corpus
containing 5.4M sentences as the source to produce synthetic English data. For
Zh→En, we empirically compared the impact of back-translating different sizes
of English monolingual data, using the first 10M lines of the concatenation of
News Crawl-2016 and News Crawl-2017 English corpora to produce synthetic
Chinese data.

3.3 Fine-Tuning and Ensemble of NMT Models

After the back-translation, we performed the training run independently for
five times on the mixture of the original parallel data and the pseudo-parallel
4 NVIDIA® Tesla® P100 16Gb.
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data, and thus obtain the translation models. The new model was further fine-
tuned on the ccmt2018 newstest set for 20 epochs. Finally, we decoded the
ccmt2019 newstest set with an ensemble of the five fine-tuned models to generate
the primary submissions for the ZH↔EN tasks.

4 Results

Our systems are evaluated on the WMT2019NewsTest test set5 for ZH↔EN tasks
and the results are shown in Table 4. For EN→ZH, BLEU scores were computed
on the basis of character-based segmentation. “w/backtr” and “w/o backtr”
indicate with and without back-translation, respectively. “w/ft” indicates that
this single model was fine-tuned on the ccmt2018 newstest sets. “ensemble”
indicates that five fine-tuned single models were ensembled at decoding time.

Table 4. Results (BLEU-cased) of our MT systems on the ccmt2018 newstest test
set.

System ZH→EN EN→ZH

Single model (w/o backtr) 23.3 30.3

Single model (w/backtr) 25.3 31.8

Single model (w/ft) 27.5 33.1

Five fine-tuned single models (ensemble) 31.0 34.5

Our observations from Table 4 are as follows: It is obvious that the back-
translation, fine-tuning, and ensemble methods are greatly effective for the
ZH↔EN tasks. In particular, the ensemble gave more improvements on the
ZH→EN task over the “Single model+back-translation+fine-tuning” model than
the EN→ZH task.

5 Conclusion

We presented in this paper the NICT’s participation in the CCMT-2019
shared Chinese↔English news translation task. Our primary submissions to the
tasks were the results of a simple combination of back-translation, fine-tuning,
and ensemble methods. Our results confirmed that these three methods can
incrementally improve translation performance of the Transformer NMT.

Acknowledgments. We are grateful to the anonymous reviewers and the area chair
for their insightful comments and suggestions. Rui Wang was partially supported
by JSPS grant-in-aid for early-career scientists (19K20354): “Unsupervised Neural
Machine Translation in Universal Scenarios” and NICT tenure-track researcher startup
fund “Toward Intelligent Machine Translation”.

5 http://www.statmt.org/wmt19/translation-task.html.
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Abstract. This paper describes our system submitted for the CCMT
2019 Quality Estimation (QE) Task, including sentence-level and word-
level. We propose a new method based on predictor-estimator architec-
ture [7] in this task. For the predictor, we adopt Transformer-DLCL [17]
(dynamic linear combination of previous layers) as our feature extract-
ing models. In order to obtain the information of translations in both
directions, we use right-to-left and left-to-right two models, concatenate
two feature vectors as whole quality feature vectors. For the estima-
tor, we use a multi-layer bi-directional GRU to predict HTER scores or
OK/BAD labels for different tasks. We pre-train the predictor according to
machine translation (MT) method with bilingual data from WMT2019
EN-ZH task, and then jointly train predictor and estimator with the QE
task data. We also construct 50K pseudo data in different methods in
respond to the data scarcity. The final system integrates multiple single
models to generate results.

Keywords: Quality estimation · Deep Transformer · Bi-GRU

1 Introduction

Quality estimation (QE) refers to the task of evaluating the quality of MT results
without any human annotated references [2]. We participate the CCMT 2019
QE task in both EN→ZH and ZH→EN directions. Each of them consists of two
subtasks: word-level and sentence-level. Word level task is to predict OK/BAD
labels for each word and gap in translation results, corresponding to mistrans-
lation, over-translation and under-translation. Sentence-level task is to predict
the Human-targeted Translation Edit Rate (HTER) scores [14] which represent
the overall quality of the translation results.

In early works, human-crafted features were wildly used. A typical frame-
work was QUEST++ [15] which provided a variety of features and machine
learning methods to build QE models. In recent years, neural models signifi-
cantly improved the performance in this task. Kim et al. [7] proposed a neural
c© Springer Nature Singapore Pte Ltd. 2019
S. Huang and K. Knight (Eds.): CCMT 2019, CCIS 1104, pp. 82–92, 2019.
https://doi.org/10.1007/978-981-15-1721-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1721-1_9&domain=pdf
https://doi.org/10.1007/978-981-15-1721-1_9
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network architecture called predictor-estimator, which adopted a bilingual recur-
rent neural network (RNN) language model [9] as predictor to extract feature
vectors, and used a bidirectional RNN as estimator to predict QE scores. Fan et
al. [5] introduced a bidirectional Transformer based pre-trained model for fea-
ture extraction, and used 4-dimensional mis-matching features from this model
to improve performance.

In our work, all the tasks we submit share the same model architecture
based on the predictor-estimator. We pre-train left-to-right and right-to-left
deep Transformer models with a large amount of bilingual data as predictor.
Byte-pair-encoding (BPE) [12] tokenization is applied to reduce the number of
unknown tokens. After that, a multi-layer Bi-GRU is used as estimator, and is
jointly trained with predictors using the quality estimation task data. We trans-
form word-level tasks into binary classification problems and sentence-level tasks
into regression problems for estimator model to predict labels or scores with the
feature information extracted by predictor.

To further improve the performance of the predictor, we use target-side mono-
lingual data to construct pseudo-data by various back-translation [3] methods,
including beam search, sampling and sampling-topk [4]. Due to the scarcity of
QE data, we also construct QE pseudo data. We regard real target-side sentences
in bilingual data as personal edited results, and use beam search, sampling or
sampling-topk to construct machine translation results. Finally, we used the TER
tool [14] to generate word-level OK/BAD labels or sentence-level HTER scores.

Our system also employs the ensemble strategy to further improve model
performance. By training multiple sub-models, the final results are fused by
voting or averaging in different tasks.

2 Deep Transformer

A strong and effective feature extraction model is essential for the estimator to
make more accurate predictions. We choose the pre-trained machine translation
model to extract features. Neural Machine Translation (NMT) based on multi-
layer self-attention has shown strong results in many machine translation tasks.
In order to improve the performance of machine translation and extract the
information contained in the sentences more fully, we apply the structure of
Pre-norm Transformer-DLCL. In this section, we describe the details about our
deep architecture as below:

Pre-norm Transformer: For Transformer [16], learning deeper networks [1]
is not easy because of the difficulty to optimize due to the gradient vanish-
ing/exploring problem. But in recent implementations, Wang et al. [17] empha-
sized that the location of layer normalization [8] plays a vital role when training
deep Transformer. In early versions of Transformer, layer normalization is placed
after the element-wise residual addition. While in recent implementations, layer
normalization is applied to the input of every sublayer, which can provide a
direct way to pass error gradient from top to bottom. In this way pre-norm
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Fig. 1. The architecture of our model based on predictor-estimator.

Transformer is more efficient for training than post-norm (vanilla Transformer)
when the model goes deeper.

Transformer-DLCL: In addition, a dynamic linear combination of previous
layers method [17] was used in Transformer model. Transformer-DLCL employed
direct links with all previous layers and offered efficient access to lower-level
representations in a deep stack. An additional weight matrix Wl+1 ∈ RL×L was
used to weight each incoming layer in a linear manner. This method can be
formulated as:

Ψ(y0, y1...yl) =
l∑

k=0

W l+1
k LN(yk) (1)

Equation 1 provided a way to learn preference of layers in different levels of
the stack, Ψ(y0, y1...yl) was the combination of previous layer representation.
Furthermore, this method is model architecture free which can be integrated with
either pre-norm Transformer or relative position Transformer [13] for further
enhancement. The details can be seen in Wang et al. [17].

We used Transformer-DLCL model with 25 layers in encoder, and show
the performance improvement of Transformer-DLCL vs. Transformer-base and
Transformer-Big in Table 1.
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Table 1. BLEU score and � BLEU [%] on WMT ZH→EN and EN→ZH newstest2017.

Task Model BLEU �BLEU

ZH→EN Transformer-Base 26.58 –

Transformer-Big 27.09 +0.51

Transformer-DLCL-25L 27.55 +0.97

EN→ZH Transformer-Base 25.54 –

Transformer-Big 26.59 +1.05

Transformer-DLCL-25L 27.30 +1.76

3 System

3.1 Architecture

The model architecture of the whole system is presented in Fig. 1. It consists
of two parts: a predictor which joint left-to-right and right-to-left Pre-norm
Transformer-DLCL, and an estimator with a multi-layer Bi-GRU. Predictor is
used to extract semantic information from given machine translation results,
according to source-side sentences. In order to fully consider the forward and
backward information in the sentences, we use the left-to-right and right-to-left
translation models to extract the bidirectional semantic information indepen-
dently, and then fuse them to obtain the quality vectors. After that, the quality
vector is fed into the bidirectional GRU to predict the HTER score or OK/BAD
labels. We first pre-train forward and backward translation models, then jointly
train the estimator with the predictor to maximize the evaluation capability of
the system.

3.1.1 Deep Bi-Predictor
The sequence-to-sequence based Transformer models [16] are powerful in extract-
ing information and have been proven to be strong in many translation tasks.
The Pre-Norm Transformer-DLCL further improves the feature extraction abil-
ity. The encoder receives the input sequence x = {x0, x1...xn},and maps it to a
vector z = {z0, z1...zn} of the same length,which contains the source sentence
feature. The decoder inputs the translation sequence y = {y0, y1...ym} and gen-
erates a top-level representation containing sufficient semantic and grammatical
information.

Due to the existence of the decoder mask, the unidirectional model can not
observe the future information. In order to make the vector extracted by the
model contain sufficient context knowledge, we use left-to-right and right-to-
left translation models respectively, and extract the feature vectors l2r and r2l
independently. We get the final quality vector by concatenating way (q = [l2r :
r2l]).
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3.1.2 Bi-GRU Estimator
RNN is widely used to solve sequence generation problem. And we use a Bi-
GRU as our estimator. The Bi-GRU consists of two parts, forward and back-
ward. It reads quality vector q, calculate the forward hidden states (

→
h1, · · · ,

→
hT )

and backward hidden states (
←
h1, · · · ,

←
hT ) respectively, where T is the sequence

length. We get the representation of each word by concatenating the forward hid-

den state
→
hj and the backward one

←
hj , hj = [

→
hj ,

←
hj ]. We convert the word-level

tasks into classification problems, and Eqs. 2 and 3 show our goals on the word
and gap tasks, respectively. Sentence-level tasks are converted to a regression
problem, refer to Eq. 4.

arg min
T∑

j=1

cross entropy (yj ,W1hj) (2)

arg min
T∑

j=0

cross entropy (yj ,W2Conv(hj ,hj+1)) (3)

arg min ‖h − sigmoid (W3hT )‖22 (4)

where h is the real HTER score, yj is real labels, W1, W2 and W3 is trainable
parameter matrices, and T is the length of the target-side. cross entropy is
the cross entropy loss (with logits). Conv is a convolution operation that fuses
information from adjacent locations for predicting gap tags.

We dynamically control the number of layers of the Bi-GRU according to
different data volumes. At the same time, we also try the self-attention layer
and self-attention layer + Bi-GRU architectures as estimator, finding there is
no better performance. But we use them as candidate models for ensemble to
enhance diversity.

3.1.3 BPE Matrix
BPE is introduced to reduce the number of unknown tokens in many NLP tasks.
And we also apply it to our model. But there is a problem in word-level task. The
length Lb of quality vector extracted by predictor is different from the number
Lw of tokens in sentence. We follow Fan et al. [5] to solve this problem by a
Lw ×Lb sparse matrix, which average the features of subwords corresponding to
one word token, and reduce the length of quality vector from Lb to Lw.

