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Abstract. The analysis of time series is an important field of research
in data mining. This includes different sub areas like trend analysis,
outlier detection, forecasting or simply the comparison of multiple time
series. Clustering is also an equally important and vast field in time series
analysis. Different clustering algorithms provide different analysis aspects
like the detection of classes or outliers. There are various approaches how
to apply cluster algorithms to time series. Previous work either extracted
subsequences or feature sets as an input for cluster algorithms. A rarely
used but important approach in clustering of time series is the grouping
of data points per point in time. Based on this technique we present
a method which analyses the transitions of time series between clusters
over time. We evaluate our approach on multiple multivariate time series
of different data sets. We discover conspicuous behaviors in relation to
groups of sequences and provide a robust outlier detection algorithm.

Keywords: Outlier detection · Time series analysis · Clustering

1 Introduction

Time series data is collected in various domains. Not only the behavior of users on
different platforms, but also the tracking of vehicles and objects or the recording
of financial or weather data can be displayed as time series. For further analysis,
the various data types can be converted into numerical (mostly discrete) values
so that sequences of numerical vectors are derived. These can then be processed
in a variety of ways. Information can be obtained through analyses such as
clustering, prediction or comparison of time series and different outlier detection
methods.

Depending on the context, different aspects can be relevant for the user. For
example, not all clustering algorithms consider the same types of clusters, and
outlier detection techniques do not always address the same types of outliers. In
some cases, very special solutions have to be found for specific problems, whereby
there are many algorithms that can be applied to a wide range of application
areas.
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Fig. 1. Example for a time series over-time clustering. The blue color indicates stable
clusters while red stands for instability. (Color figure online)

In this paper we focus on databases of multivariate time series with dis-
crete values, same length and equivalent time steps. We detect anomalous sub-
sequences with regard to groups of time series of the given database. Therefore
we cluster the multivariate data of all time series per timestamp and analyze the
stability of all subsequences over time. Thereby we call the resulting clustering
over-time clustering. In Fig. 1 an example for such a clustering is displayed. For
the sake of simplicity, only univariate time series are plotted. Since the data is
clustered independently at each point in time, there is at first no time-related
connection between the clusterings.

There are several proposals for clustering time series depending on the appli-
cation. Some methods cluster the time series of a database as a whole [10,12,19],
extract feature sets first [22], or consider subsequences of a single time series only
[3]. However, these are not suitable when it comes to detecting irregularities or
gathering information per time point.

Outlier detection in time series is in most cases not based on clustering.
Because of various underlying data such as single or multiple time series with
uni- or multivariate data points and different definitions of what an outlier is,
there are several approaches to their identification. Some papers consider data
points [1] or subsequences [15] that are anomalous with regard to a single time
series [5,17], such as peaks. Others look for so called change points [6,16], that
imply that the course of the considered time series significantly changes from
that point on. Yet others analyse data from several time series that are very
similar, such as sensor data, and detect irregularities in relation to the entire
data set [1,11,13]. Finding these abnormalities usually presupposes that either
the course of a single time series follows consistent patterns or that the courses
of several time series are highly correlated.

In this paper we assume that the exact course of the individual time series
is not important, but the trend which groups of sequences follow. By anomalies
we denote subsequences that deviate from one trend and therefore cannot be
assigned steadily to a group of sequences. In that case, we say that the sequence
possesses a weak stability. We present an algorithm that identifies such unstable
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sequences in a database of multivariate time series and is robust against missing
data points.

2 Related Work

Anomaly detection in time series is a wide field of research. It can be distin-
guished in the detection of outliers within a single time series and the detection
of outliers in multiple time series. Outliers in single time series are usually cat-
egorized in two classes:

Additive outliers, which represent surprisingly large or small values in a short
period. In case additive outliers occur consecutively they are often summarized
as additive outlier patches.

Innovational outliers are characterized by their impact on subsequent obser-
vations. Additionally the influence of innovational outliers can grow with time.

There are also several different categories of outliers, which can be described
as a mix of both main classes. For example, additive outliers which cause a move
of following observations to a new level are called level shift outliers and have
a permanent impact on the ongoing time series. In case the influence of the
level shift outlier is decreasing over time, it is called a transient change outlier.
Additive outliers, which occur periodically are named seasonal additive outliers.

Additive and innovational outliers are often identified with extensions of
autoregressive-moving-average (ARMA) models [2,18]. Other techniques include
the use of decomposition methods such as STL, a seasonal-trend decomposition
procedure based on LOESS [7]. Yet other methods evaluate derivatives of the
dynamic time warping (DTW) [20] similarity in order to detect anomalies.

