
8Hardware Security in India:The Journey so
Far

Debdeep Mukhopadhyay

Abstract

Hardware Security is relatively a young discourse when
compared to its more classical counterparts, like cryptog-
raphy or network security. Yet, the growth of this subject
in spite of his short history is phenomenal and the impe-
tus of it in the modern-day world is striking. Like other
parts of the world, India also joined this important area
of research from the last decade to cover important areas
in this discourse. This article is a description of some of
the core subareas from our country, which includes crypto-
graphic hardware design, side-channel analysis, fault anal-
ysis, micro-architectural attacks, Trojan detections, phys-
ically unclonable functions, and applications in IoT secu-
rity. The chapter concludes with some ongoing efforts in
the country to extend the core competence developed to
develop secured end–end cyber-physical systems, which
is of immense importance not only in our country, but also
in the rest of the world.

Keywords

VLSI of cryptographic algorithms • Side-channel
analysis • Countermeasures • Fault tolerance •
Micro-architectural attacks • PUFs • IoT security

8.1 Introduction

Cryptology is the art of making and analyzing algorithms
to provide confidentiality, integrity, and availability of infor-
mation. This encompasses, design of ciphers, and analyz-
ing them via the process of cryptanalysis; developing clas-
sical primitives like hash functions, message authentication
codes, signature schemes, and the like. Recent days there has
been a humongous advance in the field of cryptology, with

D. Mukhopadhyay (B)
Indian Institute of Technology Kharagpur, Kharagpur, India
e-mail: debdeep@cse.iitkgp.ac.in

advanced primitives like attribute-based encryption, func-
tional encryption, fully homomorphic encryption, and last but
not the least, post-quantum cryptosystems are being devel-
oped and analyzed. These primitives provide additional capa-
bilities, like performing operations on encrypted databases in
the pervasive public cloud, yet addressing privacy and security
issues. While cryptology deals with the theoretical construc-
tions, practitioners have shown that mathematically strong
algorithms are just the beginning. Cryptographic algorithms,
like Advanced Encryption Standard (AES), or RSA, Elliptic
Curve Cryptography (ECC) when implemented on software
or hardware in a naïve manner, there are potential informa-
tion leakage sources, throughwhat are called as side channels.
In the pioneering works of Paul Kocher around 1995, it was
reinstated that side-channel sources like timing or power can
be utilized effectively to determine the complete secret key
using efficient attack algorithms [1]. These side-channel anal-
yses opened up new research directions in cryptographic engi-
neering, which attempts at developing a theory of the reality,
which is otherwise not modeled by classical cryptography. In
1997, with a seminal paper from Dan Boneh [2] and followed
with works from Biham–Shamir [3], another class of popu-
lar attacks, called fault attacks, came to the surface. These
attacks showed that popular cryptosystems like RSA or DES
can leak the secret keys when there are accidental or uninten-
tional faults in the circuit that computes them. These works
show that proper cryptographic engineering does not endwith
only performance as a criteria, what we also need is protec-
tion against side channels and other implementation-driven
attacks. At IIT Kharagpur, in order to explore this important
and exciting world of cryptographic engineering, the Secured
Embedded Architecture Laboratory (SEAL) was set up in
2008. This lab has made fundamental contributions to the
space of research in cryptographic engineering, like devel-
oping the most efficient fault attack on the worldwide stan-
dard AES (Advanced Encryption Standard) cipher, design-
ing fast and small ECC (Elliptic Curve Cryptosystems [4])
hardware IPs, etc. Furthermore, the laboratory has developed
the infrastructure and practice to validate the claims through

© Springer Nature Singapore Pte Ltd. 2020
S. K. Shukla and M. Agrawal (eds.), Cyber Security in India, IITK Directions 4,
https://doi.org/10.1007/978-981-15-1675-7_8

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1675-7_8&domain=pdf
mailto:debdeep@cse.iitkgp.ac.in
https://doi.org/10.1007/978-981-15-1675-7_8

72 D.Mukhopadhyay

rigorous experiments, done on state-of-the-art platform for
side-channel analysis.