3.2 Data Construction

3.2.1 Bilingual Data for Pre-training
We use WMT 2019 ZH-EN parallel data to pre-train our predictors, which con-
sists of CWMT, wikititles-v1, NewsCommentary-v14 and UN corpus. After filter-
ing, about 11M sentences pair is selected. Furthermore, we use 6M monolingual
data from WMT 2019 to construct pseudo data by back-translation [3] in both
directions. All parallel data is segmented by NiuTrans [18] word segmentation
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toolkit. After the preprocessing, we train BPE [12] models with 32, 000 merge
operations for both sides respectively.

3.2.2 Quality Estimation Data
The dataset for QE task consists of three parts: source sentences, machine trans-
lations and QEscore (HTER score for sentence level or OK/BAD labels for word-
level). The amount of data provided by CCMT 2019 QE task is no more than
15K. We think it isn’t enough to train a strong model, so we construct 50K
pseudo data using parallel data from WMT 2019. To obtain high quality bilin-
gual data, we use machine translation model and language model to score par-
allel data. First, we use the translation model to score the real bilingual data
by forced decoding. Secondly, we use the language model to score the source
and target sentences, and combine the three scores to sort the real data, select
the data with the higher score. After obtaining high-quality bilingual data, we
decode them in a variety of ways to obtain machine-translated data, including
beam search [11], sampling-topk. We regard the target sentences of bilingual
data as personal edited data, and generate the sentence-level HTER score or the
word-level labels using TER tool [14].

In addition, we find the ratio of OK/BAD labels in word gap subtask is about
20:1, which means the BAD labels between words corresponding to missing trans-
lations is too few and it’s hard to predict BAD label for trained model. So we
randomly drop some word in our machine translation results to improve the
number of BAD label between words.

3.3 Model Ensemble

In MT systems, ensemble decoding method is wildly used to boost translation
quality via integrating the predictions of several single models at each decode
step. We try a similar approach in QE task. However, we find that ensemble
method is expensive when it comes to more model fusion. It can’t try to combine
more models in a limited time, so we adopt an external fusion method:

• We select twelve high-scoring single models using different model architectures
or datasets, and decode 12 results as candidates.

• Calculate all combinations of twelve models externally.
• For different combinations, word-level tasks, we use the voting method to

ensemble, and the sentence-level we average HTER score.
• Pick the best performing model combination.

In this way, we quickly try out all the combinations of candidates in a short
time, and it is easier to pick the optimal combination.

4 Experiments and Results

We implement our QE models based on Fairseq [10]. Transformer-DLCL models
are pre-trained on eight 1080Ti GPUs. We use the Adam optimizer with β1 =
0.97, β2 = 0.997 and ε = 10−6. The training data is reshuffled after finishing
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Table 2. Word-level word result on CCMT QE valid2019. We use a jointly l2r and r2l
Transformer-DLCL as a predictor and Bi-GRU as an estimator to jointly train with
different datasets.

Construction method F1-OK F1-BAD F1-multi

– 0.8353 0.5673 0.4739

High quality bilingual 0.8642 0.5897 0.5096

Bilingual-beam 0.8735 0.5747 0.502

Bilingual-sampling-topk 0.8691 0.5795 0.5036

Bilingual-round-trip 0.8632 0.5833 0.5035

each training epoch, and we batch sentence pairs by target-side sentences lengths,
with 8192 tokens per GPU. Large learning rate and warmup-steps are chosen
for faster convergence. We set max learning rate as 0.002 and warmup-steps as
8000. For the jointly training predictor-estimator architecture, we train it on one
1080Ti GPU, 1024 tokens per step. And we set max learning rate as 0.0005 and
warmup-steps as 200.

Moreover, due to the lack of BAD labels in the word-level tasks are relatively
small, the model tends to predict all labels as OK in the inference stage. So we
introduce the bad-enhanced parameter, strengthen the weight of the BAD label
when calculating the loss, thereby improving the ability of the model to predict
BAD. Next, we will show details in the following subsections.

4.1 QE Pseudo Data

We compare different method on the task of ZH2EN word-level. The following
will introduce the method we use.

• Use high-quality bilingual data such as newtest2016, newtest2017, and use the
target as the result of personal editing, and decode the source to construct
dataset by sampling-topk.

• The data selected from the bilingual data, and the pseudo datasets decoded
by the beam search [11] or the Sampling-topk.

• We translate the monolingual data in target side to the source sentences, and
then translate generated sentences back to target side, this method names
round-trip [6]. The detail results are shown in Table 2.

The round-trip and sampling-topk methods are mainly aimed at the unbal-
anced distribution of OK and BAD labels in word-level tasks. We increase the
number of BAD tags by introducing noise during the decoding process. The
Table 2 shows that pseudo-data using high-quality bilingual constructs delivers
the greatest performance improvement in the same architecture. However, there
are no significant differences in the average label distribution in the results by
introducing noise in a variety of ways. We speculate that the target language in
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Table 3. Word-level result on CCMT QE valid2019. We use GRU as an estimator to
jointly train using officially available data.

Task Precitor F1-OK F1-BAD F1-multi

ZH2EN word-level word Transformer-base 0.8932 0.4618 0.4125

Transformer-Big 0.8946 0.4709 0.4212

Deep Transformer-DLCL 0.8477 0.5078 0.4305

ZH2EN word-level gap Transformer-base 0.9511 0.1682 0.1600

Transformer-Big 0.9516 0.1976 0.1881

Deep Transformer-DLCL 0.9552 0.1981 0.1892

EN2ZH word-level word Transformer-base 0.8896 0.4043 0.3597

Transformer-Big 0.8904 0.4176 0.3718

Deep Transformer-DLCL 0.8727 0.4309 0.3761

EN2ZH word-level gap Transformer-base 0.9585 0.1454 0.1394

Transformer-Big 0.9472 0.149 0.1411

Deep Transformer-DLCL 0.9493 0.1533 0.1455

high-quality bilingual data is closer to the personal editing results, and the gen-
erated tags are more consistent with the real data, which makes the model more
accurate. Different datasets are also used to increase data diversity in model
fusion.

4.2 Different Predictor

Our model base on the predictor-estimator architecture. Recent research shows
that the Transformer [16] has powerful information extraction capability. There-
fore, we use the translation model as a predictor to extract the semantic infor-
mation contained in the sentence. At the same time, we empirically believe that
a stronger translation model can bring greater performance improvement to the
QE task. In order to verify the impact of the pre-trained translation model on
the QE model, we conduct multiple experiments with different left-to-right pre-
dictors and the same estimator. The result of word-level is shown on Table 3,
Sentence-level on Table 4.

From the Tables 3 and 4, we find the estimator has better performance with
more powerful translation model.

4.3 Different Estimator

After determining the architecture of the predictor, we try a variety of archi-
tectures as the estimator, including GRU, Bi-GRU and self-attention. We take
the task of the ZH-EN word-level as an example. In Table 5, we show different
prediction results in different architectures.
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Table 4. Sentence-level result on CCMT QE valid2019. We use GRU as an estimator
to jointly train using officially available data.

Task Precitor Person’s

ZH2EN sentence-level Transformer-base 0.5548

Transformer-Big 0.5645

Transformer-DLCL 0.5699

EN2ZH sentence-level Transformer-base 0.4696

Transformer-Big 0.4872

Transformer-DLCL 0.5071

Table 5. ZH2EN word-level word result on CCMT QE valid2019. We use a jointly l2r
and r2l Transformer-DLCL as a predictor.

Estimator F1-OK F1-BAD F1-multi

GRU 0.8731 0.5427 0.4738

Bi-GRU 0.8642 0.5897 0.5096

Self-attention 0.8165 0.5265 0.4299

Self-attention + Bi-GRU 0.8511 0.5519 0.4697

We use real data and high-quality bilingual constructed pseudo-data total
30k as jointly training data. We can observe that Bi-GRU performs significantly
better than other architectures with the same dataset. However, due to the pos-
sibility of data scarcity that makes complex architecture trained inadequately,
we also try to increase the amount of pseudo-data for the self-attention layer and
self-attention + Bi-GRU architecture. We found that increasing the amount of
data lead to the performance improvement of more complex estimator architec-
tures. But it’s still a little worse than the Bi-GRU. We use them as seed models
for system integration to increase diversity.

4.4 Ensemble

We construct multiple sub-models through different model architectures and
data sets, and integrate the results of multiple systems externally on all tasks to
further improve the stability and performance of the system. We use the left-to-
right Transformer-DLCL as the predictor and the GRU as the estimator to build
our baseline system. Table 6 shows the final results of all of our participating
tasks.
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Table 6. All word-level and sentence-level result on CCMT QE valid2019.

System ZH2EN

Word-level word Word-level gap Sentence-level

F1-OKF1-BADF1-multi F1-OKF1-BADF1-multiPerson’s

Baseline 0.8477 0.5078 0.4305 0.9552 0.1981 0.1892 0.5699

+Bi-GRU 0.8673 0.5215 0.4523 0.9556 0.2116 0.2022 0.5802

+r2l predictor 0.8353 0.5673 0.4739 0.9570 0.2583 0.2472 0.5831

+Pseudo data 0.8642 0.5897 0.5096 0.9615 0.2776 0.2669 0.5830

+Ensemble 0.8767 0.6152 0.5393 0.9622 0.2887 0.2778 0.6164

System EN2ZH

Word-level word Word-level gap Sentence-level

F1-OKF1-BADF1-multi F1-OKF1-BADF1-multiPerson’s

Baseline 0.8727 0.4309 0.3761 0.9493 0.1533 0.1455 0.5071

+Bi-GRU 0.8932 0.4692 0.4199 0.9671 0.1669 0.1614 0.5501

+r2l predictor 0.898 0.4695 0.4217 0.9596 0.179 0.1718 0.5537

+Pseudo data 0.8941 0.4762 0.4258 0.9656 0.2083 0.2011 0.5491

+Ensemble 0.8974 0.4886 0.4385 0.9715 0.2283 0.2218 0.5861

5 Conclusion

This paper describes our systems for CCMT19 Quality Estimate tasks including
both word-level and sentence-level.

We adopt predictor-estimator architecture, use Transformer-DLCL as Predic-
tor based on deep network [1], and combine left-to-right and right-to-left models
to further enhance predictor’s feature extraction capabilities. Estimator adopts
the Bi-GRU and uses the quality vector extracted by predictor to predict for
different tasks.

At the same time, we further improve the performance of the translation
model as predictor and the prediction performance of estimator by artificially
constructing pseudo-data. In addition, a external ensemble algorithm is helpful
to search a robust combination of models.
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Abstract. This paper describes the submissions of the Tencent
minority-mandarin translation system for CCMT19. We participate in 3
translation directions including Uighur→Chinese, Tibetan→Chinese and
Mongolian→Chinese. Our systems are neural machine translation sys-
tems trained with our improved Marian, and are called TenTrans, which
are based on Google’s Transformer model architecture. We also adopt
most techniques that have been proven effective recently in academia,
such as back-translation based sampling, data selection, sequence-level
knowledge distillation, ensemble distillation, model ensembling and
reranking. By using the above technologies, our submitted systems
achieve a stable performance improvement.

Keywords: TenTrans · Back-translation · Knowledge distillation ·
Ensemble distillation · Reranking

1 Introduction

End-to-end neural machine translation (NMT) [1–5] based on self-attention
mechanism [6], the Transformer, has become promising paradigm in field of
machine translation academia and industry. This paper describes the sub-
missions of the Tencent minority-mandarin translation system for the 15th
China Conference on Machine Translation (CCMT 2019). We participate in
the CCMT19 translation tasks in 3 different language pairs: Uighur→Chinese,
Tibetan→Chinese and Mongolian→Chinese. The training part of this paper is
an improvement on Marian1[7] NMT whose Transformer architecture part. And
the inference part is completely original. And we call our systems TenTrans [8].

Our experimental setup is based on recent promising techniques in NMT,
many of which have also been applied to submitted system [9] last year, includ-
ing Byte Pair Encoding (BPE) [10] to achieve open-vocabulary translation [11],

1 https://github.com/marian-nmt/marian.
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back-translation [12] to make use of extra monolingual data to augment training
data and multi-model fusion techniques. In addition to the above techniques,
as for data augmentation, several different back-translation methods are exper-
imented, including methods based on pure beam search, unrestricted sampling
and restricted sampling (top-k) proposed by [13,14]. And we propose a simpler
alternative to noising techniques, consisting of tagging back-translated source
sentences with an extra token. Furthermore, iterative back-translation [15], a
method for generating increasingly better synthetic parallel data from monolin-
gual data, is tried.

