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Abstract. The broad application of machine learning (ML) methods
and algorithms in diverse range of organisational settings led to the adop-
tion of legislation, like European Union’s General Data Protection Reg-
ulation, which require firm capabilities to explain algorithmic decisions.
Currently in the ML literature there does not seem to be a consensus on
the definition of interpretability of a ML solution. Moreover, there is no
agreement about the necessary level of interpretability of such solution
and on how this level can be determined, measured and achieved. In this
article, we provide such definitions based on research as well as our exten-
sive experience of building ML solutions for various organisations across
industries. We present CRISP-ML, a detailed step-by-step methodology,
that provides guidance on creating the necessary level of interpretability
at each stage of the solution building process and is consistent with the
best practices of project management in the ML settings. We illustrate
the versatility and effortless applicability of CRISP-ML with examples
across a variety of industries and types of ML projects.

Keywords: Interpretability in machine learning · Machine learning
methodology · Data science methodology · Level of interpretability ·
Model interpretability · Project management

1 Introduction and Background to the Problem

The rapid increase in the range and diversity of data-driven algorithmic deci-
sion engineering has led to the sharp increase of the need for a consistent and
comprehensive methodology and process that govern the development, deploy-
ment, utilisation and evaluation of the engineering outcomes. Decision engi-
neering, whether in data science (DS) and data analytics (DA) projects or in
autonomous systems, like computer-based recommenders and advisers, rely on
machine learning (ML) and artificial intelligence (AI) systems, hence, requires
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interpretability/explainability of system behavior and decision making outcomes.
Interpretability in AI/ML depends on two connected aspects: (i) development of
interpretability solutions for AI/ML algorithms and (ii) development of consis-
tent and comprehensive methodology/framework for data science projects, which
minimises the risk of project failures and guarantees achieving the necessary (for
the project) level of ML/AI system interpretability. Guidotti et al. [13] provide a
systematic overview of the current state-of-the-art in (i). Our paper is focused on
the development of methodology, which addresses (ii). The rationale supporting
such focus is built on the following major arguments: (a) high proportion of data
science project failures - an indicator of the need for a consistent and comprehen-
sive methodology and process for ML/AI projects; (b) emerging requirements
for sufficient explainability of ML systems - this puts pressure on creation of
frameworks/ methodologies which can ensure the sufficient explainability of ML
systems; and (c) lack of standard methodology - contemporary methodologies
do not include standard consistent components which ensure interpretability
through the project. Further we elaborate each of these arguments.

1.1 High Proportion of Data Science Project Failures

Recent reports estimate that between 70% and 85% of data science/ML/AI
projects fail. NewVantage survey [1] noted that 77% of businesses see big data
and AI initiatives as a big challenge for business. Gartner research [24] argues
that 80% of analytics insights will not deliver business outcomes through 2022.
McKinsey research [8] reports that 92% of big companies are not successful in
using analytics in the organisation. In the past three years the percentage of
firms identifying themselves as being data-driven has declined from 37.1% in
2017 to 31.0% in 2019 [1], which is counterintuitive to the expected impact of AI
technologies on decision making. Key reasons for these failures are linked to the
lack of proper process and methodology in requirements gathering, establish-
ing realistic project timelines, task coordination, communication, and suitable
project management framework [1,29]). Improved methodologies are needed as
the existing ones do not cover many important aspects and tasks [17]. Further,
studies have shown that the recent biased focus on the tools and systems has
limited the ability to gain value from organisational analytic effort [22] and that
data science projects need to increase their focus on methodology, including
process and task coordination ([12]). Practitioners agree with this view [11].

1.2 Requirements for Sufficient Explainability of ML Systems

In parallel with the above discussed tendencies, there is pressure on creation
of frameworks/methodologies, which can ensure the sufficient explainability of
the output of the ML systems. Whilst some ML systems (for instance, decision
tree and rule induction algorithms) offer methodologically transparent means
supporting interpretability/explainability of their output, there is a class of the
so-called ‘black box’ ML models, such as deep neural nets, tree and network
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ensembles and support vector machines, which do not provide embedded inter-
pretability. There have been a number of cases where this class of models demon-
strated the lack of fairness and poor accuracy [20,25]. In high-stake situations,
systems in which the inner workings are not transparent can be unfair, unreli-
able, inaccurate and even harmful [6,25]. This view is reflected in legislations like
the European Union’s General Data Protection Regulation (GDPR) [2], though
there are also warnings to policymakers to be aware of potential impact of leg-
islations like GDPR on AI and emerging algorithmic economy. These develop-
ments increase the pressure on creation of frameworks and methodologies, which
can ensure the sufficient explainability of AI and ML solutions. A report by AI
Now Institute [23] recommended standardising the AI and ML system-building
process and incorporating relevant algorithmic impact assessments into the pro-
cesses the organisations already use. Many organisations and major technology
developers are following this recommendation [4].

