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Abstract
Nanotoxicology is a branch of toxicology that is related to potential effects of 
nanoparticles of diameter less than 100 nm. Due to relatively small size, they are 
reported to enter through biological tissue barriers and cellular membranes lead-
ing to toxic effects. Release of nanoparticles on the target surface also induces 
high level of toxicity in target cells. The nanoparticles are usually cationic and 
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are easily attracted to the anionic biological membrane, resulting in the destruc-
tion of the membrane and interaction with proteins, DNA, and enzymes of the 
host cell. The carcinogenicity of some multiwall carbon nanotubes and nanopar-
ticles are also reported in recent researches. Various concerns about the usage of 
nanoparticles including systemic translocation, direct effects on the central ner-
vous system, intestinal tract involvement, biocompatibility, deposition, and 
clearing are reported till date. In this book chapter, we will review the potent role 
of nanomaterials to confer their toxicity at cellular and subcellular levels. Efforts 
have been made to summarize the new aspects of interactions with other toxi-
cants either by reducing or enhancing health risks and the potent negative effects 
associated with nanomaterial pollution.
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22.1	 �Introduction

Increasing demand for high-quality water fit for consumption calls for effective 
strategies to treat wastewater (Rajasulochana and Preethy 2016). The growing use 
of pesticides and heavy metals pollutes the water bodies (Ayangbenro and Babalola 
2017). The use of nanoparticles can help to solve this problem and would address 
the consequences of pesticides and heavy metals present in water (Cicek and 
Nadaroglu 2015). However, despite the progress made, use of these emerging sus-
tainable technologies has been limited, largely due to limitation of the material’s 
properties, including cost (Lim 2017).

Nanoparticles possess useful characteristics such as direct band gap, high optical 
absorption coefficient, layered structure, and tunable band edges for optimized 
catalysis (Khan et  al. 2017). Conversion of single-component nanomaterials to 
hybrid materials such as nanocomposites involves integration of synergistically dif-
ferent components in a controlled fashion (Camargo et al. 2009). Hybrid nanostruc-
tures have many advantages over single component nanomaterials such as 
multi-functionality, highly efficient charge separation at the interface and tunable 
band gap (Li et al. 2016). The use of nanoparticles for photocatalytic degradation 
will result in appreciable reduction in the pesticide amount in the water (Das et al. 
2017). The combination of nanoparticles with bio-adsorbents to form nanocompos-
ites is expected to show improved performance in terms of high efficiency of photo-
induced charge separation and photostability (Hasija et  al. 2019). The surface 
modification of the nanoparticles will facilitate the interaction of heavy metal ions 
with the particle’s surface and hence would result in better adsorption and improved 
performance of the photocatalyst (Upadhyay et al. 2014). Use of hybrid nanostruc-
tures is also expected to be advantageous over the single-component and pure sys-
tems. Better performance in terms of material stability, efficiency, and cost is 
expected over the existing systems (Sanchez et al. 2011). Recent advancement in 
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nanotechnology industry has shown remarkable revolution over the last few decades, 
which progressively and hopefully will continue in future. Nanotechnology has 
shown significant contribution for the future of health science and medicine care 
(Fakruddin et al. 2012). In gene delivery, immunotherapy, and drug delivery sys-
tems, the ideal nanomaterials can achieve biocompatibility, high payload, low 
immunogenicity, efficient penetration and selective targeting to get timely arrival at 
tissues of interest (Singh and Lillard Jr 2009). Regular exponential growth in nano-
technology has led to consider new challenges to manage, predict, and understand 
the potential negative health effects followed by exposure (Setyawati et al. 2015). 
Different nanomaterials of different surface topographies, sizes, and compositions 
and various other properties need to be scrutinized to build the safety and efficacy 
for their use in human population (Jeevanandam et al. 2018). Nanotoxicology basi-
cally deals with the toxic nature of nanoparticles and elucidating their toxic effect 
on living systems (Taghavi et al. 2013). Most of the inert element becomes more 
active at nanoscale dimensions. Most of the nanoparticles are benign, and they may 
distribute throughout the body causing inflammation, oxidative stress, and other 
serious adverse effects (Buzea et al. 2007). High doses of nanoparticles represent 
realistic exposure and should be interpreted with caution which might result in 
toxico-kinetics and exposure assessment (Laux et al. 2018).