With regard to model fine-tuning, sequence-level knowledge distillation [16]
and ensemble distillation [17] methods are adopted. Model diversity is a key
component in building strong NMT ensembles [18,19]. Therefore, all the models
we use for ensembling are trained from scratch and did not use the pre-trained
model for warm starting. Moreover, more diverse methods are used to generate
every single model, for example, different initialization methods, model sizes,
model architecture and dropout [20] parameters, etc. In addition, we adopt the
K-batched MIRA algorithm [21] to rerank the n-best list.

The paper is structured as follows: Sect. 2 describes the novelties of our
model architecture compared to standard Transformer implementation (ten-
sor2tensor2), then we present the technologies used in TenTrans in detail in
Sect. 3. Section 4 describes our experimental settings and results, and Sect. 5
concludes the paper.

2 Model Features

In this work, the forward translator is trained on our improved Marian NMT
[7], and back-translator is trained on Fairseq3 [22]. The latter is used to generate
synthetic source sentences by unrestricted sampling and restricted top-k sam-
pling. Two network structures are adopted, Transformer base model (embedding
size 512, feed-forward layers with inner dimension 2048, 8 attention heads) and
Transformer big model4 (embedding size 1024, feed-forward with inner dimension
4096, 8 attention heads, transformer-dropout, transformer-dropout-attention,
transformer-dropout-ffn are all set to 0.1).

Minimum likelihood estimation (MLE) as loss function is applied to train all
the models using Adam [23] (β1 = 0.9, β2 = 0.98, ε = 10−9). We use synchronous
training and data parallelism on 8 NVIDIA Tesla P40 GPUs. Learning rate
is increased linearly for first 16000 updates and decreased at 16000/sqrt(up.),
where up. means number of updates. The gradient norm [24] is clipped to 5.0
and label smoothing [25] is applied with εls = 0.1. Swish proposed by [26] is used
as our Transformer model’s activation function. We early stop training [19] when
there is no new maximum value of the validation BLEU [27] for 10 consecutive
2 https://github.com/tensorflow/tensor2tensor.
3 https://github.com/pytorch/fairseq.
4 This setting is slightly different from big model in tensor2tensor and Fairseq, which

is the best parameter setting we have ever tried.

https://github.com/tensorflow/tensor2tensor
https://github.com/pytorch/fairseq
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save-points (saving every 2000 updates) and select the model with the highest
BLEU score on the validation set. Contrary to [6] or [19], we do not average
checkpoints, but maintain a continuously updated exponentially averaged model
over the entire training.

Data weighting [28–30] is commonly used as a domain adaptation technique,
which weights each data item according to its proximity to the in-domain data.
Our improved Marain NMT supports sentence weighting strategies. Compared
with [28,29], we propose a novel sentence weighting method for domain adapta-
tion of neural machine translation. The similarity of each sentence to the target
domain is calculated by a binary classifier. The binary classifier consists of BERT
[31] pre-trained model and a two-layer feedforward network. We discuss the spe-
cific approach in detail in Sect. 3.2.

In addition, TenTrans can handle custom embedding vectors trained with
word2vec5 or other tools. Moreover, guided alignment training [32] is also sup-
ported by TenTrans, which is only needed to provide a word alignment file
trained with fast align toolkit6 or other alignment tools. To alleviate poor trans-
lation performance of named entities, we follow NER generalization method used
in [8].

3 Experimental Techniques

In this section, experimental techniques used in our submitted systems will be
introduced.

3.1 Data Enhancement

For low-resource languages, the use of additional monolingual corpus7 is crucial
as the target side lexicon coverage is often insufficient, especially our participated
language pairs only consist of 0.16∼0.26M bilingual data. An effective method
to use monolingual data is to augment the parallel training corpus with back-
translations [12] of target language sentences. 6.5M monolingual sentences are
remained after a series of data cleaning processes. We use data selection methods
described in Sect. 3.2 to select in-domain sentences from them. From Table 1 we
can see that the binary classification method do not show stronger performance
than N-grams method. Here, we mainly use N-grams method to select data.
But we use binary classification method in Sect. 3.3, and we’ve shown a lot of
performance improvements there. Then comes the question of how many back
translated data should be used. The data quantity experimental results in Table 1
show that it’s difficult to have an universal recipe for all languages. For example,
with increasing the amount of used monolingual data on Uighur→Chinese and
Tibetan→Chinese tasks, the performance of back-translation is on the rise. But
when used monolingual data on Mongolian→Chinese tasks are increased from
5 https://code.google.com/archive/p/word2vec/.
6 https://github.com/clab/fast align.
7 XMU corpus: http://nlp.nju.edu.cn/cwmt2018/resources.html.

https://code.google.com/archive/p/word2vec/
https://github.com/clab/fast_align
http://nlp.nju.edu.cn/cwmt2018/resources.html
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Table 1. Data enhancement experiment. BT. means back-translation. Uighur
→Chinese (UY2ZH) uses the Transformer base model for comparative experiments,
and the other two languages use Transformer big model. The comparative experimental
settings in each language pairs are different, so some of the experimental results are not
listed in the table. In the data quantity experiment, all systems adopt back-translation
method based on beam search. In the data quality experiment, Uighur→Chinese and
Mongolian→Chinese (MN2ZH) systems are carried on the contrast experiment on 3M
sentences, and the other is on 5M sentences. In the data domain experiment, UY2ZH
system is carried on the contrast experiment on 1M sentences, and Tibetan→Chinese
(TI2ZH) system is on 3M sentences. And MN2ZH system adopts N-grams method by
default. The corresponding settings highlighted in boldface in the table are the exper-
imental settings used by our final submitted systems. The experimental settings and
scoring method are described in detail in Sect. 4.

Data quantity experiment

Monolingual data quantity (sents.) UY2ZH (Base) TI2ZH (Big) MN2ZH (Big)

1M 29.25 – 64.49

2M 29.88 – –

3M 29.91 23.13 63.84

5M – 23.54 –

6.5M 29.78 – 58.93

Data quality experiment

BT. methods UY2ZH (Base) TI2ZH (Big) MN2ZH (Big)

Baseline 22.38 20.94 62.69

Beam search [12] 29.91 23.54 63.84

Sampling [13] 29.79 16.24 58.76

Top-k sampling [13] 29.87 17.03 63.97

Iterative BT. [15] 29.82 – –

Tagged BT. 30.21 – –

Data domain experiment

Data selection methods UY2ZH (1M) TI2ZH (3M) MN2ZH (3M)

Random 28.99 22.71 –

N-grams (Sect. 3.2) 29.25 23.13 63.84

Binary classification (Sect. 3.2) 29.14 – –

1M sentences to 6.5M sentences, the performance degradation is very obvious.
The main reason of this phenomenon is the domain of the monolingual data
is different from the train and validation set. The monolingual data belongs to
news domain, while the fields of train and validation set is complicated, including
spoken language, news, laws and regulations.

In order to investigate the effect of the quality of synthetic data on back-
translation method, we adopt the unrestricted sampling and top-k sampling
methods proposed by [13]. Both these two methods introduce more uncertainty
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and noise to the synthetic, but [13] points out that synthetic data based on
sampling or noised beam search provides a stronger training signal than syn-
thetic data based on argmax inference [12]. In addition, we tried iterative back-
translation [15], a method for generating increasingly better synthetic data. Data
quality experimental results in Table 1 show that none of these methods can sig-
nificantly improve the performance than beam search based back-translation
method in low-resource scenarios. What’s more, we propose a novel approach,
we call Tagged Back-translation, which can indicate to model whether a given
training sentence is back-translated or genuine bi-text. We tag our synthetic
training data by prepending a reserved token to the input sequence, which is
then treated in the same way as any other tokens. Experimental results (Tagged
BT.) in Table 1 show that the method is simple and effective. We suspect that
in the case of very few genuine bi-texts, this indication information is important
for model training.

3.2 Data Selection Methods

Previous work [33,34] has verified the importance of data quality and data
domain in building a machine translation system. As for data quality aspect,
we firstly filter out bilingual sentences with unrecognizable code, large length
ratio difference, duplications and wrong language coding, then filter out bi-texts
with poor mutual translation rate by using fast-align toolkit. The cleaning pro-
cess of monolingual corpus is similar to that of the previous one. In this section,
we focus on how to use data selection methods to select sentences that are closer
to the target domain. In our work, we try two different approaches to select
in-domain corpus, namely, n-grams and binary classification. The latter is our
original method.

N-Grams: We exploit the method proposed in [35], which aims at selecting
in-domain sentence pairs from general domain corpus by in-domain language
model. In our experiment, the Chinese side of bi-texts and monolingual corpus
are regarded as general domain corpus G, while the Chinese side of development
sets and test sets of previous years about 6.5K are regarded as in-domain corpus
I. We firstly train tri-gram language models over I, namely LMI . Then, build
tri-gram language models of similar size over the random sample from G, namely
LMG. Based on this, the score of each sentence s in G is computed as |LMs

I −
LMs

G|. The lower the score, the closer the sentence is to the target domain, and
vice versa.

Binary Classification: Although there are only 6.5K sentences in-domain data,
we have 6.5M sentences unlabeled monolingual data from general domain. To
exploit large amounts of unlabeled data, we adopt a semi-supervised learning
framework similar to [28,36]. [36] first learns word embedding from unlabeled
monolingual data using word2vec [37], then generates continuous representation
for every unlabeled sentence. Based on the trained word embedding, the in-
domain data as positive sample and randomly sampled general-domain data as
negative sample are combined to train domain classifier with semi-supervised
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CNN, then domain relevance scores for every sentence in G are calculated by
this domain classifier.

Compared with [28,36], we do not use word2vec to learn the representation
model, but use the BERT8 [31] which has the stronger representation ability to
learn. What’s more, we then pass sentence representation vector x calculated on
pre-trained BERT model into a two-layer feedforward network instead of CNN.
To get a probability value between 0 and 1, we use softmax as this two-layer
feedforward network’s activation function. The domain similarity probability Pds

of a sentence x is computed as follows.

Pds (x) = softmax
(
tanh (W1x + b1)

T
W2 + b2

)
(1)

where W1, W2, b1, b2 are trainable parameters.
We extract 1K sentences from positive sample set as development set, and

remove the 1K sentences from positive sample set. We train this binary classifier
with a cross-entropy loss, maximizing Pds(x) for sentences drawn from positive
sample set, and minimizing it for those drawn from negative sample set. We
early stop training when there is no new minimum value of the validation loss
for 3 consecutive validation (one validation per epoch on the development set).
Since we randomly select sentences from the G as negative sample, the selected
sentences domain are likely to be very close to in-domain. Therefore, we re-
score the sentences in G with this binary classification model and select the
sentences closest to 0 as the negative samples of the new round of training. The
number of selected sentences is about the same as that of I. We retrain the binary
classification model with new negative samples and the original positive samples.
And the process iterates until the classification accuracy is no longer increased
on the development set. Then comes the question of what if new negative sample
after each round of training is still very close to I. In the course of our experiment,
there is a very large gap between new negative sample and sentences in I.

3.3 Data Weighting

We measure the similarity between sentences in general domain G and the in-
domain I using the binary classification method mentioned in Sect. 3.2. The
similarity is used to scale our costs to emphasize training sentences that are sim-
ilar to our development set. Therefore, we use the following objective function:

θ
′
= arg max

θ

∑
(x,y)∈D

(1 + pds (x)) log p (y|x; θ) (2)

We apply a cost weighting method by adding 1 to the normalized probability
[28]. This is to give the origin training data a bonus to some degree. In addition,
the languages pairs we participate in are all low-resource. That is, we need to use
back-translation methods to generate synthetic sentences, then training corpora

8 The used BERT is developed by our department’s NLP team.
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is constructed with genuine bi-texts and synthetic sentences. Therefore, the pds

values of all sentences in genuine bi-texts are always equal to 1, while the Pds

values of all sentences in synthetic data are calculated according to Formula 1.