The detection of outliers in multiple time series is handled differently. Meth-
ods of this kind are often using the peers of a time series to determine whether it
is anomalous or not. Beside other techniques, recent approaches use Probabilis-
tic Suffix Trees (PST) [21] and Random Block Coordinate Descents (RBCD)
[23] in order to detect outliers. However, while these approaches focus on the
deviation of one time series to the others, we focus on the behaviour of a time
series compared to its peers. More concretely, we assume that a time series which
has a similar development to a group of other time series over a subsequence is
expected to move on with the same group. Therefore we first cluster per point in
time and then analyse the transition of time series regarding these clusters. This
is realized by the analysis of cluster transitions of time series over time. Tran-
sitions of this kind are also analysed in cluster evolution methods. Landauer et
al. [14] makes use of such a method in order to calculate an anomaly score for a
single time series in a sliding window. In contrary to Landauer et al. we relate
to multiple time series. The analysis of the time series behavior not only reveals
new kinds of outliers but also detects different types of additive and innovational
outliers.

This approach is very different from clustering whole time series or their
subsequences, since the outlier detection would rely on the single fact whether
a sequence is assigned to a cluster or not. Such an approach would not take
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the cluster transitions of the time series into account, which can be an expres-
sive feature on its own. Hence, our approach detects anomalous subsequences,
although they would be assigned to a cluster in a subsequence clustering.

3 Fundamentals

In order to create a good basis of knowledge to avoid later misunderstandings,
we will provide some definitions which our work is based on. As these terms are
used in many different areas, it is useful to explain which interpretations are
considered in this paper.

Definition 1 (Time Series). A multivariate time series T = ot1 , . . . , otn is an
ordered set of n real valued data points of arbitrary dimension. The data points
are chronologically ordered by their time of recording, with t1 and tn indicating
the first and the last timestamp, respectively.

Definition 2 (Data Set). A data set D = T1, . . . , Tm is a set of m time series
of same length and equal points in time. The set of data points of all time series
at a timestamp ti is denoted as Oti .

Definition 3 (Subsequence). A subsequence Tti,tj ,l = oti,l, . . . , otj ,l with j >
i is an ordered set of successive real valued data points beginning at time ti and
ending at tj from time series Tl.

Definition 4 (Cluster). A cluster Cti,j ⊆ Oti at time ti, with j ∈ {1, . . . , q}
being a unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm or human. This means that all clusters have distinct labels
regardless of time.

Definition 5 (Cluster Member). A data point oti,l at time ti, that is
assigned to a cluster Cti,j is called a member of cluster Cti,j.

Definition 6 (Noise). A data point oti,l at time ti is considered as noise, if
it is not assigned to any cluster.

Definition 7 (Clustering). A clustering is the overall result of a clustering
algorithm or the set of all clusters annotated by a human for all timestamps. In
concrete it is the set ζ = {Ct1,1, . . . , Ctn,q} of all q clusters.

In Fig. 2 an example for the above definitions can be seen. The data points of
a data set containing five time series (Ta, Tb, Tc, Td, Te) are clustered for the
timestamps ti, tj and tk. For simplicity, all data points of a time series Tl are
denoted by the identifier l.

In ti the data points oti,a, oti,b of time series Ta and Tb are cluster members
of cluster Cti,l. The data point oti,e is marked as noise, as it is not assigned to
any cluster in ti. In total, the shown clustering consists of five clusters. It can
be described by the set ζ = {Cti,l, Cti,u, Ctj ,v, Ctj ,f , Ctk,g}.
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Fig. 2. Example for the transitions of time series Ta, . . . , Te between clusters over time.

4 Method

After the clarification of important foundations, the basic idea of the algorithm
is described. Therefore further terms have to be explained before.

Let Cti,a and Ctj ,b be two clusters, with ti, tj ∈ {t1, . . . tn}. First, we intro-
duce the term temporal cluster intersection for the purpose of measuring the
stability of a time series:

∩t{Cti,a, Ctj ,b} = {Tl | oti,l ∈ Cti,a ∧ otj ,l ∈ Ctj ,b}
with l ∈ {1, . . . , m}. The result is the set of time series that are assigned to both
of the clusters under consideration. This means all sequences that were grouped
together at time ti and tj . The transition of a time series from ti to tj can now be
described by the proportion of cluster members from the corresponding cluster
in ti who migrated together into the cluster in tj :

p(Cti,a, Ctj ,b) =

{∅ if Cti,a = ∅
|Cti,a

∩tCtj ,b
|

|Cti,a
| else

with ti < tj . In Fig. 2 an example for transitions of time series between clusters
is sketched. There, the proportion for Cti,l and Ctj ,v would be

p(Cti,l, Ctj ,v) =
|{Ta, Tb}|

|{oti,a, oti,b}| =
2
2

= 1.0.

