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Preface

Practical applications of microbial enzymes are of immense value to the industries. 
The current understanding of fundamentals and advancements in microbial system 
physiology have provided better process control, higher yield, and enhanced recov-
ery of microbial enzymes. Nevertheless, a systematic approach for interpreting the 
current usage of microbial enzymes in food, agriculture, and medical fields 
is needed.

This book is meant to provide comprehensive information on microbial enzymes 
having wide industrial applicability. The volume reflects contributions from 
researchers in the domain of microbial enzymology. The tome contains 13 chapters 
covering various aspects and applications of microbial enzymes. The volume covers 
commercial importance of some important enzymes such as fructosyltransferase, 
laccase, fungal peroxidases, chitinases, proteases, cholesterol oxidases, and oxalate 
decarboxylase in the food processing, nutraceuticals, textiles, agriculture, bioreme-
diation, and biomedical sectors. Integration of modern tools in enhancing the yield 
and optimization of bioprocess technology are the essential components of the 
enzyme biotechnology. The volume highlights major advancements happening in 
the field of industrial biotechnology in recent times.

The major limitations of microbial enzymes production and use in industry are 
the yield, desired characteristics, workability under diverse conditions, and high 
capital investment. Hence, despite great catalytic activity, and eco-friendly nature, 
above-mentioned constraints are responsible for the lower acceptance of these 
enzymes in various formulations and fields. Advantages and progressions made in 
the fermentation process have now resulted in the production of necessary enzymes 
with low capital investment. However, in some instances where they are exclusively 
used as key components, such as in clinical and biomedical sectors, more advanced 
and sophisticated technology is the need of the hour. The volume highlights essen-
tial knowledge on the cutting-edge technologies that are being employed for the 
low-cost production of the microbial enzymes for their mass production at indus-
trial level and utilization of these biomolecules in novel fields. Integration of these 
technologies may overcome many other constraints which industries are currently 
facing. The volume also enlightens the multifaceted application of microbial 
enzymes in different streams and provides a new direction to researchers to conduct 
novel research in the domain of microbial biotechnology.
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Overall, the whole idea of the volume is to seek the potential of the microbial 
enzymes in solving issues related to sustainable environment, agriculture, environ-
ment, and human health.

The volume provides thoroughly updated content on some industrially relevant 
microbial enzymes. The quest for improving the existing enzyme technology related 
to procedure development and improvement, raw material utilization, and broad 
applicability in different industries is also explained.

The editors are indebted to all the contributors for providing their valuable inputs 
on different aspects which made the book more informative and full of updated 
information in the focus area. The editors also convey gratitude to Dr. Mamta Kapila 
and Ms. Akanksha Tyagi from Springer Nature (India) for their continuous support.

We are also indebted to everyone whosoever has supported the project and helped 
in the compilation of the book. We hope that the book will be very useful to research-
ers, students, and industrialists particularly from the field of microbial technology, 
biotechnology, and biochemistry and provide an opportunity for them to become 
familiar with remarkable developments happening in the era of industrial 
biotechnology.

Lucknow, Uttar Pradesh, India Naveen Kumar Arora 
Lucknow, Uttar Pradesh, India  Jitendra Mishra 
Lucknow, Uttar Pradesh, India  Vaibhav Mishra 

Preface
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1Fructosyltransferase Enzymes 
for Microbial Fructan Production

Nazlıcan Tezgel, Onur Kırtel, Wim Van den Ende, 
and Ebru Toksoy Oner

Abstract
Fructans are fructose-based oligo- and polysaccharides synthesized using sucrose 
as substrate. Depending on the glycosidic bonds in their structure, they are clas-
sified as inulin and levan types or a mixture of these, namely graminans and 
agavins. Fructans constitute one of the most widespread functional biomolecules 
in nature and they occur in microbes and plants and to a lesser extent in some 
fungi and certain algal species. The escalating number of evidence on their 
health-promoting effects made fructans an important class of platform chemi-
cals. In fact, they have the largest market share among the natural functional 
additives in the food sector. Plants are the main resources of inulin-, graminan-, 
and agavin-type fructans but levan type of fructans are commercially produced 
by microorganisms. In microbes, levan and inulin are synthesized by extracellu-
lar fructosyltransferase (FT) enzymes named levansucrase (EC 2.4.1.10) and 
inulosucrase (EC 2.4.1.9), respectively. Although microbial levan producers 
are  widespread in nature, microbial inulin production is only limited in few 
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Gram-positive bacteria. This chapter first introduces fructans and its microbial 
and enzymatic production processes followed by the discussion on different 
classes and structure-functional features of FT enzymes.

1.1  Introduction

Fructans are one of the most widespread polysaccharides in nature. They are multi-
functional carbohydrates attracting significant attention since their discovery in the 
1800s. For centuries, the ancient people gained benefit from fructan sources without 
knowledge of their existence in many staple foods. The chemistry of fructan was 
established in the mid of 1900s by many acclaimed carbohydrate chemists (Suzuki 
1993). Since then, the occurrence of fructose-based oligo- and polysaccharides has 
been studied extensively in plants and microorganisms. These polysaccharides are 
also considered as precursors for other metabolites, which formed the origins of 
prebiotic Earth (Stern and Jedrzejas 2008). Apart from these, there are various other 
properties of fructans that make them potential biopolymers to be used in biotech-
nological applications (Penadés et al. 2017).

Fructans have the largest market share among the natural functional additives in 
the food industry which comprised more than 65% of the total volume in 2014 
(https://www.gminsights.com/industry-analysis/inulin-market). They are indigest-
ible, water-soluble, and low-calorie sweeteners used in food products as an alterna-
tive to sucrose and thereby can be used safely by diabetic patients (Zambelli et al. 
2016). Fructans from both the plant and microbial origins have become the focus of 
interest for their prebiotic properties by which they promote the growth of beneficial 
microorganisms in the gastrointestinal tract (Van Laere and Van den Ende 2002; 
Apolinario et al. 2014; Toksoy Oner et al. 2016; Tamura et al. 2017). Moreover, 
fructans are proposed to be associated with native immune responses both in plants 
and in animals (Peshev and Van den Ende 2014), which in turn makes them impor-
tant molecules that function as immunomodulators (Vogt et al. 2014; Tamura et al. 
2017). Escalating number of evidences showed that fructans can also be used in a 
variety of applications such as drug carriers for peptides and proteins (Sezer et al. 
2015), bandages in wound-burned tissue healing (Costa et  al. 2013), anti- 
tumorigenesis patterns (Sarilmiser and Toksoy Oner 2014), cryoprotectants in cere-
als like oat and wheat (Livingston and Henson 1998), and stress tolerance markers 
in fructan-accumulating plants (Valluru and Van den Ende 2008). Future studies are 
expected to further boost up their uses in high-value biotechnological applications.

1.2  Fructan Diversity and Function

Fructans are nonstructural carbohydrates holding high ground after glucose-based 
oligosaccharides in nature. Fructans occur as water-soluble fructose-based bio-
polymers and are naturally found in about 15% of flowering plants and many 

N. Tezgel et al.
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bacteria while their occurrence is restricted to certain fungi and scarce amount of 
algal species such as Dasycladales and Cladophorales (Hendry 1993). In spite of 
their existence in almost all biological kingdoms, fructans do not participate in the 
physiology of animals (Versluys et al. 2018). Then what makes these multifunc-
tional carbohydrates to be regarded as promising biopolymers for human use? 
Indeed, fructans diversify in a way that promises great opportunities not only to the 
microbial world but also to higher organisms by many different aspects. Beacuse 
of the  biotechnological applications, fructan research  is gaining speed so as to 
improve production in a more energetic and cost-efficient way (Toksoy Oner et al. 
2016). In this sense, occurrence, structural-functional relationships, and routes of 
biosynthesis of fructans gain more importance to understand the mechanism behind 
their production.

Fructans are structurally diverse among biological taxa they occur in. One of the 
notable difference is in glycosidic bonds between fructosyl moieties in their struc-
tures. Generally, monomeric fructose units of fructans are attached via β-2,1 and/or 
β-2,6 linkages to form higher order fructan oligosaccharides (FOS) and polysac-
charides. The levan-type polymers having β-2,6-linked fructosyl residues on the 
backbone with occasional β-2,1-type branching constitute the majority of microbial 
fructans (Han et al. 2016). This type of microbial fructans are widespread among 
both Gram-positive bacteria including the genera Bacillus, Paenibacillus, 
Geobacillus, Streptococcus, and Microbacterium, and Gram-negative bacteria such 
as Acetobacter, Pseudomonas, Zymomonas, and Halomonas (Toksoy Oner et  al. 
2016). On the other hand, microbial inulin-type fructans formed by substitution of 
fructosyl units with β-2,1 linkage type and β-2,6 branches occur in only a limited 
number of lactic acid bacteria belonging to Gram-positive bacterial genera, namely 
Streptococcus, Lactobacillus, Leuconostoc, Weissella, and Bacillus agaradhaerens 
(Anwar et al. 2010; Toksoy Oner et al. 2016; Kralj et al. 2018).

In contrast to microbes, fructans of plant origin show greater structural variety. 
Fructans are classified into five main groups in plants depending on glycosidic 
attachments between fructosyl moieties. The first group, inulin, is the most widely 
studied plant fructan and dominant in dicot species mainly in Asteraceae which 
includes chicory, sunflowers, daisies, and thistles (Hendry 1993; Vijn and Smeekens 
1999; Van Laere and Van den Ende 2002). Inulin-type fructans are further subdi-
vided into two different groups in plants: regular inulins (nonreducing sugars) and 
inulo-n-oses (reducing sugars). Fructosyl subunits linked to a starter glucosyl moi-
ety (α-d-Glc) allow the formation of the building block of regular inulin-type fruc-
tans, 1-kestotriose. Absence of a starter glucosyl from inulin chain results in 
formation of the other type of inulin fructans, inulo-n-oses (Van Laere and Van den 
Ende 2002). Levan-type plant fructans (also called phleins) (group 2) are formed by 
substitution of fructosyl units to 6-kestotriose backbone and present in certain spe-
cies from monocot families such as Poaceae, Asparagaceae, and Haemodoraceae 
(Vijn and Smeekens 1999). Graminans (group 3) are mixed fructans of plant origin 
representing both β-2,1 and β-2,6 linkages (Carpita et al. 1989; Van den Ende et al. 
2011). Neo-inulin- and –levan-type fructans make up the fourth group and they are 
formed on a 6G-kestotriose backbone having an internal glucose moiety. β-2,1 

1 Fructosyltransferase Enzymes for Microbial Fructan Production
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Linkages predominate in neo-inulin fructans while neo-levan-type fructans contain 
β-2,6 linkages. Fructosyl elongations of the molecule occur at either end of the glu-
cose unit in the backbone (Martínez-Padilla 2017). Combination of graminan and 
neo-type fructans forms more complex types (of fructans) of group 5, agavins, 
which have been found in some plant species such as Agave spp. and Achyranthes 
bidentate (López et al. 2003; Wang et al. 2015).

Although both microbes and plants share the same linkage types to synthesize 
fructan polymers, microbial fructans are characterized by their greater degree of 
polymerization (DP), which can exceed more than 20,000 fructosyl units (Toksoy 
Oner et al. 2016; Versluys et al. 2018) whereas plant fructans occur with a DP vary-
ing from 3 to a few hundred (Van den Ende 2013). However, occasional production 
of low DP microbial FOS is also possible and sometimes even dominates in some 
genera and under specific reaction conditions (van Hijum et al. 2006). The varia-
tions in DP and branching result mainly due to the action of enzymes playing a role 
in fructan biosynthesis.

1.3  Biosynthesis of Fructans

Fructans are biosynthesized by the action of different enzymes. The main mecha-
nism of action comprises the transfer of a fructosyl unit from a sucrose molecule to 
an acceptor. Inulobiose (β-d-fructosyl-2,1-β-d-fructofuranoside) and levanbiose 
(β-d-fructosyl-2,6-β-d-fructofuranoside) are the simplest structures constructing 
fructan polymers in nature. Plants catalyze the cleavage and transfer of fructosyl 
unit to an acceptor by at least two different enzymes; however, microbes only 
require a single enzyme activity to synthesize fructan polymers (Velázquez- 
Hernández et al. 2009). Microbial fructans are produced generally by extracellular 
FTs. Bacteria use FTs belonging to glycosyl hydrolase family 68 (GH68) of glyco-
sidase hydrolases to synthesize fructans. In nature, biosynthesis of microbial fruc-
tans requires action of a single enzyme, either inulosucrase (EC 2.4.1.9, 
sucrase:2,1-β-d-fructan:1-β-d-fructosyltransferase) or levansucrase (EC 2.4.1.10, 
sucrose:2,6-β-fructan:6-β-d-fructosyltransferase) which catalyzes the synthesis of 
inulin-type or levan-type fructans, respectively (Fig. 1.1) (Banguela and Hernández 
2006; Velázquez-Hernández et  al. 2009), and the fate of the biosynthesis varies 
greatly depending on the reaction conditions. However, dual action of those enzymes 
has been proposed in streptococci as well (van Hijum et al. 2002).

Levansucrases are the best studied FTs which can directly catalyze not only bio-
synthesis but also hydrolysis of microbial levans in the absence of substrate sucrose 
(Kralj et  al. 2008). Crystal structures of levansucrases have been identified from 
Bacillus subtilis (Protein Data Bank [PDB] ID: 1OYG; Meng and Fütterer 2003), 
Gluconacetobacter diazotrophicus (PDB ID: 1 W18; Martínez-Fleites et al. 2005), 
Bacillus megaterium (PDB ID: 3OM2; Strube et al. 2011), and Erwinia amylovora 
(PDB ID: 4D47; Wuerges et al. 2015). In the most general perspective, levansucrase 
uses a donor sucrose molecule, hydrolyzes it, and transfers the resulting fructosyl 
moiety to an acceptor sucrose molecule with β-2,6 linkages, leading to the 

N. Tezgel et al.
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formation of 6-kestotriose. Consequent transfers of fructosyl units to 6-kestotriose 
polymer backbone result in the construction of levan-type fructans. Depending on 
the reaction conditions, levansucrase can also use other molecules as acceptors, 
such as water in sucrose hydrolysis resulting in the release of glucose and fructose, 
with glucose leading to the formation of sucrose (Glc[α1-β2]Fruf) or a sucrose iso-
mer, blastose (β-d-Fruf-[2↔6]-d-Glcp); fructose enabling the synthesis of inulobi-
ose or levanbiose; and levan elongating the polymer chain (Li et al. 2015; Toksoy 
Oner et al. 2016; Miranda-Molina et al. 2017). As exceptions, Leuconostoc mesen-
teroides uses maltose as an alternative fructosyl acceptor to produce trisaccharide 
erlose (Kang et al. 2005) while B. megaterium synthesizes blastose (Homann et al. 
2007). Blastose is a sucrose-derived neo-type disaccharide which is usually pro-
duced as a by-product of levansucrase reactions with sucrose as a substrate (Homann 
et al. 2007). Activity of levansucrase has also been reported on lactose leading to the 
production of lactosucrose (Chen and Gänzle 2017). Raffinose, a trisaccharide com-
posed of galactose, glucose, and fructose, is also known to be used as a substrate by 
levansucrase (Trujillo et al. 2004). B. subtilis is able to produce both inducible and 
constitutive extracellular levansucrase, which use sucrose and glucose as carbon 
source, respectively (Abdel-Fattah et al. 2005; Srikanth et al. 2015). Recent studies 
on Bacillus methylotrophicus revealed an intracellular levansucrase action to pro-
duce levan in a more efficient way (Zhang et al. 2014; Wu et al. 2015; Li et al. 2015).

Inulosucrases catalyze bacterial inulin synthesis using mainly sucrose as an accep-
tor. Mechanism of action is similar to that of levansucrase; however, inulosucrase 
elongates the growing fructan chain by addition of fructosyl units with β-2,1 linkage. 

Fig. 1.1 Microbial fructan biosynthesis and degradation

1 Fructosyltransferase Enzymes for Microbial Fructan Production
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While levansucrases have been intensively studied, the available information about 
inulosucrases is rather limited in the literature. Up to date, inulin biosynthesis by inu-
losucrases in microbes has been reported in species from lactic acid bacteria, namely 
Lactobacillus, Leuconostoc, and Streptococcus (van Hijum et  al. 2002; Olivares-
Illana et al. 2003); however, in recent years, existence of inulosucrase in other genera 
belonging to Gram-positive bacteria has been identified including Streptomyces turgi-
discabies (Dilipkumar et al. 2011), Actinobacteria (Frasch et al. 2017), and Bacillus 
agaradhaerens (Kralj et al. 2018). On the other hand, crystal structure of an inulosu-
crase has only been identified from Lactobacillus johnsonii (Pijning et al. 2011; PDB 
ID: 2YFR). Inulosucrases of Streptococcus mutans are able to synthesize a trace 
amount of sucrose, 1-kestotriose, nystose (1,1-kestotetraose), and also raffinose-
derived inulins in addition to inulin oligo- and polysaccharides (Ozimek et al. 2006; 
Anwar et al. 2010). Inulosucrase from Leuconostoc citreum has the ability to catalyze 
the synthesis of glucose-based polymers representing glycosyltransferase activity 
alongside with its FT activity (Olivares-Illana et al. 2003).

Fungi use fungal FTs classified in GH32 family glycosidase hydrolases which 
are evolutionarily closer to plant fructan-hydrolyzing enzymes, β-fructofuranosidases 
(invertases), than bacterial FTs (Lammens et al. 2009) to catalyze the biosynthesis 
of linear β-2,1-linked fructan polymers (Ritsema and Smeekens 2003). Indeed, the 
main mechanism of the enzyme comprises equimolar hydrolysis of sucrose into its 
monomers, glucose, and fructose. However, depending on the biological source and 
sucrose availability, reaction favors towards the synthesis of FOS when the enzyme 
uses sucrose (or FOS) as an acceptor rather than a water molecule, thus acting as a 
transfructosylase (Ritsema et  al. 2006). Therefore β-fructofuranosidases show 
hydrolytic activity in low sucrose concentration and transfructosylating activity in 
high sucrose concentrations (Ganaie et  al. 2014). Fungal species preferentially 
transfer a fructosyl group of sucrose, 1-kestotriose, nystose, or less preferably raf-
finose to an acceptor. Generally, FOS with DP ranging from 3 to 10 are predominant 
among fungal fructans; however, chain sizes show great variation between fungal 
species (Banguela and Hernández 2006). The occurrence of fungal FTs has been 
revealed in species of Aspergillus, Aureobasidium, Kluyveromyces, and Penicillium 
(Chuankhayan et al. 2010). The crystal structure of fungal FT enzymes has been 
reported in Aspergillus japonicus (PDB ID: 3LF7; Chuankhayan et  al. 2010), 
Schwanniomyces occidentalis (PDB ID: 3KF5, Alvaro-Benito et  al. 2010), 
Aspergillus ficuum (PDB ID: 3RWK, Pouyez et al., 2012), Saccharomyces cerevi-
siae (PDB ID: 4EQV, Sainz-Polo et  al. 2013), Xanthophyllomyces dendrorhous 
(PDB ID:5ANN; Ramírez-Escudero et al. 2016), and Aspergillus kawachii (PDB 
ID: 5XH8, Nagaya et al. 2017).

Unlike microbes, plants synthesize fructans by the combined action of multiple 
enzymes. There are four FTs studied to date which take part in fructan production 
in the vacuolar compartment of higher plants. Plant FTs share GH-J clan of glyco-
side hydrolase enzymes with microbial FTs whereas they evolutionarily diverge 
from each other and belong to GH32 enzyme family (Lammens et  al. 2009). 
Vacuolar sucrose, the central molecule in plant fructan biosynthesis, is the substrate 
used to initiate catalysis by sucrose:sucrose 1-fructosyltransferase (1-SST, EC 

N. Tezgel et al.
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2.4.1.99) and sucrose:(sucrose/fructan) 6-fructosyltransferase (6-SST, EC 2.4.1.- / 
6-SFT, EC 2.4.1.10) in order to form 1-kestotriose and 6-kestotriose, respectively. 
Formed FOSs are further elongated to inulin and levan polysaccharides by the 
action of fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100) and 6-SST/6- 
SFT, respectively. Fructan:fructan 6G-fructosyltransferase (6G-FFT, EC 2.4.1.243) 
synthesizes fructan neo-series from 1-kestotriose which is polymerized to neo- 
inulin type of fructans by 1-FFT, whereas 6-SFT is used to synthesize neo-levan- 
type fructans. 1-Kestotriose of plant origin is also prone to attacks of 6-SFT enzyme 
leading to formation of bifurcose, the smallest graminan type of fructans in plants. 
Bifurcose is elongated by either 1-FFT or 6-SFT forming graminans (Vijn and 
Smeekens 1999; Livingston III et al. 2009; Van den Ende 2013; Van den Ende et al. 
2002). The crystal structure of 6-SST/6-SFT enzyme has been obtained from 
Pachysandra terminalis (Lammens et al. 2012; PDB ID: 3UGF).

1.4  Microbial Fructan Production

The demand for sucrose-derived fructans has increased in many industries. 
Alongside their natural occurrence by means of “biosynthesis,” different types of 
fructans are also produced enzymatically by many industrial processes (Table 1.1). 
However, among them, there is a special interest on FOS rather than long-chain 
fructans since FOSs are generally recognized as safe (GRAS) molecules and they 
are commercially available for animal and human consumption since last few 
decades (Nobre et al. 2015).

Microbial FTs are the main enzymes used in industrial FOS production (Nobre 
et  al. 2015). Commercially important FOSs are generally inulin-type fructans 
including 1-kestotriose (GF2), nystose (GF3), and 1-β-fructofuranosyl nystose 
(GF4) in which one to three fructosyl unit(s) are transferred to the sucrose donor at 
the β-2,1 position by releasing glucose into the reaction medium (Prapulla et  al. 
2000). These type of fructans can be produced chemically by glycosylation and de 
novo synthesis (Nobre et al. 2015). However, chemical FOS synthesis is not practi-
cal or economically feasible due to several reasons (Barreteau et  al. 2006). The 
production requires many reaction steps which are laborious and use expensive/
hazardous chemicals usually yielding low-quantity fructans (Palcic 1999; Prapulla 
et al. 2000). Extractions from plant sources are also not very applicable since the 
application of FOS biosynthetic enzymes of plant origins is limited to seasonal 
changes.

On the other hand, in vitro enzymatic production of fructans has been reported 
for many organisms using whole-cell synthesis and isolated enzymes besides the 
promising benefits of immobilization technology (Bali et al. 2015).

1 Fructosyltransferase Enzymes for Microbial Fructan Production
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1.4.1  Enzymatic Production

1.4.1.1  Whole-Cell Synthesis
The yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) is able to produce 
trisaccharide neokestose in the presence of sucrose. The highest yield obtained from 
this organism has been reported when the cells were harvested at the exponential 
phase while recycling of the cells caused a reduction in the final yield (Kritzinger 
et al. 2003). Aureobasidium pullulans is able to produce both intracellular and extra-
cellular FTs. Lateef et al. (2007) used ultrasonication to release intracellular FTs of 
A. pullulans CFR 77 to produce FOS. In another study, 166 g of FOS was recovered 
from A. pullulans when 360 g of the substrate was fed into a reaction medium (Shin 
et al. 2004). Substrate feeding of A. pullulans has also been reported to increase the 
production of FTs up to 47% and also enhance enzyme specificity and final concen-
tration (Yun et al. 1997a, b).

The yeast Schwanniomyces occidentalis can synthesize 6-kestotriose by using a 
substrate mixture containing sucrose, 1-kestotriose, nystose, and raffinose (Alvaro- 
Benito et  al. 2007). Aspergillus oryzae KB is known to produce two types of 
β-fructofuranosidases having the ability to synthesize either 1-kestotriose, nystose, 
and fructosyl nystose or glucose and fructose (Kurakake et al. 2008). Enzymatic 
production of 1-kestotriose by Scopulariopsis brevicaulis has been achieved with 
99.9% purity (Takeda et al. 1994). In a shake flask system, 3.25 g FOS/L/h was 
produced by Penicillium expansum (Prata et  al. 2010) whereas, 160.0 gFOS/L/h 
was produced by β-fructofuranosidases from A. japonicus and A. pullulans in a 
continuous bioreactor (Sheu et  al. 2002). Inulin-producing Lactobacillus strains 
have also been reported. L. citreum CW 28 inulosucrase was demonstrated to pro-
duce inulin polymer with a molecular weight between 1.35 and 1.60 × 103  kDa 
(Ortiz-Soto et al. 2004).

Microbes producing long-chain fructan polymers have been isolated from sev-
eral species such as Acetobacter xylinum (Tajima et al. 1997), Bacillus polymyxa 
(Han and Clarke 1990; Han and Watson 1992), B. subtilis (natto) Takahashi (Shih 
et al. 2005), and Microbacterium laevaniformans (Bae et al. 2008). Gram-positive 
bacteria B. subtilis (natto) Takahashi was reported to produce 49.4 g/L levan in the 
first 21 h of a submerged fermentation process (Shih et al. 2005). In another study, 
61 g/L and 100 g/L of levan productions have been achieved by fermentation of batch 
and fed-batch suspension cultures of B. subtilis (natto) Takahashi in a 10-L stirred 
bioreactor (Wu et al. 2013). M. laevaniformans PTCC 1406 cultures are known to 
synthesize levan- type fructans when they are grown on sucrose under controlled fer-
mentation conditions. The yield was reported to increase more than four times when 
the microbes were fed on sucrose syrup (Moosavi-Nasab et  al. 2010). The first  
levan biosynthesis in Gram-negative bacteria was reported in G. diazotrophicus 
(Acetobacter diazotrophicus) (Hernandez et  al. 1995). With a different strain  
from the same microorganism, G. diazotrophicus PAl 5, 24.7 g/L levan was produced 
from 100 g/L sucrose feed without extra nitrogen supplementation (Molinari and 
Boiardi 2013). Levan production is also possible by extremophiles. Gram- 
negative Halomonas sp. has been reported to be the first halophilic bacterium that 
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produces levan (Poli et al. 2009). High level of levan biopolymer was yielded by 
Halomonas smyrnensis AAD6T levansucrase from sucrose when boric acid is sup-
plemented in the reaction medium (Kazak Sarilmiser et  al. 2015). The same 
Halomonas strain fed on pretreated starch and sugar beet molasses was also 
reported to produce high amounts of levan biopolymer (Küçükkaşık et al. 2011).

1.4.1.2  Production with Isolated Enzymes
The enzymes involved in FOS production process are also cultivated and isolated to 
be used in biotransformation phenomena yielding desired fructan products under 
controlled reaction conditions (Ganaie et  al. 2014). Microbial enzymes isolated 
from organisms are purified by different methods such as centrifugation, chemical 
precipitation, and column chromatography allowing the recovery of maximum bio-
polymer products compared to whole-cell synthesis (Bali et al. 2015).

Inulosucrase isolated from L. citreum CW 28 was shown to yield inulin polymers 
with a molecular weight between 2.6 and 3.4 kDa (Ortiz-Soto et al. 2004). Expression 
of the fructosyltransferase gene of S. mutans in an Escherichia coli strain was also 
reported to lead to the production of very-high-molecular-weight inulins (Heyer 
et al. 1998). Bacillus cereus was reported to produce 37.40 U/mL extracellular FTs 
when fed on 16% (w/v) sucrose in submerged fermentation while 29.1 U/g enzyme 
was produced in solid-state fermentation (SSF) (El-Beih et al. 2009). FTs isolated 
from A. oryzae have been reported to yield 53% FOS by production with 60% sucrose 
(at 55 °C and pH 5.15) in a submerged fermentor (Sangeetha et al. 2004). Isolated 
Zymomonas mobilis levansucrase was reported to be used in the production of not 
only 1-kestotriose, 6-kestotriose, neokestose, and nystose, but also other non-identi-
fied fructo-oligosaccharides from sucrose syrup (Bekers et al. 2002).

During microbial fructan production, glucose released as a by-product, is uti-
lized by microbes for growth; however, a part of it is non-metabolized and accumu-
lated in the reaction medium possessing an inhibitory effect on microbial FTs. The 
strategies to utilize the remaining glucose in the reaction medium have been pro-
posed by different methods during fructan production. One of them is the usage of 
enzyme mixtures. Mixed-enzyme systems are used in industrial FOS production 
processes (Table 1.2). β-Fructofuranosidase and glucose oxidase were used together 
to produce FOS from sucrose and glucose feed in a batch system (Yun et al. 1994). 
By this way, the amount of free glucose in the fermentation medium was completely 
consumed by glucose oxidase with 98% FOS recovery. Also, enzymes from differ-
ent microbial sources produced high-content FOS from sucrose-derived substrates 
(Maugeri and Hernalsteens 2007).

1.4.1.3  Production by Hydrolysis of Fructans
In contrast to fructan biosynthesis, commercial FOS production is also possible via 
biodegradation of fructans by fructan hydrolases (Sangeetha et al. 2004). Microbial 
fructans can be hydrolyzed by inulinases (2,1-β-d-fructan fructanohydrolase, EC 
3.2.1.7) and levanases (2,6-β-d-fructan fructanohydrolase, EC 3.2.1.65) in an endo- 
or exo-manner (Cote and Ahlgren 1993; Versluys et al. 2018). The reaction mecha-
nism differs depending on the enzyme functioning on polymer backbone (Fig. 1.1). 

N. Tezgel et al.



13

Microbial fructan exohydrolases remove one or two terminal fructosyl residues 
from the fructan chain whereas endohydrolases split β linkages in oligofructosyl 
chain at random sites leading to the production of oligofructans in various sizes 
(Murakami et al. 1990).

Microbial inulinases specifically hydrolyze inulin oligo- and polysaccharides by 
the actions of endo-inulinases (EC 3.2.1.7) (Naidoo et al. 2015). Levanases show a 
similar substrate specificity in the hydrolysis of levan fructans by endo-levanases 
(EC 3.2.1.65) while exo-levanases (EC 3.2.1.64) are able to degrade sucrose, raffi-
nose, and inulin other than levan biopolymers (Menendez et  al. 2004). Inulinase 
production has been reported in yeast Kluyveromyces marxianus var. bulgaricus fed 
on Yacon (Polymnia sonchifolia) (Cazetta et  al. 2005). Levan FOSs were also 
reported to be produced by hydrolysis of levan from Zymomonas mobilis (de Paula 
et al. 2008).

Table 1.2 Mixed-enzyme systems employed in microbial fructan production

Mixed enzyme 
system Enzymes Product Reference
Candida sp. 
(LEB-I3)
Rhodotorula 
sp. (LEB-U5)
Cryptococcus 
sp. (LEB-V2)
Rhodotorula 
sp. (LEB-V10)

Fructosyltransferases Production of 100 g/L of FOS 
from 500 g/L sucrose solution

Maugeri and 
Hernalsteens 
(2007)

Aureobasidium 
pullulans 
KFCC
Aspergillus 
niger

β-Fructofuranosidase
Glucose oxidase

Production of 98% FOS with 
complete consumption of 
sucrose and glucose by 10 units 
of β-fructofuranosidase with the 
combination of 15 units of 
glucose oxidase per gram 
sucrose at pH 5.5, 40 °C with 
400 g/L initial sucrose 
concentration, 550 rpm agitation 
speed, and 0.71 L/min oxygen 
flow rate

Yun et al. 
(1994)

Aspergillus 
aculeatus
Aspergillus 
niger

Transfructosylating 
activity of pectinases 
(Pectinex Ultra SP-L 
and Rapidase TF)

Production of 61.5% w/w 
(387 g/L) FOS from total 
carbohydrate in the reaction 
mixture by immobilization on 
polymethacrylate-based polymer 
(Sepabeads® EC)

Ghazi et al. 
(2005)

Aspergillus 
niger ATCC 
20611
Aspergillus 
japonicus 
TIT-KJ1

β-Fructofuranosidases Production of 60% FOS of the 
total sugars in the reaction 
mixtures from 50% (w/w) 
sucrose solution by 
immobilization of enzyme 
mixture on methacrylamide- 
based polymeric beads

Chiang et al. 
(1997)
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Under certain conditions, levansucrases, inulosucrases, and invertases 
(β-fructofuranosidases; EC 3.2.1.26) can also function as exo-levanases in some 
microbes showing both inulin- and levan-type hydrolyzing activity (Uchiyama 
1993; Versluys et al. 2018).

1.4.2  Immobilization Technology

Many microbes or the enzymes isolated from those microorganisms are immobilized 
on different materials to produce catalytically and economically feasible fructans 
under optimum reaction conditions. Calcium alginate beads were reported to be used 
in FOS production by A. japonicus (Cruz et al. 1998), A. foetidus (Markosian et al. 
2007), and Aspergillus niger (Lin and Lee 2008). The maximum yield from sucrose 
was obtained when the organisms were immobilized on calcium alginate beads.

Interestingly, different materials such as stainless steel, polyurethane foam, foam 
glass, and vegetable fibers were reported to be used as immobilizators for industrial 
FOS production (Mussatto et al. 2009a). Moreover, several lignocellulosic materials 
such as corncobs, cork oak, coffee husks, and wheat straw and grain were also used 
as support materials during FOS and β-fructofuranosidase production by immobi-
lized A. japonicus cells (Mussatto et al. 2009b). Among them, corncobs were pro-
posed to serve the most effective immobilizing matrix for FOS production when 
compared to non-immobilized cell systems (Bali et al. 2015).

Levan-producing B. subtilis (natto) Takahashi cells were immobilized on algi-
nate beads to produce 70.6 g/L levan in 72 h (Shih et al. 2010). Immobilization of 
B. subtilis levansucrase enzyme on calcium phosphate gel was demonstrated to 
yield 85% levan of total polymer production (Chambert and Petit-Glatron 1993). 
B. subtilis NRC33a strain was reported to yield high amounts of levan (up to 86%) 
when the enzyme is immobilized on chitosan. The 51.13% of enzyme was stated to 
retain on chitosan beads after 14 repeats of usage (Esawy et al. 2008). Z. mobilis 
levansucrase was revealed to produce levan biopolymer by enzyme binding on 
titanium- activated magnetite (Jang et al. 2001).

Even though immobilization increases the rate of FOS production, many studies 
have reported that the higher amount of FOS yields can also be achieved by free 
cells than it has done with immobilized cells (Ning et al. 2010). Therefore, the main 
driving force in FOS production can be considered as the catalytic properties of the 
enzymes specialized for microbial fructan synthesis.

1.5  Microbial Fructosyltransferases

1.5.1  Mechanism of Action

1.5.1.1  Enzyme Structure and Function
Majority of microbial FTs which are responsible for transfructosylation reactions in 
microbes belong to GH68 family of enzymes. However, a few microbial fructan 
biosynthetic enzymes are involved in GH32 enzyme family. Bacterial FTs, namely 

N. Tezgel et al.



15

inulosucrases, levansucrases, and a few β-fructofuranosidase-like enzymes, are 
classified in GH68 enzyme family, sharing a common β-propeller domain in the 
active site with the enzymes of GH-J clan. The propeller is formed by four antiparal-
lel β-strands, each located in fivefold blades, hiding the catalytic triad in the core of 
the enzyme (Lammens et al. 2009). The active site is superimposed in a negatively 
charged funnel cavity enabling proper bonding with fructosyl donor substrates. By 
this way, sucrose has been stated to position similarly in the catalytic pocket of all 
GH68 family enzymes. In addition to general structure, fungal FTs 
(β-fructofuranosidases) involved in GH32 enzyme family hold a six-β-stranded 
β-sandwich structure in their C-terminal domain (Lammens et al. 2009) which was 
suggested to play a role in recognition of microbial fructans with high DPs (Le Roy 
et  al. 2007). Studies concluded that GH68 and GH32 families show sequence 
homology sharing several conserved motifs (Naumoff 2001). Nevertheless, they are 
not structurally homologous proteins and have several enzyme family-specific prop-
erties proposed to be involved in the catalytic activity.

The catalytic triad of GH-J clan is fully conserved among the enzyme families. 
This set of three acidic amino acid residues (Asp-Glu-Asp), involved directly in the 
enzyme-substrate-binding activity, is located in the N-terminal of the propeller. 
Amino acid residues serve essential functions in catalysis and each one is conserved 
in different motifs. One aspartate residue (WMNDPNG motif) has been identified 
to function as the catalytic nucleophile while glutamate (EC motif) was revealed to 
act as the acid/base catalyst. The other aspartate residue (RDP motif) involves in 
substrate binding, thus functioning as a transition-state stabilizer (Meng and Fütterer 
2003). Next to glutamate, the acid/base catalyst, EC motif possesses a conserved 
cysteine residue in GH32 enzyme family; however, an arginine residue is located in 
the EC motif of GH68 enzymes proposing enzyme family specificity (Lammens 
et al. 2009). Therefore, sequence variation in the motifs involved in catalysis results 
in the formation of enzyme products with different linkage types and chain length 
among GH-J clan. However, sequential differences are also valid among each GH 
family although member enzymes shared conserved domains.

Bacterial FTs are extracellular proteins belonging to GH68 enzyme family which 
have five main domains: a signal peptide (1), an N-terminal domain (2), a catalytic 
domain (3), a cell wall-binding domain (4), and a region in the C-terminal domain 
(5) (Velázquez-Hernández et al. 2009). The signal peptide is a widely shared domain 
among Gram-positive bacteria while the majority of FTs of Gram-negative bacteria 
are secreted as signal-peptide-independent proteins with an exception of levansu-
crase of G. diazotrophicus. G. diazotrophicus levansucrase is secreted by type II 
secretion system which requires cleavage of a precursor signal peptide located in 
the first 30 amino acid residues of the organism (Arrieta et al. 2004). The N-terminal 
of microbial FTs is generally 90 amino acids long containing several conserved 
residues or repetitive sequences (Lammens et al. 2009). FTs of lactic acid bacteria 
share no homology in sequence but in length, however, they contain some residues 
in common. Lactobacillus sanfranciscensis TMW1.392 levansucrase contains a 
repetitive 16-amino-acid sequence in the N-terminal of the enzyme (Tieking et al. 
2005). FTs of Gram-negative bacteria also share a motif (WT[R/I]ADA[L/M]) in 
the N-terminal domain (Tajima et al. 2000). The catalytic domains of microbial FTs 
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possess 11 common regions in their sequences. Among microbes, only Gram- 
positive bacteria have been shown to conserve aspartate residue in the catalytic 
domain (Ozimek et al. 2005). The cell wall-binding domain in the C-terminal of 
microbial FTs varies sequentially depending on the microbial origin. The cell wall- 
binding protein of Gram-positive bacteria typically harbors a 6-repeat 12-amino- 
acid region containing PXX-LPXTG motives and a hydrophobic region (Tieking 
et  al. 2005) whereas a glycine-rich region predominates in the cell wall-binding 
proteins of Gram-negative origin (Song et al. 1998).

Microbial FTs operate via a double-displacement (ping-pong) mechanism allow-
ing formation and hydrolysis of fructosyl-enzyme intermediate. The enzyme mech-
anism involves a two-step reaction. In the first step, a general glycosylation reaction 
takes place where a covalent fructosyl-enzyme intermediate is formed by a nucleo-
philic attack on the anomeric carbon of the substrate molecule (generally sucrose). 
The second step proceeds as a deglycosylation reaction leading to hydrolysis of the 
fructosyl-enzyme intermediate by removal of a proton from a fructosyl acceptor 
(Antošová and Polakovič 2001). The enzyme affinity towards a water molecule as 
an acceptor is considerably low reducing the hydrolysis activity of microbial FTs.

Most microbial levansucrases represent a simple Michaelis-Menten kinetics 
retaining substrate saturation conditions. As exceptions, levansucrases from 
Lactobacillus reuteri and L. sanfranciscensis do not obey saturation kinetics under 
normal operating conditions (van Hijum et al. 2006). Levansucrases function in a 
way in which the synthesized fructan polymer remains bound to the enzyme during 
chain elongation (processive or proportionate reaction) and is used as a fructosyl 
donor in substrate depletion (Kralj et al. 2008), while synthesis of short-chain fruc-
tans requires release of fructan chain after each transfructosylation reaction (non- 
processive or disproportionate reaction) (Ozimek et al. 2006). When the available 
substrate is limited in the environment, microbial levansucrases are able to use the 
synthesized polymer as a substrate by cleaving the backbone at the β-2,6 linkages 
(exo-hydrolysis). Then the reaction stops when the enzyme encounters a β-2,1 link-
age at the branching points. In this manner, levan chains are prevented from exten-
sive degradation by levansucrase enzyme. Therefore, levan production often requires 
a prompt enzyme inhibition step at the end of biosynthesis (Toksoy Oner et  al. 
2016). In contrast to many levansucrases, inulosucrases do not follow Michaelis- 
Menten kinetics (Anwar et al. 2008).

β-Fructofuranosidases (invertases) are involved in the reversible biosynthesis of 
several microbial FOS.  Fructan production by β-fructofuranosidases depends on 
two mechanisms: either reverse hydrolysis or transfructosylation (Antošová and 
Polakovič 2001). β-Fructofuranosidases obey Michaelis-Menten kinetics (Ritsema 
et  al. 2006); therefore the yield depends on the equilibrium between fructosyl- 
enzyme complex to a fructose (or kestose) and a free enzyme. Transfructosylation 
allows transfer of a fructosyl unit from a donor (sucrose or FOS) to an acceptor, 
allowing the formation of the product (a FOS having one more fructosyl unit than 
the acceptor) which is also a potential donor molecule to β-fructofuranosidases 
(Antošová and Polakovič 2001). The final FOS yield can be increased accordingly 
with the increasing substrate concentration. However, FOS produced by a 
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fructofuranosidase action is usually low even when the microbe is exposed to high 
substrate concentrations whereas high FOS production is possible even in dilute 
substrate concentrations by a transfructosylase action (Antošová and Polakovič 
2001). Therefore, β-fructofuranosidases having high transfructosylase activity often 
yield higher amounts of FOS. Likewise, β-fructofuranosidases with transfructosyl-
ase activity show catalytically different profile than the fungal FTs 
(β-fructofuranosidases) which synthesize FOS by means of reverse hydrolysis 
(Antošová and Polakovič 2001).

1.5.1.2  Physicochemical Properties
Bacterial FTs are generally considered as extracellular monomeric enzymes bearing 
a single domain with some exceptional cases (Olivares-Illana et al. 2003; Ortiz-Soto 
et al. 2004; Velázquez-Hernández et al. 2009). One of them is an inulosucrase from 
L. citreum CW28 that is a cell wall-associated FT possessing three domains in its 
crystal structure. The enzyme shows unusually high sequential similarity to glucos-
yltransferases, which are responsible for catalyzing the transfer of a glucosyl moiety 
to a growing polysaccharide chain, by having an identical glucan-binding domain. 
Correspondingly, L. citreum CW28 inulosucrase is known as the only bacterial inu-
losucrase having a molecular weight of 165 kDa, being the highest reported so far 
(Olivares-Illana et  al. 2003). However, most inulosucrases are relatively smaller 
enzymes having a molecular weight ranging from 45 to 95 kDa (van Hijum et al. 
2002; Dilipkumar et al. 2011; Frasch et al. 2017; Kralj et al. 2018). Similar to inu-
losucrases, there have been several dimeric levansucrases reported in Actinomyces 
viscosus T-14 V (Pabst 1977), Rahnella aquatilis JMC-1683 (Ohtsuka et al. 1992), 
and L. mesenteroides B-512 FMC (Kang et  al. 2005). Among them A. viscosus 
T-14 V levansucrases have the highest molecular weight, 250 kDa, also being the 
highest mass reported for levansucrases (Pabst et al. 1979) while levansucrase of 
G. diazotrophicus possesses the highest molecular mass within monomeric levansu-
crases with 200  kDa (Hernandez et  al. 1995). The smallest levansucrase having 
molecular weight of 20 kDa was reported to occur in B. subtilis (Tanaka et al. 1978). 
In contrast to bacterial FTs, microbial β-fructofuranosidases are multimeric enzymes 
whereas a monomeric β-fructofuranosidase was reported in Bifidobacterium ado-
lescentis G1 (Muramatsu et al. 1993). Consequently, microbial β-fructofuranosidases 
possess much higher molecular weights compared to bacterial FTs.

The reported optimum pH for inulosucrase activity is from 5.0 to 6.5 (van Hijum 
et al. 2002; Ortiz-Soto et al. 2004; Del Moral et al. 2008) while pI for inulosucrases 
ranges from 4.5 to 5.0 (Velázquez-Hernández et al. 2009). Levansucrases represent 
a broader optimum pH range for their activity. Z. mobilis levansucrase (Han et al. 
2009) operates at pH 7.0 while optimal enzymatic activity was observed at pH 4.6 in 
Lactobacillus panis levansucrase (Waldherr et al. 2008). pI for levansucrases was 
reported to range from 2.6 to 5.5 (Velázquez-Hernández et  al. 2009). Bacterial 
β-fructofuranosidases occur to be active at acidic and neutral-to-alkali pH condi-
tions (Lincoln and More 2017). However, enzymes from several Aspergillus species 
have been recorded to be active at highly alkaline pH (Antošová and Polakovič 2001).
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Bacterial inulosucrases operate best at temperatures ranging from 20  °C to 
50 °C. However, Ozimek et al. (2005) have revealed that Lactobacillus reuteri strain 
121 has the ability to operate at 55 °C in the presence of Ca2+. Besides, recombinant 
inulosucrase from Lactobacillus gasseri DSM 20604 (Díez-Municio et  al. 2013) 
and inulosucrase from L. johnsonii NCC 533 (Anwar et al. 2008) were also reported 
to show optimum activity at 55  °C.  Interestingly, levansucrase of B. subtilis has 
been stated to be more productive over a period of 10 h at 0 °C; however the enzyme 
activity is higher at 37 °C (Tanaka et al. 1978), while 60 °C is just enough for the 
activity of levansucrases from R. aquatilis JCM-1683 (Ohtsuka et  al. 1992) and 
Bacillus sp. TH4-2 (Ammar et al. 2002). Fungal FTs can work at higher tempera-
tures, bacterial inulosucrases do such as FTs from A. oryzae which has been declared 
to function optimally at 60 °C (Maiorano et al. 2008).

Substrate affinity differs remarkably among kinetically characterized microbial 
FTs. Km for sucrose in wild-type bacterial inulosucrases was obtained as 12 mM 
and 99.2 mM in L. reuteri 121 (Ozimek et al. 2006) and L. citreum (Ortiz-Soto et al. 
2004), respectively. Levansucrases show a wide spectrum of sucrose affinity. The 
lowest levansucrase affinity to sucrose has been reported in Pseudomonas syringae 
pv. phaseolicola (Km: 160  mM) (Hettwer et  al. 1995) while levansucrase from 
B. megaterium has more preference to sucrose as a substrate (Km: 4.1 mM) (Homann 
et al. 2007). Reported information about β-fructofuranosidase affinity to different 
substrates abounds in the literature more than microbial FTs. Other than sucrose, 
raffinose has been revealed as the most preferred substrate by microbial 
β-fructofuranosidases with Km values ranging from 1.3 to 392 mM (Alvaro-Benito 
et al. 2007; Martel et al. 2010).

1.5.2  Substrate Specificity

1.5.2.1  Role of Active Site in Substrate Specificity
Substrate specificity of microbial FTs directly depends on the enzyme origin and 
reaction conditions. In general, the enzyme-substrate complexes conserve certain 
amino acid residues which are essential for the polymerization of fructan chains in 
microbes; however, the enzyme topology, mainly distribution of amino acids in the 
substrate-binding site and shape of the catalytic pocket, is the main factor affecting 
proper binding. Therefore, the binding ability of an enzyme to a certain substrate is 
prone to differentiate depending on the conditions of the reaction medium, the natu-
ral habitat of the organism, or the position and the type of amino acids involved in 
the catalysis.

Members of GH-J clan, levansucrase BsSacB of B. subtilis and inulosucrase InuJ 
of L. johnsonii, share the highest sequence homology among GH68 enzymes; how-
ever, their catalytic site differs by size due to substitution of a lysine residue (K363) 
of BsSacB by an arginine amino acid (R545) in InuJ making entrance of the cata-
lytic pocket narrower for substrate binding, thus affecting the preference on fructo-
syl donors and acceptors in respective organisms (Pijning et al. 2011).
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On the other hand, the catalytic triad is fully conserved among microbial FTs, 
located in the N-terminal of the enzyme and directly involved in enzyme-substrate 
binding. However, their activity is more directing and stabilizing the catalysis once 
the substrate binding occurs rather than recognizing the binding regions on the sub-
strate. Similarly, subsite −1 (according to Davies et al. 1997 nomenclature) which is 
highly specific within microbial FTs (Ozimek et al. 2006; Chuankhayan et al. 2010), 
located at the very bottom of the catalytic funnel but different than catalytic triad, is 
directly involved in the recognition of substrate, thereby being accepted as the fruc-
tosyl-binding site for sucrose and sucrose analogues. Subsite −1 is the only sugar-
binding donor site in microbial FTs where the first attachment between the donor 
substrate and the enzyme occurs (Davies et al. 1997; Ozimek et al. 2006). Further 
donor subsites (negative) in the active site are occupied upon attachment of fructosyl 
units of longer chain donor substrates to the enzyme. When sucrose is used as a sub-
strate, fructosyl unit covalently binds to subsite −1 (fructosyl site) whereas glucose 
moiety attaches to subsite +1 (glucosyl site). In contrast to subsite −1, subsite +1 has 
an affinity for both fructose and glucose making it more flexible for substrate recog-
nition; therefore, this site also plays a role in transglycosylation where sucrose func-
tions as an acceptor substrate (Ozimek et al. 2006; van Hijum et al. 2006).

Pijning et  al. (2011) characterized the binding site of inulosucrase, InuJ of 
L. johnsonii NCC533, and suggested several binding modes of the enzyme for pro-
duction of inulin-type FOS and inulin polymers. The R424 residue of InuJ was 
proposed to be involved in the formation of short inulin chains by interacting with 
the general acid/base E524 through a salt bridge which serves as a border for sub-
strate binding at subsite −1 and blocks further donor subsites (−2, −3, etc.) and thus 
prevents the binding of longer chain donor substrates. The same type of binding was 
also demonstrated in between E342 and R246 of levansucrase, SacB of B. subtilis 
(Ozimek et al. 2004), and a similar one also occurs in the amylosucrase of Neisseria 
polysaccharea (Albenne et al. 2002). Residues D272, D425, and E524 were vali-
dated as the nucleophile, transition-state stabilizer, and general acid/base, respec-
tively, and importantly they have the same positions in both InuJ and BsSacB 
(Ozimek et al. 2006; Pijning et al. 2011). Besides, inulosucrase and levansucrases 
have a tendency to use the same acceptor substrates such as sucrose, kestotriose, and 
raffinose suggesting the active site mimicry in between these enzymes. However, 
they discretely differ from each other in terms of glycosidic bond specificity (regi-
oselectivity), preference for the synthesis of FOS over fructan polymers, and hydro-
lysis/transglycosylation ratio (Ozimek et  al. 2006; Kralj et  al. 2008; Meng and 
Fütterer 2008; Visnapuu et al. 2011). Studies on substitutions of amino acid residues 
near or next to subsite −1 revealed specific substrate specificities in respective FTs 
indicating the presence of unidentified further substrate-binding subsites (Ozimek 
et al. 2006).

The fructosyl unit of a donor substrate binds to the nucleophile of the enzyme at 
subsite −1 to be transferred to an acceptor molecule for transfructosylation activity 
to be initiated. Sequence analyses have validated the conservation of subsite −1 
among microbial FTs while there have been different scenarios proposed for posi-
tive subsites. Subsite +1 is occupied by an arginine residue in Gram-positive SacB 
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(B. subtilis), Inu (Lb. reuteri), InuJ (Lb. johnsonii), and SacBSm (S. mutans) FTs; 
however this region is replaced by another basic amino acid histidine in Gram- 
negative LsdA (G. diazotrophicus), SucE2 (Z. mobilis), and Lsc1 (P. syringae) pro-
teins. Other than arginine, lysine and asparagine residues also function in acceptor 
substrate binding at subsite +1 of Gram-positive FTs whereas acceptor site of 
Gram- negative FTs is dominated by polar amino acids such as threonine next to 
histidine, enabling proper hydrogen bond formation with the acceptor substrate 
(Frasch et al. 2017). In another study, substitution of H321 residue, which was pro-
posed to be present at the equivalent position with A360 and H296, the amino acids 
known to have a key function in levansucrase activity in B. subtilis and Z. mobilis, 
respectively (Chambert and Petit-Glatron 1991; Li et al. 2008), by alanine (H321A), 
lysine (H321K), leucine (H321L), and serine (H321S) in levansucrase of P. syrin-
gae pv. tomato DC3000 (Lsc3) was acclaimed to have a decrease in enzyme affinity 
for sucrose suggesting a role in substrate preference (Visnapuu et al. 2011).

The structure of a recombinant FTs (AjFT) from A. japonicus CB05 with its 
substrate has revealed several amino acid residues which are essential for substrate 
recognition among fungal FTs (Chuankhayan et al. 2010). D60, D191, and E292 
have been demonstrated to constitute the catalytic triad of the enzyme functioning 
in the stabilization of terminal fructosyl moiety of the substrate. The fructosyl or 
glucosyl unit at the +1 donor-binding subsite is stabilized by the side chains of 
R190, E292, E318, and H332; the carbonyl oxygen of I143; and the amide nitrogen 
of T145, while the side chain of E405 and the carbonyl oxygen of T404 of the 
enzyme stabilized the binding of substrate to +2 subsite through hydrophobic inter-
actions. These residues are also known to lead to the formation of the inulin-type 
FOS in fungal FTs. Likewise, I143 and Q327 residues orient the binding of galacto-
syl moiety of substrate raffinose at +2 subsite, creating a longer distance between 
the glucosyl of galactosyl moiety and the general acid/base catalyst E292 
(Chuankhayan et al. 2010).

1.5.2.2  Donor and Acceptor Specificities Among Microorganisms
Sucrose is the most preferential substrate in the reactions catalyzed by microbial 
FTs; however, these enzymes display wide substrate specificity including monosac-
charides, disaccharides, aromatic and aliphatic alcohols, heterooligosaccharides, 
and fructosides (Velázquez-Hernández et al. 2009; Li et al. 2015). Acceptor sub-
strate specificity has been widely studied in levansucrases of B. subtilis (Seibel et al. 
2006), M. laevaniformans (Park et al. 2012; Kim et al. 2005), and Bacillus licheni-
formis (Lu et al. 2014). These enzymes have a preference to use lactose as a fructo-
syl acceptor to produce lactosucrose and they are able to use maltose and cellobiose 
to form erlose and fructosylated cellobiose, respectively. Additionally, melibiose 
can be utilized as an acceptor by certain strains of B. subtilis and M. laevaniformans 
to biosynthesize raffinose (Li et al. 2015). B. subtilis levansucrase is able to produce 
sucrose analogues by using several monosaccharide acceptors including d- galactose, 
d-xylose, and d-fucose and has a lesser preference to d-mannose and d-allose 
(Seibel et  al. 2006) while B. licheniformis displays a transfer efficiency towards 
l-arabinose as an acceptor (Lu et al. 2014). On the other hand, inulosucrase from 
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L. gasseri DSM 20604 can catalyze the synthesis of novel maltosylfructosides in 
the presence of both sucrose and maltose, using donor sucrose molecule to transfer 
the fructosyl unit to an acceptor maltose molecule, besides its ability to synthesize 
inulin-type FOS solely with sucrose (Díez-Municio et al. 2013).

Next to sucrose, sucrose analogues, especially raffinose, are also used as donor 
substrates by M. laevaniformans levansucrase suggesting the enzyme preference to 
oligosaccharides with terminal sucrose residues (Kim et al. 2005). In addition to 
M. laevaniformans, levansucrase of Bacillus amyloliquefaciens has been reported to 
use raffinose as a donor substrate to produce levan-type fructans (Tian et al. 2011).

Interestingly, levansucrase from R. aquatilis has been found to use methanol as a 
fructosyl acceptor to produce methyl β-d-fructosides (Kim et al. 2000). Similarly, 
isopropanol and 1-pentanol are known to be used as acceptor substrates by B. lichen-
iformis for the production of alkyl fructosidases (Lu et al. 2014).

1.5.2.3  Cofactor Requirements in Substrate Preference
Microbial FTs of Gram-positive origin require metal cofactors such as Ca2+ for FT 
activity (Ozimek et  al. 2005) with an exception of HugO, inulosucrase from 
Streptomyces viridochromogenes DSM40736 (Tü494) (Frasch et al. 2017). A single 
aspartate residue was firstly revealed to make the most important contribution to 
Ca2+ ion binding to microbial inulosucrases and levansucrases but this evidence is 
not verified in any FTs from Gram-negative bacteria and fungi, and bacterial inver-
tases as well (Meng and Fütterer 2003). Residues N310, D339, D241, and Q272 
have been observed to function in CaCl2 formation in SacB from B. subtilis (Frasch 
et al. 2017). Residues D520 of inulosucrase and D500 of levansucrase from L. reuteri 
were found to be analogous to D339 of SacB possessing high affinity to Ca2+ ion. 
Site-directed mutations of D520N, D520A, D500N, and D500A in L. reuteri 121 
resulted in a prominent reduction in FT activity by causing a conformational change 
in the highly conserved catalytic DEIER motif and general acid catalyst, thus dis-
rupting substrate binding (Ozimek et al. 2005). These findings suggest the require-
ment of a metal ion for FT activity in FTs from Gram-positive bacteria making them 
dissimilar from other microbial FTs in terms of substrate specificity.

1.5.2.4  Specificity in Structure
Several studies have revealed the structural differences between microbial FTs 
describing the molecular flexibility of FOS (French 1988; Mensink et  al. 2015). 
According to French (1988), inulin-type FOSs are relatively flexible compared to 
levan-type FOS in terms of formation of left-handed or right-handed helical struc-
tures; however levan-type FOSs are more rigid and usually have preference to form 
left-handed helixes. These structural differences are considered as the limiting fac-
tors for such molecules having the ability to be an acceptor substrate during fructo-
sylation, since they likely affect the proper binding mode depending on the enzyme 
shape and surface properties (Pijning et al. 2011).

1 Fructosyltransferase Enzymes for Microbial Fructan Production



22

1.5.3  Reaction Specificity

1.5.3.1  Effect of pH and Ionic Strength
pH and ionic strength of the reaction medium are important parameters that affect 
reaction selectivity of microbial FTs towards polymerization, transfructosylation, or 
hydrolysis. Studies on the effects of pH in microbial FT production have pointed out 
the importance of microbial strain. The course of the reaction mainly depends on 
intrinsic properties of the microbial source; therefore, optimal requirements in each 
microbial reaction catalyzed by FTs vary greatly suggesting the importance of steric 
effects in the active site that influence the enzyme conformation. Levansucrase from 
Z. mobilis exists in two distinctly active forms at different pH levels. At pH values 
above 7.0, the enzyme occurs in its natural conformation as a dimer and catalyzes 
the hydrolysis of sucrose or the synthesis of levan FOS whereas at pH values below 
6.0, the enzyme undergoes conformational changes, precipitates, and forms micro-
fibrils. Surprisingly, in its microfibril form, Z. mobilis levansucrase has been 
revealed to synthesize levan polymers with DP above 20,000 (Goldman et al. 2008).

Ionic strength has also been shown to be the sole source that determines the 
molecular weight of synthesized fructan polymers. Addition of 0.5 M NaCl to the 
reaction medium was reported to cause a sixfold decrease in the molecular size of 
B. licheniformis levansucrase (Nakapong et  al. 2013). Besides, increase in ionic 
strength at different stages of reaction has been proposed to promote the preference 
on transfructosylation over hydrolysis in some microbes (Trujillo et  al. 2004; 
Castillo and López-Munguía 2004) although pH variation has not been reported to 
change the rate of hydrolase over transferase activity (Toksoy Oner et  al. 2016). 
These variations in pH and ionic strength of the enzyme direct the synthesis of FOS 
over high DP levan polymers, thereby implicitly affecting the product specificity.

1.5.3.2  Effect of Temperature
Temperature has a direct effect on microbial fructan production not only to initiate the 
reaction at optimal conditions but also to sustain the catalysis in favor of products at 
the desired molecular size and branching level. B. licheniformis RN-01 levansucrase 
tends to synthesize low-molecular-weight levan polymers (11 kDa) when the reaction 
temperature is decreased to 30 °C from its optimum operation temperature of 50 °C 
(Nakapong et al. 2013). In a similar manner, polymerization can be dominant over 
hydrolysis or vice versa when the reaction temperature is optimized (lowered or 
increased) in a way that it is not naturally favored by the enzyme (Toksoy Oner et al. 
2016). Normally, elevated temperatures positively affect the fate of fructosylation 
reactions due to stabilizing the activity of substrate sucrose on microbial FTs at high 
temperatures since the viscosity of sucrose solution decreases with increasing tem-
peratures making their processing easier (Antošová and Polakovič 2001).

1.5.3.3  Effects of Substrate and Enzyme Concentrations
Substrate concentration exhibits as a strong determinant of product molecular 
weight as well (Abdel-Fattah et al. 2005). Generally, increased substrate concentra-
tions favor hydrolysis while low substrate concentrations promote polymerization 

N. Tezgel et al.



23

activity in bacterial FTs. Additionally, sucrose concentration has been reported to 
have an effect on proportions of synthesized fructan oligo- and polysaccharides. 
FOS production is normally promoted at high substrate concentrations (Li et  al. 
2015; Ni et al. 2018). However, the reverse is also possible and thermodynamically 
more favorable in several microbial FTs. β-Fructofuranosidases are able to produce 
FOS at high concentrations even in dilute substrate concentrations. On the other 
hand, the yields of FOS which are produced by invertases having high FT activity 
are usually low even in high substrate concentrations (Antošová and Polakovič 2001).

Another determinant of product molecular weight is enzyme concentrations. 
High-molecular-weight levan polymers were able to be produced in a processive 
manner when the reaction was catalyzed by a lower amount of levansucrase in 
B. subtilis (Raga-Carbajal et al. 2016).

1.5.3.4  Effects of Solvents
Low-molecular-weight alcohols have been reported to change the dielectric con-
stant of the reaction medium preserving levansucrase activity (Steinberg et  al. 
2002). The activity of B. subtilis levansucrase was enhanced for the recovery of 
high-molecular-weight levan in the presence of ethanol, polyethylene glycol, or 
acetonitrile. When the enzyme was incubated with 70% acetonitrile, transfructosyl-
ation activity was reported to be favored over hydrolysis (Chambert and Petit- 
Glatron 1989).

1.5.3.5  Effect of Inhibitors
The productivity of microbial FTs is competitively inhibited by glucose molecules 
(Jung et al. 1989). Glucose mainly occurs as a nonterminal reducing residue in fruc-
tan chains, is formed as a by-product during transfructosylation, and has a great 
potential to decrease the overall activity. Therefore, free glucose in the reaction 
medium is always eliminated by oxidative agents in commercially fructan produc-
tion (Ates 2015).

The activity of microbial FTs can be reduced or even inactivated by several cat-
ionic metal ions and some sulfhydryl reagents. Cu2+, Zn2+, Hg2+, Fe2+, Pb2+,, and Ag+ 
have been reported to non-competitively inhibit the microbial FTs causing a 
decrease in their activity (Antošová and Polakovič 2001). The existence of p- 
chloromercuribenzoate (Sangiliyandi et al. 1999) and N-bromosuccinimide (Chang 
et al. 1994) in the reaction medium has resulted in enzyme inactivation suggesting 
the presence of thiol groups at or near the active site, thus destroying the catalytic 
activity. Besides, β-mercaptoethanol and dithiothreitol were found to inhibit the 
activity of microbial β-fructofuranosidases proposing the existence of disulfide 
bridges in the active site (Muramatsu et al. 1993) while EDTA has been reported to 
enhance enzyme activity (Gines et al. 2000).

1.5.3.6  Effect of Reaction Time
The duration of reaction also exhibits as a relatively strong determinant of propor-
tions of short- and long-chain fructan polymers synthesized by microbial FTs. The 
significant impact of a levansucrase was reported in B. amyloliquefaciens. According 
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to this study, FOSs were shown to be synthesized after 36 h while long-chain levan 
polymers were synthesized at a very early stage of the reaction (Tian et al. 2011). 
The reverse scenario has been demonstrated in another study with Acetobacter diaz-
otrophicus levansucrase (Hernandez et al. 1995).

Inulosucrase from L. gasseri DSM 20604 showed the maximum FOS production 
after 24  h in the presence of sucrose substrate (Díez-Municio et  al. 2013). 
1-Kestotriose and nystose were reported to be the sole products of L. reuteri 121 
inulosucrase, after 17 h of reaction (van Hijum et al. 2002). Furthermore, inulosu-
crases from L. johnsonii NCC 533 and L. gasseri DSM 20143 have been revealed to 
synthesize both inulin and FOS with various DP values after long reaction times 
(Anwar et al. 2008, 2010).

1.6  Industrial Applications of Microbial  
Fructosyltransferases

Fructans produced by the action of microbial FTs hold great potential with unique 
properties to be used in various industrial applications (Fig. 1.2). This section sum-
marizes the promising features of inulin and levan fructans produced by micro-
bial FTs.

1.6.1  Applications of Inulin Produced by 
Microbial Inulosucrases

1.6.1.1  Food Industry
Inulin oligosaccharides are extensively used in the food industry as food ingredients 
functioning as fat, sugar, or flour substitutes with great health benefits (Stevens et al. 
2001; Barclay et al. 2010). Inulin FOS polymers produced by certain microorgan-
isms provide texture and stability to dairy products, moisture to baked foods, crisp-
ness to low-calorie cookies and reduce the freezing point of frozen desserts (Kaur 
and Gupta 2002).

β-2,1 Linkage character makes inulin indigestible by humans and other animals; 
however, it is digestible by gut microbiota supporting the growth of beneficial 
microorganisms while repressing the growth of pathogens in the digestive system. 
These properties make inulin as a unique substance to be used as a prebiotic dietary 
fiber in dairy products to support the growth of bifidobacteria providing relief from 
constipation especially in elderly people (Barclay et  al. 2010). Inulin, therefore, 
functions as a relatively low-calorie sweetener due to its indigestibility.

Another property of inulin biopolymers that food industries benefit from is the 
solubility level at different molecular weights and branching degrees. The solubility 
of inulin is closely dependent on the chain length of the fructan polymer which is 
defined with the action of inulosucrases in appropriate reaction conditions. Food 
processing takes advantage of the solubility of shorter chain inulins which can gel-
ate the aqueous solution imitating the fat molecules when they are used as bulking 
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agents (Blecker et al. 2001). Hence, along with its beneficial health effects, inulin is 
a promising agent in food processing improving the texture of several food products.

1.6.1.2  Medicine
Because inulosucrase is not naturally present in human physiology, presence of 
inulin polysaccharides in human plasma is only possible by uptake from external 
sources. This feature together with its non-toxicity and bioinertness has been used 
to measure the glomerular filtration rate (GFR) to monitor kidney functions which 
is usually called as “inulin clearance test” in medicine (Lascelles and 
Donaldson 1989).

Dietary inulin is known to decrease the risk of several cardiovascular diseases by 
reducing the triglyceride levels in serum. Inulin addition to daily diet has been 
investigated to cause a reduction in LDL cholesterol while there is an increase in 
HDL cholesterol (Russo et al. 2010). The risk of atherosclerosis was also reduced 
due to the lowered synthesis of fatty acids and triglycerides in the liver by inulin 
uptake (Kaur and Gupta 2002).

Inulin polymers have been reported to function as hormonal modifiers by regu-
lating insulin and glucagon levels in plasma, thus playing an important role in both 
carbohydrate and lipid metabolisms (Roberfroid 1993; Luo et al. 1996). Furthermore, 
inulin was proposed to reduce the incidence of osteoporosis and colon cancer by 
enhancing Ca2+ absorption (Ohta et al. 1994) and suppressing the formation of early 
preneoplastic markers in potential malignant cells (Kulkarni and Reddy 1994; 
Wargovich et al. 1996), respectively. Additionally, inulin has been reported to pos-
sess immunomodulatory effects by inducing cell differentiation in intestine besides 
its function of enhancing gut flora, thus suggesting a role in tumor suppression in 
the colon (Roller et al. 2004; De Medina et al. 2010).

Fig. 1.2 Important features and potential applications of microbial fructosyltransferase products
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1.6.1.3  Pharmaceuticals
Functional roles of inulin fructans in medicine have enhanced their potential appli-
cations in the pharma industry. The rapid clearance of inulin from blood plasma 
and opportunity to monitor inulin excretion in urine have been stated as unique 
properties to be used in drug delivery to design meritorious drug vehicles 
(Fuchs 1987).

In contrast to the utility of short-chain inulins in food processing, long-chain 
inulins have potential applications in pharmaceuticals. Long-chain inulin poly-
mers are generally used as excipients or stabilizers in pharmaceutical products 
(Barclay et  al. 2010) to increase the shelf life of proteins, protein-containing 
drugs, and vaccines by reducing the denaturation rate and maintaining the struc-
tural integrity during freezing and drying, thereby functioning as both cryo- and 
lyoprotectants (Hinrichs et al. 2005). As the chain length increases, the solubility 
of the polymer significantly decreases forming a glassy structure. This unique 
feature of inulin polymers enables to stabilize the protein-based molecules, 
replacing the water molecules surrounding the protein by sugar moieties in poly-
saccharide chain diminishing the effects of denaturation during handling and stor-
age (Hinrichs et al. 2001).

1.6.1.4  Animal Feed
Dietary inulin has been used as a low-dose antibiotic to promote the growth of rab-
bits. In an experiment 60 rabbits were treated with an antibiotic growth promoter 
and inulin. Rabbits fed on the inulin-based diet had increased bone and serum cal-
cium, magnesium, and phosphorous levels with significantly lower blood glucose 
and triglyceride levels. Results revealed the possible growth promoter role of inulin 
biopolymer in rabbits suggesting the utilization of fructooligosaccharides as dietary 
fibers in animal diet as well (Montiel et al. 2013).

1.6.2  Applications of Levan Produced by 
Microbial Levansucrases

1.6.2.1  Food Industry
Similar to inulin, levan is a nontoxic and noncarcinogenic dietary fiber used in vari-
ous processes as an emulsifier, a stabilizer, a viscosity enhancer, a flavor and/or a 
fragrance carrier, and an encapsulating agent (Han 1990; Toksoy Oner et al. 2016). 
Levan polymers synthesized by the action of levansucrases hold fatlike properties 
which have been suggested to replace the fat molecules in food products when they 
occur as levan phosphate (Roberts and Garegg 1998).

Besides, the high water-holding capability of microbial levan biopolymers 
improves rheological properties of foods and beverages. Levan-producing lactic 
acid bacteria are generally used in dairy products as starter cultures since microbial 
levans aid to improve the viscosity and prevent the whey separation during fermen-
tation of milk products such as cheese and yogurt (Marshall and Rawson 1999).
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Like inulin, levan has the potential to be used as a low-calorie sweetener in food 
products due to the absence of biosynthetic activity in the human body. As a low- 
calorie sweet-taste dietary fiber, microbial levan polymers have been suggested as 
ultrahigh-fructose syrups (UHFS) to replace the usage of sucrose in many foods and 
beverages (Han 1990).

1.6.2.2  Medicine
Levan polysaccharides are biocompatible biopolymers serving as antitumor agents 
by directly suppressing proliferation of tumor cells. However antitumor activity is 
restricted with a branching degree of the polymer. Studies with levans isolated from 
the cultures of Gluconacetobacter xylinus, M. laevaniformans, R. aquatilis, and 
Z. mobilis have shown that high-molecular-weight levans with enhanced DP values 
induce the effectiveness of the polymer against tumorigenesis (Yoo et  al. 2004). 
Levan and levan analogs have been reported to be used as hypocholesterolemic 
agents to lower cholesterol levels and therefore, they are also considered as anti- 
obesity agents (Combie 2006). Levan reduces the level of leukocyte adhesion to 
blood vessels during inflammation promising a possible usage as an anti- 
inflammatory agent (Sedgwick et  al. 1984). Likewise, microbial levan polymers 
have been proposed to achieve 81% antioxidant activity of ascorbic acid in a study 
with A. xylinum levan (Srikanth et al. 2015).

The antiproliferative activity of levan polymers produced by Halomonas smyrn-
ensis AAD6T has been indicated in MCF-7 breast cancer cells. Polymers have been 
revealed as a way of suppression of cancer mediated by an increase in apoptosis and 
oxidative stress (Queiroz et al. 2017).

Alongside immune-stimulating, antitumor, antidiabetic, and anti-inflammatory 
effects as many other polysaccharides, microbial levan polymers possess a unique 
property as metalloproteinase activators during tissue-healing process (Sturzoiu 
et al. 2011).

1.6.2.3  Pharmaceuticals
Due to their high water-holding capacity, microbial levans are preferred as coating 
agents in the delivery of essential nutrients such as selenium, cobalt, and iron, 
enabling safer travelling of the elements to the intestine while stabilizing their activ-
ity throughout the process (Bondarenko et al. 2016). Therefore they also serve as 
possible drug carriers of peptides and protein drug products that can be used in the 
pharma industry. A possible application has already been reported by Sezer et al. 
(2015) suggesting a levan-based microparticulate system for the delivery of vanco-
mycin antibiotic (Sezer et al. 2015).

1.6.2.4  Cosmetics
Cosmeceutical properties of levan produced by Z. mobilis have been reported 
(Kim et al. 2006). Levan polymers are able to be used as excellent moisturizing 
agents possessing a transepidermal water loss (TEWL) which is almost equivalent 
to hyaluronic acid (Kim et al. 2005). Application of levan biopolymers has also 
been reported in beauty products such as shampoos, hair sprays, and moisturizers. 