Hardware security is a field which originates from crypto-
graphic engineering, and applies it to develop a secured hard-
ware layer in computing systems which can serve as a more
dependable root-of-trust (RoT) than their software counter-
parts. Indeed earlier efforts to design the Trusted Platform
Modules (TPM) chips, which offer a very low-cost crypto-
coprocessor design, typically includes RSA key-generator,
SHA-1 hash functions, and encryption–decryption signature
schemes. The signature was used for signing and attesting
codes, which are considered legitimate to execute. Comput-
ers that incorporate a TPM can create cryptographic keys and
encrypt them so that they can only be decrypted by the TPM.
This process, often called wrapping or binding a key, can help
protect the key from disclosure. Each TPMhas amaster wrap-
ping key, called the storage root key, which is stored within
the TPM itself. The private portion of a storage root key or
endorsement key that is created in a TPM is never exposed to
any other component, software, process, or user. Cryptosys-
tems that store encryption keys directly in the TPM with-
out blinding could be at particular risk adversaries. In 2010,
Christopher Tarnovsky presented an attack against TPMs at
Black Hat, where he claimed to be able to extract secrets from
a single TPM by inserting a probe and spying on an internal
bus for the Infineon SLE 66 CL PC [5]. In 2015, reports on
differential power analysis attack against TPMs potentially
able to extract secrets, were reported [6]. Thus striving to find
a hardware security primitive for usage as an RoT is of utmost
importance. One of the accompanying challenges is to ensure
that the design should be low cost. One promising technol-
ogy is what are called as Physically Unclonable Functions
(PUFs) [7]. The objective of PUFs is to create security prim-
itives which provide every device with a unique fingerprint.
PUFs in the black-box sense, receive inputs, which are called
as challenges, to result in output response bits. Though there
are different technologies on which PUFs can be designed,
the most popular ones are silicon based. When the same PUF
circuit is implemented on two different devices, the responses
obtained for the same challenge to both of them are statisti-
cally independent. Thus PUFs offer novel designs of RoTs
where the secret key is not explicitly stored in a memory
and hence does not need to travel outside the IC boundary.
However, PUFs are threatened by powerful machine learning
attacks which try to mathematically model these primitives.
One of the primary focus of SEAL, IIT KGP is to realize
these primitives on hardware platforms, like FPGAs, ASICs,
and perform rigorous test on them: with respect to machine
learning attacks, reliability analysis with respect to tempera-
ture variations, humidity variations, etc.

PUFs are a promising security primitive to address the
security concerns in Internet of Things (IoT). IoT prod-
ucts which are commercially being sold and deployed, like

surveillance cameras, home automation systems, often have
glaring security weaknesses. One of the goals of SEAL is to
perform (in)security analysis of these commercially deployed
devices. One of the primary reasons why ad hoc authenti-
cation mechanisms are often adopted in these devices are
high cost of integrating standard cryptographic solutions. The
adopted security solutions thus when adopted in the resource-
constrained nodes need to minimize processing power, stor-
age space, network bandwidth, energy consumption, and also
perform with minimal user intervention. One of the major
research goals that we strive is to integrate PUFs into the
nodes. However, this also implies designing a new generation
of security protocols which are based on the unclonability of
PUFs. One of the major challenges for building such proto-
cols is the fact that as PUFs are not clonable, the Challenge–
Response Pair (CRP) which the verifier needs is to be explic-
itly stored. This makes the solution problematic as to store
a large database in a secured fashion is cumbersome. One
of the way-outs that we make an effort is to combine effec-
tively PUFs with public-key cryptography to have a new gen-
eration of PUF-based authentication protocols which can be
integrated with IoT subsystems. We aim to build surveillance
cameras, smart meters, and other IoT products which have
protections against various forms of adversaries like man-in-
the-middle attacks, replay attacks due to the usage of PUFs.

IoTs or in general cyber-physical systems are heteroge-
neous. So, while on one end we have resource-constrained
nodes and on other ends there are more powerful machines,
servers, and finally the pervasive cloud. In these comput-
ing platforms, while side-channel analysis like power anal-
ysis, EM analysis may not be directly applicable, there is a
very important variant of these attacks, which are called as
micro-architectural attacks. These attacks target the under-
lying computer architecture, which has been fundamentally
developed with performance in mind, and show that there are
grave security flaws. Timing analysis, vulnerabilities due to
the presence of cachememory, branchprediction attacks, row-
hammer bugs of DRAM chips are some of the well-known
micro-architectural attacks. At SEAL, we have been working
on developing these attacks and exploring them on all well-
knownmachines, like from Intel/ARM/AMD and have devel-
oped the expertise of not only demonstrating these attacks,
but also developed coding practices for being secured against
these attacks. These countermeasures are often costly and thus
needs to be suitably designed to ensure a minimal footprint
on performance. Another related research direction, whichwe
pursue is to develop reactive measures by developing smart
monitors in computing systems which can raise early alarms
in the system on the presence of side-channel analysis. In this
context, we show the use of machine learning based analysis
for the detection of various micro-architectural side-channel
attacks, like cache misses, branch-misses and even the newer
Spectre and Meltdown.