Multiwall carbon nanoparticles are discovered to cause asbestos-related serious 
health effects which prompted nanotoxicologists to cautiously check the release of 
nanoparticles at drug delivery sites (Yildirimer et  al. 2011). Adverse effects of 
nanoparticles are evidenced in epidemiological, in  vitro, and in  vivo studies. 
However, data related to low dose exposures and chronic abnormalities still need to 
be explored (Gwinn and Vallyathan 2006). In most of the cases, these emerging 
engineered nanoparticles are directly linked to adverse health risks. New areas in 
toxicology includes the binding of nanoparticles with other contaminants either by 
reducing or enhancing various health issues and various adverse environmental 
effects related to nanomaterials pollution (Gupta and Xie 2018).

The purpose of this book chapter was to review the potential harmful effects of 
nanoparticles on the immune system with new approaches in nano-science. Efforts 
also have been made to scale up various biomarkers to monitor toxicity of nanopar-
ticles at cell system.

22.2	 �Properties and Application of Nanomaterials

Nanomaterials exhibit various properties such as electronic, chemical, magnetic, 
optical, physical, thermal, and elastic properties. The nanoparticles find their appli-
cation in a variety of fields such as medical field for drug delivery in  vivo and 
in vitro, agriculture, and treatment of wastewater (Singh et al. 2019a, b; Kumar et al. 
2019a, b), pesticide degradation (Singh et al. 2019c; Bhati et al. 2019; Kapoor et al. 
2019), solar sensitizers, nanosensors, and photocatalysis because of their small size 
and physicochemical properties (size, shape, surface area, phase, and composition) 
(Sidhu et al. 2019; Kumar et al. 2019c).
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Nanomaterials found their vast applications in different fields such as nanoscale car-
riers, nano-herbicides, nano-fertilizers, nano-pesticides, nanosensors, veterinary care, 
etc. (Kumar and Singh 2018a, b). Murphy (2008) and Tarafdar (2015) developed clay 
nanotubes (Halloysite) to reduce the concentration of pesticides by more than 70%, 
hence reducing its effectiveness impact on water streams. Panyam and Labhasetwar 
(2003) developed poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for localized/
targeted delivery of different agents including peptides, plasmid DNA, and proteins.

Recently, a titanium-based nanomaterial was found to have numerous applica-
tions such as in water splitting and degradation of organic compounds and as solar 
sensitizers. Titanium dioxide (TiO2) has various features such as polymorphs, low 
cost, good stability, environmentally friendly, and having good optical and elec-
tronic properties. Li et al. (2018) investigated that core–shell-structured TiO2 com-
posites show tunable optical and electrical properties, even new functions, which 
are originated from the unique core–shell structures. The small size of Fe2O3 
nanoparticles, changes their magnetic properties from paramagnetic to ferromag-
netic and superparamagnetic and are used as contrast agents in intravenously inject-
able T2 MRI (Lee et  al. 2014). The effective photocatalyst derived from TiO2 
nanoparticles are also reported to enhance photocatalytic degradation of triazine 
pesticides such as atrazine (Yola et al. 2014). Chitosan-based zinc oxide nanoparti-
cles (CZNP) are spherical in shape and are used in the treatment of cervical cancer 
cells (Wu and Zhang 2018). Gold nanoparticles (GNPs) along with TiO2 nanopar-
ticles are used for fabricating conformal nanocomposite (NC) films of TiO2–Au 
(Chander et al. 2014). Yuan et al. (2010) investigated the synthesis of ZnO quantum 
dots (QDs) combined with chitosan (N-acetylglucosamine) for its effectiveness 
against tumor-targeted drug delivery. It was observed that stability of the ZnO quan-
tum dots is dependent on chitosan due to its cationic charge and hydrophilicity. Qiu 
et al. (2014) have developed a composite having core shell structure of ZnO inter-
layer and magnetic Fe3O4 core. Based on its properties, it has been shown to be 
effective against targeted delivery of anticancer drugs.