3.4 Fine-Tune with Knowledge Distillation Methods

For low resource scenarios, we find that the fine-tuning method proposed by [38]
is very effective, which continues to train the already trained back-translation
system on the genuine parallel corpus. In addition, the two knowledge distillation
methods proposed by [16], KD and Inter, are also used to continue to fine-tuning
our single model. We retranslate the full training corpus source data with teacher
model to generate the translations with the highest model score. Next, we train
our student models exclusively on the newly generated output. [16] refers to this
method as KD. The Inter method refers to not choosing the translation with
the highest model score, but choosing the translation with the highest sentence-
level BLEU score with regard to the origin target corpus. What’s more, we
use ensemble distillation approach proposed by [17] to transfer the translation
quality of an ensemble teacher network into a single NMT system.

3.5 Reranking

We apply the reranking module to pick up a better hypothesis from the n-best
generated by ensemble decoding. Our reranking features include:

Right to Left (R2L) Models: There is a tendency for the prefix part of
translation candidates to be higher quality than the suffix part in the current
translation models [39]. In order to alleviate this problem, we train 3 R2L models
based on Transformer big model architecture, each of which is the best model
after fine-tuning model with genuine bi-texts. The experimental results show
that this feature is very strong and plays a vital role in reranking.

Target to Source (T2S) Models: Neural machine translation models often
have the phenomena of missing translation, repeated translation, and obvious
translation deviation [40]. To alleviate this problem, we train 4 T2S models,
which are also based on Transformer big model.

Language Models (LMs): We use 5-gram language models trained on
KenLM 9 and Transformer language models trained on Marian.

Word Penalty (WP): From the translation results of the development set,
we can see that the length of some candidates is quite different from that of the
reference translation, so we use the feature widely used in statistical machine
translation, word penalty feature. This feature is relatively simple, that is, the
length of each candidate.

We adopt K-batched MIRA algorithm [21] to rerank the n-best list.

9 https://github.com/kpu/kenlm.

https://github.com/kpu/kenlm
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Table 2. BLEU scores [%] on development sets for our submitted Uighur→Chinese,
Tibetan→Chinese and Mongolian→Chinese systems. * denotes the submitted system.

System UY2ZH TI2ZH MN2ZH

Transformer base model 22.38 19.99 61.39

+BT. beam search [12] 29.91(+7.53) – 61.54(+0.15)

+Guided alignment [32] 29.78(+7.4) – 62.44(+1.05)

+Data weighting 31.39(+9.01) – 60.60(–0.79)

Transformer big model 24.36 20.94 62.69

+BT. beam search [12] 31.56(+7.2) 23.54(+2.60) 63.84(+1.15)

+Tagged BT. 31.64(+7.28) – –

+Data weighting 32.14(+7.78) 23.8(+2.86) –

+Fine-tune with Bi-texts [38] 33.05(+8.69) 25.98(+5.04) 67.42(+4.63)

+Fine-tune with KD [16] 33.12(+8.76) 25.81(+4.87) 67.15(+4.46)

+Fine-tune with inter [16] 33.36(+9.0) – 66.43(+3.74)

+Fine-tune with ensemble KD [17] 34.22(+9.86) – –

+Ensemble 34.51(+10.15) 27.77(+6.83) 70.23(+7.54)

+Reranking∗ 35.54(+11.18)28.69(+7.75)70.65(+7.96)

4 Experiments and Results

We report the experimental results of Uighur→Chinese and Mongolian→Chinese
system on official development set, and the experimental results of Tibetan→
Chinese system on the development set extracted by ourselves. Because we find
that Tibetan→Chinese translation task official development set is very short and
of poor quality, with an average sentence length of only 7.2 words and mostly
phrases rather than sentences. Therefore, we extracted 1000 sentences from the
0.15M sentences high-quality bilingual data to use as the new development set,
with the average sentence length is 20.2 words, which is filtered out of the bilin-
gual data. Token-based BLEU-4 scores are reported by multi-bleu.pl in UY2ZH
and TI2ZH, and character-based BLEU-4 scores are reported by mteval-v13a.pl
in MN2ZH.

In all our participated tasks, the Chinese sentences are segmented using scws
toolkit10. For Uighur, Tibetan, and Mongolian sentences, we use our original
tokenizer. Data cleaning processes can be seen in Sect. 3.2. After data cleaning,
the bilingual corpus of Uighur→Chinese, Tibetan→Chinese and Mongolian→
Chinese left 0.16M, 0.15M, 0.24M sentence pairs, respectively. In final submitted
systems, 3M monolingual sentences selected by N-grams data selection approach
are used in Uighur→Chinese and Mongolian→Chinese tasks, and 5M sentences
are used in Tibetan→Chinese task. We train BPE [10] models with 32 K merge
operations for both sides respectively in Uighur→Chinese and Tibetan→Chinese

10 http://www.xunsearch.com/scws/.

http://www.xunsearch.com/scws/
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tasks, 16K merge operations for both sides respectively in Mongolian→Chinese
tasks. All tasks beam size of decoding are set to 24. The length penalty α of
decoding in UY2ZH, TI2ZH, and MN2ZH tasks are set to 1.5, 1.2, 1.2 respec-
tively. In addition, we use post-process scripts to remove some clearly duplicate
translation.

Transformer base model is mainly used for comparative experiments, and our
final systems are trained based on Transformer big model. From Table 2, we can
see that back-translation is strong in a low-resource scenario, especially increas-
ing 7.2 BLEU value in Uighur→Chinese tasks. The reason for the less obvious
promotion in Mongolian→Chinese tasks is the domain problem of monolingual
corpus. Guided alignment training does not show significant gains in low-resource
scenario and is not adopted by our final systems. Data weighting based on our
proposed binary classification method shows consistent performance improve-
ments over Uighur→Chinese and Tibetan→Chinese tasks. We analyze that this
method can not only solve the domain adaptation problem, but also to some
extent alleviate the problem of diluting the few genuine bi-texts in a large num-
ber of synthetic data in low-resource scenario.

As for fine-tuning, using bi-texts to fine-tune the trained back-translation
model method is very effective, which brings obvious gains to all tasks. Using
KD and Inter method to fine-tune system, it brings a slight improvement of 0.31
BLEU values on Uighur→Chinese task, but decreasing on the other tasks. On
Uighur→Chinese task, we use ensemble distillation method to transfer 4 teacher
models into a single student model. It improves the performance of a single
model by 0.86 BLEU values. However, the performance improvement is not very
obvious when ensemble multiple models. In contrast, the other two tasks that
did not use this method improved significantly when ensemble multiple models.
Last but not least, reranking n-best method still shows obvious effectiveness.

We submitted Uighur→Chinese system is 4.26 BLEU11 values higher than
the best system last year when the data is significantly less than last year. Our
submitted Mongolian→Chinese and Tibetan→Chinese systems are 8.13 BLEU
values and 2 BLEU values higher than the second system last year, respectively.

5 Conclusion

This paper describes Tencent Minority-Mandarin translation system for
CCMT19. It mainly focuses on data enhancement, data selection, model fine
tuning, model distillation and reranking. The experimental results show that
how to use the data correctly is still the most important process of building a
strong machine translation system. In particular, the original binary classifier
using BERT pre-trained model and a two-layer feedforward network proposed
by us is proved to be very effective. In addition, model fine-tuning can not be
ignored in the low-resource scenario.

11 Using official scoring programs and requirements.
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Abstract. This paper introduces the evaluation procedure, evaluation data,
participants and evaluation results of 2019 (15th) China Conference on Machine
Translation (CCMT 2019) evaluation campaign. Compared with the last eval-
uation campaign (CWMT 2018), CCMT 2019 MT evaluation is characterized as
follows: a new speech translation task is fulfilled; the translation quality esti-
mation task is augmented with a word level track in addition to the sentence
level track. Meanwhile, CCMT 2019 receives increases in the number of par-
ticipants and systems submitted. This paper presents the anonymous evaluation
results of all tasks, with a brief summarization of the techniques applied in this
evaluation campaign.

Keywords: CCMT � Machine translation � Evaluation � Speech translation �
Quality estimation

1 Introduction

To promote the research and development of machine translation in China, the China
Conference on Machine Translation (CCMT 2019), which is hosted by Chinese
Information Processing Society of China (CIPSC), organized an evaluation campaign
on machine translation (referred to as CCMT 2019 machine translation evaluation).
Following the last evaluation (CWMT 2018), CCMT 2019 machine translation eval-
uation is featured by the following practices:

• A new task of speech translation in Chinese-English translation direction is aug-
mented, jointly organized with Baidu;

• The quality estimation task is extended, under the support of Alibaba, to word-level
quality estimation sub-task, in addition to the existing sentence-level sub-task;
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• Joint task with WMT 2019 on the evaluation of Chinese-English and English-
Chinese translation is continued, with a focus on sharing training corpus;

• The evaluation tasks of Mongolian-Chinese, Tibetan-Chinese, and Uyghur-Chinese
translations are reserved, as well as the Japanese-Chinese-English multilingual
translation tasks.

The evaluation attracted 30 registered teams from home and abroad, submitting a
total of 155 evaluation systems. Participants increased compared with previous years in
terms of both team and system numbers. The remainder of this paper introduces the
evaluation plan, datasets, and results of all tasks in this campaign.

2 Evaluation Plan

2.1 Tasks in the Evaluation

The evaluation contains four tasks: bilingual translation, multilingual translation,
speech translation and quality estimation. Each task is divided into different tracks
according to language pairs and domains. The project settings are detailed in Table 1.

Among them, the translation tasks include Chinese-English news, English-Chinese
news, Mongolian-Chinese daily language, Tibetan-Chinese government literature, and
Uyghur-Chinese news. The multilingual translation task is a multilingual translation
project in patent field between English, Japanese and Chinese. The speech translation
task is a Chinese-English translation for reporting scenarios. The quality estimation
task includes two tracks, word level and sentence level, covering quality estimation for
Chinese-English and English-Chinese multi-domain translation.

Table 1. CCMT 2019 tasks and tracks

Task Track Code Direction

Bilingual translation
task

Chinese-English news CE Chinese-English
English-Chinese news EC English-Chinese
Mongolian-Chinese daily language MC Mongolian-Chinese
Tibetan-Chinese government
documents

TC Tibetan-Chinese

Uyghur-Chinese news UC Uyghur-Chinese
Multilingual translation
task

Japanese-Chinese-English
Multilingual translation

JE Japanese-English

Speech translation task Chinese-English speech translation SpeechCE Chinese-English
Quality estimation Word-level quality estimation

Sentence-level quality estimation
QE-Word
QE-S

Chinese-English
English-Chinese
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Table 2. Statistics of the teams and corresponding tasks registered

Name Task (Track)

CE EC MC TC UC JE Speech
CE

QE-
Word

QE-
S

NICT (National Institute of Information and
Communications Technology)

✓ ✓

Peking University ✓

Beihang University ✓ ✓ ✓ ✓ ○ ○ ✓ ✓

Beijing Jiaotong University ✓ ✓ ✓ ✓ ✓ ✓ ○ ✓ ✓

Beijing Institute of Technology ✓ ✓ ✓ ✓

Dalian University of Technology ✓ ○ ○
Northeastern University ✓ ✓

Heilongjiang University ✓

Heilongjiang Institute of Technology ○ ○ ✓ ✓

Hohhot University for Nationalities ✓

Jiangxi Normal University ✓ ✓ ✓

Kunming University of Science and Technology ○ ○ ○ ○ ○ ○
Inner Mongolia University ✓

Inner Mongolia Normal University ✓

Shanghai Jiaotong University ✓ ✓ ✓ ✓ ✓ ✓ ✓ ○ ○
Soochow University ✓

Xiamen University ✓ ✓ ✓

Xinjiang University ○ ○ ○ ○ ○
University of Science and Technology of China ✓ ✓ ✓ ✓ ✓ ○ ○
Minzu University of China ✓ ✓ ✓ ✓ ✓ ✓

Nanjing Institute of Information Technology ✓ ✓ ○
Institute of Computing Technology, Chinese
Academy of Sciences

✓ ✓

Institute of Information Engineering, Chinese
Academy of Sciences

○ ○ ✓

Institute of Automation, Chinese Academy of
Sciences

✓ ✓ ✓

Institute of Intelligent Machinery, Chinese
Academy of Sciences

✓

Guangdong OPPO Mobile Telecommunications
Corp., Ltd.