This proportion can be used to measure the stability of a sequence with a sub-
sequence score. It is defined as

subsequence score(Tti,tj ,l) =
1
k

·
j−1∑
v=i

p(cid(otv,l), cid(otj ,l))

with l ∈ {1, . . . , m}, k ∈ [1, j − i] being the number of timestamps between ti
and tj where the data point exists and cid, the cluster-identity function
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cid(oti,l) =

{
∅ if the data point is not assigned to any cluster
Cti,a else

returning the cluster which the data point has been assigned to in ti. The function
returns an empty set, either if the object is classified as noise or if it does not
exist at the considered time. Note, that the subsequence score is normalized to
[0, 1] by k, as the proportion p is a percentage between 0 and 1, as well.

In the example of Fig. 2, the score of time series Ta between time points ti
and tk would be:

subsequence score(Tti,tk,a) =
1
2

· (1.0 + 1.0) = 1.0.

A notable characteristic is, that the score is always 0, if the last data point of the
considered subsequence is marked as noise. However, this circumstance does not
lead to any handicaps in most cases as all partial sequences of these subsequences
are treated normally. Nevertheless, the handling of sequences with an endpoint
that is labeled as noise will be analyzed in more detail later on.

For now describing the concrete procedure of detecting conspicuous
sequences, we first provide a vague definition of them:

Definition 8 (Anomalous Subsequence). A subsequence Tti,tj ,l is called
anomalous, if it is significantly more unstable than its cluster members at time tj.

With the help of the subsequence score which measures the stability of a subse-
quence, anomalous ones can now be distinguished by comparing the stability of
grouped subsequences at a given time point. Every possible subsequence gets an
outlier score indicating the probability of being anomalous, by calculating the
deviation of its stability from the best subsequence score of its cluster. A formal
description of the best subsequence score can be given by:

best score(ti, Ctj ,a) = max({subsequence score(Tti,tj ,l) | cid(otj ,l) = Ctj ,a})

The outlier score of a subsequence is then calculated as follows:

outlier score(Tti,tj ,l) = best score(ti, cid(otj ,l)) − subsequence score(Tti,tj ,l)

As the best score lies between 0 and 1, an outlier score of 100% can only be
achieved in completely stable clusters. The smaller the best score of the consid-
ered cluster is, the smaller is the greatest possible outlier score.

Regarding the example in Fig. 2, the time series Td would get the following
outlier score between time points ti and tk:

outlier score(Tti,tk,d) = 1.0 − (0.5 · (0.5 + 1.0)) = 0.25

With the outlier score, now a more precise definition of an outlier can be given.
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Definition 9 (Outlier). Given a threshold τ ∈ [0, 1], a subsequence Tti,tj ,l is
called an outlier, if its probability of being an outlier is greater than or equal τ .
That means, if

outlier score(Tti,tj ,l) ≥ τ.

Although τ is a constant, it can be interpreted as a dynamic threshold. That is,
because the greatest possible deviation from the best subsequence score – and
thus the greatest outlier score – depends on the best score of the considered
cluster. Clusters with low stability have a lower probability of containing an
outlier than stable ones, since all their cluster members show irregularities and
that represents a pattern of instability. In this context, the small subsequence
score is thus not conspicuous.

Intuitive outliers from the over-time clustering that were marked as noise get
a special treatment. Subsequences that consist entirely of noise data points are
automatically identified as outliers. Since subsequences whose last data point is
labeled as noise are not assigned to a cluster from which the best score can be
calculated, no outlier score can be determined for them. Therefore, they are not
included in the regular outlier calculation. In the following we will differentiate
between anomalous subsequences, intuitive outliers and noise.

Take another look at the case where the last element of an examined sub-
sequence Tti,tj ,l is marked as noise. Suppose the subsequence Tti,tj−1,l gets a
high outlier score and is detected as outlier. Then one would expect that the
subsequence under consideration Tti,tj ,l would be identified as an outlier as well.
This will only be the case, if the previous data point was categorized as noise as
well and the sequence was therefore recognized as an intuitive outlier. However,
for the sequence Tti,tk,l with k > j, which at the last time point tk is assigned
to a cluster again for the first time this would also be the case. Thus in the end
Tti,tj ,l would be covered.