1 Fructosyltransferase Enzymes for Microbial Fructan Production



28

The main usage comprises film-forming ability of microbial levans enabling 
enhanced strength in damaged hair, and hair holding and anti-freezing properties 
(Gunn et al. 2009).

1.6.2.5  Bioseparation
Purification of several biological substances was achieved by a PEG/levan two- 
phase liquid system which operates based on a macroscopic phase separation. The 
system was designed to contain 60% of PEG and 6.77% of levan polymer enabling 
purification of bovine serum albumin, hen egg lysozyme, horse heart cytochrome c, 
horse heart hemoglobin, and horse heart myoglobin (Chung et al. 1997).

1.6.2.6  Packaging
Microbial levan is able to form an oxygen barrier when it is used as an ingredient in 
packaging films. This unique property makes them attractive for food packaging in 
a healthier and safer way. However, levan polymers are brittle for practical usage 
without the addition of plasticizers such as clay (Chen et al. 2014). Oxygen perme-
ability has been reported in commercially available biofilms formulated with mont-
morillonite and 5% polyethylene glycol as lower than 0.05 cm3/m2 per day (Montana 
Polysaccharides 2015).

1.6.2.7  Aquaculture
An interesting study with aquatic species Cyprinus carpio (common carp) has 
pointed out the possible immune-enhancing role of levan polymers in aquatic ani-
mals. The study was conducted to explore the role of levan against a fish pathogen 
Aeromonas hydrophila (Rairakhwada et al. 2007). After a 75-day feeding period, 
100% of Cyprinus carpio survivng on 0.5% levan diet were observed to survive. 
Another study with Labeo rohita (Hamilton) revealed a possible immunomodula-
tory function of levan diet in enhancing heat tolerance of aquatic species by causing 
an increase in heat-shock proteins in fish exposed to elevated temperatures (Gupta 
et al. 2010).

1.7  Conclusion

Microbes are versatile organisms with fascinating features applicable in many 
industries. They are the powerhouses of a variety of biopolymers providing conve-
nience to our daily lives. Microbial enzymes accelerate the production of high-value 
substances directing practical utilization of microbe-based biopolymers. Among 
them, microbial FTs are one of the main players in today’s health booster beneficial 
foods, disease-preventing agents, intelligent drugs, beauty tools, eco-friendly mate-
rials, and growth promoters in animals. As unique gifts of nature, fructan polymers 
have been attracting significant attention of researchers while opening new opportu-
nities to the industry in different aspects. Their fast and simple biosynthesis from 
cheap carbon sources such as sugar beet molasses together with their structural 
redundancy enables ad hoc applications in many fields.
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In light of these, understanding the mechanism of fructan biosynthesis and their 
possible roles in different processes has been an emerging area in since decades. In 
spite of ongoing projects and commercialized fructan products, structure-functional 
features of microbial FTs have not been fully understood. So far, microbial fructans 
and microbial fructan-producing enzymes were nominated by bioactive agents 
especially in human and animal health. As a given role in medicine, immunomodu-
latory effects of microbial fructans have been studied for their potential immune- 
enhancing functions in plants against several stress factors (Wang et  al. 2009; 
Bolouri-Moghaddam and Van den Ende 2013; Van den Ende and El-Esawe 2014; 
Conrath et al. 2015; Ceusters et al. 2016). Very recently, evolutionary aspects and 
similarities in “fructan syndrome” between the microorganisms and plant worlds 
have been reviewed, pointing out to the possibility of a water scarcity-mediated 
fructan accumulation, or fructans playing a role in signaling events between plants 
and their host microbes (Versluys et al. 2018).

However, more efforts are required to overcome several process-related bottle-
necks, such as optimizing the downstream processes to obtain biopolymers at 
desired purity levels. Studying fructan world and FTs is expected to enlighten hid-
den details regarding their synthesis, resulting in  exploring for  further futuristic 
industrial applications. As the information for fructans increases, their high- potential 
biotechnological applications are expected to enhance leading to sustainability of 
the fructan market and the industry.
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Abstract
Saccharomyces cerevisiae enzymes are well recognized for high biodiversity and 
industrial applicability. This chapter sketches the main research trends concern-
ing the functionalities of S. cerevisiae enzymes in food processing, ethanol 
industry, and production of new nutraceuticals and pharmaceuticals. We review 
the key aspects of the overall production process for the enzyme production and 
the recent strategies to identify and improve its catalyst properties. Finally, we 
summarize the classical and latest applications of S. cerevisiae enzymes in the 
food industry, with specific attention given to their role in changing the nutri-
tional, digestibility, and sensory properties in a variety of food sectors like dairy, 
bakery, beverages, brewing, wine, fish processing, and sweeteners. Additionally, 
the use of S. cerevisiae enzymes in the production of functional foods, namely 
protein hydrolysates/autolysates, with provided health benefits by reducing the 
risk of chronic diseases, as well as its use in the formulation of new cosmetic and 
pharmaceutical products, is explored.

2.1  Introduction

S. cerevisiae is the most useful yeast species, with participation in the fermentation 
processes of winemaking, baking, and brewing since ancient times. This eukaryotic 
model organism has been extensively used as the most suitable microbial resource 
for industrial enzyme production due to their wide biochemical diversity, feasibility 
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of mass culture, and simple genetic manipulation (Zhang and Kim 2012). In addi-
tion, the generally regarded as safe (GRAS) status given by Food and Drug 
Administration supports its use for human consumption (Fernandes and Carvalho 
2017; Nandy and Srivastava 2018). Compared to animal and plant enzyme sources, 
S. cerevisiae enzymes are more active and stable and have higher yield (Liu and 
Kokare 2017).

The scientific term S. cerevisiae means “a mold which ferments the sugar into 
alcohol and carbon dioxide” (Saranraj et al. 2017). This yeast species is known by 
the common name “baker’s yeast” in baking and confectionery fields, “wine’s 
yeast” in the wine-like alcoholic beverage production, and “brewer’s yeast” in the 
beer production (Faria-Oliveira et al. 2013). “Baker’s yeast” can be grouped into 
three main types of commercial formulations: compressed yeast (also known as 
“granular yeast” or “instant dried yeast”), cream yeast, and dried yeast (available as 
“active dry yeast” and “instant dry yeast”) (Saranraj et al. 2017). “Wine’s yeast” 
participates in the fermentation of grape musts into wine (Marsit and Dequin 2015). 
Brewer’s spent yeast (BSY) is the second major by-product from the brewing indus-
try, after the brewer’s spent grain (BSG) (Ferreira et al. 2010). BSY results from the 
cultivation of S. cerevisiae on malted barley, separated after the wort fermentation, 
debittered and dried, and presents a well-balanced amino acid profile, peptides, phe-
nolic compounds, nucleotides, vitamins (B3, B6, B9), carbohydrates (mainly glu-
cans and mannans), phospholipids, minerals, and trace elements (Kanauchi et al. 
2005; Abbas 2006; Faria-Oliveira et al. 2013; Vieira et al. 2013; Vieira et al. 2016a, 
b, c). Its inner content is rich in several proteolytic enzymes (Roy et al. 1999, 2000; 
Hecht et  al. 2014), which can be used in the production of several autolysates/
hydrolysates with evidenced bioactivities, particularly antioxidant, antihyperten-
sive, and anti-inflammatory properties (Mirzaei et al. 2015; Vieira et al. 2016a, b, c; 
Vieira et al. 2017a, b, c, d; Vieira and Ferreira 2017).

S. cerevisiae contains extracellular and intracellular enzymes, which are classi-
fied based on their catalytic functions: oxidoreductases, transferases, hydrolases, 
lyases, isomerases, and ligases (Liu and Kokare 2017). The isolation and purifica-
tion of these enzymes and their application as useful biocatalysts for various indus-
trial processes, namely in the production of several new products in the food, 
pharmaceutical, cosmetic, and biofuel industries, have increased over the last few 
years and revolutionized the market scenario of these industries.

This chapter aims to provide an updated overview of the use of S. cerevisiae 
enzymes in the production of new nutraceuticals with provided health benefits by 
reducing the risk of chronic diseases, as well as its use in the formulation of new 
pharmaceuticals, cosmeceuticals, and bioethanol production. Succinctly, a separate 
section is devoted to overview the key aspects of the overall production process for 
the S. cerevisiae enzyme production and the recent strategies to identify and improve 
its catalyst properties.
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2.2  Enzyme Production

2.2.1  Overall Enzyme Production Process

The production process of S. cerevisiae enzymes involves synthesis through fer-
mentation, recovery from the fermentation medium, purification step (/s) to remove 
contaminants, and formulation procedure (Fig. 2.1). Commercial enzymes are pro-
duced in bioreactors through two possible cultivation methods, the submerged fer-
mentation (SmF) and the solid-state fermentation (SSF) (Liu and Kokare 2017). 
SSF has acquired higher applicability in recent years (Singh et al. 2008) due to their 
recognized advantages: (1) high volumetric productivity, (2) relatively higher con-
centration of the final products, (3) requirement for simple fermentation equipment, 
and (4) less effluent generation, among others (Liu and Kokare 2017). When 
enzymes are produced by SmF, the extracellular enzymes are recovered by centrifu-
gation (i.e., solid-liquid separation); in case of intracellular origin, cell disruption is 
required, followed by centrifugation to remove cell debris. When enzymes are pro-
duced by SSF, enzymes are typically excreted with a suitable buffer. In both types 
of cultivation, purification step is frequently carried out by precipitation followed by 
ultrafiltration; chromatography is applied to obtain high levels of purity. The enzyme 
concentrate is further submitted to a final step of formulation (i.e., lyophilization, 
granulation, immobilization, among others) to be delivered in a suitable form for 
food processing (Fernandes and Carvalho 2017).

2.2.2  Cell Disruption and Purification Methods for Enzymatic 
Fraction Recovery

Different treatments can be applied to recover the S. cerevisiae intracellular 
enzymes, such as (1) mechanical (i.e., high-pressure homogenization (HPH) and 
bead milling), (2) chemical (i.e., organic solvents, enzymes, and detergents), and (3) 
physical (i.e., ultrasonication, freeze-thaw, and electrically assisted treatment) 
(Ganeva et al. 2003; Liu et al. 2013). Although the chemical processes are applied 
on a large scale, the drastic procedures affect the stability of the enzymes and/or 
introduce additional impurities. Ultrasonication processes cause damaging effects 
on enzyme activities by altering their characteristics, substrates, and reactions 
between enzymes and substrates (Huang et al. 2017). Also, it is usually accompa-
nied by temperature increase, high content of cell debris, and undesirable formation 
of sonochemical compounds (Shynkaryk et al. 2009). HPH is a frequently mechani-
cal method employed for large-scale disruption of yeast cells. Although this method 
results in effective breakage of cells and high recovery of enzymes, it causes nonse-
lective release of the products (i.e., the co-release of contaminants) and final prod-
ucts contain large quantity of cell debris, which complicates the downstream 
processing for purification. Thus, there is a growing interest in the application of 
more efficient physical/mechanical methods of cell disruption. Currently, applica-
tion of electrotechnologies, such as the pulsed electric field (PEF) and high-voltage 
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electrical discharges (HVED), are showing to be promising for intracellular enzyme 
extraction. HVED treatment results in an increase in the electrical conductivity and 
permeability of the whole sample while PEF treatment provides a clear extraction 
of intracellular enzymes with preservation of their functional activity (Ganeva et al. 
2003). The methodology applied to purify the microbial enzymes (i.e., crystalliza-
tion, electrophoresis, and chromatography) is based on their ionic properties, 
molecular size, and ability to get adsorbed (Liu and Kokare 2017).

2.3  Biotechnological Tools for Improving 
Enzyme Properties

Improvement or modification of S. cerevisiae enzymes may be achieved through 
protein engineering using genetic methods and/or adequate formulations (Fernandes 
and Carvalho 2017). Genetic engineering refers to the genetic material transference 
from one microorganism (donor) into another (host) that will produce the enzyme 
more efficiently (Liu and Kokare 2017). Enzyme immobilization confines or local-
izes it in a certain defined region of space while retaining the catalytic activity 
(Tavano 2013). This strategy overcomes some limitations of their free forms, namely 
(1) lack of long-term operational stability and shelf life, (2) recovery and reusabil-
ity, (3) contamination of reaction products with the enzyme, and (4) performance in 
organic solvents, pH tolerance, selectivity, and heat stability (Ahmad and Sardar 
2015; Madeira et al. 2017). Physical and chemical methods have been applied for 
enzyme immobilization; the first ones are characterized by a weak interaction 
between matrix and enzyme while chemical methods are based on the formation of 
covalent bond between the support and the enzyme. The challenge in the selection 
of the immobilization method is the prevention of enzyme activity loss; procedures 
such  as adsorption, covalent coupling, entrapment, and cross-linking have been 
commonly used (Ahmad and Sardar 2015). When adsorption of enzymes onto 
insoluble supports is applied, enzymes are mixed with a suitable adsorbent under 
appropriate conditions of pH and ionic strength and further washed to obtain the 
immobilized enzyme in a directly usable form. In covalent immobilization, covalent 
bonds are formed between the enzyme and the support matrix. Entrapment is the 
restricted movement of enzymes in a porous gel and cross-linking involves attach-
ment of biocatalysts to each other by bi- or multifunctional reagents or ligands. For 
instance, the cross-linked enzyme aggregates (CLEAs) involve a simple precipita-
tion of the enzyme from aqueous solution by the addition of salts, or water-miscible 
organic solvents or nonionic polymers (Ahmad and Sardar 2015).

2.4  S. cerevisiae Enzymes

Generally, industrial enzymes are applicable in three main sectors: (1) 65% of the 
market in the detergent, starch, textile, leather, pulp and paper, and personal care 
industries; (2) 25% of the market in the food industry (baking, dairy, brewing, wine 
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and juice, fats, and oils); and (3) 10% of the market in the animal feed industry 
(Cherry and Fidantsef 2003; Sharma et al. 2009; Adrio and Demain 2014; Ahmad 
and Sardar 2015). About 90% of the industrial enzymes are recombinant versions; 
proteases, amylases, and pectinases represent more than 60%, 30%, and 10%, 
respectively, of the enzyme market (Liu and Kokare 2017). Novozymes (Denmark) 
is the main supplier of industrial enzymes, followed by DSM (The Netherlands), 
DuPont (USA), and Roche (Switzerland). Although the United States, Western 
Europe, Japan, and Canada are still the largest consumers of industrial enzymes 
(Adrio and Demain 2014), developing countries in Asia Pacific, Eastern Europe, 
and Africa and the Middle East regions have emerged as promising industrial 
enzyme markets (Liu and Kokare 2017). The following section presents the main 
enzymes expressed by S. cerevisiae and their industrial applications; this informa-
tion is summarized in Table 2.1.

2.4.1  Pectinases

Pectin is a hydrocolloid with great affinity for water and ability to form gels under 
certain conditions. Thus, the addition of pectinases, a group of enzymes that cata-
lyze pectin degradation through depolymerization (hydrolases and lyases) and de- 
esterification (esterases) reaction, reduces viscosity and improves pectin gel 
pressability. These enzymes are highly advantageous in the development of wine, 
cider, and fruit juices (Pedrolli et al. 2009). Pectinases are divided into three major 
types: pectinesterases (PE), depolymerizing enzymes, and cleaving enzymes (Liu 
and Kokare 2017). Although Aspergillus niger is the most commonly used micro-
bial species for the industrial production of pectinases (Gummadi and Panda 2003), 
few strains of S. cerevisiae have also been shown to be able to degrade pectin; poly-
galacturonases (PG) is the main pectinase reported (Alimardani-Theuil et al. 2011).

2.4.2  Chitinases

Chitin is the second most abundant polysaccharide in nature (after cellulose) and pres-
ents many important physiological functions and potential applications (i.e., control 
of phytopathogens, production of chitooligosaccharides, and treatment and degrada-
tion of chitin biowaste) (Karthik et al. 2017). Chitinases (EC 3.2.1.14) hydrolyze chi-
tin into monomer N-acetyl-D-glucosamine (Liu and Kokare 2017). These enzymes 
are likely to be primarily responsible for wine haze formation (Marangon et al. 2011). 
According to Younes et al. (2011), S. cerevisiae PlR1, a wild yeast strain isolated from 
pinot noir grapes, secretes a class IV endochitinase with action in wine haze reduc-
tion. More recently, a patent for inhibiting or reducing haze in a liquid consumable 
(such as wine) was granted (Bauer and NDLOVU 2015). In this invention, suitable 
S. cerevisiae strains genetically modified or grown under environmental conditions 
for maximizing the cell-wall chitin and chitinase content are added to the liquid con-
sumable, and chitinases are allowed to bind to the chitin in the S. cerevisiae cell walls. 
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Table 2.1 S. cerevisiae enzymes and their applications

Enzyme Action Applications Reference
Pectinases 
(CECT 1389; 
ATCC52712 
strains)

Catalyze the 
hydrolysis of 
α-1,4-glycosidic 
bonds in pectins or 
pectate

  – In the fruit juice industry, 
pectinases are often used to (1) 
enhance juice extraction and 
clarification, (2) increase the 
yield of extracted juice, (3) 
reduce the processing time and 
turbidity, and (4) facilitate the 
extraction of color and aroma 
components from the cell into 
the juice

  – Enhance the starch 
(cassava, potato) recovery rates 
and yield

Blanco et al. 
(1997), Blanco 
et al. (1999), 
Dzogbefia et al. 
(2001), Djokoto 
et al. (2006), 
Dzogbefia et al. 
(2008), Ametefe 
et al. (2017), 
Agyepong and 
Barimah (2017)

Chitinases 
(PlR1 strain)

Catalyze the 
hydrolysis of chitin 
to its monomer 
N-acetyl-d- 
glucosamine

  – Wine haze reduction/
inhibition

Younes et al. 
(2011)

Invertases Catalyze the 
hydrolysis of 
saccharose to 
glucose and 
fructose

  – Manufacture of candy and 
jam

Akardere et al. 
(2010), Kumar and 
Kesavapillai 
(2012), AL-Sa'ady 
(2014)

Catalases 
(baker’s 
yeast)

Catalyze the 
hydrolysis of 
hydrogen peroxide 
to water and 
dioxygen

  – Food and textile processing 
(remove hydrogen peroxide 
that is used for sterilization or 
bleaching)

Seip and Di 
Cosimo (1992)

Tannases 
(CCMB 520 
strain)

Catalyze the 
hydrolysis of 
tannins (tannic 
acid, methyl 
gallate, ethyl 
gallate, n-propyl 
gallate, and isoamyl 
gallate) to gallic 
acid

  – Production of gallic acid 
and propyl gallate

  – Degradation of tannins 
present in the effluents of 
tanneries

  – Preparation of animal 
feeding

  – Pharmaceutical production 
(trimethoprim)

Belmares et al. 
(2004), Lopes et al. 
(2018)

Amylases 
(SDB strain)

Catalyze the 
hydrolysis of starch 
into sugars

  – Food industry (production 
of syrups, reduction of 
viscosity of syrups, fruit juice 
clarification, starch 
solubilization)

  – Paper and pharmaceutical 
industries

Acourene and 
Ammouche (2012)

(continued)

2 Exploitation of Saccharomyces cerevisiae Enzymes in Food Processing…



48

Further removal of the S. cerevisiae cells or cell-wall extract from the liquid consum-
able removes the chitinases, thereby inhibiting or reducing haze formation.

2.4.3  Invertases

Invertase (β-fructofuranosidases) (EC 3.2.1.26) hydrolyze the disaccharide into glu-
cose and fructose (AL-Sa'ady 2014). This enzyme is crucial during the wine fer-
mentation as it catalyzes the hydrolysis of saccharose present in grape must into 
glucose and fructose (Ribereau-Gayon et al. 2006). In the food industry, this enzyme 
is important in the preparation of jams and candies, where fructose is preferred over 
saccharose due to its high sweetness and crystallization properties (AL-Sa'ady, 
2014). In the last few years, SSF has been applied to produce invertase from S. cere-
visiae (Kumar and Kesavapillai 2012; AL-Sa'ady 2014). S. cerevisiae was reported 
to produce an extracellular β-D-fructofuranoside fructohydrolase (invertase) when 
grown on a medium containing β-fructofuranoside saccharose or raffinose 
(AL-Sa'ady 2014). Also, Akardere et al. (2010) purified invertase from baker’s yeast 
(S. cerevisiae) with 363% of recovery.

Table 2.1 (continued)

Enzyme Action Applications Reference
Alpha- 
glucosidases 
(baker’s 
yeast)

Catalyze the 
hydrolysis of starch 
and disaccharides 
to glucose

  – Production of bakery 
products

  – Starch processing
  – Flavoring production

Agrawal and Pandit 
(2003)

Inulinases Catalyze the 
hydrolysis of inulin 
to fructose

  – Production of fructose 
(sweetener and probiotic)

Kim et al. (1997), 
Onilude et al. 
(2012)

Cellulases, 
xylanases, 
and 
mannanases

Catalyze the 
conversion of 
lignocellulosic 
biomass to ethanol

  – Bioethanol industry van Zyl et al. 
(2015), Lane et al. 
(2018)

Lipases Catalyze the 
hydrolysis of 
triglycerides into 
fatty acids and 
glycerol

  – Food processing
  – Detergent, pharmaceutical, 

paper, cosmetic, and chemical 
synthesis industries

  – Biodiesel production

Schousboe (1976), 
Taketani et al. 
(1981), Degrassi 
et al. (1999), 
Białecka- 
Florjańczyk et al. 
(2010), Shi et al. 
(2012)

Laccases Catalyze the 
oxidation of a wide 
range of phenolic 
compounds

  – Textile industry, namely in 
hard-surface cleaning, in 
detergent formulations, and in 
tailoring processes

  – Beverage industry (juice 
clarification)

Bulter et al. (2003)
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2.4.4  Catalases

Catalases (EC 1.11.1.6) hydrolyze the hydrogen peroxide to water and molecular 
oxygen, protecting cellular proteins against reactive oxygen species modifications 
(Liu and Kokare 2017). These enzymes act through the protection of glucose- 6- 
phosphate dehydrogenase against oxidative inactivation (Lushchak and Gospodaryov 
2005). In addition, they have been applied in the food industry, acting in the removal 
of hydrogen peroxide that is used for sterilization or bleaching (Liu and Kokare 
2017). An inexpensive and readily available commercial source of catalase is 
S. cerevisiae (baker’s yeast) (Seip and Di Cosimo 1992). A culture medium was 
designed for maximal production of biomass and intracellular catalase by a potent 
enriched culture of S. cerevisiae CFR-201. This cell-free extract rich in catalase was 
reported to remove 99.9% of residual hydrogen peroxide from cold pasteurized 
milk at 45 °C for 1 h (Venkateshwaran et al. 1999).

2.4.5  Tannases

Tannase (EC, 3.1.1.20) is an extracellular enzyme that catalyses the hydrolysis of 
gallic acid esters and hydrolyzable tannins. They can be used in different industrial 
sectors, such as food (juice, beer, and wine) and pharmaceutical production (synthe-
sis of the antibacterial drug, trimethoprim). In the food industry, tannase is com-
monly used as a clarifying agent in some wines, fruit juices, and refreshing drinks 
with coffee flavor, as well as in the production of gallic acid which is a potent anti-
oxidant agent (Belmares et al. 2004; Lopes et al. 2018). Recently, a tannase was 
found in the crude extract of S. cerevisiae CCMB 520 subjected to SmF; the enzyme 
showed optimal biocatalytic performance at the tested temperature and pH ranges, 
as well as high thermal resistance (Lopes et al. 2018).

2.4.6  Amylases

Amylases hydrolyze starch into sugars (dextrins and oligosaccharides): α-Amylases 
(EC 3.2.1.1) catalyze the hydrolysis of internal α-1,4-O-glycosidic bonds in polysac-
charides; β-amylases (EC 3.2.1.2) catalyze the hydrolysis of α-1, 4-glucan bonds to 
yield successive maltose units; and γ-amylases (EC 3.2.1.3) cleave α-(1–6) glyco-
sidic bonds, as well as the last α-(1–4) glycosidic linkages at the nonreducing end of 
amylose and amylopectin (Sundarram and Murthy 2014, Liu and Kokare 2017). 
Amylases found applications in the starch saccharification, paper, food, and pharma-
ceutical industries. For instance, amylases are used in the (1) production of glucose/
maltose syrups, (2) reduction of viscosity of sugar syrups, (3) clarification of fruit 
juice for longer shelf life, (4) solubilization of starch in the brewing industry, and (5) 
delaying of the staling of bread and other baked products (Liu and Kokare 2017). 
Extensive work has been done on the cloning of α-amylase genes in S. cerevisiae. 
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Acourene and Ammouche (2012) also reported the optimization of the cultural con-
ditions in a stirred bioreactor for the extracellular secretion of α-amylase by the 
S. cerevisiae SDB strain.

2.4.7  Inulinases

Inulinase (EC 3.2.1.7) hydrolyzes the β-2,1 linkage of inulin into fructose or fruc-
tooligosaccharides, which have commercial applications in the food and pharma-
ceutical industries (Singh and Singh 2017). Fructose is a common alternative 
sweetener to saccharose, thus with a great importance in food industries; its medici-
nal properties are related to an increase of iron absorption in children, calcium 
absorption stimulation in postmenopausal women, stimulation of growth of 
Bifidobacteria in the large and small intestine, and prevention of colon cancer 
(Onilude et al. 2012). Recently, Onilude et al. (2012) reported inulinase production 
employing isolated inulinase-producing S. cerevisiae species from spontaneously 
fermented sugarcane in SSF.

2.4.8  Cellulases

Cellulases catalyze the hydrolysis of β-1,4-glycosidic bonds in cellulose chains; 
they are classified as endoglucanases (EC 3.2.1.4), exoglucanases (EC 3.2.1.91), 
and glucosidases (EC 3.2.1.21) (Liu and Kokare 2017). S. cerevisiae has been rou-
tinely used for ethanol production from several agricultural lignocellulosic feed-
stocks, such as corn (Białas et al. 2010), potato starch (Hashem and Darwish 2010), 
sugarcane bagasse (Martı́n et al. 2002), cassava (Nadir et al. 2009; Akaracharanya 
et al. 2011), sweet sorghum (Nuanpeng et al. 2018), oat and soybean (Cortivo et al. 
2018), and citrus peel waste (Wilkins et al. 2007), among other crop sources.

2.4.9  Lipases

Lipases (EC 3.1.1.3) hydrolyze carboxyl ester bonds in triglycerides into fatty acids 
and glycerol; they are used in the food processing, detergent, pharmaceutical, paper, 
cosmetics, and chemical synthesis industries. Another promising application is the 
biodiesel production, a mixture of fatty acid alkyl esters, which is a potential alter-
native energy source derived from vegetable oils to petroleum-based products 
(Madeira et al. 2017). Several lipases, such as sterol ester hydrolase (Taketani et al. 
1981), triacylglycerol lipase (Schousboe 1976), and carboxylic ester hydrolase 
(Degrassi et  al. 1999), have been isolated from S. cerevisiae. More recently, 
Białecka-Florjańczyk et al. (2010) studied the hydrolysis of phenyl esters of alkane 
carboxylic acids by S. cerevisiae lipases. Also, the functional expression and char-
acterization of five wax ester synthases in S. cerevisiae and their utility for biodiesel 
production were reported by Shi et al. (2012).
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2.4.10  Laccases

Laccases catalyze the oxidation of phenols, polyphenols, and anilines and present 
several industrial applications, such as wastewater treatment, pulping, food prepara-
tion, textile manufacturing, and bioremediation (Mogharabi and Faramarzi 2014). 
In the textile industry, laccases are used in hard-surface cleaning, detergent formula-
tions, and cork taint removal, whereas in the beverage industry, they are mostly used 
for fruit juice clarification (Cherry and Fidantsef 2003). Bulter et al. (2003) demon-
strated the expression of laccase from Myceliophthora thermophile in S. cerevisiae. 
Although this work did not lead to a commercial production, this enzyme can be 
available for use in tailoring processes.

2.4.11  Proteases

Proteases (EC 3:4, 11–19, 20–24, 99) catalyze the hydrolysis of covalent peptide 
bonds. They are broadly classified based on optimum pH (acidic, neutral, or alka-
line proteases), substrate specificity, site of action on protein substrates (endo- or 
exo-proteases), and their catalytic mechanisms (serine, aspartic, cysteine, or metal-
loproteases) (Liu and Kokare 2017). S. cerevisiae is a good source of vacuolar and 
cytoplasm proteases; the enzymes described up to now were reviewed by Hecht 
et al. (2014). Thus, due to their versatility, S. cerevisiae proteases can be used in the 
food, cleaning, and textile sectors. In the food processing, S. cerevisiae proteases 
have been used as valuable biocatalysts, particularly in the production of protein 
hydrolysates/autolysates with promoted biological properties, namely antioxidant, 
antihypertensive, and anti-inflammatory activities. These hydrolysates/autolysates 
present the potential to be used in the formulation of new nutraceuticals and phar-
maceuticals. Furthermore, protease treatment can also potentiate and modulate sev-
eral functional characteristics of the proteins, such as viscosity, dispersibility, 
solubility, foaming, and emulsifying, giving them advantages for use in various 
products in the food industry (dos Santos Aguilar and Sato 2018). For instance, 
Vieira et al. (2017b) reported that a protease extract obtained from brewer’s spent 
yeast (S. cerevisiae) was efficient in the production of sardine protein hydrolysates 
(SPH) from muscle and viscera by-products with interesting functional properties 
(better emulsion, foaming, and oil binding properties). Results obtained with this 
enzymatic treatment were comparable to those prepared by the commercial enzymes 
Alcalase® and Neutrase® and suggested that muscle and viscera SPH can be used as 
functional food ingredients, such as pate and spread-texture food.

2.5  Recent Applications of S. cerevisiae Enzymes

The application of S. cerevisiae enzymes in the food and beverage industries, 
including dairy, bakery, beverage, fish processing, and protein hydrolysate, as well 
as in the formulation of new pharmaceuticals and cosmeceuticals and in the 
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bioethanol industry, is well established (Fig. 2.2). This section aims to give some 
examples of application of S. cerevisiae enzymes in these fields.

2.5.1  Dairy Products

In the dairy industry, S. cerevisiae contributes substantially to the fermentation step 
by (1) supporting starter cultures, (2) inhibiting undesired microorganisms causing 
quality defects, (3) inhibiting occurrence of undesirable biochemical changes such 
as production of aromatic compounds, and (4) exerting lipolytic and proteolytic 
activities (Rasika et al. 2015). Acidophilus milk, a beverage containing a lactic acid 
content of 1.5–2.0% and used in the prevention of stomach disorder, uses S. cerevi-
siae to enhance the viability of bacterial strain and improve the antioxidant proper-
ties of fermented milk (Parrella et  al. 2012). In addition, S. cerevisiae is able to 
hydrolyze milk proteins into angiotensin-converting enzyme (ACE) inhibitory 

Fig. 2.2 Industrial application of S. cerevisiae enzymes
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peptides, which can be used in dietary supplements and/or as an alternative approach 
for antihypertensive medication. Roy et  al. (2000) described the purification and 
characterization of S. cerevisiae K7 protease involved in the production of ACE 
inhibitory peptides from milk proteins (Roy et al. 2000). Moreover, the Calpis® 
sour milk, a product fermented with a starter containing Lactobacillus helveticus 
and S. cerevisiae, presents an antihypertensive effect due to the presence of the ACE 
inhibitory peptides Val-Pro-Pro and Ile-Pro-Pro (Vermeirssen et al. 2003). Recently, 
S. cerevisiae K7 was recommended as a potential yeast strain for the functional food 
industry due to its capacity to hydrolyze milk proteins into physiologically active 
peptides (Rasika et al. 2015).

2.5.2  Beverages (Wine, Beer, Juices)

S. cerevisiae is used in the beer fermentation; distinct yeast strains are used to pro-
duce ale or lager beer. Since the wort components (dextrins, β-glucan, and soluble 
proteins, among others) are not metabolized by natural strains of brewer’s yeast, 
genetic manipulation is important to increase the capacity for synthesis of the extra-
cellular amylases β-glucanases and β-glucosidase (Spier et al. 2016). S. cerevisiae 
is also the main strain used in wine fermentation. As previously mentioned, inver-
tase catalyzes the hydrolysis of saccharose present in grape must into glucose and 
fructose molecules; β-1,3-glucanases are related to the cell-wall hydrolysis and 
release of mannoproteins into medium during autolysis of the yeast; β-glucanase 
enhances wine structure and stability; pectinases catalyze the degradation of pectic 
substances; while β-glucosidase improves the release of aromatic compounds in 
wine (Spier et al. 2016). S. cerevisiae PlR1, a wild yeast strain isolated from pinot 
noir grapes, was recently reported to secrete an acidic extracellular protease which 
was completely inhibited by pepstatin A (Younes et al. 2011). The same researchers 
showed that hydrolyzed proteins correspond to pathogenesis-related (PR) proteins, 
in particular thaumatin-like (TL) proteins and chitinases, which are implicated in 
the wine haze formation (Younes et al. 2013). Gainvors et al. (1994) demonstrated 
that the addition of a crude enzymatic extract from S. cerevisiae (SCPP 2180) with 
PE, PL, and PG activities to grape must had the same effect on the turbidity as the 
same quantity of the commercial preparation of Endozyme (Pascal Biotech SARL- 
Paris). Also, Blanco et al. (1997) showed that when wine fermentations are carried 
out using PG strains of S. cerevisiae, the clarification process is greatly facilitated, 
with the filtration time being reduced more than 50% in some cases. More recently, 
Dzogbefia et al. (2008) showed that a crude pectinase preparation from S. cerevisiae 
produced in Ghana could be effectively used for starch extraction from cassava, 
being a potential alternative to imported commercial enzymes. In the beverage 
industry, the biotechnological application of pectinase preparation from S. cerevi-
siae ATCC 52712 to pineapple and papaya juice extraction is also quite promising 
(Dzogbefia et al. 2001; Djokoto et al. 2006).
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2.5.3  Sweeteners

Xylitol, mannitol, sorbitol, and erythritol are sugar alcohols that offer similar or bet-
ter sweetness properties of saccharose (Park et  al. 2016). The absence of xylose 
reductase (XR) and xylitol dehydrogenase (XDH) enzymes in S. cerevisiae has been 
encouraged to engineer xylitol-biosynthesizing S. cerevisiae recombinant strains 
(Lee et al. 2000; Costenoble et al. 2003; Bae et al. 2004; Oh et al. 2013; Park et al. 
2016). For instance, Costenoble et al. (2003) demonstrated mannitol production by 
S. cerevisiae using elevated glucose concentrations in the presence of fructose.

2.5.4  Bakery

There has been an increasing interest in the use of S. cerevisiae lipolytic enzymes in 
the baking processes. For instance, phospholipases from S. cerevisiae have been 
used to degrade polar wheat lipids into emulsifying lipids, being a potential substi-
tute or supplement of traditional emulsifiers. Also, current research has been dedi-
cated to understand the mechanisms behind the enzymatic prevention of bread 
staling in the presence of S. cerevisiae α-amylases and xylanases (Liu and 
Kokare 2017).

2.5.5  Protein Hydrolysates/Autolysates

Enzymatic hydrolysis is an alternative approach for recovering protein fraction 
from different biomass sources, resulting in a soluble product with higher digest-
ibility and presenting potential bioactive peptides with promising health benefits in 
the treatment of chronic diseases. S. cerevisiae proteases have been used in the 
production of several protein hydrolysates/autolysates (Table  2.2). For instance, 
protease extract from S. cerevisiae (as BSY) has been used to produce hydrolysates 
from sardine protein (muscle and viscera) by-products. Vieira and Ferreira (2017) 
reported the hydrolysis of sardine sarcoplasmic proteins by proteases extracted 
from BSY; the final hydrolysates produced using the substrate/enzyme ratio 1:0.27 
(mg/U), 7 h, and 50 °C were showed to present antioxidant and ACE-I activities. 
The results also indicated that these protein hydrolysates could be used as a promis-
ing source of bioactive peptides.

BSG, the residual solid fraction of barley malt and other used grains remaining 
after filtration of wort, is the main brewing by-product. Recently, BSG proteins 
were effectively hydrolyzed using yeast extract rich in proteases obtained from 
S. cerevisiae (BSY). The final protein hydrolysate presented improved biological 
properties, and apparently the main BSY proteases responsible for the hydrolysis of 
BSG proteins under the optimum conditions belong to the class of serine peptidases 
and metallopeptidases (Vieira et al. 2016a). The same authors also described the 
optimization of BSY extract autolysis by response surface methodology (RSM) to 
produce a BSY autolysate comprising antioxidant and ACE inhibitory activities 
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Table 2.2 Production of nutraceuticals and pharmaceuticals through the action of S. cerevisiae 
proteases

Substrate Enzyme Conditions Biological activity Reference
Skimmed milk 
proteins

S. cerevisiae 
(cell-free 
extract rich in 
protease B)

37 °C for 3 h ACE inhibitory 
activity (IC50 of 
0.42 mg of protein/
mL)

Roy et al. 
(2000)

Bovine full-fat 
milk proteins

S. cerevisiae 
K7

30 °C for 72 h ACE-inhibitory 
activity of 25%

Rasika et al. 
(2015)

Sarcoplasmic 
proteins from 
canned sardine 
by-products

S. pastorianus 
(brewer’s 
spent yeast)

Proteolytic 
activity of 
0.725 U/mL, E/S 
of 0.27:1 (U/mg), 
50 °C for 7 h

Antioxidant activity 
(FRAP of 293 μM TE/
mL) and ACE 
inhibitory activity 
(IC50 of 164 μg 
protein/mL)

Vieira et al. 
(2017b)

Sarcoplasmic 
proteins from 
canned sardine 
by-products

S. pastorianus 
(brewer’s 
spent yeast)

Proteolytic 
activity of 
0.725 U/mL, E/S 
of 0.27:1 (U/mg), 
50 °C for 7 h, 
followed by 
10 kDa-UF 
membrane

Anti-inflammatory 
activity (increase 
levels of NO, MCP-1, 
VEGF, IL-8, ICAM-1, 
and ROS upon TNF-α 
treatment)

Vieira et al. 
(2017c)

Muscle and 
viscera proteins 
from canned 
sardine 
by-products

S. pastorianus 
(brewer’s 
spent yeast)

Proteolytic 
activity of 1 U/
mL, E/S of 20% 
(v/v), 50 °C for 
7 h

Muscle protein 
hydrolysates 
presented EAI, ESI, 
FE, FS, WBC, and 
OBC of 54.5 m2/g, 
27.3 min, 57.9%, 
39.7%, 4.3 g/g, and 
5.4 g/g, respectively.
Viscera protein 
hydrolysates 
presented EAI, ESI, 
FE, FS, WBC, and 
OBC of 80.1 m2/g, 
45.6 min, 79.2%, 
41.5%, 4.8 g/g, and 
5.8 g/g, respectively.

Vieira et al. 
(2017b)

Brewer’s spent 
grain proteins

S. pastorianus 
(brewer’s 
spent yeast)

E/S of 0.29:1 (U/
mg), 50 °C for 
6 h

Antioxidant activity 
(TPC of 1.65 mg 
GAE/mL and FRAP 
value of 1.88 mg 
Trolox equivalent/mL)

Vieira et al. 
(2016a)

Whey protein S. cerevisiae 
(baker’s yeast)

28 °C for 48 h, 
followed by 
in vitro GI 
digestion

ACE inhibitory 
activity (IC50 of 
0.08 mg/mL)

Vermeirssen 
et al. (2003)

(continued)
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(Vieira et al. 2017d). Further data from in vitro GI digestion, cellular antioxidant 
assays, and cell monolayer permeation studies confirmed the potential of BSY 
autolysate obtained from inner yeast cell content as a functional food ingredient 
(Vieira et al. 2016b).

2.5.6  Cosmeceuticals

Glycolic acid, a useful industrial compound with applications in cosmetics and 
chemical processes and as a biopolymer precursor, has been successfully produced 
from xylose in engineered S. cerevisiae. Also, the fatty alcohol 1-hexadecanol has 
applications in detergents, emulsifiers, and cosmetics (Lane et al. 2018).

Table 2.2 (continued)

Substrate Enzyme Conditions Biological activity Reference
Pea protein S. cerevisiae 

(commercial 
baking yeast)

28 °C for 48 h, 
followed by 
in vitro GI 
digestion

ACE inhibitory 
activity (IC50 of 
0.18 mg/mL)

Vermeirssen 
et al. (2003)

Yam peel 
proteins

S. cerevisiae 
(BY4743) 
proteases

27 °C for 96 h High protein content 
with good essential 
amino acid profile 
(leucine, valine, 
lysine, and threonine)

Aruna et al. 
(2017)

S. cerevisiae 
(PTCC 5269) 
inner content

S. cerevisiae 
(PTCC 5269)

Autolysis: 2.5% 
dry yeast cell/
water, 52 °C for 
96 h

Antioxidant activity 
(DPPH of 52.23 μM 
TE/mg protein and 
ABTS of 2211.59 μM 
TE/mg protein) and 
ACE inhibitory 
activity (IC50 of 
2.18 mg/mL)

Mirzaei et al. 
(2015)

Brewer’s spent 
yeast inner 
content 
(autolysis)

S. pastorianus 
(brewer’s 
spent yeast)

Autolysis: Yeast 
extract containing 
10 mg of 
proteins/mL, 
protease activity 
of 0.220 U/mL, 
36.0 °C for 6 h

Antioxidant activity 
(TPC of 385 mM 
GAE/mL and FRAP 
of 374 mM TE/mL) 
and ACE inhibitory 
activity (IC50 value of 
379 mg/mL)

Vieira et al. 
(2017d)

GI gastrointestinal, IC50 50% inhibitory concentration, UF ultrafiltration, TNF-α tumor necrosis 
factor-α, NO nitric oxide, ROS reactive oxygen species, ICAM-1 intercellular adhesion molecule-1, 
IL-8 interleukin-8, MCP-1 monocyte chemoattractant protein 1, VEGF vascular endothelial growth 
factor, E/S enzyme/substrate ratio, TPC total phenolic content, FRAP ferric ion-reducing antioxi-
dant power, DPPH 2,2-diphenyl-1-picryl-hydrazyl, ABTS 2,2′-azinobis (3-ethyl-benzothiazoline- 6-
sulfonate), EAI (m2/g) emulsifying activity index, ESI (min) emulsifying stability index, FE (%) 
foaming expansion, FS (%) foaming stability, WBC (g/g) water-binding capacity, OBC (g/g) oil- 
binding capacity
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2.5.7  Biofuel Industry

S. cerevisiae is the most frequent yeast strain for bioethanol production due to its 
high fermentation rate, ethanol tolerance, and GRAS status. However, this species 
is unable to hydrolyze cellulose and hemicellulose available in lignocellulosic bio-
mass (van Zyl et al. 2015). Thus, several technologies have been employed to engi-
neer S. cerevisiae strains capable to synthesize and secrete amylolytic enzymes for 
the direct conversion of starch-rich materials to ethanol (Kim et  al. 2010). For 
instance, Nakatani et  al. (2013) reported the development of a cellulase- and 
expansin- co-expressing strain of S. cerevisiae with direct ethanol fermentation per-
formance. The low price and ready availability makes starch the most common sub-
strate for biofuel production (Mobini-Dehkordi and Afzal Javan 2012). Basically, 
the process of making ethanol from starch involves saccharification, where starch is 
converted into sugar using enzymes such as gluco-amylase and α-amylase, followed 
by fermentation of glucose to ethanol by S. cerevisiae, and finally recovery (of etha-
nol) (Mobini-Dehkordi and Afzal Javan 2012; Sundarram and Murthy 2014; Liu 
and Kokare 2017). Recent advances have included other starch feedstocks such as 
sugarcane juice, cassava starch, and other carbon sources (Wangpor et al. 2017). For 
instance, Grohmann et al. (1994) studied the enzymatic hydrolysis of polysaccha-
rides in orange peel by S. cerevisiae. These authors suggested that the fermentation 
of enzymatic hydrolysates of orange peel to ethanol by S. cerevisiae was relatively 
simple technically, but with low economic viability. More recently, Wangpor et al. 
(2017) studied the enzymatic hydrolysis of cassava starch by S. cerevisiae; the opti-
mum liquefaction conditions for dextrin concentration were 0.9 mg/g of α-amylase, 
85 °C, and 180 min, and the saccharification conditions for glucose concentration 
were 1.5 mg/g of gluco-amylase, 60 °C, and 90 min. Moreover, engineered S. cere-
visiae has been employed for the bioconversion of lignocellulosic sugars to a large 
variety of non-ethanol value-added products, such as xylitol, 1-hexadecanol, isobu-
tanol, 2,3-butanediol, lactic acid, poly-3-D-hydroxybutyrate (PHB), 
3- hydroxypropionic acid (3HPA), glycolic acid, D-xylonate, isoprenoids, and sper-
midine (Lane et al. 2018).

2.6  Conclusion

Many studies have demonstrated the potential use of S. cerevisiae enzymes in dif-
ferent industrial products and processes. In fact, S. cerevisiae provides several 
enzymes, such as pectinases, chitinases, invertases, catalases, tannases, amylases, 
proteases, cellulases, lipases, and laccases, among others, with a large application in 
the food, beverage, bioethanol, nutraceuticals, pharmaceuticals, and cosmeceuticals 
industries. Additionally, the advances in modern biotechnology, namely the recent 
developments in genomics, proteomics, and emerging recombinant DNA tech-
niques, have been crucial to discover new areas of applications of S. cerevisiae 
enzymes, namely in the nutraceuticals and pharmaceuticals industries.
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Abstract
Laccases are cuproproteins belonging to the oxidoreductase family that catalyse 
the oxidation of various aromatic and non-aromatic compounds. With wide 
occurrence in bacteria, fungi, higher plants and insects, laccases have been 
majorly exploited due to their pivotal role in bioremediation and industrial uses. 
Low productivity and high cost limit the use of native laccases. Besides these 
drawbacks, native sources yield a mixture of isozymes, which is not desirable for 
commercial scopes. Thus, in conjunction with this, recombinant laccases have 
gained importance for sustainable processing due to their improved catalysis, 
stabilities, and solvent and anionic tolerance. Henceforth, this review mainly 
focuses to accentuate the recombinant laccases from fungal, mushroom, bacte-
rial and actinobacterial sources, laccase engineering and their proficient indus-
trial applications. The characteristic traits of the recombinant forms of laccase 
from distinct sources emphasise the requirement to study them more for their 
upcoming, hidden environmental and biotechnological applications.

3.1  Introduction

Laccases are oxidoreductases or p-diphenol oxidases (EC 1.10.3.2). They belong to 
the enzyme superfamily of multicopper oxidases, which is a widely distributed pro-
tein family among prokaryotes and eukaryotes (Hoegger et al. 2006). Laccases can 
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be produced from fungi, bacteria, actinobacteria, insects, mushrooms and plants 
(Murugesan et al. 2007; Devasia and Nair 2016; Alves et al. 2014; Arakane et al. 
2005; Zhang et al. 2010; Jaiswal et al. 2014). The catalytic activity of laccase is 
driven by the presence of four copper atoms in their redox sites and they do not 
require H2O2 for substrate oxidation. Laccase production can be enhanced by using 
dry biomass of Anacystis nidulans (a cyanobacteria) as a supplement in solid-state 
fermentation (Mishra and Kumar 2007).

Laccases oxidise a wide range of phenolic compounds and non-phenolic com-
pounds either directly or through redox mediator systems. Laccases are able to oxi-
dise various aromatic pollutants such as bisphenol A (Zeng et al. 2017), anthracene 
(Wu et al. 2010) and triclosan (Murugesan et al. 2010). Laccases potentially degrade 
anthroquinone dyes such as acid green (AG) 25 and diazo dye acid red (AR) 18 
(Wang et al. 2012), remazol brilliant blue R, reactive blue 4 (Afreen et al. 2016) and 
azo dyes such as reactive black 5 and reactive orange 16 (Lade et al. 2015).

Laccases widely catalyze  2–2′-azine bis (3-ethylbenzothiazoline-6-sulphonic 
acid) (ABTS) as the main source of synthetic substrate. Several studies for charac-
terisation of microbial laccases (Lu et al. 2013; Murugesan et al. 2009) and plant 
laccases (Jaiswal et al. 2014) have used ABTS as the indispensable substrate for 
assessing laccase activity. 1-Hydroxybenzotriazole is the phenolic substrate as well 
as a mediator compound used for distinct applications such as degradation of 
endocrine- disrupting chemicals (Zeng et  al. 2017) and environmental pollutants 
(Murugesan et al. 2010). Guaiacol, p-cresol, p-aminophenol, p-phenylenediamine, 
hydroquinone and tropolone are the other phenolic substrates that are widely 
exploited to study laccase activity (Devasia and Nair 2016). Laccases are highly 
exploited in commercial industries like textile (Luciana et al. 2009), food (Renzetti 
et al. 2010), pulp and bleaching (Arias et al. 2003; Shankar et al. 2018), cosmetics 
(Jeon et al. 2010), nanobiotechnology (Franzoi et al. 2009b), green chemistry (Jeon 
et al. 2012) and bioremediation (Balcázar-lópez et al. 2016; Naraian et al. 2018).

Recombinant DNA molecules are new artificial DNA strands that are produced 
by combining two unrelated (non-homologous) genes (Glick et al. 2010), for exam-
ple hybrid of Escherichia coli plasmid with Kurthia huakuii LAM0618 laccase gene 
(Lam et al. 2016). Recombinant laccases have successfully accomplished promising 
roles for several applications. For instance, the recombinant laccase, Lac15 
expressed in E. coli, proved its wide potential for decolourising reactive azo dyes 
under alkaline environment (Ge et al. 2011). Laccase expressed from Trametes ver-
sicolor in maize seeds is used as an excellent polymerisation agent (Bailey et al. 
2004). Figure  3.1 illustrates the steps involved  in recombinant DNA technology 
using bacterial system as host.

Laccases also exuberate multifarious medical properties. For instance, Fusarium 
laccase exhibited cytotoxic effect on Hep2 cell line, revealing its anticancer activity 
(Arul and Shanmugam 2012). Additionally, laccase inhibit the hepatitis C virus 
entry into peripheral blood cells and hepatoma cells (El-Fakharany et  al. 2010). 
Contradicting with these, laccase from Albatrellus dispansus failed to inhibit HIV-1 
reverse transcriptase enzyme, even at 1 mg/mL concentration (Wang and Ng 2004). 
These applications of laccases prove for their enhanced production as recombinant 
forms for discrete applications.
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So far, around 50 cloning and expression studies have been effectively carried 
out in various sources of laccases such as plants, bacteria, fungi, actinobacteria and 
mushroom by using the expression systems such as E. coli BL21, E. coli DH5 α, 
E. coli XL1, Kluyveromyces lactis, Saccharomyces cerevisiae, Yarrowia lipolytica, 
Pichia pastoris, Aspergillus oryzae, Aspergillus sojae strain 1860, Pichia metha-
nolica and transgenic maize. Laccase produced from the native microbial sources 
are not applicable at industrial scale due to their high cost of preparation, purifica-
tion processes and low production yields. Furthermore, the laccases synthesised 
from native sources cannot meet the exceeding market demand due to the incompat-
ibility of standard industrial fermentations with optimal growth conditions of sev-
eral microbes (Piscitelli et al. 2010). Also, the scaling up properties exhibited by the 
recombinant laccases have opened up attractive commercial opportunities; adding 
to these advantages, the process of expressing the laccase genes recombinantly 
becomes a necessity to meet large-scale enzymatic needs in shorter time with 
desired properties such as high stability, substrate specificity and purity (Ferrer- 
Miralles et al. 2009). Recombinant laccases can be produced according to either the 
need of the user or the process (Demain and Vaishnav 2009).

Thus, considering all these desirable traits, this comprehensive review mainly 
aims to focus on recombinant laccases and their engineering prospective, attesting 

Fig. 3.1 A schematic diagram of basic steps involved in the construction of recombinant or chi-
meric DNA using a bacterial host for enhancing the production of required product
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the cloning reports of laccases available in the market from a wide category of 
microbial sources and their biotechnological applications.

3.2  Cloning and Expression of Fungal 
and Mushroom Laccases

Laccases are quite commonly produced by basidiomycetes. Laccase-encoding 
genes from a wide range of fungi have been cloned in suitable vectors and expressed 
in P. pastoris host system (Colao et al. 2006; Chao and Bao 2003; Soden et al. 2002; 
Chiara et al. 2009). The white-rot fungus Trametes trogii is highly capable of pro-
ducing five isoforms of laccases. In the three-dimensional structure of recombinant 
laccase (Lcc2) of T. trogii, the copper ions and ABTS-binding pocket are found. The 
basic architecture of Lcc2 copper and substrate sites is very identical to that of pre-
viously reported laccase (Lcc1) and the residues coordinating the four copper ions 
are conserved. The binding cavity for the reducing substrate is close to the T1 cop-
per site, and is rather wide, which allows the accommodation of molecules of vari-
ous sizes. The difference between Lcc1 and Lcc2 was reported with respect to two 
spatially close residues surrounding the substrate cavity. Thr 164 and Ser 264 of 
Lcc1 are replaced by two hydrophobic residues Phe 163 and Ile 265, respectively, in 
Lcc2. This variation restricts Lcc2 from interacting with bulky polar groups in sub-
strates (Chiara et al. 2009).

Laccase-encoding gene from Trametes versicolor was expressed in different 
expression systems such as Yarrowia lipolytica (Jolivalt et al. 2005), Saccharomyces 
cerevisiae (Necochea et al. 2005), Pichia methanolica (Guo et al. 2006) transgenic 
maize (Hood et al. 2003) and P. pastoris (Jönsson et al. 1997; Brown et al. 2002). 
Supplementary to the above investigations, laccase expression has also been 
achieved in other Trametes strains. Trametes sp. AH28–2 laccase was heterolo-
gously overexpressed in the yeast, P. pastoris strain GS115 (Li et  al. 2007). 
Expressing the enzyme-coding genes heterologously in suitable host systems could 
enhance the yields without impeding the subsequent downstream processing and 
enzyme applications.

The laccase genes from Pleurotus ostreatus expressed recombinantly in K. lactis 
and S. cerevisiae resulted in higher yield of the recombinant enzyme only in K. lac-
tis, which can be highly recommended for biotechnological applications such as 
dye decolourisation and effluent treatment (Piscitelli et  al. 2005). Cloning and 
expression of laccase gene from Pycnoporus cinnabarinus produced higher yield in 
Aspergillus niger compared to P. pastoris due to the usage of laccase signal peptide, 
glucoamylase preprosequence (Otterbein et  al. 2000; Record et  al. 2002). The 
expression of laccase-coding gene from P. eryngii in immobilised cells of S. cerevi-
siae led to 1.6-fold higher yield than that of free cells, which contributes to the 
potential of immobilised cells to get explored widely (Bleve et al. 2008). Hence, it 
follows that immobilisation of microorganisms capable of degrading specific con-
taminants significantly supports bioremediation processes, reduces their costs and 
allows for the multifarious use of biocatalysts. Ultimately, the expression of the 
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enzyme-coding genes in entrapped microbial cells could confer higher protein out- 
turn than the free microbial cells. Figure 3.2 presents a list of vital immobilisation 
carriers, applicable in bioremediation.

Mushroom laccases have been assigned several physiological functions similar 
to those of other fungal laccases. Several studies have been examined using mush-
room laccases. For instance, a laccase from Hypsizygus ulmarius and Volvariella 
volvacea was recombinantly expressed in E. coli. In the former case, copper was 
found to enhance the laccase regulation and production but, in the latter, no recom-
binant laccase was induced by copper (Ravikumar et al. 2013; Chen et al. 2004). 
Thus, supplementing copper into growth medium might increase the laccase yield 
(due to the presence of copper atoms in active sites).

Another study reported on the laccase genes that are related to the stipe elonga-
tion, examined in stipe tissue of V. volvacea (an edible mushroom). In this investiga-
tion, the transcription patterns of 11 laccase genes revealed that the expression of 
Vvlcc3 was highest among other genes. Hence, only this gene was expressed in 
P. pastoris and the corresponding Vvlcc3 laccases were found to be highly identical 
with basidiomycete laccase. The Vvlcc3 product comprised of 515 amino acids, 
which included 496 signal peptides having 19 amino acids. The expression of 
Vvlcc3 was reported to exceed, peak and decrease in egg stage, elongation stage and 
mature stage, respectively (Lu et al. 2015). Thus, additionally gene knockout can be 
performed for laccase-encoding genes for enlightening the other characteristic roles 
of laccase in the development of V. volvacea, whereby an explicit idea is to apply 
them further for application in the food and commercial industries.

Fig. 3.2 A pictorial view of currently used, natural, inexpensive, promising and biocompatible 
carriers for immobilisation of microbial cells to accomplish bioremediation
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Lentinula edodes, the white-rot fungus which is one of the most widely culti-
vated mushrooms in Asia, has laccase and manganese peroxidase activity with little 
lignin peroxidase activity. L. edodes laccase, expressed in tobacco BY-2 cells, had 
smaller molecular weight and exhibited a different pattern of post-translational 
modification to that of native L. edodes laccase and both the enzymes were able to 
decolourise the same set of dyes (Sakamoto et al. 2008). As laccases, manganese 
peroxidases and lignin peroxidases are ligninolytic enzymes representing the single 
family of oxidoreductase, it could be feasible for the same organism to accomplish 
the coproduction of these variegated enzymes at a time.

Rigidoporus lignosus is a basidiomycete causing white rot of roots in about 100 
species of trees. R. lignosus laccase was expressed in E. coli, and its redox reac-
tion  monitored with potentiometry indicated that  current increased in a solution 
containing recombinant laccase with increase in syringaldazine concentration. 
Furthermore, it was suggested that this enzyme can be used as a potential biosensor 
(Nicolini et al. 2013). A novel expression study from the laccase genes of the white- 
rot fungus, Auricularia auricula-judae Au916, was reported previously, in 
which  seven laccase genes containing signature sequences were isolated from 
A. auricula-judae Au916 based on the mycelium-derived transcriptome and 
expressed in E. coli DH5α (Fan et al. 2014). Besides these studies, the laccase genes 
from a number of other fungal and mushroom sources have been expressed heter-
ologously in various host systems (Table 3.1).

3.3  Cloning and Expression of Actinobacterial Laccases

Actinomycetes comprise a large and diverse group of filamentous bacteria, many of 
which have important ecological roles and are exploited commercially for the pro-
duction of antibiotics, enzymes and other natural products (Cook and Meyers 2003; 
Waksman et  al. 2010). Recombinant laccase from actinobacteria exhibits special 
characteristics of thermal robustness, resistance to metallic ions and chemical inhi-
bition. Additionally, they show alkaline activity profiles. They can be used and 
employed as an effectual tool for dye processing (Feng et al. 2015). An identical 
feature was also manifested by Sil A, a recombinant laccase from Streptomyces 
ipomoea CECT 3341, whose expression was performed in E. coli BL21 (Molina- 
guijarro et  al. 2009). Certain recombinant laccases could exhibit high stability 
retaining their catalytic activity as a dimer, even after boiling and treatment with 
SDS in denaturing gels; these recombinant enzymes can also exhibit an unprece-
dented activity at high pH. A best example is SLAC, an E. coli-expressed recombi-
nant biocatalyst, with Streptomyces coelicolor as the source gene (Machczynski 
et  al. 2004). Over and above all these, an actinobacteria, Streptomyces cyaneus 
CECT 3335, having its laccase expression host as E. coli, was able to benchmark its 
family of other actinomycetes, by producing a recombinant enzyme with out-put of 
104  mg/L, which is a challenging for production by other  microbes (Ece et  al. 
2017). Along these lines, it is certain that actinomycetes could be one of the leading 
producers of the commercial enzyme apart from executing their sterling role in the 
production of antibiotics and other commercial products.
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Table 3.1 List of various recombinantly expressed fungal and mushroom laccases in different 
host expression systems

Gene Source Host Comments Reference
clac1, 
clac3

Trametes sp. 
strain C30

Saccharomyces 
cerevisiae

2 mg/L of recombinant 
LAC3 was produced

Klonowska 
et al. (2005)

poxc 
and 
poxa1b

Pleurotus 
ostreatus

Kluyveromyces 
lactis, 
Saccharomyces 
cerevisiae

1.1 and 1.4 mg of rPOXC 
and rPOXA1b were 
produced, respectively, by 
Kluyveromyces lactis, 
which showed higher 
production than 
Saccharomyces cerevisiae

Piscitelli 
et al. (2005)

Laccase 
IIIb

Trametes 
versicolor

Yarrowia 
lipolytica

2.5 mg/L of recombinant 
laccase was produced by 
yeast (host)

Jolivalt et al. 
(2005)

lac4 Pleurotus 
sajor-caju

Pichia pastoris 4.85 mg/L of recombinant 
laccase was produced

Soden et al. 
(2002)

mrl2 Moniliophthora 
roreri

Pichia pastoris The recombinant enzyme 
was able to degrade 
endocrine-disrupting 
chemicals and non-steroidal 
anti-inflammatory drugs 
efficiently than faster than 
more potent laccase from 
Trametes versicolor

Bronikowski 
et al. (2017)

ery3 Pleurotus eryngii Saccharomyces 
cerevisiae

139 mU/mL of laccase was 
produced in the 
immobilised cells of the 
yeast, which was increased 
1.6-fold times higher than 
that of free cells

Bleve et al. 
(2008)

poxc 
and 
poxa1b

P. ostreatus Saccharomyces 
cerevisiae

The clone 1M9B selected 
out of 1100 showed a single 
mutation (L112F), 
enhancing the enzyme 
activity but making it less 
stable than the wild-type 
enzyme (POXA1b)

Festa et al. 
(2008)

Laccase Schizophyllum 
commune

Aspergillus sojae 
strain 1860

The maximum laccase 
activity was found to be 
774 U/mL

Hatamoto 
et al. (1999)

Laccase 
I

Trametes sp. Transgenic 
maize

The molecular parameters 
that induce high expression 
were the maize embryo- 
preferred globulin 1 
promoter and along with 
protein targeting to the cell 
wall

Hood et al. 
(2003)

(continued)
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Table 3.1 (continued)

Gene Source Host Comments Reference
lac3, 
lac4

Coprinus 
comatus

Pichia pastoris Expressed enzymes were 
able to resist sodium 
dodecyl sulphate (SDS) and 
were capable of degrading 
triarylmethane dyes but 
were not suitable for azo 
and anthraquinone dyes

Gu et al. 
(2014)

lacB Trametes sp. 
AH28–2

Pichia pastoris 
GS115

Maximum yield of 
recombinant enzyme was 
(32,000 U/L), higher than 
the native enzyme LacB, 
(30,000 U/L)

Li et al. 
(2007)

fvlac7 Flammulina 
velutipes

Escherichia coli 
DH10B

The fvlac7 laccase amino 
acid sequence was similar 
to lac2 (45.5% identity) and 
lacFv (48.1% identity) from 
F. velutipes. Thus, fvlac7 
laccase is a novel laccase

Kim et al. 
(2013)

lcc1 Trametes 
versicolor

Pichia pastoris Using, P. pastoris pep4 
mutant strain SMD1168 
was reported to result in 
twofold higher level of 
recombinant enzyme 
activity than P. pastoris 
GS115

Jonsson et al. 
(1997)

lccIV Trametes 
versicolor

P. pastoris strain 
GS115

The usage of native signal 
peptide led to the correct 
proteolytic protein 
processing of LccIV to 
mature form, whereas 
Saccharomyces α-mating 
factor signal peptide 
resulted in additional 
tetra-peptide in the 
N-terminal end of the 
enzyme and 25% lower 
specific activity

Brown et al. 
(2002)

lcc1 Trametes 
versicolor

Pichia 
methanolica 
(PMAD11 and 
PMAD16)

PMAD11 strain of Pichia 
methanolica had higher 
laccase extracellular 
activity compared to 
PMAD16. Laccase activity 
in case of PMAD11 
recombinant was about 
12.6 U/mL

Guo et al. 
(2006)

(continued)
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Table 3.1 (continued)

Gene Source Host Comments Reference
Lcc Fome lignosus Pichia pastoris 

GS115
Mutagenesis enhanced 
expression 3.7-fold to 
144 mg/L of recombinant 
laccase in yeast, together 
with a 1.4-fold increase in 
kcat

Hu et al. 
(2007)

Lccα Trametes 
versicolor

Saccharomyces 
cerevisiae

200 μg/mL of recombinant 
laccase was produced in 
Saccharomyces cerevisiae

Necochea 
et al. (2005)

lac1 Pycnoporus 
cinnabarinus 
I-937

Pichia pastoris 8 mg/L of the recombinant 
protein was produced in 
expression system

Otterbein 
et al. (2000)

lac1 Pycnoporus 
cinnabarinus

Aspergillus niger When compared to 
wild-type laccase 
(45 mg/L), the recombinant 
laccase obtained was 
1 mg/L, from the dikaryotic 
strain I-937 of P. 
cinnabarinus, and about 
145 mg/L of recombinant 
enzyme was produced by 
the monokaryotic strain ss3 
of P. cinnabarinus

Record et al. 
(2002)

Lac-T16 Polyporus 
grammocephalus 
TR16

Pichia pastoris The activity of the laccase 
expressed in P. pastoris was 
893.3 U/mL with α-factor 
secretion signal peptide

Huang et al. 
(2011a)

MtL Myceliophthora 
thermophila

Saccharomyces 
cerevisiae

18 mg/L of laccase 
produced as the highest 
yield in the host by its 
heterologous expression

Bulter et al. 
(2003)

poxa3 Pleurotus 
ostreatus

Kluyveromyces 
lactis, E. coli

20 mU/mL of laccase 
activity was obtained 
between 14th and 17th days

Faraco et al. 
(2008)

lcc1- 
lcc7

Auricularia 
auricula-judae 
Au916

Escherichia coli, 
strain DH5

The lcc3 gene was highly 
expressed in both free- 
living and substrate 
mycelium; the lcc5 gene 
was mostly expressed 
during the fruiting-body 
formation and maturation 
revealing that lcc5gene is 
vital during the sexual 
reproduction stage

Fan et al. 
(2014)

(continued)
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3.4  Cloning and Expression of Bacterial Laccases

In comparison to fungal laccases, bacterial laccases are tackling the drawbacks of 
instability and industrial operational applications. Bacterial laccases are very active 
and are more stable at high pH and temperature. Recently, more attention is paid to 
bacterial laccases to produce novel biocatalysts with respect to industrial prospects 
(Capalash et  al. 2007). Novel green biocatalysts of Bacillus licheniformis from 
putative sources were identified as multicopper oxidase, whose gene was cloned 
and expressed in E. coli, and its catalytic properties were analysed specifically on 
oxidation of phenolic and non-phenolic acids (Koschorreck et al. 2008b). However, 
for future investigations, similar oxidative studies on nitroaromatic acids (NAA) are 
highly encouraged as NAA are military explosives, tending to accumulate widely in 
the environment resulting in undesirable human health hazards.

Bacillus subtilis, an aerobic Gram-positive and rod-shaped bacterium, can pro-
duce laccase by using fructose and peptone as the indispensable and vital sources. 
Laccase from B. subtilis is an important ligninolytic enzyme which can be produced 
in liquid culture in bulk volumes by submerged fermentation. A laccase gene from 
B. subtilis expressed recombinantly in E. coli DH5α potentially mineralised chloro-
phenol, which is a vital raw material in the chemical industry for producing preser-
vatives, dyes and pesticides but on the other hand are also hazardous compounds 
which could affect the environment and humans (Menaka et al. 2015). Apart from 
pesticides, herbicides are also major polluting agents, as their overusage results in 
negative effects on environment. Hence, executing highly accountable studies on 
herbicide mineralisation cannot be averted.

A gene, namely cotA-encoding laccase from Bacillus sp. HR03, has been cloned 
and expressed in E. coli BL2 where the recombinant enzyme demonstrated an onli-
est L-Dopa oxidation, which is uncommon amidst its Bacillus family (Fathi-roudsari 

Table 3.1 (continued)

Gene Source Host Comments Reference
lacD Trametes sp. 420 Pichia pastoris 

strain GS115
Laccase (8.3 × 104 U/L) 
activity was obtained for 
the recombinant laccase in 
the host

Hong et al. 
(2007)

Laccase Hypsizygus 
ulmarius

E. coli (BL 21) The recombinant laccase 
was characterised to be 
highly purified (23.23-fold) 
with 52% recovery

Ravikumar 
et al. (2013)

lac4 Volvariella 
volvacea

E. coli DH5 α Lac3 amino acid sequence 
was a highly identical 
(77–80%) with sequences 
of basidiomycetes such as 
Polyporus ciliatus, L. 
edodes and Pleurotus 
sajor-caju

Chen et al. 
(2004)

Vvlcc3 Volvariella 
volvacea

Pichia pastoris 293.86 U/L of recombinant 
enzyme was obtained after 
21 days of cultivation

Lu et al. 
(2015)
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et al. 2010). An E. coli-expressed laccase from Bacillus halodurans C-125 has been 
recorded to be a dexterous biocatalyst for applications for which classical laccases 
are not suitable; such as kraft-pulp bio-bleaching for paper production due to its 
alkaline pH optimum of 7.5–8. The anions such as fluoride, chloride and cyanide 
inhibited the laccase activity by binding to the various copper sites of the enzyme, 
as a consequence of interrupting the internal electron transfer among the different 
copper active sites. Similar kind of properties were also recounted in recombinant 
laccase produced by Ochrobactrum sp. 531 (Ruijssenaars and Hartmans 2004; Li 
et  al. 2012). Being very unique and advanced than B. halodurans C-125 and 
Ochrobactrum sp. laccases, a bacterial laccase, lac15 expressed recombinantly in 
E. coli, revealed both its alkalescence and anion tolerance activity (Fang et al. 2011). 
Laccase of Lactobacillus plantarum J16 (CECT 8944), expressed in E. coli BL21, 
showed active role in the degradation of biogenic amines, thereby acquiring an apti-
tude to eliminate toxic compounds in fermented foods and beverages (Callejón et al. 
2016). The splendid quality of Bacillus strains to produce and secrete the extracel-
lular enzymes in bulk (20–25 g/L) has made them among the most important indus-
trial enzyme producers. Table 3.2 represents recombinant expression of bacterial 
laccases in E.coli expression host.

3.5  Laccase Engineering

Enzyme engineering is a trending and fast-growing research platform, mainly as a con-
sequence of recent developments in rational mutagenesis, directed evolution and in 
silico techniques (Nanda and Koder 2010; Tracewell and Arnold 2009). To offer an 
insight into the plasticity of laccases and their functional evolutionary path within the 
broad copper-binding domain family of proteins is a challenging and inspirational task. 
It is also a laborious task to engineer laccases into the novel and robust artificial 
enzymes with fascinating properties. The commencement of enzymes to multiple 
cupredoxin domain (laccase, ceruloplasmin or ferroxidases, nitrite reductase) from 
single cupredoxin domain due to evolutionary factors has involved several methodolo-
gies like gene duplications, loss or acquisition of domain recruitment and copper-bind-
ing sites (Nakamura and Go 2005; Nersissian and Shipp 2002). With the advanced 
technological improvements several investigations were made to shed light on the 
enzyme engineering and scopes. Hence, a recent novel report has addressed the com-
puter-aided laccase engineering and the improvement in substrate oxidation with 
directed evolution. Besides the evolutionary studies, with respect to the bioremediatory 
prospects, oxidation of aniline compounds has also been accomplished with laccase 
engineering strategies (Monza et al. 2015; Santiago et al. 2016). Thus, the computer-
aided laccase engineering could be highly recommended for improved degradation of 
toxic dye effluents, polyaromatic hydrocarbons (PAHs), plastics and pharmaceuticals.

In the panel of the goals raised out for laccase engineering, heterologous functional 
expression, thermostability, improved activity, tolerance to organic solvents, physio-
logical fluids, ionic liquids and resistance to distinct inhibitors are the major challenges 
for the clear comprehending of the laccase structural and functional relationships. 
Figure 3.3 illustrates the various laccase engineering techniques and their advantages.
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3.6  Multifaceted Applications of Recombinant Laccases

Recombinant laccases are one of the unbeatable options, for various biotechnologi-
cal applications. For example, the overexpression of a potato laccase (PPO) in 
tomato conferred an enhanced resistance to the transgenic plant, against a bacterial 
pathogen (Li and Steffens 2002). Recombinant laccases could also carry out effec-
tive degradation of recalcitrant synthetic dyes such as congo red, remazol brilliant 
blue R (RBBR), aniline blue and even the biopolymer lignin (Shi et al. 2015). Apart 
from these biocatalysts, a recombinant laccase from P. pastoris was efficacious to 
biotransform various types of dyes such as crystal violet (azo), congo red (triphenyl-
methane), indigo carmine (indigo) and RBBR without any redox mediators (Lu 
et al. 2009). A potential use of recombinant P. ostreatus laccase for degradation of 
complex triazo and polyazo dyes, such as acid yellow 49, acid red 266, acid blue 62, 
direct blue 71, direct red 80 and direct yellow 106, was also suggested (Miele et al. 
2010). Out of ordinary to other recombinant laccases, the enzyme from B. subtilis 
can potentially produce oligomers as a result of degradation of an azo dye, Sudan 
Orange G, through radical coupling reaction (Pereira et al. 2009).