8 Hardware Security in India:The Journey so Far 73

Finally, no discussion on security is complete without
bringing in the aspect of cloud. Clouds provide a massively
powerful distributed computing paradigm, where service
can be rendered and after usage can be relinquished. While
on one hand cloud provides many opportunities for high-
performance computing and is often conceptualized as the
endpoint of the IoT, which can store and process billions
of data which is being generated by the sensors, devices in
IoT, they also raise grave concerns on security and privacy.
Solutions to encrypt them, naturally raise questions on how to
operate on encrypted databases. While theoretically feasible
solutions like Fully Homomorphic Encryption (FHE) exist,
which can serve as the holy grail in giving capabilities of
performing arbitrary computations on encrypted data, but
they are not feasible. As of now, they do not scale well and
make operations like search extremely slow, virtually to the
point of being unusable. At SEAL, we focus to develop on
one hand new solutions for restricted but useful database
computations, like search, using lightweight primitives, like
pseudorandom permutations; on the other hand, we strive
to leverage the parallelism offered by hardware designs to
develop fast accelerators for such search algorithms.

In this article, we give an overview of the above topics,
which are some of the highlights of contribution of hardware
security research from our country. In particular, we provide
the following descriptions which are some of the major hall-
marks in hardware security research in India:

• Differential Fault Analysis (DFA)
• Hardware Design of Public-Key Cryptosystems
• PUFs: Design and Usage in IoT Security
• Microarchitectural Threats: Attacks, Countermeasures,

and Detections
• Hardware Security to Accelerate Cloud Cryptosystems.

Organization:Sect. 8.2 of the chapter presents an overview
of our work on differential fault attacks of cryptosystems,
along with research in automating fault analysis. Chapter3
discusses on VLSI design of public-key algorithms, with
ECC in perspective. The chapter gives design approaches
developed to cater to both design alternatives, viz. high-
performance and lightweight applications. Subsequently,
Chap. 4 focuses on PUF designs, briefing on works done on a
promising PUF topology which combines machine learning
robustness with reliability. It also presents a protocol suited
for IoT applications using PUF-based primitives. Chapter5
presents research efforts in the exciting confluence of
computer architecture and security, annotating our findings
in the topic of cache attacks, branch prediction attacks,
and row-hammer attacks. We also discuss machine learning
based detection methodologies for such side-channel attacks
as an alternative for costly countermeasures. Finally, Chap.6
presents a new line of research initiated in our laboratory

to develop hardware-based accelerators for novel search
algorithms on encrypted data. The overall direction of our
research is summarized in Sect. 8.7.

8.2 Fault Analysis of Cryptosystems

Fault attacks are one of the most potent threats to modern
secured systems.Given the fact that precise and targeted faults
can be induced in most of the modern computing systems by
means of commercially available low-cost equipment, fault
attacks become reasonably practical. The SEAL Lab at IIT
Kharagpur possesses several setups for targeted fault injec-
tion using intentional glitches in the clock network, electro-
magnetic radiation, and laser rays. The research team has suc-
cessfully demonstrated injections for software and hardware
implementations of crypto-algorithms. Practical realization
of remote fault injections using the row-hammer vulnerabil-
ity has also been demonstrated by the team. Evaluation of
cryptographic primitives against fault attacks is an active area
of research. The general philosophy for key extraction is ana-
lyzing both the correct and the faulty outputs from the target
primitive.However, the analyses aremathematically intensive
and widely vary among different primitives. This article will
focus on fault attacks on block ciphers which are, undoubt-
edly, the most widely deployed cryptographic primitive so
far. More specifically, we shall focus on a specific class of
attacks called Differential Fault Analysis (DFA), which is the
most widely explored and general class of fault analysis.1 The
fault analyses vary depending on the underlying structures of
the block ciphers. However, the minimal requirement for an
attack is the availability of at least one faulty ciphertext and
its corresponding correct ciphertext.