✓ ✓ ○ ○ ○ ✓ ○

Huawei Technology Co., Ltd. ✓ ✓

Tencent Technology (Beijing) Co., Ltd. ✓ ✓ ✓

Sinosoft Technology Co., Ltd. ✓ ○ ✓

Global Tone Communication Technology Co., Ltd. ○ ○ ○ ○ ○ ○ ○
Number of Registered Team 15 16 16 14 14 9 12 7 9
Number of System Submitted 18 20 26 21 27 13 7 5/4 7

* “√” means registered and submitted results successfully; “○” means registered without submission; “5/4”
means that 5 submissions for Chinese-English and 4 submissions for English-Chinese in word-level quality
estimation.
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The evaluation campaign began on March 15th, 2019, and the deadline for the
result submission is June 20, 2019. Participants in this evaluation are required to
provide a system description1 and a system technical report. The technical report will
only be exchanged between the participants, and only several of them are accepted to
be published in this volume of proceedings.

2.2 Participants

A total of 30 teams registered in the evaluation,2 and a total of 155 system results were
submitted, including 87 main system results and 71 comparison results. The so-called
main system is assigned as the representative system by each team. The training data
for the main system can only use those specified in Sect. 3. The comparison system can
apply extra-training data not specified in the evaluation plan. Systems only using the
training data specified are called restricted system, while those using extra-data are
called unrestricted system.

Table 2 shows the details of each team with their registered tasks and total eval-
uation systems. In terms of team number, bilingual translation (i.e. CE, EC, MC, TC
and UC) all received most attention. The new task of speech translation tasks also
attracted a wide range of interests. As to the system submission, Mongolian-Chinese
(MC), Uyghur-Chinese (UC) translations tasks received the most submissions. And the
speech translation task received only 1/3 of the registered number.

3 Datasets

3.1 Bilingual Translation Task Datasets

The task includes five language pairs (CE, EC, MC, TC and UC) and three domains
(news, daily language and government literature). All the files are UTF-8 encoded
XML file. The development sets for each language pair consist of one reference
answer. The test set for CE and EC consists of four references, and the test sets for MC,
TC and UC consist of one reference. Reference are translated by professional trans-
lators independently.

The Chinese-English and English-Chinese tasks are jointly organized with
WMT19, so the data provided by WMT19 can also be used in this task. To be specific,
in addition to training set, development set and test set provided by CWMT 2018,
WMT19 also allows the using of following data:

(1) Chinese-English Parallel Corpus (News Commentary V13 and UN Parallel
Corpus V1.0)

(2) English and Chinese monolingual Corpus (Europarl v7/v8, News Commentary,
Common Crawl, News Crawl, News Discussions, etc.); LDC for English and
Gigaword for Chinese (LDC2011T07, LDC2009T13, LDC2007T07, LDC2009T27)

1 https://ccmt2019.jxnu.edu.cn/page/main1923/CCMT2019_Evaluation_report.zip (in Chinese).
2 One team can’t be contacted after registration, which is not counted as in the 30 teams.
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More details of the data sets can be found in Tables 3, 4 and 5.

Table 3. Details of CCMT 2019 bilingual translation task training set

Task Scale
(sentence bead)

Provider Remarks

CE-EC translation
task (news)

9,023,471 Datum Co., Ltd.,
NEU, ICT, CASIA

Parallel corpus

5,281 ICT Chinese sentence and four
English reference translations

8,665 ICT English sentence and four
Chinese reference translations

4003 NJU CWMT 2017 development
set, test set

11 M words XMU Chinese monolingual corpus
MC translation task
(daily language)

262,644 IMU, IIM, ICT Parallel corpus

TC translation task
(government
document)

157,959 QNU, XBMU, TU,
XMU, ICT

Parallel corpus

UC translation task
(news)

170,061 ICT, XTIPC of
CAS

Parallel corpus

Table 4. Details of CCMT 2019 bilingual translation task development set

Task Scale Provider Remarks

CE-EC translation task (news) 2481/1500 WMT 2018 test set Single reference
MC translation task (daily language) 1000 IMU Single reference
TC translation task (government document 1000 QNU Single reference
UC translation task (news) 1000 XTIPC of CAS Single reference

Table 5. Details of CCMT 2019 bilingual translation task test set

Task Scale Provider Remarks

CE translation task (news) 1011 NEU Four references
EC translation task (news) 1000 NEU Four references
MC translation task (daily language) 1001 IMU Single reference
TC translation task (government document) 1000 QNU Single reference
UC translation task (news) 1000 XTIPC.CAS Single reference
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3.2 Multilingual Translation Task Datasets

The training corpus for multilingual translation task includes two language pairs
(Japanese-Chinese and Chinese-English) in the patent domain. All the files are UTF-8
encoded XML file. The development set and test set in this ask consist of one reference
translation, which are translated by professional translators independently.

More details of the datasets can be found in Tables 6, 7 and 8.

3.3 Speech Translation Task Datasets

The data of speech translation, namely Baidu Speech Translation Collection (BSTC), is
provided by Baidu Company, which contains more than 50 h Mandarin acoustic
speeches, and corresponding English translations. The speeches are collected from
Chinese talk shows, such as Tndao, Zaojiu and technical reports from Baidu Company.
One characteristic of this dataset is that it contains multiple domains, referring to
Science, Economy, Startup, Education, etc.

The construction of this dataset is elaborated and labor-intensive:

(1) Each talk is carefully transcribed into Chinese by human translators. And the
transcription contains accurate punctuations.

(2) The sentences in one talk are translated into English text rather than in a sentence-
by-sentence manner.

(3) The utterance of source speech is segmented by the English translation and
annotated with accurate timelines.

Table 6. Details of CCMT 2019 multilingual translation task training set

Corpus Scale Provider

Japanese-Chinese (bilingual) 3,000,000 Lingosail Co., Ltd.
Chinese-English (bilingual) 3,000,000
Chinese (monolingual) 7,114,700 (sentences)

Table 7. Details of CCMT 2019 multilingual translation task development set

Corpus Scale Provider Remarks

Japanese-Chinese 6,000 Lingosail Co., Ltd. Single reference
Chinese-English 3,000
Japanese-English 3,000

Table 8. Details of CCMT 2019 multilingual translation task test set

Task Scale Provider Remarks

Japnese-English 1217 Lingosail Co., Ltd. Single reference
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Moreover, the dataset also contains automatically transcribed Chinese text from a
high-performance Automatic Speech Recognition (ASR) system. The overall statistics
of this dataset is listed as follows (Table 9):

It is worth noting that the test data contains noisy ASR results and punctuations.
The participants are freely to use the officially released data. But we encourage all
participants to investigate novel methods to enhance the robustness of the translation
model against noisy data.

Compared to conventional text-to-text translation task, the speech translation task is
more difficult and challenging:

• The participants are required to handle the acoustic input rather than relatively
simple text input if they propose to use an End-to-End model.

• The ASR results are error-prone, and the participants are required to develop novel
methods to enhance the robustness of the translation model.

• The participants are also required to deal with the erroneously annotated
punctuations.

• The participants are required to deal with the irregularities in each talk.
• The size of BSTC is relatively small, and the participants are required to use

additional training corpus to improve the translation quality.

3.4 Quality Estimation Task Datasets

In CCMT 2019, this task is augmented with a new track: word-level translation quality
estimation. Generally speaking, the datasets of this task contain two parts: one is the
training set and development set with translation quality annotation provided by the
organizer; the other is the Chinese-English and English-Chinese parallel data for
auxiliary training the system.

The word-level quality estimation data is provided by Alibaba (China). Data
(source sentence) comes from 6 scenarios: mostly from Alibaba’s e-commerce and IT
domains, partly from IT economy, politics, technology and daily conversation. The
procedure of data generation is as follows:

• The translation of each original text is generated from 3 online translation engines
(online translation service) and a neural network translation engine (provided by
Alibaba). Duplicated translations are removed.

• All translations are edited by professional interpreters to get post-edit translations.

Table 9. The overall statistics of BSTC (CER means character error rate).

Dataset Talks Utterances Transcription
(Characters)

Translation
(Words)

Duration
(Hours)

CER CER (5-best)

Train 174 26,533 796,679 2,292,025 50.57 17.32% 15.68%
Develop 16 956 26,059 75,074 1.58 15.21% 13.20%
Test 6 975 25,832 70,503 1.46 10.32% 8.57%
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• Machine translated sentences are aligned with the post-editing version using TER
toolkit,3 with the following settings: tokenized, case insensitive, exactly matching
only, disabling shifts by using the ‘-d 0’ option. Accordingly, final OK/BAD labels
for target words and gaps are determined.

Sentence-level track is again supported by Lingosail Co., Ltd. The dataset cover
multi-fields, such as politics, finance, science and technology. The translation candi-
dates comes from the learners using the Shiyibao (http://www.shiyibao.com/), as well
as multiple online translation engines. Then the final translations are post-edited by
professional translators, which enables the computation of HTER score. It should be
noted that all the data released by CWMT 2018 (including the original development set
and test set) has been further polished and updated in t2019. Therefore, the CWMT
2018 sentence-level quality estimation dataset will be officially discontinued.

More details of the datasets can be found in Tables 10 and 11.

4 Results

CCMT 2019 continues to emphasize its research nature, and all evaluation results are
for research purpose only. No participant is authorized to cite the following results or
disclose the identity of any participant in commercial activities. For this purpose, this
report replace the name of the participant by an anonymous ID. In this section, we
present the results of the top 10 system performances for each task, as well as the

Table 10. Details of CCMT 2019 word-level dataset

Task Size Provider

Training set (CE) 11039 (4606 source sentences) Alibaba
(China)Training set (EC) 10878 (4105 source sentences)

Development set (CE) 1050 (375 source sentences)
Development set (EC) 1129 (375 source sentences)
Test set (CE) 1093
Test set (EC) 1122

Table 11. Details of CCMT 2019 sentence-level dataset

Task Size Provider

Training set (CE) 10070 (2503 source sentences) Lingosail Co., Ltd.
Training set (EC) 14789 (3043 source sentences)
Development set (CE) 1143 (300 source sentences)
Development set (EC) 1381 (300 source sentences)
Test set (CE) 1385
Test set (EC) 1445

3 http://www.cs.umd.edu/*snover/tercom/.
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significance test results. For the description of each submitted system, please refer to
the appendix of this report4.

4.1 Bilingual Translation Task: Between Chinese and English

In the English-Chinese and Chinese-English news translation task, a total of 11 teams
submitted their system results, as shown in Tables 12, 13, 14 and 15.

Table 12. CCMT 2019 Chinese-English translation results of main systems

BLEU4-SBP BLEU4 NIST5 GTM mWER mPER ICT METEOR TER

ce-S16-primary 0.5554 0.5636 11.7661 0.8619 0.4370 0.3111 0.5035 0.3450 0.4135

ce-S4-primary 0.4778 0.5015 10.8763 0.8164 0.5015 0.3602 0.4825 0.3135 0.4571

ce-S17-primary 0.4768 0.4785 10.4683 0.8454 0.4766 0.3517 0.4014 0.2605 0.5897

*ce-S10-primary 0.4730 0.4859 10.8290 0.8208 0.5099 0.3595 0.4550 0.2444 0.5672

ce-S6-primary 0.4367 0.4394 10.0143 0.8230 0.5160 0.3715 0.3775 0.2424 0.6098

ce-S2-primary 0.4286 0.4388 10.1852 0.7980 0.5379 0.3860 0.4103 0.3030 0.4963

ce-S14-primary 0.4145 0.4404 10.0250 0.7828 0.5601 0.4073 0.4217 0.2913 0.5049

ce-S19-primary 0.3559 0.3760 9.0710 0.7326 0.5948 0.4436 0.3704 0.2606 0.5412

ce-S8-primary 0.3239 0.3515 8.1149 0.6665 0.6389 0.5011 0.3554 0.2407 0.5773

ce-S18-primary 0.2975 0.3149 8.0927 0.6936 0.6466 0.4844 0.3201 0.2363 0.5803

* indicating a delayed submission.