Extending their application to wider prospects, laccases also become promis-
ing candidates for degradation of micropollutants and xenobiotic compounds. 
Laccase from Trametes versicolor, expressed in P. pastoris, favoured the deterio-
ration of acenaphthene, fluorene, anthracene and acenaphthylene (Koschorreck 
et al. 2008a). Some potential laccases are capable of degrading a panel of phenolic 
compounds. Particularly, a recombinant laccase of Trametes sanguineus, heterol-
ogously expressed in Trichoderma atroviride, revealed to degrade PAHs, like 

Fig. 3.3 An overview of various promising techniques for laccase engineering with their corre-
sponding advantages and effects on the engineered biocatalyst
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benzo[α]pyrene and phenanthrene with endocrine disruptors like bisphenol A 
(Balcázar-lópez et al. 2016). Figure 3.4 enlists the distinct applications of recom-
binant laccases.

Mineralisation of noxious micropollutants such as polychlorinated biphenyls 
(PCBs) can also be exacerbated by recombinant laccases (Fujihiro et al. 2009). The 
catalytic activity of a novel laccase from L. edodes, expressed in P. pastoris, has 
been analysed on benchmark substrates, PAHs mineralisation and dye biotransfor-
mation (Wong et al. 2013).

Laccase systems are also well-recruited green biocatalysts for lignocellulose 
degradation processes which aids in biofuel production. Recently Myceliophthora 
thermophila recombinant laccase was suggested to be an excellent enzyme for deg-
radation of lignin present in ground eucalypt wood (Rico et al. 2014).

Interestingly, the same mechanism of lignin degradation process aided by lac-
case is used for paper manufacturing in the bio-bleaching and biopulping industries. 
To accomplish this objective, several studies have been carried out using laccases. 
For instance, Ravalson and colleagues generated a chimeric laccase by performing 
the fusion of carbohydrate-binding module (CBM) of A. niger cellobiohydrolase to 
P. cinnabarinus laccase. The resultant recombinant laccase has been investigated to 

Fig. 3.4 A schematic illustration of major applications of recombinant laccases in bioremediation 
and industries
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have a high potential in softwood pulp delignification compared to the native 
enzyme due to the additional CBM moiety (Ravalason et al. 2009). Expression of 
P. cinnabarinus laccase in two different Aspergilli hosts resulted in the host-specific 
recombinant product (Sigoillot et al. 2004). A similar kind of approach of linking 
certain peptide sequences with Stachybotrys chartarum laccase at the C-terminal 
has been studied to remove carotenoid pigmental stains on fabrics. The resultant 
laccase moiety was suggested to be a robust biocatalyst for usage in the bleaching 
industry (Janssen et al. 2004).

Laccases are also involved in synthesis apart from degradative processes. Several 
natural products formed by laccases are coloured, which are synthesised by oxida-
tive coupling reactions. This versatile enzyme also produces pigments due to oxida-
tion reactions. The interesting fact is that most of the coloured products formed by 
laccases are soluble in water, and thus these compounds can be used as dyes in the 
textile and paper industries. For instance, an engineered laccase isozyme, Lac3 from 
Trametes sp. expressed in the yeast S. cerevisiae, was employed to form a trimer 2, 
2-bis(3′-indolyl)indoxyl (yellow compound) from indole dye using TEMPO and 
dioxygen as substrate partners under pressure through oxidative coupling reaction 
(Ganachaud et al. 2008).

Stability of laccases to higher concentration of organic solvents is always an 
additional advantage with respect to the organic chemistry. Due to the higher sol-
vent concentration, the enzyme undergoes unfolding, resulting in reduced catalytic 
activity, and also highly concentrated solvents are usually preferred to carry out 
various transformations. In this context, recombinant laccase from M. thermophila 
have been addressed by Zumárraga and colleagues to exhibit tolerance to co- 
solvents (Zumárraga et  al. 2007). Overexpressed laccase from Kurthia huakuii 
LAM0618 in E. coli has also been addressed to exhibit increased tolerance to vari-
ous organic solvents (Lam et al. 2016). A similar expression study of laccase genes 
from Ganoderma fornicatum (Huang et al. 2011b) and Cyathus bulleri (Garg et al. 
2012) in P. pastoris host system has been ascribed to be highly tolerant to organic 
solvents.

Recombinant laccases also represent an attractive route as biosensors for detec-
tion of various aromatic compounds. Ionic liquid-based biosensors, obtained from 
recombinant laccase preparation, have been used to detect rosmarinic acid in luteo-
lin (Franzoi et al. 2009b), plant extracts (Franzoi et al. 2009a) and rutin (Cristina 
et al. 2009). Covalently immobilised recombinant laccases from Polyporus pinsitus 
and M. thermophila are also regarded as promising agents for the detection of phe-
nolic compounds (Kulys and Vidziunaite 2003). Laccases as commercial biosensors 
have been shown to remarkably exhibit long-term stability towards catechol, cate-
cholamine (Quan and Shin 2004) and p-phenylenediamine (Quan et al. 2002) with 
micromolar detection limits.

Apart from the above-mentioned applications, recombinant laccases have also 
been employed as biocontrol tools to improve the acceptability and safety of various 
food and beverages. For instance, an engineered laccase from M. thermophila 
expressed in Aspergillus oryzae has been investigated for anti-toxicological applica-
tions against a wide range of oral care products such as mouthwash, mints and 
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toothpastes which are regarded as chromosomal mutagens. As a result, this recom-
binant laccase added to various oral care products was addressed to result in negli-
gible mutagenic effect on cultured human lymphocytes (Brinch and Pedersen 2002). 
In another interesting report, a recombinant A. niger laccase was recounted to elimi-
nate the toxicological and mutagenic activity of aflatoxin B in food industry sectors 
(Alberts et al. 2009). Recombinant laccase from P. pinsitus and M. thermophila, 
expressed in A. oryzae, was used for examining the antioxidant activity in the food 
industry (Kulys and Bratkovskaja 2007). These versatile scopes encourage the 
researchers to engineer and design laccases for establishing a sustained, cheap, 
vogue and fascinating technologies.

3.7  Conclusion

The application of laccases as dexterous green biocatalysts is highly multifaceted 
with promising scope and benefits. Apart from these prospectives, the first and fore-
most quality required is designing and comprehending of bio-based processes 
around what happens in nature and mechanisms involved in it. For instance, under-
standing the synergy between all the enzymes involved in the breakdown of intoxi-
cating aromatic pollutants, and utilisation of this knowledge for designing the new 
bio-based processes, will effectively contribute towards more efficient processes. 
With the consistent view, mediators are also playing an important role in determin-
ing the enzymatic catalysis. Even though the contribution of synthetic mediators’ 
systems tends to enhance the laccase activity and their production, some other syn-
thetic mediators like 1-hydroxybenzotriazole (HBT) might result in inactivation of 
laccase in case of mixed-enzyme systems, due to the generation of by-products 
during the reaction. However, this is not consistent with the other synthetic media-
tors like N-hydroxyacetanilide (NHA), as it is addressed to exhibit low toxicity as a 
mediator.

On the other hand, natural mediators such as vanillin and acetosyringone could 
also equally contribute their role. The application of engineering in mining enzymes 
from microbial communities has become more feasible due to advances in sequencer 
technology, tagging, oligonucleotide-directed mutagenesis, artificial gene synthesis 
and CRISPER/cas9-mediated genome editing. These techniques pose a directed 
channel for the search of novel laccases. The establishment of new bioinformatics 
tools such as the Laccase Engineering Database (LccED) has been a cumulative 
support for researchers to design better laccases. Such technologies can be adapted 
in the search of better commercial enzyme systems.

Laccases have been exploited widely in the textile industry for bleaching, in the 
food industry for baking, for wine oxidation prevention, in the pulp and paper 
industry for bleaching and for delignification of lignocelluloses. They also play a 
conversant role in bioremediation, effluent treatment, biosensing, cosmetic industry 
and nanobiotechnology. Despite all the adroit applications of laccases, there is a 
need for their exploration in the biofuel production, immunomodulation and brain 
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dissemination of mice in case of medical aspects and herbicidal and pharmaceutical 
compound-removing systems. Phrmaceuticals and several other chemicals are con-
sidered as the emerging pollutants exhibiting toxic impacts on marine and aquatic 
creatures such as fishes. The pharmaceutical drugs such as propranolol exhibited 
feminisation in male fishes; likewise, they synthetically produced estrogens result-
ing in structural variation of the endocrine glands of fishes, molluscs, frogs, etc. 
Thus, for abating these adverse effects of drugs on the environment, it is necessary 
to attest clone and produce abundant recombinant and engineered laccases in order 
to use them as a robust and environment-friendly tool.
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food and beverages, and consumer products. Due to advancements in recent 
years, biocatalysts are considered more economical than use of whole cells and 
can be used as a unit operation within a process to generate the desired product 
of interest. Industrial biological catalysis through enzymes has experienced rapid 
growth in recent years due to their ability to operate at mild conditions, high 
specificity, and high productivity. Industrial enzymes can be produced by both 
submerged fermentation (SmF) and solid-state fermentation (SSF). In contrast to 
the first process, the second bioprocess (SSF) is the cultivation of microorgan-
isms under controlled conditions in the absence of free water. Examples of bio-
products of SSF include industrial enzymes, fuels, and nutrient-enriched animal 
feeds. Most industrial enzymes are manufactured using the traditional biopro-
cess of SmF, where microbial cells are suspended in a large volume of water that 
is stirred and aerated using mechanical devices; such culture conditions dictate 
the overall physiological behavior of microorganisms provoking biochemical 
and structural changes affecting the quantity and activity of biocatalysts pro-
duced. Among the main advantages of SSF over SmF is a higher volumetric 
productivity, secretion facilities to get extracellular bioproducts with higher sta-
bility, being usually simpler with lower energy requirements, resembling of the 
natural habitat of some microorganisms, and easier downstream processing. In 
this chapter we summarize, compare, analyze, and discuss the technological, 
biochemical, and microbiological advantages of SSF to produce industrial 
enzymes. Furthermore, culture conditions, aggregation and diffusional phenom-
ena, bioreactors, genetic expression, and protein regulation are covered.

4.1  Introduction

The enzymes are biomolecules of protein that accelerate the speed of reaction until 
reaching a balance. Enzymes constitute the type of proteins which are most numer-
ous and specialized and act as catalysts of chemical reactions specific in living 
beings or biological systems. Enzymes are available from variable sources such as 
from extreme environment or from microorganisms present in nature. Enzymes are 
important to build and maintain the life of all organisms. These biological entities 
participate in the buildup of new chemical compounds, or in the hydrolysis and 
modification of these. Many of the enzymes do not work alone, but organize them-
selves in sequences or metabolic pathways, and many of them can regulate their 
enzymatic activity. Enzymes make it possible for these reactions to occur faster. 
Due to the multiple industrial applications that enzymes have, the global market of 
these biomolecules has grown in recent years. In 2011, its value was about $4 bil-
lion and it is supposed to be $6 billion in 2016 (Oliveira et al. 2017). Likewise, 
research around the processes for obtaining and purifying enzymes has increased. 
One of the processes that have presented good productivity for obtaining enzymes 
is fermentation.
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Fermentation is the process by which the microorganisms and their activities 
convert nutrients to produce metabolites. Fermentation can be divided into two 
methods, submerged fermentation/liquid-state fermentation (SmF) and solid-state 
fermentation (SSF) (Sukma et al. 2018). SSF can be defined as the fermentation 
processes carried out by the microorganisms in solid substrates in nearly no free 
water, but with the amount of water sufficient to allow the growth of the microor-
ganisms (Chen 2013). In recent years, many researchers have shown that SSF has a 
major impact on productivity, higher yields, and improved product characteristics 
compared to SmF.

SSF has received recognition as a potential biotechnological process to produce 
different metabolites of industrial interest such as enzymes, pigments, bioethanol, 
aroma compounds, antibiotics, and mycotoxins, among others. One of the main 
advantages of the SSF is the use of agro-industrial by-products as a substrate or 
source of nutrients. This makes it an attractive technology to add value to these by- 
products and reduce environmental pollution due to their accumulation (Ghoshal 
et  al. 2012). One of the metabolites of greatest industrial interest is enzyme. 
Therefore, research and production of enzymes using biotechnological processes 
have increased in recent years. The SSF has advantages in terms of the production 
of enzymes over SmF which include the use of agro-industrial wastes, higher volu-
metric productivity, secretion facilities to get extracellular bioproducts with higher 
stability, being usually simpler with lower energy requirements, resembling of the 
natural habitat of some microorganisms, and easier downstream processing.

To produce enzymes by SSF, different microorganisms are used, including bac-
teria, fungi, and yeasts. However, due to the biochemical characteristics and its 
adaptation to the substrate, filamentous fungi are the most used. Among the most 
used fungi are those belonging to the genera Aspergillus sp. and Rhizopus sp. 
Different enzymes have been produced from these microorganisms, among which 
are proteases, amylases, cellulases, pectinases, etc. (Schuster et al. 2002; Londoño- 
Hernández et al. 2017).

In recent years, research has focused on increasing the productivity of the pro-
cess of obtaining enzymes. In this way, the design of new bioreactors and optimiza-
tion of the process conditions have been carried out (Biz et al. 2016; Ashok et al. 
2017; Pitol et  al. 2017), and new genetic engineering tools have been used to 
improve the yields in the production of enzymes. In this chapter, advances in SSF to 
produce enzymes of industrial interest will be reviewed. There is a brief discussion 
of the microorganisms and enzymes produced, and a focus is presented on the 
design aspects of bioreactors and the factors that affect the production of enzymes.

4.2  Microorganisms Used in SSF

One of the key factors in the development of SSF processes is the selection of the 
microorganism to be used according to the metabolite or the enzyme of interest. 
There are a wide range of microorganisms capable of producing enzymes by SSF 
such as aerobic and anaerobic bacteria, yeast, anaerobic fungi, soft-rot fungi, 
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white-rot fungi, and brown-rot fungi (Yoon et al. 2014). However, the most com-
monly used are filamentous fungi, since SSF simulates the natural habitat of these 
microorganisms. Due to their ability to grow in low-humidity conditions, yeasts 
have also been used to obtain various enzymes by SSF, finding good results. 
Likewise, by the use of bacteria and Actinomycetes such as Streptomyces sp, pro-
duction of a wide range of degradative enzymes and high resistance to extreme 
conditions have been reported (Soccol et al. 2017).

Due to the high tolerance to low water activities, the high potential to excrete 
hydrolytic enzymes, and the morphology, the filamentous fungi are the microorgan-
isms more used to produce enzymes. Filamentous fungi are featured as modular 
organisms, which grow by the repeated iteration of modules usually to yield a 
branching pattern. The tubular hypha that emerges from the spore elongates at the 
tip and at the same time along the hypha new branches are formed. The branches 
continue to form a porous three-dimensional network of hyphae or mycelium. Their 
morphology allows filamentous fungi to colonize and penetrate the solid substrate 
in search for nutrients, producing various enzymes for it (Rahardjo 2005).

With the increase in industrialization processes, the production of agricultural 
by-products has increased, which has caused an increase in environmental pollution 
due to inadequate management of solid waste. At a global level, alternatives are 
necessary for reutilizing these wastes, considering environmental and economic 
aspects. One of the alternatives is the use of these residues in biotechnological pro-
cesses to obtain enzymes. The use of these agro-industrial residues in SSF processes 
is of interest due to the high availability, its low cost, and the composition that 
allows obtaining different types of enzymes. In addition, the SSF processes are 
considered as an eco-friendly technology. The filamentous fungi can effectively 
hydrolyze such type of substrates, and this is an added advantage for the use of these 
microorganisms in SSF (Ozcirak Ergun and Ozturk Urek 2017).

Among the microorganisms used for enzyme production in recent years are 
Paecilomyces variotii, Aspergillus oryzae, Rhizopus oryzae, and Aspergillus terreus 
to produce amylases (Chen et  al. 2014; Kaur et  al. 2015; Sahnoun et  al. 2015); 
Aspergillus fumigatus, Rhizopus oryzae, Lactobacillus plantarum, and Aspergillus 
niger to produce cellulases (Djoulde Darman et al. 2011; Liu et al. 2011; Kupski 
et al. 2014); Penicillium simplicissimum to produce lipases (Godoy et al. 2011); A. 
oryzae and A. niger to produce pectinases (Baladhandayutham and Thangavelu 
2011; Biz et al. 2016); Aspergillus versicolor, A. oryzae, Aspergillus terreus, and A. 
niger to produce proteases (Veerabhadrappa et  al. 2014; de Castro et  al. 2015; 
Homaei et al. 2016); and Aspergillus tubingensis, R. oryzae, Mucor indicus, Mucor 
hiemalis, Peniophora, and Trichoderma viride to produce xylanases and laccases 
(Irfan et al. 2014; Adhyaru et al. 2016; Behnam et al. 2016; Shankar et al. 2018).
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4.3  Enzymes Produced by SSF

During the last few years, the use of biotechnological tools has improved the quality 
of the products obtained while simplifying industrial processes through the use of 
biological techniques such as SSF. Not only these tools made possible the reduction 
in production energy costs and wastewater generation, but also they allowed the use 
of by-products and agricultural wastes as substrate for microorganism’s growth 
(agricultural waste valorization). The reutilization of agricultural residues or by- 
products in bioprocesses reduces the costs of production and solves the problem of 
their disposal into the environment, a major cause for environmental pollution and 
an important loss of biomass that could be used to produce different metabolites 
with added commercial value.

Agricultural residuals such as straw from wheat, corn, rice, soy, and cotton; sug-
arcane bagasse and orange bagasse; and by-products like bakery wastes are com-
plex networks of cellulose, hemicelluloses, and lignin and are considered 
lignocellulosic wastes, some of which may contain significant concentrations of 
soluble carbohydrates and inducers of enzyme synthesis (Lizardi-Jiménez and 
Hernández-Martínez 2017). Cellulose and hemicellulose represent the primary 
structural polysaccharides of the plant cell wall that can be digested by hydrolytic 
extracellular enzymes produced by for example amylases (EC 3.2.1.1), glucanases 
(EC 3.2.1.4), xylanases (EC 3.2.1.8), and polygalacturonases (EC 3.2.1.67) among 
others; these can be produced by filamentous fungi. On the other hand, lignin is a 
highly irregular and insoluble polymer, chemically bonded by covalent linkages 
with hemicellulose. White-rot fungi are highly effective microbes to degrade lignin. 
Their lignin-degrading ability depends on several ligninolytic extracellular enzymes 
including laccases (EC 3.10.3.2), peroxidases (EC 1.11.1.7), and oxidases (EC 
1.6.3.1); low-molecular-weight metabolites; and activated oxygen species (Ozcirak 
Ergun and Ozturk Urek 2017).

Fungi and yeast are the most suitable microorganisms for SSF, while bacteria have 
been considered unsuitable, according to the theoretical concept of water activity 
(Singh et  al. 2012). According to Polizeli et  al. (2005) many advantages can be 
obtained with SSF systems when filamentous fungi are used as enzyme producers. In 
recent decades, the use of fungi in bioprocesses has grown in importance because of 
the successful production of numerous enzymes with different biochemical properties 
and excellent potential for biotechnological applications (Knob et al. 2014).

In the last decade, there has been an increasing trend towards the utilization of 
fungal extracellular enzymes for food and nonfood applications (Gutiérrez-Correa 
et  al. 2012; Buenrostro Figueroa et  al. 2014; Poggi-Varaldo et  al. 2014). These 
applications range from straightforward industrial processes to pharmaceutical dis-
covery and development. Thus, industrial enzymes represent the center of biotech-
nology, in terms of research and applications. Table  4.1 summarizes different 
enzymes used in the industries (Thomas et al. 2013).

Today, consumer demand requires higher levels of quality in food in terms of 
natural flavor, taste, digestibility, and nutritional value. This trend triggered the 
need for development of enzymes like amylase, xylanase, and glucanase, with 
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applications in food processing like clarification of juices, preparation of dextrans 
for use as food thickeners, and production of fluids and juices from plant materials, 
among others (Polizeli et al. 2005).

In the textile industry, the enzymes amylase, pectinase, lipase, catalase, peroxi-
dase, glucanase, and laccase, all obtained by SSF from various fungi species, are 
applied for the treatment of natural protein fibers (wool and silk), cellulose fibers 
(cotton, linen, and hemp), and synthetic fibers with a high impact on both the pro-
duction of threads, yarns, and fabrics and the manufacture of various products.

In the pulp and paper industry, the incorporation of xylanase leads to the reduc-
tion of the use of chemical pollutants in the pre-bleaching stage, pulp bleaching, 
improved drainage speed of recycled fibers, increase in leaf density of paper and 
reduction in its rusticity, and decrease of waste and contaminants in the recycling 
process.

Furthermore, the use of hydrolytic enzymes in animal feed may improve cellu-
lose accessibility to ruminal digestion and thus improve the nutritional value of the 
feed. The inclusion of enzymes as phytase (EC 3.1.3.8), in the formulation of feed-
ing diets for monogastric animals, has increased in recent times (Rodríguez- 
Fernández et al. 2010).

Table 4.1 Enzyme production with industrial applications using solid-state fermentation (SSF)

Enzymes Microorganism Industrial use References
Protease Engyodontium album, 

Aspergillus versicolor, and 
Aspergillus niger

Food Abraham et al. 
(2013)

Elagitanase Aspergillus niger Food Buenrostro Figueroa 
et al. (2014)

Polygalacturonase Aspergillus sojae Textile and 
food

Demir and Tarı 
(2014)

Xylanase Aspergillus niger and 
Aspergillus fumigatus

Food and paper Loureiro et al. (2016)

Peroxidase Phanerochaete chrysosporium Biosensors Li et al. (2015)
Chitinase Penicillium ochrochloron 

MTCC 517
Biopesticides Thomas et al. (2013)

Lipase Aspergillus versicolor Food Veerabhadrappa et al. 
(2014)

Glucoamylase Aspergillus niger Starch Pandey (1991a)
Fibrinolytic 
enzyme

Fusarium oxysporum Food Tao et al. (1997)

Aminoacylase Trichoderma Pharmaceutical Wakayama et al. 
(2004)

Pectinase Aspergillus Drinks de Oliveira et al. 
(2018)

Lactase Aspergillus Dairy Neri et al. (2009)
Laccase Pleurotus ostreatusIE-8 Food Membrillo et al. 

(2008)
Amylase Aspergillus oryzae Baking Porfiri et al. (2012)
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One area of great importance is the production of clean energy based on sustain-
able development, such as renewable resources. Currently, biomasses of lignocellu-
losic origin are pretreated enzymatically with lipase, glucanases, xylanase, and 
amylases for the generation of fermentable sugars used in the production of fuels of 
biological origin: biodiesel generation or second-generation ethanol production 
(Anwar et al. 2014).

Optimization in the process to produce enzymes by SSF requires the study of 
various farming parameters, which depend on the enzyme that will be produced, the 
substrate used, and the microorganism that produces it.

4.4  Biotechnological Engineering in the Production 
of Enzymes

Commercial demand for enzymes of industrial interest has increased in recent years, 
and research focused on attending this demand has been developed. Some biotech-
nological processes or bioprocesses have been used to produce enzymes of indus-
trial interest, which are produced by different microorganisms. One of the most 
suitable bioprocesses for this purpose is SSF or solid-state culture using fungi 
(Lopez-Trujillo et al. 2017). SSF has been distinguished because it is a bioprocess 
that allows the growth of the microorganism (mainly fungi) in the fermentable 
material that in turn acts as a support, or allows the growth of the microorganism on 
an inert support that is enriched with a culture media and humidity (Krishna 2005). 
Once the bioprocess begins, the microorganism excretes diverse enzymes to the 
environment to carry out the catabolism of the nutrients and ensure their growth; in 
this way it is possible to take advantage of this bioprocess to obtain various metabo-
lites (Medina-Morales et al. 2017; Soccol et al. 2017). From the 1980s to the pres-
ent, several applications of SSF have been found, such as the production of secondary 
metabolites, including antioxidants, alkaloids, or antibiotics; biodegradation of cer-
tain agro-industrial residues or biotransformation of crop residues; and one of the 
most important is  production of a wide variety of enzymes, such as cellulases, 
lipases, and proteases (Pandey 2001).

For a microorganism to carry out the SSF, it is necessary to control several fac-
tors. As already mentioned, the most commonly used microorganisms to carry out a 
fermentation in a solid medium are filamentous fungi, because they can grow more 
easily on the substrate and tolerate a lower water activity; in addition they produce 
greater amount of enzymes that help to obtain the products of interest (Raimbault 
1998). Second are the substrates. The most commonly used substrates are agricul-
tural and forest residues; this is because they are very abundant and do not have a 
specific use; besides they represent a very high source of nuisance value. About 
agricultural waste, some of the most used are bagasse (of certain plants mainly cere-
als). The husks or pulps of numerous fruits and other residues of different plants 
have also been used. All these substrates, coming from plants, have a high content 
of molecules, such as cellulose, hemicellulose, starch, lignin, pectins, and polyphe-
nols which are used by microorganisms for their growth (Soccol et  al. 2017). 
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Moisture is required for an SSF to be carried out in the best way. Humidity plays a 
very important role in the SSF. Fungi are microorganisms that grow in environments 
with high humidity. A low moisture value can cause an inadequate absorption of 
nutrients and affects the stability of the enzymes (Moo-Young et al. 1983). In gen-
eral, in bioprocesses like this, humidity values range between 30 and 85%, but for 
fungi it should normally be between 20 and 70% (Pandey 2001).

The pH value is variable due to the production of organic acids during fermenta-
tion, which will cause the pH to decrease. There may also be an increase in pH 
caused by the assimilation of certain organic acids present and by the alkalinization 
of the urea present (Raimbault 1998). Filamentous fungi tolerate a pH range of 2–9, 
and their optimum pH is in the range of 3.8–6. Finally, temperature is considered the 
most important physical factor for the development of SSF, because the enzymes 
and certain metabolites produced are highly sensitive to temperature. Fungi have the 
ability to withstand temperature ranges between 20 and 55 °C; therefore they are the 
most efficient microorganisms for this bioprocess (Yadav 1988). If the abovemen-
tioned factors are controlled in an appropriate way, SSF occurs in a better way, and 
if this bioprocess is regulated it can be used to produce different metabolites of 
industrial interest, for example, enzymes.

Some applications of the SSF to produce enzymes of industrial interest are 
known. In some reported works it has been demonstrated that filamentous fungus is 
able to produce a variety of enzymes that have application in the industry (Ramírez- 
Coronel et al. 2003). It has been reported that the strain A. niger Aa-20 is capable to 
produce hydrolase enzymes, such as tannase (Aguilar et al. 2001). In addition, other 
strains of filamentous fungi, such as A. niger PSH and Penicillium commune EH2, 
are capable to produce enzymes of industrial importance (Hernández et al. 2005), 
and all the above by SSF. One of the most interesting and important species that has 
been used for SSF is A. niger GH1 (isolated from creosote bush (Larrea tridentata)) 
(Belmares et al. 2009). This strain is capable to produce tannase enzyme and, as has 
already been mentioned, tannase is a hydrolase enzyme that has application in the 
food industry, for example, in the production of some beverages, mainly for its 
clarification (Belmares Cerda et al. 2003).

Fungi of the genus Aspergillus used in SSF in addition to tannase produce other 
enzymes of industrial interest. The production of the polyphenol oxidase enzyme by 
A. niger has been reported. This enzyme is used as a catalyst for the release of phe-
nolic compounds present in fruit drinks to increase their antioxidant potential (Shi 
et  al. 2005). Aspergillus also produces by SSF another enzyme, β-glucosidase, 
which hydrolyzes glycosidic bonds to release bioactive compounds from their sugar 
core, and once the bioactive compounds are free they can be applied to the formula-
tion of functional foods (Ascacio-Valdés et al. 2011). The same function has been 
reported for enzymes such as xylanase produced by Aspergillus by SSF (Huang 
et al. 2007).

A. niger GH1 is also capable to produce polyphenol oxidase, β-glucosidase, and 
xylanase by SSF (Ascacio-Valdés et al. 2014), and not only that, it has also been 
reported that this fungus produces a novel enzyme capable of phytochemical com-
pound biotransformation into biologically active molecules, the novel ellagitannase 
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enzyme. The conditions of SSF to produce this enzyme have already been opti-
mized to guarantee adequate levels of production. Due to the results obtained in the 
mentioned study it was possible to demonstrate the production of ellagitannase by 
SSF and also the main reaction mechanisms of the enzyme were described by the 
identification of the main intermediary compounds for the generation of bioactive 
compounds (Ascacio-Valdés et al. 2016).

In this section, the potential of SSF as a bioprocess to produce enzymes was 
described. It is true that it is a bioprocess that needs a rigorous control and that its 
use on an industrial scale is still scarce. However, there are reports that expose the 
full potential of application for the enzyme production and it can be concluded that 
the main challenge is to develop bioprocesses and technologies that allow a better 
control of fermentation conditions to guarantee the best levels of production.

4.4.1  Culture Conditions

Different culture conditions affect the synthesis of enzymes in an SSF process. 
Some of these are the type of substrate and the pretreatment made to it, the particle 
size of the substrate, the water activity (aw) of the support, the relative humidity, the 
temperature of the process, the pH of the substrate, the fermentation time, the inocu-
lum size, and the available oxygen. All these aspects have been studied for the 
improvement in the productivity of the process of obtaining enzymes by 
SSF. However, the oxygen supply, heat and carbon dioxide removal, temperature 
and moisture control, and mixing during the cultivation are still constraints for the 
industrialization of the SSF. Thus, an adequate control of these parameters is very 
important for an efficient SSF process, and these must be optimized for each biore-
actor and process (Poletto et al. 2017).

One of the important parameters is the aw, which must be adjusted depending on 
the physical requirements of the microorganisms. Generally, bacteria need an aw 
between 0.9 and 0.99, yeast an aw between 0.8 and 0.9, and filamentous fungi an aw 
between 0.6 and 0.7. The increase in water content can impede growth due to the 
decrease of oxygen in the pores of the substrate (Chen 2013).

In general, for SSF aerobic microorganisms are used. Thus, the oxygen content 
is a fundamental factor in its development. For this reason, there must be aeration to 
supply the necessary oxygen and to eliminate both the carbon dioxide and the meta-
bolic heat generated. In this way, the optimum flow of air must be taken into consid-
eration in respect to the nature of the microorganism, the speed of generation of 
metabolic heat, the concentration of carbon dioxide and other metabolites, and the 
thickness of the substrate, among others. A variable related to the availability of 
oxygen is the particle size. The size of the particles determines the degree of poros-
ity; an optimal value of this varies depending on the substrate, the microorganism to 
be used, and the amount of oxygen present in the medium. Small particles have the 
advantage of having a greater surface-to-volume ratio, which has a great influence 
on mass transfer (Pandey 1991a; de Castro et al. 2016).
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In the case of temperature also it is necessary to adjust according to the microor-
ganism. Temperature control is important because due to the high concentration of 
substrate per unit volume and the low thermal conductivity of the system, there may 
be accumulation of metabolic heat and an increase in the temperature of the crop 
causing deceleration or arrest of microbial activity, dehydration of the solid medium, 
and deviation of the metabolism as a defense mechanism against heat or dehydra-
tion (Dalsenter et al. 2005).

Another variable to consider during an SSF process is pH. In SSF processes it is 
very difficult to control pH; for this reason, microorganisms that are not very strict 
in this aspect and have a wide optimum pH range are desirable. A decrease in pH 
contributes to the growth of yeasts that negatively influence the process (Torrado 
et al. 1998; Singhania et al. 2009).

Some studies carried out to obtain enzymes by SSF have been directed to the 
optimization and control of the process parameters to obtain higher yields. Francis 
et al. (2003) evaluated the effect of incubation temperature, initial substrate moisture, 
and inoculum size on the production of α-amylase by A. oryzae. They found that 
temperature is one of the most influential parameters of the process, with 30 °C being 
at which the microorganism growth is better and there was a greater enzymatic activ-
ity. They also found the right composition to supplement the nutrients in the culture 
medium, increasing the yield by approximately 20%.

In other studies, Yang et al. (2015) optimized culture conditions for the produc-
tion of glucanase by Rhizomucor miehei. They studied the effect of the carbon and 
nitrogen source, the initial pH of the culture medium, and the incubation tempera-
ture. It was found that the source of nitrogen and temperature are some of the 
parameters that most affect the production of glucanase. High temperatures possibly 
inhibit ribosomes, altering the entire process of enzymatic production.

Sahnoun et al. (2015) optimized the culture conditions to produce α-amylase by 
A. oryzae. Among the parameters discussed are the initial humidity of the substrate, 
the carbon/nitrogen ratio, and the size of the inoculum. An increase in yield by 30% 
was achieved when done in optimal conditions. These studies show the importance 
of adapting and controlling the conditions of an SSF process.

4.4.2  Transport Phenomena in SSF

SSF is a complex system that involves multiple phases and multiple components, 
where processes of heat and mass transfer are developed, and multiple reactions are 
carried out. SSF is accompanied by the development of concentration gradients, 
which transport substrates and products such as enzymes (Bück et al. 2015). During 
SSF, the microorganism can grow on the surface of the substrate or within the solid 
matrix; therefore, the microbial biomass interacts with the solid substrate. In this 
process, the microbial biomass consumes substrates and secretes metabolites and 
enzymes. Due to the conditions of the environment, all the transport process of 
materials and nutrients is carried out by conduction. Therefore, during the process 
there are different concentration gradients of substrates and products, which can 
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cause local differences in metabolic activity. These concentration gradients are also 
applicable to the presence of inducers or repressors, affecting the enzyme produc-
tion. These concentration gradients occur in a general way in the process regardless 
of the microorganism used. However, in most studies on enzyme production, these 
gradients are explained for filamentous fungi, since they are the most commonly 
used microorganisms in SSF and for their potential to excrete hydrolytic enzymes 
(Rahardjo 2005; Rahardjo et al. 2006).

In order to understand the phenomena occurring within an SSF bioreactor, it is 
necessary to understand the physical arrangement of the various phases within the 
system, since the various phenomena occur within and between these phases 
(Berovic 2006). Transport phenomena in SSF can be divided into micro-phenomena 
and macro-phenomena, depending on the particle size and scale of the bioreactor 
(Jou and Lo 2011).

At macroscale, the bioreactor contains three phases: the bioreactor wall, a head-
space full of gas, and a substrate bed, composed of particles and air within the 
interparticle spaces. In general, at macroscale, the bed is considered as a single 
pseudo-homogeneous phase. Different phenomena of heat and mass transfer occur 
in the substrate, which can be defined using different mathematical models (Berovic 
2006; Chen 2013).

At microscale, the particle air and the interparticle air are treated as different 
subsystems. Many of the transport processes shown are largely unaffected by the 
bioreactor and the way it is operated; that is, they are intrinsic to SSF systems due 
to the presence of the solid phase. These processes include mass transfer processes 
such as the following (Berovic 2006):

• The diffusion of O2, CO2, and water vapor within static regions of the gas phase 
and their convective movement in regions of airflow, with the extent of static and 
flowing regions depending on whether the bed is forcefully aerated or not.

• The diffusion of O2, CO2, water, nutrients, protons, products, and enzymes within 
the biofilm phase and the substrate particle.

• Exchanges of O2, CO2, and water vapor between the various phases.
• Also, within the particle there will be the reaction of enzymes with their 

substrates.

Microorganisms most often used in SSF are filamentous fungi. Therefore, the 
description of the fermentation process and the transport phenomena that occur are 
generally explained using the growth model of the filamentous fungi on the sub-
strate. The process starts with mixing of a spore inoculum with substrate particles. 
Each particle initially has a number of spores attached to it, which germinate at dif-
ferent times depending on environmental conditions. Once each spore germinates, a 
germ tube extends away from the spore and branches to give daughter hyphae, 
which extend and then branch again, to give an expanding microcolony (Mitchell 
et al. 2006a; b; Chen 2013).

In order for the process to continue and the nutrients to be used, it is necessary 
that the enzymes get diffused properly. Enzymes diffuse away from the site of 
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secretion into the particle. The speed of diffusion depends on the size of the enzyme 
and on the internal structure of the substrate particle. The enzymes begin hydrolyz-
ing the polymer, and the soluble hydrolysis products then diffuse through the sub-
strate. Oxygen consumption causes diffusion of O2 through the static gas layer to 
the biomass and any initial O2 within the substrate also diffuses to the biomass. 
During the process the hyphae get extended above the surface and penetrate the 
substrate. During these very early stages, there is a sufficiently high O2 concentra-
tion within the substrate to support this penetration: given the low biomass, the rate 
of O2 uptake is low and diffusion can replenish it reasonably effectively. Also due to 
the low biomass, the overall rate of heat production is very low. So, early in an SSF 
process, growth is essentially biologically limited. Growth occurs at the maximum 
specific growth rate, at which the organism is capable of growing on a solid surface, 
at the prevailing temperature, pH, and water activity, although the extent to which 
this is true depends on how quickly enzymes are produced to liberate hydrolysis 
products from polymers (Berovic 2006).

While the biomass continues increasing, the rates of growth-associated activi-
ties, such as enzyme production and O2 consumption, also increase. Subsequently, 
the biomass begins to decrease the consumption of O2 and nutrients; at this moment 
the process is limited by mass transfer. The biomass may continue to penetrate into 
the substrate, although this might be relatively slow due to O2 limitations. During 
this phase the rate of heat production soon exceeds the rate at which heat can be 
removed, such that the temperature of the substrate bed rises. Likewise, there are 
structural changes in the bed that could affect the main transport mechanisms 
(Rahardjo et al. 2006).

Following the process, due to the lack of O2 and nutrients, and excess heat in the 
environment, the microorganism initiates sporulation processes, the growth process 
ends, and cell death occurs. As a result, the growth decelerates, and the rate of heat 
production falls. As the heat production rate falls, the temperature of the substrate 
bed falls.

The diffusion of the enzymes can be affected by the reaction rate in SSF, so the 
use of mathematical models could help in the understanding of these processes. 
This would allow the improvement of the process and the design of new bioreactors, 
among others (Sermanni and Tiso 2008; Jou and Lo 2011; Mazaheri and Shojaosadati 
2013). There are different mathematical models to explain transport phenomena in 
SSF. However, there are few mathematical models applied to enzymes. One of the 
models was proposed by Mitchell et al. (1991) to describe the process of release and 
diffusion of glucoamylase. During the study the growth of Rhizopus oligosporus 
was described in a thin layer of the substrate. In addition, it is assumed that the glu-
coamylase release is constant over the period from 0 h to time tE:

 
J D

C

x
t tE E

E
ERGHδ

δ

=
∂
∂

= −( )
 

where JE|δ is the flux of glucoamylase across the membrane filter at the surface 
of the substrate; CE is the glucoamylase concentration; and DE is the effective 
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diffusivity of glucoamylase in the model substrate. H(tE − t) is a Heaviside function. 
When t is smaller than tE, this function has the value of 1 and therefore the rate of 
glucoamylase release is equal to RG. When t is larger than tE, the function has the 
value of 0 and therefore there is no further glucoamylase release.

The diffusion of glucoamylase in the model substrate is assumed to follow Fick’s 
law of diffusion (Rahardjo et al. 2006). The mass balance equation for glucoamy-
lase in the substrate matrix is
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Considering that the release of glucoamylase is constant for a period of 6 h, the 
boundary conditions are as follows:

For 0 < t < 6 h, at x = 0, 
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The bottom of the substrate is at x = 0, and the top at x = δS; the fungus grows at 
the top.

The hydrolysis of starch by glucoamylase was described with Michaelis-Menten 
kinetics and it was assumed that the glucose is released by the action of glucoamy-
lase and then diffuses towards the mycelium at the substrate matrix:
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where CG and CS are glucose and starch concentrations at time t and place x, kcat is the 
maximum specific activity of glucoamylase (dimensionless), CE is the enzyme con-
centration (expressed in activity units per volume), Km is the apparent Michaelis- 
Menten constant for glucoamylase, DG is the effective diffusivity of glucose in the 
substrate layer, qm is the maximum specific rate of glucose uptake, CG|δs is the glu-
cose concentration at the top surface of the substrate, KG is the Monod constant for 
glucose uptake, x is the amount of biomass present on top of the substrate expressed 
per unit surface area, and xc is the maximum amount of biomass that actively takes 
up glucose. The glucoamylase concentration (CE) is expressed in terms of its activity 
and therefore kcat is equal to 1.0. For the purposes of modeling, the starch concentra-
tion (CS) is expressed in terms of the equivalent weight of glucose.
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Oxygen transfer is one of the transport phenomena that most limits the behavior 
of SSF processes. Oxygen supply into the mycelia on the surface of or inside the 
substrate is hampered by diffusion limitation, which is caused by the presence of 
liquid-filled pores in a densely packed mycelium layer that is formed close to the 
substrate surface (Rajagopalan and Modak 1995; Oostra et al. 2001; Rahardjo et al. 
2005). The mathematical models described can help predict the effect of nutrient 
diffusion on the enzymatic productivity of different microorganisms. Rahardjo et al. 
(2005) carried out a series of experiments to show the effect that a low concentration 
of oxygen has on the production of a-amylase by A. oryzae in SSF. In fact, concen-
trations lower than 0.25% of oxygen cause a substantial depression in the enzymatic 
production. Likewise, the researchers stated that because the saturation constant for 
oxygen concentration was very low, the growth kinetics of A. oryzae can be simpli-
fied to zero-order kinetics in the coupled diffusion/reaction models.

The equations and the proposed theory for enzymatic diffusion have been used 
by different authors to explain the phenomena that occur during the obtaining of 
enzymes by SSF. Nahid et al. (2012) studied the production of glucoamylase by 
Aspergillus niger in SSF using different agro-industrial by-products as support. The 
studies were carried out in flasks and in a designed tray bioreactor. The results 
showed that the highest activity was obtained using wheat bran with 10% corn flour. 
In addition, using the tray bioreactor a slightly higher productivity (7%) is achieved 
than in the flasks, so at industrial level the use of these bioreactors is proposed.

One of the hypotheses proposed in the diffusion models is that by increasing the 
interparticle spaces, the diffusion of nutrients and enzymes is greater. Research car-
ried out by Baladhandayutham and Thangavelu (2011) optimizing the production of 
pectinase by Aspergillus awamori in SSF found that the addition of 15% of fibrous 
materials as sugarcane bagasse increases the productivity of pectinase enzyme, pos-
sibly due to the improvement in diffusion processes. However, beyond this amount 
the phenomena of catabolic repression are present, avoiding the fact that the micro-
organism hydrolyzes some compounds such as cellulose and hemicellulose. In this 
study it was found that the best conditions to achieve an enzymatic activity of 
103.33 U/mL are temperature 35 °C, pH 5, and process time 72 h. Similar results 
were found by Suresh and Viruthagiri (2010) using A. niger for the production of 
pectinases in SSF.  Martin et  al. (2004) evaluated the production of pectinase by 
Moniliella and Penicillium using mixtures of agro-industrial by-products such as 
orange bagasse, sugarcane bagasse, and wheat bran as substrates. Like other research-
ers (Nagel et al. 1999; Silva et al. 2002), they found that the increase in intraparticle 
spaces improves enzyme production, so the use of fibrous materials can promote 
diffusion and in this case improve the productivity in obtaining pectinases.

On the other hand, Viniegra-González et al. (2003) used the logistic models and 
Luedeking-Piret equations to estimate the values of the coefficients: maximal specific 
growth rate (μM), maximal biomass level (XM), enzyme/biomass yield (YP/X), and 
secondary rate of production or breakdown (k), to compare the yields presented in the 
production of enzymes tannase, pectinase, and invertase in SSF with SmF. At the end 
of the study the reaction-diffusion model was proposed to explain the behavior during 
the process. It was proposed that oxygen diffusion is perpendicular to large cellular 
aggregates and that diffusion of sugar is horizontal along the thin layer. This makes it 
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possible to create sugar concentrates in the cell aggregates, increasing the diffusion 
and enzymatic productivity. Following these studies, Montalvo et al. (2005) evaluated 
the phenomena of catabolic repression in the tannase production by SSF, considering 
the gradients of diffusion as the greatest limitation in this kind of processes. They 
concluded that in effect, the existence of diffusional gradients of substrate is one of the 
main factors responsible for the high enzyme activity. The formation of these gradi-
ents can be demonstrated if the substrate uptake rate is higher than substrate diffusion 
rate and if this relation is inverse the catabolic repression phenomenon will be present 
due to the accumulation of the substrate (glucose as repressor) in its environment.

4.4.3  SSF Bioreactors

The bioreactor is one of the most important equipment in the development of bio-
process, and numerous types of bioreactors have been used for fermentation tech-
nologies in the production of different secondary metabolites (i.e., antibiotics, 
enzymes, bioactive compounds, pigments) or biofertilizers, biopesticides, and bio-
fuels from solid agro-industrial residues (Barrios-Gonzalez et al. 2005) (please see 
Fig. 4.1). The use and design of bioreactors for SSF have been reviewed previously 
(Pandey 1991b, 2003; Mitchell et al. 2000; Raghavarao et al. 2003; Robinson and 
Nigam 2003; Durand 2003; Prabhakar et  al. 2005; Krishna 2005; Mitchell et  al. 
2006a; b; Couto and Sanromán 2006; Ruiz-Leza et al. 2007; Bhargav et al. 2008; 
Singhania et al. 2009; Ali and Zulkali 2011; Chen 2013; Ashok et al. 2017; Arora 
et al. 2018; Krishania et al. 2018), taking into account the advantages and disadvan-
tages in terms of operational conditions, scale-up, substrate, microbial strain, etc. 
Pino et  al. (2018) reported that the bioreactor provides optimal conditions for 
enzymes and microorganisms, improving the yields in the bioprocess.

Fig. 4.1 Scheme of an SSF bioreactor (adapted and modified from Ruiz et al. 2012)
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The bioreactor for SSF can be operated in different modes, for example:

 1. Batch: The solid substrate and/or carbon source is added in the reactor; moreover 
the residence time in the fermentation is long and this mode of operation requires 
regular reinoculation (Van de Lagemaat and Pyle 2004; Ruiz et al. 2012). Ruiz 
et al. (2012) used a solid-column-tray bioreactor for pectinase production from 
lemon peel pomace as support and carbon source; they concluded that the use of 
this kind of bioreactor allowed the high production of fungal biomass and 
enzyme production at 96 h.

 2. Fed-batch: The solid substrate and/or carbon source could be added at deter-
mined time intervals (Astolfi et al. 2011). Gonzalez-Figueredo et al. (2010) pro-
posed a mathematical model using a pilot-plant fed-batch SSF reactor for 
compost of Agaricus bisporus mushroom cultivation.

 3. Continuous and/or plug-flow bioreactor operation: The solid substrate and/or car-
bon source is passing in one direction; typically a screw system transports the solid 
substrate in different directions. Van de Lagemaat and Pyle (2004) reported that a 
continuous screw fermenter could be operated with constant non- inoculated feed. 
Nigam (2009) mentioned that a plug-flow mode in continuous conditions can be 
easier in the operation on industrial scale compared to other fermentation systems.

For the design of the bioreactors there are many parameters that affect the pro-
cess, for example, the substrate/support (particle size), environmental conditions 
(aeration), sterilization system, and mechanical agitation. In these days, there are 
some common types of bioreactors that have been developed, for example: static 
bioreactors (Soccol et al. 2017), drum bioreactors (Wang et al. 2010), tray bioreac-
tors (Figueroa-Montero et al. 2011; Ruiz et al. 2012), packed-bed or fixed-bed bio-
reactors (Castro et al. 2015; Soccol et al. 2017).

Another important parameter to consider in the design of SSF bioreactors is the 
possible scaling up; there are different levels: flask level (50–1000  g substrate), 
laboratory fermenter level (5–20 kg substrate), pilot fermenter level (50–5000 kg), 
and production fermenter level (25–1000 tonnes of substrate) (Nigam 2009). 
According to Lonsane et al. (1992), the most important parameters in the design for 
scaling up are variations in the biomass, inoculum at large scale, medium steriliza-
tion, aeration, agitation, heat removal, moisture content in the solids, pH control, 
contamination control, downstream processing, and waste management. For the 
scaling up there are different engineering strategies, for example (1) fundamental 
methods, (2) semi-fundamental methods, (3) dimensional analysis, (4) rule of 
thumb, and (5) trial-and-error techniques. One of the most common methods is the 
dimensional analysis, keeping similar geometry of the bioreactor (Votruba and 
Sobotka 1992; Durand 2003). Soccol et al. (2017) reported that the most important 
problems in the scaling up are the lack of standardized process and limited repro-
ducibility of the experimental results. Mitchell et al. (2004) mentioned that one of 
the most important problems is the control in the bed temperature in the large-scale 
SSF bioreactor. They studied the forced aeration and intermittent agitation in the 
construction of packed-bed SSF bioreactor of 200 L. Bandelier et al. (1997) used 
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the fed-batch SSF strategy in an aseptic pilot-scale reactor (50 L) in the gibberellic 
acid production using Gibberella fujikuroi reaching levels of up to 3 g per kg of dry 
matter, and concluded that the bioreactor is a good and efficient system in the pro-
duction of secondary metabolite production.

In a recent work, Biz et al. (2016) used a pilot-scale packed-bed SSF bioreactor for 
pectinase production using citrus waste and sugarcane bagasse as substrate; as a result, 
they reported that the bed bioreactor was controlled and obtained pectinase yields of 
33–41 U/g of substrate. Cerda et al. (2017) produced cellulase and xylanase in a pilot-
scale SSF bioreactor of 50 L; they used a consortium (bacteria: Pseudoxanthomonas 
taiwanensis and Sphingobacterium composti and the yeasts: Cyberlindnera jadinii and 
Barnettozyma californica) of microorganisms able to produce cellulases (3.1 FPU/g of 
substrate), xylanase (48 U/g of substrate), and used coffee husk as substrates.

On the other hand, monitoring, digital system, and automatic process control are 
of considerable interest in the fermentation industries; the automatic control reduces 
the production costs, increases the conversion yield, and maintains the quality of the 
compounds and products (Scheper and Lammers 1994; Rani and Rao 1999). Pérez- 
Correa et al. (2006) mentioned that the manual control can regulate the operating 
conditions within the solid substrate bed, but in large-scale SSF systems it is not 
feasible. In order to properly monitor and control the reactors, it is necessary to have 
an important series of instruments, in this case primary control elements (sensors) 
for temperature in the solid substrate bed: resistance temperature detectors (RTDs) 
or thermocouples; bed water content or water activity: instruments based on capaci-
tance or conductivity-based devices; gas flow rate: pitot tube, Venturi, orifice flow 
meters, and rotameters; and pH: glass electrodes and off-gas analysis: gas chroma-
tography (Fernández and Pérez-Correa 2006). The most common control system is 
the gain scheduling proportional–integral–derivative (PID) controller; model-based 
control may be the excellent option in large-scale SSF bioreactors (Rani and Rao 
1999; Pérez-Correa et al. 2006). Fernandez et al. (1996) automated a solid substrate 
cultivation pilot reactor (50 kg); they reported that an excellent performance in the 
control of temperature and water content in the solid substrate bed was achieved.

4.4.4  Genetic Engineering

Production of industrial enzymes has increased in the last decades, thanks to prog-
ress in culture conditions, selection of better microbial strains, and genetic improve-
ment of microorganisms. Regarding genetic engineering or improvement, three 
different strategies can be highlighted: induced mutation, genetic recombination, 
and DNA technologies. After the second world war, induction of mutations in dif-
ferent organisms was the focus of extensive research, mainly chemical- and 
physical- induced mutation. However, application of mutation technologies on plant 
and animal improvement had low impact and was almost dropped out. Induced 
mutation technologies found a niche of application on improvement of microorgan-
isms for enzyme production.

Induced chemical mutation relies on application of base analogs, which have 
similarity to nitrogen bases and can be incorporated into the DNA. Mutagens are 
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not incorporated into DNA, but alter a base, causing in this way base mispairing, 
and intercalating agents which mimic base pair and are capable to intercalate 
themselves in between the nitrogen bases. Some examples of chemicals used for 
induced mutation are ethyl methanesulfonate (EMS), methyl methanesulfonate 
(MMS), hydroxylamine (HA), nitrosoguanidine (NTG), and 4-nitroquinoline-
1-oxide (Adrio and Demain 2003). After application of a mutagenic agent, cell 
populations must be screened in order to identify those individuals with the 
desired phenotype. Lipase production increased 2.5-fold in mutants from A. 
niger strains which were treated with nitrous acid in comparison to wild isolates 
(Mala et al. 2001).

For induced physical mutations in microbial genomes different kinds of radiations 
(X-ray irradiation, ultraviolet, and gamma rays) have been used. The general effect 
of irradiation on DNA is production of lesions, which interfere with normal base 
pairing, insertion, duplication, and deletion of bases that may produce frameshift 
mutation, producing a very different protein (Lee et al. 2001). An example of the use 
of induced physical mutation to increase enzyme production is the study performed 
by Vu et  al. (2009), treating spores of Aspergillus sp. SU14 using Co60 (gamma 
rays), γ-rays, ultraviolet irradiation, and N-methyl-N′-nitro-N- nitrosoguanidine, 
resulting in 2.2-fold increase in cellulase production in comparison to the wild strain. 
However, use of induced biological mutation has been very rare.

Genetic recombination has been used more frequently after overcoming the 
main drawback (low frequency of genetic recombination, especially in industrial 
microorganisms) with the use of strategies such as protoplast fusion. In this 
approach, the traditional methods of genetic improvement involving crossing and 
selection in order to generate new genotypes are involved. Three parasexual pro-
cesses in bacteria (conjugation, transduction, and transformation) are the most 
common ways of microbial genetic recombination. Conjugation is described as the 
process where DNA is transferred from one cell to another by contact, while during 
transduction DNA is transferred from cell to cell via bacteriophages, and transfor-
mation is the ability of one competent cell to uptake naked DNA from its surround-
ing environment and express it (Adrio and Demain 2010). Genetic recombination 
was used to develop new antibiotics by protoplast fusion. In this case, protoplast of 
Streptomyces griseus, a streptomycin producer, was fused with protoplast of 
Streptomyces tenjimariensis, an istamycin producer, and the hybrid cell produced 
a new antibiotic (Yamashita et al. 1985). Difficulties to recover the cell membrane 
are the main drawbacks to this technology dissemination. Transposons or translo-
catable DNA segments are responsible for internal genetic rearrangements. The 
insertion sequences have been reported to have broad host specificity in 
Streptomyces (Adrio and Demain 2010). Use of these insertional sequences facili-
tates physical mapping of insertions, cloning of DNA flanking insertions, efficient 
construction of mutant libraries, and construction of highly stable mutants. 
Transposon technology has been employed to increase tylosin yield. This com-
pound is an antibiotic and a bacteriostatic feed additive which is utilized in veteri-
nary medicine (Baltz et al. 1997).
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DNA technology involves different methodologies, molecular breeding, association 
analyses, combinatorial biosynthesis, whole-genome shuffling, genome mining, and 
metabolic engineering. Molecular breeding allows in vitro homologous recombination, 
being a way of mimicking natural recombination, while association analyses are the 
study of a DNA sequence variation along the whole genome with the objective to iden-
tify its association with an observable trait (Adrio and Demain 2010). On the other hand, 
combinatorial biosynthesis is defined as a systematic modification and interchange of 
genes important for biosynthesis of natural products which result in the production of 
unnatural or hybrid products (Rix et al. 2002). However, whole-genome shuffling is a 
methodology used for microbial strain improvement which combines the advantages of 
multiparental crossing by DNA shuffling with recombination of whole genomes. DNA 
shuffling is used for in vitro homologous recombination of selected mutant genes, which 
were previously digested at random (Adrio and Demain 2010). Genome mining is 
defined as the use of computational methodologies to derive information about discov-
ery and characterization of different compounds and biochemical routes based on 
genome analysis (Ziemert et al. 2016), and metabolic engineering includes modification 
of specific biochemical ways in order to improve product formation or cell properties; 
this modification is via recombinant DNA technology (Nandy 2016). Recombinant 
DNA technology for industrial enzyme production includes the selection of an efficient 
gene, its introduction into a suitable vector, and transformation in an efficient host to 
produce a high amount of recombinant protein of interest (Gopinath et al. 2017).

Metabolic engineering is the most used DNA technology for improving yields of 
industrial enzymes; in order to meet this objective, four different strategies have 
been followed: incorporation of more than one copy of the gene of interest, use of 
stronger promoters, use of preferred codons, and alternatives to the signal peptide 
(Pan et al. 2013). It has been observed that introduction of more than one copy of 
the gene of interest in microbial cell had increased expression of the industrial 
enzyme, but the number of copies introduced had a threshold, and after that enzy-
matic yield decreased. Verdoes et al. (1994) reported an 18-fold increase of glu-
coamylase yield, after introducing 20 copies of the glucoamylase gene into A. niger. 
Use of stronger promoter, or in some cases introduction of exogenous genes to some 
host, results in low expression. Ma et  al. (2006) overexpressed a lipase gene in 
Bacillus subtilis by use of a strong promoter; in this case lipase yield was 100-fold 
higher than original strain. Use of preferred codons: low expression of heterologous 
genes is attributed to codon bias. This can be solved by incorporating host-preferred 
codons and improving the amount of rare tRNAs (Pan et  al. 2013). Veana et  al. 
(2014) using codons preferred by Pichia pastoris could express an invertase from A. 
niger GH1 and alternatives to the signal peptide. The leader sequence of 15–30 
amino acids found in the N-terminus of the expressed proteins that are destined 
towards the secretory pathway is called signal peptide. It has been observed that 
modification of the signal peptide can increase the yield of industrial enzymes (Pan 
et al. 2013). Liu et al. (2005) improved glucoamylase yield by replacing the signal 
peptide.
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4.5  Perspectives

The biotechnological processes of SSF have a potential application to produce 
enzymes of industrial interest from agro-industrial residues that are generated in 
large quantities and whose current disposition is not the most adequate. Through 
these processes it is possible to obtain enzymes that can work in extreme conditions 
of temperature or pH, or enzymes that are more resistant during the process.

Currently, there are several studies found in SSF processes. However, the great 
challenge is to take these on an industrial scale and maintain high productivity. 
Therefore, it is necessary to continue with studies at different levels of biotechnol-
ogy, from the identification of new strains of microorganisms that hydrolyze differ-
ent compounds and produce highly specific enzymes to the design of new larger 
scale bioreactors and through research in genetic engineering (DasIsha et al. 2019).
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5Industrial Production and Optimization 
of Microbial Enzymes

Francois Niyongabo Niyonzima, S. M. Veena, 
and Sunil S. More

Abstract
Microbial enzymes are the biological catalysts due to their ability to favor reac-
tions more quickly and more efficiently. Various enzymes are produced by 
microorganisms for industrial uses. They must possess the desired properties like 
diversified functionality, and stability over pH and temperature ranges. 
Microorganisms have to produce extracellular enzymes in higher amounts and 
the produced enzymes have to be safe, stable, and more active. Microbial 
enzymes with the desired properties can be produced by optimizing fermentation 
conditions. To make the fermentation cost effective, the utilization of low-cost 
substrates such as agricultural and spent residues for microbial enzyme produc-
tion is necessary. Some industrial enzymes used together for the same purpose 
(like amylase, lipase, and protease used in detergent formulation) are co- produced 
in a single fermentation to reduce the cost and to maintain the enzyme stability. 
In addition, for some microorganisms, recombinant DNA technology is used as 
an alternative strategy for overproducing huge amounts of microbial enzymes 
with improved substrate specificity and stability. Furthermore, novel techniques 
like genetic fusion of coding open reading frames or connection of proteins in a 
posttranslational process are used to manufacture the fused industrial enzymes 
having combined properties of their parental molecules. The public and private 
companies have thus to work together with academicians and researchers  in 
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order to increase production of microbial enzymes needed by the industries. This 
chapter reviews the production of industrial enzymes and optimization of culture 
and fermentation conditions in order to increase production of microbial enzymes 
in huge amounts.

5.1  Introduction

Enzymes are considered as wonderfully specific and efficient biocatalysts for a 
large number of biochemical reactions. They are not toxic and generate few by- 
products as compared to chemical catalysts. Industrial enzymes with specific char-
acteristics can be obtained from microorganisms by optimizing process parameters 
and by enzyme engineering. Various enzymes such as proteases, amylases, cellu-
lases, and lipases were engineered in order to work under industrial conditions. This 
is necessary as wild microbial strains produce a lesser amount of enzyme, compared 
to engineered microorganisms. This can be achieved using special methods like use 
of mutagens (Nelson and Cox 2008; Willey et al. 2008).

The industrial enzymes are derived from plants, animals, and microorganisms. 
However, the microorganisms are mostly in use to produce these enzymes owing to 
better yields obtained from them, and reduction of cost and labor. Most of the indus-
trial enzymes are produced using Bacillus (Beena et al. 2012; Roy et al. 2012; Asha 
et al. 2013; Niyonzima et al. 2013; Roohi et al. 2013; Saracoglu et al. 2013; Mathur 
et al. 2014; More et al. 2015; Waleed et al. 2015; Sinha and Nigam 2016; Sriariyanun 
et al. 2016; More et al. 2016; Hasan et al. 2017; Shwetha et al. 2017) and Aspergillus 
species (Choudhary 2012; Mini et al. 2012; Pundir et al. 2012; Dhital et al. 2013; 
Niyonzima and More 2013a; Sandhya et al. 2015; Souza et al. 2015; Xiao et al. 
2015; Cavalcanti et al. 2017; Lincoln and More 2018; Pachauri et al. 2018). Some 
industrial enzymes having same applications can be co-produced in a single fer-
mentation medium. In this case, the production process becomes cost effective and 
the enzyme stability is assured.

The role of medium composition optimization is to maintain the balance between 
different ingredients, thereby preventing the number of unused components at the 
end of fermentation process (Ire et al. 2011). Kumar and Takagi (1999) reported that 
there is no specific growth medium for the optimum industrial enzyme production 
by bacteria or fungi. Each bacterial or fungal species has its own growth conditions 
to produce industrial enzymes in a significant amount. According to Hajji et  al. 
(2008), the growth medium for industrial enzyme production by bacteria and fungi 
is mainly optimized with one parameter at a time method. Statistical methods are 
also employed to produce the industrial enzymes in adequate amounts.

Industries are still searching for new microbial strains with desired aspects in 
order to produce various industrial enzymes to fulfil the current enzyme demand. 
The proper selection of different industrial microorganisms and the optimization of 
fermentation conditions are thus necessary to produce inexpensive industrial 
enzymes. The production of microbial industrial enzymes under optimized condi-
tions to get enzymes with desirable properties is a continuous exercise. The 
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concomitant production of industrial enzymes in a single-economic production 
medium from microorganisms is also a new challenge. Although some important 
studies have been reported for the production and optimization of enzymes from 
microorganisms, there is no specific report for the industrial production and optimi-
zation of culture conditions for maximum production. This chapter therefore reports 
the production and optimization of culture and fermentation conditions to produce 
industrial enzymes from microorganisms in optimum amounts (Roy and Mukherjee 
2013).

5.2  Production of Microbial Industrial Enzymes by 
Microorganisms

Industrial enzymes are used by various industries for commercial purpose. 
Production of industrial enzymes by microorganisms is a necessary step in indus-
trial sectors. The production and product delivery of industrial enzymes from micro-
organisms involve various steps. These are isolation, screening, and identification of 
enzyme-producing microorganisms; optimization of process parameters and fer-
mentation for industrial enzyme production; purification and characterization of 
purified enzymes; and industrial enzyme formulation for sale, customer liaison, and 
working with the regulatory bodies (Fig. 5.1). Most of the bacteria and fungi used 
to produce industrial enzymes are genetically modified to overproduce them in sig-
nificant amount (Sarrouh et  al. 2012; Sandhya et  al. 2015). Solid-state and sub-
merged fermentation are often used to produce industrial enzymes. However, the 
submerged fermentation is repeatedly reported to be the method of choice for indus-
trial enzyme secretion from microorganisms owing to the extracellular nature of the 
industrial enzymes that get liberated into the production medium. Sarrouh et  al. 
(2012) reported that pH and temperature stability, specificity, influence of activators 
and inhibitors, and reaction velocity are some of the criteria used in the selection of 
the industrial enzymes to be produced by microorganisms.

Industrial enzymes are generally produced under carefully controlled conditions 
by fermentation, using microorganisms, especially bacteria or fungi. Bacillus and 
Aspergillus species are known to be the main producers of industrial enzymes 
(Tables 5.1 and 5.2). Indeed, most of the species of these genera are safe and do not 
produce any toxin, grow on inexpensive substrates, and secrete extracellularly ade-
quate amount of enzymes in a reasonable time period. They can also be genetically 
manipulated easily to give novel industrial enzymes with desirable characteristics 
(Rao et  al. 1998). The microorganisms belonging to the genera Acinetobacter, 
Pseudomonas, Staphylococcus, Streptomyces, Fusarium, Mucor, Penicillium, and 
Trichoderma are also used for industrial enzyme production (Tables 5.1 and 5.2).

For the industrial production of microbial enzymes, submerged fermentation 
(SMF) and/or solid-state fermentation (SSF) are employed. Each fermentation has 
its advantages and disadvantages. Indeed, submerged fermentation is often utilized 
to produce industrial microbial enzymes (Sinha and Khare 2012; Beena et al. 2012; 
Pathak and Deshmukh 2012; Niyonzima and More 2013a, b; Rodrigues et al. 2013; 
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Mathur et al. 2014; More et al. 2015; Sandhya et al. 2015; Souza et al. 2015; Waleed 
et al. 2015; Xiao et al. 2015; Sinha and Nigam 2016; Sriariyanun et al. 2016; More 
et al. 2016; Cavalcanti et al. 2017; Hasan et al. 2017; Shwetha et al. 2017; Pachauri 
et al. 2018). It allows extracellular industrial enzyme secretion in important amounts 
in the production medium and thus industrial enzyme recovery is high. In addition, 
the culture parameters are easily controlled. However, one of the disadvantages of 
SmF is that it uses expensive synthetic media (Lailaja and Chandrasekaran 2013; 
Niyonzima et al. 2013).

Fig. 5.1 Schematic 
representation of 
sequential steps used in the 
production of industrial 
enzymes by 
microorganisms
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Solid-state fermentation is also used for production of some industrial enzymes 
(Lincoln and More 2018). It uses inexpensive substances like agro-industrial by- 
products and downstream process is not expensive. In addition, higher industrial 
enzyme yield is obtained in a brief period of time. However, the physicochemical 
parameters are not easily monitored and regulated (Wang et al. 2012). Some indus-
trial enzymes were reported to be produced by both solid-state and submerged fer-
mentation. For instance, invertase (β-D-fructofuranosidase) was produced by 
Aspergillus sojae JU12 using SSF and the fermentation was cost effective as orange 
peels moistened with molasses were used. The enzyme is very important in the 
production of alcoholic beverages (Lincoln and More 2018). Similarly, the abun-
dant agricultural residue known as lignocellulosic biomass was used to produce 
cellulase in significant amount with Aspergillus awamori (Pachauri et al. 2018).

Batch and fed-batch fermentation, with constant and/or linear feeding, are also 
used for industrial enzyme production by microorganisms. Aishwarya et al. (2013) 
reported the production of a detergent protease by the bacterium Alcaligenes sp. 

Table 5.1 Low-cost used substrates during industrial enzyme production by microorganisms

Substrate used
Enzymes 
produced Microorganism Reference

Chicken feathers Keratinase Bacillus megaterium Saibabu et al. 
(2013)

Jamun leaves Tannase Aspergillus sp. GM4 Souza et al. 
(2015)

Molasses Neutral 
invertase

Aspergillus sp Lincoln and 
More (2017)

Orange peel moistened with 
molasses

Invertase Aspergillus sojae JU12 Lincoln and 
More (2018)

Organic kitchen wastes Amylase Chryseobacterium sp.
Bacillus sp.

Hasan et al. 
(2017)

Rice bran Phytase Bacillus lehensis MLB2 More et al. 
(2015)

Rice bran and wheat bran Laccase Stereum ostrea Usha et al. 
(2014)

Sawdust Cellulase Penicillium sp. Prasanna et al. 
(2016)

Sugarcane bagasse Cellulase Aspergillus awamori Pachauri et al. 
(2018)

Sugarcane bagasse or straw, 
wheat bran, dry corn, sawdust

Cellulase Pseudomonas fluorescens Sethi et al. 
(2013)

Tea stalks Tannase Aspergillus tubingensis 
CICC 2651

Xiao et al. 
(2015)

Wheat bran Keratinase Aspergillus niger/flavus Mini et al. 
(2012)

Wheat bran Phytase Aspergillus niger Sandhya et al. 
(2015)

Wheat bran Xylanase Sphingobacterium sp. 
SaH-05

Ghasemi et al. 
(2014)
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(MTCC 9730) using fed-batch fermentation. Different statistical experimental 
designs are used to produce industrial enzymes by microorganisms in higher amount. 
For instance, a sequential statistical strategy, by Plackett-Burman design followed by 
steepest ascent method and response surface methodology, was used to maximally 
produce tannase from Aspergillus (Xiao et al. 2015). Plackett-Burman design was 
used in SSF to produce a tannase by Aspergillus sp. GM4 (Souza et al. 2015).

The production of some industrial enzymes is stimulated by various substances 
in the production medium. For instance, the production of the detergent lipase by 
Bacillus flexus XJU-1 was activated by Tween-80 and Triton X-100. Indeed, the 
present surfactants act by modifying plasma membrane, thereby activating the 
medium compound uptake, leading to the lipase release in a significant amount 
(Niyonzima et  al. 2013; Niyonzima and More 2014a). Prasanna et  al. (2016) 
reported the increase in extracellular cellulase secretion by Penicillium sp. when the 
surfactant Triton-X100 was supplemented to the fermentation medium. The produc-
tion of laccase by a mushroom Stereum ostrea was stimulated by various inducers 
such as aromatic or phenolic compounds, copper, and surfactants. Indeed, the 
micronutrient copper activates laccase transcription and production, whereas sur-
factants favor enzyme production by stimulating spore growth and enhancing the 
availability of less soluble substrates for the microorganism (Usha et al. 2014).

The use of the inexpensive by-products or agricultural residues does not only 
make the fermentation and production cost effective, but also reduces the environ-
mental pollution that may be caused by by-products or agricultural residue disposi-
tion. Indeed, if a cheap substrate is chosen carefully to grow the microorganism, 
one-third of process cost can be reduced. For instance, keratinase was produced in 
a significant amount by Bacillus megaterium when chicken feathers were used as 
both carbon and nitrogen sources (Saibabu et al. 2013). Similarly, Lincoln and More 
(2018) optimally produced invertase from A. sojae JU12 when orange peel moist-
ened with molasses was used as the substrate. Likewise, wheat bran, a cheap agri-
cultural substrate, was used by different Aspergillus species to produce phytase 
(Sandhya et al. 2015), keratinase (Mini et al. 2012), and laccase (Usha et al. 2014). 
The coconut cake was also reported to be the best substrate for cellulase secretion 
by Pseudomonas fluorescens (Sethi et al. 2013). Table 5.1 shows some by-products 
or agricultural residues which are used as substrates during industrial enzyme pro-
duction by microorganisms.

To meet the present increased industrial enzyme demand, the concomitant pro-
duction of some enzymes by microorganisms in a single cultivation medium with 
cheap substrates becomes necessary. Industrial enzymes have been concomitantly 
produced from microorganisms and used in industries. Indeed, if two, three, or more 
industrial enzymes are co-produced by bacteria or fungi under similar conditions, 
the whole process is not expensive. In addition, the stability among the simultane-
ously produced enzymes is assured. For example, protease, lipase, amylase, and 
cellulase are used in detergent industries to remove various stains; if they are pro-
duced by the same cultivation medium, the proteolysis of lipase, amylase, and cel-
lulase by the protease is prevented. No amylase or lipase proteolysis was observed 
when protease, lipase, and amylase were co-produced together by B. flexus 
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XJU-1 in the same fermentation (Niyonzima and More 2014a, b, c, d). The amy-
lases, cellulases, and lipases resistant to protease hydrolysis have an excellent appli-
cability to the detergent formulation. The alkaline amylase of B. megaterium B69 
was also not hydrolyzed by the alkaline protease when concomitantly produced 
together (Saxena and Singh 2014).

The agro-industrial byproducts were also used as inexpensive substrates for the 
simultaneous production of industrial enzymes in higher amounts. Shivakumar 
(2012) co-produced an important amount of amylase and protease by Bacillus sp. Y 
using cheap substrates under solid-state fermentation. Similarly, the agro-industrial 
waste mustard oilseed cake was the substrate of choice for amylase and protease 
coproduction by B. megaterium B69 (Saxena and Singh 2014). Likewise, the inex-
pensive substrate was employed for the concomitant production of lipase and amy-
lase by Bacillus subtilis JPBW-9 (Anwar et al. 2011). The use of the agricultural 
residue or by-products as production substrates to produce industrial enzymes by 
microorganisms makes the fermentation process cost effective, and also avoids 
environmental pollution by using these wastes.

5.3  Optimization of Process Parameters

The industrial enzyme production by microorganisms is principally influenced by 
various factors such as incubation time, agitation/shaking, initial pH, inoculum con-
centration, incubation temperature, carbon source, metal ions, and nitrogen source 
(Table 5.2). The optimization of these factors has a significant role in enhancing the 
enzyme yield. The optimization of media components, cultural parameters, and fer-
mentation conditions is therefore necessary to maximally produce the industrial 
enzymes in adequate amounts. The process factors are generally optimized one fac-
tor each time, holding all other factors unchanged, and the optimized condition/
factor is considered in the subsequent experiments in sequential order. The advan-
tage of the optimization of various nutritional parameters, physicochemical aspects, 
and fermentation factors is that it helps in designing a cost-effective fermentation 
process (Bora and Bora 2012; Pathak and Deshmukh 2012; Niyonzima and More 
2013a, b; Roy and Mukherjee 2013).