8.2.1 Attacks and Countermeasures

Most of the early efforts of block cipher fault analysis were
targeted toward the AES algorithm, which is the current
worldwide standard for symmetric key encryption. AES is
a Substitution-Permutation-Network (SPN) structure having
10, 12, or 14 iterative rounds, three different key sizes of
128, 192, and 256 bits, and three different state sizes of
same lengths with the key. Each of the rounds consists of
four bijectiveBoolean functions defined overG F(28), among
which one is nonlinear (SubBytes), and rest are linear
(ShiftRows,MixColumns, and AddRoundKey). One of
themajor challenges at the initial phase of fault attack research
was to evaluate how easily and practically one can extract
the complete secret key of AES. One of the seminal works

1Other classes of fault attacks use certain target-specific physical
assumptions over the nature of the faults. Their analyses are different
but heavily influenced by DFA.

http://dx.doi.org/10.1007/978-981-15-1675-7_3
http://dx.doi.org/10.1007/978-981-15-1675-7_4
http://dx.doi.org/10.1007/978-981-15-1675-7_5
http://dx.doi.org/10.1007/978-981-15-1675-7_6

74 D.Mukhopadhyay

Fig. 8.1 Fault propagation in
AES with the fault injected at the
beginning of 8th round. The
intermediate states which are
utilized for constructing
equations are marked in red

2f1 f4 f3 3f2

f1 f4 3f3 2f2

f1 3f4 2f3 f2

3f1 2f4 f3 f2

SB

Ciphertext
Difference

SB

SB

SR

SR

SR

MC
f f’ f’

2f1 f4 f3 3f2

f1 f4 3f3 2f2

f1 3f4 2f3 f2

3f1 2f4 f3 f2

f5 f9 f13 f17

f6 f10 f14 f18

f7 f11 f15 f19

f8 f12 f16 f20

f5 f9 f13 f17

f10 f14 f18 f6

f15 f19 f7 f11

f20 f8 f12 f16

f1

f2

f3

f4

f1

f2

f3

f4

8

10

9
2f’

f’

f’

3f’

MC

in this context was due to Tunstall and Mukhopadhyay [8],
which showed that one single fault corrupting a byte of the
intermediate state of AES at the beginning of 8th round, can
reduce the size of the keyspace from 2128 to 28. As a result,
the secret key can be compromised within minutes, even with
nominal computational power. Furthermore, this attack has
been proven to be optimal from information-theoretical per-
spectives. Several practical implementations of this specific
attack, both on hardware and software AES implementations
have been presented in the literature.

To provide a basic understanding of the fault analyses, here
we present a brief description of the aforementioned attack.
Let us assume a byte fault has been injected at the intermediate
state of AES at the beginning of the 8th round. The value of
the fault is unknown to the attacker, who can only observe
the correct and the faulty ciphertext and guess keys. Each
intermediate state, by convention, is represented as a 4 × 4
matrix of 16 bytes. Without loss of generality, we assume the
0th byte in the matrix to be corrupted. The XOR differential
of the correct and faulty states are considered for analysis.
As shown in Fig. 8.1, the fault propagates to the ciphertext,
eventually corrupting the complete state of the cipher. Here,
we have shown the differential propagation of the fault for
convenience.

Referring to the differential propagation of the fault in
Fig. 8.1, it can be observed that the state at the input of 10th
round has certain observable linear patterns in its columns.
More specifically, each of the columns is linearly dependent
and spanned by a single variable. Exploiting these patterns
four independent nonlinear systemof equations (overGF(28))
can be constructed over associated keys, ciphertext differen-
tials, and fault variables. One of these systems is shown in
Eq. (8.1). Here each Ci denotes a byte from the ciphertext,
and each ki denotes the associated key byte. The faults are
represented with the variable f1.

2 f1 = S−1(C1 ⊕ k1) ⊕ S−1(C1 ⊕ δ1 ⊕ k1)

f1 = S−1(C14 ⊕ k14) ⊕ S−1(C14 ⊕ δ14 ⊕ k14) (8.1)

f1 = S−1(C11 ⊕ k11) ⊕ S−1(C11 ⊕ δ11 ⊕ k11)

3 f1 = S−1(C9 ⊕ k9) ⊕ S−1(C9 ⊕ δ9 ⊕ k9)

Solving this system for the 4 associated key bytes is sup-
posed to filter out total 28 key choices. Solving all four such
systems will reduce the entire keyspace from 2128 to 232. Fur-
ther, a similar equation system can be constructed for the first
column of the 9th round input state differential. This equation
system will finally reduce the keyspace to a size of 28. The
attack will remain exactly the same if any other byte of 8th
round input gets corrupted. The attack still works even if the
exact location of the corrupted byte at 8th round is unknown
to the attacker. The keyspace size, in that case, becomes 212.