22.3	 �Hazardous Effect of Nanomaterials

The nanomaterials have a small size, i.e., few nanometers, and possess high reactiv-
ity to interact with organisms. They pose potential human health and environmental 
hazards when released directly into the environment and gets interacted with water, 
air, and soil (Elsaesser and Howard 2012). When the dust and air pollution consist 
of ultrafine particles of size <100  nm, it indicates possible long-term hazardous 
effects of man-made nanoparticles on humans. They can enter via oral, pulmonary 
(lungs), nasal, intraocular, and various other routes. Nanomaterials are found in 
aquatic and terrestrial environments by runoff and eventually reach into the food 
chain and accumulate in the body and other metabolic pathways. They are somehow 
toxic to various species including invertebrates, algae, bacteria, crustaceans, nema-
todes, mammals, fishes, rats, etc. (Landa et al. 2012; Exbrayat et al. 2015). Warheit 
et al. (2008) assessed the hazardous effects of several fine or nanoparticle types such 
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as carbonyl iron, amorphous silica, crystalline silica, and nano zinc oxide in rats. 
They observed that silica nanoparticles sustain cytotoxic and inflammation effects.

Karimi et al. (2018) used colloidal nanoparticles of fumed silica (f-SiO2), silica 
(c-SiO2), alumina (Al2O3), and ceria (CeO2) as corrode in chemical and mechanical 
planarization (CMP) processes. The CMP slurries of CeO2 and Al2O3 reduced repro-
duction in Daphnia magna upon chronic exposure which have negative conse-
quences to water bodies. Jeng & Swanson (2006) investigated the effect of metal 
oxide nanoparticles ZnO, Al2O3, Fe3O4, TiO2, and CrO3 on apoptosis, cellular mor-
phology, membrane leakage of lactate dehydrogenase (LDH mitochondrial func-
tion), and permeability of the plasma membrane, out of which ZnO nanoparticles 
were highly toxic, Al2O3 nanoparticles were moderately toxic, and TiO2 and Fe3O4 
exhibited low toxicity. It also results in the decreased mitochondrial function in the 
cells treated with ZnO nanoparticles ranging from 50 to 100 μg/mL.

Ghodake et al. (2011) reported the phytotoxicity of zinc and cobalt oxide NPs by 
Allium cepa test using onion bulbs as an indicator organism to check their effects on 
cell morphology, root elongation, adsorption potential, and root morphology of a 
plant. Zinc oxide NPs accumulate in the chromosomal and cellular modules, thus 
causing phytotoxic damage. Landa et al. (2012) studied the effect of titanium diox-
ide (TiO2) and zinc oxide (ZnO) nanoparticles using microarrays on gene expres-
sion in roots of Arabidopsis thaliana. ZnO nanoparticles elicit stress response in 
phenotype and gene expression of A. thaliana.

22.4	 �Effects of Nano-based Products on the Immune System

Any alteration in the properties of nanoparticles transforms them either to a valuable 
or hazardous product (Jeevanandam et al. 2018). The deposition of nanoparticles in 
the human system acts as a foreign material that led to the emergence of a new 
branch, i.e., nanotoxicology (Suh et  al. 2009). This field aims to cross verify the 
negative and harmful effects of nanoparticles on the environment as well as on human 
health (Table 22.1) (Singh 2009). This will aid in understanding how these nanopar-
ticles cross the different barriers and enter into the blood system as well as interact 
with other tissues. Moreover, it will provide an insight into how the aggregation of 
these nanoparticles affects the normal functioning of the organ and induce ailments 
like fibrosis, inflammation, etc. (Barua and Mitragotri 2014). Nanoparticles induce 
biological toxicity by various possible routes in the human body via endocytosis and 
penetration into cell membrane and through the cell membrane channel (Manke et al. 
2013). Most of the nanoparticles produces oxygen radicals and induces apoptosis 
and mitochondrial perturbation followed by toxicity (Behzadi et  al. 2017). 
Nanoparticles react with biological fluids and body proteins and results in the gen-
eration of oxidative stress (Dayem et  al. 2017). Nanoparticles such as silver NPs 
(AgNPs), titanium dioxide (TiO2), NPs, and gold NPs (AuNPs) result in various 
immune-related disorders in mononuclear phagocytic system cells of the spleen and 
liver (Giannakou et al. 2016). Most of the immune cells such as macrophages, den-
dritic cells, leukocytes, platelets, monocytes, etc. recognize and uptake nanoparticles 
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Table 22.1  Immunotoxic effects of various nanoparticles in vitro and in vivo testing