Yet a marginal case is when a data point is labeled as noise at the last time
of the entire time series. In this scenario, a sequence with end time tm would
never be detected as an outlier if it is not marked as noise in tm−1.

Remark 1 (Stability). The stability is not only influenced significantly by a small
sample size when considering constant data points [4]. When examining the over-
time stability, a small sample size leads to high sensitivity to cluster transitions,
as well. As more data points are considered, the simpler it is to draw meaningful
conclusions about the stability.

5 Experiments

In order to evaluate the presented method, we performed several experiments
on different real world data. We also present two artificially generated data
sets which are used to illustrate the handling of some marginal cases. In order
to cluster the data per point in time, we used DBSCAN [9] with adapted
parameters.
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Fig. 3. Two dimensional experiment on the EIKON Financial Data Set with τ = 0.6,
minPts = 2 and ε = 0.15. The colors indicate cluster belongings, whereby grey objects
represent outliers. Circles are outliers by distance and boxes are intuitive outliers, as
well. Red color or font indicates noise. (Color figure online)

5.1 EIKON Financial Data Set

Eikon is a set of software products released by Refinitiv (formerly Thomson
Reuters Financial & Risk). It contains a database with financial data of thou-
sands of companies for the past decades. For illustration reasons we randomly
selected thirty companies and two features. The selected features are a figures
which were taken from the balance sheet of the company. In economics it is com-
mon to normalize these figures by the companies’ total assets in order to make
it comparable to other companies. Beside this, we normalized the features with
a min-max normalization. The clustering was done with DBSCAN and ε = 0.15,
minPts = 2 as parameters. The outlier detection parameter was chosen to be
τ = 0.6. In Fig. 3 one can see the illustrated results. The presented technique
found two outlier subsequences. The first, which is labeled as GM is detected
from the year 2008 until 2009. This is because GM is noise in the year 2008,
which leads to a subsequence score of 0. In 2009 GM merges with a cluster,
which has a high reference score. The second outlier detected is the subsequence
Tt2009,t2013,KR. It is detected as an intuitive outlier.

5.2 Airline On-Time Performance Data Set

The Airline on-time performance data set [8] was originally collected by the
U.S. Department of Transportation’s Bureau of Transportation Statistics. It
contains records of 3.5 million flights. Every flight has a set of 29 features, such
as the departure delay, the delay reason, the arrival delay and the airline which
processed the flight. In order to detect anomalies in this data set, we constructed
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Fig. 4. One dimensional experiment on the Airline On-Time Performance Data Set
with τ = 0.4, minPts = 3 and ε = 0.03. Black sequences represent anomalies, while
white dashed ones stand for intuitive outliers. The color of the dots emphasize which
cluster the data points are assigned to. Red dots represent noise. (Color figure online)

a time series for every airline by calculating the average of their features for every
day. Before applying our technique, we normalized the data with the min-max
normalization and clustered it with DBSCAN. Every observation represents a
flight of an airline. In order to illustrate the results we executed our algorithm
to one feature, namely the flight distance. We applied DBSCAN for eight time
points with the following parameters: minPts = 3 and ε = 0.03. Additionally
we chose τ = 0.4. The result can be seen in Fig. 4.

The figure shows two kinds of outliers: Intuitive outliers and outliers which
were identified by their distance to a reference time series. Since the time series
which is labeled with the points a, b and c has a large distance to other time
series it is detected as an intuitive outlier from a to b. Due to this, the time
series’ accumulated subsequence score is zero and thus it is also detected as an
outlier at the last time stamp c. From point a to b it is not detected as an outlier
by it’s distance to the reference subsequence score, since the neighborhood of the
sequence at time point 8 have also a low stability score. Regarding the time points
1 to 8 and the objects in the neighborhood, there are at most two peers which
remained together. The subsequence labeled with d and e is a good example for
the presented method. It illustrates the detection of outliers by the change of
cluster neighbors of the subsequence.

5.3 Simulated Data

In order to test our method in a targeted manner, two experiments were per-
formed on simulated data. Both a univariate and a multivariate data set with two
features are considered. In both cases, a time span of 8 time points is examined.
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Fig. 5. Illustration of the detected outliers on the simulated one-dimensional data
set with τ = 0.55, minPts = 3 and ε = 0.05. Black sequences represent anomalous
subsequences, while white dashed ones stand for intuitive outliers. The color of the
dots emphasize which cluster the data points are assigned to. Red dots represent noise.
(Color figure online)

The one-dimensional data set was generated so that initially four starting
points (for four groups) were selected. In addition, the maximum deviation from
the centroid and the number of members were chosen for each group. The cen-
troids were then calculated randomly for each time point, whereby the distance
of the centroids of a cluster of two successive time points could not exceed 0.06.
After generating the normal data points, 5 outlier sequences were randomly
inserted. The starting points were chosen randomly and the distance between
two consecutive points could not be greater than 0.3. For all points, care was
taken to ensure that they were between 0 and 1.