1.3 The Lack of Standard Methodology

Though having a good methodology is important for the project success, so far
there is no formal standard for methodology in the data science projects [26].
CRISP-DM methodology [28], created in the late 1990s, is considered the de-
facto standard [5,14]. It is industry-, tool- and application agnostic [17]. It is not
fully meeting the needs of data science community, and its usage appears to be
decreasing [26]. While various extensions of the methodology, including IBM’s
ASUM-DM and Microsoft’s TDSP were proposed, at this stage none of them has
become the standard. Many CRISP-DM extensions are fragmented and either
propose additional elements into the data analysis process, or focus on organisa-
tional aspects without the necessary integration of domain-related factors [21].
Finally, while methodologies from related fields, like the agile approach used in
software engineering, are being considered for use in data science projects, there
is no full clarity on whether they are fully suitable for the purpose [15], therefore
we did not include them in the scope of this paper.

1.4 Opportunities in Creating Interpretability-Related
Methodologies

Recent state-of- the-art reviews related to interpretability [7,9,19] as well as more
algorithm-focussed reviews [13,16,18] report that: (i) interpretability of AI and
ML solutions and the underlying models is not well defined; (ii) the work related
to interpretability is scattered throughout a number disciplines, including AI,
ML, human-computer interaction (HCI), visualisation, cognition; and (iii) cur-
rent research seems to address a particular category or technique instead of the
overall concept of interpretability. Similarly, while there is a number of suggested
approaches to measuring interpretability [18], there is no consensus neither on
measuring or evaluating the level of interpretability nor on the best type of expla-
nation metric [9]. Currently there is confusion about the interpretability notion
[19], including a lack of clarity about how the many proposed interpretation
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approaches can be evaluated and compared against each other, how to choose
a suitable interpretation method for a given business issue and audience as well
as limited guidance on how interpretability can actually be used in data-science
life cycles. The lack of consensus gives an opportunity to create a comprehen-
sive methodology, which takes into account different perspectives and aspects
of interpretability (comprehensibility), such as predictive accuracy, bias, noise,
sensitivity, faithfulness, specificity, local interpretability, global interpretability
and domain specifics.

2 Methodology of Establishing and Building
the Necessary Level of Interpretability of ML
Business Solution

2.1 The Necessary Level of Interpretability of an ML Solution

In line with interpretability in Google’s responsible AI practices [4] and expand-
ing on [10] approach, we introduce the concept of necessary level of interpretabil-
ity (NLI) of a business ML solution as the combination of the degree of accuracy
of the underlying algorithm and the extent of understanding of the inputs, inner
workings, the outputs, the user interface and the deployment aspects of the ML
solution that is required to achieve the project goals. If this level is not achieved,
the solution will be inadequate for the purpose. This level needs to be established
and documented at the initiation stage of the project as part of requirements
collection. We then describe a ML system as sufficiently interpretable or not
based on whether or not it achieved the required level of interpretability.

Obviously, this level will differ from one project to another depending on
the business goals and agreed measures of interpretability. If individuals are
directly and strongly affected by the solution-driven decision - for example, in
medical diagnostic or legal settings - then both the ability to understand and
trust the internal logic of the model as well as the ability of the solution to
explain individual predictions are extremely important. In other cases, when a
ML solution is used in order to inform business decisions about policy, strategy
or interventions aimed to improve the business outcome of interest, then it is the
need to understand and trust the internal logic of the model that is of most value
and individual predictions are not the focus of the stakeholders. For example,
in one of our projects an Australian state organisation wished to establish what
factors influenced the proportion of children with developmental issues and what
interventions can be undertaken in specific areas of the state in order to reduce
that proportion. The historical, socioeconomic and geographic data provided for
the project was aggregated at a geographic level of high granularity.