The optimization of the process parameters by statistical methods is also used to 
increase the production of industrial enzymes in a shorter time. For instance, nutri-
tional factors (C, N, and P sources) and physicochemical parameters (inoculum age, 
incubation time and temperature) were optimized by applying Plackett-Burman 
design and Box–Behnken design and the enhancement in tannase production by 
Mucor circinelloides F6–3-12 was observed (El-Refai et  al. 2017). An adequate 
amount of lipase was produced by Staphylococcus arlettae JPBW-1 using response 
surface methodology (RSM) (Chauhan et  al. 2013). Roy and Mukherjee (2013) 
used B. subtilis DM-03 and Bacillus licheniformis AS08E to maximally produce the 
amylases with statistical methods (Roy and Mukherjee 2013). The culture condi-
tions for the production of protease by Trichoderma estonicum was optimized 
by a two-level factorial Plackett-Burman design followed by central composite 
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design (Saravanakumar and Kathiresan 2012). A list of various microorganisms 
producing industrial enzymes and the optimum conditions for the industrial enzyme 
production are shown in Table 5.2.

5.3.1  Time Course Study

The incubation time plays an important role in the production of industrial enzymes 
by bacteria and fungi. The optimal time recorded for industrial enzyme production 
mainly ranges from 24 to 48 h for bacterial species (More et al. 2012; Pathak and 
Deshmukh 2012; Sinha and Khare 2012; Chauhan et  al. 2013; Lailaja and 
Chandrasekaran 2013; Maalej et al. 2013; Nerurkar et al. 2013; Niyonzima et al. 
2013; Rodrigues et al. 2013; Sethi et al. 2013; Ghasemi et al. 2014; Mathuret al. 
2014; More et al. 2015; Waleed et al. 2015; Sinha and Nigam 2016; Sriariyanun 
et al. 2016; More et al. 2016; Hasan et al. 2017; Hussain et al. 2017). The shorter 
incubation time reported for most of the industrial enzyme production makes the 
fermentation process inexpensive. The incubation period of 60–96 h range was also 
reported for the production of industrial enzymes such as keratinase, protease, pul-
lulanase, amylase, and lipase by bacteria (Asha et al. 2013; Roohi et al. 2013; Roy 
and Mukherjee 2013; Saibabu et al. 2013; Hasan et al. 2017). Higher incubation 
periods of 120 and 168 h were observed for cyclodextrin glycosyltransferase (or 
CGTase) production by B. flexus MSBC 2 (Shwetha et al. 2017) and amylase secre-
tion by Streptomyces strain A3 (Chakraborty et al. 2012), respectively (Table 5.2). 
Therefore, the time period of industrial enzyme secretion by bacteria varies from 
one species to another. This may be ascribed to the genome difference.

The fungal industrial enzymes are secreted at optimal level at fourth or fifth day 
(Choudhary 2012; Mini et al. 2012; Niyonzima and More 2013a, b; Thakur et al. 
2014; Sandhya et al. 2015; Souza et al. 2015; Sharma et al. 2016; Cavalcanti et al. 
2017; Lincoln and More 2018) (Table 5.2). A low fermentation time of 2 and 3 days 
was observed for the production of the invertases from Saccharomyces cerevisiae 
(Sivakumar et al. 2013) and l-asparaginase by Trichoderma viride Pers: SF Grey 
(Lincoln et al. 2015), respectively. The higher incubation time of 7 days was also 
noted for the production of pectinases by Aspergillus niger (Dhital et al. 2013), cel-
lulases by Penicillium sp. and Aspergillus awamori (Prasanna et al. 2016; Pachauri 
et al. 2018), tannase by M. circinelloides isolate F6–3-12 (El-Refai et al. 2017), and 
laccases by Scytalidium lignicola (Sidhu et al. 2017). Likewise, Usha et al. (2014) 
reported a higher incubation time of 12 days when laccase was secreted in an ade-
quate amount by Stereum ostrea.

In general, as the incubation time increases, the enzyme secretion by microor-
ganisms also increases. However, after optimum incubation period, a decline in 
enzyme production is observed. This decrease in enzyme production was attributed 
to the reduced availability of nutrients and the toxic metabolite secretion (Romero 
et al. 1998) or decomposition of enzyme by the protease (Anandan et al. 2007). For 
industrial lipase, the decrease was ascribed to the accumulation of fatty acids and 
glycerol resulted from lipolysis (Smith and Alford 1996). For most industrial 
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enzymes like amylases, the decrease in production was due to the denaturation 
resulted from the enzyme produced and the medium component interaction 
(Niyonzima and More 2015d). The variation in industrial enzyme production by 
bacteria and fungi can be attributed to growth and metabolic activity variation 
(Bhavani et al. 2012; Niyonzima and More 2015b).

5.3.2  Influence of Initial pH of the Medium

The initial pH of the culture and fermentation medium is a major factor regulating 
industrial microbial enzyme secretion. It may influence the availability of nutrient 
substrates or the transport of various nutrient components across the bacterial or 
fungal membranes, which in turn stimulates the microbial growth and thus indus-
trial enzyme production (Bhavani et al. 2012; Bora and Bora 2012; Niyonzima and 
More 2015b). The optimum initial pH range recorded for most of the industrial 
bacterial enzymes is 6–10 (Chakraborty et al. 2012; Pathak and Deshmukh 2012; 
Sinha and Khare 2012; Asha et  al. 2013; Chauhan et  al. 2013; Lailaja and 
Chandrasekaran 2013; Maalej et al. 2013; Nerurkar et al. 2013; Niyonzima et al. 
2013; Roohi et al. 2013; Rodrigues et al. 2013; Roy and Mukherjee 2013; Saibabu 
et al. 2013; Sethi et al. 2013; Ghasemi et al. 2014; Mathur et al. 2014; Waleed et al. 
2015; Sinha and Nigam 2016; Sriariyanun et al. 2016; More et al. 2016; Hussain 
et al. 2017; Shwetha et al. 2017). Low pH values of 5.0 and 5.5 were seen for amy-
lase production by Chryseobacterium sp. (Hasan et  al. 2017) and phytase by 
Bacillus lehensis MLB2 (More et al. 2015), respectively. A high pH of 10.5 was 
recorded for industrial CGTase production by Bacillus halodurans (More et  al. 
2012) (Table 5.2). The difference in genomes may also be the reason why the bac-
teria producing industrial enzymes have different initial pH requirements.

The optimum pH observed for fungal industrial enzyme production ranges from 
acidic to basic pH range, viz. pH  5 to 9 (Choudhary 2012; Mini et  al. 2012; 
Niyonzima and More 2013b; Sivakumar et al. 2013; Thakur et al. 2014; Usha et al. 
2014; Lincoln et al. 2015; Prasanna et al. 2016; Sharma et al. 2016; Cavalcanti et al. 
2017; El-Refai et al. 2017; Sidhu et al. 2017; Lincoln and More 2018; Pachauri et al. 
2018). Niyonzima and More (2013a) produced an alkaline protease active at pH 10.0 
using Aspergillus terreus gr. Similarly, lower pH values of 4 and 4.5 were observed 
as optimum for the production of tannase, phytase, and pectinases by Aspergillus 
species (Dhital et al. 2013; Sandhya et al. 2015; Souza et al. 2015) (Table 5.2). The 
variation in industrial enzyme yields at different initial pH requirements may be due 
to the bacterial or fungal strain specificity. Any deviation from optimum initial pH 
resulted in low industrial enzyme secretion. This was attributed to the disruption of 
transport mechanisms through the bacterial or fungal membrane that prevents the 
industrial enzyme release (Padhiar et al. 2011).
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5.3.3  Effect of Incubation Temperature

The incubation temperature is a vital environmental parameter for industrial enzyme 
secretion by microorganisms. Like initial pH, it may influence the growth of bacte-
ria and fungi, and thus industrial enzyme production by these microbes. The opti-
mum incubation temperature seen for bacterial industrial enzyme production is in 
30–50 °C range. Temperature of 37 °C was noted as optimum in most cases (Beena 
et al. 2012; More et al. 2012, 2015; Pathak and Deshmukh 2012; Wang et al. 2012; 
Asha et al. 2013; Niyonzima et al. 2013; Saibabu et al. 2013; Ghasemi et al. 2014; 
Mathur et al. 2014; Waleed et al. 2015; Sinha and Nigam 2016; Hussain et al. 2017) 
(Table  5.2). Low optimum incubation temperatures of 20 and 28  °C were also 
observed for industrial amylase and lipase production, respectively, by Bacillus spe-
cies (Lailaja and Chandrasekaran 2013; Roohi et al. 2013).

For fungal species, the optimum incubation temperature ranged from 25 to 47 °C 
(Choudhary 2012; Mini et al. 2012; Dhital et al. 2013; Niyonzima and More 2013a, 
b; Sivakumar et al. 2013; Thakur et al. 2014; Usha et al. 2014; Lincoln et al. 2015; 
Sandhya et al. 2015; Souza et al. 2015; Prasanna et al. 2016; Sharma et al. 2016; 
Cavalcanti et al. 2017; El-Refai et al. 2017; Sidhu et al. 2017; Lincoln and More 
2018; Pachauri et al. 2018). However, 60 °C was the optimum fermentation tem-
perature for β-amylase production by Penicillium nigricans (Uday et  al. 2013). 
Similarly, Panosyan (2019) reported thermostable and active protease, amylase, and 
lipase from Thermoactinomyces isolated from hot springs. At elevated incubation 
temperature, the yield in industrial enzyme production is low due to the thermoli-
ability of the industrial enzymes or the denaturing of industrial enzyme structure in 
the active site.

5.3.4  Effect of Inoculum Level

The concentration of inoculum is one of the key culture parameters for microbial 
growth and thus industrial enzyme production. Various inoculum concentrations 
ranging from 0.6 to 4% are optimum for bacterial industrial enzyme production by 
microorganisms (Beena et al. 2012; Chakraborty et al. 2012; Pathak and Deshmukh 
2012; Sinha and Khare 2012; Wang et al. 2012; Lailaja and Chandrasekaran 2013; 
Nerurkar et al. 2013; Niyonzima et al. 2013; More et al. 2015; Hasan et al. 2017) 
(Table 5.2). However, Chauhan et al. (2013) reported a detergent lipase production 
by S. arlettae JPBW-1 when a higher inoculum size of 10% was used. Different 
inoculum levels were found to maximally produce the industrial enzymes by diverse 
fungi. For instance, the inoculum level of 2% was optimum for the tannase produc-
tion by M. circinelloides isolate F6–3-12 (El-Refai et al. 2017) and protease produc-
tion by A. terreus gr. (Niyonzima and More 2013a). Inoculum size of 3% was 
optimum for the secretion of a protease by Scopulariopsis sp. (Niyonzima and More 
2013b). Lincoln and More (2018) obtained an industrial invertase from A. sojae 
JU12 using a higher inoculum level of 9%. The effect of inoculum on industrial 
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enzyme secretion may thus depend on the type of microorganism, inoculum load, 
and bacterial or fungal size and type.

Generally, significant increase in industrial enzyme production by microorgan-
isms correlated with an enhancement in inoculum concentration till optimum inoc-
ulum size is reached (Niyonzima and More 2013a, b) owing to rapid substrate 
degradation (Sarao et al. 2010). Indeed, the enzyme production by microorganisms 
is often high at lower inoculum levels; however, low enzyme yield is observed after 
increasing inoculum size (de Souza et al. 2001). Hesseltine et al. (1972) proposed 
that the decrease observed when an important inoculum level is used can be attrib-
uted to the faster bacterial or fungal growth and thus shortage of the nutrients. 
Likewise, Hasan et al. (2017) observed a low yield at higher inoculum level owing 
to the lack of total dissolved oxygen and nutrient supply to the microorganisms.

5.3.5  Effect of Carbon Source

The carbon sources serve as a primary energy source for bacterial and fungal growth 
and therefore industrial enzyme production. Carbon sources such as starch (Roy 
et al. 2012; Wang et al. 2012; Rodrigues et al. 2013; Hasan et al. 2017; Shwetha 
et al. 2017), glucose (Sethi et al. 2013; Mathur et al. 2014; Hasan et al. 2017), solu-
ble pullulan (Asha et al. 2013; Waleed et al. 2015), malt extract (Sinha and Nigam 
2016), maltose (Chakraborty et al. 2012; More et al. 2016), pullulan (Asha et al. 
2013), sucrose (Hussain et al. 2017), and carboxymethylcellulose (Sriariyanun et al. 
2016) are used for the production of bacterial enzymes. Soybean oil (Chauhan et al. 
2013), olive oil (Nerurkar et al. 2013), and cotton seed oil (Niyonzima et al. 2013) 
are also used as carbon sources. In some cases, a mixture of carbon sources like corn 
flour and bean flour (Wang et al. 2012), glucose and skim milk (Beena et al. 2012), 
and glucose and sesame oil (Lailaja and Chandrasekaran 2013) are also used 
(Table 5.2).

For the production of fungal enzymes, starch (Sivakumar et al. 2013; Uday et al. 
2013), glucose (Thakur et al. 2014; Usha et al. 2014; Sandhya et al. 2015), maltose 
(Lincoln et al. 2015), sucrose (Sidhu et al. 2017), lactose (Prasanna et al. 2016), 
carboxymethylcellulose (Pachauri et al. 2018), pectin (Dhital et al. 2013), and tan-
nate (Cavalcanti et al. 2017) are employed as carbon sources. Various inexpensive 
substances such as wheat bran (Choudhary 2012), jamun leaves (Souza et al. 2015), 
green tea leaves (El-Refai et al. 2017), and orange peel moistened with molasses 
(Lincoln and More 2018) are preferred as carbon sources for industrial enzyme 
production by fungi. The industrial enzymes are generally produced by microorgan-
isms with low carbon source concentration. This makes the production cost effec-
tive. In some cases, a carbon source repression is observed when it is used in a 
significant amount. When an important amount of carbon source is utilized, enzyme 
secretion decreases owing to limitation of oxygen transfer resulting in poor bacte-
rial or fungal growth (Niyonzima et al. 2013).
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5.3.6  Effect of Nitrogen Sources

The nitrogen sources serve as a secondary energy source for the microbial growth 
and thus for industrial enzyme production. They play an important role in most of 
the microorganisms to synthetize the cell-wall components, amino acids, peptides, 
proteins (including industrial enzymes), and nucleotides/nucleic acids (Gupta et al. 
2002). For the production of bacterial enzymes, tryptone (Waleed et al. 2015), pep-
tone (Chakraborty et al. 2012; Asha et al. 2013; Sinha and Nigam 2016; Hasan et al. 
2017), yeast extract (Pathak and Deshmukh 2012; Maalej et al. 2013; Niyonzima 
et al. 2013; Mathur et al. 2014), and beef extract (Roy et al. 2012) are employed 
(Table  5.2). Sometimes, the optimum industrial enzyme production is observed 
when there is a combination of nitrogen sources, like peptone and yeast extract 
(More et al. 2012; Nerurkar et al. 2013; Rodrigues et al. 2013; Shwetha et al. 2017). 
The cheap organic nitrogen sources like corn flour and bean flour (Wang et al. 2012) 
and soybean meal (Lailaja and Chandrasekaran 2013) are also utilized to produce 
industrial enzymes by bacteria.

Like for bacteria, organic nitrogen sources such as peptone (Mini et al. 2012; 
Dhital et al. 2013; Usha et al. 2014; Pachauri et al. 2018), tryptone (Niyonzima and 
More 2013b), urea (Sivakumar et  al. 2013), yeast extract (Prasanna et  al. 2016; 
Cavalcanti et  al. 2017), beef extract (Lincoln and More 2018), and l-asparagine 
(Thakur et al. 2014) are used in fungal enzyme production. In general, the industrial 
enzymes are generally produced at their optimum levels when organic nitrogen 
sources are incorporated in the production medium. The preference of organic nitro-
gen sources by industrial enzyme-producing microorganisms can be ascribed to the 
presence of some micro- and macronutrients, vitamins, amino acids and/or pep-
tides, and growth factors present in them (Pathak and Deshmukh 2012; Sinha and 
Khare 2012; Niyonzima and More 2013b) (Table 5.2).

The feather meal serves as both carbon and nitrogen source for industrial kerati-
nase production by B. megaterium (Saibabu et al. 2013). The nitrogen sources stim-
ulate the industrial enzyme production up to a certain level beyond which metabolite 
repression is seen. Indeed, the complex organic nitrogen sources may show enzyme 
repression when employed in high amounts because they are rich in amino acids 
(such as glycine) and short peptides. A higher nitrogen source concentration is 
therefore, inhibitory to the enzyme secretion by bacteria or fungi.

Although the inorganic nitrogen sources are not generally found to increase the 
production of the industrial enzymes, there are exceptions as well. For instance, a 
significant industrial enzyme production was seen when ammonium acetate (Roohi 
et al. 2013), potassium nitrate (Niyonzima and More 2015a), and ammonium sulfate 
(Sethi et al. 2013; Ghasemi et al. 2014) were used for industrial production by bac-
teria. Similarly, ammonium nitrate (Sandhya et al. 2015), potassium nitrate (Souza 
et  al. 2015), sodium nitrate (Choudhary 2012; El-Refai et  al. 2017; Sidhu et  al. 
2017), and sodium nitrite (Uday et al. 2013) were inorganic nitrogen sources used 
to produce industrial enzymes by fungi.
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5.3.7  Effect of Agitation

The industrial enzyme-producing microorganisms are usually grown under shaking 
conditions. The production of bacterial enzymes is often done with shaking in the 
range of 100 to 200 rev/min (Table 5.2). For instance, 100 rpm was optimum for the 
production of industrial enzymes by Bacillus species (Niyonzima et  al. 2013; 
Niyonzima and More 2015c; More et al. 2016), while 200 rpm is also good for some 
bacterial species (Chakraborty et  al. 2012; Pathak and Deshmukh 2012; Maalej 
et al. 2013; Roy and Mukherjee 2013; Waleed et al. 2015). Similarly, the production 
of industrial enzymes by fungi is done at 120–200 rev/min range. For example, 
120  rpm (Mini et  al. 2012; Cavalcanti et  al. 2017), 150  rpm (Choudhary 2012; 
Dhital et al. 2013), 160 rpm (Sharma et al. 2016), 180 rpm (Usha et al. 2014), and 
200 rpm (Sandhya et al. 2015; El-Refai et al. 2017) were found as optimal shaking 
conditions for different fungal species. The agitation of the culture flasks at a mod-
erate rate allows a good availability of the nutrients to the microorganisms and a 
proper aeration, favoring the production of enzymes in an optimum amount.

5.4  Conclusion

In this chapter, an overview was given for the optimization of nutritional and physi-
cal parameters important for production of industrial enzymes. Since there is an 
increasing demand of industrial enzymes, the present information can help other 
researchers to optimize production of these metabolites cost effectively. Although 
various industrial enzymes have been produced under optimized conditions in the 
last decade, most of them are not marketed or reached optimal levels as yet. This 
was mainly attributed to the non-cost-effective production and lack of enzymes with 
desired properties. Hence, intensive research is required to obtain bacterial or fungal 
enzymes to meet the demand of the industries and market. Various enzyme based 
industries thus shouldwork together with researchers to strengthen this linkage.
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Abstract
Enzymes are widely used nowadays in industrial and household catalysis. 
Enzyme-catalysed conversions occur in minutes or even in seconds. Further, they 
catalyse reactions which are difficult to perform by chemical methods, like the 
enantio- or regioselective hydrolysis or addition of chiral groups. In industries, 
enzymes are steadily replacing chemical reactions since they are greener and 
eco-friendly. Enzymes produce fewer by-products, consume less energy, reduce 
environmental pollution and add improved value to the products. Consequently, 
it is not surprising to notice the blooming global enzyme market. Major factors 
driving the market growth of enzymes are cost efficiency, stringent enforcement 
of environmental regulations in many countries and growing interest among end 
users. Microbes are an inexhaustible source of enzymes which have numerous 
advantages with regard to their use in industrial applications, as compared to 
conventional methods using chemicals. They are good catalysts, increase the rate 
of reactions and work optimally under given environmental conditions and scal-
ing up of the production process is possible by genetic manipulation. Recombinant 
DNA technology and protein engineering open up the possibilities of obtaining 
novel products. Industries utilising microbial enzymes are food, pharmaceutical, 
detergent, leather, waste management and many others. This chapter discusses 
the commercial applications of various microbial enzymes and also highlights 
the sources and nature of industrial applications.
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6.1  Introduction

Enzymes are proteinaceous macromolecules (except ribozyme which is an RNase) 
produced by living organisms that are responsible for catalysing various biochemi-
cal reactions taking place inside the organism (Singh et al. 2016a, b, c, d). They are 
highly specific and accelerate the rate of reaction by lowering the activation energy 
of the reactants. They work well at atmospheric pressure and require milder condi-
tions for catalytic action, making them highly advantageous for industries. Enzymes 
have been classified by the IUBMB (International Union of Biochemistry and 
Molecular Biology) into six major classes depending on their mode of action, oxi-
doreductases, transferases, hydrolases, lyases, isomerases and ligases (Singh et al. 
2016a, b, c, d). Enzymes derived from microbial sources are currently the hub of all 
scientific research and applications in various fields, especially in the industrial sec-
tor. With the advent of the industrial revolution and technological bloom, processing 
and marketing of industrial products take much less time than was possible earlier 
using conventional methods; this is further leading to an increase in demand. This 
continuous cycle of supply and demand requires an efficient and continuous system 
to satisfy both ends, which are being realised through the use of microbial enzymes. 
Conventional methods using chemicals and other physical parameters are now 
being replaced by increased use of natural products or engineered ones from living 
organisms; this is owing to the drawbacks of the conventional chemical methods 
which are tackled by the advantages of the biological ones. Chemical methods have 
low catalytic efficiency and need harsh conditions for treatment (high temperatures, 
extreme pH, and high pressure) which are hazardous to the environment (Adrio and 
Demain 2014). Use of organic solvents leads to the production of wastes, further 
leading to pollution. These disadvantages and more are being countered by enzymes, 
especially microbe-derived biocatalysts.

Industrial enzymes are widely accepted in food and beverage applications, owing 
to their functional properties. They play an important role in determining the desired 
attributes (in the products) such as taste, texture, appearance, and flavour and are 
also used in the production of biofuels. The extensive requirement of carbohydrases 
in food processing, brewing, baking and biofuel manufacturing has been one of the 
key drivers of the industrial enzyme market. Proteases accounted for the largest 
share in the industrial enzyme market due to their wide range of applications in the 
food and beverage, detergent and biofuel industries. The production of industrial 
enzymes is a billion-dollar industry in the global market, where sales in the USA 
reached $5.1 billion in 2009 (Sarrouh et al. 2012). According to the report “Industrial 
Enzymes Market,” the global industrial enzyme market is projected to reach US 
$6.30 billion by 2022 in terms of value, at a CAGR of 5.8% from 2017.

Microbes have been utilised by humans since antiquity (Singh et al. 2016a, b, c, 
d). They are ubiquitous, are easily available and have a fast growth rate, hence ideal 
for industrial use. They also ensure a regular and abundant supply of the product of 
interest (Mienda et al. 2014), have the ability to be commercialised by ease of scal-
ing up of production and are non-toxic and non-pathogenic. Enzymes derived from 
microbes are highly desirable for industrial processes, as they have a broad 
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spectrum of chemical and physical conditions for optimal activity, higher and supe-
rior performance and ability to scale up production by gene manipulation (Singh 
et al. 2016a, b, c, d). Additionally, microbial enzymes have longer shelf life enabling 
long-term storage without significant loss of activity, and ease of downstream pro-
cessing due to the fact that many enzymes are extracellular in nature (Porta et al. 
2010). In this chapter, we discuss the commercial applications of major microbial 
enzymes like amylases, proteases, lipases and cellulases with a brief analysis on the 
industrial applications of other enzymes. And we also explore various microbial 
sources of enzymes and the nature of industrial applications.

6.2  Amylases

Amylases are a group of extracellular enzymes that hydrolyse the α-1,4- and α-1,6- 
glycosidic bonds present in starch and glycogen to give diverse products as dextrins 
and progressively smaller polymer composed of glucose units (Fig. 6.1). The first 
enzyme to be produced industrially was an amylase from a fungal source in 1894, 
which was used as a pharmaceutical aid for digestive disorders (Mojsov 2012). Based 
on the action specificity towards the α-glucan chains, amylases are classified into the 
following: (1) Endoamylases, which cleave α-1,4-glycosidic linkage between adjoin-
ing glucose units in the product chain retaining the anomeric carbon configuration in 
the product. α-Amylases belong to this class; they cleave α-1,4 bonds and result in 
α-anomeric products (Rana et al. 2013). α-Amylases play a central role in the hydro-
lysis of starch, both in nature and in the starch industry. They can hydrolyse the α-1,4 
linkages but cannot hydrolyse the α-1,6 linkages. (2) Exoamylases, which act at the 
non-reducing ends of polysaccharides and produce low-molecular-weight products. 
They cleave α-1,4 or α-1,6 bonds of the external glucose residues resulting in α- or 
β-anomeric products (β- and γ-amylases) (Sivaramakrishnan et al. 2006). β-Amylases 
hydrolyse the α-1,4 linkage next to the non-reducing end of α-glucan, which succes-
sively yields maltose in a β-configuration. γ-Amylases, also called as glucoamylase or 
amyloglucosidase, catalyse the hydrolysis of successive α-1,4 linkages in the 
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non-reducing ends of glucans, thereby producing β-d-glucose as the hydrolysis prod-
uct. It also hydrolyses the α-1,6 linkage, although at a rate lower than that of the α-1,4 
linkage hydrolysis (Taniguchi and Honnada 2009).

The amylase has a three-dimensional structure capable of binding to substrate 
and by the action of highly specific catalytic groups promotes the breakage of the 
glycoside links (Fig. 6.2). Its 3D structure is composed of three domains called A, 
B and C. Domain A has eight identical pairs of β-sheet and α-helix. Domain B is 
composed of three β-sheets and is inserted between the domains A and C. Domain 
C has eight antiparallel β-sheets and an independent domain with unknown func-
tion. The catalytic site of the enzyme is located at the catalytic cleft formed between 
the carboxyl domains A and B (de Souza and Magalhaes 2010). This cleft has a size 
that can accommodate just seven glucose units of α-glucans. About 20 amino acid 
residues are aligned on the surface of this catalytic cleft. Two catalytic amino acid 
residues, Asp and Glu in the fourth and fifth β-sheets, respectively, are located near 
the third glycosidic linkage of the substrate (Taniguchi and Honnada 2009).

Amylases are present in plant, animal and microbial cells. Microorganisms are 
commonly used in the large-scale production of amylases. Commercially exploited 
amylases are obtained from both bacteria and fungi. Bacillus licheniformis, Bacillus 
stearothermophilus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus poly-
myxa, Bacillus megaterium, Chromobacter sp., Haloarcula hispanica, Halomonas 
meridiana, Rhodothermus marinus, Corynebacterium gigantea, Geobacillus ther-
moleovorans, Lactobacillus fermentum, Lactobacillus manihotivorans and 
Pseudomonas stutzeri (de Souza and Magalhaes 2010; Gopinath et al. 2017) are the 
common bacterial sources of amylases. The common fungal sources are Aspergillus 
oryzae, Aspergillus niger, Aspergillus awamori, Aspergillus kawachii, Aspergillus 
flavus, Penicillium brunneum, Penicillium expansum, Penicillium chrysogenum, 
Penicillium roqueforti, Penicillium janthinellum, Penicillium camemberti, 
Penicillium olsonii, Streptomyces rimosus, Thermomyces lanuginosus, Cryptococcus 
flavus and Mucor sp. (Gopinath et al. 2017).

Fig. 6.2 Structure of amylase with three distinct domains A, B and C
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6.2.1  Commercial Applications of Amylases

6.2.1.1  Detergent Industry
Earlier detergents used to contain surfactants which were active at high tempera-
tures and considerable amounts of energy are used to heat laundry water, particu-
larly in cold countries. Apart from that when they were released into the environment, 
they caused toxic effects in the ecosystem. Moreover, at present consumers are pre-
ferring to use cold water and mild conditions for washing their clothes, which 
requires the detergent to work in those conditions. Enzymes can be used as alterna-
tives in this regard. They have the capability to degrade the stains at low washing 
temperatures and hence are used as supplements in detergents (Jegannathan and 
Nielson 2012). Amylases are also used in the formulation of detergents, and 90% of 
all liquid detergents contain these enzymes to remove tough stains (Gopinath et al. 
2017). α-Amylase is used in detergents and in automatic dishwashing, to digest the 
starch-containing food particles such as potatoes, gravies, custard and chocolate, 
etc. (Mojsov 2012). At lower temperatures removal of starch from porcelain 
becomes more problematic because starch can attract other dirt particles and hence 
detergents with amylases which optimally work at lower temperatures and alkaline 
pH can help to overcome this problem (Rana et al. 2013). Under the action of amy-
lases starch is degraded into smaller food particles or into water-soluble oligosac-
charides or dextrins by catalysing the hydrolysis of glycosidic linkages in stains and 
eliminating the starchy glue that combines with other stains and dirt. The hydrolys-
ing activity of these enzymes also restricts binding of swollen starch to other stains 
and dirt (Singh et al. 2016a, b, c, d).

The presence of Ca2+ up to a certain level is required for the good activity of the 
amylases becuase these  ions act as stabilisers and protect against denaturation. 
Optimal activity lies in the range of 40–60 °C and pH of 5–8. The oxidative stability 
of amylases is one of the most important criteria for their use in detergents where 
the washing environment is very oxidising (Gopinath et al. 2017). Washing environ-
ment plays a vital role in the action of amylases. At low temperatures of washing, 
the effect of amylases is very high. Amylases are being used for the improvement of 
laundry bleach composition and bleaching without the colour. Enzyme addition sta-
bilises the bleach agent and preserves the effectiveness of the bleach in laundry 
detergent bar composition (Saini et al. 2017).

6.2.1.2  Food Industry
Dextrin with a DP 3-25 is commercially produced and used as a food ingredient in 
various applications, such as to improve the viscosity or to be a filler or an ingredient 
of food. To produce glucose or oligosaccharides, raw starch is gelatinised to create a 
paste to which amylases are added to hydrolyse starch into low-molecular- weight 
dextrins (Taniguchi and Honnada 2009). Amylases from the bacterial sources are 
added to the starch slurry, and the mixture is heated quickly around 100 °C for a suit-
able period to obtain dextrins. In bread baking, amylases are added to dough that 
results in enhancing of the rate of fermentation, in the reduction of viscosity and in 
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the degradation of the starch in the flour into smaller dextrins, which are utilised by 
yeast during fermentation (Rana et al. 2013). Increase in fermentable sugars eventu-
ally causes increase in loan volume. Another added role of amylases is to produce 
surplus amounts of maltose in the dough, some of which lasts after baking and pre-
vents baked bread from becoming stale by interfering with the starch molecules on 
the shelf (Taniguchi and Honnada 2009). It also improves the taste, crust colour and 
toasting qualities of the bread (de Souza and Magalhaes 2010).

In beer and juice clarification, amylases are used together with pectinases (de 
Souza and Magalhaes 2010). The most widespread application of amylases in the 
starch industry is the hydrolysis in the starch liquefaction process which converts 
starch into fructose and glucose syrups. Cocoa slurries are treated with amylases to 
produce a product which does not tend to layer in storage, eliminates appreciable 
stiffening or setback and gives rise to a product with an improved flavour and solu-
bility in milk, which is known as chocolate syrup, in which chocolate starch is 
dextrinised and syrup does not become thick. The stabilised syrups which are cocoa 
flavoured are added at room temperature to conventional non-acid confection mixes 
for use in the production of quiescently frozen chocolate-flavoured confections 
(Saini et al. 2017). Jellies made from apple, quince and crab are hazy in appearance 
because of the high starch content. Treating the jelly with amylase for 1  h at 
80–95 °F and filtering produce a clear paste suitable for making a sparkling jelly.

Maltose is often known as a sweetener to improve the taste and quality of the 
food. Part of maltose is even used in the medical field. For the production of malt-
ose, liquefied starch is treated with amylases to yield maltose (Taniguchi and 
Honnada 2009). High-fructose-containing syrup is prepared by enzyme isomerisa-
tion. Amylases are used extensively in the preparation of dried baby foods and 
cereal products. The cereal to be treated is heated to a very high temperature and 
fungal amylases are added to digest the starch. Milk contains no starch and low 
levels of oligosaccharides and contains unusual monosaccharides with glycosidic 
linkages. Therefore, it seems that amylases are used in the hydrolysis of oligosac-
charides in milk. Amylases also aid in the production of cakes (Mojsov 2012). 
Amylases are also used in the pretreatment of animal feed to improve the digest-
ibility of the fibre (Saini et al. 2017).

6.2.1.3  Paper and Pulp Industry
Amylases are used in this industry for the modification of starches for coated paper 
that is for the production of low-viscosity, high-molecular-weight starch. The coating 
treatment improves the quality of the finished product (smoothness) and enhances 
stiffness, elasticity and writing quality of the paper (Mojsov 2012; de Souza and 
Magalhaes 2010). The viscosity of the natural starch is very high for the sizing of 
paper, which is altered by partially degrading the polymer with amylases in a batch 
or continuous process. Starch is added to the paper in the size press and paper picks 
up the starch by passing through the rollers which are used for transferring of the 
slurry. The temperature lies around 45–60 °C. A constant viscosity of the starch is 
needed for good results at this stage. The mill also has the flexibility of varying the 
viscosity of the starch for various paper grades (Gupta et al. 2003). The size enhances 
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the strength in the paper (Rana et al. 2013). Amylases are used in this industry to 
protect it from mechanical strain during processing (de Souza and Magalhaes 2010). 
Cold-active amylases are used mostly as they reduce the viscosity of the paper.

Paste of starch when used as a mounting adhesive and modified with additives 
such as protein glue or alum, frequently, causes damage to the paper as a result of 
its embrittlement. In such cases starch-digesting enzymes such as α-amylases, in 
immersion or as gel poultice, are applied to facilitate its removal (Saini et al. 2017). 
Amylases are often used for deinking depending on the type of paper and ink, and 
drainage improvement (Singh et al. 2016a, b, c, d). Treatment of multi-print fur-
nishes with cellulases and amylases at pH  7–7.5 improved the brightness of the 
pulp. The ink particles released on treating with amylases appeared to be more 
hydrophobic than ink particles released on treating with cellulases. Using more spe-
cific amylases during the procedure of mill trail, the brightness of the paper was 
significantly improved. The ash content was also greatly reduced after flotation and 
washing, resulting in a change of the final pulp characteristics (Bajpai 2010).

Introduction of amylases during the process of deinking also increased the rough-
ness of the paper. The fibre surface was attacked by amylase for the release of parti-
cles of ink from the surface due to starch solubilisation. Mostly α-amylases catalyse 
the hydrolysis of internal α-1,4-glycosidic links in starch in a random manner. The 
atomic force micrograph of fibres treated with amylases confirmed the roughness of 
the paper with more irregularities (Dutt et al. 2012). Amylases along with mixtures 
of cellulases and xylanase are used for degrading the starch layer on the paper sur-
face. The toner particles adhering to the surface of the paper were released by enzy-
matic treatment and subjected to subsequent separation. This concoction is often 
used for hydrolysing vegetable oil-based ink binders (Dutt et al. 2012).

6.2.1.4  Textile Industry
Amylases are used in the textile industry for desizing process. Starch, which is a 
sizing agent, is applied to yarn before fabric production to ensure a fast and secure 
weaving process because without starch cloth tends to break the threads making up 
wraps. In this industry, starch, which is cheap and available in almost all regions in 
the world and can be removed quite easily, is applied for textile wrapping which 
gives strength to textile at weaving (Pandi et al. 2016). These enzymes are mainly 
preferred because of the activity under high temperature and pH, thereby increasing 
the use under the harsh conditions of textile wet processing. After weaving the 
starch is removed usually by utilising amylase. This process is called as desizing. 
Amylases are employed to cleave starch particles randomly into water-soluble com-
ponents and can be removed by washing (Sundarram and Murthy 2014). The cloth 
is first saturated with enzyme solution in a desizing bath at approximately 50 °C and 
held until all the size has been solubilised. The enzymatic desizing of cotton is being 
done for many decades. Bio-desizing is mostly appreciated because of its high effi-
ciency and specific action. Not only cotton but also ubiquitous jeans are desized 
after mashing (Saini et al. 2017). Amylases bring about complete removal of the 
size without any harmful effects on the fabric besides eco-friendly behaviour. The 
amylases do a selective work, remove particularly the size and do not attack the 
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fibres (Mojsov 2012). Amylases from Bacillus sp. have been employed in this 
industry since long (Rana et al. 2013).

6.2.1.5  Leather Industry
Amylases are primarily used in the extraction of collagen from animal skin. 
α-Amylases are used to open up the skins in leather processing. Liming and relim-
ing achieve the objective of splitting up of the fibre bundles and enabling them for 
tanning agents, dyes, fat liquors and other materials to diffuse into the matrix. So, 
fibre-opening enzymes especially α-amylases are used as a pivotal tool in replacing 
the hazardous chemicals involved in this process (Pandi et  al. 2016; Aravindhan 
et al. 2017). Dehairing is another stage where amylases are used. Use of amylases 
along with proteases increases the efficiency of the procedure and also increases the 
outputs of the leather (Choudhary et al. 2004; Kyaw et al. 2010).

6.2.1.6  Biofuel
Amylases are one of the most used groups of enzymes for the production of biofuels. 
Enzymes from bacterial and fungal sources are being used for decades at commercial 
level, using both conventional (dry grinding and wet milling) and non-conventional 
(starch hydrolysis or granular starch hydrolysis) processes. For ethanol production, 
the commonly used substrate is starch due to its availability all around the world. 
This procedure involves two main steps in order to obtain fermentable sugars. The 
bioconversion of starch into ethanol involves liquefaction and saccharification, where 
starch is converted into sugar using amylases which is followed by fermentation, 
where the conversion of sugar takes place. The conversion of sugar to ethanol is done 
by specific yeast, like Saccharomyces cerevisiae (Mojsov 2012).

The industrial procedure involves cooking of starch granules at high tempera-
tures in order to solubilise the starch molecules, followed by adding of starch- 
degrading enzymes such as amylases. The high-temperature cooking contributes to 
the consumption of energy of the fermentation process, thus reducing the total 
energy in the industrial plant. Thus, a yeast strain, usually S. cerevisiae, which is 
genetically engineered and is capable of expressing a hydrolysing enzyme usually 
α-amylase, would greatly reduce the processing cost of the production of bioetha-
nol. This whole procedure is referred to as the cold starch hydrolysis process. 
Genetically engineered barley α-amylase expressed in S. cerevisiae is used in the 
conversion of starch to bioethanol which lowers the cost of production at a large 
scale (Taniguchi and Honnada 2009). When it comes to the fungal sources, A. ory-
zae is mostly used with rice flake’s waste as a substrate.

6.2.1.7  Petroleum Industry
The main function of amylases in petroleum refining is to remove the filter cakes that 
are formed on the petroleum wells. Starch is a major component of the filter cake and 
hence its removal is an important step concerning the production and injection in 
wells. Amylases are employed in recent days because these enzymes are capable of 
hydrolysing the starch molecules into dextrins or smaller oligosaccharides. This 
results in a rapid decrease in the viscosity of the gelatinised starch. Thus, these 

A. Ramesh et al.



145

enzymes have a great potential in filter cake removal applications. The problem is the 
interference in enzymatic activity due to the operating conditions of the petroleum 
industry like high temperatures, high-salt condition and high pressures. Genetic 
modifications were done to produce heat-stable enzymes from Bacillus sp. which 
could work at increased concentrations of salt and pressure (Kyaw et al. 2010).

6.2.1.8  Other Applications
The use of amylases is increasing day by day in all the industries. It is being used in 
the pharmaceutical industry as a digestive aid. Pure amylases are being required in 
clinical sectors. Amylases are being used in the cosmetic industry for haircare 
(shampoos, oils and styling) and toiletries (bathing soaps and liquids) and oral care. 
Amylases are generally used to treat starch-processing waste water. This waste is 
mainly produced from the food processing industries. In those areas before releas-
ing the effluent, the water is treated with amylases to remove the starch. This kind 
of treatment produces very useful products like microbial biomass protein and also 
purifies the effluent (Mojsov 2012).

To conclude, pollution-free processes are gaining importance all over the world. 
Enzymes are being employed in all the industries to make it eco-friendly. The use of 
α-amylase has been prevalent in industries for many decades. Though there are three 
classes of amylases, α-amylase is used more extensively in industries. They can be 
obtained from plants, animals and microbes. However, enzymes from fungal and 
bacterial sources are gaining importance because the conditions required for the fer-
mentation are very conducive and the production rate is very high. Other reasons for 
this are that the production and downstream processing cost is low and the yield rate 
is very high. Production is generally carried out using submerged fermentation, but 
solid-state fermentation is gaining importance and will have a very promising future 
especially in applying agro-industrial residues as substrate. In recent days, it is cap-
turing importance and researchers are trying new experiments to increase their use in 
the industrial sector. The properties of amylases such as stability, pH profile and Ca2+ 
ion independency encourage their increasing use in industries. Amylases are mainly 
used in industries for the preparation of fermented foods. Apart from the food indus-
try their applications are spreading widely into other industries such as paper and 
pulp, textile and leather. It is used in biofuel production with starchy waste as raw 
material. The commercial applications of amylases are summarised in Table 6.1.

6.3  Proteases

Proteases, term used interchangeably with proteinases or peptidases, are a large 
class of enzymes catalysing the hydrolysis of peptide bonds linking two adjacent 
amino acid residues in a protein. They might be specific to a single protein 
(angiotensin- converting enzyme) or non-specific, acting against a wide spectrum of 
proteinaceous compounds (proteinase K) (Lopez-Otín and Bond 2008). Specificity 
subsites, each of which attaches to a side chain of a single amino acid residue of the 
substrate, flank one or both sides of the catalytic site of proteases. In serine proteases, 
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the catalytic triad Asp-Ser-His carries out catalysis (Salleh et al. 2006). Proteases are 
broadly classified into endopeptidases and exopeptidases based on the cleavage site, 
where the former cleaves proteins at sites away from the either terminal to produce 
mono-, di-, tri- or polypeptides, whereas exopeptidases cleave proteins from the N- 
or the C-terminal. Proteolytic enzymes are also categorised into six types based on 
the type of amino acid residue present at their active site; they are serine, cysteine, 
threonine, aspartic, glutamic and metalloproteases (Mótyán et al. 2013) (Fig. 6.3). A 
seventh protease was added in 2011, asparagine peptide lyase, where cleavage occurs 
not through hydrolysis but via amidine lyases (Rawlings et al. 2011).

Proteolytic enzymes are obtained from plant, animal and microbial sources. 
However, for most industrial applications microbial sources are widely used as 
they prove to be more advantageous. This is due to their wide range of physical 
and chemical characteristics, large-scale production and lower cost of production 
and possibility of genetic manipulation. Moreover, plants and animals as sources 
are influenced by factors such as availability of agricultural land, certain climatic 
conditions and livestock for slaughter, which are difficult to control (Sawant and 
Nagendran 2014). Acidic proteases are more commonly found in fungi like 

Table 6.1 Industrial applications of amylases

Industry Applications
Food industry Production of dextrins, high-fructose corn syrup and maltose which can 

be used as an artificial sweetener
Hydrolysis of starch causing turbidity due to insolubility in fruit juices
Production of bread with sufficient loaf volume and softness
Production of candy with desired softness
Hydrolysis of oligosaccharides in milk
For the digestion of few fibres and increase in nutritional value of the 
feed
For the manufacture of chocolate syrup by using cocoa slurries
For the manufacture baby foods especially cereal-based foods

Detergent industry Additive to remove starch-based dirt
Increase oxidative stability upon the use of these enzymes which make 
the washing environment very oxidising

Pharmaceutical 
industry

Digestive aid

Cosmetic industry In shampoos, oils and oil care
Paper industry Reduction of viscosity of starch for appropriate coating of paper, 

deinking
Textile industry Wrap sizing of textile fibres, used in removal of sizing agent from woven 

fabric
Petroleum industry Remove the filter cakes on petroleum wells
Fuel industry Ethanol from starchy waste materials
Leather industry Splitting up of the fibre bundles and enabling it for tanning agents
Medicine field Diagnosis of peptic ulcers and other diseases
Clinical chemistry Detection of higher order oligosaccharides
Wastewater 
treatment

Treatment of starchy water released from food industries
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Mucor miehei, Mucor pusillus and Mucor hiemalis for rennet-like proteases and 
Aspergillus sp. and Rhizopus sp. for pepsin-like proteases. Neutral proteases are 
present in both bacteria and fungi. Clostridium histolyticum, Streptococcus sp., 
B. subtilis, Bacillus cereus, B. megaterium and B. stearothermophilus are some 
of the bacterial sources, whereas A. oryzae, Aspergillus sojae and Penicillium sp. 
are the fungal sources (Sumantha et al. 2006). Alkaline proteases are well studied 
due to their immense use in the detergent industries and are obtained from fungal 
sources like Aspergillus candidus, Aspergillus fumigatus, A. flavus and 
Cephalosporium sp. and bacterial sources like Bacillus alcalophilus, Bacillus 
proteolyticus, B. subtilis, Pseudomonas sp. and Streptomyces sp. (Singh et  al. 
2016a, b, c, d).

6.3.1  Commercial Applications of Proteases

6.3.1.1  Detergent Industry
Proteases are used for the breakdown and removal of organic stains (human sweat, 
egg, blood, etc.) and in dishwasher detergents for removing protein-containing food 
particles (Singh et al. 2016a, b, c, d). Out of the total protease sales worldwide, 89% 
is contributed by detergent enzymes with Bacillus sp. contributing a major share 
producing subtilisins and alkaline proteases (Jisha et al. 2013). Enzymes stable to 
work in alkaline conditions and high temperatures are utilised because of the harsh 
nature of detergent formulations. Hence, alkalophilic Bacillus sp. producing alka-
line proteases is the most used in the detergent industry. In fact, Bacillus strains are 
the sole source of all proteases which are currently in the market, although fungal 
alkaline proteases have also proven advantageous due to simplified downstream 
processing (Salleh et al. 2006). The first microbial protease to be added in deter-
gents was subtilisin Carlsberg from B. licheniformis. From then on, enzymes in 
detergent formulations have been increasingly preferred. This is because they are 

Fig. 6.3 Structure of protease
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environmentally more compatible than other non-biological components. For 
instance, using lower temperatures for washing process and avoiding phosphates as 
a detergent component reduce environmental contamination. It was shown that 
when proteases were added to detergents, it increased the detergent’s overall effec-
tiveness, also enabling lower washing temperatures and environment-friendly com-
ponents (Salleh et al. 2006).

Ideally, for maximum effectiveness, minimal use of enzymes is desired (around 
0.4–0.8%). Additionally, extended shelf life and compatibility with other compo-
nents in the detergent mixture are also desirable. These qualities were found in pro-
teases acquired from Vibrio fluvialis and Nocardiopsis sp. Two commercial mixtures 
Savinase T and Esperase, produced from alkalophilic Bacillus sp., had their pI at 
11.1 enabling them to be stable at higher pH ranges (Salleh et al. 2006). Continuous 
modification and development of the detergent formulation are necessary to maintain 
effectiveness and efficiency. This could be seen when the flourishing usage of 
enzymes in detergents developed a hitch in the 1970s, due to some workers in deter-
gent factories developing allergies against certain enzyme preparations. The deter-
gent preparation was then modified to make it dust free by encapsulating the protease 
in an inner core (containing inorganic salts and sugars as preservatives) and coating 
this core with inert waxy materials which could disperse during the washing step. 
This prevented dust formation and enabled the protection of the enzyme from degra-
dation by other components used in the detergent preparation (Kumar et al. 2008).

6.3.1.2  Leather Industry
Microbial proteases find uses in the leather industry in processes like soaking, dehair-
ing and tanning. Earlier, hazardous chemicals were used in these processes which 
gave rise to major environmental concerns regarding effluent disposal and pollution. 
For instance, chemicals used for dehairing, although a more cheap and fast method, 
produced increased amounts of hydrogen sulphide constituting a health hazard for 
the workers, while also being environmentally unfriendly. Hence a shift to the use of 
enzymes was highly desired (Salleh et  al. 2006). Proteases are mainly used for 
removal of non-fibrillar proteins (albumins, globulins) from the skin and hides of 
animals and for the selective hydrolysis of the non-collagenous constituents of the 
same. Alkaline proteases possess elastolytic and keratinolytic properties, enabling 
their use in dehairing as they react with hair follicle proteins allowing easy hair 
removal; the alkaline environment produced as a result swells up the hair roots, 
speeding up the dehairing process, thus proving to be a cheap alternative (Mojsov 
2012). Another advantage is the reduction of soaking time, since alkaline proteases 
soak up water at an increased rate. Waste disposal can also be reduced by using a 
mixture of proteases with lime and sodium chloride during dehairing and dewooling 
(Gopinath et al. 2017).

Major protease that has shown maximum usage in this industry is alkaline prote-
ase extracted from alkalophilic Bacillus sp. Improved results have been obtained 
upon its usage: for instance, destruction of unwanted leather pigment, increase in 
leather surface and removal of fine hair, so that the bating time can be highly reduced 
or will not be required at all. Physiological conditions used for the same were 
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temperature range of 20–30 °C, pH of 12–12.5 and production time of 18–24 h. 
Additionally, sources like A. flavus, Streptomyces sp., B. amyloliquefaciens and B. 
subtilis are also used for alkaline proteases used in leather tanning. Aquaderm, NUE 
and Pyrase are three commercial proteases manufactured by Novo Nordisk for 
applications in soaking, dehairing and bating, respectively (Salleh et al. 2006).

6.3.1.3  Dairy Industry
Cheese manufacturing uses microbial proteases extensively, where specific peptide 
bonds are hydrolysed to yield casein and macro peptides, the building blocks of 
cheese (Gopinath et al. 2017). Casein is present in conjunction with calcium phos-
phate in the form of casein micelles with casein on the surface (Ismail and Nielsen 
2010). The enzyme rennet (chymosin) hydrolyses this casein and induces aggrega-
tion of casein micelles which helps in coagulation of milk that is the first stage in the 
cheese production process. Some microbial sources which produce rennet-like pro-
teases are A. oryzae, Rhizomucor pusillus, Rhizopus miehei, Endothia parasitica and 
Irpex lactis (Afroz et al. 2015). Casein micelles can be further degraded by other 
enzymes. For example, plasmin (when converted to its active form from its inactive 
plasminogen form) degrades casein. This plasmin-induced proteolysis can prove to 
be either beneficial or detrimental depending on the extent of hydrolysis and the type 
of product on which it occurred. For instance, proteolysis can induce the formation 
of the required texture during the ripening process and also produce flavour in chee-
semaking, and on the other hand it causes undesirable gelation in processed milk 
(pasteurised and ultra-high temperature). This proteolysis is caused by both native 
enzymes and enzymes produced by psychrotrophic microbes during cold storage of 
milk (refrigeration). Microbes like Pseudomonas fluorescens and B. polymyxa have 
been shown to produce heat-stable metalloproteases which can destabilise casein 
micelles by hydrolysing casein, leading to reduced quality of milk and cheese if 
stored at low temperatures for long time periods (Ismail and Nielsen 2010).

Lactic acid bacteria are also widely used for the production of curd as a starter 
culture. These bacteria need a high nutritional diet for optimal yield, so as to meet 
the requirements for the same, they contain a complex system of proteases and pep-
tidases to supply the essential amino acids while also allowing rapid growth in pro-
teinaceous food like milk (Mathias et al. 2017). Proteases from lactic acid bacteria 
that belong to the genera Lactobacillus, Streptococcus and Lactococcus also aid in 
degradation of major allergens in milk, like the whey proteins α-lactalbumin and 
β-lactoglobulin (Atanasova et al. 2014).

6.3.1.4  Food Industry
Proteases from microbial sources find numerous applications in the food and feed 
industries. Their protein-degrading ability results in imparting advantageous properties 
like increasing its nutritional value, solubility and digestibility, while also decreasing 
factors causing adverse side effects like presence of allergenic compounds. Modification 
of some of the properties of food such as coagulation, foaming and gel formation can 
also be done using microbial proteases. Bakery and beverage industries find the most 
extensive use of proteases, as well as other fields (Singh et al. 2016a, b, c, d).
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Bakery items such as bread and cookies get many of their desirable properties 
such as their characteristic flavour and texture from the action of proteases. They 
additionally ensure dough homogeneity, maintain gluten strength in breads and 
reduce dough consistency (Singh et al. 2016a, b, c, d). Fungal acid proteases from 
A. oryzae are used to soften the bread, making it easier to pull and knead by modify-
ing its gluten content which is made to undergo partial hydrolysis; the quality of 
bread and dough rheology also improves as the gluten network is affected, resulting 
in greater mobility, extensibility and crispiness (Salleh et  al. 2006; Miguel et  al. 
2013). Effect of proteases on gluten is also exploited in making pastries, biscuits 
and cookies, where gluten elasticity, as well as shrinkage of dough or paste after 
sheeting or moulding, is reduced. Hydrolysis of gluten proteins improves the spread 
ratio of the cookies (Miguel et al. 2013).

Due to their gluten-modifying action, addition of proteases in the baking process 
also helps reduce gluten-related disorders, which is the intolerance or sensitivity to 
gluten-containing food products (Heredia-Sandoval et  al. 2016). Such disorders 
produce several gastrointestinal symptoms like diarrhoea, constipation, vomiting 
and bloating. Administration of proteases helps to reduce immunogenicity due to 
the gluten content while maintaining its baking properties. Certain selected 
Lactobacillus sp. in conjunction with fungal and/or malt proteases were recently 
shown to reduce the residual gluten sequences when fermentation time was 
increased. Gluten contains 10–15% proline residues which are targeted by these 
microbial enzymes; they act by cleaving the peptide bonds next to these proline resi-
dues. The resulting small peptides have lower immunogenicity. Fungal proteases 
from A. niger have shown to effectively degrade immunogenic gluten in vitro while 
also being resistant to stomach acids.

In breweries, a zinc metallo-endoprotease from B. amyloliquefaciens, mar-
keted as Neutrase, has been used for extracting proteins from barley and malt, 
improving yeast growth and obtaining appropriate concentrations of nitrogenous 
nutrients (Sumantha et al. 2006). Lactic acid produced by some lactic acid bacte-
ria, mainly from the genus Lactobacillus like L. delbrueckii sp. delbrueckii, L. 
delbrueckii sp. lactis and L. fermentum, induces natural acidification of malt and 
helps in adjusting the pH of the mash (Mathias et  al. 2017). Addition of bio-
acidified malt with base malt is also in keeping with the Beer Purity Laws in some 
countries. Microbial protease also are useful in reducing the waste from brewer-
ies; these are of four types: the brewer’s spent grain (from grain processing), hot 
trub (coagulated protein during boiling of wort), residual brewer’s yeast (from the 
starter culture) and diatomaceous earth (resulting from the clarification stage of 
beer production).

L-Glutaminase is used as a flavour enhancer, producing the taste of umami espe-
cially in oriental-style dishes. Proteases are also used in the tenderisation of meat by 
cleavage of collagen fibres and also in meat recovery. The production of soy sauce and 
other soy products also use microbial proteases (Singh et  al. 2016a, b, c, d). For 
instance, Kojizyme, a complex of endopeptidases and exopeptidases from A. oryzae, 
is used in soy sauce fermentation. The degradation of the turbid complex contributed 
by fruit juice proteins and alcohol-based liquor is done by aspergillopepsin I, an acid 
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protease from Aspergillus saitoi; it is additionally used to produce seasoning powders 
from proteinaceous food materials (Sumantha et al. 2006). The hydrolysing property 
of proteases is exploited in processes such as hydrolysis of soy protein, casein and 
whey protein, gelatin and fish protein. Ultra-sonication in conjunction with the addi-
tion of proteases has been found to be useful in the extraction of rice starch.

6.3.1.5  Pharmaceutical Industry
Proteases and regulation of proteolysis of numerous molecules in the body contrib-
ute in maintaining normal physiological conditions and functioning. For instance, 
the concentration and production of growth factors, cytokines, cellular receptors 
and chemokines are regulated by both activation and inactivation of certain prote-
ases (Craik et al. 2011). Improper regulation of the same may lead to adverse effects 
in the body manifesting as diseases like cancer, various inflammatory disorders and 
others. Proteases additionally provide numerous advantages for their use in thera-
peutics. Their specificity and high catalytic activity translate to lower and less fre-
quency of doses, higher efficacy and lower costs (Li et al. 2013). Higher specificity 
means lower number of substrates, which can be redesigned to further narrow down 
the range, thus eliminating the possibility of unwanted activation of non-specific 
molecules. Hence, proteases present profound potential in the field of therapeutics 
for the treatment of such diseases. Generally therapeutic proteases available in the 
market nowadays are serine proteases, with the exception of the zinc protease and 
bacterial botulinum toxins (Craik et al. 2011).

Primary application of proteases in medicine lies in the degradation of blood 
clots. Plasminogen activators (PA) convert inactive plasminogen to active plasmin, 
which then degrades the blood clots. This occurs by lysis of fibrin, which constitutes 
the fibrin meshwork making up the clot. Such clots may produce blockage in the 
vascular system and other such vessels leading to complications like constricted or 
reduced blood flow and inflammation. Many proteases target fibrin which helps in 
dissolving such harmful clots. Serrapeptase (or serratiopeptidase) obtained from 
Serratia marcescens and Serratia sp. E 15 commercially is one such enzyme which 
digests blood clots, arterial plaques and other such dead protein debris (Chanalia 
et al. 2011). It acts as an anti-inflammatory agent by helping to drain the fluid from 
an inflamed area and inhibiting the release of pain-inducing amines. Hence it targets 
many inflammatory disorders like rheumatoid arthritis and osteoarthritis. 
Serrapeptase also breaks down mucus deposits in the respiratory tract associated 
with inflammation and swelling in the area, therefore also becoming a treatment 
option for diseases like sinusitis and bronchitis.

In addition to microbes being used to produce the actual therapeutic enzyme, they 
have also been used as an expression system to produce an increased amount or a 
modified form of a therapeutic protease. Gram-negative bacteria like Escherichia coli 
and Gram-positive bacteria like Clostridium botulinum are being currently used for 
the industrial production of therapeutic enzymes (Craik et al. 2011). For instance, a 
type of PA, tissue-type plasminogen activator (t-PA), was engineered to bind specifi-
cally to fibrin molecules in the meshwork of blood clot and degrade it. The first t-PA 
molecule, marketed as Alteplase, was approved by the FDA for treatment of acute 
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myocardial infarction, stroke and catheter clearing. Variants of t-PA, reteplase and 
tenecteplase, were produced using E. coli as the host which resulted in the molecule 
lacking glycosylation. Such engineered proteases showed increased half-life in plasma 
as well as reduced time and expense of administration. Reteplase has been proved to 
be effective in clinical trials and tenecteplase has been approved by the FDA.

L-Asparaginase from E. coli and Erwinia chrysanthemi and L-glutaminase from 
various bacteria, yeast and fungi have been obtained for use as an anticancer agent 
(Chanalia et  al. 2011). Tumour cells are unable to synthesise L-asparagine and 
depend on extracellular asparagine for their growth and proliferation; the use of 
L-asparaginase cuts off their main supply of extracellular asparagine, inhibiting 
their growth, by hydrolysing extracellular asparagine to ammonia and aspartic acid. 
Moreover, L-asparaginase also works selectively on malignant cells as it is able to 
differentiate the metabolic activities of tumour cells and normal cells. l- Glutaminase, 
on the other hand, attacks cancer growth by degrading glutamine; this is because 
glutamine is needed for the metabolism of energy and also that of purines, pyrimi-
dines and other proteins. Pseudomonas sp. has been used for the production of 
recombinant glutaminase which has been patented.

Type A botulinum toxin is widely used for cosmetic and medical uses (Craik 
et al. 2011). It is a neurotoxin, inhibiting the release of acetylcholine at the presyn-
aptic cholinergic nerve terminals of the PNS and at the ganglionic nerve terminals 
of the ANS, thus disrupting neurotransmission. Type A has the longest duration of 
action. The toxin A Botox was approved by the FDA in 1989 for the treatment of 
blepharospasm associated with dystonia and also strabismus. The FDA later also 
approved type B for the treatment of cervical dystonia.

Some bacteria have the ability to produce factors which are inhibitory to the 
growth of yet another species of bacteria which cause disease. These factors can be 
extracted from these microbial sources and purified to make a therapeutic agent 
against those diseases. For instance, Staphylococcus simulans produces a protease, 
lysostaphin, which has shown inhibitory activity to the growth of Staphylococcus 
aureus as well as other Staphylococcus sp. such as S. carnosus, S. epidermidis and 
S. saprophyticus among others (Chanalia et al. 2011). S. aureus causes various dis-
eases, the likes of which are septicaemia, endocarditis, abscesses (localised as well 
as systematic) and septic emboli. It also has the ability to develop resistance against 
antibiotic agents like methicillin, hence becoming methicillin-resistant S. aureus 
(MRSA), to which people working in hospitals are frequently exposed. These bac-
teria also produce toxins and form layers of biofilms on the surfaces of plastics and 
glass. Lysostaphin has shown effectiveness against MRSA (in synergism with other 
antimicrobial agents and membrane-active agents) and causes destruction of bacte-
rial biofilms by disruption of the extracellular matrix. It is a glycylglycine endopep-
tidase, cleaving the bond between adjacent glycine residues found especially in the 
peptidoglycan membrane of staphylococcal species. Hence it has a specific activity 
against staphylococcal species, resulting in perforation of the cell wall and increas-
ing the roughness of the cell surface, ultimately leading to cell death.

Streptokinase produced by Streptococcus sp. is a plasminogen activator and can 
lyse human blood clots (Chanalia et  al. 2011). It is currently being used in a 
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therapeutic formulation for coronary thrombosis and myocardial infarction. It is 
also used in combination with streptodornase, a DNase used for cleaning wounds 
containing necrotic tissue, purulent exudates and blood clots, and is sold as Varidase 
(streptokinase-streptodornase). Clostridial collagenases are also used in wound 
debridement. Recombinant lysostaphin showed therapeutic activity against aortic 
valve endocarditis. C. histolyticum produces two monomeric collagenases which 
are purified and marketed as Xiaflex, used against Dupuytren’s contracture with a 
palpable cord. Proteases can also be used as a digestive aid for lytic enzyme defi-
ciency syndromes. Proteases from A. oryzae, B. polymyxa and Beauveria bassiana 
are used in digestive disorders and as antitumour agents. A serine protease, 
Nattokinase, derived from B. subtilis, is used for treating cardiovascular disease by 
reducing blood clotting factors and lipids associated with it (Mane and Tale 2015).

6.3.1.6  Textile Industry
The textile industry makes use of proteases from fungal and bacterial sources like A. 
niger and B. subtilis for the removal of wool fibre scales and for the degumming of 
silk (Singh et al. 2016a, b, c, d). Wool processing uses microbial proteases in the 
processes of scouring and bleaching (Ammayappan 2013). Scouring removes natural 
impurities like wax, fat and sweat adhered to the material. Wax and grease are hydro-
phobic impurities attached to the epicuticle surface membranes which makes the 
surface of raw wool hydrophobic (Araujo et al. 2008). Conventionally, harsh chemi-
cals like sodium carbonate and potassium permanganate in a hot detergent solution 
were used for scouring, leading to use of increased chemical and heat energy as well 
as consumption of a large amount of water (Araujo et al. 2008). Alkaline proteases 
provide a better alternative for the same by decreasing the amount of water uptake. It 
also resulted in the improvement of dye penetration and softness.

Wool develops natural yellow coloration (called canary coloration) upon light 
exposure, alkali or microbial degradation. To prevent this, bleaching is done by 
hydrogen peroxide. It has been shown that overall whiteness improves upon the 
addition of proteases, which causes partial removal of cuticle cells during peroxide 
bleaching. Novolin L, a protease derived from a genetically modified Bacillus sp., 
when applied on wool, improved shrink resistance of the clothes manufactured from 
it. Serine proteases of subtilisin type, when applied in the pretreatment of wool 
fibres, have shown to improve anti-shrinkage properties, remove impurities and 
increase subsequent dyeing affinity (Araujo et al. 2008). Degumming of silk is done 
to remove sericin, a serine-rich gum gluing fibroin filament in silk (Freddi et al. 
2003). Removal of sericin gives silk its characteristic soft and smooth texture, shiny 
appearance and elegance. Genetically modified B. subtilis producing an oxidative- 
stable endopeptidase, genetically modified Bacillus lentus producing an alkaline 
protease, and A. saitoi producing a pepsin were shown to have appropriate silk 
degumming properties.

6.3.1.7  Waste Treatment and Reduction
Many industrial wastes comprise proteins as their component(s), which lend the 
waste its toxic properties. These proteinaceous components are degraded by 
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proteases, many of which are of microbial origin. In wastewater treatment plants 
using activated sludge process, sludge flocs contain 70–80% of organic matter 
(apart from the biomass made of aggregated microbes) produced when cells are 
lysed to release substrates and nutrients, forming an autochthon substrate for micro-
bial metabolism (lysis-cryptic growth) (Guo and Xu 2011). This microbial metabo-
lism and some of the carbon contents, being released as a product of respiration, 
lower the overall biomass production and subsequently the amount of sludge pro-
duced. Microbial proteases in conjugation with other hydrolases (amylase, lipase, 
etc.) have been found to increase the lysis efficiency of activated sludge, which 
reduces investment and operational costs and also helps to optimise sewage treat-
ment systems. It was found that major components of sludge are carbohydrates and 
proteins, hence the increase in lysis efficiency. Bacterial species and filamentous 
fungi have been used for this purpose, as well as Raoultella sp. and Pandoraea sp. 
belonging to the Acinetobacter family.

Proteases have been found to work better in combination with other enzymes 
rather than in a solo effort. For instance, increased efficiency of sludge lysis has 
been reported when administered with lipase and endoglucanase and also with 
amylase and cellulase. Another study showed 80% reduction of solids in sludge 
when pronase E, a protease from Streptomyces griseus, was added with cellulose 
as a mixture, but only 46% reduction when just protease was added (Roman et al. 
2006). In the same study, COD reduction was 93% when enzyme mixture was 
added and 59% in control. Proteases have been used for the treatment of waste 
from other industries and households also. Poultry and livestock industries pro-
duce tonnes of chicken feather and animal wastes such as hides, hairs and hoofs, 
respectively, worldwide annually (Verma et al. 2016). Alkaline protease from B. 
subtilis has been used for keratin degradation in waste feathers from poultry 
slaughterhouses (Gupta et al. 2002) with the processed feathers forming a nutrient 
source for the food and feed industry. Hydrolysis by keratinases can also help 
convert poultry waste into biogas (Verma et al. 2016). Keratinase from B. licheni-
formis, marketed as Verazyme, is the first commercial keratinase and it guarantees 
value addition of chick feathers as well as converts feather protein into biodegrad-
able plastics.

6.3.1.8  Cosmetics
The most well-known usage of microbes in cosmetics is Botox therapy. It is done by 
the application of botulinum toxin produced not only by C. botulinum but also by 
other Clostridium species like C. baratii and C. butyricum (Walker and Dayan 
2014). The said compound is a neurotoxin which, as mentioned earlier, is respon-
sible for the disruption of the release of acetylcholine, a presynaptic neurotransmit-
ter. Botox toxin is a protease which cleaves one or more SNARE (soluble 
N-ethyl-maleimide-sensitive factor attachment protein receptor) proteins on the pre-
synaptic vesicle so that the neurotransmitter is not able to fuse with the membrane 
for its synaptic release. Botox A was approved by FDA for the treatment of facial 
rhytides of the upper face. It is also an optiontional treatment for dynamic lines, 
namely glabellar lines, horizontal forehead wrinkles and crow’s feet. Keratinases 
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have been shown to work as a component of a skin cosmetic composition with the 
presence of amino acids (Cho et al. 2007). Novolin T obtained from a genetically 
modified Bacillus sp. possesses a high keratinase activity and also acts as a skin 
moisturiser with whitening effects.

6.3.1.9  Silver Recovery
The preparation of photographic and X-ray films uses silver halides along with 
gelatin. There is about 1.5–2% (w/w) silver present in these films; hence waste 
from photographic and X-ray films produces more silver than that from other 
sources (Shankar et al. 2010). Silver is an invaluable metal having many applica-
tions, viz. catalysis of chemical reactions, construction of mirrors, use in microbi-
cides and disinfectants (in the form of silver nitrate) and supplementation by 
antibiotics (Parpalliwar et  al. 2015). Conventional methods for silver recovery 
from photographic and X-ray films suffered from many disadvantages. The most 
primitive method is to burn the films directly (Al-Abdalall and Al-Khaldi 2016); 
this causes environmental pollution, generates foul odour and produces a polyester 
layer which makes the silver extraction process difficult. Hence, microbial prote-
ases offer many advantages for the same. The gelatin layers on the X-ray film are 
hydrolysed by these enzymes exposing the silver for recovery and also the polyes-
ter base which can be recycled; the latter cannot be done by conventional methods. 
Moreover, enzymes are more specific in their action and avoid damage to the poly-
ester membrane. The duration of action is also less, with the gelatin layer being 
removed in only a few minutes. Mostly bacterial proteases are used for silver 
recovery from X-ray/photographic films and only one fungal protease has been 
reported (Shankar et al. 2010). Proteases from B. subtilis, Conidiobolus coronatus 
and Streptomyces avermectinus have been used for obtaining silver (Al-Abdalall 
and Al-Khaldi 2016).

To summarise, proteases derived from microbial sources are exploited in a vari-
ety of industrial applications. Major industries to employ such enzymes are the food 
and pharmaceutical industries, where these enzymes enhance the flavour and overall 
quality of food products, and they are also used for the treatment of numerous dis-
eases. Alkaline proteases are more favoured among the above industries than others. 
In addition to meeting the increasing demands of the current market, these enzymes 
are also promoting a green environment by reducing the use of harsh chemicals 
needing even harsher physiological conditions. Novel proteases are also being pro-
duced and utilised thanks to recombinant technology and protein engineering, 
enabling the effectiveness and optimal action of these enzymes. Proteases have also 
been reported to act better in concert with other enzymes than as a solo effort, as is 
evident in their use in waste treatment. However, not all combinations produce a 
positive result, raising concerns about compatibility with other components in a 
mixture. Also, the stability of novel proteases needs to be tested before applying in 
a large scale, which can be done by conducting pilot-scale studies. Nevertheless, 
microbial proteases represent a huge potential of application in many industries at 
present and in future with the advancement of technologies. Table 6.2 represents the 
applications of microbial proteases in various industries.
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6.4  Lipases

Lipases are one of the most adaptable and versatile biocatalysts and the third most 
important group of enzymes (Kavitha 2016). These are a subclass of esterases and 
belong to the family of hydrolases that act on the carboxylic ester bonds. Lipases are 
lipolytic enzymes, which catalyse a wide range of reactions such as the hydrolysis 
of triacylglycerol to form free fatty acids and glycerol by a process called lipolysis, 
interesterification, esterification, acidolysis, alcoholysis and aminolysis (Aravindan 
et al. 2007). A unique characteristic of lipase is its ability to hydrolyse heteroge-
neous substrates and synthesise fatty acid esters in an aqueous and non-aqueous 
medium. Lipases also possess interfacial activation; that is, it is activated by the 
presence of an interface or there is a sharp increase in the activity of lipases when 
the substrates start to form an emulsion.

Though there are different types of lipases, their basic three-dimensional back-
bone remains the same (Fig. 6.4). They are characterised by α/β-hydrolase folding, 
which is a specific sequence of α-helix and β-sheets. Also, most of them contain a 
helical segment called as the lid which covers the active-site residues in a closed 
conformation. In case of true lipases the active site of the α/β-hydrolase folding has 

Table 6.2 Industrial applications of proteases

Industry Applications
Detergent 
industry

Removal of proteinaceous stains

Leather industry Dehairing, destruction of unwanted leather pigment, increase in leather 
surface
Leather tanning

Food industry
Dairy industry Casein micelle aggregation, coagulation of milk

Curdling of milk, degradation of major allergens in milk
Bakery Reduce gluten content, softening of bread, improved dough rheology and 

quality, greater mobility, extensibility and crispiness
Brewery Extract proteins from barley and malt, improve yeast growth and obtain 

appropriate concentrations of nitrogenous nutrients
Others Flavour enhancement

Soy sauce fermentation
Degradation of the turbid complex in fruit juice proteins and alcohol-based 
liquor

Pharmaceuticals Lyse human blood clots; treatment for coronary thrombosis, myocardial 
infarction
Inhibiting tumour growth by hydrolysing extracellular asparagine

Textile industry Removal of wool fibre scales, degumming of silk
Improved shrink resistance of wool

Waste treatment Reduction of sludge content
Reduction of solids, reduction of COD
Degradation of keratin in chick feathers, conversion to biogas and 
biodegradable plastics

Silver recovery Hydrolyse gelatin layer in X-ray/photographic film, recycle polyester base
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three catalytic residues, nucleophilic residues (serine, cysteine and aspartate), a 
catalytic acid residue (aspartate or glutamate) and a histidine residue (Andualema 
and Gessesse 2012). As a result, lipases are also known as serine hydrolases.