As shown in Fig. 5, anomalous sequences from five time series have been
found. Regarding the first time stamp the first and second black line show time
series that are entirely recognized as conspicuous ones. Since their data points
often switch between being noise (red dots) and different cluster members, this
result is meaningful. Between time point 6 and 7 one additional black line in
added. This can be explained by the stability of the sequence’s cluster at time
7. All its cluster members migrate together from time point 6 to 7, so that an
outlier is very conspicuous.

Looking at the completely randomly generated time series with the upper-
most noise point at time 2, it is noticeable that it was not recognized by our
algorithm. This is due to the fact that the purple cluster at time 3 and the
turquoise cluster at time 5 do not have a high stability and the deviation of the
sequence from the best possible score is therefore not very large. In the last time
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Fig. 6. Illustration of the detected outliers with τ = 0.5, minPts = 4 and ε = 0.11 on
the artificially generated data two-dimensional set. The colors indicate cluster belong-
ings, whereby grey objects represent outliers. Circles are outliers by distance and boxes
are intuitive outliers, as well. Red color or font indicates noise. (Color figure online)

points, the time series migrates stably with the yellow cluster, so that it does
not behave uncommonly.

If the data points of a time series change from one point in time to another
from a cluster to noise, they are not initially interpreted as conspicuous. This
is a problem if the time series remains as noise as the time at which it split
from the cluster is not recognized as an intuitive outlier. This behavior can for
example be seen in the striped line regarding the first time stamp. Between the
times 6 and 7, the sequence was not detected as an outlier.

The second data set was created as follows: First, three starting points as
centroids and the number of members of the three clusters were chosen. The
maximum deviation of two consecutive centroids was set to 0.05 and that of the
member data points to the centroid was set to 0.1. One time series was assigned
to each group, which was allowed to deviate from the centroid by up to 0.25.
Finally, two time series with completely random data points were added, so that
a total of 5 outlier sequences should be noticeable. Here, too, we made sure that
all data points are between 0 and 1 for each feature.

In Fig. 6 the results for an over-time clustering made by DBSCAN with
minPts = 4 and ε = 0.11 and an outlier threshold of τ = 0.5 are shown.
The time series 16, 37, 48 are generated with higher deviation and 49 and 50
completely random. It can be seen that all these time series were found by our
algorithm as outliers (grey). Since the data points of these time series often are
outliers as well as change their cluster members, this is a correct result. However,
the first two time points are assumed to be normal for time series 16. This is
desired too, as it moves stable with its cluster members at this time.
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Although the data points of 42, 45, 46 and 47 split from their cluster members
in time point 4, they are not identified as outliers. Since they migrate together
and even merge back to their former cluster members in time point 5, their
behavior is not conspicuous. The sequence 42 is identified as anomalous between
time points 1 and 2 (turquoise cluster), since all its cluster members migrated
completely stable from time point 1 to 2.

In total, the following outlier sequences can be read from Fig. 6: T3,8,16,
T1,2,42, T1,7,37, T1,8,48, T1,8,49, T1,8,50. All are justified and correspond to the
desired result. There is one striking observation, though: Although 37 is con-
spicuous over the entire period, it is only found as outlier between time 1 and 7.
The reason for this is that the marginal case mentioned in Sect. 4 has occurred.
Since the data point of the time series was classified as noise at the very last
point in time, but not at the time before, the sequence is not found by our
algorithm.

6 Conclusion and Future Work

In this work we presented a robust outlier detection algorithm for multiple mul-
tivariate time series. By analyzing the cluster transitions of time series over time,
we are able to identify anomalous sequences. Instead of using sliding windows,
our method performs an analysis of all possible subsequences. The shown results
are sound and enable a new field of research. However, there are still some inter-
esting aspects which may be examined in future work. The most important issue
is the determination of the outlier detection parameter τ . We assume an interde-
pendence of τ and hyperparameters that are used for the clustering algorithm.
Further not all intuitive outlier sequences have to be conspicuous in regard to
the time series database. Considering the deviation of time series can lead to an
enhanced analysis of those. Finally, it could be useful to identify whole outlier
clusters. Therefore a cluster score could be computed and evaluated.
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