In other cases, for example, in the case of an online purchase recommender
solution, the overall outcome, such as increase in sales volume, may be of higher
importance, than the interpretability of the model. Similar requirements of solu-
tion interpretability were in a project where an organisation owned assets that
were located in remote areas and were often damaged by birds or animals nests.
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The organisation wished to lower their maintenance cost and planning by iden-
tifying as soon as possible the assets where such nests were present instead of
doing expensive examination of each asset. This was achieved by building a ML
solution that classified Google Earth images of the assets into those with and
without nests. In this project it was important to identify as accurately as possi-
ble a proportion of assets with nests on them, while misclassifying an individual
asset image was not of great concern.

2.2 CRISP-ML Methodology

The proposed methodology of building interpretability of a ML system is based
on our methodology CRISP-ML. It is an updated version of CRISP-DM and is
industry-, tool- and application-agnostic. It seamlessly accommodates modern
ML techniques and creates the NLI through the whole ML solution creation
process. In order to explain how to ensure that the NLI of ML system is achieved
in the project, we elaborate its seven stages, summarised in Fig. 1. We illustrate
key concepts with real-world examples/mini case studies.

The Project Initiation and Planning Stage. Interpretability Matrix

Objectives and Importance. This stage is crucial for the overall project success
[3] and for the system interpretability building. It covers the activities needed to
start up the project, including (i) the identification of project sponsor/key stake-
holders and preparation of project charter – a document that outlines project
objectives, scope, high-level deliverables, assumptions, constraints, and risks –
after being signed off it serves as a reference of authority for the future; and
(ii) the planning activities such as collecting requirements; agreeing upon initial
data to use; preparing a detailed scope statement; estimating effort, duration and
costs; assessing and responding to risks; developing communications documents,
project schedule and plan and finally, obtaining project sponsor’s approval to
proceed with the project.

Establishing the Necessary Level of Interpretability. NLI is established as part of
requirements collection. It is driven by the project objectives, and also influenced
by domain specifics, stakeholder requirements, project constraints, industry reg-
ulator requirements to name the key factors. Proper requirements collection (i.e.
determining and documenting conditions or tasks that must be completed to
meet the project objectives) is crucial to the project success [3]. As part of
requirement gathering we work with key stakeholders to determine NLI of the
solution. Typically, this may require that the relevant stakeholders have a clear
understanding of the (i) data inputs used - are they reliable, of suitable quality
and representative of the real-world data; (ii) solution outputs - are they consis-
tent with the project goals in terms of accuracy, format, ease of understanding
for the end users, level of potential business insight, and are they valid from
the ML and business perspectives; (iii) format they should be provided to the
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Fig. 1. Conceptual framework of CRISP-ML methodology

end user, e.g. tables, visualisations, graphs, infographics and other representa-
tions; (iv) high-level modelling approach, its validity and whether it is proven and
likely to work in this industry; (v) implementation process of the solution in the
organisational systems, and how it should be audited, monitored and updated.

For example, in a project in workers compensation insurance that aimed to
identify cases likely to become expensive, the objectives included building a ML
system that would: (i) explain what factors and to what extent were influencing
the outcome of interest i.e. claims cost; (ii) allow the organisation to derive busi-
ness insights that will help make data-driven accurate decisions regarding what
changes can be done to improve the outcome i.e. reduce the likelihood of an
expensive claim by a specified percentage; (iii) be accurate, robust and able to
work with real-world organisational data; and (iv) have easy-to-understand out-
puts that would make sense to the executive team and end users (case managers)
and that the end users could trust. The established interpretability requirements
in this project included: (i) having trustworthy, quality data inputs, representa-
tive of the organisational data that the solution would be deployed on; (ii) the
outputs should be provided as business rules that were were easy to understand
for end users and to deploy on organisational data; (iii) the high-level algorith-
mic approach had to be easily understood by the executive team and the BI
team who would monitor its performance; (iv) explain at least 80% of variation
in the data, be valid from the ML point of view; and (v) its outputs needed to
make sense to the domain experts.

Creating Project Interpretability Matrix as Part of Requirements Collection. The
next step is to establish what needs to be done by each stakeholder at each
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project stage in order to ensure that NLI is achieved. For this, we create the
interpretability matrix (IM), whose rows show CRISP-ML stages, and columns
represent key stakeholders. In each IM cell we need to document what needs
to be done by each stakeholder at each project stage to ensure that NLI of the
solution is achieved. Completed IM becomes part of the business requirements
document; the activities it outlines are integrated into the project plan and are
performed, updated and monitored along with the project plan as needed. For
example, Fig. 2 shows a very high-level IM for the above mentioned insurance
project. The green, yellow and white colour background indicate, respectively,
high, medium and low level of involvement of a stakeholder group.