Lipolytic enzymes can be classified into eight different families based on the dif-
ference in the amino acid sequences within or around their active site (Ramnath 
et al. 2017). Family I comprises true lipases which should possess the property of 
interfacial activation and contain the lid structure. This family is further divided into 
six subfamilies and predominantly catalyses hydrolysis of the long acyl chains that 
are its substrates. The members of this family II have a modified GDS(L) motif that 
contains the active-site serine residue. Family III lipases contain a conserved 
GXSXG motif, with a canonical α/β-fold and a catalytic triad. Family IV lipases are 
similar to mammalian hormone-sensitive lipase (HSL), with a motif structure of 
His-Gly-Gly [HGG]. Family V lipases have a conserved motif structure of His-Gly-
Gly-Gly [HGGG] upstream to the pentapeptide GDSAG motif sequence. Members 
of family VI, VII and VIII predominantly contain esterases.

Lipases are found abundantly in nature and are produced by microorganisms, 
plants and animals, but for most of the commercial applications, they are obtained 
from microbial sources. The lipase-producing microorganisms are found in habitats 
like industrial wastes, soil polluted with oilseeds and/or oil, vegetable-oil processing 
factories and dairy plants (Kiran et al. 2016). The common bacteria used in lipase 
production are Bacillus pumilus, Bacillus coagulans, B. alcalophilus, B. subtilis, 
Bacillus psychrosaccharolyticus, B. stearothermophilus, Chromobacterium visco-
sum, Acinetobacter sp., Aeromonas hydrophila, Burkholderia cepacia, Burkholderia 
multivorans, Colwellia psychrerythraea, Desulfotalea psychrophile, Janibacter sp., 
Micrococcus roseus, Microbacterium phyllosphaerae, Corynebacterium paurame-
tabolum, Microbacterium luteolum, Moritella sp., Pelagibacterium halotolerans, 
Photobacterium sp., Pseudoalteromonas sp., Pseudomonas sp., Psychrobacter sp., 

Fig. 6.4 Structure of 
lipase

6 Commercial Applications of Microbial Enzymes



158

Staphylococcus caseolyticus, Staphylococcus xylosus, S. marcescens and 
Streptococcus lactis (Shelatkar and Padalia 2016). Fungal species that produce 
lipases include Rhizopus sp., Aspergillus sp., Penicillium sp., Mucor sp., Geotrichum 
sp., Rhizomucor sp., Colletotrichum gloeosporioides, S. griseus, C. antarctica, 
Candida albicans, Humicola lanuginosa, Rhizopus chinensis, Rhizopus homothalli-
cus, Geotrichum candidum, Rhizopus oryzae, Candida utilis, Candida rugosa, 
Candida cylindracea, Fusarium solani, Rhizopus arrhizus and Trichosporon lai-
bachii (Kavitha 2016; Kiran et  al. 2016; Shelatkar and Padalia 2016; Ugo et  al. 
2017). Though for most of the industrial applications bacterial or fungal sources are 
used, yeasts are also a potent source of lipase production. They include Yarrowia 
lipolytica, Aureobasidium pullulans, S. cerevisiae, Williopsis californica and 
Rhodotorula mucilaginosa (Kiran et al. 2016).

6.4.1  Commercial Applications of Lipases

6.4.1.1  Detergent Industry
The detergent industry is one of the commercially most important fields of applica-
tion for microbial lipases, constituting about 32% of total lipase sales. Any deter-
gent lipase should fulfil the following criteria: (1) should have a low substrate 
specificity, (2) should be stable under washing condition and (3) should exhibit 
resistance from the oxidising and chelating agents used, in the form of active oxy-
gen bleach and builders (Salleh et al. 2006). Due to their ability to attack lipids, 
lipases are able to remove and decompose fatty stains and residues like butter, oil 
and sauces. This helps in increasing the efficiency of stain cleaning as well as fabric 
care. Use of enzymes in detergents also helps to improve its detergency, prevent 
scaling and reduce the time period, agitation and temperature that are needed for 
washing, therefore extending the lifespan of fabrics. Using lipases aids in reducing 
the quantity of surfactants used (Ugo et al. 2017).

The first commercial lipase was identified and isolated by Novo Nordisk, from 
Humicola strain. Later, several strategies were applied for increasing the enzyme 
efficiency, which lead to the production of the first commercial recombinant lipase, 
called as Lipolase which contained the lipase sequence of the fungus T. lanugino-
sus, expressed in A. oryzae. This paved a way for further exploration in the field of 
using lipases as a component in detergents. Alkaline lipases produced by Bacillus 
sp. B207, Pseudomonas paucimobilis and Streptomyces sp. can be used as additives 
during detergent formulation. Lipase from Bacillus sp. and Pseudomonas sp. shows 
an excellent stability at normal washing conditions (Salihu and Alam 2012). 
Bacterial lipase from Staphylococcus arlettae JPBW-1, found in rock salt mine, 
showed a good stability towards surfactants and oxidising agents, removing around 
62% of olive oil from cotton fabrics. Alkaline lipase from B. cepacia RGP-10 exhib-
ited a better stability towards commercial detergents and oxidising agents, as com-
pared to Lipolase (Prakasan et al. 2016).
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Nowadays, researchers are focusing on the use of cold-active lipases (CLPs) in 
detergents due to their ability to act under low-water and cold conditions, which 
results in decreased energy consumption as well as lesser wear and tear of cloth 
fibres. CLPs obtained from Pseudoalteromonas sp. NJ 70, M. phyllosphaerae, 
Bacillus sphaericus and Pichia lynferdii were shown to be effective for the same 
purpose (Kavitha 2016). Immobilisation of lipases onto various surfaces or carriers 
eases the oil removal from fabrics, alters the wettability of fabric surfaces, enhances 
stability to denaturation and prevents heat deactivation. Lipase obtained from 
Pseudomonas putida ATCC 53552 was adsorbed on fabric, forming a fabric-lipase 
complex, for the removal of oil stain (Hasan et al. 2006). Using lipases along with 
other oxidoreductases allows further decrease in the quantity of surfactants used, 
thereby making them more eco-friendly (Ugo et al. 2017).

6.4.1.2  Food Industry
Chocolates, toffees and other bakery goods contain cocoa butter, which is needed 
for giving them crystallising and melting characteristics. But cocoa butter is highly 
expensive. As an alternative, lipases from M. miehei and C. antarctica can be used 
to produce cocoa butter equivalences from palm olein and distillate from palm oil 
refinery (Hasan et al. 2006).

Lipases are mainly used to enhance the flavour content of bakery products due to 
their ability to liberate short-chain fatty acids by esterification, prolong the shelf life 
and render an improved texture and softness to the bakery goods. For example, 
artificially expressed lipases in A. oryzae and recombinant yeast with Geotrichum 
LIP 2 gene were found to reduce the initial firmness, increase specific volume of 
breads and give a more uniform crumb structure. Increased butter flavour can be 
produced through the lipolysis of butterfat. Lipase M 300 LF can be used to increase 
the volume of bread and bakery items. Lipases from A. niger, R. oryzae and C. cyl-
indracea are used in the making of bakery products (Hasan et  al. 2006). 
Phospholipases can substitute or supplement traditional emulsifiers as they degrade 
wheat lipids to produce emulsifying lipids in situ. It can be applied for egg yolk 
treatment to hydrolyse egg lecithin and iso-lecithin, to produce lyso-phospholipids. 
This helps to improve the emulsion and heat stability and can be useful in custard, 
mayonnaise, baby food, dressing and dough preparations (Aravindan et al. 2007; 
Singh et  al. 2016a, b, c, d). Lipases like DSM Maxapal A2 can be cloned and 
expressed in A. niger for the same purpose.

In the fat and oil industry, lipases are mainly used for two main purposes, 
degumming of vegetable oils in refineries and production of oils and fats of a 
higher commercial as well as nutritional value from low-value substrates. Altering 
the location of fatty acid chains or replacing one or more fatty acids in a glyceride 
by esterification or interesterification reactions can result in modification of lipid 
properties. This may help to convert relatively inexpensive and less desirable fat 
to a higher value fat. For instance, lipolysis of salmon oil resulted in a 2.5-fold 
increase in its omega-3 polyunsaturated fatty acids (PUFA). Lipases from C. 
rugosa, C. cylindracea, Mucor javanicus and A. niger are used for the enzymatic 
hydrolysis of sardine oil to increase the content of omega-3 PUFAs by 10–35% 
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(Prakasan et al. 2016). Phospholipase can also be used for degumming purposes, 
which involves the removal of phospholipids. These are hydrolysed to a more water-
soluble form, to facilitate washing out (Aravindan et al. 2007). Lipases can also be 
used to recycle and reuse the waste; for example, phospholipases can be used to 
recover additional oil from oil seeds (Hasan et al. 2006).

In dairies, lipases are mainly used to hydrolyse milk fats and render the charac-
teristic flavour to cheese. These act as flavouring agents by production of short- 
chain fatty acids (C4 and C6) or medium- or large-chain fatty acids (C12 and C14). The 
former gives a sharp and tangy mouthfeel and is preferred for cheese production, 
while the latter renders a soapy taste. The free fatty acids produced also take part in 
simple chemical reactions, which leads to production of flavour ingredients like 
acetoacetate, beta-keto acids, methyl ketones, flavour esters and lactones. Lipases 
produced by microorganisms like Rhizomucor miehei, A. niger and A. oryzae are 
used in cheesemaking (Hasan et al. 2006). For instance, extracellular lipase pro-
duced by Cryptococcus flavescens 39-A releases short-chain fatty acids from milk 
fat to produce a desirable taste during the mozzarella cheesemaking process. The 
lipolytic activity of P. roqueforti gives a characteristic flavour and appearance (i.e. a 
blue-green veined) to blue cheese. Lipases help to enhance the flavours of natural 
milk fats to produce volatile flavouring compounds (Prakasan et al. 2016). These are 
also involved in faster cheese preparation and production of customised milk prod-
ucts. Human milk fat substitute (HMFS) production also uses lipases and can be 
obtained by sn-1,3 lipase-catalysed acidolysis of tripalmitin, palm stearin, butterfat, 
palm oil or lard with free fatty acids. Nowadays, enzyme-modified cheese is being 
produced by incubating the cheese in the presence of enzymes at elevated tempera-
ture. This gives rise to concentrated flavour by lipase catalysis and can be used in 
other products, such as dips, sauces, soups and snacks. Interesterification and hydro-
genation are used to prepare glyceride products for the production of butter and 
margarine (Hasan et al. 2006).

In the meat and fish processing industries, lipases can be used to develop flavour 
as well as for biolipolysis, i.e. removal of fats during meat and fish processing. 
Biolipolysis results in production of leaner and fat-free meat and fish (Hasan et al. 
2006; Aravindan et al. 2007). Lipase produced by R. miehei is used in tea industries 
to promote enzymatic degradation of lipid membrane for enhanced characteristic 
flavour in black tea (Hasan et al. 2006). Lipases can act on wheat flour to produce 
variations in quality, and therefore, can be used to produce noodles and pasta, giving 
them an even and intense colour with reduction in stickiness when cooked (Prakasan 
et al. 2016). Immobilised lipases from C. antarctica and Lactobacillus reuteri are 
used to produce nutraceuticals. Regioselective hydrolysis of octaacetyl sucrose by 
lipases is used for the production of sucralose, an artificial sweetener (Aravindan 
et al. 2007). Since many of the micro- and macronutrients in food are heat sensitive 
in nature, the reactions that take place during food processing are preferred to be at 
low temperatures. Cold-active lipase from P. fluorescens P38, at low temperatures, 
synthesises a flavouring compound, butyl caprylate in n-heptane. Esterification of 
functionalised phenols to form antioxidants, to be used in sunflower oils, can be 
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carried out with lipases from C. antarctica (CALB), C. cylindracea AY30, 
Hansinuela lanuginosa, Pseudomonas sp. and G. candidum (Kavitha 2016).

6.4.1.3  Medicine and Pharmaceutical Industry
The ability of lipases to hydrolyse its substrates in an enantioselective manner is 
exploited in pharmaceutical industries. By changing the production conditions of 
drugs, like temperature and pH, the enantiomeric value and stereo-preference of 
lipases can be altered, which makes them useful in the manufacturing of single iso-
mers of chiral drugs by trans-esterification or direct esterification in non-aqueous 
medium and resolving of racemic mixtures of drugs (Momsia and Momsia 2013). 
A. niger lipase can be used to resolve ibuprofen and ketoprofen. Lipases obtained 
from C. rugosa, C. antarctica and R. miehei are efficient in resolving the enantio-
mers of ibuprofen, naprofen and suprofen (Ugo et al. 2017). Pure form of (s)-enan-
tiomer of ibuprofen was synthesised using lipase as a biocatalyst (Aravindan et al. 
2007). Lipase from Pseudomonas sp. AK kinetically resolved the chiral silane 
reagents for the synthesis of epothilone A, a potent antitumour agent (Prakasan et al. 
2016). Lipases can also be used to hydrolyse polyester alcohols, which can be used 
as optically active intermediates in the synthesis of drugs. When 3-phenylglycidic 
acid ester is asymmetrically hydrolysed by S. marcescens lipase, an intermediate in 
the synthesis of diltiazem hydrochloride (a calcium antagonist used as a coronary 
vasodilator) is formed (Kiran et al. 2016). Lipase from C. antarctica or Pseudomonas 
sp. acts on stereospecific N-acylamines, leading to the formation of optically active 
amines that act as intermediates in the various pharmaceutical preparations (Kavitha 
2016).

Lipases have also been found to be useful in the regioselective modifications of 
polyfunctional organic compounds and have been used to regioselectively modify 
castanospermine (drug used to treat AIDS) (Hasan et al. 2006). Some cold-active 
lipases such as CAL-B can be used to manufacture and segregate a number of nitro-
genated compounds for the synthesis of pharmaceuticals (Kavitha 2016). Currently, 
lipases are used for kinetic resolution processes that are efficient for the preparation 
of optically active intermediates for synthesising of drugs such as nikkomycin-B 
and NSAIDs like ibuprofen, suprofen, ketoprox and naproxen, and lamivudine, an 
antiviral agent. Also, these can be used for the enantiospecific synthesis of a wide 
range of antibiotics, vitamins, alkaloids, antitumour, anti-arteriosclerotic and antial-
lergic agents (Aravindan et al. 2007).

Lipases obtained from Bacillus sp., Candida lipolytica and A. oryzae can be used 
to synthesise digestive aids, and therefore, can be used to treat gastrointestinal dis-
turbances, dyspepsia and other gastrointestinal disorders. It can also be used in the 
treatment of malignant tumours as lipases are activators of tumour necrosis factor 
(Momsia and Momsia 2013; Pogaku et al. 2017). Lipase from C. rugosa and immo-
bilised on a nylon scaffold produced lovastatin, a drug used to decrease the level of 
cholesterol in serum, by regioselective acylation of a diol lactone precursor with 
2-methylbutyric acid, in organic solvents (Prakasan et al. 2016). Polyunsaturated 
fatty acids (PUFAs) obtained by using microbial lipases and immobilised lipases 
can be used as nutraceuticals due to their metabolic benefits (Kiran et al. 2016). 
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Lipases have also been used as a component of topical anti-obese creams and oral 
administration (Hasan et al. 2006).

Lipases can be used as diagnostic tools for the detection of diseases. Serum tri-
glyceride levels can be determined by hydrolysis using lipases, where the enzyme 
hydrolyses triglycerides to generate glycerol, following which enzyme-linked colo-
rimetric reactions can be carried out to quantitate the same. The level of blood serum 
lipases can be used as a means of diagnosis of conditions like acute pancreatitis or 
pancreatic injury (Hasan et  al. 2006). Immobilisation of lipases onto pH/oxygen 
electrodes in combination with glucose oxidase can help to determine the triglycer-
ide and blood cholesterol levels (Aravindan et al. 2007).

6.4.1.4  Cosmetics
Lipases play an important role in the production of aroma compounds and show sur-
factant activity. These properties can be exploited to produce cosmetics and perfumer-
ies. In organic solvents, lipases catalyse esterification, thus forming esters which can 
be used to produce personal care products, such as skin creams, suntan creams and 
bath oils. These products have shown to be of a higher quality as compared to those 
formed by acid catalysis. Examples include the use of isopropyl myristate, isopropyl 
palmitate and 2-ethylhexyl palmitate to produce personal care products, by employing 
Rhizomucor miehei lipase as a biocatalyst. Lipases are also used as components in 
hair waving preparation. Lipases can also be used as additive in shampoo formula-
tions to enhance the removal of excess oil from hair and reduce dandruff, thereby 
improving the overall hair quality (Salleh et al. 2006; Ugo et al. 2017).

Lipase from C. antarctica catalyses the trans-esterification between retinol and 
L-methyl lactate for synthesis of retinyl L-lactate and between ascorbic acid and 
L-methyl lactate to produce ascorbyl l-lactate. Both retinyl and ascorbic esters are 
of a great use in cosmetic production. These also mediate trans-esterification 
between olive oil and ascorbic acid, to synthesise ascorbyl oleate that can be used as 
antioxidant (Prakasan et  al. 2016). Lipases are also used in synthesising natural 
dyes. For instance, lipases catalyse the release of indoxyl from isatan B, which can 
be combined with isatan C to produce indigo dye (Prakasan et al. 2016). Other com-
monly used microbes for lipases in the cosmetic industry are A. oryzae. Lipase 
produced by C. cylindracea is used in the commercial production of soap (Pogaku 
et al. 2017).

6.4.1.5  Textile Industry
The use of lipase in the textile industry serves two main purposes, desizing of cotton 
fabrics and denim, where lubricants from fabrics are removed, to provide a higher 
absorbency and a better levelness while dyeing and providing of a good finish to 
denim by reducing the frequency of streaks and cracks. In most of the cases, lipases 
and α-amylase are used in conjugation for desizing (Kiran et  al. 2016). Lipases 
isolated from C. antarctica are commonly used in the textile industry (Pogaku et al. 
2017). In textiles, polyester plays a key role in imparting fabrics high strength, soft 
hand, machine wash, stretch, strain abrasion and wrinkle resistance. Polyesterases 
can also be employed to promote polyester fabric to take up chemical compounds, 
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such as cationics, fabric finishing compositions, dyes, antimicrobial compounds or 
deodorants. Lipases produced by Pseudomonas sp. can be used to degrade polymers 
of aliphatic polyethylene. An example of a commercial lipase used to improve the 
fibre texture without losing strength is JP 5344897 A (Hasan et al. 2006).

6.4.1.6  Leather Industry
Leather industry is one of the major contributors of environmental pollutants due to 
the chemicals they use and contributes to 80–90% of the total pollution. The process 
of degreasing or removal of fats is an essential part of manufacture as insufficient 
removal of natural fat prevents the chemicals from penetrating into the leather lead-
ing to a poor quality, in terms of internal softness, appearance (a stained appearance 
is seen due to chrome soap formation) and a bad odour (Kavitha 2016). Conventional 
methods of degreasing involve the application of organic solvents and surfactants 
which gives rise to environmental pollutants like volatile organic compound (VOC) 
emissions. Use of lipase is a more environment-friendly method for removing fats 
and grease from skins and hides. Lipase also acts in a more efficient manner by giv-
ing a uniform colour and a cleaner appearance, improving the hydrophobicity of 
leather, giving it a more waterproof character and a low-fogging stock (Hasan et al. 
2006).

Since fat is present in sebaceous glands, hair follicles, and between collagen 
fibres and connective tissue fibres, to increase the process efficiency, alkaline stable 
proteases are employed. Proteolysis helps to emulsify natural fat by hydrolysing the 
membranes surrounding the fat cell and making the fat accessible for lipases to act 
upon. This increases the efficiency of degreasing (Ugo et al. 2017). Lipases stable at 
alkaline as well as acidic conditions can be used in skin and hide degreasing. For 
instance, acid lipase isolated from Rhizopus nodosus and a commercial degreaser 
were used for this process (Kavitha 2016). For degreasing of suede clothing leathers 
from sheepskins R. nodosus lipase can be used (Hasan et al. 2006). B. subtilis lipase 
was used in the degreasing process through an 8–12 h of incubation of leather and 
enzyme. This was also found to maintain the natural skin colour. Examples of com-
mercially available lipases for use in leather industries include NovoLime, (a prote-
ase/lipase blend) and NovoCor AD (an acid lipase) (Prakasan et al. 2016).

6.4.1.7  Paper and Pulp Industry
Pulp and paper industries mainly use lipases for the process of depitching, a process 
by which the hydrophobic components of wood from the pulp are removed during 
papermaking. These hydrophobic components are called as pitch or resin stickies 
and include triglycerides and waxes. The presence of pitch may lead to holes and 
spots in the final paper product and also reduce the production rates. Lipases hydro-
lyse these hydrophobic components into glycerol and free fatty acid and enhance 
the pitch control. Since these products are water soluble, they can be easily washed 
away from the machines. Lipases also help to increase the rate of pulping, whiteness 
intensity of paper and equipment life, and reduce composite cost and chemical 
usage, thereby decreasing the pollution level (Ugo et al. 2017). Lipases obtained 
from C. antarctica are commonly used for depitching (Pogaku et  al. 2017). 
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Immobilised lipase, isolated from T. lanuginosus on a resin coated with chitosan 
along with pectinase, resulted in a reduction of pitch deposits by 74%. Fungal lipase 
isolated from C. rugosa is used by Nippon Paper Industries, to hydrolyse wood tri-
glycerides up to 90%. Alkaline lipases are used to efficiently remove pitch from 
recycled fibre pulping waste water (Prakasan et al. 2016). Lipases are also used for 
deinking wastepaper. Lipase from Pseudomonas sp. KWI-56 deink composition for 
ethylene oxide–propylene oxide adduct stearate resulted in reduction of residual ink 
spots on paper and improved its whiteness (Hasan et al. 2006).

6.4.1.8  Fine Chemical Synthesis
The ability of lipases to catalyse reactions such as alcoholysis, acidolysis, hydroly-
sis and glycerolysis is exploited in the oleochemical industry. When these reactions 
are carried out by conventional methods, they are energy intensive and require high 
temperature and pressure. However, use of lipases reduces the energy consumption. 
Currently, immobilised lipases are used to initiate these reactions using mixed sub-
strates. This ensures a high productivity (Salihu and Alam 2012). In the polymer 
industry, lipases carry out polycondensation and ring-opening polymerisation of 
lactones and carbonates. CAL-B was used in the catalysis of a ring-opening poly-
merisation of epsilon-caprolactone in cellulose fibre surface (Pogaku et al. 2017).

Some cold-active lipases such as CAL-B can also be used to synthesise optically 
active alcohols. Lipase obtained from P. fluorescens P38 was used to synthesise 
butyl caprylate in the presence of n-heptane at low temperatures. Esterification of 
docosahexaenoic acid to form ethyl docosahexaenoate was done in an organic 
solvent- free system using CAL-B.  Asymmetric synthesis of amino acids/amino 
esters was carried out using CAL-A that shows chemoselectivity for amine groups 
(Kavitha 2016). Another novel application of lipase is its use as a biocatalyst in the 
production of useful biodegradable compounds. For instance, lipases can be used to 
catalyse esterification of butanol and oleic acid to produce 1-butyl oleate, which is 
used in biodiesel to decrease its viscosity (Momsia and Momsia 2013). Using 
lipases, glucoside esters with surfactant properties are synthesised (Salleh et  al. 
2006). With the help of lipases, pesticides, insecticides, fungicides, herbicides and/
or their precursors can also be produced. Lipases produced by Achromobacter sp. 
can be used to hydrolyse acetic acid ester of a racemic mixture of a-cyano-
3-phenoxybenzyl alcohol (CPBA), in an enantioselective manner to give (S)-CPBA, 
which is an active stereoisomer of insecticide (Kuhad et al. 2011).

6.4.1.9  Environmental Applications
Biodiesel is produced by trans-esterification of triglycerides with methanol/ethanol. 
This serves as a renewable, biodegradable and nontoxic source of fuel. Lipases can 
convert oil, in the presence of alcohols, to short-chain alcohol esters by a single 
trans-esterification reaction (Salihu and Alam 2012). Therefore, lipases, immobil-
ised within a biomass support particle, can be used as biocatalysts (Salleh et  al. 
2006). CAL-B can be immobilised and used for Jatropha biodiesel production, 
while lipase obtained from Microbacterium sp. can be immobilised to produce bio-
diesel from algal oil (Ugo et al. 2017). Immobilised Pseudomonas cepacia lipase 
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carries out trans-esterification of soybean oil with methanol and ethanol. Using 
Novozym 435 trans-esterification of crude soybean oils can be carried out in a 
solvent- free medium, for the biodiesel production. Fatty acid esters can be produced 
from palm kernel oil and coconut oil, using PS30 lipase, by trans-esterification with 
different alcohols. In this, palm kernel oil conversion with ethanol resulted in high-
est conversion and was found to be 72% (Hasan et  al. 2006). Methanolysis was 
observed in residual oil obtained from soybean, rapeseed and palm oil refining 
waste when it had been subjected to hexane by R. oryzae lipase. The use of palm oil 
resulted in highest conversion to methyl esters, with a yield of 55% (Salihu and 
Alam 2012). Biodiesel was synthesised from degummed soybean oil, using CAL-B 
(Kavitha 2016). In contrast to conventional methods that use acid or alkali catalyst 
for the production, lipase-catalysed esterification as well as trans-esterification of 
triacylglycerols yields cleaner and more environment-friendly by-products (Hasan 
et al. 2006).

Industrial effluents and domestic waste are high in chemical commodities such as 
phenols, aromatic amines and nitriles, which are toxic to the environment. Microbial 
enzyme alone or in combinations carries out the bioconversion of these toxic com-
pounds to non-toxic or less toxic products. For instance, A. oryzae and Candida 
tropicalis lipases may be used to degrade crude oil hydrocarbons. Commercial mix-
tures containing lipase, cellulase, protease, amylase, inorganic nutrients, wheat bran, 
etc. are used to degrade organic debris present in sewage, holding and septic tanks, 
grease traps, etc. (Pogaku et al. 2017). Apart from chemicals, there may be presence 
of high amount of fats, mainly as triglycerides in waste water. The employment of 
bacterial as well as immobilised lipases for the breakdown of fats present in domestic 
sewage and wastewater treatment has become an alternative method to the conven-
tional technique. For instance, during anaerobic digestion, lipases can be used to 
break down lipids into simpler low-molecular- weight components. During the acti-
vated sludge process, lipases are used for the removal of thin layers of fats that 
deposit on the surface of aerated tanks, which is required for efficient transport of 
oxygen in order to maintain the biomass (Salleh et al. 2006). Lipases isolated from 
organisms such as C. rugosa can be used to effectively break down fats and prevent 
fat blockage. Effluent and lipid-rich wastewater treatment in various industries can 
be carried out by employing lipases such as those obtained from Pseudomonas aeru-
ginosa LP602 cells. Lipases such as LG-1000 can be used to hydrolyse and reduce 
the size of fat particles in slaughterhouse waste water (Hasan et al. 2006).

Bioremediation in oil-contaminated areas, biodegradation of petroleum and 
other hydrocarbons can also be carried out using lipases. For instance, the ability of 
P. putida, Acinetobacter sp. and Rhodococcus sp. to degrade n-alkanes, P. putida 
xylE to degrade aromatic hydrocarbons and P. putida ndoB and Mycobacterium sp. 
strain PYR-1 nidA to degrade polycyclic aromatic hydrocarbons was determined in 
12 areas contaminated with petroleum hydrocarbons (Hasan et al. 2006). In cold 
conditions, these processes can be carried out using cold-adapted microorganisms 
that produce cold-active lipases. Lipase, isolated from Acinetobacter sp., can be 
used in bioremediation of oil-contaminated soil due to its ability to hydrolyse tri-
glycerides at 4 °C (Kavitha 2016).
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6.4.1.10  Biosensors
Immobilised lipases can be used as biosensors to accurately and efficiently quanti-
tate the levels of triacylglycerol, which can serve to be of a great use in the food and 
pharmaceutical industries and for clinical diagnosis. This exploits the ability of 
lipase to generate glycerol from the triglycerides present in the analytical sample. 
The amount of glycerol released can be quantified by either chemical or enzymatic 
means. For instance, the amount of organophosphorous pesticides and dichlorvous 
residues in the root, stem and blades of Chinese cabbage can be quantified by lipase 
hydrolysis, using a surface acoustic wave impedance sensor (Aravindan et al. 2007).

To conclude, the demand for lipases and other enzymes has increased in the 
twenty-first century due to an enormous demand for green products. Microbes 
serve as a factory for production of enzymes in order to fulfil these demands. 
Lipases are currently being used in a wide range of industries, such as food pro-
cessing industries like the dairy and beverage, pharmaceuticals, detergent making, 
textile, and cosmetics. The most recent synthetic routes used in the production of 
a wide range of compounds have been optimised with lipases in order to yield a 
better quality of chemicals, drugs and other products. Yet there is a need for devel-
oping a more cost- effective and efficient process for screening, isolation, purifica-
tion and/or immobilisation of lipases, so as to fulfil the demands of various 
industries. Application of novel biotechnological process like genetic engineer-
ing, protein engineering, mutagenesis and other rDNA technologies can modify 
certain features of lipases such as the enzyme’s adapting properties or quantitative 
improvements can be made so as to enhance and elevate the production and effi-
ciency of lipases.

Currently, the use of lipases is encircled by limitations such as inadequate enanti-
oselectivity and limiting activity of lipases, challenges in recycling of the enzyme 
and inherent limitations of the kinetic resolution due to a maximum possible conver-
sion limit to only 50%, during practical applications. The studies of production of 
microbial lipases and the role of inducers in lipase production are scanty. Also, many 
genes of the enzymes that may be associated with some unique features remain unex-
plored. Understanding of the structure-functional relationship (of lipases) will enable 
researchers to tailor novel lipases. This opens up a scope for further research and 
makes this field fascinating for future. This may pave new ways to solve biotechno-
logical bottlenecks that industries are currently facing and also may serve useful in 
solving the environmental problems. Table 6.3 presents the industrial applications of 
lipases.

6.5  Cellulases

Cellulases are the fourth most commercially important enzymes. They are hydro-
lases which hydrolyse the β-1,4-glycosidic linkages present in cellulose, a linear 
polysaccharide containing monomers of the glucose, into fermentable sugars and 
hence are also known as glycosyl hydroxylases. Cellulose in most cases is not pres-
ent in pure form but is associated with hemicelluloses (20–35% plant dry weight) 
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and lignin (5–30% of plant dry weight) (Zhang and Zhang 2013; Behera et al. 2017). 
Cellulases are inducible in nature, as the enzyme is synthesised when the microbes 
grow on cellulosic materials and form independently folding units that are structur-
ally and functionally discrete, and are called as cellulase domains or modules (Behera 
et al. 2017). Based on the amino acid sequences and crystal structure of these domains 
or modules, cellulases are classified into various families (Golan 2011).

Cellulases produced by microorganisms can exist as either free enzymes, as in 
case of aerobic bacteria, or complexed with polysaccharide forming enzyme- 
substrate complex, called as cellulosome, which is located on the cell surface, as seen 
in anaerobic bacteria (Ducros et al. 1995). Cellulase is made of two domains, namely 
a non-catalytic cellulose-binding module that is located at the N- or C-terminus of a 
catalytic module and a catalytic domain, joined together by a short and flexible poly-
linker (rich in serine and threonine residues) at the N-terminus (Behera et al. 2017) 
(Fig.  6.5). The crystal structure of cellulase catalytic domain has a resolution of 
approximately 2.4 Å. The catalytic centre located at the β-strands of C-terminal end, 

Table 6.3 Industrial applications of lipases

Industry Applications
Detergent industry Increases the efficiency of stain cleaning and fabric care
Food industry
Dairy industry Hydrolyse milk fats, render the characteristic flavour and texture to 

cheese
Bakery and 
confectionary

Production of chocolates, toffees and some bakery goods
Enhance the flavour content of bakery, renders improved texture and 
softness

Fat and oil industry Degumming of vegetable oils in refineries and production of oils and 
fats of a higher commercial and nutritional value

Medicine and 
pharmaceutical 
industry

Manufacture of single isomers of chiral drugs and preparation of 
optically active intermediates for synthesising of drugs
Synthesis of digestive aids

Textile industry Desizing of cotton fabrics and denim, imparting high strength, soft 
hand, machine washability, stretch, strain abrasion and wrinkle 
resistance to fabrics

Paper and pulp 
industry

Depitching and deinking of paper

Fine chemical 
synthesis

Polycondensation and ring-opening polymerisation of lactones and 
carbonates
Synthesis of optically active alcohols, used as a biocatalyst in the 
production of useful biodegradable compounds, precursor for the 
production of pesticides, insecticides, fungicides and herbicides

Cosmetic industry Production of aroma compounds from esters which are used to produce 
personal care products
Additive in shampoo formulations to enhance the removal of excess oil 
from hair and reduce dandruff
Synthesis of natural dyes

Leather industry Removal of fats and grease from skins and hides
Environmental 
applications

Trans-esterification to produce biodiesel
Wastewater treatment
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with Glu170 as the proton donor and Glu307 as the nucleophile and the aromatic 
residues, forms the substrate-binding site (Singh et al. 2016a, b, c, d).

There are a wide variety of cellulase-degrading enzymes that are found in nature 
but generally the complete degradation of cellulose to β-glucose occurs as a result 
of complex and synergistic interaction between cellulolytic enzymes. Initially, there 
is a synergistic action of endoglucanases and exoglucanases, which gives cellobiose 
or cellodextrin residues which are further hydrolysed to β-glucose by β-glucosidases. 
There are two major types of cellulases, endoglucanases and exoglucanases, includ-
ing cellobiohydrolases and β-glucosidase (Ducros et  al. 1995; Golan 2011). 
Endoglucanases cleave the β-1,4-glycosidic bonds of celluloses randomly and gen-
erate cellodextrins or cellobiose units. The structure of their active sites is cleft/
grove shaped. Exoglucanases act on reducing or non-reducing ends of the celluloses 
in a progressive manner to yield cellobiose or glucose. A topological feature of their 
catalytic module is the presence of a tunnel structure (formed due to two surface 
loop structures), which covers either the entire or a part of the active site of exoglu-
canases and enables it to hydrolyse cellulose in a processive manner. Examples 
include Clostridium jusui, Clostridium cellulovorans and Clostridium thermocel-
lum. β-Glucosidases do not act on insoluble cellulose but hydrolyse soluble cello-
dextrins and cellobiose residues to produce glucose. β-Glucosidases are characterised 
by a pocket-shaped active site. This enables them to bind to the non-reducing ends 
of the cellodextrin or cellobiose.

Cellulases are produced naturally by a wide range of microorganisms such as 
fungi, bacteria and actinomycetes, in the presence of cellulosic materials, like wood. 
They can be aerobic or anaerobic, and mesophilic or thermophilic in nature. Out of 
all the microorganisms, fungi account for around 80% of cellulases and are the 
major producers. Cellulases produced by aerobic fungi are preferred over others as 
they produce cellulases extracellularly (Behera et al. 2017; Sukumaran et al. 2005). 
Among fungi employed in the production of cellulases, Actinomucor sp., 
Trichoderma reesei, Trichoderma longibrachiatum, Trichoderma harzianum, 
Trichoderma atroviride, Penicillium brasilianum, Penicillium occitanis, Penicillium 
decumbans, Penicillium funiculosum, P. janthinellum, Humicola insolens, Humicola 
grisea, A. niger, Aspergillus nidulans, A. oryzae, Aspergillus terreus, F. solani and 
Fusarium oxysporum are the chief producers. Other cellulase-producing fungi 
include Candida thermophilum, Melanocarpus albomyces, Neurospora crassa, 
Paecilomyces inflatus, Paecilomyces echinulatum, Coniophora puteana, 
Thermoascus aurantiacus, Mucor circinelloides, Lenzites trabea, Sporotrichum 
thermophile, Trametes versicolor and Agaricus arvensis (Shah 2013; Behera et al. 
2017).

Though fungi are the major producers of cellulases, some bacteria like 
Clostridium acetobutylicum, C. cellulovorans, C. jusui, Clostridium stercorarium, 
C. thermocellum, Acinetobacter junii, Acinetobacter amitratus, Pseudomonas cel-
lulose, Acidothermus cellulolyticus, B. subtilis, B. pumilus, B. amyloliquefaciens, B. 
licheniformis, Bacillus circulans, Bacillus flexus, Cytophaga sp., Bacteroides sp., 
Acetivibrio cellulolyticus, Butyrivibrio fibrisolvens and Cellvibrio gilvus are 
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involved in the production of the cellulases (Shah 2013; Behera et  al. 2017). 
Actinomycetes including Streptomyces drozdowiczii, Streptomyces lividans, 
Cellulomonas fimi, Cellulomonas uda, Cellulomonas bioazotea, Thermomonospora 
fusca and Thermomonospora curvata are actively involved in the production of cel-
lulases (Shah 2013).

6.5.1  Commercial Applications of Cellulases

6.5.1.1  Textile Industry
Application of enzyme in textile processing industries began around 1850s and was 
mainly used to split starch during desizing of fabric. Nowadays, novel enzymes are 
being developed for the same purpose (Sajith et al. 2016). One of the most success-
ful enzymes currently being used in the textile industry are cellulases. These are 
mainly being used for the purpose of biopolishing, carbonisation, stone wash, 

Fig. 6.5 Structure of cellulase
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bio- finishing of cellulose-based fabrics and bio-stoning of jeans in the textile pro-
cessing sectors. The overall effect of cellulase is an improved fabric appearance. 
Use of a cellulase-based approach will be advantageous as it is eco-friendly, less 
work intensive, saves energy, minimises water usage and lowers the fibre damage, 
resulting in an increased productivity. Thermostable cellulases are mainly obtained 
from A. niger, H. insolens, Trichoderma viride, T. harzianum and Trichoderma 
reseei (Sukumaran et al. 2005; Karmakar and Ray 2011).

Depending upon the purpose of application and the types of fabric, the type of cel-
lulases, pH, temperature and other conditions can be varied. For instance, pure lyocell 
garments can be treated with acid cellulases, mixed-lyocell garments require the use 
of a neutral cellulases for obtaining better results while alkaline cellulases such as 
those obtained from H. insolens can be used to selectively break down the cellulose 
present in the fibre interiors and remove soil and dirt particles present in the inter-fibril 
spaces. Also, depending on the stage of processing, the content of various types of 
cellulases is varied. For example, cleaning of fabrics and depilling require the use of a 
mixture of cellulases whereas production of aged or soft fabrics and biopolishing need 
the use of either pure endoglucanase or cellulase mixtures rich in endoglucanase. The 
use of cellulases in the presence of proteases and lipases results in a better finish and 
appearance of the fabrics (Singh et al. 2016a, b, c, d).

During the process of bio-scouring (the removal of added as well as natural 
impurities present in the fabric surface), a mixture of cellulase and pectinase can be 
used, where the pectinaceous connections between cuticle structure and the body of 
the cotton fabric can be degraded by pectinase while cellulases penetrate the cuticle 
and degrade the cellulose present in the primary cell-wall structures that exist 
beneath the cotton cuticle (Singh et al. 2016a, b, c, d). Use of cellulases gives a 
lower degree of reduction in brightness as compared to other chemical methods 
(Sajith et  al. 2016). Biopolishing is a stage in the wet processing of fabrics and 
includes desizing, scouring, bleaching, dyeing and finishing. Cellulase mixtures 
with a high endoglucanase content are the best suited for this stage. Here, cellulases 
act on the microfibrils that protrude from the surface of the fabric and aid in the 
enhancement of softness, hydrophilicity and moisture absorbance of fabrics, thereby 
giving a cleaner surface, enhanced look, feel, colour, brightness and a glossy appear-
ance of fabrics and the reducing surface fuzziness and pill formation during pro-
cessing (Sajith et  al. 2016; Behera et  al. 2017). For instance, the use of 
cellobiohydrolase I, obtained from T. reesei, can be used to reduce the crystallinity, 
thereby producing a more amorphous material having a higher water affinity and a 
reduced energy demand by up to 40% (Mojsov 2011).

At the stage of washing, cellulases assist in the removal of soil and other dirt 
particles from in between the microfibrils, while during the pretreatment of bast 
fibres, cellulases degrade the surface cellulosic materials, thereby facilitating other 
enzymes to act upon the other components present in the inner layers of the fibre 
(Sajith et al. 2016). In the process of bio-stoning or bio-stonewashing, cellulases 
such as those obtained from H. insolens and Trichoderma sp. can be employed as a 
substituent to pumice stone and can be used to remove the small fibrous ends or the 
dirt particles trapped within microfibrils present on the fabric surface, thereby 
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giving a soft texture. Application of cellulases for denim finish minimises the utili-
sation of stone and the damage of denim. They help to loosen and remove the excess 
dye and facilitate the removal of mechanical abrasion during washing (Karmakar 
and Ray 2011; Behera et al. 2017).

6.5.1.2  Paper and Pulp Industry
The use of cellulases in the paper processing industry has considerably increased in 
the last decade. These are mainly employed for biomechanical pulping processes, 
including refining and grinding the woody raw materials, recycling the printed papers 
and deinking of different paper waste types, and as a co-additive in bleaching of pulp 
and/or drainage improvement (Singh et al. 2016a, b, c, d). Use of cellulase is an eco-
friendly and energy-saving process, resulting in the production of paper pulps having 
a good bulk content and stiffness with improved hand-sheet strength, tensile strength 
and fibre brightness. During the deinking and toner removal processes, ink/toner is 
released from the paper surface by partially hydrolysing the carbohydrate residues 
present, which results in the breakdown of the fibrils and bundles, thereby lowering 
the affinity for the ink particles and also preventing the alkaline yellowing of the 
product. Use of cellulases leads to the removal of excess fibrils and other dissolved 
and colloidal matters on the fibre surface, thereby helping in the reduction of drain-
age. For instance, when cellulase isolated from Trichoderma sp. was used, a decrease 
in the turbidity of pulping filtrates was observed (Behera et al. 2017).

Out of all the cellulases, endoglucanases play a major role in the paper process-
ing industries due to their ability to lower down the viscosity of pulp produced, at 
reduced levels of hydrolysis, as well as improve the bleachability of pulp. In certain 
cases, a mixture of endoglucanases and hemicellulases can also be used, which can 
further enhance the paper sheet density, drainage, runnability and beatability of 
pulp. For instance, the marginal modification of coarse mechanical pulp can be 
brought about by using cellulase and hemicellulase obtained from Trichoderma sp. 
Pergalase-A40, a commercial preparation of cellulase-hemicellulase mixture, can 
be used for the production of printing papers (Behera et al. 2017). Application of 
cellulases decreases defibrillation and reduces fibre coarseness on various fractions 
of douglas fir kraft pulp. Cellulases can also be used for the modification of cellu-
lose fibres of kraft or sulphate pulp, which results in improved physical properties. 
They are being employed during the production of biodegradable cardboards, paper 
towels and other soft paper types and also during recycling of magazines, books and 
newspaper (Karmakar and Ray 2011; Zhang and Zhang 2013).

6.5.1.3  Food Industry
Nowadays, there is an increased demand for organic foods amongst consumers, 
mainly due to the ill effects of chemical additives on human health. The use of 
enzymes can help in the production of chemical-free food products that are much 
safer. Cellulases find a wide range of applications in food sectors as well (Ducros 
et al. 1995). During the production of fruit juices, its quality depends on the effi-
ciency extraction, clarification and stabilisation methods used. Cellulosic enzymes 
make up an essential part of macerating enzyme complex, along with xylanases and 
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pectinases. Maceration using enzymes enhances the efficiency of the above- 
mentioned processes, thereby improving the quality as well as the nutritive value of 
juices. Cellulases can be used to increase the yield and cloud stability, reduce the 
processing time and improve the texture of fruit and vegetable juices during the 
extraction and clarification process. They are used to decrease the viscosity of purees 
obtained from fruits including apricot, mango, papaya, peach, pear and plum.

Cellulases, mainly β-glucosidases, may aid to reduce the excessive bitterness 
present in citrus fruits, thereby improving its texture, flavour and aroma (volatile) 
characteristics. For instance, vacuum infusion of β-glucosidases into fruits serves as 
a potential method for the alteration of sensory properties such as aroma, flavour 
and texture. Cellulases are also used to extract phenolic compounds from grape 
pulp. In addition, cellulase may also be used to release antioxidants from fruit and 
vegetable pulp, to improve the yields of starch and proteinaceous substances during 
extraction, to enhance colour extraction of fruits and vegetables and to clarify fruit 
juices, in combination with pectinases, for the enhancement of nutritive value of 
fermented foods, homogeneous absorption of water by dried vegetables and cereals 
and low-calorie oligosaccharide production (Ducros et al. 1995). Cellulases isolated 
from Aspergillus sp., Trichoderma sp., Bacillus sp. and Paenibacillus sp. are pri-
marily used to clarify juices (Sukumaran et al. 2005). Cellulases can also be used 
during the making of soy sauce, miso and other fermented soybean food products as 
they aid in the removal of external soybean coat, isolation of soybean and coconut 
proteins, and enhancement of the efficiency of starch isolation from potato and 
sweet potato, by enhancing the soaking efficacy and promoting the homogeneous 
water absorption (Ducros et al. 1995).

Cellulases are mainly used in bakery to render a good texture and quality in 
items such as bread. Carboxymethyl cellulases are mostly used for bread making 
due to its ability to aid in the hydrolysis of pentosans. Though pentoses are a minor 
part of wheat flour, because of its high water-holding capacity, they are a major 
determinant of dough rheology and quality of bread. The more the soluble pento-
sans are, the greater is the dough elasticity. Carboxymethyl cellulase has also 
shown significant farinographic and mixographic effects (Ducros et  al. 1995). 
Cellulases promote the release of simple sugars, which makes them suitable to be 
used during the production of alcoholic beverages such as wine and beer. During 
wine production, cellulases are used to hydrolyse the polysaccharides present in 
the plant cell wall, which in turn enhance the colour extraction of grapes, skin 
maceration, quality, stability, clarification and aroma of wine. Macerating enzyme 
complexes containing cellulases also improve the pressability and juice yields of 
grapes during fermentation of wine (Zhang and Zhang 2013). Therefore, in the 
wine industry and breweries, they are added during the fermentation process in 
order to enhance the yield and quality of the end products. Endoglucanases can be 
included during either mashing or primary fermentation in order to promote the 
hydrolysis of glucan, which results in a decrease in the viscosity of wort, thereby 
enhancing its filterability. For instance, a decrease in the degree of polymerisation 
and wort viscosity due to the addition of endoglucanase and exoglucanase isolated 
from Trichoderma sp. was observed. They hydrolyse β-1,3- and β-1,4-glucans in 
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low-grade barley that can be carried out using cellulases. β-Glucosidases also mod-
ify the glycosylated precursors and therefore, aid in improving the sensory proper-
ties of wine, such as aroma. Cellulosic enzymes during malting aid in improving 
aroma, yield and stability of liquor. Cellulases, along with hemicellulases and pec-
tinases, are added during clarification and filtration of wine and aid to stabilise and 
improve its colour during extraction. This aids to improve the overall efficiency of 
the production process (Sukumaran et al. 2005; Karmakar and Ray 2011; Zhang 
and Zhang 2013). The performance of Cytolase 219, an enzyme mixture contain-
ing cellulase, pectinase and xylanase, during wine production was evaluated on 
three varieties of white grapes and reported an increase by 10–35% and 70–80%, 
in the first wine must and must filtration rate, respectively. It was observed that 
there is a 30–70% reduction in must viscosity, 20–40% energy saving during fer-
menter cooling and an enhancement in wine stability. Also, the pressing time was 
reduced by 50–120 min during wine production (Golan 2011).

The dietary fibres in animal feed are rich in polysaccharides such as cellulose, 
β-glucan and other oligosaccharides, which serve as antinutritional components 
for many of the animals. Cellulases, when added, eliminate these antinutritional 
components by degradation of certain cereal constituents, thereby improving the 
digestibility and nutritive value of monogastric animal feeds. For instance, 
β-glucanases, when added to animal feed, aid in the hydrolysis of β-glucan and 
decrease its intestinal viscosity, which in turn helps to release the nutrients and 
improve its digestibility and absorptivity. Cellulases obtained from B. subtilis are 
used to degrade the soya bean hull, thereby enhancing its nutritional value. Also, 
in the large intestine of animals, cellulases ferment the undigested cereal compo-
nents and produce propionic acid, which due to its bacteriostatic effect prevents 
the colonisation by pathogenic bacteria. Addition of cellulases has also proven to 
improve the milk yield and body weight gain by ruminants (Sukumaran et  al. 
2005; Zhang and Zhang 2013).

6.5.1.4  Agriculture
Enzyme mixtures containing cellulases, hemicellulases and pectinases seek appli-
cations in the agriculture industry and can be employed to improve the growth of 
various crop varieties and soil quality. Soil supplemented with exogenous cellulase 
accelerated the decomposition of cellulose present in soil and straw decomposi-
tion, in turn increasing the soil fertility. As the result of this, the dependence on 
mineral fertilisers can be reduced. Some fungal cellulases and related cellulolytic 
enzymes, such as β-glucanases, control plant diseases, by disintegrating the cell 
wall of pathogens that enter the crops. Hence, they can be used as biocontrol 
agents. β-1,3- Glucanase isolated from T. harzianum CECT 2413, inhibits the 
growth of phytopathogenic Rhizopus solani and Fusarium sp. and hence is 
involved in controlling plant diseases. Pythium sp. is a plant pathogen that 
affects cucumber seedlings. Use of hypercellulolytic mutant isolated from T. 
longibrachiatum reduces the occurrence of the disease. The enzymes β-1,3-
glucanase and N-acetylglucosaminidase isolated from T. harzianum P1 prevent 
the spore germination and elongation of germ tube of Bacillus cinerea, in a 
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synergistic manner. Cellulases obtained from Trichoderma sp., Gliocladium sp., 
Chaetomium sp. and Penicillium sp. are useful in this industry due to their potential 
to improve seed germination, plant growth, flowering ability, root system and crop 
yields. Other cellulolytic enzymes used in the agriculture industry are mainly 
obtained from genera Aspergillus, Chaetomium, Trichoderma and actinomycetes 
(Zhang and Zhang 2013).

6.5.1.5  Carotenoid and Flavonoid Extraction
Carotenoids are organic pigments that include any class of pigments, such as caro-
tene, that render colour to plant parts such as ripened tomatoes. Their desirable 
properties such as natural origin, negligible toxicity, ability to produce a range of 
colours, high versatility in terms of solubility and biological roles such as provita-
min A activity, anticancer properties and role in lipid oxidation demand a higher rate 
of carotenoid production. Use of conventional methods such as solvent extraction 
can cause the dissociation of pigments from the proteins and render them water 
insoluble and cause their oxidation. In contrast, the enzyme-mediated extraction 
retains the natural and protein-attached status of these pigments, thus enhancing its 
stability and solubility. A mixture of cellulolytic enzymes and pectinases speeds up 
the hydrolysis rates and results in complete liquefaction. They disintegrate the cell- 
wall fruits and vegetables, such as orange peel, sweet potato and carrot, resulting in 
the release of carotenoids (Behera et al. 2017). Cellulases also assist in the extrac-
tion of the flavonoids from seeds and flowers. In contrast to conventional methods 
of extraction, such as acid or alkali treatment and/or solvent extraction, use of 
enzymes improves the yield and lowers the processing time and heat damage of the 
final product (Sukumaran et al. 2005).

6.5.1.6  Olive Oil Extraction
The current international market has an increasing demand for olive oil due to its 
high health benefits. The production of high-grade olive oil depends upon the 
quality of the substrates and fruits and the physical conditions provided during the 
extraction process. For instance, under cold-pressing conditions, a clean, freshly 
picked and slightly immature fruit produces a high quality of olive oil while at 
temperatures higher than ambient, a fully ripened fruit produces oil having high 
acidity and degree of rancidity and poor aroma. Cellulase and hemicellulase 
ensure an intense and quick cell-wall and membrane disintegration in olive fruits 
and favour the entry of substances such as polyphenols and aromatic precursors 
into the final products obtained, in turn strengthening the polyphenol extraction 
from olive fruits and causing a reduction of viscosity of olive. They also help to 
optimise the extraction process to a greater extent, generate a better centrifugal 
fractionation, decrease wastewater oil content and increase the overall efficiency 
of the process. For instance, Olivex, a commercial preparation containing pectin-
ase, cellulase and hemicellulase, obtained from Aspergillus aculeatus, can be 
employed to enhance this process. Use of macerating enzymes also promotes the 
production of antioxidants and vitamin E in olive oil, which lowers down the 
degree of rancidity (Behera et al. 2017).
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6.5.1.7  Detergent Industry
A recent addition to the application of cellulases is in the laundry and detergent 
industries. Cellulases are mostly used in conjugation with lipases and proteases in 
detergents. Their ability to remove small and fuzzy fibrils penetrating from the 
surface of fabric is exploited in this area of application, leading to an improved 
performance of detergents; modification of the cellulosic fibrils, thereby improv-
ing the colour, brightness and texture; enhancement of the quality of fabric; resto-
ration of fabric softness; and removal of the dirt present in cotton garments. 
Alkaline cellulases obtained from H. insolens or H. grisea are used as additives in 
detergents to remove soil particles present in interfibrillar spaces due to their abil-
ity to specifically and selectively interact with cellulose in the fibre interiors, in 
the presence of other conventional ingredients. In order to enhance the stability of 
cellulases in liquid detergents, anionic or non-ionic surfactants, citric acid or 
water-soluble salt, proteolytic enzymes and mixtures of propanediol and boric 
acid or its derivatives can be used (Zhang and Zhang 2013; Behera et al. 2017). 
Currently, detergents use endoglucanases and its variants, particularly those iso-
lated from T. reesei, T. viride, T. harzianum and A. niger as additives. The deter-
gent industry needs alternative cellulase preparations as cellulases currently used 
are considered expensive, though they constitute only around 0.4% of the total 
detergent cost (Shah 2013).

6.5.1.8  Medicine and Pharmaceutical Industry
In the field of medicine, fungal cellulases can be used as a cure for phytobezoars and 
trapped masses of indigestible plant components in the gastrointestinal tract and aid 
in the hydrolysis of cellulose, hemicellulose and β-glucan polymers present in food. 
For instance, digestin, a digestive enzyme product, has cellulase and helps in 
improving digestion. Bacterial cellulases are potential in curing blinding keratitis 
and granulomatous amoebic encephalitis due to their cell wall-degrading action 
against pathogens, like Acanthamoeba sp. They also serve as antibiofilm agents due 
to their ability to degrade the cellulosic constituents of biofilm, which in turn aids in 
restricting pathogen’s distribution within the body and increases the accessibility of 
drugs to them (Sukumaran et al. 2005; Zhang and Zhang 2013).

6.5.1.9  Biofuel
In recent years, one of the major environmental concerns has been global warming 
due to an increased level of greenhouse gases. These are aggravated in response to 
continuous and increased use of fossil fuel. Continuous use will also lead to the 
depletion of fossil fuel. Hence, there is a need for an alternative fuel source and 
biofuels, especially bioethanol from renewable resources, serve as a potential can-
didate for the same. Currently, enzymatic saccharification for the bioconversion of 
lignocellulose wastes such as agricultural residues like sugarcane bagasse, rice 
straw, wheat straw, corncob and Prosopis juliflora and forestry residues for the pro-
duction of higher value products such as biofuel is being investigated.

In general, degradation of lignocellulose biomass is a costly process and includes 
three steps, physiochemical pretreatment, enzymatic hydrolysis and fermentation. 
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During delignification, the lignocellulose is degraded and cellulose and hemicellu-
lose are released. These renewable cellulosic materials are hydrolysed by cellulases, 
following which these can be fermented to produce simple and free sugars, like 
glucose, which serve as substrates for bioethanol production. For instance, cellu-
lases obtained from C. thermocellum hydrolyse cellulose and aid in the fermenta-
tion of sugar to yield ethanol. Cellulases isolated from a variety of filamentous fungi 
such as Aspergillus sp., Trichoderma sp. and Penicillium sp. can be exploited for the 
production of biofuel. As compared to chemical processes, such as the use of alkali 
or acids, use of enzymatic methods for the same serves to be a specific, low-energy- 
intensive, natural and an eco-friendly process and hence is preferred. Use of cellu-
lases also reduces the cost by 40% (Sukumaran et  al. 2005; Karmakar and Ray 
2011).

6.5.1.10  Environmental Applications
As cellulases are one of the major components in plant biomass, wastes, such as 
those generated from agricultural fields, agro-industries and forestry, are rich in 
unutilised cellulose and are one of the causes of environmental pollution. Cellulases 
can be used to produce valuable products such as biofuels, alcohols, enzymes, 

Table 6.4 Commercial applications of cellulases

Industry Applications
Textile industry Bio-souring of fabrics

Bio-stoning of jeans
Paper and pulp 
industry

Biomechanical pulping
Deinking and recycling of printed papers

Food industry
Food processing Enhance colour extraction of fruits and vegetablesClarify fruit juices, in 

combination with pectinases
Enhance the viscosity of fruit purees
Release antioxidants from fruit and vegetable pulp

Bakery To render a good texture and quality in bakery items such as bread
Wine and beverage 
industry

Enhancing the process of malting, mashing, pressing and colour 
extraction of grapes
Enhance the primary fermentation, beer quality, viscosity stability and 
filterability of wort

Animal feed Improve the digestibility
Agriculture Improve soil quality and decrease dependence on mineral fertilisers

Inhibit the growth of plant pathogens
Detergent industry Remove the small fibres that extend out and improve the colour, 

brightness and texture of fabrics
Enhance the fabric quality and restore of fabric softness
Remove dirt
Enhance performance of detergents

Biofuel Convert renewable cellulosic materials into glucose and fermentable 
sugars, which in turn serve as substrates for biofuel production

Environmental 
applications

Produce value-added products from agricultural and forestry wastes
Degrade celluloses present in waste water
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Table 6.5 Commercial applications of other enzymes

S. 
no. Enzyme name Microbial sources Industry Application
1. Pectinase Aspergillus niger

Penicillium 
frequentans
Sclerotium rolfsii
Rhizoctonia solani
Mucor pusillus
Bacillus polymyxa
Bacillus pumilus
Bacillus 
stearothermophilus
Bacillus subtilis
Xanthomonas 
campestris
Penicillium italicum
Aspergillus 
carbonarius
Streptomyces lydicus
Aspergillus giganteus
Aspergillus kawachii
Aspergillus niger
Fusarium 
moniliforme
Mucor flavus
Penicillium 
frequentans
Rhizopus oryzae
Thermoascus 
aurantiacus

Textile 
industry

1. Bio-scouring and 
bio-polishing of fabrics in 
conjunction with other enzymes 
such as amylases, lipases, 
cellulases and hemicellulases
2. Removal of sizing agents 
from cotton fabrics and cotton 
softening

Food 
industry

To increase the efficiency of 
stain removal and fabric care
1. Removal of mucilage coat 
from coffee beans; accelerate 
the fermentation and improve 
the foaming ability of tea
2. Depectinisation and 
clarification of juices

Animal feed 1. A component of the 
enzyme cocktail; aids in 
decreasing its viscosity and 
improves the nutrient 
absorption

Waste water 
treatment

1. Pretreatment of wastewater 
high in pectin

Paper and 
pulp industry

1. Depolymerises pectin and 
helps in bleaching

2. Phytase Aspergillus niger
E. coli
Bacillus sp.
Xanthomonas oryzae

Animal feed 1. Helps in the utilisation of 
natural phosphorous-bound 
phytic acid in cereals

Food 
industry

1. Degrades phytate present in 
food and increases the 
absorption of dietary minerals
2. In bread making, reduces 
phytate level and enhances the 
softness and crumb texture

3. Papain Expressed as 
recombinant protein 
in E. coli
Saccharomyces 
cerevisiae
Pichia pastoris

Medicine 1. Analgesic and anti- 
inflammatory against acute 
allergic sinusitis
2. Wound healing
3. Additive in toothpaste and 
mouthwash to enhance the 
whitening and removal of 
plaque

(continued)
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Table 6.5 (continued)

S. 
no. Enzyme name Microbial sources Industry Application
4. Bromelain Expressed as 

recombinant protein 
in E. coli

Food 
industry
In bakery

1. In bakeries to enhance 
dough relaxation and even 
raising of dough
2. Meat tenderisation
3. Inhibits the phenol 
oxidation and prevents 
browning of fruits

Textile 
industry

1. Removes scale and 
impurities from wool and silk 
fibres; enhances dyeing

Cosmetics 1. Tooth whitening and 
removal of stains, plaque and 
debris
2. Used in treatment of acne, 
wrinkles, dry skin and 
post-injection bruising and 
swelling

5. Mannanase Acinetobacter sp.
Bacillus 
amyloliquefaciens
Bacillus circulans 
Bacillus subtilis
Cellulosimicrobium 
sp.
Chryseobacterium 
indologenes
Klebsiella oxytoca
Paenibacillus sp.
Aspergillus niger
Aspergillus flavus
Aspergillus oryzae
Trichoderma reesi
Streptomyces sp.
Penicillium occitanis
Scopulariopsis 
candida

Paper and 
pulp industry

1. Degrades glucomannan to 
improve paper brightness
2. Used in bio-bleaching

Detergent 
industry

1. Aids in hydrolysis of 
mannan and boosts stain 
removal

Food 
industry

1. Hydrolyses the mannan 
present in coffee extract and 
reduces its viscosity
2. Prevents proteolysis during 
fish processing

Animal feed 1. Hydrolyses the mannan 
and release of encapsulated 
nutrients
2. Enhances the adsorption 
and decreases the digestion 
viscosity

6. Xylanase Aspergillus sp.
Bacillus sp.
Bacillus 
licheniformis
Aspergillus niger

Animal feed
Paper and 
pulp

1. Enhances digestibility of 
starch and depolarises xylans 
for better digestion
2. Enhances bleaching and 
augments the value of pulp

Fuel 1. Production of bioethanol 
from lignocellulose

(continued)
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Table 6.5 (continued)

S. 
no. Enzyme name Microbial sources Industry Application
7. Laccase Bacillus subtilis

Trametes hirsute
Trametes versicolor
Pseudomonas 
aeruginosa

Paper and 
pulp

1. Used in bleaching and 
delignification.

Cosmetics 1. Used in the preparation of 
hair dye and pigments

Textiles 1. Production of textile dyes
Food 1. Flavour enhancer
Waste 
management

1. Degrades waste containing 
olefin unit, polyurethane and 
phenolic compounds

Therapeutics 1. Detoxification
8 Catalase Streptomyces sp.

Corynebacterium 
glutamicum

Dairy 1. Cheese processing
Therapeutics 1. As antioxidants

9. Gluco-oxidase Aspergillus niger
Penicillium 
chrysogenum

Bakeries 1. Dough strengthening
Beverages 1. Oxygen removal from beer

10. Isomerase Corynebacterium sp. Food 
industry

1. Production of high-fructose 
corn syrup

11. Superoxide 
dismutase

Corynebacterium sp.
Lactobacillus sp.

Cosmetics 1. Free radical scavenging 
and prevents skin damage

Therapeutics 1. Used in sunscreen lotions
2. Anti-inflammatory and 
antioxidant.

12. Peroxidase Corynebacterium 
glutamicum

Therapeutics 1. Antioxidant
Cosmetics 1. Free radical scavenging to 

reduce erythema; used in 
sunscreen lotions
2. Hair dyeing

Textile 1. Bio-bleaching
Manganese 
peroxidase 
and lignin 
peroxidase

Phanerochaete 
chrysosporium
Coprinus cinereus

Waste 
management

1. Degradation of phenolic 
compounds

Lacto 
peroxidase

Lactobacillus sp. Dairy 1. Enhances shelf life of dairy 
products

Glutathione 
peroxidase

Corynebacterium 
glutamicum

Therapeutics 1. Antioxidant
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sugars, enhanced animal feeds and human nutrients and can be used as cheap energy 
sources for fermentation, by supplementation of cellulase and other enzyme mix-
tures, thereby reducing the environmental load (Mojsov 2011). The waste water 
generated from industries such as the paper and pulp industry can be treated with 
cellulases in order to break down the celluloses present (Ducros et al. 1995).

To conclude, cellulases are currently being used in a variety of industrial con-
texts, such as in textile industry, paper and pulp industry, food and feed industry, 
pharmaceutical industry, detergent and laundry industry, research and development, 
waste management and biofuel generation. Cellulosic enzymes in combination with 
hemicellulases and pectinases serve as a potential tool for research in the areas of 
plant biology. Cellulases along with other suitable enzyme mixtures can be used for 
the purpose of controlling plant disease or to generate protoplasts by degrading the 
cell wall (Mojsov 2011). Cellulases can be exploited for the development of analyti-
cal and purification processes. Cellulose-binding domains can be used as an affinity 
tag for protein purification. Cellobiohydrolase I gene has a strong promoter which 
can be used to trigger gene expression at high levels. Using cellobiohydrolase I 
promoter, heterologous proteins, enzymes and antibodies can be expressed. For 
example, chymosin, glucoamylase, phytase, acid phosphatase, lignin peroxidase, 
laccase, endochitinase, antibody Fab fragment, single-chain antibodies, IL-6 and 
human lysozyme can be expressed in T. reesei (Zhang and Zhang 2013). Though 
production of cellulases occurs at an enormous rate, more cost-effective and effi-
cient process for screening, isolation, purification and/or immobilisation is needed 
and optimisation of the same is also required, so as to fulfil the demands of various 
industries. Currently, one of the major drawbacks of cellulase production is the low 
yield and high production cost. Using biotechnological tools, improvements can be 
made in the efficiency of production, at a competitive cost. Table 6.4 displays vari-
ous commercial applications of cellulases.

6.6  Other Enzymes

In addition to the above-discussed major enzymes, several other enzymes are also uti-
lised in industrial applications, which are summarised in Table 6.5 (Lei et  al. 2007; 
Pedrolli et al. 2009; Amri and Mamboya 2012; Chauhan et al. 2012; Jegannathan and 
Nielson 2012; Sharma et al. 2012; Arshad et al. 2014; Tapre and Jain 2014; Dahiya 
2016; Kumar et al. 2017). Pectinases are used widely in food and textile processing. 
Xylanases are used in the paper industry and in fuel production. Laccases are used in the 
paper industry and as therapeutics. Catalase and peroxidases are used as antioxidants.

6.7  Conclusion

Microbes are an inexhaustible source of enzymes which have numerous advantages 
with respect to their use in industrial applications, as compared to conventional 
methods (using chemicals). They are good catalysts, increase the rate of reactions 
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and work optimally under given environmental conditions and scaling up of the 
production process is possible by genetic manipulation. The global market for the 
production of microbial enzymes is a billion-dollar industry and is ever-increasing. 
Recombinant DNA technology and protein engineering open up the possibilities of 
obtaining novel products. Industries utilising microbial enzymes are food, pharma-
ceuticals, detergents, leather, waste management and many others. Some applica-
tions require the use of only a single type of enzyme preparation, whereas other 
applications require a mixture of enzymes for optimal efficiency. Care should be 
taken that all components of the enzyme mixture are compatible with each other and 
there is no formation of undesired products. Microbial enzymes have the potential 
to meet the demands of the ever-increasing population as well as reduce factors 
contributing to environmental hazards, thus making it a green method for building a 
sustainable future.
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Abstract
Amylases are widely distributed and have various industrial applications. 
Microbes play a major role when bulk production of enzymes is desired. 
Enzymes which can work in harsh conditions like high or low pH, high salt 
concentration, and high or low temperature are of special interest. As starch 
solution has a lower pH, conversion of starch needs to be adjusted in terms of 
pH or require acid- stable amylases for working at lower pH.  Thermophilic 
 amylases are prerequisite for industrial processes like liquefaction followed by 
saccharification of starch at higher temperatures. Psychrophilic amylases are 
considered to reduce energy requirements when utilized in wastewater treat-
ments during winters. Halophilic amylases may reduce contamination risk and 
can contribute to low- cost amylase production. Use of thermostable and acid-
stable or -tolerant amylases can enhance conversion of starch into sugar by 
manyfold. Bacillus licheniformis is notable for thermophilic amylase while 
Alteromonas haloplanktis for psychrophilic amylase. Amylases are used in vari-
ous industries like sugar, paper and pulp, textile, detergent, bread making, and 
brewing; biofuel production; and treatment of starch processing wastewater. In 
this chapter, we have discussed microbial sources for the production of distinct 
amylases working in extreme conditions.
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7.1  Introduction

Amylases are one of the most valuable enzymes used in a broad range of industrial 
processes. These enzymes also have a wide potential in biotechnological applica-
tions and account for nearly 30% of the world’s enzyme market (Rajagopalan and 
Krishnan 2008). The global market of the industrial enzyme was evaluated to about 
$4.2 billion in 2014 which is expected to reach nearly $6.2 billion till 2020 (Singh 
et al. 2016). Amylases break down starch and release glucose, maltose, and other 
oligosaccharides. Starch is the second major polysaccharide food reserve in nature 
after cellulose. Starch is ubiquitously distributed on the earth and synthesized by 
plants through photosynthesis in the presence of water and sunlight inside the plas-
tids. Starch granules are produced in a variety of plant tissues including pollen, 
leaves, stems, roots, tubers, bulbs, rhizomes, fruits, and seeds.

Starch is a polymer of glucose subunits linked with glycosidic bonds. The starch 
polymer has two main components: amylose and amylopectin (Fig. 7.1). Amylose 
is a polymer of glucose subunits linked by α-1,4 glycosidic bond while amylopectin 
consists of a branching point of α-1,6 glycosidic bonds. Commercial starch is 
extracted from different sources in which maize is predominant while wheat, rice, 
potato, and sago also share significant contribution. Size and shape of granules are 
diverse depending on its source of origin. Amylases are produced by a variety of 
plants, animals, and microorganisms. Use of microorganisms for production of 
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amylases has many advantages like short life cycle, ease in handling, economical 
bulk production, and possibility of manipulation for desired characteristics and 
applications (Sundarram and Murthy 2014). Different microorganisms particularly 
bacteria, fungi, and yeast are mainly used for industrial production of amylase. 
Conventionally submerged fermentation (SmF) is used for the industrial processes 
but now by having known advantage over submerged fermentation, solid-state fer-
mentation (SSF) is more preferred (Anto et al. 2006; Soccol et al. 2017). As amy-
lases are extensively used in a variety of applications, they require some special 
characteristics. Industrial processes of starch liquefaction and gelatinization are per-
formed at very high temperature and hence thermophilic property of amylase is a 
prerequisite. At the same time native starch has very low pH and so amylase which 
shows stability in acidic environments is also preferable. This chapter is focused on 
amylases with specialized characteristics to tolerate extreme conditions and their 
possible roles in industrial processes.

7.2  Classification of Amylases

Amylases are mainly classified into three different subtypes as α-amylase, 
β-amylase, and γ-amylase or glucoamylase. β-Amylases are produced by plants and 
microorganisms while α- and γ-amylase are found abundantly in animals and are 
also present in microorganisms (Benjamin et al. 2013). Starch-converting enzymes 
are further classified into four groups as endo, exo, debranching, and transferase 
(Fig. 7.2) (Van der Maarel et al. 2002).

Fig. 7.2 Classification of starch-degrading enzymes

7 Extremophilic Amylases: Microbial Production and Applications



188

7.2.1  α-Amylase

α-Amylase is extensively studied among all amylases. α-Amylase (E.C. 3.2.1.1) is clas-
sified in the GH13 family. It is also known as 1,4-α-d-glucan glucanohydrolase (Hiteshi 
and Gupta 2014). Its systematic name is 4-α-d-glucan glucanohydrolase. α-Amylase 
belongs to an endoamylase class. It is an extracellular enzyme that randomly hydrolyzes 
α-1,4 glycosidic bond of the amylose chain. It is secreted as a primary metabolite of 
microorganisms (Kammoun et al. 2008). α-Amylase acts neither on terminal glucose 
residue nor on α-1,6 linkages of amylopectin (Whitcomb and Lowe 2007). Microbial 
α-amylases are the most stable and produced more economically compared to plant and 
animal α-amylases (Prajapati et al. 2015). Amylolytic enzymes contribute to the process 
of starch breakdown, but α-amylase is most important for initiation of this process 
(Tangphatsornruang et al. 2005). α-Amylase is an inducible enzyme and it is induced in 
the presence of starch or its hydrolytic product like maltose (Naidu and Saranraj 2013).

7.2.2  β-Amylase

β-Amylase is mainly of plant origin, but few microbial β-amylases are also known. 
β-Amylase (E.C. 3.2.1.2) is known as 1,4-α-d-glucan maltohydrolase and saccharo-
gen amylase (Hiteshi and Gupta 2014). Its systematic name is 4-α-d-glucan malto-
hydrolase. Bacterial strains belonging to genera Bacillus, Pseudomonas and 
Clostridium (Rani et al. 2007) and fungal strains belonging to Rhizopus (Olufunke 
and Azeez 2012) and Volvariella volvacea (Olaniyi et al. 2010) have been reported 
to synthesize β-amylase. β-Amylase is distributed in higher plants such as soybean, 
sweet potato, and barley (Oudjeriouat et al. 2003). The properties of the β-amylase 
vary from source to source (Olufunke and Azeez 2012).

7.2.3  Glucoamylase or γ-Amylase

Glucoamylases (E.C. 3.2.1.3) are also known as amyloglucosidase, γ-amylase, and 
1,4-α-d-glucan glucohydrolase. Its systematic name is 4-α-d-glucan glucohydrolase. 
They are exo amylases which release glucose molecule from the nonreducing end of 
starch and other oligosaccharides (Prajapati et al. 2013). Glucoamylases are exten-
sively produced from fungal species. The enzyme cleaves α-1,4 linkages favorably but 
α-1,6 linkages are hydrolyzed at a low rate. This slower hydrolysis of α-1,6 linkage 
affects enzyme kinetics and saccharification effectiveness (Norouzian et al. 2006).