Table 13. Significance test for main systems in CCMT 2019 Chinese-English track
(● significant, ○ not significant, with p < 0.05)

ce2019-
S16-
primary

ce-S4-
primary

ce-S17-
primary

ce-S10-
primary

ce-S6-
primary

ce-S2-
primary

ce-S14-
primary

ce-S19-
primary

ce-S8-
primary

ce-S18-
primary

ce-S16-
primary

– ● ● ● ● ● ● ● ● ●

ce-S4-
primary

● – ○ ○ ● ● ● ● ● ●

ce-S17-
primary

● ○ – ○ ● ● ● ● ● ●

ce-S10-
primary

● ○ ○ – ● ● ● ● ● ●

ce-S6-
primary

● ● ● ● – ○ ○ ● ● ●

ce-S2-
primary

● ● ● ● ○ – ○ ● ● ●

ce-S14-
primary

● ● ● ● ● ○ – ● ● ●

ce-S19-
primary

● ● ● ● ● ● ● – ● ●

ce-S8-
primary

● ● ● ● ● ● ● ● – ●

ce-S18-
primary

● ● ● ● ● ● ● ● ● –

4 Available only in Chinese via https://ccmt2019.jxnu.edu.cn/page/main1923/CCMT2019_Evalua
tion_report.zip.
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Table 14. CCMT 2019 English-Chinese results of main systems

BLEU5-
SBP

BLEU5 BLEU6 NIST6 NIST7 GTM mWER mPER ICT METEOR TER

ec-S16-
primary

0.6727 0.6910 0.6445 13.5650 13.6160 0.8932 0.3256 0.2179 0.6019 0.5672 0.2698

ec-S6-
primary

0.6324 0.6457 0.5976 13.1110 13.1560 0.8844 0.3635 0.2378 0.5480 0.5502 0.3062

*ec-S10-
primary

0.6198 0.6345 0.5851 13.0330 13.0760 0.8834 0.3743 0.2438 0.5393 0.5435 0.3114

ec-S17-
primary

0.5625 0.5714 0.5201 12.2340 12.2700 0.8620 0.4102 0.2740 0.4737 0.5281 0.3475

ec-S8-
primary

0.5537 0.5881 0.5360 11.9330 11.9680 0.8387 0.4187 0.2888 0.5253 0.5145 0.3509

ec-S19-
primary

0.5423 0.5652 0.5112 12.0810 12.1150 0.8459 0.4273 0.2829 0.4842 0.5133 0.3539

*ec-S31-
primary

0.5222 0.5529 0.4974 11.7770 11.8090 0.8360 0.4389 0.2935 0.4811 0.5059 0.3627

ec-S2-
primary

0.4666 0.4858 0.4295 11.1510 11.1750 0.8125 0.5006 0.3294 0.4133 0.4722 0.4158

ec-S18-
primary

0.4469 0.4753 0.4208 10.4960 10.5200 0.7828 0.5021 0.3552 0.4080 0.4489 0.4252

ec-S14-
primary

0.4332 0.4521 0.3985 10.0560 10.0780 0.7836 0.5179 0.3585 0.4461 0.4600 0.4272

* indicating a delayed submission.

Table 15. Significance test for main systems in CCMT 2019 English- Chinese track
(● significant, ○ not significant, with p < 0.05)

ec-S16-
primary

ec-S6-
primary

ec-S10-
primary

ec-S17-
primary

ec-S8-
primary

ec-S19-
primary

ec-S31-
primary

ec-S2-
primary

ec-S18-
primary

ec-S14-
primary

ec-S16-
primary

– ● ● ● ● ● ● ● ● ●

ec-S6-
primary

● – ○ ● ● ● ● ● ● ●

ec-S10-
primary

● ○ – ● ● ● ● ● ● ●

ec-S17-
primary

● ● ● – ○ ● ● ● ● ●

ec-S8-
primary

● ● ● ○ – ● ● ● ● ●

ec-S19-
primary

● ● ● ● ● – ● ● ● ●

ec-S31-
primary

● ● ● ● ● ● – ● ● ●

ec-S2-
primary

● ● ● ● ● ● ● – ● ●

ec-S18-
primary

● ● ● ● ● ● ● ● – ○

ec-S14-
primary

● ● ● ● ● ● ● ● ○ –
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(1) Translation Model and System Implementation
All systems in these two tracks were based on transformer. S16 used relative attention
to model the position information, and its experiment indicates that this method can
achieve 1.64 BLEU improvement on Chinese-English task and 0.79 BLEU improve-
ment on English-Chinese task.

In addition, S10 investigated the different initialization of the parameters of the
Transformer model. The BERT embedding and the word embedding were both applied
with the following findings:

• BERT embedding is not suitable for the initialization of the Encoder layer of the
Transformer model

• Pre-trained embedding does not significantly improve the performance of the
Transformer model

As for the implementation of translation system, S19 chose the MXNET, S6 and
S17 the Marianm, and S8, S4 and S14 the THUMT (the open source neural machine
translation toolkit by Tsinghua University). The rest of the submissions is powered by
Tensor2Tensor (Google) or FairSeq (Facebook).

As mentioned above, all teams chose the Transformer architecture, while in last
CWMT 2018, 10 participants used Transformer-based NMT system, and one of them
used the SMT system based on the hierarchical phrase model in system integration.

(2) Data Cleaning and Pre-processing
For the selection of training data, 8 participants only used CCMT 2019 data, the
remaining participants also used WMT18 (S16), WMT19 (S17) and non-publicly
available bilingual data (S31 unrestricted system). Data preprocessing usually involves
the following steps: Chinese word segmentation, full-width/half-width Chinese char-
acter conversion, tokenization, abnormal word filtering, sentences filtering by length
and alignment ratio. It is claimed that the data cleaning and preprocessing are positive
to translation quality of the submitted systems.

When processing Chinese, S16 carried out a more detailed filtering processing
based on the alignment model, the translation model and the language model. In
addition, S10 simply split Chinese into characters, for which they reported a compa-
rable results with that of Chinese word segmentation.

(3) Out-of-Vocabulary Words and Named Entity
In these shared tasks, all participants adopted BPE to alleviate OOV issue. In addition,
S4 and S31 further adopted label-post-processing technique for named entities and such
special words as date, time, URL, etc. In their systems, the OOV words and named
entities in training corpus are first identified by an independent named entity recog-
nition model or rule-based method. Then the entities are replaced with predefined tags
in an entities-tag dictionary. In addition, the method also constructed a translation
dictionary based on the alignment information. In the decoding phase, the target tag is
detected for its corresponding source tag by the alignment information, and then
replaced with the corresponding translation. It is claimed that this method could
improve the readability of the translation, while the BLEU score increase is trivial.
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(4) Model Training
The optimizer for Transformer model is Adam. All systems use the parameter settings
of Transformer-base or Transformer-big mentioned in (Vaswani et al. 2017). S10 also
explored the number of network layers, and their results showed that increasing the
depth of the network can bring an improvement in model performance.

In addition, when training the model, six teams used back translation to form a
pseudo-parallel corpus. For example, S16 iteratively used back translation in Chinese-
English and English-Chinese translation tasks, which further improves the model
performance. At the same time, their report also pointed out that although this method
can improve the performance by about 3 BLEU, the effective iteration in this method is
limited to the first two rounds. After three rounds, the iterative back translation method
can hardly bring about any improvement.

(5) Re-ranking
During beam search, different features can be used to score and re-rank candidate
translations. In Chinese-English and English-Chinese translation task, re-ranking is
usually based on the following features:

• Translation probabilities from Decoder
• Translation probabilities from Right-left Decoder
• Pre-trained language model score
• Translation coverage score
• Translation quality estimation score

The re-ranking model can be further trained on the development set using MIRA.
S6 used S4 both reported 1.1 BLEU increase resulted from 4 features based re-ranking
within a beam size of 10.

(6) System Ensemble
There are 7 teams in Chinese-English translation, and 6 in English-Chinese translation
adopted the model fusion technique. All candidate systems for fusion are NMT sys-
tems. It is reported that the greater the difference between candidate models, the more
improvement could be brought by this method.

(7) Other Techniques Observed
S10 used multi-task training. They jointly trained machine translation and corpus
classification and reported 1.36 BLEU increase. They argued that this method could
achieve better results owing to the fact that there are large differences in the quality,
field, and style of different training corpora: directly merging different corpora may
bring improper data distribution.

4.2 Bilingual Translation Task: From Mongolian, Tibetan and Uyghur
into Chinese

The CCMT 2019 evaluation results for Mongolian-Chinese, Tibetan-Chinese, and
Uyghur-Chinese are detailed from Table 16, 17, 18, 19, 20 and 21.
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Table 16. CCMT 2019 Mongolian-Chines results of main systems (top 10 only)

BLEU5-
SBP

BLEU5 BLEU6 NIST6 NIST7 GTM mWER mPER ICT METEOR TER

mc-S32-
primary

0.6206 0.6356 0.6151 10.8730 10.881 0.8108 0.2846 0.2271 0.6059 0.7518 0.2627

mc-S24-
primary

0.5882 0.6179 0.5967 10.3980 10.405 0.7902 0.3224 0.2588 0.5657 0.7345 0.2968

mc-S33-
primary

0.4891 0.5083 0.4754 9.7963 9.8042 0.7624 0.3674 0.2861 0.5389 0.6759 0.3374

mc-S29-
primary

0.4698 0.4961 0.4692 9.1621 9.1678 0.7150 0.4237 0.3432 0.4697 0.6368 0.3910

#mc-S13-
primary

0.4631 0.4825 0.4545 9.1907 9.1985 0.7181 0.4198 0.3341 0.4593 0.6304 0.3871

mc-S8-
primary

0.4456 0.4620 0.4308 9.1537 9.1612 0.7198 0.4186 0.3317 0.4508 0.6236 0.3843

##mc-S3-
primary

0.4203 0.4422 0.4112 8.6380 8.6451 0.6916 0.4500 0.3615 0.4159 0.5999 0.4180

mc-S16-
primary

0.4176 0.4435 0.4113 8.7181 8.7245 0.6987 0.4536 0.3609 0.4161 0.6062 0.4188

mc-S22-
primary

0.3610 0.3813 0.3501 7.9715 7.9772 0.6489 0.5171 0.4140 0.3742 0.5453 0.4764

mc-S9-
primary

0.3584 0.3797 0.3533 7.7629 7.7690 0.6324 0.5310 0.4344 0.3624 0.5307 0.4952

## unrestricted system, # system condition unclear

Table 17. Significance test for main systems in CCMT 2019 Mongolian-Chinese track
(● significant, ○ not significant, with p < 0.05)

mc-S32-
primary

mc-S24-
primary

mc-S33-
primary

mc-S29-
primary

mc-S13-
primary

mc-S8-
primary

mc-S3-
primary_a

mc-S16-
primary

mc-S22-
primary

mc-S9-
primary

mc-S32-
primary

– ● ● ● ● ● ● ● ● ●

mc-S24-
primary

● – ○ ● ● ● ● ● ● ●

mc-S33-
primary

● ○ – ● ● ● ● ● ● ●

mc-S29-
primary

● ● ● – ○ ● ○ ● ● ●

mc-S13-
primary

● ● ● ○ – ○ ● ○ ● ●

mc-S8-
primary

● ● ● ● ○ – ● ● ● ●

mc_2019_S3_
primary_a

● ● ● ○ ● ● – ○ ● ●

mc-S16-
primary

● ● ● ● ○ ● ○ – ● ●

mc-S22-
primary

● ● ● ● ● ● ● ● – ●

mc-S9-
primary

● ● ● ● ● ● ● ● ● –
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(1) Translation Model
The systems submitted by all teams are dominated by transformer. The top-ranked S26
in Tibetan-Chinese track is a classical Transformer framework. In contrast, S32 which
top-ranked in the both Mongolian-Chinese track and Uyghur-Chinese track, proposed a
new variant of Transformer: a data weighting mechanism was added to the model in
addition to some modifications of model parameters and activation functions.