Fig. 2. Example of a very high-level interpretability matrix for the insurance project.
(Color figure online)

Entries to the Interpretability Matrix at Each Stage of CRISP-ML

Further we discuss typical entries to the interpretability matrix (IM) at each
stage of CRISP-ML, and illustrate them with real-world examples. Usually, in
our experience key stakeholders for ML system projects are the executive team
(ET); the data provider (DP) team which is often a part of the organisational
IT team; the domain experts (DE) and the modelling team (M). These abbre-
viations will be used in the below descriptions along the stages IM.

Stage 1. Figure 3 provides details of IM content related to this stage.

Stages 2–4. Stages 2, 3 and 4 in Fig. 1 are mainly data-related and form the data
comprehension, cleansing and enhancement mega-stage. Further we consider the
content of interpretability matrix for each individual stage.
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Fig. 3. CRISP-ML: Stage 1 - typical IM content related to this stage.

Stage 2. Data audit, exploration and cleansing play a key role in the development
of stakeholder trust in the approach and ultimately in the solution, if achieving
user trust in the solution is part of the established NLI for the project. Figure 4
demonstrates the typical content of IM at this stage. This stage is important in
any project where interpretability is of high priority, because wrong data values
may slide in unnoticed and skew the outputs. For example, in a project aiming
to establish what drives morbidity of pregnant women with diabetes and their
children, the data on the age of the mother had records of 99 yo. Domain experts
clarified that ‘99’ was a code for ‘Age Unknown’.

Stage 3. Figure 5 demonstrates the typical content of the interpretability matrix
related to the evaluation of the predictive potential of the data. This stage is
often either omitted or not stated explicitly in other processes/frameworks (for
example, in CRISP-DM), however it is crucial in terms of achieving NLI because
it establishes whether the information in the data is sufficient for achieving
the project goals (for example, for explaining the outcome of interest). At this
stage, in-depth data exploration and preliminary modelling is performed, where
several advanced and powerful non-supervised and supervised ML techniques
are used to explore the data, establish the most promising strategies for feature
engineering/data transformations and modelling and assess whether the initially
identified data and other resources are sufficient for achieving the business goals.
The choice of the ML techniques is tailored for each project; detailed description
of them and the process of assessment of the predictive potential is beyond the
scope of this paper. Techniques used for estimating predictive potential include
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Fig. 4. CRISP-ML: Stage 2 - typical IM content related to this stage.

components of various dimensionality reduction approaches, advanced clustering
methods and proven highly-predictive methods such as random forest, boosting
methods and deep neural networks).

In our experience, initially identified data often needs to be enriched by
external data. For example, in the insurance example the predictive potential of
the data containing claim and worker data history was shown to be insufficient
for the project objectives. The domain experts suggested to enrich the initial data
with the history of what doctors and other health service providers a worker saw,
the medicines worker was prescribed (for example, opioids) and some other data.
Adding these data significantly improved the model accuracy. Enrichment by
additional data is not always needed. Specifically, from our experience, image and
free text data often do not require additional information to build an accurate
model. For example, in a project where social media data were used to compare
customer perception of the four Australian major banks, at stage 3 we established
that collected data were enough for project purposes, but additional in-depth
feature engineering was required.

Fig. 5. CRISP-ML: Stage 3 - typical IM content related to this stage.
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Stage 4. Figure 6 shows a typical content of IM if it was determined at stage
3 that the initially identified data or other resources are not sufficient for the
project purposes and the data have to be enriched. In practice this involves
additional analysis, usually, data enrichment by adding new data, less often
by in-depth feature engineering of the existing data. Additional internal and
external data sources are identified, the new data is extracted, audited, cleansed
and added to the previously used data. Then predictive potential of the enriched
data is again assessed by applying the same ML methods as in stage 3.

Fig. 6. CRISP-ML: Stage 4 - typical IM content when data enrichment is required.

This step is repeated until the necessary level of predictive potential is
achieved or, if it has been established that achieving it is impossible, this find-
ing is further discussed with the key stakeholders and the relevant decisions are
made. Thorough planning at Stage 1 minimises the risk of that occurring. In the
insurance example described above, data enrichment was a key step. The fact
that the model showed that the cost of a claim can be significantly dependent
on the providers a worker visited, built further trust in the solution because it
confirmed the domain experts hunch that they previously had not had enough
evidence to prove.