7.3  Sources of Amylases

Commercially, amylases are obtained from the plant, animal, and microbial sources. 
Microbial amylases are in demand because of various advantages which they offer 
like cost-effective industrial production, short life cycle, and ease of manipulation. 

B. M. Bhatt et al.
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There are well-established tools available for genetic engineering which may be use-
ful in the improvement of strain to achieve a higher yield of protein. Even protein 
engineering techniques can also be applied to get the desired enzyme property as per 
the need of application (Gupta et al. 2003). Bacterial and fungal amylases are exten-
sively studied, along with actinomycetes and yeasts (Gupta et  al. 2003). Recently, 
Archaea are also in focus due to the production of enzymes with special characteris-
tics. Archaea were less studied as they are difficult to culture and observe. Bacterial 
amylases are more preferred than fungal because of the rapid growth rate of the organ-
isms and easy handling and manipulation of the enzyme for desired characteristics 
(Benjamin et al. 2013). Bacterial amylases are mostly obtained from Bacillus species. 
Several species of Bacillus such as B. subtilis, B. amyloliquefaciens, B. licheniformis, 
and B. stearothermophilus are reported to produce amylase by submerged fermenta-
tion at industrial level (Benjamin et al. 2013).

Different types of fungi are known to secrete glucoamylase. Aspergillus niger, 
Aspergillus awamori, Aspergillus foetidus, Aspergillus oryzae, Aspergillus terreus, 
Mucor rouxians, Mucor javanicus, Neurospora crassa, Rhizopus delemar, Rhizopus 
oryzae, and Arthrobotrys amerospora are few examples of glucoamylase-producing 
fungi (Norouzian et al. 2006).

Enzymes from common bacterial and fungal source are mostly mesophilic and 
neutrophilic in nature. Many industrial processes need enzymes which may remain 
stable under harsh conditions, and so there is a need for extremophilic microbes and 
their hydrolytic enzymes.

7.4  Structural Characteristics of Amylases

Enzyme structure, including various domains and their biological role, is important 
for the preparation of bioengineered enzyme. The α-amylase structure is extensively 
studied among all amylases. Three-dimensional structure of α-amylase is known to 
have three main domains A, B, and C (Fig. 7.3). The domain A is a catalytic domain 
that has (β/α)8-barrel-shaped structure. (β/α)8 Barrel was first observed in chicken 
muscle triose phosphate isomerase (TIM); hence it is known as TIM barrel structure 
which is present in all members of the α-amylase family. The B domain is a small 
loop which overhangs between third β-strand and third α-helix of TIM barrel. It 
forms large substrate-binding cleft which varies and is supposed to play a vital role 
in substrate specificity differences in α-amylase (Van der Maarel et al. 2002). Domain 
C is a C-terminal antiparallel β-sheet composed of 5–10 strands subsequent to the 
catalytic (β/α)8 barrel. It is responsible for stability/folding of the protein in substrate 
binding (Robert et al. 2003). All known α-amylases contain calcium ion found at the 
interface between domains A and B (Linden et al. 2003). Calcium ion-binding site is 
positioned far away from the active site and contributes to the stabilization of the 
enzyme. Enzyme stability and catalytic efficiency are determined by the non-cova-
lent interactions such as hydrogen bonds, ionic interactions, hydrophobic interac-
tions, and van der Waals interaction and any factors negatively influencing these will 
result in unfolding or denaturation of the protein. Highly stable α-amylase is found 
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naturally from extremophiles while stability can be increased by the engineering of 
other naturally available α-amylase. Metagenomic approaches can play an important 
role in novel amylase from uncultivable microbes. Thermostability is a most pros-
pecting feature among amylases from extremophiles (Sindhu et al. 2017).

7.5  Amylase from Extremophiles

Acidophiles, alkalophiles, thermophiles, psychrophiles, halophiles, and piezophiles 
are examples of extremophiles which exhibit stability under low pH, high pH, high 
temperature, low temperature, high salt concentration, and high osmotic pressure, 
respectively. Recently Chen and Jiang (2018) suggested that renewable energy sources 
cannot replace petroleum-based products. Hence the development of new technology 
known as “next-generation industrial biotechnology (NGIB)” is required. This tech-
nology will reduce energy and freshwater requirements, whereas the use of a low-cost 
substrate or waste material with great efficiency for the substrate to product conver-
sion may offer low capital investment. Current practices require specific environments 
such as pH and temperature for growth of microorganisms for enzyme production. 
Most of the microbes used in industrial processes are neutrophiles and mesophiles, 
which cannot tolerate harsh environmental conditions and require specialized envi-
ronments. In this context, extremophiles may be useful. Bacteria and Archaea both are 
known for their ability to survive in extreme conditions; however, in experimental 
conditions, the difficulty arises due to slower growth rate of Archaea. In the biopro-
cesses maintenance of sterility is also a major concern. If extremophiles are used, they 
may reduce the risk of contamination. It can also lower the cost of water and energy, 
which is required for maintaining sterility (Chen and Jiang 2018). Industrial 

Fig. 7.3 3D structure of α-amylase from Bacillus licheniformis (left) and Alteromonas haloplank-
tis (right) (Hiteshi and Gupta 2014)
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production of bio-products involves upstream and downstream processes. Upstream 
processing involves substrate, its pretreatments, sterilization, aeration, agitation, tem-
perature, and pH maintenance cost while downstream processes involve equipment 
and energy cost to separate microbial cells from recovered products. The cutdown in 
energy requirement at any point can reduce product cost. A resistant strain is needed 
for the development of NGIB. Major characteristics required for NGIB strains are fast 
growth at high or low temperature, pH, and/or osmotic pressure. It should be able to 
grow maximally on unusual substrates like long-chain fatty acids and solvents and 
tolerate toxic compounds including heavy metals, short-chain alcohols, and fatty 
acids with lower water and energy requirements. Microbial strain having these quali-
ties may escalate amylase production to manyfold. Some archaea possess some of 
these traits but they are slow growers and application of genetic engineering tools has 
not done so well. Some bacteria and fungi can satisfy the properties like high or low 
temperature, pH, and/or osmotic pressure with lower water and energy requirements 
and can be further improved by using available engineering methods and tools espe-
cially for prokaryotic bacteria which are extensively studied (Chen and Jiang 2018). 
Organic solvent-tolerant amylases are known from Haloarcula sp. strain S-1, 
Nesterenkonia sp., and Salimicrobium halophilum strain LY20 (Dumorné et al. 2017). 
Thermostability for amylase enzyme plays an important role because starch starts 
solubilizing at high temperature (100 °C) and in acidic condition (pH 4.5–5.5). Several 
microbes have been reported to produce thermostable enzymes, including amylases, 
which can also show activity at high and low pH (Table 7.1).

Table 7.1 α-Amylases produced by microbes showing activity at high pH and temperature with 
their molecular weight

Microbes
Optimum 
temperature (°C)

Optimum 
pH

Molecular 
mass (kDa) Reference

Alicyclobacillus 
acidocaldarius

75 3 160 Schwermann 
et al. (1994)

Bacillus licheniformis 
NH1

90 9 58 Hmidet et al. 
(2008)

B. stearothermophilus 80 5.6 59 Ali et al. (2001)
B. subtilis KCC103 65–70 5–7 53 Nagarajan et al. 

(2006)
Geobacillus sp. LH8 80 5–7 52 Mollania et al. 

(2010)
B. circulans 48 4.9 48 Dey et al. (2002)
B. amyloliquefaciens 
KCP2

65 8 Prajapati et al. 
(2015)

Cryptococcus flavus 50 5.5 84.5 Wanderley et al. 
(2004)

Cryptococcus sp. S2 37 6 66 Iefuji et al. 
(1996)

Thermococcus 
profundus

80 5.5 43 Kwak et al. 
(1998)

Staphylothermus 
marinus

100 5 82.5 Li et al. (2010)
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7.5.1  Thermophilic Amylase

Thermophilic enzymes are stable above 55  °C, thermophilic extremozymes are 
stable above 75  °C, and hyperthermophilic enzymes are stable above 
90 °C. Thermostability is an important characteristic of most amylases which are 
used in industrial processes (Sindhu et  al. 2017). Among the species of genus 
Bacillus, B. licheniformis and B. amyloliquefaciens are commonly used for com-
mercial thermostable amylases. Though both are mesophilic microorganisms, their 
amylases are thermophilic and have structure similarities (Vengadaramana 2013). 
Commonly, thermophilic proteins contain a higher concentration of charged resi-
dues on the surface. There is a higher ratio of Arg, Glu, Lys, and Val as compared to 
Asn, Gln, Ser, and Thr in thermophiles (Cambillau and Claverie 2000). Surface resi-
dues of proteins are flexible and show free intraprotein interactions which increases 
the thermotolerance of the proteins (Loladze et  al. 1999). Thermophilic proteins 
contain a varied distribution of amino acids in comparison to mesophilic protein. 
Thermophilic proteins have less His and Asp among all charged amino acids at their 
exposed sites compared to buried sites. Hydrophobic amino acids like Val, Pro, Tyr, 
and Trp are increased at exposed sites; however, at buried sites, Leu is decreased and 
Val is increased (Chakravarty and Varadarajan 2000; Hiteshi and Gupta 2014). 
Thermostable enzyme provides various advantages like reduced cooling cost, higher 
solubility of the substrate, and fewer contamination risks.

7.5.2  Cold-Adapted or Psychrophilic Amylase

Limited research is carried out on psychrophilic α-amylase production. Psychrophiles 
are evolved in nature with several structural and functional adaptations (Russell 
2000). Cold-active enzymes with high catalytic efficiency have integration of unsatu-
rated fatty acids in cell membranes to sustain membrane fluidity and production of 
cold-shock proteins at low temperatures (Nam and Ahn 2011). Psychrophilic 
α-amylases are active under lower temperature with lower activation energies and 
lower melting temperatures. Protein’s flexibility helps for easy accommodation of 
substrates at lower temperatures. The flexibility of protein structure is because of the 
reduction of salt bridges and fewer proline residues in loops as the cyclic structure of 
proline gives rigidity to the proteins (Feller and Gerday 1997). Psychrophiles can 
save energy and reduce the chances of undesirable chemical reactions which take 
place at higher temperatures. In the detergent industry, it can provide color protection 
to fabrics (Sindhu et al. 2017). Psychrophilic microbes can play an important role in 
bioremediation of solids and wastewater during winters (Hiteshi and Gupta 2014).

The structure of cold-active α-amylase from Alteromonas haloplanktis is similar 
to other mesophilic amylases (Fig.  7.3). The 3D structure of different amylases 
shows that only minor structural alterations are needed to adapt to lower tempera-
tures. Usually, all changes related to cold adaptation occur outside the catalytic 
cleft, and active-site residues are highly conserved, which shows that fundamental 
pathway is not modified (Hiteshi and Gupta 2014).

B. M. Bhatt et al.
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7.5.3  Acid-Stable Amylase

Industrially amylases are used in liquefaction and saccharification processes. The 
native starch solution has lower pH (3.2–4.5) which needs to be adjusted for enzy-
matic conversion of starch to simple maltose and other oligosaccharides. Various 
bacterial amylases from B. licheniformis NH1 (4–9) (Hmidet et  al. 2008), 
Alicyclobacillus sp. A4 (4.2), A. acidocaldarius (3), B. caldolyticus (5.5), B. circu-
lans (4.9) (Dey et  al. 2002), Geobacillus sp. LH8 (5–7) (Mollania et  al. 2010), 
Lactobacillus manihotivorans (5.5), and Pyrococcus furiosus (5.5) are known as 
thermostable and acid-stable amylases (Sharma and Satyanarayana 2013). Acid- 
stable α-amylase from A. acidocaldarius shows charged residues replaced by neu-
tral polar residues on the surface of the protein. An acidic environment is adapted by 
reducing the density of both positive and negative charges and avoiding electrostatic 
repulsion of charged groups at lower pH and contributing to acid stability 
(Schwermann et al. 1994).

7.5.4  Halophilic Amylase

Halophiles mainly belong to archaea. Halophilic enzymes have a reduction in water 
activity. These proteins have a high amount of negatively charged residues on their 
surface with increasing intramolecular salt bridges (Jaenicke and Böhm 1998). It 
promotes interaction with the salty environment without precipitation. This protein 
can be denaturing irreversibly if salt concentration decreases (Marhuenda-Egea and 
Bonete 2002). Halophilic enzymes do not exhibit specific structural properties. 
Repulsion of surface residue may be responsible for the instability of halophilic 
proteins in lower salt concentration (Jaenicke and Böhm 1998). Halomonas meridi-
ana produced extracellular halophilic amylase with 5% salt in starch during expo-
nential growth phase at pH  7. The optimum temperature for activity was 37  °C 
while optimum salinity was 10% NaCl and showed activity up to 30% salt concen-
tration (Coronado et al. 2000).

7.5.5  Piezophilic Amylase

Although piezophilic microbial amylases are not reported yet, the effect of high 
pressure on commercial amylase has been studied. Abe and Horikoshi (2001) dem-
onstrated that porcine pancreatic α-amylase at high pressure produces trisaccharide 
in place of maltobiose and tetrasaccharide, with maltooligosaccharide as a sub-
strate, at great pressure and little energy. This reaction offers great industrial and 
biotechnological potential, particularly in the food industry (Dumorné et al. 2017). 
Vahidi et  al. (2018) studied the effect of pressure on Taka-amylase. When they 
applied 1000–4000 bar pressure on the enzyme, barrel-shaped β-sheets were not 
modified but loops and helix were changed. Effect of high pressure is still not clear 
at the molecular level as the only change of structure is studied.
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7.6  Production and Purification of Amylases

In nature, no bacteria work as pure culture system as in a lab environment. In the 
environmental conditions, mixed systems work and utilize sources available for their 
growth. Various microbial interactions are going on in natural environmental condi-
tions. α-Amylase-producing two strains of B. amyloliquefaciens 04BBA15 and 
Lactobacillus fermentum 04BBA19 were analyzed for their interaction with 
Saccharomyces cerevisiae. They showed that commensalism occurs between S. cere-
visiae and B. amyloliquefaciens 04BBA15 during fermentation while mutualism 
occurs between S. cerevisiae and L. fermentum 04BBA19 (Tatsinkou et al. 2014).

Traditionally industrial amylases are produced by submerged fermentation 
(SmF) processes using the pure culture of bacteria or fungi. During submerged fer-
mentation, oxygen transfer rate is a critical point for maximum enzyme yield. 
Large-scale batch fermentation is carried out in stirred tank bioreactors. Aeration 
rate needs to be maintained for aerobic fermentation processes. Agitation can main-
tain dissolved oxygen in the medium. Agitation also plays a key role in viscous 
fermentation medium (Gangadharan et al. 2011).

Thermomonospora viridis, an actinomycete, produced amylase by SmF process. 
Maximum amylase yield was attained with 1.5% corn starch and 0.5% mycological 
peptone at pH 7 after 48 h when pH turned into alkaline (8.2) (Upton and Fogarty 
1977). Thermoactinomyces thalpophilus produced amylase by submerged fermen-
tation. Fermentation medium contained 2% sorghum as inexpensive carbon source 
(Uguru et al. 1997). In their study Alrumman et al. (2014) show that thermoalkali-
philic α-amylase was produced by Bacillus axarquiensis using potato wastewater.

Nowadays, for industrial production of enzymes, various types of agro-residues 
are utilized. If solid residues are used it solves waste disposal problem and also 
produces less wastewater (Gangadharan et al. 2011). Among various agro-residues, 
the most commonly used is wheat bran in industrial fermentation. Thermomyces 
lanuginosus has been studied for extracellular amylase production using wheat bran 
with solid-state fermentation process (Kunamneni et al. 2005). Penicillium expan-
sum was used for α-amylase production by solid-state fermentation on waste loquat 
kernel (Specka et al. 1991).

B. amyloliquefaciens has been used for amylase production on various agro- 
residues; maximum amylase production achieved on wheat bran and groundnut 
oil cake with 1:1 mass ratio and 85% of initial moisture after 72 h (Gangadharan 
et al. 2006).

Akassou and Groleau (2018) have reported a high level of extracellular, thermo-
stable amylolytic enzyme from Thermus thermophilus HB8. Nonionic detergent 
Triton X-100 has been used to extract cell surface-bound amylolytic enzyme. 
Amylolytic enzyme production was optimized using central composite design as 
40 g/L of yeast extract, 41 g/L of peptone, 2.0 g/L of sodium chloride, and 25 g/L 
of starch with 20% inoculum giving maximum production. Thermophilic 
Rhodothermus marinus ITI90 strain showed maximum amylase and pullulanase 
production in optimized medium containing maltose and yeast extract. Soluble 
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maize starch, glycogen, and pullulan showed lower enzyme production as compared 
to maltose (Gomes et al. 2003).

Table 7.2 Purification strategies employed for α-amylase produced by some microbes

Microbial source Purification strategy References
Geobacillus sp. 
LH8

(NH4)2SO4 extraction, precipitation, Q-sepharose, mono 
Q-sepharose

Mollania et al. 
(2010)

B. licheniformis 
NH1

(NH4)2SO4 precipitation, sephadex G-100 gel filtration, 
sepharose mono Q anion-exchange chromatography

Hmidet et al. 
(2008)

B. subtilis 
KCC103

Acetone precipitation, DEAE sephadex A-50 Nagarajan et al. 
(2006)

B. circulans Acetone precipitation, sephadex G-100, CM-cellulose Dey et al. 
(2002)

Cryptococcus 
flavus

Sephacryl S-100 Wanderley et al. 
(2004)

Fig. 7.4 Applications of amylases
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Various purification technologies have been employed for purification of amy-
lases in different studies. Ammonium sulfate precipitation and solvent precipitation 
are conventionally employed methods as the first step of purification strategy. 
Different chromatographic methods have exhibited key roles for purification of the 
enzyme. Some strategies used are shown in Table 7.2.

7.7  Applications of Amylases

Amylase was first produced by A. niger, which was used as a digestive aid for the 
pharmaceutical industry. In all types of amylases, α-amylase is a prominent 
enzyme having multiple roles in all industrial applications. Figure 7.4 shows vari-
ous applications of amylases while Fig.  7.5 shows required characteristics of 
α-amylase for specific applications with bar graph plotted using the range of tem-
perature and pH requirements of α-amylases to be used for different industrial 
applications. The temperature/pH range of α-amylases to be used in detergent 
industry, feed, baking, desizing, brewing, paper industry, and starch saccharifica-
tion are 30–45 °C/10.0–11.5, 30–45 °C/4.5–7.0, 0–50 °C/4.5–5.5, 60–80 °C/5.5–
6.5, 60–70  °C/5.5–6.0, 60–70  °C/4.5–5.5, and 95–100  °C/4.5–7.0, respectively 
(Mehta and Satyanarayana 2016). Some commercially available amylases pub-
lished by the association of manufacturer and formulators of enzyme products 
(AMFEP) are provided in Table 7.3.
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Fig. 7.5 Characteristic requirement of α-amylases for specific applications (Mehta and 
Satyanarayana 2016)

B. M. Bhatt et al.



197

7.7.1  Sugar Industry

During starch hydrolysis, starch liquefaction and saccharification are two major 
processes needed for sugar production. Figure 7.6 shows the processes of liquefying 
and saccharifying starch using amylases for sugar syrup production. Conventionally, 
starch was hydrolyzed by chemical processes using acid or alkali treatments which 
are taken over by an enzymatic process. Enzymatic conversion gives many advan-
tages over chemical method. Limitations of chemical methods are non-specificity, 
lack of controlling saccharide composition, less environment friendliness, and 
higher refining cost. Use of enzymes for this process avoids these limitations (Crabb 
and Shetty 1999). Conversion of starch into sugar, syrups, and dextrin forms the 
major part of the starch processing industry (Mojsov 2012). For liquefaction of 
starch, amylase is added when the slurry has a lower pH (6) and high temperature 
(more than 100 °C). Primarily, α-amylase from B. amyloliquefaciens was used for 
this process, which is replaced by B. stearothermophilus and B. licheniformis amy-
lases due to their greater thermostability (Souza 2010). Thermophilic and acid- 
stable amylases are preferred for this kind of processes.

7.7.2  Baking Industry

Microbial amylases have been widely used in the baking industry (Hamer 1995). 
These enzymes can be added to the dough of bread to degrade the starch in the 

Fig. 7.6 Overview of the industrial processing of starch into cyclodextrins, maltodextrins, glu-
cose or fructose syrups, and crystalline sugar (Van der Maarel et al. 2002)
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flour to smaller dextrins, which are further fermented by the yeast. Amylases are 
also used as an anti-staling agent in bread baking, and they improve the softness 
retention of baked goods which increases the shelf life of these products (Gupta 
et al. 2003; Van der Maarel et al. 2002; Sahlström and Bråthen 1997). Addition 
of α-amylase to the dough enhances fermentation and reduces the viscosity of 
dough to increase the volume and texture of the product (Mojsov 2012). The 
high or low dose of α-amylase gives an adverse effect on bread quality, so 
branching, exo, or other maltogenic amylases can be used in the bakery industry 
for increasing the shelf life of the baked product. Commercially, B. stearother-
mophilus amylase is used in the bakery because it performs exo acting activity 
and little endo activity in the process which is important for preparing bakery 
items (Van der Maarel et al. 2002).

7.7.3  Detergent Industry

α-Amylases are being used in laundry and automatic dishwashing. Enzymes 
have superior stain removal ability compared to detergents. Amylases in deter-
gent and dishwashing formulations degrade starchy foods like potatoes, gravies, 
custard, and chocolates to dextrins and other small oligosaccharides (Olsen and 
Falholt 1998; Mukherjee et al. 2009). Amylase removes starch from surfaces and 
also provides whiteness benefit since starch can be an attractant for many types 
of particulate soils. About 90% of all liquid detergents contain these enzymes 
(Gupta et al. 2003).

The oxidative stability of amylases is also needed because washing environments 
are highly oxidized (Kirk et al. 2002). Alkaline α-amylase is used as a component 
of detergents; the chelating agents in detergents remove calcium ions, which is 
essential for its stability. Thus calcium-independent α-amylase is needed (Mojsov 
2012). Alteromonas haloplanktis amylase can be added in detergent for washing 
clothes at a lower temperature.

7.7.4  Textile Industry

In textile industries, starch is used as the sizing agent. Amylases are used for the 
desizing process. Sizing agents like starch are applied to the yarn before fabric 
production for fast and secure weaving. During weaving, the starch paste is applied 
for warping, which gives strength to the weaving process. It prevents loss of string 
by friction. The starch is removed, and the cloth goes to scouring and dying. Starch 
is usually removed by application of α-amylase (Hendriksen et al. 1999).

Starch is usually used for sizing due to advantages like its low cost, easy avail-
ability in most regions of the world, and easy removal. Starch is removed from 
woven fabric in a wet process in the textile finishing industry. The amylose is bio- 
converted by the α-amylase into glucose up to 100% whereas the amylopectin is 
converted 50% into glucose and maltose (Mojsov 2012). Bio-desizing using enzyme 
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is preferred because of their high efficiency and specific action. Amylases result in 
complete removal of the size without any harmful effects on the fabric because of 
its eco-friendly behavior. The α-amylases selectively remove the starch and do not 
attack the fibers (Ahlawat et  al. 2009; Feitkenhauer 2003; Gupta et  al. 2003). 
Amylases from Bacillus strains have been employed in textile industries for over a 
long time.

7.7.5  Paper Industry

α-Amylase has a wide application in the pulp and paper industry. It is used for 
modification of starches in coated paper. In the paper industry, sizing of paper 
with starch is performed to protect the paper against mechanical damage during 
processing (Bruinenberg et  al. 1996; Gupta et  al. 2003; Van der Maarel et  al. 
2002). The coating treatment improves the quality of the finished product, and 
enhances stiffness and elasticity of paper (Gupta et al. 2003; Bruinenberg et al. 
1996). Starch is added to paper at a temperature range of 45–60 °C. Since the 
viscosity of the natural starch is too high for paper sizing, partial degradation of 
this polymer is needed. α-Amylase is employed for this purpose (Gupta et  al. 
2003; Mojsov 2012).

7.7.6  Brewing Industry

In beer industries, microbial amylases are used to aid cereal amylase in the produc-
tion of fermentable sugar (Mojsov 2012). Amylases may be used to hydrolyze bar-
ley and starchy additive for lowering the cost of beer (Singh et al. 2016). Enzymes 
such as α-amylase, glucoamylase, and cellulases are essential in generating fer-
mentable sugars by hydrolyzing starch for the production of distilled alcoholic bev-
erages (Kirk et al. 2002; Singh et al. 2016).

7.7.7  Biofuel Industry

Over the past decades, the demand for ethanol as a biofuel has increased. Biofuels 
are becoming popular at the global level as a sustainable means of energy produc-
tion. Ethanol-based biofuels can be easily produced from agricultural waste mate-
rials. Starch is the most used substrate due to its low price and ease of availability 
as a raw material in most regions of the world (Chi et al. 2009). The bioconversion 
of starch into ethanol involves liquefaction and saccharification, where it is con-
verted into sugar using an amylolytic microorganism or enzymes such as 
α-amylase, followed by fermentation, where sugar is converted into ethanol using 
an ethanol- fermenting microorganism such as S. cerevisiae (De Moraes et  al. 
1999; Mojsov 2012).
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7.7.8  Treatment of Starch-Processing Wastewater

Food processing plant waste containing excess starch may cause pollution of water 
bodies. Biological treatment of food processing wastewater can purify the effluent 
and also produce valuable products like microbial biomass and protein (Friedrich 
et al. 1987; Klingspohn et al. 1993; Mojsov 2012). During winters, cold-adapted or 
psychrophilic amylase can also be used for wastewater treatment.

7.8  Conclusion

Various types of amylases are found in nature; however, α- and γ-amylases from 
microorganisms are widely used in various industries. Mesophilic and neutrophilic 
amylases are commonly found in microorganisms. Amylases from extremophiles 
possessing specialized characteristics would become more useful. These amylases 
can work in different conditions like high pH and temperature. Thermophilic amy-
lases have more hydrophobic residues on the surface while acid-stable amylases have 
neutral polar residues on the surface of the protein. However, in the case of psychro-
philic amylases, minor structural alterations far from the active site are possible; 
hence, the ultimate pathway cannot be modified. Halophilic amylases have negatively 
charged residues on the surface with higher intramolecular salt bridges. Thermophilic 
and acid-stable amylases are important for starch conversion into simple sugars. 
Psychrophilic amylases can be used for wastewater treatment during winters. 
Halophiles and thermophiles reduce the risk of contaminations during enzyme pro-
duction. Alkaline and calcium-independent amylases are already playing a key role in 
detergents. In the enzyme industry, production of specialized amylase active in mul-
tiple extreme conditions is always required and microbes are the only way to fulfil the 
need. Research priorities on understanding microbial systems and pathways for pro-
ducing such extremozymes will boom the enzyme industry.
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8Microbial Lipases and Their Versatile 
Applications

Neha Vishnoi, Sonal Dixit, and Jitendra Mishra

Abstract
Lipases are important biocatalysts and known for their versatile biotechnological 
applications. Lipases are well known as triacylglycerol hydrolases converting 
fats into simpler compounds as glycerol and fatty acids at the water-lipid inter-
face and vice versa in nonaqueous medium. Amongst, microorganisms mainly 
bacteria, fungi, and yeasts are the sources of lipase. Important lipase-producing 
bacterial genera are Bacillus, Pseudomonas, Botryococcus, and Burkholderia. 
Microbial lipases have received much attention due to their high substrate speci-
ficity, lesser processing time, low energy need, high stability, and inexpensive 
industrial production by using easily available raw materials. The high stability 
of lipases has extended their application to different industries, and they are tak-
ing the lead in the industrial synthesis of oleochemicals, surfactants, drugs, and 
bioactive compounds. Microbial lipases have wide commercial applicability and 
are used for the manufacture of several products like oil, food, soaps and deter-
gents, cosmetics, paper, leather, fabrics, and biodiesel. In the fat and oil indus-
tries various trans-esterification and inter-esterification chemical reactions are 
catalyzed for the alteration of fats/oils in the production of nutritionally impor-
tant triacylglycerols and polyunsaturated fatty acids (PUFA), substitutes for 
cocoa butter, fatty acid-enriched oils, etc. At the global level, vigorous research 
for finding novel microbial lipases with industrial value is being carried out. 
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This chapter emphasizes the microbial synthesis of lipases and applications in 
varying sectors of industries.

8.1  Introduction

Since the last few decades, enzymes emerged as potential biocatalysts being used 
in different industrial sectors (Pliego et al. 2015). Currently, some of the microbial 
enzymes are playing a significant role in the industrially driven process such as 
textile, detergent, food, and pharmaceuticals (Cheetham 1995). While talking 
about lipases, they occupy third place after proteases and amylases having multiple 
applications in several industries (Snellman et al. 2002; Ulker et al. 2011). Claude 
Bernard first reported lipolytic action of pancreatic lipase in the year 1856 
(Rodriguez de Romo and Borgstein 1999). Since then, other sources of lipases 
which include plants, bacteria, fungi, and archaea are well known. Lipases at 
water- lipid interface catalyze the hydrolysis of fats and convert them to simpler 
compounds (fatty acids and glycerol) whereas in the nonaqueous medium they 
reverse the chemical process (Lee et al. 2015; Ramos-Sanchez et al. 2015; Ullah 
et al. 2015). Lipases (EC 3.1.1.3) are glycerol ester hydrolases and during water-oil 
medium hydrolyse ester linkages of glycerides. Lipases select acyl faction from 
glycerides to form a lipase-acyl complex during hydrolysis and transfer its acyl 
group to hydroxyl (OH) group in aqueous condition whereas in the absence of 
water, they transfer acyl factions of carboxylic acids to nucleophiles (Martinelle 
and Hult 1995). Thus, these enzymes can acylate sugars, alcohols, amines, and 
thiols and synthesize a range of stereo-specific esters, thioesters, sugar esters, and 
amides (Dellamora-ortiz et al. 1997; Singh et al. 2003). Lipases are also known to 
have enantioselective qualities which can be utilized in biotransformation reac-
tions to catalyze esterification, inter-esterification, trans-esterification, aminolysis, 
and acidolysis (Hasan et al. 2009). Organic solvents might denature lipases and can 
cause alteration in the configuration, and hence affect both functional and catalytic 
properties (Guo et al. 2015).

Lipases have a three-dimensional structure (Fig. 8.1) with the characteristic α/β- -
hydrolase fold in core structure (Ollis et  al. 1992). The catalytic center contains 
Ser-Asp-His (Glu is replaced in some lipases by Asp) and holds a consensus 
sequence G-X1-S-X2-G as the catalytic component, where G = glycine, X1 = histi-
dine, S  =  serine, and X2  =  aspartic or glutamic acid (Kapoor and Gupta 2012; 
Farrokh et al. 2014; Faouzi et al. 2015; Priji et al. 2015). The three-dimensional 
arrangement of enzyme plays a significant role in the engineering and designing of 
lipase-related functions. The Lipase Engineering Database (LED) (http://www.led.
uni-stuttgart.de/) has been created to provide a systematic analysis of the relation-
ship of sequence, structure, and function of lipases from various sources.

The investigation of chemo-specific, region-specific, and enantio-specific trait of 
lipases is likely to be a frontier research area for the workers. As in the past few decades, 
the use and application of enzyme-based products have increased significantly. 
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According to Markets and Markets™, a survey company, the market for microbial 
lipases was estimated to be USD 425.0 million in 2018, which is further projected to 
reach USD 590.2 million by 2023, at a calculated annual growth rate (CAGR) of 6.8%. 
According to Guerrand (2017), the percentage share of lipase is also very high, i.e., 
90% of the microbial enzyme market. High catalytic activity, lesser requirement of 
expensive growth media, and ease in genetic alteration are the preferred traits essential 
for bulk production of microbial lipases (Dey et al. 2014; Lee et al. 2015; Ullah et al. 
2015). Apart from this, numerous efforts for improving catalytic and physicochemical 
properties have also been reported. Lipases are extensively used in bioprocess technol-
ogy. However, trans-esterification by lipase can be used in biodiesel production in an 
efficient, energy-saving, and eco-friendly manner compared to chemical catalysis pro-
cess (Fjerbaek et al. 2009). Based on regiospecificity or positional specificity, lipases 
can be categorized into three different classes.

Fig. 8.1 Lipase 3D structure (source: https://www.rcsb.org/3d-view/1OIL/1)

8 Microbial Lipases and Their Versatile Applications
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 1. Nonspecific lipases: Catalyze triglycerides and convert them into glycerol and free 
fatty acids with some intermediates (monoglycerides and diglycerides) and can 
eliminate fatty acids from any place of the substrate. Hydrolysis of triglycerides 
occurs slowly as compared to monoglycerides and diglycerides (Ribeiro et al. 2011; 
Kapoor and Gupta 2012).

 2. 1,3-Specific lipases: Liberate fatty acid only from positions 1 and 3 of the tri-
glycerides and are not able to hydrolyze ester bonds at secondary positions. 
Hydrolysis of triglycerides by 1,3-specific lipases to diglycerides is a much 
quicker process than that into monoglycerides (Kapoor and Gupta 2012).

 3. Fatty acid-specific lipases: Show selectivity towards fatty acid and catalyze the 
process of hydrolysis of esters having long-chain fatty acids with double bonds 
in cis position between carbons 9 and 10 (Ribeiro et al. 2011). Lipases remain 
active in organic solvents and do not require cofactor for their activity (Lee et al. 
2015). Trans-esterification reaction can use glycerides (mono, di, and tri) and 
free fatty acids; reaction time is shorter, and it shows high yield in nonaqueous 
media and resistance to acidic pH (Ashfaq 2015).

8.2  Types of Lipases

8.2.1  Extra- and Intracellular Lipases

Lipases of microbial origin can be extracellular, intracellular, or bound to the mem-
brane, but the extracellular form is more widely used (Tan et al. 2003). Extracellular 
lipases are produced outside and require further purification by suitable techniques 
(Robles-Medina et al. 2009). However, obtaining a pure form of extracellular lipase 
is a relatively complex process and depends on the source and composition of the 
lipase enzyme (Saxena et al. 2003). They can be commercially produced by solid- 
state fermentation (SSF) or by submerged fermentation (SF) process. According to 
Balaji and Ebenezer (2008), mostly in fermentation process, mixed proteins are 
formed, and further purification is essential for obtaining pure form of enzyme with 
the selective catalytic property. The relative cost of purification of lipases with suit-
able techniques can be comparatively higher than the production (Joseph et  al. 
2008). The application of intracellular and cell-bound lipases can reduce the purifi-
cation cost in industrial processes facilitating the use of this enzyme. Ramakrishnan 
et  al. (2016) reported an intracellular alkaline lipase from Enterococcus faecium 
MTCC5695 (MTCC5695), with optimal activity at pH 10.8 and 40 °C. Nunes et al. 
(2014) reported intracellular lipase by a yeast Yarrowia lipolytica strain IMUFRJ 
50682 using different carbon sources including glucose, glycerol, crude glycerol, 
olive oil, and frying oil. Matsumoto et al. (2001) reported overproduction of intra-
cellular lipase by Rhizopus oryzae applicable to biodiesel production.
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8.2.2  Immobilized Lipases

As mentioned above, the refinement of extracellular lipases is a costlier process; 
therefore, production of intracellular lipases immobilized on solid supports has 
gained much attention (Jegannathan et al. 2008). In this process, the whole cell is 
used for the synthesis of intracellular lipases and immobilization of the cell on solid 
support enhances the biocatalytic potential by  manyfold (Iftikhar et  al. 2012). 
Moreover, the immobilized enzyme also offers additional benefits that include reus-
ability, easier control of the reaction, choice in the use of reactor configurations, etc. 
(Silva et al. 2012; Gomes et al. 2004). Adamczak and Bednarski (2004) showed the 
enhanced activity of intracellular lipases from Rhizomucor miehei and Y. lipolytica 
when immobilized on biomass support particles. According to Fukuda et al. (2001), 
immobilization of microbial lipase can reduce purification cost, thereby making the 
product cheaper compared with the extracellular lipases. For more information on 
immobilized lipases one can see review by Facin et al. (2019). Three major immo-
bilized lipases which are commercially being used are Novozym 435 (from Candida 
antarctica), Lipozyme TL IM, and Lipozyme RM (from Thermomyces lanuginosus 
and R. miehei) (Robles-Medina et al. 2009).

8.2.3  Bacterial, Fungal, and Yeast Lipase

Amongst all microbes, bacteria, fungi, and yeast are the major lipase producers. 
Although bacterial lipases are less diverse and their use is also limited in industries, 
they are still in demand due to high yield and ability to work at alkaline pH (Gupta 
et al. 2004).

Bacterial lipases show substantial heterogeneity, as observed in molecular and 
catalytic characteristics (Javed et al. 2018). Usually, lipases produced from bacteria 
are glycoproteins, but some extracellular lipases are lipo-proteinaceous in nature. 
The extracellular production of bacterial lipases mainly depends on factors like car-
bon and nitrogen sources, lipids, oxygen, and inorganic salts supplemented during 
fermentation (Winkler et al. 1979; Jaeger et al. 1994). Many bacterial genera are 
known to produce lipases; however, Bacillus, Burkholderia, Pseudomonas, and 
Staphylococcus are well defined. There are reports on the production of bacterial 
lipases showing optimum activity at extreme conditions. For example, Eddehech 
et al. (2019) reported a thermo-active, alkaline lipase from a newly isolated Serratia 
sp. W3 strain. Musa et al. (2019) reported halophilic lipase from a newly isolated 
moderate halophilic bacterium Marinobacter litoralis SW-45 which showed activ-
ity and stability at high pH range (7.0–9.5), temperature (30–50  °C), and NaCl 
concentration (0–21%).

Fungal lipases have wide commercial applications. Their characteristics, like 
thermal stability, substrate specificity, pH stability, and tolerance in organic solvents, 
make them an excellent choice in bioprocess applications. Use of fungal lipases is 
preferable than bacteria because they are extracellularly produced in medium and 
can be easily separated, which also reduces the cost of production. In the fungal 

8 Microbial Lipases and Their Versatile Applications



212

kingdom, zygomycetes, hyphomycetes, and ascomycetes have been well studied to 
produce extracellular lipase. The fungal genera Aspergillus spp., Penicillium spp., 
and Rhizopus spp. are the main sources of lipase (Singh and Mukhopadhyay 2012). 
The LipozymeTM IM (from R. miehei) and Lipozyme TL IM (from a thermophilic 
fungus T. lanuginosus) are the two main immobilized forms of fungal lipase known 
for enormous applications in several industries.

Yeast lipases have attracted various industries due to their efficiency, stability, 
and high yield in production efficiency. The most important genus of yeast in lipase 
production belongs to Candida and its species include C. rugosa, C. curvata, C. 
tropicalis, C. antarctica, C. parapsilosis, C. deformans, C. cylindracea, and C. val-
ida (Pandey et al. 1999). However, amongst them C. rugosa and C. antarctica are 
versatile and recognized for their extracellular and immobilized form of lipase, used 
in several industries. Lipases of C. rugosa are used in biotransformation, biolubri-
cants, biodiesel, omega-3 polyunsaturated fatty acids, and plasticizer production 
(Cavalcanti et al. 2018; Morais Júnior et al. 2017; Marzuki et al. 2015). C. antarc-
tica has been used in the production of many industrially relevant compounds such 
as nitrogenated organic compounds, biodiesel production from vegetable oil, and 
biodiesel from waste cooking oil (Gotor-Fernández et al. 2006; Shimada et al. 1999; 
Mehrasbi et al. 2017). Apart from abovementioned yeasts, Y. lipolytica, Rhodotorula 
spp., Pichia spp., Saccharomycopsis crataegenesis, Trichosporon asteroides, 
Torulaspora globosa, and Geotrichum candidum are also used in several industrial 
processes (Holmquist 1998; Vakhlu 2006).

8.3  Applications of Lipases

Microbial lipases are an essential tool used in the biotechnological processes and 
gained much attention of workers around the globe (Hasan et al. 2006; Kapoor and 
Gupta 2012). Microbial lipases are generally more stable as compared to those of 
plant or animal origin. Microbial lipases remain active under ambient environmen-
tal conditions and can withstand higher temperature and pH (Ashfaq 2015). They 
also exhibit good organic solvent tolerance needed in many industrial applications 
(Javed et al. 2018). In the case of microbial lipases, unwanted reaction product gen-
erated is also not a big issue. They also offer cost-effective downstream processing. 
Broadly, lipases are applied as biocatalysts to synthesize supplementary products in 
the food, fat, and oil processing industry, as well as for the manufacturing of fine 
chemicals including pharmaceuticals. However, recently detergents, degreasing, 
paper manufacture, cosmetics, and biofuels have been some other applications in 
which microbial lipases are taking the lead over other enzymes (Rubin and Dennis 
1997; Masse et al. 2001; Takamoto et al. 2001; Hasan et al. 2006; Rajendran et al. 
2009; Parra et al. 2015). Some of the significant applications of microbial lipases 
are depicted in Fig. 8.2, and the detailed applications are discussed in this section.
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8.3.1  Food Industry

Microbial enzymes are being used in food preparation for a very long time. 
Amylases, proteases, and lipases are the three major enzymes used in a variety of 
food applications (Raveendran et al. 2018). Lipases are majorly used in dairy, bak-
ery and confectioneries, fruit juices, and inter-esterification product of fats and oils 

Fig. 8.2 Application of lipases in different industries
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(Ghorai et al. 2011; David 2017). R. miehei lipases are utilized in milk fat hydroly-
sis, ripening of cheese, lipolysis of butter fat, and flavor enhancement (Seitz 1974; 
Sirisha et al. 2010; Boonmahome and Mongkolthanaruk 2013; Ferreira-Dias et al. 
2013; Adrio and Demain 2014; Farrokh et al. 2014; Ullah et al. 2015). Nowadays, 
sn-1,3 lipases are also used to produce human milk fat substitutes (David 2017). 
Lipases hydrolyze fat triglycerides into free fatty acids which are widely used in 
flavor enhancement of butter, cheese, margarine, and chocolate milk (Joseph et al. 
2007; Xiao et al. 2017). Processing of egg yolk for the synthesis of mayonnaise is 
also catalyzed by phospholipases (Ray 2012).

Food industries are now using lipase to generate short-chain aliphatic ester flavor 
for developing fragrance and flavor in food commodities (Macedo et  al. 2003). 
Lipases catalyze trans-esterification reaction for the synthesis of ethyl caprylate, 
methyl butyrate, octyl acetate, and isoamyl acetate to impart fruity notes such as 
apple, peach, pineapple, strawberry, orange, and banana (Torres et al. 2009; Ahmed 
et al. 2010; Garlapati and Banerjee 2013; SÁ et al. 2017). Lipases from immobi-
lized Staphylococcus simulans have been used for the ethyl valerate (green apple 
flavor) and hexyl acetate (pear flavor) in a solvent-free system (Karra-Châabouni 
et  al. 2006). An alkaline lipase from organic solvent-tolerant Acinetobacter sp. 
EH28 is reported for synthesis of ethyl caprylate (Ahmed et al. 2010). Recently, 
Cong et  al. (2019) reported synthesis of flavor esters by a novel lipase from 
Aspergillus niger in a soybean-solvent system. Fermented food variants like sour 
dough, olives, vegetable sausages, and cheese have been synthesized by halotoler-
ant lipase obtained from Lactobacillus plantarum (Esteban-Torres et  al. 2015). 
Lipases from coagulase-negative catalase-positive cocci (Staphylococcus spp.) are 
known to release free short-chain fatty acids responsible for the aroma development 
in fermented sausage. Lipases are employed to change the characteristic of lipids by 
modifying the position of fatty acid chains in glycerol by replacing them with other 
fatty acids (Undurraga et al. 2001). Immobilized lipases from C. antarctica (CAL- 
B), C. cylindracea AY30, Humicola lanuginosa, Pseudomonas sp., and G. candi-
dum were reported for the esterification of functional phenols for producing 
lipophilic antioxidants in sunflower oil (Buisman et al. 1998). Lipases have been 
used to remove fat and acidity reduction in fish products (Kazlauskas and 
Bornscheuer 1998; Mata et al. 2017).

Currently, there is a high demand for novel economic and green technologies for 
modification of vegetable oils with customized physicochemical and nutritional 
properties. Fatty acid-specific and regiospecific microbial lipases have gained sig-
nificance and may be used for modification of vegetable oils. Upgradation of cheap 
oils can also be achieved through lipases to produce nutritionally vital triacylglyc-
erols such as oleic acid-enriched oils, cocoa butter alternate, and low-calorie triac-
ylglycerols. Lipase-mediated amendments are expected to occupy an important 
position in the oil industries for tailoring structured lipids (Gupta et al. 2003). Castor 
oil and distinctive vegetable oils have large amounts (about 90%) of ricinoleic acid, 
which is a hydroxy monounsaturated fatty acid of commercial importance. Lipase- 
catalyzed process has been utilized for the synthesis of this acid by castor oil hydro-
lysis (Goswami et al. 2012).
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8.3.2  Fat and Oleochemical Industry

Combination of enzyme technology with fat chemistry has emerged as a novel way 
to produce oleochemicals from oils and fats which are of plant or animal origin. In 
this context, the use of microbial lipase is of much concern. Microbial lipase cata-
lyzes hydrolysis, esterification, trans-esterification, and intra-esterification reactions, 
which are directly involved in the inexpensive synthesis of fat and oleochemicals in 
industries (Baumann et al. 1988). Use of nonspecific triacylglycerol lipases to pro-
duce polyunsaturated fatty acids (PUFA) and other dietary chemicals has been 
reported for a long time (McNeill et al. 1996; Jaeger and Reetz 1998; Nakajima et al. 
2000). However 1,3-specific lipases can be used for hydrolysis of cruciferous oils to 
produce very-long-chain monounsaturated fatty acids such as gadoleic, erucic, and 
nervonic in the oleochemical industry. Okada and Morrissey (2008) used immobi-
lized C. rugosa lipase for concentrating n-3 polyunsaturated fatty acids (n-3 PUFAs) 
from sardine oil. Free PUFAs and their mono- and diglycerides are employed in the 
manufacture of many pharmaceutical products including thrombolytics, anticholes-
terolemics, and anti-inflammatories (Belarbi et al. 2000). Köse et al. (2002) reported 
trans-esterification of refined cottonseed oil by immobilized C. antarctica lipase in a 
solvent-free medium for producing valuable intermediates in oleochemistry. Lipase-
mediated hydrolysis and synthesis reactions are also commonly used for the upgra-
dation of few of the less wanted fats into cocoa butter alternates (Undurraga et al. 
2001). Lipase-catalyzed inter-esterification of butter fat is reported (Pabai et  al. 
1995). Application of microbial lipase in the synthesis of bio-plasticizer is also eval-
uated. In a study, Kim et al. (2019) showed the use of C. antarctica-immobilized 
lipase (Novozym 435) in 100% conversion of adipic acid and ethylhexanol used as a 
substrate into diethylhexyl adipate (DEHA) plasticizer. Earlier, epoxidation of soy-
bean lecithin, a by-product obtained during vegetable oil, was also reported for the 
synthesis of epoxy lecithin plasticizer by Novozym 435 (Reddy et al. 2013).

8.3.3  Paper and Pulp Industry

For making various stuff in the paper and pulp industry wood processing is required. 
As wood also contains lipophilic compounds (also called as wood resin) and wood- 
extractive compounds soluble in nonpolar and polar solvents massive amount of 
organic solvents are needed during wood pulping and refining of paper (Gutiérrez 
et al. 2001). Organic solvents are not very useful because of two reasons: (1) lipo-
philic extracts generate colloidal pitch (constituents of wood mainly resin, waxes, 
and triglycerides) which may persist for a long time in waters and cause halt of the 
process (Hillis and Sumimoto 1989; Jaeger and Reetz 1998) and (2) chemical reac-
tion of solvents with wood component also releases some recalcitrant compounds in 
the environment (Thompson et al. 2001). Hence, the enzymatic method for pitch 
control by using lipases was tried in the papermaking process at a larger scale 
(Bajpai 1999). Lipases from C. rugosa hydrolyze triglycerides by about 90% level 
in the pitch into glycerol/monoglycerides and fatty acid which are less sticky and 
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hydrophilic and hence can be washed easily (Jaeger and Reetz 1998). Lipase can 
also be used for the deinking process in wastepaper for increased brightness and 
intensity (Bajpai 2014). Fukuda et al. (1990) showed that the lipase produced from 
Pseudomonas sp. (KWI-56) when added to a deinking composition enhanced pale-
ness of paper and minimized residual ink spots. This approach also lessens chemical 
usage and saves energy, time, and manufacturing cost.

8.3.4  Detergents

Lipases are being used as potential additives in detergent formulations. These are 
also recognized as an ideal enzyme used in the detergent industry. Earlier, Godfrey 
and West (1996) estimated that about 1000 tons of lipases were yearly sold in the 
detergent market. In the detergent industry, particularly those enzymes which can 
act at high pH and temperature, withstand oxidizing and chelating agents, contain 
broad substrate specificity, and perform very well at low concentration are desired 
and lipases fulfill all of them (Anon 1983; Fuji et al. 1986; Ito et al. 1998). Aspergillus 
oryzae- and Acinetobacter radioresistens-derived lipases were found to remain 
active under alkaline conditions and showed their potential use in the laundry 
(Minoguchi and Muneyuki 1989; Gerhartz 1990; Nishioka et al. 1990; Satsuki and 
Watanabe 1990; Umehara et al. 1990). In a study, Cherif et al. (2011) reported a 
novel lipase from Staphylococcus sp. which showed extreme stability towards non-
ionic and anionic surfactants and relative stability towards oxidizing agents and 
hence excellent stability and compatibility in commercial production of solid and 
liquid detergents. Lipases from Pseudomonas aeruginosa have also been evaluated 
as detergent additives (Grbavčić et al. 2011; Dey et al. 2014). Role of Bacillus sono-
rensis lipase in corn oil stain removal in cotton fabric is reported by Nerurkar et al. 
(2013). Cold-active lipases are also being used as a functional additive and in syn-
thesis of organic chiral compounds in detergent production at commercial level 
(Aboualizadeh et al. 2011; Zheng et al. 2011). Li et al. (2014) isolated cold-adapted 
lipase from Pseudomonas stutzeri PS59 and confirmed its broad substrate specific-
ity and compatibility in the presence of surfactants, oxidizing agents, and other 
detergent additives required in the laundry industry. Alkaline and thermotolerant 
lipase from P. aeruginosa strain BUP2 has also been employed in detergent indus-
tries (Unni et al. 2016). Rathi et al. (2001) also reported a novel alkaline lipase from 
Burkholderia cepacia and its use in detergent formulation. Niyonzima and More 
(2015) discussed the role of lipases obtained from several species of bacilli and 
other bacterial strains in the detergent industry.

8.3.5  Textile Industry

In the textile industry, lipases are used in the removal of the residue of machine 
lubricants and desizing of fabrics (Lange 1997). Microbial lipases have already 
been used in improving the moisture regain, wettability, and dyeability of 
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polyethylene terephthalate (PET) fabrics (Kim and Song 2006). In hydrolytic action 
lipase creates more hydrophilic groups on the surface of PET fabrics, which results 
in greater absorbency to the fabric for enhanced levelness in dyeing (Kim and Song 
2008). Nerurkar et al. (2015) found that lipase from a marine bacteria B. sonoren-
sis can be used for bioscouring (enzymatic removal of impurities from cotton fab-
ric) which is more effective than conventional alkaline treatment. However, 
microbial lipase in combination with pectinase in a one-step process was found to 
reduce the bioscouring time and provided excellent dyeing performance and fab-
rics properties (Kalantzi et  al. 2010). Lipases, together with alpha-amylase, are 
employed for the desizing in denims and other cotton fabrics (Rowe 2001). Buchert 
et  al. (2000) also showed combined use of pectinases, proteases, and lipases in 
bioscouring of cotton fabric. Lipase can even remove tough fatty stains from cloth 
(Shaikh 2010). Kantouch et al. (2005) found that lipase pretreatment facilitated 
wool dyeing under mild temperature, increased dye consumption, and enhanced 
the rate of dyeing which can have a major impact on energy saving and reduction 
of pollution impact.

8.3.6  Leather Industry

The high demand for organic solvents, chemicals, and surfactants in the leather 
industry has not only increased the commercial burden of industries but also 
upstretched environmental issues. In the tannery, before the tanning process, skins 
and hides of animals which mainly consist of proteins and fat are removed. For this, 
several hazardous chemicals are used on a routine basis. However, instead of using 
chemicals, microbial enzyme-based approaches have proven to be more sustainable 
(Kamini et al. 1999). Lipases remove fat in the degreasing stages without generating 
toxic by-products which are harmful to humans and environment. Earlier, lipase 
from Rhizopus nodosus was applied for the degreasing of suede clothing leathers 
from wooled sheep skins (Muthukumaran and Dhar 1982). Currently, microbial 
lipase, in combination with proteases, is being utilized in the leather industry for 
dehairing of animal hides and skin (Sanchez and Demain 2017). Alkaline lipases are 
exclusively used for the processing of high-quality leather (Wanyonyi and Mulaa 
2019). These lipases impart an extra consistency in color and a cleaner look of 
leather. Acid-active lipases have been applied in the treatment of skins preserved in 
a pickled state. An acid lipase named NovoCor AD is used in stages of degreasing 
of hides and skins. Lipases have also been utilized in the synthesis of hydrophobic 
and waterproof leather (Hasan et al. 2006).

8.3.7  Cosmetics

Microbial lipase can be used as an emollient in the manufacture of cosmetics prod-
ucts such as suntan creams, bath oils, and moisturizing lotion skin. Lipases are 
potentially used in ingredient dermocosmetic formulation development possessing 
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sensory or biological activities (Yvergnaux 2017). Ansorge-Schumacher and Thum 
(2013) reviewed the application of immobilized lipases in the cosmetics industry. 
They highlighted that process simplification, product quality, and environmental 
footprint are the selective advantages of lipases, which can replace traditional chem-
ical processes. Unichem International (Spain) and Croda Universal Ltd. are using C. 
cylindracea lipase for production of quality products. Noh et al. (2019) review pro-
duction of butyl butyrate as a fragrance and flavoring compound by microbial lipase. 
Recently, the trans-esterification process for the synthesis of geranyl acetate from 
geraniol and ethyl acetate was catalysed by C. antarctica lipase (Bhavsar and Yadav 
2019). This greener solvent-free system has been found to be very useful for the 
perfume industry. The commercial application of immobilized and lyophilized C. 
antarctica lipase in the synthesis of an aromatic ester benzyl propionate used as a 
fragrance ingredient in several cosmetics is also well explored (de Meneses et al. 
2019). Retinoids, vitamin A, and its water-soluble derivatives were made by the 
catalytic action of immobilized lipase and are being used in personal care skin prod-
ucts and pharmaceuticals (Maugard et al. 2002).

8.3.8  Biofuel

The limited availability of nonrenewable energy resources, high prices of crude oil, 
and environmental concerns raised the demand of using vegetable oils as an alterna-
tive to fossil fuels (Shah et al. 2004). Biodiesel also called as biofuel mainly consists 
of esters of long-chain fatty acids and short-chain alcohols. Currently, biodiesel 
catalysts are grouped as alkali, acid, or enzyme. Amongst them, the use of enzyme 
is an eco-friendly and cost-effective approach. Lipases catalyze trans-esterification 
process and convert fatty acids and short-chain alcohols into methanol (Vicente 
et al. 2004; Lotti et al. 2015). In this process of trans-esterification dislocation of 
alcohol from an ester takes place by another alcohol of high commercial value 
(Srivastava and Prasad 2000). The trans-esterification by lipase of Acinetobacter 
venetianus RAG-1 was used in the production of biodiesel (Boonmahome and 
Mongkolthanaruk 2013). Some workers reported the application of K2SO4-coated 
lipase microcrystals as a substitute for chemical catalysts for the synthesis of bio-
diesel (Sirisha et al. 2010; Zheng et al. 2012). According to Hegde et al. (2015), 
lipase-mediated trans-esterification reactions may reduce the cost of downstream 
processing in the production of biodiesel. Apart from this, the use of vegetable oil- 
based biofuel is a cleaner alternative because it does not emit oxides of sulfur 
whereas the concentration of particulate matter is also found to be about one-third 
as compared to petroleum. Iso et al. (2001) stated that due to environmental advan-
tages, biodiesel fuel could be a proper substitute for conventional fuel. In a study, 
Karmee et al. (2015) reported that lipases convert methanol and waste oil generated 
from cooking waste into usable products like biodiesel and glycerol. Lipases stable 
at alkaline pH are more valuable in the biodiesel synthesis as alkaline pH upgrades 
oil solubility and homogeneity of the reaction mixture which makes trans- 
esterification rates higher (Christopher et al. 2015; Li et al. 2016). Liu et al. (2011) 
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found that lipases obtained from B. cepacia and then immobilized on NKA resin 
can act as a biocatalyst in the synthesis of biodiesel. Abdulla and Ravindra (2013) 
showed that lipase from B. cepacia immobilized on the matrix of alginate and 
k- carrageenan remained active after six consecutive cycles of re-usage in the pro-
duction of biodiesel. Immobilized lipase obtained from Botryococcus sp. showed 
excellent trans-esterification reaction in biodiesel production (Sivaramakrishnan 
and Incharoensakdi 2016). In a study, Yoo et al. (2011) showed that when soya bean 
and palm oil were used, lipase of Ralstonia sp. catalyzed the synthesis of diesel at 
pH 8 with 5% methanol and 20% water content. Use of lipase as biocatalyst for the 
synthesis of biodegradable polymers like 1-butyl oleate, which reduces the level of 
viscosity in biodiesel in the cold season, is also reported (Linko et  al. 1998). 
Lubricating properties of the oil can be enhanced by generating tri-methylolpropane 
(TMP) tri-ester by the action of immobilized lipase from thermophilic fungus T. 
lanuginosus (Ghamgui et al. 2004). A novel lipase SL-4 from Burkholderia ubon-
ensis showed the production of biodiesel with a conversion ratio of 92.24% by cata-
lyzing soybean oil in a solvent-free system. Yang et  al. (2016) reported a novel 
thermostable lipase as a biocatalyst for the synthesis of biodiesel.

8.3.9  Therapeutic and Pharmaceuticals

Lipases have a wide role in the medicinal and pharmaceutical field. The enantiose-
lective, trans-esterification, and inter-esterification reactions catalyzed by lipases 
have immense importance in the drug-based industry (Stinson 1995). Since past, 
lipases have been used in making specialized lipids, digestive aids, and alteration of 
monoglycerides (used as emulsifiers) in the pharmaceutical industry (Vulfson 1994; 
Sharma et al. 2001). Yang et al. (1997) found that a lipase from C. rugosa immobi-
lized on nylon performed regioselective acylation reaction in the synthesis of lovas-
tatin drug, used for lowering serum cholesterol levels. Uttatree et al. (2010) reported 
that a thermostable and organic solvent-tolerating lipase from Acinetobacter baylyi 
could act as a strong catalyst in generating bioenergy and trans-esterification of 
palm oil used for medicinal purpose. Earlier, Saphir (1967) got a patent for the role 
of lipases in hair waving process. Sangeetha (2011) discussed medicinal applica-
tions of lipase in the treatment of diseases related to skin of scalp and hair loss. 
Cold-adapted lipase B from C. antarctica has been utilized for solvent-free synthe-
sis of citronellol laurate (Ganapati and Piyush 2005). Shimada et al. (2001) also 
showed solvent-free synthesis of a potentially useful pharmaceutical substance, 
ethyl docosahexaenoate (EtDHA), from lipases B of C. antarctica. Similar results 
were obtained for extracellular and immobilized lipases B of C. antarctica where 
these were used for the synthesis of amino sugar fatty acid esters including aryl 
aliphatic glycolipids (Otto et al. 2000; Pöhnlein et al. 2014). Lipases from Bacillus 
sp. having specificity towards fatty acid ester can be employed to synthesize enan-
tiopure compounds in medical industries (Guncheva and Zhiryakova 2011). 
Staphylococcus lipase was used to produce antioxidant chemicals, including euge-
nol benzoate, tyrosol acetate, and propyl gallate (Horchani et al. 2012). Lipases are 
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also used in the diagnosis of tuberculosis (TB) where Mycobacterium tuberculosis 
lipase is employed to detect the infection with high specificity and sensitivity (Brust 
et al. 2011). They are also utilized in the treatment of tumors, malignant in nature, 
by activating the tumor necrosis factor (Nagarajan 2012).

8.3.10  Biosensors

The combination of a thin layer of the insolubilized (immobilized) enzyme with an 
electrochemical probe can be collectively used as a sensing element or biosensor 
(Trojanowicz 2014). Along with esterases, and phospholipases, lipases also have a 
role in enzyme-based biosensor applications. These are being used in the food, 
chemical, polymer, and medical industries (Sandoval and Herrera-López 2018). 
Their application as a diagnostic tool to detect cholesterol and triglyceride levels in 
blood samples has revolutionized the role of microbe-based sensor in clinical field 
(Starodub 2006). Earlier work also confirmed utilization of lipase biosensors com-
bined with glucose oxidase onto pH/oxygen electrodes in determinations of both 
triglycerides and cholesterol level in the blood (Karube and Sode 1988; Imamura 
et al. 1989). In the last few years, enzyme-labeled probes replaced the use of unsta-
ble and harmful isotopes in biosensor applications (Gurung et  al. 2013). 
Oligonucleotide-labeled lipases have been employed to sense the presence of com-
plementary nucleic acids by hybridization (Kynclova et al. 1995). In this context, 
fungal lipases have proven to be useful due to high sensitivity and turnover number, 
thermostability, and stability at room temperature under working conditions 
(Kynclova et al. 1995). Zehani et al. (2014) developed novel impedimetric biosen-
sors by using two lipases, one from C. rugosa (microbial source) and another from 
porcine pancreas (animal source) immobilized on the gold electrode for highly sen-
sitive and rapid quantitative detection of diazinon pesticide in an aqueous medium. 
Nowadays, several other lipase-based biosensors have been used in different 
sectors.

8.3.11  Waste Treatment

Since a long time, lipases are being used in activated sludge and other aerobic 
waste processes. Initially, Bailey and Ollis (1986) found that the thin layers of fat 
were repeatedly removed by lipases of C. rugosa from the surface of aerated 
tanks to permit oxygen availability. Utilization of lipases in effluent processing 
units such as poultry waste, abattoirs, food processing industry, leather industry, 
anaerobic digesters, and household sewage was reported by Godfrey and Reichelt 
(1983). Tschocke (1990) also showed that immobilized forms of lipases hydro-
lyze triglycerides in the fat present in wastewater treatment plants. Dharmsthiti 
and Kuhasuntisuk (1998) reported that P. aeruginosa LP602 and its lipase can be 
used for the treatment of wastewater rich in lipid content. Microbial enzyme-
based products are commercially produced at industrial level for bioremediation 
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of oil-contaminated sites. A product named WW07P manufactured by Oasis 
Environmental Ltd. company contains a specific microbe that is being used in the 
cleanup of greases, fats, and oils in wastewater treatment comprising elevated 
amounts of grease, oil, and fat (http://www.oasisenviro.co.uk/ww07pproductinfo.
html). Immobilized form of lipase was also utilized as biocatalysts to form sim-
ple alkyl ester derivatives of restaurant grease. Pseudomonas cepacia was used 
to catalyze the degradation of hydrocarbons in grease (Hsu et al. 2002). In anaer-
obic digester, extracellular lipase converts sewage sludge and particulate organic 
matter into simpler compounds of relatively lower molecular weights (Whiteley 
et al. 2003). Parmar et al. (2001) reported that lipase, protease, and cellulase in 
equivalent proportions were commercially produced and employed in the reduc-
tion of 30–50% total suspended solids in sludge and hence improved settling 
ability of solid substances. Vasileva-Tonkova and Galabova (2003) reported the 
role of lipase of bacteria isolated from wastewater in the bioaugmentation pro-
cess for cleaning of wastewater, heavily contaminated with hydrocarbons and 
organic polymers.

8.4  Conclusion

Lipases are extremely useful biomolecules, and along with other microbial enzymes 
they offer great biotechnological potential. There are various microbial sources of 
lipase which are used for relatively cheaper production of enzyme at the industry 
level. Lipases do not require cofactors and can be easily immobilized on support 
materials and hence researchers have also utilized this trait and developed tech-
niques for fabricating these enzymes on cheap carrier materials for effective utiliza-
tion of product recovery with reuse (of enzyme). Lipases show versatility in terms 
of substrate utilization and transform different substrates into products of high com-
mercial value, which cannot be synthesized by the conventional chemical processes. 
In the last few years, vigorous research in the field of microbial enzyme technology 
opened up possibilities of low-cost production of microbial lipases. Utilization of 
microbial enzyme from extremophiles could provide add-on features to the existing 
microbial enzyme technology (Das et al. 2019). The catalytic properties, such as 
stability at high temperatures and pH, are the additional benefits of extremozymes, 
which are very useful to industries (Arora and Panosyan 2019). Although many 
microbial strains have been identified including cold-adapted, thermotolerant, alka-
line, and acidic lipases, further research for harnessing their use in the broader con-
text of industrial sustainability is needed. Similarly, engineered lipases possessing 
numerous characteristics amenable for bioprocess and environmental applications 
are yet to be explored. Thus, there is a need to delve all possible measures which 
could be used to enhance microbial lipase production, not only for replenishing the 
current demand but also for achieving the goal of industrial sustainability.
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Abstract
Azo dyes are very commonly used for coloring purposes. At the global level, due 
to their strong retention behavior, a huge amount of azo dyes are used in the 
carpet, textile, and paper industries. A major drawback associated with the use of 
azo dyes is related to their excessive flush off in the surroundings, which pollutes 
the environment. Therefore, effective mitigation methods are required for the 
removal of azo dyes from environmental sources. Microbes have the capability 
to decolorize azo dyes, which is an ecologically sound and cost-effective strategy 
of dye remediation. Fungi degrade or decolorize azo dyes by two broad mecha-
nisms: (1) through enzymatic activities and (2) adsorption. Fungal enzymes also 
play an important role in the breakdown of toxic by-products formed by azo 
dyes. Fungal enzymes such as lignin peroxides, manganese peroxides, and lac-
case are useful in the biodegradation of azo dyes. Several fungi are known to 
produce dye-decolorizing enzymes responsible for break down of azo dyes into 
lesser toxic forms. Fungal enzymes such as lignin peroxides, manganese perox-
ides, and laccase are useful in the biodegradation of azo dyes. This chapter 
describes the essential roles and mechanisms of fungi involved in removal of 
azo dye from the environment. Apart from this, how fungal enzyme can be uti-
lized for the decolorization process at the industrial level for making the environ-
ment cleaner and sustainable is also discussed.
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9.1  Introduction

Color is the most important constituent that made human life more aesthetic and 
fascinating in the real world. The process of dyeing is as old as human civilization 
and has existed since humans started to use natural colors obtained from different 
sources for their creative works. Even in “Atharva Veda” use of natural dyes is 
depicted. Wall paintings of “Ajanta and Ellora” demonstrate the effectiveness of 
dyeing craft which had been native from ancient times in India (Grierson et  al. 
1989). Natural dyes are made from natural sources such as plant leaves, flowers, 
vegetables, insects, and many others. Earlier textile stuff was dyed with natural dyes 
of dull color range and less retention. Later, the industrialization process equipped 
with modern machinery facilitated the synthesis of bright color with high retention 
capacity, which subsequently attenuated the use of natural dyes. Due to lack of ver-
satility and less retention on the fabric, natural dyes were soon replaced by synthetic 
dyes. Now coloring industries have also started to favor synthetic dyes instead of 
natural (Kaushik and Malik 2009).

Perkin discovered the first synthetic dye “mauvine” during the study of coal and 
tar (Kant 2012). Now a days synthetic dyes with diverse chemical nature are avail-
able and widely being used in the coloring of leather, textiles, paper, cosmetics, 
printing materials, plastics, and food industries (Prasad and Rao 2013). Synthetic 
dye molecule contains two important components: (1) chromophores (–C=C–,–
C=O,–C=N–,–NO2,–N=N– and quinonoid ring) and (2) auxochromes (–NH2,–
OH,–OCH3, CH3CO–, halones, etc.). Chromophores absorb the visible range of 
light and are responsible for generating different dye colors (Forgacs et al. 2004). 
Auxochromes play a role in water solubility and also enhance the similarity towards 
natural colors (Christie 2001). The widely used synthetic azo dyes are anthraqui-
none, triphenylmethane, and indigo dyes. Among them, azo dyes are mostly used in 
the coloring of the textile and carpet industries.

About 10–15% of azo dyes are discharged in water during the dyeing process 
(Asad et al. 2007; Sen et al. 2016). Data indicates that till 1999, about 50,000 tons 
of azo dyes were discarded into the environment, which severely polluted the sur-
rounding ecosystem (Singh and Shukla 2015). Recently, it has been estimated that 
dye concentration drastically increased by 6.9 million tons in 2017 in wastewater 
(Rawat et  al. 2018). There are many deleterious effects associated with the dis-
charge of azo dyes in the environment (Fig. 9.1). In the aquatic system, azo dyes are 
related to the reduction of photosynthesis, exhaustion of dissolved oxygen, and gen-
eration of toxic effect on flora and fauna (Aksu et al. 2007; Saratale et al. 2009; 
Mugdha and Usha 2012). Apart from this, penetration of azo dyes in the freshwater 
system makes water unpleasant whereas breakdown of dye products (colorless aro-
matic amines) is found to be carcinogenic, toxic, and mutagenic (Xu et al. 2005; Tan 
et al. 2014; Mahmoud et al. 2017). When untreated effluent-containing azo dyes 
reach the marine ecosystem it affects chemical oxygen demand and total organic 
carbon, which results in the death of aquatic organisms (Saratale et al. 2009).
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Decolorization and degradation of azo dyes have emerged as a serious issue 
globally. The physical and chemical methods have already been developed and are 
used for the removal of dye from wastewater (Fig.  9.2). The methods used are 
advanced oxidation processes (such as application of hydrogen peroxide (H2O2), 
ozone (O3), and ultraviolet light), membrane filtration, ion exchange, adsorption, 
coagulation, flocculation, and precipitation (Mondal et  al. 2006). There are evi-
dences which suggest that most of the methods used are expensive, time consuming, 

Fig. 9.1 Harmful effects of azo dyes on humans and environment
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and of limited application, i.e., treating only certain type of dye (Hai et al. 2007; Ali 
2010; Kurade et al. 2012; Khan et al. 2013). Further, with the perspective of the 
environment, these methods are found to be unsuitable as during the processes of 
dye removal high amount of sludge is generated (secondary pollutant) and incom-
plete degradation of azo dyes occurs (Kurade et al. 2016).

Over the last two decades, biological methods have emerged as eco-friendly and 
economically viable tools for removing the azo dyes from different environmental 
sources (Kaushik and Malik 2009). Several workers have documented the role of 
microorganisms in dye decolorization (Bankole et al. 2018; He et al. 2018). Research 
indicates that microbe-mediated aerobic and anaerobic process of the degradation/
decolorization of azo dyes is more effective in comparison to the chemical methods 
(Jadhav et al. 2016). Due to the fast growth and high reactivity towards dye mole-
cule, bacterial strains are more frequently used in dye decolorization. However, in 
some cases, decolorization product of dyes such as aromatic amines also inhibits 
bacterial growth and activity (Qu et al. 2010). The biosorbent characteristic of algae 
is also useful in dye removal; however, demerit associated with algal biosorbent is 
the early diffusion of dye. Over last few decades, research confirmed that fungi have 
the unique quality of dye degradation and removal of several contaminants (Asses 
et al. 2018). Fungi adsorb dyes in their biomass (live/dead) and also release several 
extracellular enzymes, i.e., laccase, manganese peroxidase, and lignin peroxidase, 
which play a vital role in the degradation of dyes (Gowri et  al. 2014). Fungal 
enzymes are known for their capability to convert toxic azo dye products into lesser 
toxic forms. The main objective of this chapter is to elucidate the role and status of 
fungi in the removal of azo dyes. Apart from this, the enzymatic mechanisms 
involved in the remediation of azo dyes are also discussed. Information on the mass 
production of fungal enzymes and constraints associated with their lower applica-
bility at the industrial level is also discussed.