Table 18. CCMT 2019 Tibetan-Chinese results of main systems

BLEU5-SBP BLEU5 BLEU6 NIST6 NIST7 GTM mWER mPER ICT METEOR TER

tc-S26-primary 0.6221 0.6441 0.6153 10.8120 10.8450 0.8310 0.2735 0.2064 0.6045 0.7815 0.2441

tc-S24-primary 0.6038 0.6221 0.5943 10.6070 10.6390 0.8146 0.2940 0.2245 0.5996 0.7608 0.2645

tc-S16-primary 0.5831 0.6075 0.5745 10.3940 10.4240 0.8138 0.3079 0.2278 0.5656 0.7609 0.2712

tc-S8-primary 0.5796 0.5930 0.5649 10.4150 10.4460 0.8016 0.3128 0.2420 0.5871 0.7381 0.2828

tc-S32-primary 0.5562 0.5826 0.5488 10.1680 10.1990 0.7980 0.3331 0.2491 0.5359 0.7361 0.2965

tc-S9-primary 0.5266 0.5529 0.5232 9.6544 9.6849 0.7621 0.3771 0.2868 0.5075 0.7002 0.3390

tc-S18-primary 0.4945 0.5067 0.4790 9.3536 9.3810 0.7462 0.3989 0.3079 0.5223 0.6675 0.3601

tc-S14-primary 0.4471 0.4655 0.4278 9.1599 9.1851 0.7401 0.4191 0.3139 0.4610 0.6528 0.3754

tc-S12-primary 0.4442 0.4494 0.4094 9.1318 9.1584 0.7590 0.3857 0.2963 0.5210 0.6552 0.3467

tc-S19-primary 0.4205 0.4489 0.4095 8.6853 8.7095 0.7183 0.4575 0.3448 0.4310 0.6352 0.4093

Table 19. Significance test for main systems in CCMT 2019 Tibetan-Chinese track
(● significant, ○ not significant, with p < 0.05)

tc-S26-
primary

tc-S24-
primary

tc-S16-
primary

tc-S8-
primary

tc-S32-
primary

tc-S9-
primary

tc-S18-
primary

tc-S14-
primary

tc-S12-
primary

tc-S19-
primary

tc-S26-
primary

– ● ● ● ● ● ● ● ● ●

tc-S24-
primary

● – ○ ● ● ● ● ● ● ●

tc-S16-
primary

● ○ – ○ ● ● ● ● ● ●

tc-S8-
primary

● ● ○ – ● ● ● ● ● ●

tc-S32-
primary

● ● ● ● – ● ● ● ● ●

tc-S9-
primary

● ● ● ● ● – ● ● ● ●

tc-S18-
primary

● ● ● ● ● ● – ○ ○ ○

tc-S14-
primary

● ● ● ● ● ● ○ – ● ○

tc-S12-
primary

● ● ● ● ● ● ○ ● – ●

tc-S19-
primary

● ● ● ● ● ● ○ ○ ● –
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Table 20. CCMT 2019 Uyghur-Chinese results of main systems (top 10 only)

BLEU5-
SBP

BLEU5 BLEU6 NIST6 NIST7 GTM mWER mPER ICT METEOR TER

uc-S32-
primary

0.4808 0.5015 0.4579 10.4550 10.468 0.7847 0.3622 0.2621 0.4406 0.6994 0.3221

uc-S24-
primary

0.4694 0.4850 0.4413 10.3930 10.406 0.7798 0.3664 0.2653 0.4412 0.6878 0.3263

uc-S11-
primary

0.4567 0.4713 0.4269 10.2660 10.278 0.7727 0.3742 0.2724 0.4313 0.6773 0.3341

uc-S16-
primary

0.4349 0.4511 0.4064 10.0040 10.016 0.7583 0.3985 0.2895 0.4095 0.6607 0.3561

uc-S9-
primary

0.4305 0.4417 0.3990 9.9484 9.9605 0.7541 0.4034 0.2959 0.4247 0.6490 0.3610

uc-S8-
primary

0.4067 0.4194 0.3756 9.6760 9.6882 0.7418 0.4179 0.3077 0.3961 0.6319 0.3760

##uc-S3-
primary

0.3955 0.4154 0.3708 9.3559 9.3670 0.7281 0.4498 0.3232 0.3616 0.6272 0.4002

uc-S14-
primary

0.3817 0.3991 0.3567 9.2953 9.3066 0.7182 0.4691 0.3407 0.3754 0.6103 0.4169

uc-S19-
primary

0.3336 0.3520 0.3073 8.6522 8.6604 0.6876 0.5059 0.3696 0.3143 0.5726 0.4548

uc-S31-
primary

0.3049 0.3175 0.2773 8.1391 8.1477 0.6501 0.5478 0.4089 0.3036 0.5273 0.4966

## unrestricted system

Table 21. Significance test for main systems in CCMT 2019 Uyghur-Chinese track
(● significant, ○ not significant, with p < 0.05)

uc-S32-
primary

uc-S24-
primary

uc-S11-
primary

uc-S16-
primary

uc-S9-
primary

uc-S8-
primary

uc-S3-
primary

uc-S14-
primary

uc-S19-
primary

uc-S31-
primary

uc-S32-
primary

– ● ● ● ● ● ● ● ● ●

uc-S24-
primary

● – ● ● ● ● ● ● ● ●

uc-S11-
primary

● ● – ● ● ● ● ● ● ●

uc-S16-
primary

● ● ● – ○ ● ● ● ● ●

uc-S9-
primary

● ● ● ○ – ● ● ● ● ●

uc-S8-
primary

● ● ● ● ● – ● ● ● ●

uc-S3-
primary

● ● ● ● ● ● – ● ● ●

uc-S14-
primary

● ● ● ● ● ● ● – ● ●

uc-S19-
primary

● ● ● ● ● ● ● ● – ●

uc-S31-
primary*

● ● ● ● ● ● ● ● ● –

* indicating a delayed submission.
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In the Mongolian-Chinese track, S33 also adopted a Transformer variant
(CNN + GLU) which introduced CNN and gating units into the input layer and
encoder of Transformer. S22 jointly trained the Transformer encoder and decoder for
both machine translation and language modeling. S16 reported that the relative
attention brought about 1 BLEU improvement. S3 revealed that the Marian were better
than OpenNMT and Fairseq on the given task.

In the Uyghur-Chinese track, S11 applied convolutional neural networks Light-
Conv and DynamicConv, and claimed a better performance than transformer in the
experiments. RNN search model can only be observed as a candidate for system
ensemble.

(2) Corpus Processing and Back Translation
A common practice for the above 3 tracks is corpus processing, including tokenization
and normalization, sentence filtering and deduplication. Almost all teams applied the
BPE algorithm to reduce the impact of OOV on model performance. Since all the three
track are severely challenged by the low-resource issue: much less training corpus are
provided compared with that between Chinese and English. Another common practice
for the above teams are back translation.

Substantial efforts were made on how to find the most favorable pseudo-data for the
model training. S32, top-ranked in Mongolian-Chinese and Uighur-Chinese track,
regarded this issue as a text classification problem: applying N-gram language model
and BERT pre-training model to score the generated sentence pairs. Similarly, S26 that
ranks top in the Tibetan-Chinese track, uses a decreasing strategy: back translation was
reduced gradually until only the real bilingual corpus is applied. Results show that
these strategies have a positive impact on translation quality.

In addition to back translation, some participants have tried other data augmentation
methods. For example, S24 used knowledge distillation to construct pseudo data:
combining translation and decoding direction, four teacher models were constructed to
decode a batch of pseudo data. The experiment showed that this method was not
always successful: achieving significant improvements in Mongolian-Chinese and
Uighur-Chinese while no gains in Tibetan-Chinese.

(3) System Ensemble
The technique of system ensemble were adopted by most teams except S14. Most of
the teams reported only the technique they chose, but some teams (such as S19, S26,
etc.) presented a further comparison of the available methods. Generally speaking, they
claimed that the parameter average technique was less recommended, and the differ-
ences between candidate models was a key issue to performance improvement.

4.3 Multilingual Translation Task

Despite the pivot translation nature of this task, all submission systems used trans-
former again and results are shown in Tables 22 and 23.
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In this task, the top-ranked S6 reported that the transformer-big brought 1.19 BLEU
improvement than the transformer-base model, and the 8 layers self-attention per-
formed better than 16 layers by 0.48 BLEU score. Other techniques including corpus
processing, re-ranking and system ensemble were again observed, which will not be
discussed in detail here.

4.4 Speech Translation Evaluation

In CCMT 2019 evaluation campaign, we proposed a new task to boost the research on
speech translation. The participants are encouraged to investigate novel methods to
improve translation quality (e.g., End-to-End model and robust translation model).
Finally, we received seven submissions from four participants before the deadline.
Nevertheless, there are eight participants without any submissions in this year’s
campaign.

Table 22. CCMT 2019 multilingual translation task (Japanese-English) results of main systems

BLEU5-
SBP

BLEU5 BLEU6 NIST6 NIST7 GTM mWER mPER ICT METEOR TER

je-S6-
primary

0.4575 0.4737 0.4249 9.6072 9.6425 0.7823 0.427 0.2591 0.4026 0.6402 0.3954

##je-S18-
primary

0.4317 0.4509 0.3999 9.4626 9.4931 0.7715 0.4517 0.2707 0.4032 0.5711 0.5055

je-S15-
primary

0.3453 0.3692 0.3177 8.3575 8.3760 0.7108 0.5158 0.3538 0.3303 0.5101 0.5851

je-S19-
primary

0.3359 0.3480 0.2987 7.8589 7.8752 0.6999 0.5255 0.3585 0.3063 0.5135 0.5945

*je-S14-
primary

0.3007 0.3293 0.2810 7.5679 7.5833 0.6618 0.5811 0.4233 0.3164 0.4542 0.6739

je-S8-
primary

0.1436 0.1566 0.1255 4.2457 4.2507 0.4735 0.7570 0.6342 0.1791 0.2996 1.0397

* indicates that it was not submitted in time, ## indicates that it is an unrestricted system

Table 23. Significance test for main systems in CCMT 2019 multilingual translation task
(● significant, ○ not significant, with p < 0.05)

je-S6-
primary

je-S18-
primary

je-S15-
primary

je-S19-
primary

je-S14-
primary

je-S8-
primary

je-S6-primary – ● ● ● ● ●
je-S18-primary ● – ● ● ● ●
je-S15-primary ● ● – ● ● ●
je-S19-primary ● ● ● – ● ●
je-S14-primary ● ● ● ● – ●
je-S8-primary ● ● ● ● ● –
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We also train two baseline systems for comparison:

• We use an open source toolkit5 to segment Chinese text, and use Moses toolkit6 to
tokenize English text.

• We run the open source toolkit7 to perform the BPE, and set the vocabulary size to
20,000 and 18,000 for Chinese and English, respectively.

• We pre-train a model using bilingual corpus from Chinese-English News translation
task, namely baseline1. To train the model we use the open source toolkit, Pad-
delPaddle NMT8.

• We finetune the pre-trained model on the BSTC corpus, namely baseline2.

We run the official evaluation scripts, and obtain the final results (Table 24):

As the above table shows, one contrastive submission from S23 achieves the best
result measured by BLEU score. However, the ASR results in this submission is not
from the officially released dataset. Instead they use a non-steaming ASR model to
recognize the acoustic speech, and obtain a better ASR result. However, their primary
submission still obtains the best result among all submissions.

In addition, both S23 and S26 significantly beat the baseline system, which indi-
cates that the methods utilized in their models are effective and practical. However, we
don’t evaluate the latency for each submission due to the relatively small size of
submissions, as well as the fact that all participants don’t develop the simultaneous
translation method.

There is no surprise that all participants used the cascaded method to finish the task
due to the difficulty of using small size of training corpus to obtain a promising result
for an End-to-End speech translation model. In details, the comparison of each sub-
mission can be summarized in Table 25.

Table 24. Evaluation results of speech translation task.