Fault attacks are inevitable for most of the crypto-
primitives present today. However, there is a consistent effort
for building effective countermeasures against fault attacks.
A large class of fault attack countermeasures performs some
redundant computation to detect the presence of an injected
fault. Redundancy can be realized via multiple encryptions
over the same data at the simplest case, or via certain error
correcting codes. However, it is not impossible for a clever
attacker to bypass such redundant computations either by
injecting the same faults in all computation branches or by
finding gaps in the error detection capabilities of the codes
used. One practical remedy to such advanced attacks is to
make the computations randomized by cleverly introducing
dummy rounds so that it becomes difficult for the attacker
to identify the exact injection location. Moreover, explicit
checks between the actual and redundant computations can
be avoided. These facts give rise to an entirely different class
of countermeasures called infective countermeasures. Infec-
tive countermeasures avoid explicit checks and randomize
the output upon detection of a fault. To further enhance
the randomization it performs dummy round computations
between actual and redundant cipher rounds. An efficient
infective countermeasure algorithm has been developed by
Tupsamudre, Bisht, and Mukhopadhyay in [9].

8.2.2 Automated Detection of Fault Attacks

As already pointed out at the beginning of this section, the
attack techniques vary significantly among different ciphers.
Even for one block cipher, the entire analysis will vary
depending on the location and nature of the fault. Due to such

8 Hardware Security in India:The Journey so Far 75

(a)

(b)

Fig. 8.2 Two automations a ExpFault framework [10]; b ML-Fault
framework [11]

variability, fault attacks are nontrivial to generalize. However,
it is not impossible as we shall show in this subsection. The
availability of hundreds of block cipher designs makes the
generalization and automation of fault attacks essential. Fur-
ther, the fault spaces for each of these ciphers are prohibitively
large in size. Any automation for fault attacks must be fast
enough to cover the entire (or at least a significant share) fault
space of a cipher.

The three expected properties of a fault attack automation
are genericness, speed, and interpretability. An automation
has been proposed in [10], which satisfies all these criteria
simultaneously. Instead of performing the attacks explicitly,

the automation proposed in [10] returns the attack algorithm
and its complexity given the specification of a block cipher
and a fault model. The necessary criteria behind every fault
attack is a wrong key distinguisher, which can filter out a
large part of the keyspace thus reducing the complexity of an
exhaustive search. As a concrete example of a distinguisher,
we refer to the 10th round input differential state in Fig. 8.1.
The concept of distinguishers has been formalized in [10]
based on Shannon Entropy. Based on the formalization, a
fault simulation-based framework has been proposed, which
mines out distinguishers from fault simulation data. The next
step is to use a graph-based abstraction of the cipher, known
as Cipher Dependency Graph (CDG) to figure out the exact
attack algorithm (if any) and its complexity. A schematic of
this framework, which is called as ExpFault is presented in
Fig. 8.2a. ExpFault successfullyfiguredout all previously pro-
posed attacks on AES, and PRESENT block ciphers within
minutes. Moreover, it figured out optimal attacks on a com-
pletely new cipher design called GIFT. Table8.1 presents a
summary of the attacks figured out for the GIFT cipher.

Although ExpFault is able to figure out the fault attacks
successfully, it utilizes certain abstractions for the sake of
scalability. For example, the internal structures of the S-Boxes
are not considered explicitly in ExpFault. Also, it does not
explicitly consider the fault values and plaintext values while
sketching the attack path. Although these two parameters are
not necessary to construct the attack paths in DFA, for certain
cipher designs they may influence the attack complexities to
some extent. As a result of these approximations, ExpFault
returns the best possible attack complexity from the perspec-
tive of an attacker. While this information is often sufficient
from a cipher evaluator’s perspective, it cannot completely
justify how an attack may perform on average on a given
cipher design.