9.2  Fungi as Azo Dye Decolorizers

Among microbes, fungi play a very important role in the degradation and decolor-
ization of azo dyes. The fungi remove dye by two processes: (1) adsorbing dyes in 
their cellular biomass and (2) releasing extracellular enzymes. Mainly oxidative and 
nonspecific ligninolytic enzymes perform a major role in the degradation and decol-
orization of azo dyes. In the early 1990s, researchers revealed the definitive role of 
white-rot fungi in the degradation and adsorption of recalcitrant compounds, includ-
ing azo dyes (Aust et al. 2003). Genera of white-rot fungi, such as Trametes hirsute, 
Irpex lacteus, and Trametes versicolor belonging to the family of basidiomycetes, 
are reported for their ability to degrade or decolorize dyes from industrial waste 
effluent (Robinson et al. 2001; Mishra et al. 2011). Fungal enzymes such as laccase 
(Lac), lignin peroxidase (Lip), and manganese peroxidase (MnP) are called as 
“arsenal enzymes” whereas glutamate oxidase, polyphenol oxidase, aryl alcohol 
oxidase, etc. are known as “auxiliary enzymes” used in the treatment of azo dyes. 
Few non-basidiomycetes fungi also use demethylation and oxidation process to 
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metabolize a wide range of compounds including azo dyes. Some species of 
Penicillium (P. geastrivorus, P. ochrochloron, etc.) and Aspergillus (A. terreus, A. 
niger) have been reported to remove azo dyes from liquid medium (Abadulla et al. 
2000; Almeida and Corso 2014). In a study, Kasinath et al. (2003) showed that MnP 
and Lac enzymes of Phanerochaete chrysosporium and I. lacteus removed 100% of 
brilliant blue azo dyes. Similarly, a white-rot fungus T. hirsute is also reported to 
remove 100% of indigo carmine by the release of Lac (Couto and Sanromán 2006). 
Several workers also confirmed the role of fungal MnP in the degradation of differ-
ent azo dyes. For example, Pazarlioglu et al. (2005) showed 95% degradation of 
direct blue dye by P. chrysosporium; Nilsson et al. (2006) showed 70% of reactive 
blue by T. versicolor; and Couto and Sanromán (2006) reported 84% decolorization 
of methyl orange by MnP released from T. hirsute. However, in the case of fun-
gal Lac, similar results were obtained by several workers showing 70–88% removal 
of dye (Mishra et al. 2011; Bankole et al. 2018). In few instances, all three enzymes 
(Lac, LiP, and MnP) were collectively used to remove dye molecule (Hanapi et al. 
2018).

9.3  Mechanism of Azo Dye Decolorization/Degradation

9.3.1  Adsorption

The term “adsorption” means uptake of a molecule or ions on the surface of a solid 
and the association between molecule and surface can be chemically mediated (che-
misorption), or it may be purely physical (physical adsorption or physicosorption) 
(Hai et al. 2007; Kurade et al. 2012). The material which is taken up is called adsor-
bate, and the solid surface on which uptake occurs is called as adsorbent (Dabrowski 
et al. 2005). The process of adsorption mainly depends on the properties of adsor-
bate, which include molecular weight, structure and size, polarity, and solution con-
centration (Malakootian and Heidar 2018). The use of adsorption methods in the 
remediation of azo dye is considered very effective due to its simple process design, 
ease of operation, and cost-effectiveness (Rafatullah et al. 2010). The fungus may 
adsorb dyes in their growing/living cellular biomass or in dead cell (Table 9.1). The 
process is also known as biosorption (Ali 2010). In the case of fungus, increased 
cell-to-surface ratio entails higher physical adsorption of dye (Fu and Viraraghavan 
2001). Fungal biosorption involves complexation, surface ionization, precipitation, 
and entrapment of dye in inner spaces of fungal mycelium (Yeddou-Mezenner 
2010). Studies confirmed that in comparison to living biomass, dead biomass is 
more useful in dye removal and the problem of toxicity due to the generation of 
secondary compounds and nutritional requirements is also not a matter of concern 
(Lavanya et al. 2014). Although biosorption is the primary means of dye decoloriza-
tion, in many incidences subsequent decolorization of dye occurs by the release of 
intra- or extracellular fungal oxidative enzymes (Rani et al. 2014). This is why bio-
sorption has been suggested as an initial step, before enzymatic treatment, to con-
centrate the dye (Aretxage et al. 2001). It has been found that the pH value of the 
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dye/pollutants solution has a profound effect on the adsorption capacity of fungus 
(Kaushik and Malik 2009). The adsorption time and efficiency of the dye removal 
can be greatly dependent on the pH. For more details on biosorption of dye by fun-
gus, one could see Aksu and Cagatay (2006), Bayramoglu and Arica (2007), and 
Khalaf (2008).

9.3.2  Enzymatic Mechanisms

The use of fungal enzymes is a greener technology of mitigation of azo dyes from 
the environment (Ezeronye and Okerentugba 1999). The fungal decolorization of 
azo dyes mainly occurs by biodegradation and biosorption mechanism (Vanhulle 
et al. 2008). In biodegradation process extracellular, nonselective, and nonspecific 
enzyme system or cocktails are involved. However, dye decolorization capability of 
the fungal enzyme is directly linked with the availability of nutrient and growth 
conditions in the production process (Kaushik and Malik 2009). White-rot fungi 
have the highest capability to produce nonspecific enzymes such as Lac, MnP, and 
Lip. These enzymes are involved in generating complex reaction systems enabling 

Table 9.1 Live or dead fungal biomass for adsorption of synthetic dyes

Fungal culture Dyes
% of 
removal

Contact 
time (h) Reference

Trichoderma sp. Acid brilliant red 100.0 24.0 Xin et al. (2012)
Ganoderma lucidum, 
Irpex lactus

Black dycem 90.0 72.0 Baccar et al. 
(2011)

Trametes versicolor Sirius blue K 62.62 96.0 Erden et al. (2009)
Aspergillus niger Direct blue 199 44.90 4.00 Xiong et al. 

(2010)
Agaricus bisporus Reactive blue 49 72.86 90.0 Akar et al. (2009)
Cunninghamella 
elegans

Direct red 80, 
reactive blue 19

100 and 
84–98

24.0 Prigione et al. 
(2008)

Penicillium 
chrysogenum

Acid orange 8, 
reactive orange 16

70.4 and 
67.6

14.0 Low et al. (2008)

Aspergillus niger Synazol red 88.00 18.0 Khalaf (2008)
Thuja orientalis Acid blue 40 48.50 1.20 Akar et al. (2008)
Aspergillus fumigates Reactive brilliant red 94.70 120 Wang et al. (2012)
Trametes versicolor Direct blue-1 63.20 6.00 Bayramoglu and 

Arica (2007)
Trametes versicolor, 
Aspergillus niger

Reactive green, 
reactive blue

86 and 83 1.00 Kumari and 
Abraham (2007)

Rhizopus stolonifer Bromophenol blue 88.00 20.0 Zeroual et al. 
(2006)

P. chrysosporium Astrazone blue 60.00 2.00 Asma et al. (2006)
Neurospora crassa Acid red 57 98.78 0.40 Akar et al. (2006)
Cephalosporium 
aphidicola

Acid red 57 29.20 2 0.00 Kiran et al. (2006)
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the degradation of dye structure into simpler and nontoxic forms (Pointing 2001; 
Knapp et  al. 2001). However, the action of fungal enzymes seldom leads to the 
mineralization of dyes and very much depends on the chemical structure. A high 
degree of mineralization occurs when dye contains substituted aromatic ring struc-
ture compared to the unsubstituted rings (Singh 2006). Certain bonds in the dye 
molecules are cleaved and utilized as carbon source, although chromophore is not 
affected. This mechanism preferably occurs when a consortium of microorganisms 
are involved (Knapp et  al. 2001; Singh 2006;). Fungi release many oxidative 
enzymes such as Lac, Lip, MnP, polyphenol oxidases, N-demethylase, tyrosinase, 
dye-decolorizing peroxidase, and cellobiose dehydrogenase and all these take part 
in decolorization of dye (Oturkar et  al. 2011; Telke et  al. 2011; Martorell et  al. 
2012).

Since many years ligninolytic enzymes, i.e., MnP, LiP, and Lac, are known for 
their bio-oxidation capability of harmful chemical contaminants released in the 
environment (Gold and Alic 1993; Torres et al. 2003; He et al. 2018; Ghobadi et al. 
2019). Similarly, peroxidases from plants, microbes, and animals have also been 
studied for bio-oxidation of azo dyes from industry effluents (Martinez 2002; 
Ferreira-Leitao et al. 2007; Dos Santos et al. 2007). Table 9.2 provides detail of 
some fungal enzymes involved in decolorization of different azo dyes.

9.3.2.1  Laccases (Lac)
Laccases are copper (Cu2+ state)-containing oxygen oxidoreductases and are a 
member of polyphenol oxidase group of enzymes (Bourbonnais and Paice 1992). 
These are one of the oldest known enzymes and were first reported in a Japanese 
tree Toxicodendron vernicifluum (Janusz et al. 2015). Later their presence in several 
other plants, fungi, bacteria, and insects was also confirmed (Dwivedi et al. 2011; 
Zeinab et al. 2013; Qin et al. 2018). Among fungi, white-rot fungi are the major Lac 
producers (Zavarzina et  al. 2018). Lac enzymes are found in various forms like 
monomeric, dimeric, and tetrameric glycol proteins having four Cu atom monomers 
situated at its catalytic sites (Murugesan et al. 2006). As Lac comes under the poly-
phenol oxidases, it has redox ability of copper ion to catalyze at least one electron 
for the oxidation of the substrate with immediate reduction of molecular oxygen 
into water molecule (Abadulla et al. 2000). Although Lac can only oxidize com-
pounds with lower redox potential (means lower than Lac itself) and hence only 
phenols and aromatic or aliphatic amines can be catalyzed, however, in the presence 
of redox mediator non-phenolic compounds can also be catalyzed (Galhaup et al. 
2002). Degradation of azo dyes by Lac begins with the asymmetrical cleavage of 
azo bonds which is further followed by the process of desulfonation, oxidative 
cleavage, dihydroxylation, and demethylation and depends on the structure of dyes 
to be degraded (Yang et al. 2015; Zheng et al. 2016). Azo dyes can also be degraded 
without the process of cleavage (Chen 2006; Pereira et al. 2009). This mechanism 
of dye degradation includes the formation of phenolic compounds that have resulted 
from the extremely nonspecific free radicals (Chen 2006). Two white-rot fungi 
Pleurotus spp. and Trametes spp. have been reported to be extensively involved in 
industrial dye decolorization (Couto and Sanromán 2006). Their Lac has been found 
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Table 9.2 Fungal enzymes involved in azo dye decolorization/degradation

Fungal species Name of dye
Decolorization 
(%)

Enzyme 
used Reference

Peroneutypa 
scoparia

Acid red 97 75.0 Lac Pandi et al. 
(2018)

Cerrena sp., 
Phanerochaete sp.

Reactive black 5 and 
methylene blue

86.0 and 88.0 Lac and 
MnP

Hanapi et al. 
(2018)

Phoma tropica, 
Dichotomomyces  
cejpii

Congo red, methyl 
red

90.0 and 92.0 Lac Krishnamoorthy 
et al. (2018)

Achaetomium 
strumarium

Acid red 88 99.55 NADH- 
DCIP 
reductase 
and Lac

Bankole et al. 
(2018)

Trichoderma 
tomentosum

Acid red 3 94.9 MnP He et al. (2018)

Peyronellaea 
prosopidis

Scarlet RR 85.0 LiP, Lac 
and MnP

Bankole et al. 
(2018)

Phanerochaete 
chrysosporium

Congo red 93.0 LiP and 
MnP

Bosco et al. 
(2016)

Pleurotus ostreatus 
and Fusarium 
oxysporum

Brilliant green and 
Evans blue

79.20 LiP Przystas et al. 
(2015)

Trametes gibbosa Reactive black 5 87.70 Lac Adnan et al., 
2014

Coprinus plicatilis Reactive blue 19 
(RB19)

99.0 Lac Akdogan et al. 
(2014)

Schizophyllum 
commune IBL-06

Solar brilliant red 80 100.0 Lac, LiP, 
and MnP

Asgher et al. 
(2013)

Pleurotus eryngii Reactive black 5 93.56 Lac, LiP, 
and MnP

Hadibarata et al. 
(2013)

Pycnoporus 
sanguineus

Reactive blue 4 and 
Orange G

81.0 and 97.0 Lac and 
MnP

Christiane and 
Steeve (2013)

Armillaria sp. 
F022

Reactive black 5 80.0 Lac Hadibarata et al. 
(2012)

Phanerochaete 
chrysosporium

Direct red 180 100.0 LiP Sen et al. (2012)

Ganoderma sp. 
En3

Methyl orange, 
crystal violet, 
bromophenol blue, 
and malachite green

96.70, 75.0, 
90.0, and 91.0

Lac Zhuo et al. 
(2011)

Trametes sp. Brilliant blue R250 
and Orange II

100.0 Lac and 
MnP

Grinhut et al. 
(2011)

Trametes trogii Brilliant blue R, 
indigo carmine, 
bromophenol blue, 
and direct red

82.0, 84.5, 
75.0, and 80.0

Lac and 
MnP

Grassi et al. 
(2011)

Phanerochaete 
chrysosporium

Reactive black 5 90.0 LiP and 
MnP

Enayatizamir 
et al. (2011)

(continued)
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to degrade several dye molecules including indigoid, brilliant blue R, anthraqui-
none, remazol triarylmethane, and triphenylmethane (Wong and Yu 1999; Abadulla 
et al. 2000; Zheng et al. 2016). In a study, Mendoza et al. (2011) developed a Lac/
mediator system in a membrane reactor for evaluating reusability of T. versicolor 
Lac and mediators (2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and syringalde-
hyde) for the removal of some azo dye. They found that Lac/syringaldehyde pro-
vided the best system for decolorization red FN-2BL, red BWS, remazol blue R, 
and blue 4BL and decolorization yields were 98%, 88%, 80%, and 78%, respec-
tively. The potential of a novel extracellular form of Lac from a fungal strain, 
Lentinus sp., was explored in the degradation of anthraquinone and azo dyes by 
Hsueh and Chen (2008). Lac enzyme from a macro-fungus, Podoscypha elegans 
(G. Mey.), was found to decolorize five azo dyes, viz. Orange G, Congo Red, direct 
blue 15, rose bengal, and direct yellow.

9.3.2.2  Peroxidases
Peroxidases are ubiquitous heme-containing oxidative enzymes found in several life 
forms, including bacteria, fungi, animals, and plants (Sen et al. 2016). Peroxidases 
catalyze the oxidation of a wide variety of organic compounds using hydrogen per-
oxide (H2O2) as a donor (Carmona-Ribeiro et al. 2015; Ali et al. 2016; Pandey et al. 
2017). It helps in the degradation of lignin and other aromatic compounds. Among 
all peroxidases, fungal peroxidases are best known for their pivotal role in lignin 
degradation (Conesa et al. 2002; Wesenberg et al. 2003; Hammel and Cullen 2008). 
In contrary to Lac, fungal peroxidase can also catalyze non-phenolic aromatic com-
pounds with very high ionization potentials (Sen et al. 2016). Here in this section, 
the role and mechanism of ligninolytic peroxidases, i.e., LiPs, MnPs, and VPs, are 
being described.

Lignin Peroxidases (LiPs)
The enzyme was reported by Tien and Kirk (1983) as an extracellular oxygenase 
released by a white-rot fungus P. chrysosporium. Later other white-rot fungal gen-
era were also identified to release isoenzyme of LiPs in the extracellular medium 
(Mukherjee and Kumar 2018). LiPs are extracellular monomeric heme-protein 

Table 9.2 (continued)

Fungal species Name of dye
Decolorization 
(%)

Enzyme 
used Reference

Phanerochaete 
chrysosporium

Direct red 88 100.0 LiP Singh et al. 
(2010)

Trametes hirsute, 
Phanerochaete 
chrysosporium

Remazol procion 
blue, remazol golden 
yellow

87.0 and 80.0 Lac Jadhav et al. 
(2010)

Datronia sp. Reactive blue and 
reactive black

95.0 and 90.0 Lac and 
MnP

Vaithanomsat 
et al. (2010)

Phanerochaete 
chrysosporium

Orange II 85.0 MnP Sharma et al. 
(2009)

Trametes 
versicolor

Reactive blue 4 90.0 Lac Yemendzhiev 
et al. (2014)
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belonging to the family of oxidoreductases (Erden et al. 2009). LiPs are one among 
three fungal peroxidases (LiPs, MnPs, and VPs) which take part in hydrogen 
peroxide- dependent oxidative degradation of lignin. The oxidative properties of 
LiPs include generation of radical cation through one-electron oxidation and then 
side-chain cleavage, demethylation, intramolecular addition, and rearrangements 
(Wong 2009; Zeinab et al. 2013). Hydroxylation of benzylic methylene groups and 
oxidation of benzyl alcohols to their corresponding aldehydes or ketones are other 
ways to act (Furukawa et al. 2014). As LiP has a higher redox potential than Lac and 
MnP they catalyze both phenolic and non-phenolic compounds including azo dye. 
Research confirmed the role of LiPs produced by P. chrysosporium in decoloriza-
tion of several azo dyes (Spadaro et al. 1992; Podgornik et al. 1999). Apart from P. 
chrysosporium, Phanerochaete ostreatus, Polyporus sp., and Trametes sp. are also 
associated with the production of LiPs as the major reason to decolorize a wide 
range of structurally different azo dyes.

Manganese Peroxidases (MnPs)
MnPs are glycosylated heme-oxidoreductases produced extracellularly only in certain 
basidiomycetes families (Agaricales, Corticiales, Polyporales, Hymenochaetales). 
MnPs oxidize Mn2+ ions to highly reactive Mn3+ ions which function as diffusible 
oxidant and get released from the enzyme surface to degrade phenolic moieties in 
lignin and other similar compounds (Zhao et al. 2005). There are several isozyme 
forms of MnPs which have been identified. The oxidation of Mn2+ to Mn3+ by MnPs 
requires chelating agents, usually organic acids which stimulate the catalytic activity. 
Chelation of Mn with organic acids facilitates dissociation of the enzyme–manganese 
complex (Sen et al. 2016). A wide variety of white-rot fungi are known to produce 
extracellular MnPs (Hofrichter 2002). Studies confirmed that the molecular weight of 
MnPs ranges from 38 to 62.5 kDa, and 43% of similarity with LiP sequences (Mart 
ı́nez et al. 1996). MnPs act in pH ranges from 4.0 to 7.0 with a peak at pH 5.5 whereas 
their activity at 50–70 °C temperature makes them more versatile than other peroxi-
dases (Bosco et al. 2016). In a study, Zheng et al. (2016) reported high stability of 
MnP from a white-rot fungus Cerrena unicolor BBP6 towards many metal ions. This 
MnP showed optimum activity at 60 °C temperature and 4.5 pH, respectively, and 
effectively decolorized many types of dyes. Recently a new MnP, TP55, isolated from 
T. pubescens strain i8 showed a very high catalytic efficiency for textile dye decolor-
ization (Rekik et al. 2019). This MnP TP55 was also able to tolerate organic solvent 
and detergent compatibility than other best-known MnPs such as horseradish peroxi-
dase (HRP), MnP from Bjerkandera adusta strain CX-9 (MnP BA30), and MnP from 
P. chrysosporium (MnP PC). Similarly, solvent- and metal-tolerant MnP-Tra-48424 
was also purified and characterized from a white-rot fungus Trametes sp. 48424 
(Zheng et al. 2016). This MnP-Tra-48424 was strongly resistant to metal ions such as 
Ni2+, Li+, Ca2+, K+, and Mn2+ and organic solvents such as propanediol, glycerol, and 
glycol. There are also reports where non-white-rot fungi showed their potential in 
decolorization of azo dye. For example, a fast-growing Trichoderma tomentosum was 
spotted with remarkable ability to degrade several azo dyes (94.9–99.2% within 72 h). 
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This fungus showed high level of MnP and low level of LiP activities with no aromatic 
amine production during the process of decolorization (He et al. 2018).

Versatile Peroxidases (VPs)
Versatile peroxidases were discovered in 1999 in members of genus Pleurotus (Qin 
et al. 2018). VPs are heme glycoproteins of class II fungal peroxidases and oxidize 
low-, medium-, and high-redox-potential compounds in both Mn2+-mediated and 
Mn2+-independent modes of action (Knapp et al. 2001). The high redox potential of 
VPs enables oxidation of several azo dyes as well as other phenolic and non- 
phenolic aromatic compounds that are the substrates of other related peroxidases 
(Gomez-Toribio et al. 2001). In a strict sense, VPs have catalytic features of both 
MnPs (for the oxidation of Mn2+) and LiPs (oxidizing the redox mediator veratryl 
alcohol at the catalytic Trp) (Fernández-Fueyo et al. 2012). The ability of VPs oxi-
dation of high-redox-potential substrates is mediated through three long-range elec-
tron transfer (LRET) pathways to the heme at acid pH (Fernández-Fueyo et  al. 
2012). In recent years, abundant information on VPs structure–function relation-
ships generated a specific interest of this enzyme in the degradation of a variety of 
recalcitrant compounds that other peroxidases are not able to oxidize directly (Ruiz- 
Duenas et al. 2011). VPs from P. ostreatus were used for removal of reactive black-5 
(Knapp et al. 2001). VPs from I. lacteus decolorized direct blue-1 dye (Qin et al. 
2018).

9.4  Factors Affecting Dye Decolorization/Degradation

There are several external factors which play an important role in decolorization/
degradation of azo dyes. Some of them are discussed below:

9.4.1  pH

It is a well-established fact that pH plays an important role in fungal growth and 
development. It has also been reported that low pH (4–5) favors the growth of most 
fungi. Even for better decolorization of azo dye by fungi, low pH is favorable but 
not considered as an essential condition. As in solution, dyes have ionic form and 
fungal biomass also retains electrical charge; hence the pH of the solution plays a 
major role in dye binding (Fu and Viraraghavan 2001). In several studies, it has been 
found that fungi show better dye decolorization rate at the pH range from 6 to 10 
(Chen et al. 2003; Guo et al. 2007; Kilic et al. 2007). According to Dhanjal et al. 
(2013), higher amount of dye decolorization occurred in slightly acidic condition 
(at pH 6). Hadibarata et al. (2013) reported that Pleurotus eryngii can exceptionally 
decolorize 93% of reactive black 5 azo dye at pH 3. In a study, Bankole et al. (2018) 
showed that acid red 88 dye decolorized at different pH, i.e., 3, 4, 5, 7, 9, and 10. 
However, maximum decolorization up to 99% was observed at pH  4 with the 
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incubation period of 96 h. Earlier, Murugesan et al. (2006) showed maximum Lac 
activity at pH 5 involved in dye degradation in Pleurotus sajor-caju, which further 
decreases by increasing the temperature.

There are also some reports which also showed the decolorization of dye in alka-
line conditions. For example, in fungal genera of P. sajor-caju and P. chrysosporium 
maximum amount of azo dye decolorization occurred at pH of 7 and 8 (Zeinab et al. 
2013). Singh and Chen (2008) also showed the production of fungal Lac in the pH 
range of 4–10 and their role in the degradation of indigo carmine dye.

9.4.2  Temperature

Decolorization or degradation of azo dyes is very much affected by variation in 
temperature. Change in temperature also changes the degradation or decolorization 
rate of synthetic dyes and interferes with enzymatic mechanism (Chakraborty et al. 
2013; Almeida and Corso 2014). The optimum temperature required for the fungal 
growth is found to vary in the range of 25–35  °C (Fu and Viraraghavan 2001; 
Pietikainen et  al. 2005; Lasram et  al. 2010). According to Saratale et  al. (2009) 
higher temperature decreases decolorization rate by the deactivation of azo reduc-
tase enzyme. Most of the studies confirmed that 25 and 30 °C are the best-suited 
temperatures for degradation of azo dyes. Shedbalkar and Jadhav (2011) reported 
that P. ochrochloron MTCC 517 decolorized maximum amount of cotton blue dyes 
at the optimum temperature of 25 °C. In a study, Zeinab et al. (2013) showed that 
both P. chrysosporium and P. ostreatus fungal isolates decolorize azo dyes at 
30 °C. In P. sajor-caju, maximum Lac activity was observed at 30 °C, which drasti-
cally decreases with further increase in temperature (Murugesan et al. 2006). There 
are also reports which confirmed high temperature variability in dye decolorization 
in few fungal isolates. For example, in a yeast Galactomyces geotrichum, decolor-
ization of methyl red was reported at 5 °C, 30 °C, and 50 °C, but the maximum 
decolorization occurred at 30 °C (Jadhav et al. 2011). Similarly, in another study fun-
gus Achaetomium strumarium decolorized acid red 88 dye at 30 °C, 40 °C, 50 °C, 
and 60 °C but here maximum decolorization (99%) was noticed at 40 °C (Bankole 
et al. 2018). These findings indicate that temperature is very important parameter 
which governs the behavior of fungal strains towards dye decolorization. 

9.4.3  Concentration and Structure of Dyes

Primary factor which decide degradability of any dye is its concentration and struc-
ture (Levin et al. 2004; Wells et al. 2006). The structure of some azo dyes cannot be 
easily breakable by the microbial attack and further presence of free radicals’ struc-
tures also created an obstacle in the binding of several azo-reductase to dye molecule 
(Sen et al. 2016). Presence of a lower number of carbon and nitrogen atoms in azo 
dyes increases the recalcitrant nature of dye molecule (Lavanya et al. 2014). That is 
why supplement of external sources of carbon and nitrogen basically in the form of 
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complex organic sources like yeast extract powder, potato dextrose powder, peptone, 
or mixture of carbohydrates is essential for the removal of azo dyes (Kilic et  al. 
2007). Synthetic dyes with low molecular weight demonstrate the maximum amount 
of decolorization. In few cases, dye removal rate becomes very low with the exchange 
of electron-withdrawing assemblage. When the electron donors such as acetate ions 
and glucose, which induce the reductive cleavage of azo bond in dye structure, are 
used up, degradation becomes more tougher (Bankole et al. 2018). In the anaerobic 
condition of a bioreactor, types and accessibility of electron donors vary significantly 
and create hindrance in attaining higher concentration of dye decolorization (Sen 
et  al. 2016). He et  al. (2018) showed that when concentration of methyl red dye 
increases from 750 to 1000 ppm decolorization rate also decreases in the same man-
ner by Sphingomonas paucimobilis. In a study, Spadaro et al. (1992) found that P. 
chrysosporium has the capability to degrade azo dyes by converting aromatic rings 
with few substituents like hydroxyl, amino, or nitro function which mineralized the 
unsubstituted rings. As compared to carboxyl group, the presence of sulfo group with 
stronger electron withdrawing effect provides more decolorization of azo dyes 
(Hsueh and Chen 2008).

9.4.4  Redox Mediators (RMs)

The oxidative or reductive process influences degradation and decolorization of azo 
dyes (Cho et al. 2007). The RMs such as veratryl alcohol, 1-hydroxybenzotriazole, 
2-methoxyphenothiazine, violuric acid, and many others are frequently used for 
enhancing the degradation potential of azo dyes (Husain and Husain 2011). Natural 
compounds such as acetosyringone and syringaldehyde have also been used as eco- 
friendly Lac mediators (Cho et al. 2007). The ubiquitous sources of RMs including 
reduced forms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) were 
found to reduce azo dyes, even in the absence of microbes or their enzymes (Sen 
et al. 2016). In the presence of RMs substrate can go through a one-electron oxida-
tion process  and convert into radical cation (Fabbrini et  al. 2002). 
1-Hydroxybenzotriazole, a redox mediator, is used to degrade several dyes like direct 
red 23, direct blue 80, direct red 239, and direct yellow. Maximum degradation/
decolorization of malachite green dye is observed in vanillin mediator (Husain et al. 
2010). Furthermore, Bibi et al. (2011) showed in a study that Lac/mediator system 
produces fewer toxic metabolites compared to original compound. Recently, new 
findings on natural RMs have extended our understanding towards reductive trans-
formation of pollutants, including azo dyes (Khlifi et al. 2010). Lavanya et al. (2014) 
found that redox-active humin isolated from a paddy soil stimulated azo dye reduc-
tion. Additionally, high-end techniques revealed the existence of redox-active qui-
none moieties and other oxygen-containing groups in humin. The humin was found 
to reduce by sulfide, which stimulated the abiotic reduction of acid red 27 (AR27) 
and four other azo dyes. For more information on the application of RMs in azo dye 
biotransformation, one can see Martinez (2002), Cho et al. (2007), and Sen et al. 
(2016).
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9.4.5  Carbon and Nitrogen Sources

As the least amount of carbon is present in azo dyes, external addition of carbon and 
nitrogen sources are required for their proper degradation (Sani and Banerjee 1999). 
There are different carbon sources such as glucose, starch, acetate, and many others 
used in enhancing the decolorization rate of azo dyes under anaerobic conditions 
(Van der Zee and Villaverde 2005). Although, azo dye decolorization increases in 
the presence of carbon and nitrogen sources but in some cases, addition of carbon 
sources was found to be less effective (Saratale et al. 2009). Nitrogen sources such 
as peptone, urea, beef extract, and yeast extract can also be used in the deactivation 
of NADH which works as an electron donor in microbial azo dye reduction or deg-
radation (Chang et al. 2001a). In synthetic media, nitrogen sources like rice husk 
and rice straw can be used in the form of supplements to enhance the azo dye decol-
orization rate (Saratale et al. 2009).

9.4.6  Aeration and Agitation

Oxygen plays a significant role in dye decolorization process due to its essential role 
in the physiological features, including cell growth and dye reduction (Chen et al. 
2003). Proper availability of oxygen in azo dye reduction reaction is required to 
break down, ring opening and hydroxylation reactions (Pandey et al. 2007). It has 
also been noticed that toxic intermediate aromatic amines which are formed during 
cleavage of azo bond can be further metabolized in aerobic microbial systems. 
According to Buitrón et al. (2004) in a batch reactor, up to 99% decolorization of 
acid red 151 dye may occur whereas in anaerobic conditions only 14–16% was 
noticed. A very small quantity of oxygen is essential for rejuvenation of reducing 
cofactors NADH and NADPH, because under anaerobic process, activities of reduc-
tive enzymes are higher while oxidative enzymes are mainly involved in azo dye 
degradation. Consequently, aerobic conditions are also preferable for complete min-
eralization of dye molecule (You and Teng 2009). Tan et al. (2014) found that a 
yeast Candida tropicalis TL-F1 showed efficient decolorization and degradation 
(up to 20 mg/L) of various azo dyes in aerobic conditions.

Agitation or shaking conditions too have a crucial role in deciding the rate of 
decolorization of azo dyes. Agitation rate (0–50 rpm) provides more uptake of dis-
solved oxygen and nutrient to free cells (Chang et al. 2001a). In a study, Mahmoud 
et al. (2017) showed effect of agitation speed (in case of A. niger) on decolorization 
of azo dye (direct red). They found maximum decolorization of 80% at 350 rpm 
while decreasing agitation speed to 250, 150 and 50 rpm, decreased dye degrada-
tion by 75, 70 and 50% respectively. Similar, results were also obtained in case of 
Alternaria alternata by Chakraborty et al. (2013) and in Ganoderma lucidum by 
Selvakumar et al. (2013).
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9.5  Mass Production of Enzymes

Despite the enormous knowledge of fungal biology, at the commercial levels, large- 
scale production of dye-decolorizing enzymes has proven to be very challenging. In 
particular, during mass production of enzyme, native fungal strains do not grow 
effectively and stringent parameters are required for better production of enzyme. 
The variability in optimization conditions such as substrate concentration, tempera-
ture, pH, and presence of metal ions have been identified as the major bottleneck in 
fungal enzyme production. Submerged fermentations (SmF) and solid-state fermen-
tation (SSF) are the two methods widely used for the production of fungal enzymes. 
However, as SSF provides a natural environment for the growth of fungi, it is prefer-
ably used in the production of dye-decolorizing enzyme. In SSF system, fungal 
mycelium can grow either on the moist surface of solid particles or inside/in between 
two porous particles (Pandey 2003). Post-fermentation, the crude enzyme may be 
directly recovered in SSF. There are evidences which show that optimization in the 
fermentation process may provide better yield of enzymes. For example, Kocyigit 
and Ugurlu (2015) reported that adding metal compound (copper sulfate 300 μM) 
increased the production of Lac  two times as  compared with control (in SSF). 
Similarly, Vantamuri and Kaliwal (2016) reported maximum Lac activity (2000 U/L) 
at pH 6 and 40 °C temperature when Marasmius sps. was used in SSF. Nowadays, 
industries are more concerned towards cutting down the cost of microbial enzyme 
and in this context utilization of cheap and readily available raw material in the fer-
mentation process is recommended (Singh et al. 2016). In a study, Ruiz et al. (2012) 
reported that addition of lemon peel pomace as substrate in SSF process enhanced 
enzyme activity (2181 U/L) when Aspergillus and Penicillium sp. were used. Use of 
corn stover as substrate in SSF showed better production of fungal enzyme 
(Lac 97.47 U/mL, MnP 614.23 U/mL, and LiP 1007.39 U/mL) from Schizophyllum 
commune (Yasmeen et  al. 2013). Gomes et  al. (2009) reported that utilization of 
wheat bran can enhance production of Lac (200 U/mL) from Coriolopsis byrsina. 
However, the same substrate was found to increase the activity of MnP (7 U/mL) and 
LiP (8 U/mL) when Lentinus sp. was used. The use of agro- industrial residues as a 
low-cost substrate for the production of fungal enzyme and their application in rapid 
decolorization of azo dyes is also evaluated by Singh et al. (2016). They found that 
pine sawdust, wheat bran, rice straw, wheat stack, peanut shell, and soybean powder 
when used as substrate, showed maximum activity of the enzymes MnP (1200 U/L), 
Lac (586 U/L), and LiP (109 U/L), respectively, on day 5 of SSF. However, optimiza-
tion of the dye decolorization system with crude MnP enhanced the rates of decolor-
ization of Orange IV and Orange G dye to 76% and 57%, respectively.

In SmF system, microorganisms utilize liquid substrates, and end products are 
liberated into the fermentation broth. In SmF, process parameters such as pH, tem-
perature, moisture, oxygen transfer, and aeration can be easily controlled 
(Kunamneni et al. 2005). However, due to high moisture content, SmF is mostly 
used for bacterial enzyme production. It has been reported that when fungi are 
used in SmF, low recovery of enzyme occurs due to slower release of the enzyme 
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bound to mycelium (Sabu et al. 2006). There are some selected studies which indi-
cate that in fungal SmF system, optimization of carbon and nitrogen concentration 
in liquid substrate may improve the yield of dye-decolorizing enzymes. For exam-
ple, Songulashvili et  al. (2011) found that in SmF, supplementation of culture 
medium with KNO3 increased Lac and MnP activities of G. lucidum 447 strain by 
75% and 27%, respectively. Similarly, the substitution of synthetic carbon source in 
liquid substrate with different agro-waste residues enhanced Lac production in 
SmF (Songulashvili et al. 2011, 2015).

9.6  Future Perspectives

For effective and maximum utilization of fungal enzymes in the removal of azo dye, 
vigorous research in the field of fungal biotechnology is needed. However, for com-
mercial production, improvement in fermentation technology can play an additional 
role. It has also been realized that the laboratory level research does not meet the cri-
terion required for industrial enzyme production. Hence for the microbial production 
of azo dye-decolorizing enzymes, these hurdles need to be addressed. Several workers 
tried to improve the production and efficacy of fungal azo dye- removing enzymes. 
According to the Bankole et al. (2018) search and identification of potential fungal 
strains at genomic level could be useful in the selection of natural azo dye-degrading 
fungi whereas selection of method applied or fermentation technology can play essen-
tial role in enhancing the yield of fungal azo dye-removing enzymes. Generally, use 
of packed-bed reactors (PBR), rotating biological contactor (RBC), and stirred-tank 
reactors (STR) is preferred in microbial enzyme production; however, their applica-
tion may vary by the types of enzyme and strain selected (Longo et al. 2008). The 
PBR are more frequently used in the removal of azo dyes from the industrial effluents. 
The PBR can be used to remove 90% of orange II dye from textile effluents (Almeida 
and Corso 2014). However, in STR, use of T. versicolor provided 99% removal of 
reactive black-5 and reactive red-198 dye (Sen et al. 2016). For a long time, SSF and 
SmF processes have been used in the production of fungal dye-decolorizing enzymes 
such as Lac, LiP, and MnP. Researches in recent past have shown that a slight modifi-
cation in media and optimization in SSF or SmF processes might be useful for enhanc-
ing enzyme yield (Songulashvili et al. 2015; Vendruscolo et al. 2016). For example, T. 
versicolor fungus produced 229 U/L of laccase when nylon sponge was used in SSF 
while least amount (126 U/L) was produced when it (nylon sponge) was not used in 
the cultivation of fungi (Singh et  al. 2016). Similarly, I. lacteus produced higher 
amount of MnP enzyme (950 U/L) when temperature and pH level were changed in 
SSF bioreactor (Zhao et al. 2005). However, it is essential to know that for fungi, SSF 
system is always better than SmF (Sabu et  al. 2006). Recently, immobilization of 
fungal enzymes on nanofiber has found to enhance the rate of decolorization. For 
example, when LiP enzymatic extracts of P. ostreatus (PLO9) and G. lucidum 
(GRM117) were immobilized on carbon nanotubes, an increase of 18 and 27 fold in 
LiP-specific activity was observed compared to the free enzyme (Oliveira et al. 2018).
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Sometimes, an exhaustive search for novel fungal strains showing the potential 
of dye decolorization does not provide additional benefit to the enzyme industry as 
after repeated use in the fermentation process, the strain may not perform well. In 
such conditions, a slight modification in culture conditions or growth parameters by 
the addition of some additives, or optimization of the substrate may lead to an 
increase in enzyme production (also known as “one strain–many compounds 
approach”) (Romano 2018).

In recent past, genetic engineering-based techniques have also proven useful. 
Gene cloning, heterologous expression, and recombination of the gene have been 
used to develop superior strain with the capability to produce dye-decolorizing 
enzymes (Singh et al. 2016). Genetically modified fungi (GMF) have also been tried 
for the removal of azo dyes from waste. For example by transferring laccase gene 
from T. versicolor in a yeast Yarrowia lipolytica, a recombinant laccase was con-
structed and it is widely used for the treatment of synthetic dyes from textile effluent 
(Theerachat et al. 2012). There are several other examples such as laccase released 
by T. versicolor was used in engineered P. chrysosporium for the degradation of 
phenolic dyes (Coconi-Linares et al. 2015). In another study, MnP gene was used to 
construct bioengineered S. cerevisiae by which production of MnP increased many-
fold which also  enhanced the commercial applicability of fungal azo dye- 
decolorizing enzyme (Le Roes-Hill and Prins 2016). Recently, omics-based 
approaches including metagenomics, metatranscriptomics, and metaproteomics 
have also revealed the potential of unculturable microorganisms, including fungi as 
sources of novel enzymes (Berini et  al. 2017). These “omics”-based techniques 
could also be helpful in improving the yield and mass production of fungal enzymes.

9.7  Conclusion

Accumulation of azo dye stuff in soil and water is creating environmental pollution. 
Removal of azo dyes by conventional methods is found not to be very competent, 
especially in terms of complete removal of dye residue from the environment. 
However, high operating cost and generation of secondary pollutants are the con-
straints associated with azo dye removal. An eco-friendly alternative such as the use 
of microbes has been realized as a sustainable means of removing azo dye from 
different wastes. Among microbes, fungi have emerged as potential candidates to 
remove azo dyes from waste residues. They have an arsenal of enzymes with the 
capability to utilize various dye compounds. At the commercial level, the produc-
tion of fungal azo dye-removing enzymes is facing hurdles. The fermentation pro-
cesses and their optimization are the major areas of research that need to be further 
investigated whereas exploration of natural fungal strains with biotechnological 
values can also improve the situation.
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Abstract
Microbial enzymes not only work as a biocatalysts in essential metabolic reac-
tions but also help in the survival of microbes in a particular niche. Rhizosphere 
microbes are well known for their ability to promote plant growth and control 
phytopathogens. Rhizosphere microbes may enhance plant tolerance towards 
phytopathogens by several means. Amongst all known mechanisms of biocontrol, 
secretion of the lytic enzymes is recognized as an efficient way to deter phyto-
pathogens residing in the vicinity of the rhizosphere. Rhizosphere microbes pro-
duce chitinases, cellulases, proteases, and β-glucanases in response to 
phytopathogen attack. These biocontrol enzymes utilize different mechanisms 
involved in the elimination of phytopathogens and indirectly support plant’s 
growth and survival. The biocontrol ability of these enzymes makes them a good 
choice as biocontrol tools. However, large-scale industrial production of these 
enzymes could also be useful in making good quality of biocontrol products in the 
form of biopesticides. Although microbial enzymes have a great potential in the 
field of biocontrol, some constraints such as production cost, formulation design, 
quality, shelf life, and stability in field conditions are the major issues that need to 
be researched thoroughly.
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10.1  Introduction

Phytopathogens including bacteria, fungi, viruses, and nematodes have always 
hampered crop productivity. There have been several incidences where a variety of 
crops were devastated by phytopathogens. During 1840s, the Irish potato famine 
(late blight of potato) in Europe was recorded as an epidemic (Bourke 1964). Later, 
in 1845, M. J. Berkeley had proven that the causative agent of this deadly disease 
was a water mold Phytophthora infestans (Berkeley 1846). In 1895, F. C. Stewart 
identified bacterial wilt of sweet corn also known as Stewart’s wilt disease caused 
by Phytomonas stewartii. The disease was declared to be an epidemic in the year 
1932 and severely destructed the entire field of Golden Bantam sweet corn in many 
parts of the United States (Ivanoff and Keitt 1937). In another incidence, 
Helminthosporium maydis causing southern corn leaf blight disease affected about 
80% of US corn crop with an estimated loss of one billion dollar and was declared 
as an epidemic in the year 1970–1971 in the province of Florida, Georgia, Alabama, 
and Mississippi (Tatum 1971). According to Miller et al. (2017), crop losses from 
evolving phytopathogens and pests have emerged as a threat to global food security. 
However, Strange and Scott (2005) earlier reported that about 10–20% loss of 
global agricultural production is caused by phytopathogens, which deprived 800 
million people from getting adequate food. The United Nations Food and Agriculture 
Organization (FAO) estimated that pests and diseases are responsible for about 25% 
of crop loss (Martinelli et al. 2015).

Preventing crops from phytopathogens has always been challenging. For more 
than a century, different approaches to control phytopathogens were evaluated. 
However, amidst the different methods used, strategies based on chemical or syn-
thetic products have been the mainstay. The primary reason for the high usage of 
synthetic chemicals is their immediate effect against several types of pests. The 
unprecedented use of chemical pesticides resulted in a doubling of its consumption 
in some of the countries (Zhang et al. 2011). However, it was the efforts of some 
environmentalists and ecologists who envisaged the dark side of their use in the 
environment (Gupta and Ali 2008). Exposure of pesticides on human health and its 
other consequences can be realized by a study of World Health Organization (WHO) 
which stated that every year three million agricultural workers in the developing 
world experienced acute poisoning from pesticides and about 18,000 died (Miller 
2004). Apart from this, the other listed negative effects of pesticides on the environ-
ment are groundwater pollution, loss in soil fertility and biodiversity (Mahmood 
et al. 2016).

The use of biological control agents (BCA) in the eradication of phytopathogens 
has proven to be more useful than chemical control. In 1919, the first evidence of 
“classical biocontrol” was reported, which involved control of pests by the use of 
predators or parasitoids (Smith 1919). Later research on plant-microbe interaction 
turned the classical biological control into a more effective robust approach also 
utilizing microorganisms (Tsujibo et al. 2003). From that beginning to the current 
time, enormous research has proven the role of rhizosphere microbes in the suppres-
sion of plant diseases. Rhizosphere microbes use a vast array of mechanisms to 
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eliminate phytopathogen from plants. They produce antibiotics, enzymes, and vola-
tile organic compounds (VOCs) such as hydrogen cyanide (HCN) allelochemicals 
for effective management of phytopathogens. Enzymes such as lipase, protease, 
laccase/ligninase, cellulose, glucanase, and chitinase have also been evaluated for 
their biocontrol activity against several pathogenic bacteria and fungi (Chernin and 
Chet 2002). Microbial enzymes have a great biocontrol potential. These enzymes 
may confer plant protection from a wide range of phytopathogens. Preparation of 
biocontrol products by using biocontrol enzymes producing microbial strain(s) or 
adding extracellular crude enzyme could enhance the use and efficacy of biopesti-
cide product. This approach also has a great biotechnological potential in prevent-
ing crop loss due to phytopathogens. However, extended application and performance 
of microbial enzyme-based biocontrol products at the field level are still not much 
studied and greatly depend on application strategies, formulation method, and types 
of strains used. In this chapter the role of some potential microbial enzymes in the 
biocontrol of phytopathogens is discussed.

10.2  Microbial Enzymes

Microbial enzymes offer great biocatalytic potential in different commercial sectors. 
From ancient time, microbial enzymes are being used in the production of various 
food products including bread, wine, vinegar, pickle, and curd. Microbial enzymes 
gained interest for their extensive use in industries because of their stability, ease of 
production, and high biocatalytic activity. Development in fermentation methods 
also assured abundant production of microbial enzymes to the industries. Nowadays, 
microbial enzymes have several applications in different industries including phar-
maceutical, baking, dairy, beverage, feed, biopolymer, paper and pulp, leather, tex-
tile, cosmetics, detergents, organic synthesis, and waste management. According to 
International Union of Biochemistry (IUB) enzymes are categorized into six types, 
(1) oxidoreductase, (2) transferase, (3) hydrolase, (4) lyase, (5) isomerase, and (6) 
ligase, and microbes can produce enzymes of all six categories. In 2018, the global 
market of enzyme reached $5.5 billion and is estimated further to reach $7 billion by 
2023 (BCC Research 2018). Some examples of industrially produced microbial 
enzymes are amylase, arylsulfatase, β-glucosidase, cellulase, chitinase, dehydroge-
nase, phosphatase, protease, lipase, laccase, pectinase, xylanase, phytase, ureases, 
etc. Amongst them, many play an essential role in ecosystem functioning where they 
serve the purpose of organic matter decomposition, biotransformation of complex 
organic molecules, and control of soilborne phytopathogens.

10.3  Major Microbial Enzymes in Biocontrol

There are certain enzymes which can degrade or lyse cell wall of phytopathogens. 
This phenomenon is widespread in the rhizosphere region where plant growth- 
promoting microbes (PGPM) repel or destroy phytopathogens by secretion of lytic 
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enzymes and indirectly help in plant growth and development. The detailed study 
on microbial hydrolases and other lytic enzymes confirms their biocontrol activity 
against several phytopathogens (Table 10.1). Investigation of some fungal and bac-
terial enzymes revealed that they can inhibit or modify cell-wall synthesis, perforate 
cell membrane, or degrade cell wall of host or plant pathogens (Roberti et al. 2002; 
Mota et al. 2017) and are collectively known as biocontrol enzymes. In this section, 
the role and mechanisms of microbial biocontrol enzymes are being described.

10.3.1  Chitinase

Chitinase (EC 3.2.1.14) hydrolyzes β-l,4-glycosidic linkages of chitin which is a 
poly-β-1,4-N-acetylglucosamine (GlcNAc). GlcNAc is the second most abundant 
organic compound next to cellulose and is the major constituent of arthropod exo-
skeletons, tendons, and linings of their respiratory, excretory, and digestive systems 
and cell walls of a variety of fungi (Clark and Smith 1936). Chitinases have been 
divided into two types on the basis of their functioning: endochitinases and exochi-
tinases. Endochitinases (EC 3.2.1.14) randomly cleave internal points over the 
entire length and produce dimer diacetyl-chitobiose and N-acetyl glucosamine mul-
timer such as chitotriose and chitotetraose (Fig.  10.1). Exochitinases are of two 
types: (1) chitobiosidases (EC 3.2.1.29) which cleave non-reducing ends of chitin 
and produce diacetylchitobiose in a stepwise fashion and (2) β-l,4-glucosaminidases 
(EC 3.2.1.30) which cleave oligomers obtained by endochitinases into monomers of 
N-acetyl glucosamine (Sahai and Manocha 1993). The chitinases are extensively 
distributed in living organisms and perform various biological processes; for exam-
ple, they provide self-defense against chitin-containing pathogens of higher plants 
as well as animals, and help in degradation of the old cuticle, chitin assimilation, 
and preparation of protoplast from fungi (Flach et  al. 1992; Bhattacharya et  al. 
2007). Chitinase activity has been explored in many organisms including bacteria, 
fungi, yeast, insects, and vertebrates (Jeuniaux 1961; Elango et al. 1982; Suslow 
and Jones 1990; Kramer and Muthukrishnan 1997; Hartl et al. 2012).

Chitinases have been documented as notable enzymes showing extraordinary 
role in the biocontrol of phytopathogens. Chitinases from bacteria and fungi are 
reported with fungicidal and insecticidal activities. A number of bacterial genera 
including Streptomyces, Pseudomonas, Bacillus, Escherichia, Alteromonas, and 
Aeromonas have been identified with chitinolytic activity (Sitrit et  al. 1995; 
Watanabe et al. 1999; Tsujibo et al. 2003). Actinomycetes are broadly studied group 
of microorganisms known to produce various secondary metabolites and enzymes 
which are commercially used in medical and agricultural fields. Several species of 
Streptomyces such as S. lydicus, S. aureofaciens, S. griseus, and S. halstedii have 
been reported with chitinolytic activity (Mahadevan and Crawford 1997; Tanabe 
et al. 2000; Tsujibo et al. 2003; Joo 2005). Beyer and Diekmann (1985) showed the 
chitinolytic activity of Streptomyces sp. ATCC 11238 in the degradation of the cell 
wall of Penicillium chrysogenum. Hoster et al. (2005) found that several strains of 
Streptomyces can not only promote plant growth but also show biocontrol activity 
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Table 10.1 Some microbial enzymes reported with biocontrol activity against phytopathogens

S. 
no.

Name of 
enzyme Producing microbes Phytopathogen References

1. Chitinase Enterobacter 
agglomerans

Rhizoctonia solani Sitrit et al. 
(1995)

2. Chitinase Bacillus or Streptomyces Fusarium culmorum, 
Sclerotia sclerotiorum, 
Guignardia bidwellii, and 
Botrytis cinerea

Hoster et al. 
(2005)

3. Chitinase Aeromonas caviae Sclerotium rolfsii, R. solani 
and Fusarium oxysporum 
f.sp. Vasinfectum

Inbar and Chet 
(1991)

4. Chitinase Bacillus thuringiensis 
var. israelensis

S. rolfsii Reyes-ramírez 
et al. (2004)

5. Chitinase Bacillus sp. BPR7 Macrophomina phaseolina, 
F. oxysporum, F. solani, 
Sclerotinia sclerotiorum, R. 
solani and Colletotrichum 
sp.

Kumar et al. 
(2012)

6. Chitinase Pseudomonas spp. F. oxysporum f. sp. redolens 
and Gaeumannomyces 
graminis var. tritici

Sundheim et al. 
(1988)

7. Chitinase Pseudomonas Macrophomina sp., 
Aspergillus sp. and 
Phytophthora sp.

Saraf et al. 
(2008)

8. Chitinase Pseudomonas putida and 
Bacillus subtilis

M. phaseolina Sharma et al. 
(2018)

9. Chitinase Serratia plymuthica R51 F. oxysporum, S. rolfsii, P. 
infestans, R. solani, 
Pythium myriotylum, 
Colletotrichum acutatum 
and Corynespora 
cassiicola

John and 
Radhakrishnan 
(2018)

10. Chitinase Trichoderma asperellum Rigidoporus microporus Sakpetch et al. 
(2018)

11. Chitinase Geobacillus 
thermodenitrificans and 
Bacillus aerius

Phytophthora capsici San Fulgencio 
et al. (2018)

12. Chitinase Bacillus sp. B25 Fusarium verticillioides Douriet-Gámez 
et al. (2018)

13. Chitinase Trichoderma harzianum 
Rifai T24

S. rolfsii El-Katatny et al. 
(2001)

14. Chitinase Pseudomonas fluorescens R. solani Nagarajkumar 
et al. (2004)

15. Chitinase Bacillus sp. F. oxysporum f. sp. 
Lycopersici

Jangir et al. 
(2018)

16. Chitinase Paenibacillus ehimensis F. culmorum and 
Drechslera sorokiniana

Aktuganov et al. 
(2008)

(continued)
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Table 10.1 (continued)

S. 
no.

Name of 
enzyme Producing microbes Phytopathogen References

17. Chitinase Serratia marcescens, 
Micromonospora 
carbonacea and 
Streptomyces 
viridodiasticus

Sclerotinia minor El-Tarabily 
et al. (2000)

18. Chitinase Bacillus sp. R. solani, M. phaseolina El-Bendary 
et al. (2016)

19. Chitinase Fluorescent 
Pseudomonas

P. capsici and R. solani Arora et al. 
(2007)

20. Cellulase Trichoderma 
longibrachiatum

Pythium ultimum Migheli et al. 
(1998)

21. Cellulase Trichoderma sp. S. rolfsii and Fusarium 
cicero

Anand and 
Reddy (2009)

22. Cellulase Trichoderma harzianum P. ultimum Thrane et al. 
(1997)

23. Glucanase Bacillus sp. R. solani, M. phaseolina El-Bendary 
et al. (2016)

24. β-1,3- 
Glucanase

Fluorescent 
Pseudomonas

P. capsici and R. solani Arora et al. 
(2007)

25. β-1,3- 
Glucanase

Pseudomonas stutzeri Fusarium solani Lim and Kim 
et al. (1995)

26. β-1,3- 
Glucanase

Pseudomonas cepacia S. rolfsii, R. solani, and P. 
ultimum

Fridlender et al. 
(1993)

27. β-1,3- 
Glucanase

P. fluorescens R. solani Nagarajkumar 
et al. (2004)

28. β-1,3- 
Glucanase

P. ehimensis F. culmorum and D. 
sorokiniana

Aktuganov et al. 
(2008)

29. α-1,3- 
Glucanases

T. harzianum Aspergillus niger, Botrytis 
cinerea, C. acutatum, F. 
oxysporum, Penicillium 
aurantiogriseum, and R. 
solani

Ait-Lahsen 
et al. (2001)

30. β-1,3- 
Glucanase

T. harzianum P. ultimum Thrane et al. 
(1997)

31. β-1,3- 
Glucanase

Paenibacillus terrae Magnaporthe oryzae, 
Exserohilum turcicum, 
Xanthomonas campestris 
pv. glycines, and R. solani

Yu et al. (2019)

32. β-1,3-1,4- 
Glucanase

Paenibacillus polymyxa B. cinerea Li et al. (2015)

33. β-1,3- 
Glucanase

Bacillus sp. F. oxysporum f. sp. 
lycopersici

Jangir et al. 
(2018)

34. β-1,3- 
Glucanase

S. marcescens, M. 
carbonacea, and S. 
viridodiasticus

S. minor El-Tarabily 
et al. (2000)

(continued)

P. Mishra et al.



265

via production of various enzymes, i.e., cellulases, xylanases, chitinases, lipases, 
and catalases (Hoster et al. 2005). In a study, Yandigeri et al. (2015) reported chi-
tinolytic activity of Streptomyces vinaceusdrappus S5 MW2 isolated from water 
sample of Chilka Lake in India. The strain showed antifungal activity against the 
sclerotia-producing Rhizoctonia solani. S. lydicus has been reported to produce 
extracellular chitinase with an essential role in in vivo antifungal biocontrol activity 
(Mahadevan and Crawford 1997).

Bacterial chitinases with biocontrol activity are also well defined. Several species 
of Pseudomonas have been reported to produce extracellular chitinases. Folders et al. 
(2001) reported synthesis of an extracellular chitinase by a novel pathway through 
chiC gene in Pseudomonas aeruginosa. Mishra and Arora (2012) reported the role of 
extracellular chitinase isolated from P. aeruginosa in the destruction of fungus 
Xanthomonas campestris causing black-rot disease. Pseudomonas strains isolated 
from the rhizosphere of chickpea and green gram were found to produce hydrolytic 
chitinases and cellulases with antagonistic activity against R. solani and Pythium 
aphanidermatum (Sindhu and Dadarwal 2001). Several soil bacilli are also known to 
act as fungal antagonists and degrade and lyse their cell wall. Bacillus licheniformis 
and Bacillus thuringiensis can secrete extracellular chitinase, which works against 
several phytopathogenic fungi (Gomaa 2012). Tasharrofi et  al. (2011) reported 
chitinase production in Bacillus pumilus. However in a study Saber et  al. (2015) 
found that Bacillus subtilis-produced chitinase showed biocontrol against R. solani 
causing disease in potato. In the dual-culture in vitro antagonistic study, chitinase 

Table 10.1 (continued)

S. 
no.

Name of 
enzyme Producing microbes Phytopathogen References

35. β-1,3- 
Glucanase

Streptomyces sp. M. oryzae Shao et al. 
(2018)

36. Protease Bacillus sp. F. oxysporum f. sp. 
lycopersici

Jangir et al. 
(2018)

37. Serine 
protease

Stenotrophomonas 
maltophilia

P. ultimum Dunne et al. 
(2000)

38. Aspartic 
protease

T. harzianum B. cinerea, Mucor 
circinelloides, Aspergillus 
fumigatus, Aspergillus 
flavus, R. solani, and 
Candida albicans

Deng et al. 
(2018)

40. Protease T. harzianum F. oxysporum, 
Colletotrichum capsici, 
Gloeocercospora sorghi, 
and Colletotrichum 
truncatum

Sharma et al. 
(2016)

41. Protease Bacillus sp. R. solani, M. phaseolina El-Bendary 
et al. (2016)
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from Paenibacillus sp. inhibited Fusarium oxysporum, Alternaria burnsii, and R. 
solani fungi by 52.5, 75.0, and 85.71%, respectively (El-Sayed et  al. 2019). In 
another study, Corallococcus sp. was found to produce chitin hydrolase CcCti1 
which hydrolyzed chitin into N-acetylated chitohexaose and inhibited the growth of 
phytopathogen Magnaporthe oryzae in a dose-dependent manner (Li et al. 2019).

Genomic studies have revealed the localization of the gene for chitinase enzyme 
in many microorganisms (Daimon et al. 2005). For instance, through transposon 
mutagenesis, which is a potent way to identify genetic elements regulating specific 
phenotypes, genes for chitinolytic activity were spotted in A. caviae CB101 bacte-
rium. It was noticed that bacterium contains (1) nagA and nagB, (2) ftsX and exeL, 
and (3) varA and rpoH gene sequences and some other unknown genes responsible 
for chitinolytic activity (Li et al. 2007). Role of chiA gene in chitinolytic activity 
was also identified in a bacterial strain Stenotrophomonas maltophilia 34S1 and it 
was found that mutation in chiA gene reduced the ability of S. maltophilia to control 
summer patch disease on Kentucky bluegrass (Kobayashi et al. 2002).

Entomopathogenic fungi have gained considerable attention in the biological 
control of plant insects (Fig.  10.2). Some of the well-known entomopathogenic 
fungi which are being used from a long time to control insects and pests are 
Metarhizium anisopliae, Beauveria spp., and Verticillium lecanii (Strasser et  al. 
2000; Tsujibo et al. 2003). Several studies confirmed that chitinase and chitobiase 
are predominately produced by the entomopathogenic fungus (Leger et al. 1991; 
Valadares-Inglis and Peberdy 1997). Amongst other fungi, Trichoderma harzianum 
is the most commonly used biocontrol agent known for its ability to inhibit different 
bacterial and fungal plant pathogens (Leger et al. 1991; Kang et al. 1999). T. harzia-
num utilizes endo- and extracellular chitinases as the principal mechanism of bio-
control. The endochitinases and chitobiosidases from T. harzianum have been 
reported to show antifungal activity against fungal pathogens including Botrytis 
cinerea, Fusarium solani, Ustilago avenae, Uncinula necator, Saccharomyces cere-
visiae, Fusarium graminearum, and Pythium ultimum (Lorito et  al. 1993). Apart 
from T. harzianum, Aspergillus niger is reported with chitinolytic activity against 
plant pathogenic strains of Fusarium solani, Fusarium culmorum, and R. solani 
(Brzezinska and Jankiewicz 2012).

There are few reports on the presence of genes for chitinases in baculoviruses 
which are commonly used as viral biopesticides; however, in this case, the exact sig-
nificance of chitinase in its role in insect infection is not fully elucidated (Gopalakrishnan 
et al. 1995; Sitrit et al. 1995; Szewczyk et al. 2006; Karabörklü et al. 2018).

10.3.2  Cellulases

Cellulases belong to the glycoside hydrolase (GH) family and cleave β-1,4-D glucan 
linkages of cellulose which is a major polysaccharide component of the cell wall of 
plants and also present in certain bacteria, fungi, and few protozoans including 
Naegleria gruberi, Dictyostelium discoideum, and Acanthamoeba castellanii (Medie 
et al. 2012). Hydrolysis of cellulose produces cello-oligosaccharide, cellobiose, and 
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glucose (Fig.  10.3). Cellulase enzyme has three major types; exoglucanase, also 
known as cellobiohydrolases (EC 3.2.1.91), endo-β-1,4 glucanases (EC 3.2.14), and 
β-glucosidase (EC 3.2.1.21) also known as cellobiase. All three cellulases take part 
in the synergistic conversion of cellulose to glucose (Schülein 1988; Sukumaran 
et al. 2005; Zhang and Zhang 2013). An oxidative kind of cellulase has also been 
reported, which possesses the ability to depolymerize cellulose with the help of free 
radical reactions (Medie et  al. 2012). According to carbohydrate-active enzyme 

Fig. 10.2 Use of entomopathogenic fungi in the biocontrol of insects
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database (CAZy), endoglucanases are found in the GH families 5–8, 12, 16, 44, 45, 
48, 51, 64, 71,74, 81, 87, 124, and 128. Exoglucanases or cellobiohydrolases are 
found in GH families 5–7 and 48 and β-glucosidases in GH families 1, 3, 4, 17, 30, 
and 116 (Juturu and Wu 2014). Biocontrol activity of cellulases is widely reported in 
some bacterial and fungal genera. B. subtilis has been reported with the production 
of cellulase and glucanase along with chitinase for biocontrol of fungal pathogen 
Colletotrichum gloeosporioides causing anthracnose disease of chili (Ashwini and 
Srividya 2014). Endophytic bacteria are also identified to control plant pathogens by 
releasing different types of cellulases. Endophytic Bacillus pumilus JK-SX001 is 
reported to produce extracellular cellulase and protease, which inhibited three fungal 
pathogens Cytospora chrysosperma, Phomopsis macrospora, and Fusicoccum aes-
culi, all causing poplar canker disease (Ren et al. 2013). Cho et al. (2007) found that 
endophytic P. polymyxa GS01, Bacillus sp. GS07, and Pseudomonas poae JA01 
showed potential biocontrol activity against phytopathogenic fungi including R. 
solani, F. oxysporum, P. ultimum, and Phytophthora capsici. Some species of 
Micromonospora have also been recognized to play an essential role in biocontrol. 
For example, cellulase from Micromonospora carbonacea bacterium showed bio-
control of Phytophthora cinnamomi, the causal organism of root rot in Banksia gran-
dis (El-Tarabily et al. 1996).

Fungal cellulases are more preferred than bacterial cellulases due to stronger 
penetration ability into the cellulosic material and are widely used in biotechnologi-
cal applications (Wei et al. 2009). Similar to chitinase, different types of cellulases 
are also reported from Trichoderma spp. showing biocontrol activity. The cellulase 
and chitinase from Trichoderma sp. have been reported in in  vivo biocontrol of 
Sclerotium rolfsii and Fusarium cicero (Anand and Reddy 2009). Transformation 
study in T. longibrachiatum (CECT2606) showed overexpression of β-1,4- 
endoglucanase gene responsible for biocontrol of P. ultimum in cucumber (Migheli 
et al. 1998). The cellulase genes Thph1 and Thph2 of T. harzianum are reported in 
in vitro antagonistic activity against F. graminearum, causing Fusarium stalk rot in 
maize (Quesada-Ocampo et al. 2016). These genes also showed a relation in the 
activation of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) 
which is known for its potential to inhibit pathogenicity and mycotoxin-related pro-
teins in pathogen F. graminearum (Quesada-Ocampo et al. 2016). The research also 
confirmed the role of Thph1 and Thph2 in triggering the formation of reactive oxy-
gen species (ROS), increasing the level of cytosolic calcium in leaves and modula-
tion of induced systemic resistance (ISR) against foliar disease in maize 
(Saravanakumar et al. 2016).

Fungus Pythium oligandrum, is known for its extraordinary trait of mycoparasit-
ism against more than 50 fungal and oomycete species (Gabrielová et al. 2018). The 
fungus utilizes its chitinases, cellulases, proteases, and glucanases as major compo-
nents of mycoparasitism (Benhamou et al. 2012). The fungus has been successfully 
used in the biocontrol of soilborne phytopathogen Phytophthora parasitica via secre-
tion of the extracellular cellulolytic enzyme (Picard et al. 2000). In the last few years, 
the ability of some strains of yeast in the biocontrol of phytopathogens by producing 
cellulases has been reported. For instance, a yeast Wickerhamomyces anomalus 
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showed in vitro and in vivo biocontrol activity against phytopathogens B. cinerea and 
Penicillium digitatum and the genes WaEXG1 and WaEXG2 were found to be associ-
ated with the production of exoglucanases in the inhibition of phytopathogenic fungi 
(Parafati et al. 2017). In a study, Chen et al. (2018a) reported biocontrol potential of 
24 strains of yeast against gray mold B. cinerea (teleomorph: Botryotinia fuckeliana) 
through the production of cellulase, chitinase, and protease. Further, they found that 
amongst all Galactomyces candidum JYC1146, Aureobasidium pullulans JYC1278, 
and A. pullulans JYC1291 showed maximum inhibition of B. cinerea (69.6%, 33.7%, 
and 23.6%, respectively).

Apart from bacteria and fungi, cellulases from actinomycetes have also been 
reported in the biocontrol of plant pathogens. For instance, cellulase from 
Streptomyces rubrolavendulae S4 were found to show antagonistic activity against 
fungal pathogen P. aphanidermatum causing damping off disease in plants (Loliam 
et al. 2013). For more details on biocontrol enzyme of actinomycetes, one can see 
literature by Behie et al. (2017) and Olanrewaju and Babalola (2019).

10.3.3  Proteases

Proteases, also termed as peptidases or proteinases, cleave the peptide bond present 
between the amino acid residues in a polypeptide chain. Based on the reaction, 
chemical nature of the catalytic site, and evolutionary relationships, proteases can 
be classified into two major types: (1) endopeptidases, which cleave internally the 
amino acids and (2) exopeptidases, which remove amino acids either from amino- 
terminal or carboxy-terminal end of the protein. Exopeptidases are further subdi-
vided into (1) aminopeptidases that remove amino acid from amino-terminal or (2) 
carboxypeptidases that remove at carboxy-terminal, respectively. Some other types 
of proteases are also reported such as serine proteases (EC 3.4.21), cysteine prote-
ases (EC 3.4.22), aspartic proteases (EC3.4.23), metalloproteases (EC 3.4.24), and 
threonine proteases (EC 3.4.25). These proteases are categorized based on the archi-
tecture of their catalytic site (Garcia-Carreon 1997; Clark and Pazdernik 2016).

Apart from different applications in industries, proteases have also been recog-
nized for their wide applicability in the field of agriculture. Earlier work on biocon-
trol demonstrated the ability of lytic enzymes including extracellular protease in 
antagonizing several plant pathogens (Sacherer et  al. 1994; Dunne et  al. 1997; 
Whipps 2001). There are several reports which show the role of proteases obtained 
from soil bacilli in biocontrol of phytopathogenic fungi and bacteria. An antagonis-
tic strain of Bacillus amyloliquefaciens isolated from the rhizosphere of jute showed 
protease-mediated biocontrol activity against Macrophomina phaseolina, F. oxys-
porum, Fusarium semitectum, and Alternaria alternata (Majumdar and Chakraborty 
2017). In a study, Essghaier et al. (2009) reported production of salt- tolerant prote-
ase from B. pumilus M3-16 strain responsible for biocontrol activity against phyto-
pathogenic fungus B. cinerea. Wei et al. (2010) reported the role of protease from 
Bacillus sp. AR156 and GJ24 strains in the inhibition of a nematode Meloidogyne 
incognita and they suggested that in  vitro protease activity could be used as an 

10 Microbial Enzymes in Biocontrol of Phytopathogens



272

important parameter in the selection of BCAs against root-knot nematodes. The use 
of microbial proteases with nematicidal activity in biocontrol of nematodes in the 
rhizosphere was also realized by other workers (Lian et al. 2007; Illakkiam et al. 
2013). For example, Siddiqui and Shaukat (2005) also reported the potential of 
extracellular protease producing biocontrol agent (BCA) Pseudomonas fluorescens 
CHA0 in the management of root-knot disease causing nematode M. incognita in 
tomato and soybean. In another study, a nematode-associated bacterium P. fluores-
cens (pf36) isolated from the rhizosphere of the banana plant showed expression of 
three nematicidal protease genes, i.e., pase1, pase4, and pase6, involved in the pro-
tection of plant from phytopathogenic nematode Radopholus similis (Chen et al. 
2018b).

Amongst fungi, vigorous research has been done on biocontrol traits of T. har-
zianum (Schuster and Schmoll 2010). It has been found that proteases and chitin-
ases are the two major enzymes of Trichoderma attributed for the biocontrol of plant 
pathogens (Benítez et al. 2004). Different strains of Trichoderma are reported which 
use their extracellular proteases against Fusarium sp., Colletotrichum sp., 
Gloeocercospora sp.  and Botrytis sp. (Elad and Kapat 1999; Schirmböck et  al. 
1994; Jayalakshmi et al. 2009; Sharma et al. 2016). The alkaline and serine prote-
ases from T. harzianum and Trichoderma virens have been characterized and were 
found to be effective against phytopathogen R. solani (Benı́tez et al. 1998; Pozo 
et al. 2004). Proteases with nematicidal activity are also reported in some strains of 
Trichoderma, Monacrosporium microscaphoides, and Arthrobotrys oligospora 
(Tunlid et al. 1992; Suárez et al. 2005; Wang et al. 2006). Proteases of entomopatho-
genic fungi are also explored for insect control (Leger et al. 1992). Extracellular 
proteases of entomopathogenic fungi can easily hydrolyze proteinaceous insect 
cuticle; hence, they are widely used as potential bioagents for preventing crop loss 
due to insect attack. In last few years recombinant proteases with enhanced antifun-
gal activity have also been investigated against Penicillium expansum, B. cinerea, 
Monilinia fructicola, and A. alternata (Banani et al. 2014; Fan et al. 2014).

10.3.4  β-1,3-Glucanase

β-1,3-Glucanases are glycoside hydrolases which cleave long chains of β-1,3- 
glucan and are widely dispersed in plants, fungi, and bacteria. There are two types 
of β-1,3-glucanases: (1) exo β-1,3-glucanases (EC 3.2.1.58) which act randomly, 
inside a glucan chain, and (2) endo β-1,3-glucanases (EC 3.2.1.39) which release 
glucose residues from the non-reducing end (Gueguen et al. 1997). β-1,3-Glucanases 
are more extensively known for their role in modifying glucan and maintaining the 
rigidity of the cell-wall structure of fungi (Mouyna et al. 2013). However, the role 
of β-1,3-glucanase in biological control of soilborne plant pathogens is also very 
much explored, and nowadays β-1,3-glucanase or other glucanase-producing 
microbes are being opted as efficient BCA. According to Aimanianda et al. (2017), 
β-1,3-glucanases’ ability to modify fungal cell-wall β-(1,3)-glucan polymer can be 
successfully employed in the development of BCA.
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β-1,3-Glucanases from Pseudomonas cepacia have been reported for the biocon-
trol of the plant pathogenic S. rolfsii, R. solani, and P. ultimum (Fridlender et al. 
1993). Recently, Yu et al. (2019) reported that β-1,3-glucanases from Paenibacillus 
terrae have the potential to biocontrol M. oryzae, Exserohilum turcicum, X. camp-
estris pv. glycines, and R. solani fungi causing rice blast, corn spot disease, soybean 
bacterial spot disease, and rice sheath blight disease, respectively. There have also 
been reports where β-1,3-glucanases and secondary metabolites such as lipopeptide 
antibiotic, viscosinamide, and,2,4-diacetylphloroglucinol acted synergistically to 
inhibit phytopathogens (Nielsen et al. 1998). For instance, in a study β-1,3-glucanase 
along with an antibiotic extract from B. subtilis conferred protection against rice 
blast and sheath blight diseases caused by Pyricularia grisea and R. solani, respec-
tively (Leelasuphakul et  al. 2006). Arora et  al. (2007) have revealed that β-1,3- 
glucanases and chitinase from fluorescent pseudomonads inhibit R. solani and P. 
capsici. In a study, Bglu1 and Bglu2 genes from Bacillus velezensis for β-1,3 and 
1,4-glucanase production gene were cloned and expressed in Escherichia coli and 
subsequently purified enzyme β-1,3 and 1,4-glucanases were found to exert antifun-
gal activity against three phytopathogenic fungi, i.e., Helicobasidium purpureum, 
Cryphonectria parasitica, and Cylindrocladium quinqueseptatum (Xu et al. 2016). 
β-1,3-Glucanase of endophytic bacteria has also been evaluated in the biocontrol of 
fungal pathogens. In a study, Jha (2019) found that endophytic P. aeruginosa and 
Pseudomonas pseudoalcaligenes along with activation of isolates phenolics and fla-
vonoids also secreted β-1,3-glucanase and catalase in paddy and helped in the 
development of preformed defense against fungal pathogen Pyricularia grisea 
responsible for the fungal blast in paddy. Shao et al. (2018) showed the potential of 
Streptomyces sp. in combating rice blast disease in seedling caused by M. oryzae.