S. No. Nanomaterials Size Adverse side effects References
1. C60 fullerene 0.7 nm 

(diameter)
No effects Fujita et al. 

(2009)
2. Carbon black <100 nm Exaggeration of arthrosclerosis 

and induction of C-reactive 
proteins MCP-1, IL-6, and CCL2

Niwa et al. 
(2008)

3. Carbon black 14 nm Induction of MHC class II and 
CD80 expression
Significant expression of DEC205 
and CD86

Koike et al. 
(2008)

4. Carbon black 14 nm ROS production Kroll et al. 
(2011)

5. Citrate-
stabilized 
AuNPs

10 nm Induction of NF-κB-regulated 
luciferase reporter

Sharma et al. 
(2013)

6. Fe2O3 Induction of TH0 cytokine (IL-2), 
pro-inflammatory cytokines (IL-6, 
TNF-α, IL-1), TH1-type cytokine 
TGF-α (IL-12), and IgE and 
TH2-type cytokines (IL-4, IL-5)

Park et al. 
(2010a)

7. Fe2O3 Cell viability decreases and 
ferritin expression increases IL-1α 
expression and lactate 
dehydrogenase activity

Zhong et al. 
(2010)

8. Gold 13 nm Inflammation in the liver, 
induction of apoptosis, and 
nanoparticles localization in 
Kupffer cells of liver and 
macrophages in spleen

Cho et al. (2009)

9. Gold 2, 40 nm Internalization by primary 
hippocampal neurons and 
microglial cells and upregulation 
of TLR-2, olfactory bulb, and 
IL-1α

Hutter et al. 
(2010)

10. Gold 0.8–15 nm Oxidative stress induction Brandenberger 
et al. (2010)

11. Latex 
nanomaterial

25, 50, and 
100 nm

Induction of fibrinogen Inoue et al. 
(2009)

12. Multiwalled 
carbon 
nanotubes

10–30 nm 
(diameter)
30–50 
(length)

Induction of fibrosis Ryman-
Rasmussen et al. 
(2009)

13. Multiwalled 
carbon 
nanotubes

20–40 nm 
(diameter)
5–30 μm 
(length)

ROS generation, induction of 
inflammatory cytokines, and 
activation of NF-κB in BEAS-2B 
or A549 cells

Ye et al. (2009)

14. Nonporous 
silica 
nanoparticles

15 nm ROS production in rats Chen et al. 
(2013)

(continued)
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Table 22.1  (continued)

S. No. Nanomaterials Size Adverse side effects References
15. Polystyrene 60 nm Highly toxic to human endothelial 

cells, BEAS-2B cells, 
macrophages hepatoma cells, and 
microvascular endothelial cells 

Xia et al. 
(2008a)

16. Polystyrene 20, 500, and 
1000 nm

Migration of dendritic cells Manolova et al. 
(2008)

17. Silica 70, 300, and 
1000 nm

Induction of inflammatory 
cytokines and liver damage

Nishimori et al. 
(2009)

18. Silica particles 12 nm Induction in mRNA expressions of 
COX-2, IL-1, iNOS, TNF-α, and 
IL-6

Li et al. (2009)

19. Silicon – No changes or effects in HaCaT 
keratinocytes

Park et al. 
(2010b)

20. Single-walled 
carbon 
nanotubes

1–4 nm 
(diameter)

ROS meditation via neutrophil 
myeloperoxidase in humans

Kagan et al. 
(2010)

21. Single-walled 
carbon 
nanotubes

1–2 nm 
(diameter)
20 nm–
several μm 
(length)