The only way to handle the above-mentioned issue is to get
rid of all abstractions made in ExpFault. It is, however, fea-
sible by means of an algebraic representation of the cipher.
Algebraic representation converts each constituent Boolean
function of the cipher (and the faults) to a system of nonlin-
ear polynomial equations over G F(2). This system then can
be converted to Conjunctive Normal Form (CNF) and solved
by Boolean Satisfiability (SAT) solvers. The attack is con-
sidered successful if the SAT solver returns the key within
a reasonable time. The solver runs forever if the fault is not
exploitable. Although SAT solving based approach is fairly
generic, it is not fast enough for evaluating each fault. Further,
the attacks are not interpretable. To make certain quantitative
decisions on the fault space of a cipher, one thus require to
make this approach scalable. To improve the scalability, a
machine learning (ML) assisted framework is proposed in
[11]. The ML engine is able to determine whether a SAT
instance is solvable within a reasonable time just from the
structure of the CNF representation. As a result, the fault

76 D.Mukhopadhyay

Table 8.1 Summary of DFA attacks on GIFT. We consider a fault injection attempt a successful attack only if both the evaluation complexity and
remaining keyspace size is less than the size of the actual keyspace

Fault width Round Attack results

Evaluation
complexity

|R| No. faults per
location

Keys extracted Comments

4 24 — — — — No attack found

25, 23 217.53 27.06 1 128 Best attack found

26, 24 26 23.53 1 104 Cannot extract full
key

27, 25 26 23.53 1 72 Cannot extract full
key

8 24 — — — — No attack found

25, 23 217.53 27.06 1 128 Best attack found

26, 24 26 23.53 1 104 Cannot extract full
key

27, 25 26 23.53 1 72 Cannot extract full
key

(a)

(b)

810

Fig. 8.3 Exploitable fault spaces with a PRESENT S-Box; and
b SKINNY S-Box [11]

characterization becomes extremely fast after a certain num-
ber of fault instances are exhaustively characterized with SAT
for training. This brings the ability to characterize a large
sample of faults within a reasonable time. A schematic of this
framework is given in Fig. 8.2b. Several interesting observa-
tions can be from these large characterized fault samples.

To illustrate the importance of this fault characterization
framework, we present an example adapted from [11]. In this
example, the PRESENT block cipher structure is instanti-
ated with two different S-Boxes having similar mathematical
properties. Figure8.3 presents the characterized fault space
for these two instantiations corresponding to a specific fault
location. It can be observed that the percentage of successful
attack instances are significantly different in these two cases,
depending on the value of the injected faults. This observation
leads to the discoveryof certainmathematical properties of the
S-Boxes, which were not previously known to have any effect
on fault attacks (see [11] for further details). Fromanother per-
spective, these two graphs represent the average success rate
of an attacker for a given fault model, which cannot be triv-
ially obtained from ExpFault at its current stage. However,
this ML-based framework cannot provide exact complexity
figures and, more importantly, the attack paths. So both the
frameworks are somewhat complementary.

8.3 Hardware Design of Public-Key
Cryptosystems

Public-key cryptography plays a very important part in a
secure communication network. It ensures confidentiality,
integrity, and authenticity of the information being exchanged
and performs the secure exchange of secret keys for execution
of symmetric-key ciphers. Among the available public-key

8 Hardware Security in India:The Journey so Far 77

Fig. 8.4 Block diagram of the proposed ECC scalar multiplier architecture in G F(2n) [13]

cryptosystems, RSA and Elliptic Curve Cryptography (ECC)
are themost prominent. Themathematical foundation of ECC
is based on the intractability of discrete logarithm problem in
elliptic curves. Compared to RSA, ECC provides more secu-
rity per key bit. However, the computation steps involved in
the execution ofECCaremathematically intensive,making its
software implementation inefficient and unsuitable for many
real-world applications. An alternative approach is to pro-
vide dedicated crypto-accelerator on hardware platforms like
ASIC (Application-Specific Integrated Circuit) and FPGAs
(Field Programmable Gate Arrays) to accelerate ECC scalar
multiplication [12]. The execution of ECC is generally car-
ried out in either G F(2n) or in G F(p). In the SEAL Lab,
we have developed efficient implementations for ECC-based
cryptography for both G F(2n) and G F(p) for FPGA plat-
forms which we have summarized in subsequent sections.