Stage 5. Figure 7 shows a typical content of IM for the model building and
evaluation stage. To achieve NLI, modellers have to choose the appropriate tech-
nique(s) that will balance the required outcome interpretability with the required
accuracy and with other requirements/constraints (e.g. the needed functional
form of the model and/or algorithm). The ML techniques to be used for mod-
elling are selected taking into account the predictive power of the model, its
suitability for the domain and the task, and NLI. The data is pre-processed,
and modelled and model performance is evaluated. Detailed description of the
process of algorithm choice and model assessment is beyond the scope of this
paper and will be covered in a separate publication.
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Fig. 7. CRISP-ML: Stage 5 - typical IM content indicating how NLI influences the
strategy of choosing modelling techniques by the modelling team.

In the insurance example, the solution output had to be produced in the
form of business rules. Therefore the feature engineering methods and modelling
algorithms used included rule-based techniques such as decision trees and associ-
ation rule-based methods. In another example, a large Australian asset-owning
organisation needed a ML solution that would help them to proactively opti-
mise asset maintenance planning and cost and asset failure risk reduction as
well as to justify funding requests to industry regulator. The regulator specifi-
cally requested that the solution be delivered in the linear model form. Such a
requirement towards the model type is common in some areas. For example, in
credit risk assessment certain models have to be in the logistic regression format.
Often there is no constraint on the model functional form. For example, in the
above mentioned image classification project, we simply used the most accurate
model we could build, which turned out to be a convolutional neural network.
Some other techniques used in stage 5 include boosted regression trees, random
forest, LASSO methods and deep neural networks.

Stage 6. Figure 8 shows how the IM reflects the role of interpretability in the
formulation of business insights necessary to achieve the project goals and in
helping the ET and end users to understand the derived business insights and
to develop trust in them. DE team might also have a medium to low level of
involvement for clarification of any domain-related aspects.

For example, in the insurance project modellers and DEs prepared a detailed
presentation for the ET explaining not only the learnings from the solution but
also the high-level model structure and its accuracy. In the image processing
project, on the other hand, the presentation was focussed on the results and
their accuracy rather than on model inner workings.
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Fig. 8. CRISP-ML: Stage 6 - typical content of IM related to this stage.

Stage 7. Figure 9 shows the shift of responsibilities for ensuring the achieved
interpretability level is maintained during the future use of the solution. At this
stage, a deployment is conducted if required and monitoring/updating process
and schedule is prepared, based on the developed technical report.

This stage and the related interpretability aspects differ significantly depend-
ing on the project goals. We illustrate this diversity with some of our projects.
In the childhood development project no deployment was required, but a report
and a visualisation of the solution was needed. In the nest identifying project
no deployment was required, but the list of assets likely to have nests on them
was needed as well as a brief report and the model code. In the insurance and

Fig. 9. CRISP-ML: Stage 7 - activities ensuring the achieved interpretability level is
maintained during the future utilisation of the solution.
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asset management examples deployment was needed, as well as a full technical
report, a solution manual and an updating and monitoring recommendations.

2.3 Conclusions

This article addresses the problem of providing companies with capabilities to
explain algorithmic decision engineering. We introduced a definition of inter-
pretability of an end-to-end business ML solution, the necessary level of inter-
pretability of such solution and a methodology (CRISP-ML) of achieving it.
CRISP-ML integrates interpretability aspect into the overall framework instead
of just at the modelling stage. It requires to take more than the algorithm
accuracy into consideration when deciding what the ‘best’ model is by push-
ing questions about use and interpretability up front. Further, it defines the
responsibilities of different stakeholders to ensure that this is done.

CRISP-ML is an extension of CRISP-DM, which enables organisations to
(i) establish shared understanding across all key stakeholders about the solu-
tion and its use; (ii) build stakeholder trust in the solution outputs; and (iii)
get buy-in from all relevant parts of the organisation. It allows the end users
to confidently interpret the solution results and make successful evidence-based
business decisions. If needed, they can explain these decisions to any external
party. We successfully applied this methodology in commercial projects across a
variety of industries including banking, insurance, utilities, retail, FMCG, public
health and transport to name some areas. It effortlessly accommodates the diver-
sity of industry specifics as well as variety of organisational goals, ML techniques
and data types. While comparing the effectiveness of this methodology to other
approaches is beyond the scope of this paper, future work includes experimental
assessment similar to the one performed in [27].
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