ROS generation, induction of 
inflammatory cytokines, 
apoptosis-related genesis 
macrophages

Chou et al. 
(2008)

22. Single-walled 
carbon 
nanotubes

800 nm 
length

Inhibits production of MCP-1, 
TNF-α, and IL-8, 6

Herzog et al. 
(2009)

23. Single-walled 
carbon 
nanotubes

50–200 nm 
(length)
1–5 nm 
(diameter)

Accumulation of SWNT in the 
kidney and liver for several 
months

Schipper et al. 
(2008)

24. TiO2 0.02–
0.03 μm

ROS induction Müller et al. 
(2010)

25. TiO2 4–6 nm Lung inflammation, systemic 
inflammation cardiac edema, and 
induction of monocytes

Nemmar et al. 
(2008)

26. TiO2 20 nm – Geiser et al. 
(2008)

27. TiO2 15, 50, and 
100 nm

Release of histamine Yanagisawa 
et al. (2009)

28. TiO2 Less than 
100 nm

Necrosis apoptosis in macrophage 
cells

Morishige et al. 
(2010)

29. TiO2 7–10 nm Inflammatory responses via 
IL-1beta pathway ROS, 
inflammasome, etc.

Schanen et al. 
(2013)

30. Zinc oxide, 
cerium oxide

11 nm, 
8 nm

Oxidative stress induction Xia et al. 
(2008b)
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when they are in the tissue or in circulation process (Lameijer et al. 2013). Immune 
cells uptake nanoparticles from the bloodstream by adsorption process through opso-
nization. They remain in the body for a long term and cause various exposures. They 
also enhance intense manifestations that cause several disorders such as activation of 
complement system and acute inflammation (Look et al. 2010). It also has adverse 
effects on innate and specific immune responses. Acute inflammation is induced by 
activation of NF-κB pathway which results in enhanced production of chemokines 
and cytokines (Liu et al. 2017). Innate immune system results in the generation of 
ROS after exposure to metal oxide particles. Further, ROS lead to alterations in DNA 
and proteins which further causes inflammatory damage (Fu et al. 2014).

Gold nanoparticles are reported to induce various immunomodulatory effects by 
secreting inflammatory cytokines (IL-8 and TNFα) which activate NF-κB pathway 
when THP1 cells were exposed to AuNPs coated with negatively charged poly(acrylic 
acid) (Deng et al. 2011). In a similar study, Sharma et al. (2013) also confirmed that 
when B-lymphocytes were exposed to AuNPs stabilized with citrate, it induces 
NF-κB pathway and structural changes in cellular function of cells are registered. 
Another example of immunomodulatory effects by single and multiwall carbon 
nanotubes on various cell types was also reported in which they induce unregulated 
antigen-presenting cell maturation (He et al. 2013). CNT is also testified to enhance 
ROS production which causes alterations in fibrosis in lungs of rats and neoplastic 
damage. They also increased high risk against cardiopulmonary diseases in lungs by 
generating pro-oxidant and pro-inflammatory milieu (Dong and Ma 2016).

22.5	 �Mechanism of Toxicity of Nanomaterials

Recent studies have revealed that reactivity of the nanoparticles triggers the formation 
of ROS (especially, hydroxyl radicals and superoxide radical anions) due to activation 
of oxidative enzymes leading to the formation of oxidative stress (Kim et al. 2015). 
There are various reasons for the initiation of oxidative stress, such as (1) nanoparti-
cles have the property to trigger the ROS production as the cellular response, (2) 
transition metal-based nanoparticles serve as the catalyst during the formation of non-
metal nanoparticles, (3) formation of reactive molecules on the surface of nanoparti-
cles, and (4) induction or activation of redox groups on nanoparticles (Fu et al. 2014).