Mycoparasitic species of Trichoderma are best recognized for the production of 
complex proteins that are directly involved in parasitizing host fungus (Ramada 
et al. 2016). However, proteomic studies provided ample evidence of the growth of 
Trichoderma on media supplemented with cell-wall extract of plant pathogenic 
fungi (Grinyer et  al. 2005). Further, it has also been investigated that β-1,3- 
glucanases of Trichoderma can degrade glucan chain in the cell wall of several 
fungal pathogens such as R. solani, B. cinerea, and Fusarium sp. (Monteiro and 
Ulhoa 2006). There are several reports where species of Trichoderma were found 
to secrete β-1,3-glucanase for protecting the plant from fungal pathogens. β-1,3- 
Glucanase from T. harzianum has been used in the biocontrol of S. rolfsii 
(El-Katatny et al. 2001). However, Trichoderma asperellum along with chitinase 
and protease produced β-glucanases against F. graminearum causing stalk rot of 
maize. (Li et al. 2016) Similarly, Khare et al. (2018) reported that lytic enzymes 
β-1,3-glucanases and chitinase along with peptaibols from T. cerinum can be effec-
tively used in the management of F. oxysporum. In another study, Baiyee et  al. 
(2019) reported involvement of β-1,3-glucanases and chitinase of Trichoderma 
spirale in the biocontrol of Corynespora cassiicola or Curvularia aeria causative 
agent of leaf spot disease in lettuce. Wonglom et al. (2019) reported biocontrol of 
Sclerotium sp. by β-1,3-glucanase produced by Trichoderma. Apart from 
Trichoderma, Chaetomium globosum and Chaetomium cupreum have also been 
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reported for the secretion of β-1,3-glucanase with biocontrol activity (Jiang et al. 
2017a, b). A significant success related with biocontrol trait of fungal β-1,3-
glucanase is the expression of its gene in crop plants which provides increased 
tolerance to fungal diseases. The technique was successful in the strawberry plant 
for providing tolerance against Rosellinia necatrix, a soilborne pathogen causing 
root and crown rot in strawberry (Mercado et al. 2015).

10.4  Mass Production and Optimization

Mass production of microbial biocontrol enzymes is a significant area of research. 
Enhancing the commercial production of microbial enzymes needs selective 
approaches where maximum yield could be obtained by low capital cost. Use of 
low-cost raw materials as substrates, improved bioprocess technologies, and bioen-
gineering of microbes are some of the multifaceted approaches that can be har-
nessed for maximum production of microbial enzymes (Lynd et al. 2002; Sukumaran 
et al. 2005). Fermentation and bioprocessing technologies are an essential compo-
nent of mass production of microbial enzymes (Sarkar et  al. 2010). Submerged 
fermentation (SmF) is preferred for bacterial enzymes because these microbes 
require higher water potential in comparison to fungi (Chahal 1983). Solid-state 
fermentation (SSF) is mostly implemented for fungal enzyme production and 
requires less water potential (Troller and Christian 1978; Babu and Satyanarayana 
1996). However, there are few reports available where bacteria such as Bacillus spp. 
can use SSF for enzyme production (Chaari et al. 2012; Kapilan and Arasaratnam 
2011). The significant advantage of SSF is that it provides higher yield, which is 
linked with increased biomass production and low breakdown of the product 
(Hansen et al. 2015). SSF also provides low cost of operation with less skilled man-
power and use of cheap agricultural and animal residues and biomass as substrate 
(Pandey et al. 2000). However, at the industrial level, SmF is more widely used at a 
routine basis because process parameters (such as temperature, agitation, aeration, 
foam, and pH) can be handled easily during the entire process (Vaidyanathan et al. 
1999). According to Subramaniyam and Vimala (2012), yield can be optimized by 
the careful selection of substrates. SSF utilizes different solid substrates, including 
agricultural and animal wastes, which are nutrient rich. Agricultural waste materials 
such as wheat bran, rice straw, bagasse, fruit pulp, coconut coir, hay, and vegetable 
waste can decrease the cost of production (Pandey et al. 1999). Fermentative pro-
duction requires specific concentrations of media components, for instance, nutri-
ents, ions, and growth hormones, as they are important bioprocess tools for medium 
design (Çalık et al. 2001).

For industrial production of chitinase, bacteria are mostly preferred in compari-
son to fungi because chitinase activity is higher in the mycelium of fungi rather than 
the culture medium (Lopes et al. 2008). Contrary to this, in the case of cellulases, 
fungi are better performers than bacteria because they (bacteria) have lower pen-
etration potential and inefficacy to use a wide range of substrates for cellulase pro-
duction. Dewi et al. (2016) reported medium optimization of β-glucanase production 
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by B. subtilis SAHA 32.6 strain used in biological control of oil palm pathogen and 
it was found that production is influenced by inoculum size, oat β-glucan, and yeast 
extract used as substrate. Sharma et al. (2017) described the optimization of produc-
tion parameters for microbial alkaline proteases, and they inferred that pH of pro-
duction medium, ionic strength, temperature, and mechanical handling are the 
major factors which maximize production. In another study, Singh and Bajaj (2016) 
evaluated the production of a thermostable and wide-range pH-stable protease from 
B. subtilis K-1 strain using cost-effective agricultural residues. They found that for 
enhanced production of protease, the most significant variables were incubation 
time and type of agricultural wastes used as substrate. Further optimization of these 
variables by the central composite design of response surface methodology (RSM) 
showed a substantial protease yield enhancement (112%). Likewise, RSM and other 
statistical and modeling techniques are also available, which work as empirical 
models or tools and help in the optimization of production conditions of enzymes 
(Hao et al. 2012). For example, Meriem and Mahmoud (2017) reported chitinase 
production by Streptomyces griseorubens by using a Plackett–Burman design 
(PBD) model. The results of PBD experiments revealed that that syrup of date, col-
loidal chitin, PO4 (K2HPO4, KH2PO4), and yeast extract had important effects on 
the production of chitinase. In another study, the production of chitinase by 
Chitinolyticbacter meiyuanensis was assessed via Plackett–Burman (P-B) and 
response surface methodology (RSM) and it was found that both models can be use-
ful in the prediction of nutrient demand for maximum production of chitinase (Hao 
et al. 2012).

10.5  Future Directions and Conclusion

Biocontrol enzymes are the significant products which can be used for the protec-
tion of crop from devastating phytopathogens. Although in comparison to other 
industrial enzymes, production and commercial applicability of biocontrol enzymes 
are not well established, in the near future, their use may expand, especially in the 
development of biocontrol products. Some of the issues being faced in the produc-
tion of biocontrol enzymes are lack of efficient strains, high production costs, inad-
equate formulation design, and instability at various conditions. Recently, 
researchers tried to overcome the shortcomings related with their production, and it 
has been found that utilization of agro-wastes and animal material can cut down the 
cost of the hydrolytic enzymes (Viayaraghavan et  al. 2019; Sindhu et  al. 2019). 
Recently, Sarker et al. (2019) reported that by using an aqueous extract of cow dung 
manure, vermicompost, de-oiled neem cake, sugar, sugarcane molasses, baker’s 
yeast powder, and crab shell powder in their different combinations production of 
chitinase can be enhanced. Meruvu and Meruvu (2019) found that by using fer-
mented wheat bran and shrimp shells, waste yield of chitinase can be enhanced by 
4.24-fold or 31% in Citrobacter freundii harit D11 strain. Use of statistical surface 
methodology in the optimization of protease production in Bacillus species was 
described by Suberu et al. (2019). For improving the ability of enzyme production 
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genetic modification techniques are more promising than physical and chemical 
approaches. In a study, Hafez et al. (2019) also noticed that by the introduction of a 
recombinant gene P2 in S. griseorubens E44G strain, its chitinolytic activity may be 
increased by 1.39-fold. With the genetic improvement of empathogenic fungal 
enzymes, the efficiency of fungal biopesticides can also be improved (Lovett and St. 
Leger 2018). It has also been realized that rhizosphere microbes are potential can-
didates for secreting hydrolytic enzymes; however, in the last few years studies also 
affirmed the role of marine microbes in the production of hydrolyses withstanding 
extreme temperatures and salinity (de Veras et al. 2018). The potential of viral chi-
tinases belonging to the GH18 family has also been evaluated for fungicidal and 
insecticidal properties (Berini et al. 2018). Biotechnology of recombinant enzymes 
has also expanded the multifarious use of microbial enzymes in the direction of crop 
protection (de Sousa et al. 2019).

Although considerable progress has been made in optimization, screening, and 
strain improvement of microbes used for the production of an enzyme with biocon-
trol trait, negligible work is done for the development of biocontrol enzyme- 
containing product. In the real sense, formulation design is the biggest challenge in 
the development of any biocontrol product (Arora and Mishra 2016; Mishra and 
Arora 2018). As in conventional approach of bioformulations or biopesticide prepa-
ration, the target remains to deliver biocontrol agent itself, and no other ingredients 
are utilized to act as a biocontrol agent; hence incorporating microbial enzyme in 
the formulation product may provide additional advantage and will also increase its 
activity against target pest or phytopathogens. However, presently there are no such 
biocontrol products available for commercial use, but in the near future, more 
research on microbial enzymes with biocontrol activity may enable their utilization 
in the commercial development of biopesticides. Interestingly, with the advent of 
nanotechnology, we have succeeded in the designing of nanoparticle-based formu-
lations loaded with a microbial enzyme which can be used in the biocontrol of host- 
specific pathogens (Chinnaperumal et al. 2018).

Lastly, it must be noted that microbial enzymes with biocontrol traits are of 
immense value to plant defense from phytopathogens. Furthermore, considering 
some regulatory constraints such as registration and safety assessment, the use of 
microbial enzyme may be extended in the manufacturing of the new generation 
biocontrol products showing host-specific and broad-spectrum activity.
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Abstract
Enzymes play a significant role in several biotechnology-based industries for 
making the process cost effective. These enzymes are predominantly obtained 
from microbes (bacteria, fungi, and microalgae), plants and animals for serving 
intended applications. Recently, biofuels are advocated as clean and green, alter-
native source of energy to meet the growing demand of fossil fuels. However, 
biofuel production is not commercially scalable since lignocellulose biomass 
(LCB)-converting enzymes/processes are not cost effective. Several commercial 
enzymes including cellulase, xylanase, laminarinase and other ligninolytic 
enzymes are used to implement a synergistic action in the breakdown of LCB 
structure into pentose or hexose sugars, and other co-products. Enzyme dosage 
optimisation during the biomass processing and co-product production are con-
sidered amongst the major challenges in this biorefinery pathway. This chapter 
covers application of commercial enzyme preparations in LCB processing, and 
factors affecting co-product production in a biorefinery set-up to address pro-
cessing challenges.

11.1  Introduction

Enzymes act as catalysts to enhance biochemical reactions and lead to product for-
mation. The biochemical reaction process is more intense in comparison to any 
chemical reaction and the application of enzyme to any reaction is specific to the 
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substrate (Choi et al. 2015; Arsalan and Younus 2018). They are primarily derived 
from microorganisms, plants and animals (Schimel et al. 2017; Park et al. 2018). 
Some of the properties that make enzyme more preferable over chemicals are their 
biodegradability, specificity, catalytic efficiency, high activity and selectivity (Li 
et al. 2018a; Margenot et al. 2018). Enzymes are finding a number of applications 
in various industries. Some of the recent advancements in enzyme technology 
include enzyme immobilisation, protein engineering and synthetic biology (Ehtesabi 
et al. 2018; Li et al. 2018b) for tailoring enzymes to a specific application.

Due to the biological catalytic activity of enzymes they are applied in industries 
such as food (baking, brewing, alcohol and juice), biotechnology (degradation of 
substrate and product development, cell rupture, modification of protein structure), 
textile and paper (treatment of fabrics and paper), nutraceutical and pharmaceutical 
(Spohner et al. 2015; Fatima and Khare 2018; Li et al. 2018a; Rosenthal and Lütz 
2018). With their single biocatalytic mechanism, they help to enhance the property 
of product such as functionality, appearance, disruption or extraction of product 
(Huang et al. 2017). There are various challenges and drawbacks encountered while 
using an enzyme-based system. Most of the times it is either the cost or the effi-
ciency of enzyme that brings the challenge to the product formation. The robustness 
of the substrate can demand addition of more enzymes for hydrolysis and the desired 
product can directly raise the production cost (Patel et al. 2016). Sometimes due to 
the inefficiency of the enzyme, the hydrolysis fails to occur effectively leading to 
lower conversion yield (Llorent-Martínez et al. 2017).

For various industrial applications, enzymes are currently isolated from microbes 
that naturally produce biocatalysts for the degradation of polysaccharides, proteins, 
starch or other substrates (Bernal et al. 2018). There are many leading commercial 
enzyme producers that are known at the global level. Amongst them, Novozymes, 
Chemworld, Genecor, Biocon and Enmex are major players. The majority of the 
enzymes used for biorefinery (“a sustainable process that integrates development of 
range of important value-added products from a renewable biomass”) are cellulase, 
glucosidase, protease and amylase that are commercially available under different 
names depending upon the company or source. Cellulase is commercially obtained 
as Celluzyme 0.7Ta, Deterzyme CL-5, Endolase 5000L, Cellulast, Puradax EG 
7000L and Carezyme 4500L. Protease is commercially available as Alcalase 2.5L, 
Bioproteasa L450 and L800, Enziprot 450L, Deterzyme L660, Savinase 16L, Type 
EX and Esperase 8.0L.  Amylase enzyme is available as Purastar ST 15000L, 
Stainzyme 12L, Enziamilasa and Termamyl Ultra 300L (Burgos-Simón et al. 2017).

The activity of these enzymes depends on the environmental conditions from 
where the producing microbe has been isolated. For example the enzyme activity of 
microbes growing at thermophilic condition will be different from that growing in 
saline water, high tidal marine conditions, heavy metal areas, fuel tanks or moderate 
conditions (Asgher et al. 2014; Margenot et al. 2018; Meng et al. 2018). Thermostable 
enzymes have higher stability, reaction rate and substrate solubility compared to 
enzymes active at moderate temperatures. Certain approaches including genetic 
engineering, involving alteration of genome sequence of microbes, protein engi-
neering or attaching the enzyme to a support (immobilisation), are used to improve 
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the stability or alter the property of enzyme to suit the industrial requirements (Puri 
and Verma 2013; Sharma et al. 2018).

The enzymes used in a system can be reabsorbed rather than leaving within the 
liquid suspension. This can be accomplished by improving the stability of enzyme 
which will withstand the conditions such as temperature and pH during recycling, 
and provide easy separation with the same biochemical property (Ahmadi et  al. 
2018). This approach supports clean processing technology and extends economic 
conversion in industries such as food and fuel (Zhang et al. 2018). In biorefinery 
industries for fuel and bioproduct production the recoverable enzyme significantly 
reduced the enzyme loading in biomass conversion; however, the recovery tech-
nologies are not mature yet (Verma et al. 2013; Binod et al. 2018; Guo et al. 2018; 
Nadar et al. 2018). Some of the commonly used enzymes in a biorefinery are listed 
in Table 11.1.

11.2  Application in Lignocellulose Biorefinery

Enzymes play a significant role in the production of biofuel from biomass, essen-
tially due to the presence of biological material such as lignocellulose and organic 
wastes (Liu et al. 2017). A schematic representation of biomass biorefinery is shown 
in Figs. 11.1 and 11.2. The lignocellulosic conversion to biofuel and biorefinery 
begins with collection and transportation of biomass. The collected biomass is sub-
jected to drying and milling to reduce its size and thereafter the actual bioprocessing 
begins (Gu et al. 2018). The first step of bioprocessing includes the pretreatment of 
biomass that can be followed with chemical and enzymatic treatment under high 
pressure (Chen et al. 2017; Puri et al. 2012). This step is key in the processing as it 
results in the breakdown of the strong chemical bonds within the structure. The 
efficient conversion of lignocellulosic biomass into sugar largely depends on the 
pretreatment step (Ashraf and Schmidt 2018). Some of the commonly used pretreat-
ment methods include chemical (acid, alkaline, organic ionic liquid pretreatment) 
and biological, high-pressure and microwave pretreatments. This step breaks the 
recalcitrant structure of lignocellulosic biomass and opens the structure.

The lignocellulosic biomass structure is composed of lignin, cellulose, hemicel-
lulose, ash, proteins and volatile material (Karimi and Taherzadeh 2016). The com-
position and rigidity of the lignocellulosic biomass vary with the class of the 
feedstock such as softwood, hardwood, grasses and organic waste peel. The com-
plexity within the structure also depends on the percentage of each component, 
largely the presence of lignin (Kumar et  al. 2015). It is responsible for bringing 
hardness in the structures and mainly protecting the biomass from external factors 
and retaining the structural strength (Shen et al. 2018).

Lignin is a complex natural polymer which is composed of phenyl units includ-
ing guaiacyl (G), syringyl (S) and p-hydroxyphenyl (H). They form the outer poly-
meric structure and the presence of S and G units is found in hardwood whereas 
softwood contains G units (Ralph et al. 2004). The percentage of lignin present in 
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the lignocellulosic biomass also affects the efficiency of pretreatment; the presence 
of higher lignin percentage will make the structure rigid and more difficult to break 
(Chandel et al. 2018).

These lignins are mainly removed from lignocellulosic biomass through chemi-
cal or high-pressure treatment but there are several lignolytic enzymes that are capa-
ble of digesting the outer structure (Wang and Jönsson 2018). Studies have reported 
that white-rot fungi have the ability to degrade the highly branched structure and 

Table 11.1 Various enzymes used commercially in the biorefinery of biomass and their sources

Enzymes Source
Industrial 
application References

Cellulase Aspergillus/
Trichoderma sp.

Cellulose conversion 
to glucose

Chandel et al. 
(2012)

Hemicellulases Aspergillus sp. Enzymatic 
hydrolysis of rice 
straw to glucose

Zhao et al. 
(2018b)

Hemicellulases (endo-β-1,4- 
xylanases (EC 3.2.1.8))and 
cellulases ((exo-β-1,4- 
glucanase, or cellobiohydrolase 
(EC 3.2.1.91); endoglucanases 
(EC 3.2.1.4)), β-glucosidase, 
carboxymethylcellulase 
(CMCase), xylanase, and 
β-xylosidase

Lichtheimia ramose, 
Penicillium oxalicum 
GZ-2, Penicillium 
citrinum YS40–5

Sugarcane bagasse, 
rice bran, 
saccharification

Garcia et al. 
(2018), Liao 
et al. (2015), 
Ng et al. 
(2010)

Cellulolytic and 
hemicellulolytic enzymes

Lichtheimia ramosa 
(cultured from 
vegetable 
by-product)

Conversion of 
cellulose and 
hemicellulose

Garcia et al. 
(2015), 
Gonçalves 
et al. (2013)

Feruloyl esterase Alternaria alternata 
PDA1 (plant 
pathogen)

Conversion of 
vegetable substrates 
for the biorefinery 
(suitable as 
industrial enzyme 
toolbox)

García-Calvo 
et al. (2018)

Sucrose isomerase (SI) [EC 
5.499.11]

Protaminobacter 
rubrum (bacteria)

Produce 
isomaltulose from 
sucrose

Hellmers 
et al. (2018)

Proteases Fish Depolymerise chitin 
from shrimp waste

Sila et al. 
(2015)

Lipases (Lipozyme TL IM and 
Novozym 435)

Candida rugosa and 
Rhizopus oryzae

Production of 
biodiesel from soy 
bean oil, cooking oil 
into biodiesel

Lee et al. 
(2011)

Carbonic anhydrase Enzyme mimics 
using ab initio 
modelling

Hydrate CO2 Sahoo et al. 
(2018)

Xylanases, xylosidases, 
arabinofuranosidases and 
esterases

Penicillium (such as 
P. purpurogenum, P. 
oxalicum and P. 
funiculosum

Hemicellulose- 
degrading enzymes 
for biofuel and 
biorefinery

Yang et al. 
(2018)
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aromatic groups. These fungi produce extracellular oxidative enzymes such as per-
oxidases including manganese peroxidases (MnP), lignin peroxidases (LiP) and 
versatile peroxidases (VP) (de Gonzalo et al. 2016; Lambertz et al. 2016). These 
peroxidase enzymes are reported to efficiently degrade lignin into fragments by 
oxidising mediators and small oxidising agents that depolymerise lignin (Nousiainen 
et al. 2014). Reports have also suggested the occurrence of copper-based laccases 
but the composition of these enzymes varies with the fungal source and is restricted 
to fungi as the homologues were not observed in the genomic sequence of bacteria 
(Welinder 1992; Floudas et  al. 2012). Fungal based oxidases also enhance the 
digestibility of lignin more efficiently. These include some hydrogen-based peroxi-
dases such as glyoxal oxidases, carbohydrate oxidases and aryl alcohol oxidases. 
Dye-decolorizing peroxidases (DyPs, EC 1.11.1.19) were found recently that are 
haem-peroxidases sourced from bacteria to degrade the lignin structure (Colpa et al. 
2014; Yoshida et al. 2012). Recently, studies were conducted using DyP-type per-
oxidases from bacteria and the ability to oxidise was lower in comparison to fungal 
based enzymes (Santos et al. 2014).

Fig. 11.1 Schematic conversion of lignocellulosic into bioproducts and role of enzymes
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After pretreatment, breakdown of cellulose structure into simple reducing sugars 
through enzyme hydrolysis is achieved. Cellulase is an enzyme that is produced 
from microorganisms including bacteria and fungi (Xue et al. 2017). Cellulose, a 
polymer, made of a chain of glucose units that are linked with 1,4-β-D-glucosidic 
bond to each other, breaks down during enzyme hydrolysis. This process occurs 
with the synergistic action of cellulose-degrading enzymes including endo-β-1,4- 
glucanases, exo-β-1,4-glucanases (or cellobiohydrolase) and β-glucosidases 
(Selvam et al. 2017). The degradation of cellulose begins with the action of endo-β- 
1,4-glucanases that cuts the β-1,4-glucosidic linkage polymer into single-chain 
structure or oligosaccharides with new chain ends. The exo-β-1,4-glucanases (also 
known as cellobiohydrolase) further shorten the polymeric chain by cleaving reduc-
ing and non-reducing ends of oligosaccharides producing either single glucose unit 
or cellobiose (Yang et al. 2018). Cellobiase or β-glucosidase digests cellobiose into 
glucose but at times cellobiose acts as an inhibitor during the enzymatic hydrolysis. 

Fig. 11.2 Schematic 
process flow of biomass to 
biofuel
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Some of the strains that are reported in literature and capable of fermenting the 
waste into bioproducts are described in Table 11.2.

There are other polysaccharides including pectin and hemicellulose and their 
presence varies with the composition of biomass. These polysaccharides are depo-
lymerised using xylanase, pectinase and galactosidase; despite having cellulase into 
the system addition of these enzymes is required to enhance the synergistic action 
and conversion yield (Li et al. 2018c). Therefore, an enzyme complex having the 
efficiency to convert polysaccharide to reducing sugars is highly regarded in ligno-
cellulosic conversion.

11.3  Factors Affecting Biofuel Production

Various technical and economic challenges are associated with the processing of 
second-generation biofuel. First barrier is encountered during the pretreatment of 
the lignocellulosic biomass that includes the efficient conversion and minimal loss 
of biomass during the pretreatment and washing. Second is the loading of the 
enzyme(s) which can alter the efficiency of pretreatment; additionally during the 
enzyme hydrolysis various inhibitory compounds such as furfurals and acetic acid 
are produced which compromise enzyme activity leading to incomplete hydrolysis 
(Sekoai et  al. 2019). During the downstream processing these furfurals interfere 
with the conversion of hexose and pentose sugars into ethanol; additionally they can 
hinder the growth of yeast which converts sugars to bioethanol (Wang et al. 2018). 
These issues often lead to escalation of the production costs as troubleshooting such 
issues can at times be expensive.

The cost of biomass also affects industrial-scale biofuel production. The avail-
ability of cost-efficient lignocellulosic material containing a large amount of cellu-
lose and hemicellulose with minimal quantity of lignin will enhance the scale-up 
process. With the increase of lignocellulosic rigidity, the degree of pretreatment will 
also increase (Dhyani and Bhaskar 2018). The composition of biomass varies in 
hardwood, softwood and grasses and henceforth its efficient conversion into useful 
products varies depending on the plant material (Kucharska et al. 2018). Moreover, 

Table 11.2 Microbial strains used in biorefinery to convert organic wastes into bioproducts

Source Industrial application References
Kluyveromyces marxianus Ethanol production Sousa et al. 

(2018)
Enterobacter, Bacillus, and 
Clostridium

Biohydrogen production Mishra, et al. 
(2019)

Burkholderia sacchari DSM 17165 Convert glucose, xylose, arabinose 
and other reducing sugars into 
poly-3-hydroxybutyrate

Cesário et al. 
(2014)

Klebsiella oxytoca, K. pneumoniae, 
Citrobacter freundii, Enterobacter 
agglomerans and C. butyricum

Fermentation of glycerol in 
1,3-propanediol and 2,3-butanediol

Lin et al. 
(2005), Syu 
(2001)
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the bioproducts that are produced during different stages of biofuel also count in the 
production and expense. Bioproducts such as organic acids, furfurals, cellulose 
fibres, alcohols (butanol and ethanol) and biomethane either are produced at differ-
ent stages of lignocellulosic conversion or can be produced by modifying conver-
sion pathway. These bioproducts at times hinder the efficient conversion to the main 
product and affect the final yield of the product. Therefore, a close monitoring of the 
conversion system is required to control the reaction to achieve higher conversion 
yield (Kumari and Singh 2018). Biocatalyis or co-immobilised enzyme or a cocktail 
of enzymes or co-culturing is also used in the conversion system to improve the 
product yield (Abraham et al. 2014; Hwangbo et al. 2019; Wang et al. 2019). The 
conversion of pretreated biomass into sugar hydrolysate occurs at a much higher 
rate in the presence of multiple biocatalyst/enzyme/culture system than in single- 
catalyst system.

11.4  Biorefinery and Enzyme Application

The growing demand of fossil fuel and depleting reserves has generated the concept 
of biorefinery from renewable sources (Mondou et al. 2018). With the availability of 
resources and development of technology, the biorefinery has been categorised into 
three generations: first, second and third (Binod et al. 2018; Leong et al. 2018). In 
first generation the source of raw material is food crops such as corn and sugarcane; 
but the increasing competition with food supply reduced its demand (Saladini et al. 
2016). The utilisation of lignocellulosic wastes (lignocellulosic feedstock, forest 
residues, agricultural wastes and organic wastes) leads to second-generation tech-
nology and is considered more sustainable compared to first generation (Mitkidis 
et al. 2018; Pontes et al. 2018). The easy maintenance and less technological chal-
lenges in working with algal biomass have advanced to the next level and are con-
sidered as third generation of biofuel. The ability of algal biomass to produce 
high-value products is getting more demand in industry.

Algae are classified into two categories, macroalgae and micro-algae, and based 
on their structural composition and efficiency to produce a product they have differ-
ent applications in industry (Saravanan et al. 2018; Veeranan et al. 2018). As a third- 
generation biomass their contribution to renewable energy generation includes the 
production of biohydrogen, biomethane, biodiesel and bioethanol (Leong et  al. 
2018). This is mainly achieved by micro-algae due to their efficiency in conversion 
and product development. Despite having less complex structure compared to ter-
restrial plants, algal biomass is often considered for pretreatment prior to its conver-
sion to achieve higher fuel production. There are several pretreatment methods 
applied on the algal biomass but chemical or mechanical is the commonly applied 
method to improve the productivity (Leite et al. 2013). Enzyme-based pretreatment 
is also reported but the cost and specificity of enzyme limits its application as micro- 
algae have a biopolymeric structure that requires a synergistic action of enzyme 
cocktail to disrupt the structure (Fortier et al. 2017).
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The micro-algae are composed of cellulose, hemicellulose and chitin. The 
absence of lignin makes the structure less complex compared to terrestrial plants 
and allows easier cell disruption (Abomohra et al. 2018; Tu et al. 2018). However, 
macroalgae are composed of polysaccharides such as alginate, cellulose, fucoidan, 
laminarin, polyphenol, steroids, pigment (depending on the species: green algae—
chlorophyll, red algae—carotenoids, brown algae—phlorotannin), vitamins and 
minerals (Sudhakar et al. 2018; Vuong et al. 2018). Seaweeds are the common mac-
roalgae that have unique chemical structure and most of its structural compounds 
(polysaccharides and pigments) are reported to have health benefits (Chia et  al. 
2018). Both micro- and macroalgae have high demand in industry for their polysac-
charides and pigments as they have been proved for having high medicinal and 
health benefits (Zhao et al. 2018a). To disrupt the structure of biomass several com-
mercial enzymes are used that include cellulase, xylanase, amylase, lipase, amylo-
glucosidase and protease. Some enzymes used for the digestion are extracellular 
while others are intracellular depending on the target and product demand.

Furthermore, the substrate specificity and target selectivity on the substrates 
make the enzymatic process more efficient and preferable than chemical treatment 
(Meller et al. 2017). Despite being cleaner it has few disadvantages such as cost 
which varies with its dosage in the processing and difficulty to recover from the 
reaction suspension. These challenges have brought the concept of reusing the 
enzymes (Terrasan et  al. 2019). Enzyme immobilisation is a technique to attach 
them within a matrix or encapsulate within the support. This is achieved to improve 
the biocatalytic properties of enzyme such as molecule stability, resistance to higher 
temperature and shelf life and at times it can be reused (Voběrková et al. 2018). 
Immobilisation can help to reduce the cost of enzyme by reusing it in the system 
multiple times and some of the methods to immobilise enzymes are mentioned in 
Fig. 11.3.

The efficiency of immobilised enzyme preparations is highly dependent on the 
enzyme, attaching matrix and the nature of binding that should bind the enzyme 
without destroying its activity (Abraham et al. 2014; Singh et al. 2015). The immo-
bilisation leads to improved chemical, mechanical, biochemical and kinetic proper-
ties and it depends on the reactive groups on the support and enzyme (Muley et al. 
2018). The support used for the immobilisation can be a nanoparticle, metal organic 
frame, gels and nanotubes. Metals such as silica, carbon, gold, silver and zinc are 
commercially available and commonly used to prepare support (Liu et al. 2018).

In recent years metal-organic frameworks (MOFs) have gained interest in 
research due to the ability to hold high-value material within its 3-dimensional 
porous cage-like structure (Hu et  al. 2018). The structure provides porosity and 
crystallinity due to its formation with metal cations and organic ligands. MOFs 
can be designed in different structures, pore size, surface area and functional groups. 
Due to the flexibility in the pore size (~10 nm), structure (cage or channel) and sur-
face area they are successful in immobilising enzymes and bioactive drugs. This 
framework provides improved stability against chemicals, pH, temperature variation, 
concentration, aggregation and mechanical stress (Cui et al. 2018).

11 Commercial Application of Lignocellulose-Degrading Enzymes in a Biorefinery



296

11.5  Conclusion

The conversion of lignocellulosic biomass into high-value-added products requires 
an overall economic production process. Even though the biomass processing 
encounters several issues, the reduction of processing steps and further improve-
ment in enzyme hydrolysis technology should be adopted. The commercial produc-
tion of highly active enzymes with the ability to be reused can significantly bring a 
process shift in the current technology. Enzymes will replace chemicals in the bio-
refinery for a clean processing and for protecting the environment from toxic chemi-
cals in the near future. This transformation will bring a lot of opportunities for the 
commercial production of highly active enzymes with multiple targets having easy 
separation and recycling properties.

Fig. 11.3 Various methods used to immobilise an enzyme
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Abstract
Cholesterol oxidase (ChOx) belongs to the oxidoreductase family and catalyzes 
the oxidation of cholesterol compounds. ChOx produced by bacteria, streptomy-
ces, fungi, higher plants, and insects is being used in pharmaceutical formula-
tions, agriculture, and waste management. Nowadays, application of ChOx in the 
detection of clinical diseases has also been reported. The industrial use and 
demand for ChOx have increased due to its effective and accurate functionality 
of bioconversion of cholesterol compounds into enantiomerically pure com-
pounds used in various industries. Furthermore, ChOx has also emerged as an 
insecticide and showed great potential in replacing conventional chemical agents 
used in the control of cotton pest. In this chapter, we accentuate on the structure, 
sources, production, and commercial applications of ChOx.

12.1  Introduction

Enzyme technology has emerged as the fastest growing branch in the field of indus-
trial biotechnology. The countless efforts and vigorous research on microbial system 
physiology have enabled the wide use of microbial enzymes in different industries. 
According to an estimate more than 4000 enzymes have been discovered and amongst 
them roughly 200 are microbial in origin (Li et al. 2012). The extraordinary catalytic 
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power, high degree of substrate specificity, and tolerance towards pH and temperature 
changes make microbial enzymes a good choice in industries. That is why enzymes 
like glucose oxidase, streptokinase, cholesterol oxidase, cellulase, lipase, and protease 
of microbial in origin are being used in the food, dairy, textile, biomedical, and agri-
culture industries in large quantities (www.specialtyenzymes.com). Presently, at a 
global level, a vast array of enzymes are floating in the market and actively contribut-
ing to the economy. DuPont and Novozymes accounted for 21% and 47% of market 
share of enzymes, respectively, in the year 2011 (Dewan 2011). In the same year, 
enzymes accounted for $1.2 billion of sale and this was further expected to rise to $2.2 
billion by 2016 (Dewan 2012). Furthermore, in the same year, the food processing 
market made a turnover of $1.3 billion through enzymes (Prakash et al. 2013) and is 
expected to achieve about $4.1 billion by 2024 (www.marketwatch.com).

In the past 20 years, microbial cholesterol oxidases (ChOx) have gained attention, 
mainly due to its large use in biomedical field for determining free and bound cho-
lesterol compounds (Salva et al. 1999). In clinical laboratories ChOx are being used 
in bile acid biosynthesis, detection of serum cholesterol, assessment of atherosclero-
sis, coronary heart disease, and other lipid disorders related with the risk of heart 
attack and thrombosis (Pollegioni et al. 2009; El-Naggar et al. 2017). For diagnostic 
purposes, ChOx is required for the detection or interruption of cell membrane cho-
lesterol that is important for the maintenance of cell membrane structure, fluidity, 
permeability, and protein functions in eukaryotes (Espenshade and Hughes 2007).

The microbial production of ChOx is relatively simple and economically sustain-
able. North America, Europe, Japan, and China are the major countries which are 
manufacturing ChOx and making billions per year (https://www.pioneerreports.
com/report/global-cholesterol-oxidase-market-research-report-2018/342260). This 
chapter is targeted to discuss the structure, sources, production, and application of 
ChOx enzymes.

12.2  Cholesterol Oxidase (ChOx)

ChOx catalyzes the oxidation of the most important steroid cholesterol by using elec-
tron acceptor (oxygen) in cholest-5-en-3-one and subsequent isomerization in cholest-
4-en-3-one and form hydrogen peroxide (Srivastava et al. 2018a, b). ChOx enzyme 
belongs to the oxidoreductase family, which acts on the donor CHOH group in the 
presence of an electron acceptor. ChOx is also named as cholesterol: oxygen oxidore-
ductases, cholesterol-O2 oxidoreductases, 3β-hydroxysteroid oxidoreductases, and 
3β-hydroxysteroid: oxygen oxidoreductases. Additionally, ChOx is a monomeric fla-
voprotein that contains one molecule of flavin adenine dinucleotide (FAD) as a pros-
thetic group (Doukyu 2009; Srivastava et al. 2018a, b). The enzymes containing FAD 
have a consensus sequence of repeating glycine residues GXGXXG (Eventoff and 
Rossmann 1975; Ohlsson et al. 1974). Near-N-terminal FAD permits binding of the 
charged diphosphate moiety of the nucleotide (Hol et al. 1978). There are two distinct 
types of ChOx which belong to different protein families with no significant sequence 
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homology and hence also differ in terms of structure, folding, and kinetic and thermo-
dynamic properties (Chen et al. 2007).

12.2.1  Class I ChOx

It contains FAD redox cofactor which is non-covalently bound to the enzyme and 
belongs to the glucose-methanol-choline (GMC) oxidoreductase family. Mostly, 
Class I ChOx are found in actinomycetes such as Streptomyces sp. (Fig. 12.1). The 
sequence analysis in actinomycetes revealed that His447 and Glu361 residues are 
associated with the various chemical reactions like isomerization and oxidation 
(Yue et al. 1999). Navas et al. (2001) reported a comparison of amino acid sequences 
from class I enzymes from Streptomyces sp., Rhodococcus sp., and Mycobacterium 
sp. and found that Gly-X-Gly-X-X-Gly is the conserved sequence in the N-end of 
FAD region in the ChOx (Ohta et al. 1991). Besides cofactors diphosphate groups 
are present on the first α-helix near the N-terminus where the GXGXG glycine- 
conserved residues are located (Vrielink and Ghisla 2009).

Fig. 12.1 Class I ChOx (source: Sampson and Vrielink 2003)
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12.2.2  Class II ChOx

In the class II enzyme, the FAD cofactor is covalently linked to the enzyme (Croteau 
and Vrielink 1996; Sampson and Vrielink 2003). This enzyme has been found in 
Rhodococcus erythropolis and Brevibacterium sterolicum and pathogens such as 
Burkholderia sp., Chromobacterium sp., and Pseudomonas aeruginosa. By X-ray 
crystallography B. sterolicum ChOx structure has been found to be most indomita-
ble due to its covalent bonds (Fig. 12.2) (Coulombe et al. 2001). Covalent bond of 
FAD contributes to the stability of the enzyme and is implicated in the redox poten-
tial (Caldinelli et al. 2005).

12.3  Sources of ChOx

ChOx was first isolated in 1944 by Turfitt (1944) from a bacterium Nocardia 
erythropolis, now known as R. erythropolis. After that Schatz et al. (1949) reported 
ChOx from Mycobacterium sp. and Streptomyces sp. However, ChOx activity of 
R. erythropolis isolated from various foods, e.g., butter, animal (pork and chicken) 

Fig. 12.2 Class II cholesterol oxidase from Brevibacterium sterolicum (source: Sampson and 
Vrielink 2003)
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fats, and lipids, is also reported by Watanabe et al. (1986). ChOx have also been 
characterized and isolated from different bacterial genera belonging to non-food 
sources like soil, ocean, river water, ponds, and lakes (MacLachlan et al. 2000). 
Earlier, basidiomycetes fungi such as Lentinus edodes, Oudemansiella radicate, 
Coprinus comatus, and Auricularia polytricha were also reported with ChOx 
activity (Matsui et al. 1982). Apart from R. erythropolis, other bacteria known to 
produce ChOx are Corynebacterium sp. (Shirokane and Mizusawa 1977), 
Arthrobacter sp. (Liu et al. 1988; Wilmanska and Sedlaczek 1988), Pseudomonas 
sp. (Lee et  al. 1989), Mycobacterium sp. (Smith et  al. 1993), Burkholderia sp. 
(Doukyu and Aono 2001), Enterobacter sp. (Ye et al. 2008), Bordetella sp. (Lin 
et  al. 2012), Chryseobacterium sp. (Reiss et  al. 2014), and Streptomyces sp. 
(Srivastava et al. 2018a, b; Praveen et al. 2011). Both pathogenic and nonpatho-
genic bacteria are recognized for production of ChOx. Nonpathogenic microbes 
utilize ChOx in their cholesterol metabolism by using it (cholesterol) as a sole 
carbon source, while pathogenic ones need ChOx to degrade the structure of 
membrane of host macrophage (Doukyu et al. 2008; Pollegioni et al. 2009).

12.4  Mode of Action of ChOx

The ChOx enzyme performs a bifunctional reaction. First, it initiates the biological 
reaction in which D5-ene-3β-hydroxysteroids are oxidized with a trans A ± B ring 
to the D5-3-keto-steroid and then isomerization of D4-3-keto-steroid occurs (Smith 
and Brooks 1976). Subsequently, NAD-dependent dehydrogenases and oxygen 
regulate the mode of action (Edwards et al. 1976).

ChOx catalyzes its chemical reactions in three strides (Fig. 12.3). In the primary 
step, alcohol dehydrogenation of cholesterol ring occurs, which is involved in the 
redox process of FAD. Initially, cofactor FAD is oxidized and dehydrogenation con-
verts it into reduced form. In the second catalytic step, the reduced form of FAD 
produces hydrogen peroxide and oxidized enzyme after interacting with di-oxygen. 
Finally, in the third step, the oxidized cholesterol goes through double-bond isom-
erization in the ring system and produces the end product cholest-4-en-3-one 
(Vrielink and Ghisla 2009).

12.5  Production of ChOx

Microorganisms produce both extra- and intracellular ChOx enzyme (Table 12.1). 
Various production methods and extraction techniques are available for obtaining a 
significant amount of ChOx enzyme. The techniques adopted for extraction depend 
on whether the enzyme is membrane bound/intracellular or extracellular. It is 
reported that isolation of membrane-bound or intracellular enzyme is tougher than 
extracellular form (Illanes 2008). The production of extracellular enzyme is easier, 
because enzyme excreted into the medium can be easily retrieved by simple filtra-
tion and centrifugation process, which removes all the solid cell debris and the left 
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is liquid portion containing free extracellular enzyme (MacLachlan et al. 2000). In 
a study, for the extraction of intracellular ChOx enzyme, the cells were mixed twice 
with 0.1 M potassium phosphate buffer (pH 7.0) containing 0.1% Triton X-100 for 
1 h and it was found that by optimization of process parameter more than 90% of 
extracellular ChOx could be extracted (Yazdi et al. 2001). It has also been noticed 
that substrate optimization in medium has a greater effect on ChOx production. For 
example, Atrat et al. (1992) found that in R. erythropolis addition of 1 g/L of cho-
lesterol increased the ChOx production by up to 3.3 U/g of cells. In another study, 
Kim et al. (2002) showed extracellular ChOx production of 3.14 U/mL after 24-h 
incubation by Bacillus subtilis SFF34 when the medium was supplemented with 
0.2% cholesterol. Isobe et al. (2003a, b) reported high extracellular ChOx activity 
(up to 310 U/L) from a γ-proteobacterium cultured in cholesterol medium at 30 °C 
for 12 days. Lin et al. (2012) reported extracellular ChOx production (1700 U/L) 

Fig. 12.3 Mechanism of cholesterol oxidase catalytic activity
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from Bordetella sp. within 24-h culturing at pH 7.0, 260 rpm, and 37 °C. Furthermore, 
Varma and Nene (2003) reported both extra- and intracellular ChOx production 
from Streptomyces lavendulae by using 1.5% potato starch as a substrate. They 
showed that the use of potato starch provided extracellular enzyme ChOx activity of 
2.0  U/mL in 72  h of fermentation while an intracellular ChOx was noticed for 
104.3 U in 100 mL broth. Lartillot and Kedziora (1990) also showed high extracel-
lular ChOx production in Streptomyces sp. According to Sojo et al. (1997) in R. 
erythropolis both extra- and intracellular activity of ChOx can be enhanced by using 
cholesterol as a substrate in spray-and-dry technique and a maximum ChOx up to 
365.0 U/L and 1.70 U/g of cells can be obtained, respectively. Kreit et al. (1994) 
observed that ChOx production from Rhodococcus sp. was increased after addition 
of hexanotes or phytosterol compounds (provide carbon) in the media, and it affects 
both intracellular and extracellular ChOx production (400 U/L).

Extraction method and recovery system also influence the yield of ChOx. It has 
been found that the ultrafiltration and precipitation by inorganic salt may enhance 
recovery up to 90% and 83%, respectively (Varma and Nene 2003). Generally, low 
solubility of cholesterol in aqueous medium causes interruption in the recovery of 
ChOx. To overcome this limitation, an addition of surface-active agents into media 
is recommended. The most common surface-active agents are Tween-80 and Triton 
X-100 (Smith et al. 1993; Doukyu and Nihei 2015; Sahu et al. 2019). However, 
some other sterol-solubilizing agents like cyclodextrins or organic solvents like 
methanol, acetone, isopropanol, or 2-methoxyethanol can also enhance the recovery 
of ChOx (Giorgi et al. 2019).

12.6  Applications of ChOx

Microbial ChOx has multiple uses in the pharmaceutical, food, and agriculture sec-
tors. In addition to this ChOx have a role in virulence and pathogenesis (Pei et al. 
2006), steroid degradation (Brzostek et  al. 2007), and biosensor application 
(Aparicio and Martin 2008; Mendes et al. 2007). Some defined uses of ChOx in 
different sectors are the following:

Table 12.1 Extracellular and intracellular ChOx produced by some bacteria

Type Microorganism References
Extracellular Arthrobacter simplex

Bacillus sp.
Pseudomonas spp.
Schizophyllum commune

Liu et al. (1988)
Kim et al. (2002)
Lee et al. (1989)
Fukuyama and Miyake (1979)

Intracellular Corynebacterium cholesterolicum
Mycobacterium spp.
Nocardia rhodochrous

Shirokane and Mizusawa (1977)
Cheetham et al. (1982)
Smith et al. (1993)

Extracellular/
intracellular

Actinomyces lavendulae
Nocardia erythropolis
Streptomyces violascens

Varma and Nene (2003)
Sojo et al. (1997)
Lartillot and Kedziora (1990)
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12.6.1  Clinical Diagnosis

Pharmaceutical industries and research laboratories utilize ChOx to determine the 
risk of cardiovascular diseases, thrombosis, and other lipid disorders. ChOx helps in 
the estimation of the serum cholesterol level (Richmond 1973; Allain et al. 1974), 
low-density lipid (LDL), and high-density lipid (HDL) in blood serum (Ernst and 
Cleeman 2002). In serum samples, cholesterol is present in ester form and after 
incubation of serum with cholesterol esterase free cholesterol is released. This free 
cholesterol is then oxidized by ChOx and further a peroxidase enzyme catalyzes to 
the hydrogen peroxide with an aromatic dye 4-aminoantipyrine (4-AP) and phenol 
which produce a red-color quinone-imine that is detected by spectrophotometer 
(Fig. 12.4).

12.6.2  ChOx Biosensor

Cholesterol determination from serum and food is very important for quality assur-
ance. To detect the cholesterol from samples different types of biosensors have been 
in consideration. Nowadays, ChOx-containing biosensors are used to analyze the 
cholesterol level in food and in clinical samples (Vidal et al. 2004; Arya et al. 2008). 
Generally, in ChOx biosensors the level of oxygen and hydrogen peroxide deter-
mines the quality of biosensors. Currently, different types of ChOx-based biosensor 
are in use:

12.6.2.1  ChOx/Carbon Nanotube-Adorned Platinum (ChOx/CNT-Pt) 
Biosensor

The ChOx/CNT-Pt biosensor is developed by fixing ChOx in a sol-gel layer on 
electrodes of CNT-Pt. This electrode is formed by reduction technique and interca-
lation of platinum nanoparticles with graphite. This intercalating electrode increases 
the enzymatic activity and eases the conversion of H2O2. This immobilized elec-
trode is preferable for cholesterol detection and generally provides very fast diagno-
sis of serum cholesterol (less than 20  s), and hence is most commonly used in 
clinical labs (Qiaocui et al. 2005).

12.6.2.2  Fourier Transformation Continuous Cycle Voltmeter 
[FFTCCV]

Combination of biosensor and FFTCCV is unique in using ChOx enzymes for cho-
lesterol estimation. In this biosensor, the ChOx is fixed on several layers of carbon 
nanotubes and on nanoparticles of manganese dioxide which when kept on carbon 
rods acts as an electrode and is made up of Nafion synthetic polymers. The biosen-
sor shows negligible inference of uric and ascorbic acid (Shi and Zhi 2005).

12.6.2.3  Poly-Pyrrole-Polyvinlysulfonate (PPy-PVS)
Novel PPy-PVS biosensors have been developed which use different types of poly-
mers like polyindole, polyacetylene, polyaniline, and polythiophene. In PPy-PVS 
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biosensors, platinum electrode bears a layer of poly-pyrrole-polyvinlysulfonate 
immobilized with ChOx, which determines the cholesterol level very accurately. 
The accuracy of this biosensor depends upon detection of H2O2 generated by cho-
lesterol metabolism (Yıldırımoğlu et al. 2009).

12.6.2.4  N [3-(Trime-Thoxysilyl) Propyl]
To increase the sensitivity of biosensors, a novel method is projected, in which 
maximum use of horseshoe peroxidase (HRP) and ChOx helps in improving the 
quality of the sensor. In this biosensor single polymer N [3-(trime-thoxysilyl) pro-
pyl] aniline polymerizes and produces poly N [3-trime-thoxysilyl) propyl] aniline 
matrix. Furthermore, to stabilize the biosensor, ChOx and HRP enzymes are fixed 

Fig. 12.4 Procedure of the detection of serum cholesterol by using ChOX
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on that matrix. This biosensor was developed to estimate the serum cholesterol level 
in lesser time (Bongiovanni et al. 2001).

12.6.2.5  Multiwall Carbon Nanotubes/Glassy Carbon Electrode 
(MWCNTs/GCE)

A new approach to form ChOx biosensor is to use ChOx immobilized on nanoma-
terials such as MnO2 and MWCNTs on a GCE electrode surface to make a rapid 
detection and easier handling of biosensor. Carbon electrode biosensor is very 
effective in serum steroid analysis and under optimal conditions the detection limit 
of biosensor is 0.3 nanomolar (nM) (Norouzi et al. 2010).

12.6.3  Insecticidal Activity of ChOx

Insecticidal activity of ChOx against a Coleopteran insect Anthonomus grandis 
(boll weevil) (Purcell et al. 1993a, b, c) and few Lepidopteran such as Heliothis 
virescens (tobacco budworm), Helicoverpa zea (corn earworm), and Pectinophora 
gossypiella (pink bollworm) is being used for crop protection (Greenplate et  al. 
1995a, b). The purified ChOx protein was found to be active against boll weevil 
larvae (at a concentration of LC50  =  20.9  μg/mL), whereas the bioactivity of 
Bacillus thuringiensis proteins may vary from 1 μg/mL for tobacco budworm (H. 
virescens Fabricius) to 37 μg/mL against European corn borer (Ostrinia nubilalis 
Hubner) (Purcell et al. 1993a, b, c). After ingestion of ChOx enzyme, it associates 
with epithelial membrane in midgut which contains the sterol substrate and then 
catalyzes the conversion of cholesterol into cholest-4-en-3-one (Ghoshroy et  al. 
1997). The conversion of cholesterol into cholest-4-en-3-one results in physical and 
functional disruption of the membrane and ultimately causes developmental arrest 
and death of boll weevil larvae (Purcell et al. 1993a, b, c).

12.6.4  Transformation of Steroids

Steroid metabolism is a complex process. Several enzymatic steps are needed to con-
vert steroid into desired intermediate products and CO2 and water as final end products. 
As microbes use their ChOx for metabolizing steroid compounds and derive energy 
and carbon, they are best suited biocatalytic machinery for bioconversion of steroid 
into useful compounds. ChOx can detect cholesterol and transform it into cholest-4-en-
3-one metabolite (Randolph et al. 1988; Bru et al. 1989). ChOx first provide oxidation 
of 3β-hydroxyl group of steroid and then degradation of side chain starts. Later the 
main core structure of steroid is metabolized. In strict sense, ChOx can oxidize any 
3β-hydroxysteroids to the corresponding ketones (Aparicio and Martin 2008). A num-
ber of pharmaceutical steroids and 3β-hydroxysteroids have been transformed into the 
synthetic steroid hormones by microbial ChOx (Guo et al. 2003). For example, ChOx 
from Rhodococcus sp. are exclusively recognized for biotransformation ability of ste-
roids into hydroxylated steroid metabolites (Lashkarian et al. 2010).
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12.7  Future Prospective

ChOx have potential application in different industries. However, its application and 
demand as a therapeutic agent are increasing day by day. To fulfill this increasing 
demand is seemingly not possible with conventional enzyme production methods; 
hence involvement of modern tools and fermentation techniques is necessary. 
Researchers have also suggested to use recombinant ChOx with improved stabilities and 
catalytic ability amenable for industrial use. Recently, Yamada et al. (2019) showed that 
the need of complex medium containing whole-yeast cells essential for the production 
of ChOx by S. lavendulae strain, which is a natural high producer of ChOx, can be 
skipped by the expression of ChOx gene heterologously in Streptomyces lividans and 
Streptomyces albus. By using suitable vector, overexpression of ChOx gene in S. lav-
endulae strain also increased comparative yields of ChOx (Yamada et al. 2019).

Overproduction of ChOx in Chromobacterium sp. DS1 by optimization of vari-
ous parameters (host strain, culture media, induction time, isopropyl ß-D-1- 
thiogalactopyranoside concentration, as well as post-induction incubation time and 
temperature) was studied by Fazaeli et al. (2019). They showed that optimization 
increased the yield of recombinant ChOx significantly from 92 U/L to 2115 U/L.

The whole-cell biotransformation of cholesterol compounds by using microbial 
ChOx is getting popularized in pharmaceutical industries but application of immo-
bilized cells also faces challenges of structural- and thermo-stability (Stepankova 
et al. 2013). In this context self-assembled organic–inorganic hybrid nanoflowers is 
a new approach for enzyme immobilization. For example, in a study Hao et  al. 
(2019) prepared Brevibacterium ChOx-Cu hybrid nanoflowers which showed 
enhanced structural and thermostability, tolerance to biphasic mixture, and catalytic 
efficiency of bioconversion of cholesterol.

Currently immobilizations of enzymes on nanomatrices have attracted massive 
interest particularly in cutting down the cost of enzyme production (Binod et al. 
2013). Immobilized ChOx will provide more space for the enzymatic activity, so it 
could also be useful in the development of high quality of biosensors for clinical 
use. In the near future, ChOx-containing nanozymes could also be used in the fab-
rication of different types of diagnostic kits useful in the detection of lethal diseases 
for structural and catalytic properties.

12.8  Conclusion

The enzyme ChOx has a great potential in several industries. ChOx utilization in 
measuring the value of cholesterol in clinical samples, bioconversion of cholesterol 
into useful compounds, preparation of food stuffs, and insecticidal activity against 
cotton weevil have been well explored and exploited commercially. Although 
research showed that native or wild-type microbial strains hold great promise of 
ChOx production, newer approaches such as use of recombinant systems would be 
needed for settling the industrial demand of ChOx. Nanotechnology-based approach 
could be useful to strengthen the ChOx-based biosensors in clinical use.
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Abstract
Nephrolithiasis is a terrible pathological condition marked by the presence and 
formation of kidney stones. It affects around 3–20% of the community in the 
world. Several environmental, physiological, and nutritional conditions influ-
ence this disease. Not only the food sources but also the body’s own metabolism 
add up oxalate content in the human body. The increased intake of oxalate leads 
to hyperoxaluria, which often results in the formation of calcium oxalate stones, 
commonly known as kidney stones. The incidences of kidney stone are very 
common, and the current therapeutic measure of its cure is not much effective. 
Therefore, new therapeutic approaches are needed. In the last few years, the use 
of gut microbiome with oxalate-degrading activity has emerged as an excellent 
therapeutic approach to treat kidney stones. As the genes responsible for oxalate- 
degrading enzymes are not found in humans use of bacterial enzymes with the 
ability to degrade oxalate in intestinal digestion has a significant therapeutic 
impact. This chapter summarizes the roles of microbial enzymes produced by 
gut microflora involved in the solubilization of the dietary oxalates, and their 
potential applications in kidney stone diseases.

13.1  Introduction

Kidney stone or urolithiasis is a condition primarily attributed to the deposition of 
an enhanced level of calcium oxalate in the form of crystals due to supersaturation 
(of calcium oxalate) during removal of water from urine (Peck et al. 2016). Although 
oxalic acid is a general component present in human diets, it is also endogenously 
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produced during amino acid metabolism. Moreover, oxalic acid is absorbed in the 
stomach, small bowel, and colon from the dietary sources (Nazzal et  al. 2016). 
Binding with different cations such as sodium, potassium, magnesium, and calcium 
results in the formation of different oxalate salts but mostly calcium oxalate (Mogna 
et al. 2014). Ingestion and exposure of a high amount of oxalate lead to building up 
of oxalate crystals in the kidneys, which might be lethal and cause hypocalcemia, 
azotemia, and hemorrhage in the visceral organs (Aslani et al. 2011). Oxalates of 
calcium and phosphate are the main constituents of kidney stones (Bungash et al. 
2011). Apart from the formation of stones in the kidney, oxalate crystals can destruct 
epithelium in the oral cavity and gastrointestinal tract, causing inflammation, diar-
rhea, and gastric hemorrhage which indirectly becomes a cause of death (Ellis et al. 
2015).

As humans lack the enzyme for directly metabolizing oxalate, alternate path-
ways are used to regulate this potentially toxic compound (Mogna et  al. 2014). 
Current remedial strategies which are used for kidney stones are inefficient and have 
been proven to be unsuccessful in preventing the recurrence of the disease 
(Sutherland et al. 1985). However, therapeutic measures such as allopurinol, thia-
zide, potassium alkali, and tiopronin along with dietary modifications and intake of 
adequate fluids have been used for a long time to limit urolithiasis (Trinchieri 2013). 
Hence the evolution of new therapeutic strategies aiming to prevent recurrent stone 
formation has become the need of the hour. Since a decade, attempts have been 
made to use plants and oxalate-degrading microbial enzymes to solubilize oxalate 
kidney stones, and some success has been achieved (Peck et al. 2016). The roles of 
gut enzymes produced through microflora in the solubilization of the dietary oxa-
lates are a new frontier area for treating kidney stone disease. This chapter provides 
a brief insight into current research and the roles of gut microbial enzymes for the 
treatment of kidney diseases (Fig. 13.1).

Fig. 13.1 Enzymatic degradation of oxalate
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13.2  Role of the Gut Microbiome in Oxalate Degradation

Formation of oxalate stones in humans may be prevented by two symbiotically 
existing bacterial genera, Oxalobacter and Lactobacillus, in the gut. Both bacterial 
genera have been found to act on some biochemical pathways by the intervention of 
their oxalate-degrading enzymes (Sadaf et al. 2017). It has also been hypothesized 
that the Oxalobacter formigenes, a Gram-negative, obligate anaerobe found in the 
gastrointestinal tract and in humans, performs a significant role in mediating mam-
malian oxalate homeostasis (Svedruzic et al. 2005). The bacterium O. formigenes 
colonizes the gut in nearly 70–80% of the healthy population and utilizes oxalate as 
the sole material for energy and carbon source. Formyl-CoA transferase and oxalyl- 
CoA decarboxylase are the two enzymes from O. formigenes, which catalyze oxa-
late for biosynthesis (Hoppe et al. 2005). By transferring the coenzyme-A moiety to 
lactic acid and oxalic acid that is connected with calcium oxalate and calcium phos-
phate, degradation reaction occurs which results in elevation of oxalate and lactate 
level (Salminen et al. 2010).

Further, oxalate is broken down into CO2 and formate, which is further metabo-
lized and excreted via the feces (Hoppe et al. 2005). It has been found that in stan-
dard colonization conditions O. formigenes can degrade more than 1 g of oxalate 
per day. However, attempts to culture this bacterium out of fecal specimens have 
given low colony counts, i.e.. up to 106 CFU per gram of wet sample (Allison and 
Cook 1981). As investigated by Peck et al. (2016) in most of the cases gut of chil-
dren between the age of 1 and 6 years is more naturally colonized by O. formigenes, 
while 20–25% of the colonization is lost during early adulthood and adolescence in 
healthy populations (Peck et al. 2016). In addition to O. formigenes, other oxalate- 
degrading bacterial genera are Lactobacillus, Enterococcus, Eubacteria, and 
Bifidobacterium. Amongst them, Enterococcus faecalis uses oxalate as a sole car-
bon and energy source in a nutrient-deficit environment; otherwise it can also con-
sume other substrates for growth (Miller and Dearing 2013). In some circumstances, 
along with other microflora, natural colonization of O. formigenes in the gut is 
affected. However, continuous use of antibiotics, e.g., in patients with cystic fibro-
sis, or therapeutic use in diseases such as Crohn’s disease also exacerbates kidney 
stone formation (Kumar et al. 2004; Hatch 2014).

13.3  Probiotic Therapies for the Treatment of Kidney Stones

Use of probiotics as a therapeutic and preventive measure in kidney stone and hyper-
oxaluria has gained much attention. It has been found that in the form of probiotics, 
aerotolerant Lactobacillus and obligatory anaerobe Bifidobacterium present in the 
intestine show oxalate-degrading activity, which is considered useful for the preven-
tion of stone formation (Abratt and Reid 2010). Studies confirmed that through treat-
ment with Bifidobacterium lactis DSM 10140, Bifidobacterium longum MB 282, and 
Bifidobacterium adolescentis MB 238 strains, the degradation of oxalate could be 
achieved up to 61%, 35.2%, and 57%, respectively (Turroni et al. 2007; Abratt and 
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Reid 2010). Both Lactobacillus and Bifidobacterium break down oxalate only in the 
presence of glucose and lactose; however, they do not use oxalate as a sole source of 
carbon and hence they are also known as “generalist oxalobacters” (Sadaf et  al. 
2017). Studies reveal that Lactobacillus acidophilus NCFM contains genes that code 
for the oxalate CoA decarboxylase (Oxc) and oxalate CoA transferase (frc) enzymes 
and constitute the functional oxalate-degrading formyl- CoA. A number of natural 
sources such as milk, yogurt, pickles, tomato, cucumber, spinach, and dieffenbachia 
plant are found to contain natural population of Lactobacillus and Oxalobacter pro-
biotics used in the prevention of kidney stones (Gomathi et al. 2014). In a study, 
Lieske et al. (2010) reported that application of mixed cultures of Bifidobacterium 
infantis, L. acidophilus, Streptococcus thermophilus, and Lactobacillus brevis sold 
under the brand name of “Oxadrop” with a low-oxalate diet did not produce any 
effect on the inhibition of kidney stone formation but when given with a normal diet 
it reduced oxalate excretion. The probiotic capability of O. formigenes in the preven-
tion of kidney stone formation has also been reported. However, studies have demon-
strated that only an unabated inoculation of O. formigenes with an oxalate-rich diet 
reduced the concentration of urinary oxalate and restoring back to low-oxalate diet 
resulted in low oxalate degradation with apparent loss of O. formigenes colonization 
(Miller and Dearing 2013).

13.4  Oxalate Degradation by Microbial Enzymes

Absence, deficiency, or complete lack of oxalate degradation enzymes evokes the 
formation of calcium oxalate. Hence, utilization of oxalate-degrading enzymes in 
the prevention and treatment of calcium oxalate stones has suddenly increased (Cai 
et al. 2018). Three major types of microbial enzymes (Table 13.1) reported for oxa-
late degradation are (1) oxalate decarboxylase (ODC, oxalate carboxylyase, EC 
4.1.1.2), (2) oxalate oxidase (OXO, oxalate: oxygen oxidoreductase, EC 1.2.3.4), 
and (3) oxalyl-CoA decarboxylase (oxalyl-CoA carboxylyase, EC 4.1.1.8) (Mäkelä 
et al. 2010).

13.4.1  Oxalate Decarboxylase

Oxalate decarboxylase (EC 4.1.1.2) was first discovered in basidiomycetes fungi, 
Collybia (Flammulina) velutipes and Coriolus hirsutus (Twahir et al. 2015). Apart 
from fungal sources, in some cases animal tissue (liver of guinea pigs) has also been 
described to exhibit oxalate decarboxylase activity (Murthy et al. 1981). Later, bac-
teria, plants, and fungi were characterized as established sources of oxalate decar-
boxylase (Svedruzic et al. 2005). Basically, in the presence of dioxygen, which acts 
as a co-catalyst, the enzyme produces formate and carbon dioxide by the heterolytic 
cleavage of unreactive carbon–carbon bond in oxalic acid. A little bit of oxalate 
oxidase activity leading to the formation of carbon dioxide and hydrogen peroxide 
in the place of formate has also been reported (Twahir et al. 2015).
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Fungal and bacterial oxalate decarboxylases belong to a functionally varied super-
family of proteins known as the cupins and contain a range of conserved residues 
forming β-barrels which support the binding of different metal cofactors (Yu- Hu et al. 
2008). Cupin proteins share primary and tertiary structure with two conserved histi-
dine-containing Mn2+-binding motifs separated by an inter-motif region, which varies 
in length (Mäkelä et  al. 2010). Functional oxalate decarboxylase consists of two 

Table 13.1 Sources and mechanism of action of enzymes of oxalate degradation

Enzyme Source Mechanism of action References
Oxalate 
decarboxylase

Bacteria Cleaves the oxalate carbon–carbon 
bond heterolytically to formate and 
CO2 through a radical based 
catalytic cycle that involves 
electron transfer from the 
coordinated Mn2+ ion to the bound 
dioxygen

Yu-Hu et al. 
(2008); Mäkelä 
et al. (2010); 
Alberta et al. 
(2017)

Agrobacterium 
tumefaciens
Bacillus subtilis
Thermotoga 
maritima and
Pandorea sp.
Fungi
Trametes hirsuta 
(Coriolus hirsutus)
Flammulina 
(Collybia) velutipes
Agaricus bisporus
Postia placenta
Pleurotus ostreatus 
and Aspergillus sp.

Oxalate 
oxidase

Plant materials Oxalic oxidase at first gets 
oxidized by O2 which upon 
catalysis cleaves oxalic acid into 
two CO2 molecules along with 
generation of H2O2

Svedruzic et al. 
(2005); Hu et al. 
(2015)

Barley seedlings, 
stems, and roots
Amaranthus leaves
Beet stems and 
leaves
Sorghum leaves
Maize, oats, rice, 
and rye
Banana, azalea
Fungi
White-rot fungi 
basidiomycetes

Oxalyl-CoA 
decarboxylase

Bacteria Converts activated oxalyl-CoA to 
formyl-CoA and CO2 employing 
thiamin pyrophosphate as a 
cofactor

Svedruzic et al. 
(2005); Mäkelä 
et al. (2010)

Pseudomonas 
oxalaticus
Bacillus 
oxalophilus
O. formigenes
Bifidobacterium 
lactis
Lactobacillus 
acidophilus and 
Thiobacillus 
novellus
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trimers of the bicupin subunits, therefore, probably making it a hexameric enzyme 
(Anand et al. 2002). The fungal oxalate decarboxylases are secretory enzymes while 
bacterial ones are involved in the energy metabolism and are probably confined to 
cytosol (Yu-Hu et  al. 2008). The most thoroughly studied oxalate decarboxylase 
belongs to Bacillus subtilis (Anand et al. 2002). The expression of oxalate decarbox-
ylase gene oxdC in B. subtilis in response to low pH is regulated by sigma factor, YvrI, 
and its co-regulators, YvrHa and YvrL, which function as an anti-sigma factor (Just 
et al. 2007; MacLellan et al. 2008; MacLellan et al. 2009). It is unexpectedly present 
in vesicles on the cell wall (Antelmann et al. 2007). B. subtilis oxalate decarboxylase 
consists of a pentapeptide loop (amino acid residues 161–165) that makes up the lid 
structure which is involved in determining the reaction specificity and enzyme’s cata-
lytic efficiency (Burrell et al. 2007; Svedruzic et al. 2007).

Moreover, oxalate decarboxylase activity may convert into oxalate oxidase activ-
ity by forming H2O2 due to a mutation in the amino acids of the lid region (Burrell 
et al. 2007). Earlier it was proposed that the activity of B. subtilis oxalate decarbox-
ylase to convert oxalate into formate and CO2 is conserved in its N-terminal domain 
(Just et al. 2004; Burrell et al. 2007; Svedruzic et al. 2007) but later evidence showed 
that both N- and C-terminal domains may catalyze the decarboxylation reaction 
(Tabares et al. 2009). The structural and spectroscopic studies revealed that site 1 
acts as the catalytic site, in the presence of two manganese-binding sites in B. sub-
tilis. The data also suggests that site 1 contains formate bound to it in one crystal 
structure, that the lid carries a suitable proton donor Glu162 that can cause isolation 
of site 1 in solution, and that site 2 shows marked inaccessibility to solvents in both 
known structures (Just et al. 2007). A mutation leading to the replacement of the 
Glu162 results in no oxalate decarboxylase activity and significant oxalate oxidase 
activity (Just et al. 2004).

Although the activity of oxalate decarboxylase has been observed in the cell wall 
or released in the culture media or bound to the extracellular polysaccharide matrices, 
fungal oxalate decarboxylase is known to show intracellular enzyme activity which is 
predominantly confined close to the plasma membrane or in vesicles (Sato et  al. 
2007). In several ascomycetous and basidiomycetous species, the enzyme’s translated 
genes contain N-terminal secretion leader peptides that aid in the release of oxalate 
decarboxylase of fungal origin (Sato et al. 2007; Mäkelä 2009; Mäkelä et al. 2009).

The relevance of oxalate decarboxylase in biotechnology has been discovered 
way back in the 1960s when the enzyme was analyzed in a brewing process for the 
removal of oxalic acid (Haas and Fleischman 1961). Later, the enzyme was applied 
in clinical samples as a diagnostic tool for knowing the oxalate levels in clinical 
samples. Plants expressing oxalate decarboxylase were also used in the control of 
plant pathogens (Kesarwani et al. 2000; Dias et al. 2006; Jin et al. 2007; Walz et al. 
2008). However, the therapeutic use of this enzyme in kidney stone removal and 
prevention of hyperoxaluria is more widely accepted (Grujic et al. 2009; Jeong et al. 
2009; Kolandaswamy et al. 2009; Cowley et al. 2010; Mäkelä et al. 2010).

In the last few years, use of food-grade probiotics products with oxalate decar-
boxylase activity has emerged as an effective therapeutic option for lowering the 
concentration of dietary oxalates (Fig. 13.2). The impact of probiotics with oxalate 
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decarboxylase enzymes has been evaluated on human gut and result showed that 
probiotic properties make them a potentially safe option for prophylaxis of calcium 
oxalate stone disease. Transgenic plants expressing fungal oxalate decarboxylase 
may lower the nutritional stress of oxalate content in herbivores (Dias et al. 2006). 
Breakdown of intestinal oxalate and oxalic acid using oxalate decarboxylase is a 
prominent solution to oxalate degradation in humans (Cowley et al. 2010). Studies 
also confirmed that recombinant B. subtilis oxalate decarboxylase expressed in 
Escherichia coli given orally to rat was able to decrease oxalate concentration in 
urine (Jeong et al. 2009), while in other experiments on mice, the treatment with 
OxDc-CLEC®, a crystalline, cross-linked formulation containing recombinant B. 
subtilis oxalate decarboxylase, showed substantial decrease in symptoms of hyper-
oxaluria, urolithiasis, and nephrocalcinosis (i.e., increased level of calcium in the 
kidneys) as well (Grujic et al. 2009).

13.4.2  Oxalate Oxidase

Oxalate oxidase (EC 1.2.3.4) was initially discovered in a mold, and after that it has 
been reported from various plant sources such as barley seedlings and roots, beet 
stems, and sorghum leaves (Koyama 1988). Along with the formation of hydrogen 

Fig. 13.2 Use of food-grade probiotics with oxalate decarboxylase enzyme activity in kidney 
stone removal
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peroxide in an oxygen-dependent manner, oxalate oxidase catalyzes the oxidation 
of oxalic acid into carbon dioxide (Whittaker and Whittaker 2002). It has been 
assumed that H2O2 production by oxalate oxidase is applied as a defense mechanism 
against pathogenic infections (Svedruzic et al. 2005). Intracellular oxalate oxidase 
activity has been studied in white-rot basidiomycetous fungi Ceriporiopsis subver-
mispora and Abortiporus biennis even though the enzyme is principally native to 
plants (Aguilar et  al. 1999; Grąz et  al. 2009). Indeed, the activity of both these 
oxalate-degrading enzymes, i.e., oxalate oxidase and oxalate decarboxylase, was 
first reported in the fungal species Ceriporiopsis subvermispora (Aguilar et  al. 
1999; Watanabe et al. 2005). Oxalate oxidase present in the cell wall of plants has a 
role in cell morphogenesis, and it also promotes plant’s defense mechanisms against 
diseases and other environmental stresses. Oxalate oxidase found in higher plants, 
fungi, and bacteria is now part of preventive therapy of hyperoxaluria, urolithiasis, 
and medical diagnosis of oxalate content in urine, whereas the food and papermak-
ing industries also use this enzyme for various applications (Hu et al. 2015).

13.4.3  Oxalyl-CoA Decarboxylase

Oxalyl-CoA decarboxylase (EC 4.1.1.8), a thiamin-dependent oxalate-degrading 
enzyme, performs the catalysis of oxalyl-CoA to formyl-CoA and CO2 (Svedruzic 
et al. 2005). The enzyme was discovered around 50 years ago and is mainly found 
in bacterial species including B. lactis, Oxalobacter formigenes, L. acidophilus, and 
Thiobacillus novellus (Federici et al. 2004; Turroni et al. 2007; Mäkelä et al. 2010). 
In O. formigenes, oxalyl-CoA decarboxylase is involved in oxalate-dependent ATP 
synthesis. Along with the degradation of oxalate by oxalyl-CoA decarboxylase, a 
proton-motive force that drives ATP synthesis is generated in O. formigenes due to 
antiporting of oxalate and formate (Mäkelä et al. 2010).

13.5  Conclusion

Oxalic acid is found in a vast range of foods and often consumed by the humans. 
It is a well-established fact that whether dietary intake or production during metabo-
lism, oxalic acid can be detrimental to human health. Assimilation of oxalate is 
highly toxic to humans and ultimately causes hyperoxaluria and other related ail-
ments. Owing to the limitations and inadequate success of current therapeutic drugs 
used in the treatment of kidney stone, the need for novel and better prophylactic 
measures have become an important issue. Although the use of probiotic bacteria 
has attracted significant attention, the use of crude enzyme with oxalate-degrading 
potential showed astonishing results. Oxalate decarboxylase and oxalate oxidase 
have already demonstrated great capabilities to dissolve calcium oxalate crystals in 
in vitro investigations. However, putting these enzymes to work in clinical practice 
still requires great investigation and research.
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