Submissions BLEU4-SBP BLEU4 NIST5 GTM mWER mPER ICT METEOR

S23.contrast.b.result 0.2035 0.2077 6.9964 0.699 0.7755 0.3216 0.0508 0.2286
S23.primary.a.result 0.2008 0.204 6.8736 0.6942 0.7813 0.3262 0.0482 0.2281

S23.contrast.c.result 0.1731 0.1731 6.6457 0.6607 0.7995 0.3652 0.0457 0.212
S26.primary.result 0.1713 0.1725 6.4415 0.6618 0.7935 0.3656 0.0327 0.2308
baseline2.result 0.1299 0.1299 6.0234 0.6229 0.8203 0.3994 0.0353 0.2646

S1.primary.result 0.1259 0.1292 5.9213 0.6195 0.846 0.4132 0.0277 0.2074
baseline1.result 0.1129 0.1129 5.3463 0.5882 0.8345 0.4361 0.0198 0.2682

S18.primary.result 0.1044 0.1044 5.1465 0.5746 0.8545 0.4506 0.0192 0.2577
S23.contrast.d.result 0.0134 0.0143 1.4384 0.2349 0.9688 0.827 0.0035 0.0608

5 https://github.com/fxsjy/jieba.
6 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl.
7 https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_
encoder_build_subword.py.

8 https://github.com/paddlepaddle/paddle.

122 M. Yang et al.

https://github.com/fxsjy/jieba
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder_build_subword.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder_build_subword.py
https://github.com/paddlepaddle/paddle


Pre-processing: Both S23 and XMU pre-processed the training and test data to
improve the translation quality, such as normalizing the special characters, filtering the
repeated sentences and low-quality sentence pairs, etc. For Chinese segmentation, S26
used the open source toolkit developed by Tsinghua University,9 and S23 used the
toolkit developed by Stanford University.10 Both of them adopted the byte pair
encoding (BPE) to encode the bilingual sentences.

Data Augmentation: Both S23 and S26 utilized the back-translation method to
improve the performance and explore the monolingual data in Chinese-English News
translation task.

Domain Adaptation: To finetune the model, S26 proposed to augment the training
corpus in BSTC. They collect five results (5-best) from the ASR model for each
utterance, and then generate additional bilingual sentences using identical English
translation. While the S23 firstly finetune the model on the training data in BSTC, and
then augment the finetuning corpus. Specifically, they collect the English sentences in
the training corpus, and back translates them to obtain bilingual pairs. According to the
final results, the method used by XMU is more effective.

Robust Technologies: The ICT propose a method to enhance the robustness of their
model by augmenting the training corpus. In details, they propose multiple operations
to add noise in the Chinese text:

• Randomly insert modal particle.
• Randomly repeat word.
• Randomly remove word.
• Randomly replace punctuation.
• Randomly replace word by its homophone.

Ensemble: Both ICT and XMU run six individual systems, and ensemble them to
obtain further improvement. According to their descriptions, this technology signifi-
cantly improves the translation quality.

Table 25. Description of methods for each submissions

Submissions Pre-
processing

Data
augmentation

Domain
adaptation

Robust
technologies

Ensemble

S23 ✓ ✓ ✓ ✓ ✓

S26 ✓ ✓ ✓ ✓ ✓

Baseline ✓ ✗ ✓ ✗ ✗

S18 ○ ○ ○ ○ ○
S1 ○ ○ ○ ○ ○
○ indicates that the methods for this submission is unknown

9 http://thulac.thunlp.org/.
10 https://nlp.stanford.edu/software/segmenter.shtml.
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4.5 Quality Estimation: Word Level Track

A total of 7 teams submitted the system for the word level track of translation quality
estimation task, as shown in Tables 26 and 27. Table 28 further compares the methods
of each system.

From the evaluation results, it can be illustrated that translation gap prediction of
quality estimation is more difficult than translation word prediction quality estimation,
and the quality estimation of English-Chinese translation is more difficult than that of
Chinese-English translation. The S28 submitted system outperform other teams.
Compared with other systems, S28 was featured by the following techniques: Byte pair
encoding (BPE) method was applied; the transformer model with two different direc-
tions (left to right & right to left) is used for feature extraction; and the ensemble of
multiple model results leads to further improvement of the model performance.

Table 26. CCMT 2019 word level translation quality estimation results: word choice

F1_MULT F1_OK F1_BAD

Chinese-English QE-Word-CE-S28 0.5257 0.8743 0.6012
QE-Word-CE-S21 0.4688 0.8689 0.5395
QE-Word-CE-S8 0.4156 0.8314 0.4999
QE-Word-CE-S27 0.4050 0.8501 0.4765
QE-Word-CE-S19 0.3970 0.7730 0.5137

English-Chinese QE-Word-EC-S28 0.4236 0.8990 0.4712
QE-Word-EC-S21 0.3380 0.8763 0.3857
QE-Word-EC-S19 0.3336 0.8735 0.3819
QE-Word-EC-S27 0.2867 0.9023 0.3177

Table 27. CCMT 2019 word level translation quality estimation results: translation gap

F1_MULT F1_OK F1_BAD

Chinese-English QE-Word-CE-S28 0.2579 0.9615 0.2683
QE-Word-CE-S21 0.1713 0.9435 0.1816
QE-Word-CE-S27 0.1173 0.9759 0.1202
QE-Word-CE-S8 0.1015 0.9753 0.1041
QE-Word-CE-S19 0.0565 0.9790 0.0577

English-Chinese QE-Word-EC-S28 0.2003 0.9728 0.2060
QE-Word-EC-S21 0.0960 0.9690 0.0991
QE-Word-EC-S27 0.0350 0.9864 0.0355
QE-Word-EC-S19 0 0.9871 0
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According the system descriptions, most of the teams employed the framework of
Extractor-Estimator. The top-ranked S28 adopted the Transformer-DLCL as the
Extractor, combining l2r and r2l translation models as the feature extractor. Its esti-
mator was based on the bidirectional GRU model structure to carry out label prediction.
The exception is S21, who performed quality estimation based on two-layer block
Transformer and bidirectional LSTM.

Almost all teams used extra bilingual data to pre-train the model. S28 used 11M
parallel sentence pairs provided by WMT 2019 and 5.5M pseudo data for pre-training.
Its joint QE training uses 10K real data provided by CCMT 2019 and pseudo data
obtained by TERCOM using 50K bilingual data. S21 additionally used the machine
translation training data in the news field offered by CCMT 2019. S8 used UN English
and Chinese corpus and CCMT 2019 English and Chinese machine translation corpus
in the pre-training stage, totaling about 18 million. S27 filtered the translated news
corpus provided by CCMT and related Chinese-English parallel corpus, and then
mixed them with 10 times of CCMT QE corpus to obtain 10,498 million parallel
sentence pairs to pre-trains the model. S19 uses an additional 3 million Chinese and
English parallel sentence pairs to build a lexical dictionary.

Compared with WMT 2019, in which the word level quality estimation tasks
include English-Russian and English-German, the number of participating teams is
close. But, in terms of model structure, most of WMT19’s participating teams used
Bert Language Model (Masked LM) for pre-training, achieving relatively excellent QE
performance. While in CCMT, all the contestants still use the structure of RNN or
Transformer of previous years.

4.6 Quality Estimation: Sentence Level Track

In this track, CCMT 2019 received 7 submissions and the final results are listed in
Table 29.

Table 28. Techniques in QE-Word systems

Model
architecture

S28 S21 S8 S27 S19
Extractor-
Estimator

Tansformer +
LSTM

Extractor-
Estimator

Extractor-
Estimator

Extractor-
Estimator

Byligual pre-
training

✓ – ✓ ✓ ✓

Monoligual
pre-training

✗ – ✗ ✗ ✗

Data
expansion

✓ ✓ ✓ ✓ ✓

Word
granularity

Sub-word Word Word Word Word

Ensemble ✓ – – – –

Multi-task
learning

✗ ✗ ✗ ✗ ✗

– unclear according to the system report submitted.
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Compared with two submissions for this track last year, the top performance of the
7 teams (0.613) is nearly double the best result (0.31) of last year. Compared with the
SVM based approach of last year, the submitted systems of this year all adopted deep
neural models. The Extractor-Estimator framework has already become the state-of-
the-art solutions to this track. A summary of the system features are presented in
Table 30.

The top-rank S28 applied the same techniques as in word level QE track: Trans-
former-DLCL as the Extractor, a combination of translation model of l2r with that of
r2l to extract features, and the Bi-GRU as Estimator. The system submitted by S2

Table 29. CCMT 2019 sentence level translation quality estimation results

Pearson r RMSE MAE Spearman

Chinese-English QE-Sent-CE-S28 0.6132 0.1159 0.0801 0.4730
QE-Sent-CE-S2 0.5111 0.1296 0.0951 0.4230
QE-Sent-CE-S21 0.4889 0.1292 0.0947 0.4075
QE-Sent-CE-S27 0.4616 0.1745 0.1257 0.4153
QE-Sent-CE-S8 0.4215 0.1423 0.0881 0.4090
*QE-Sent-CE-S25 0.2566 0.1641 0.1155 0.1861
QE-Sent-CE-S19 0.2048 0.1856 0.1492 0.2212

English-Chinese QE-Sent-EC-S28 0.4288 0.1259 0.0914 0.2994
QE-Sent-EC-S2 0.3573 0.1579 0.1324 0.3141
QE-Sent-EC-S21 0.3541 0.1472 0.1114 0.2656
QE-Sent-EC-S8 0.2601 0.1424 0.0923 0.1943
QE-Sent-EC-S27 0.2356 0.1644 0.1151 0.2113
*QE-Sent-EC-S25 0.1901 0.1442 0.1099 0.1107
QE-Sent-EC-S19 −0.0070 0.1996 0.1607 0.0383

* a delayed submission

Table 30. Techniques adopted by sentence-level QE system

Model
architecture

S28 S2 S21 S27 S8 S25 S19

Extractor-
Estimator

RNN + RNN
RNN + CNN

Extractor-
Estimator

Extractor-
Estimator

BERT +
LSTM

Extractor-
Estimator

Predictor-
Estimator

Bilingual pre-
training

✓ ✗ ✓ ✓ ✗ ✓ ✓

Monolingual
pre-training

✗ ✓ ✓ ✗ ✓ ✗ ✗

Data
augmentation

✓ ✓ ✗ ✓ ✗ ✗ ✗

Word
granularity

Sub-word Sub-word Word Word Word Word –

Ensemble ✓ ✓ ✓ – – – –

Multi-task
learning

✗ ✗ ✓ ✗ ✗ ✗ ✗

– unclear according to the system reports submitted.
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consisted of RNN-based feature extractor and RNN or CNN-based quality estimator.
This team didn’t use large-scale parallel corpus for pre-training, but use QE training
data directly. BERT can also be observed in the submissions. S2 and S21 took the
outputs of BERT as features into the model, while S8 used BERT as the main part of
the model, on which they fine-turned by QE data. As for the data augmentation, S28
used back-translation to construct a large number of bilingual parallel corpora, and
constructs a batch of translation quality estimation pseudo data through the translation
system with real bilingual parallel corpus. S27 converted word-level data into sentence-
level data to improve model training. Other techniques such as BPE and model
ensemble were also reported with positive results according to submissions of the
teams.

In general, the sentence level track of quality estimation of CCMT 2019 is some-
what in parallel to that of WMT 2019: with similar number of participants, similar
Estimator-Extractor framework, and similar techniques like pre-training, BPE and so
on. There are no prominent new attempts to this task in terms of model architecture or
training techniques.

5 Conclusion

CCMT machine translation evaluation series have attracted the attention from both
research and industry communities. Throughout the spring of 2019, a total of 158
systems were developed and submitted to the 4 tasks (altogether 9 tracks) of this
evaluation by 30 registered teams. Generally speaking, the state-of-art deep neural
frameworks and optimization techniques are applied and discussed in CCMT 2019.
With the fully awareness of the advantage and limits of the existing technologies in the
literature, it is reasonable to expect new methods and techniques appeared in the next
year.

CCMT 2019 is still, to some extent, centered around the classical tasks in MT
community (with the exception of the speech translation task, as well as the word level
quality estimation track). With the fast-growing acceptance to MT technologies and
systems, translation agencies are faced with new challenges. CCMT would like to
bridge the gap between the MT research community and the translation industry
community, inviting new tasks and tracks for the following evaluation campaigns.
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