Moreover, particle size is also considered to be the factor responsible for cellular 
cytotoxicity. As small particles provide the large surface area, it increases the 
chances of the interaction of nanoparticles with cellular components like carbohy-
drates, fatty acids, nucleic acids, and proteins (Wang et al. 2017). Further, nanosized 
particles have additional benefits as it readily enters the cell and leads to cellular 
damage (Wang and Wang 2013). Apart from this, the surface charge of particle also 
contributes to cytotoxicity as it controls the cellular uptake of particles and interac-
tion among the biomolecules and cell organelles. This phenomenon can be under-
stood by the context that positively charged nanoparticles interact with DNA 
(negatively charged), resulting in DNA damage (Fröhlich 2012). Additionally, the 
shape of nanoparticles has been considered to affect the toxicity level (Sukhanova 
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et al. 2018). Although the TiO2 (amorphous) is known to have surface defects, this 
serves as evidence that active site stimulates the ROS production (Cheng et  al. 
2018). Besides, Fe2O3 nanoparticles (rod-shaped) were found to trigger high cyto-
toxic responses in comparison to Fe2O3 nanoparticles (sphere-shaped) in macro-
phage cell lines of RAW 264.7 of murine (Lee et al. 2014). Hence, it has become 
essential to understand the cellular as well as the molecular mechanism of nanopar-
ticle toxicity and their effect on the biological system to develop a safe and precise 
assay of engineered nanoparticles for risk evaluation.

22.6	 �Biomarkers to Monitor Nanotoxicology

The advent of nanoparticles has gained significant attention in short period of time 
due to its widespread functionality in different fields. But the biggest challenge 
remains the same, i.e., their effect on the biological system (Riehemann et al. 2009). 
The outmost reasons are their applicability of nanotechnology in different industries 
and increase in the number of nanomaterials for different purposes in industries, 
increasing their chances of interaction with our body (Dowling 2004). Nowadays, 
researchers are focusing on understanding the potent effects of these nanoparticles 
on cells and tissues on the basic route, which can be due to dermal penetration, 
ingestion, injection, or inhalation. Moreover, studies have also been conducted to 
discover biomarkers involved during bio-interfaces, facilitating in creating the bio-
markers database to monitor nanotoxicity (Della Rocca et al. 2011).

Biomarkers are stated to be characteristic which measure as well as work as an 
indicator to assess the biological process, pharmacologic response, or pathogenic 
process. Hence, it can be anything which can measure the change in antigens, cyto-
kine concentration, genes, and even proteins (Wagner and Atkinson Jr 2015). 
Because of a wide range of biomarkers, we are focusing on the two groups of bio-
markers pro-oxidative and pro-inflammatory because the primary responses induced 
by toxic nanoparticles in various tissues and cells are oxidative stresses and inflam-
mation (Khanna et al. 2015). The outcomes of these two responses are impairment 
of tissue function and cell damage. Therefore, these biomarkers can serve as pri-
mary detection tool to measure the effect of nanoparticles on health and can also be 
used for early detection of the adverse effects (Iavicoli et al. 2012).

Pro-inflammatory biomarkers are commonly used to assess the variation in 
responses due to inflammation and oxidative stress in particular organs like the car-
diovascular, immune, and respiratory systems (Bergamaschi 2012). Inflammatory 
immunological biomarkers are used to define any change in the immune system on 
the introduction of nanomaterial in the biological system which elicits inflamma-
tion. In these antigens, antibodies, chemokines, cytokines, and phagocyte congrega-
tion are measured and interrelated with the inflammation response (Xu et al. 2016). 
These biomarkers are effective in diagnosis of various diseases, but during nano-
toxicological studies, its efficacy decreases. Hence, extensive care is taken while 
identifying the cause of inflammatory response via nanoparticles (Gendelman et al. 
2015). This supports and provides evidence as to why the immune system 
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synthesizes different types of antibodies, cytokines, and chemokines, after encoun-
tering with pathogen or external agent causing stress (Gamucci et al. 2014). The 
major advantage of nanoparticles is its size, which allows them to penetrate directly 
through the cell wall, accumulate protein on their surface, and even translocate 
themselves through blood–brain barrier (Sonvico et al. 2018). The mobile nature of 
nanoparticles and their ability to aggregate themselves in various tissues elicit the 
immune response and make correlation between the immune response and presence 
of nanoparticles, which form the basis of biomarker analysis (Dobrovolskaia et al. 
2016). At this point of time, major researchers are focusing on determining the toxic 
dosage which triggers immune response and how to prevent the toxic exposure of 
nanoparticles. Till date, numerous biomolecules have been identified which play a 
key role in inflammation (Elsabahy and Wooley 2013).

Numerous studies have highlighted metal oxide nanoparticles like iron oxide 
(Fe3O4), as it elicits immunogenic response in cell and can be used for biomarker stud-
ies for assessing potential toxicity (Arias et al. 2018). Joo with his colleague (2013) 
investigated the adverse effect of Fe3O4 on rodents. The results obtained were quite 
similar with Srinivas et al. (2012), as there was an increase in level of pro-inflamma-
tory cytokines such as transforming growth factor beta (TGF-β TNF-α), interleukin-1 
(IL-1,2,4,6,12), and immunoglobulin-E (IgE) which can serve as the biomarker for 
detecting various ailments (Srinivas et  al. 2012). Additionally, tissue damage and 
inflammation have also reported to increase the expression of few genes encoding for 
different proteins like tissue-inhibiting metalloproteinase, serum amyloid A (SAA), 
and heat shock protein. The gene SAA is usually expressed in the liver which elicits 
the synthesis of TNF-α IL-1 and IL-6 which are also produced as a response to metal 
oxide nanoparticles (Skovgaard et al. 2009). The discussed biomarkers have recorded 
to involve in various situation when cell experiences stress. Moreover, they are also 
reported to be produced by the body in response to cold (Buzea et al. 2007). Biomarkers 
also serve as parameter for analysis in experimental design and aid in interpreting the 
result of biomarker assessment. Hence, studies focusing on the assessment of nano-
material only triggering the inflammatory response enable us to discover the true bio-
markers of nanotoxicity (Oberdörster 2010).

On the other hand, pro-oxidative biomarkers are the ones having response to 
various metal oxide nanoparticles, generally by generating the ROS stress. 
Therefore, it is essential to observe the ROS level induced by interaction of nanopar-
ticles as ROS generation has been linked with different cardiovascular and respira-
tory ailments like atherosclerosis, asthma exacerbation, thrombosis, and 
inflammation (Fu et  al. 2014). CuO (copper oxide), TiO2 (titanium oxide), ZnO 
(zinc oxide), and Fe3O4 (iron oxide) are the metal oxide nanoparticles which have 
shown to cause the overproduction of ROS, as they allow the propagation of free 
radicals on their surface during their interaction with enzymes, oligomers, and pro-
teins (Karlsson et al. 2008). Due to distinctive electrical surface properties, these 
nanoparticles generate substantial amount of ROS, which can be used as nanotoxic-
ity biomarker. These are the two important types of biomarkers that are employed 
for nanotoxicological assessment.

S. Singh et al.



461

22.7	 �Conclusion

There cannot be a second opinion that nano-sized materials have widespread applica-
tions in various fields of science and technology. However, there are numerous 
reports that depict the side effects of the nanomaterials on biological systems and 
cellular levels. Although they are relatively small sized, yet they have an enormous 
effect on human life and ecosystem. The elevated use of nanotechnology poses a risk 
not only to consumers but also firsthand to the workers. Their physicochemical 
parameters in addition to production of toxic ions, generation of free radical species, 
and high surface charge ratio result in cytotoxicity by nanoparticles which may 
include quantum dots, gold and silver nanoparticles, titanium dioxides, CNTs, etc. 
Both in vivo and in vitro assays require a better knowledge of toxicity mechanism so 
as to avoid side effects and exploit the benefits that nanotechnology has to offer. The 
information will further help to formulate the measures able to reduce the potential 
hazards of nanomaterials. Nanomaterials causing oxidative stress could be replaced 
with nanomaterials that are relatively less harmful. Further proper administration of 
antioxidants and other therapies to the occupational workers should also be taken 
into consideration to check their immune-related disorders. Also, the incorporation 
of nanomaterials should be considered effectively because the method of incorpora-
tion of nanomaterials in a product strongly influences its release in the environment. 
Thus, knowledge of pathogenic mechanisms of the nanomaterials is very crucial.
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