8.3.1 Fast and Efficient Implementation of
GF(2n) ECC Scalar Multiplication on FPGA

The most important operation for execution of ECC is ellip-
tic curve scalar multiplication. A typical execution of ECC
scalar multiplication takes a point on the curve P and a scalar
k as input and produces [k]P as output. In this subsection,
we will discuss our proposed high-speed implementation of
ECC scalar multiplication in G F(2n) [13,14]. The architec-
ture of the proposed implementation is shown in Fig. 8.4. The
entire architecture for executing ECC scalar multiplication
in G F(2163) consumes around 148 registers, 10195 lookup

04872

17

51

58

34

68

58 24

(a) Standard Tiling

058 41 24

17

34

58

(b) Non-standard Tiling

Fig.8.5 Multiplying operands ofwidth 58using asymmetricmultipliers
[15]

78 D.Mukhopadhyay

tables (LUTs), and 3513 logic slices on a Virtex-5 FPGA.
The corresponding latency of the design is only 9.5µs. This
performance escalation is achieved due to multiple architec-
tural optimization techniques that we have incorporated in the
design. Few of them are discussed below:

• Increasing clock frequency with optimal pipelining:
The performance of any hardware implementation is
highly dependent on the critical path of the architecture.
Pipelining is a common approach which is incorporated in
the design to reduce the critical path so that the design can
support high frequency of operation. However, pipelining
also increases clock cycle requirement of the design. It
has been found that blindly applying pipelining often
deteriorates the performance of a design as reduction of
critical path delay is nullified and usually overshadowed
by the increment in the clock cycle requirement. In this
work, we have modeled the delay of different mathe-
matical operations like field adders, field multipliers,
exponentiation modules. These delay values allow us to
partition the critical path in an optimal manner so that the
advantage of the pipelining technique is truly assimilated
in the architecture.

• Reducing clock cycle requirement: Another strategy to
improve the performance of the design is to reduce the
clock cycle requirement of the architecture. To achieve
this, we have first developed efficient and fast imple-
mentation of field multiplier and exponentiation module
in G F(2n). The field multiplier architecture is based on
hybrid Karatsuba multiplication algorithm and the expo-
nentiation module is implemented using Itoh–Tsujii algo-
rithm. The architecture for Itoh–Tsujii algorithm is gen-
erally based on field squarer module. However, for FPGA
platform, the performance of Itoh–Tsujii algorithm can be
improved significantly if it is implemented using field quad
module (computing fourth power of the input). Addition-

ally, we have improved the scheduling of the scalar multi-
plication algorithm by overlapping the mathematical oper-
ations of two consecutive scalar bits.

Wehavevalidated the proposed architecture forECCscalar
multiplication in G F(2233) also. Compared to the existing
implementations, our proposed implementation was fastest
without having any significant area overhead among reported
literature at the time of publishing the work.

8.3.2 Efficient Resource Utilization for ECC
Scalar Multiplication in GF(p)

In this section, we will focus on the ECC scalar multiplica-
tion in G F(p). ECC implementation in G F(p) on FPGA can
be significantly improved by deploying FPGA-based hard-IPs
likeDSP blocks and block RAMs. In this context, we have pro-
posed a generalized non-standard tiling methodology in [15].
The proposed methodology in [15] focuses on the optimum
usage of DSP blocks with the objective of faster field multi-
plications. The multipliers present inside the DSP blocks of
modern FPGAs are asymmetric in nature. They are capable of
computing 24×17 unsignedmultiplication. Due to this asym-
metric multipliers, standard school book method of field mul-
tiplication will be non-optimum. Hence, we have introduced
the nonstandard methodology for field multiplication, which
makes the usage of DSP blocks optimum. An example of
nonstandard tiling is shown in Fig. 8.5. In [15], we have gen-
eralized the notion of nonstandard tiling so that nonstandard
tiling can be applied to multipliers with large operand width,
which is the typical scenario in case of ECC. An illustration
of our proposed methodology is shown in Fig. 8.6.

Using the proposed nonstandard tiling methodology, we
have developed a fast field multiplier which uses the DSP
blocks in an optimal manner. The application of nonstandard

Fig. 8.6 Multiplying operands of
width 89 using asymmetric
multiplier of dimensions 24 and
17 [15]

REDUCED

PROBLEM

M0

M1

M2

M3M4M5M6

M7

M8

M9 M10 M11

M12

M13

M14M15M16

M17

M18 M19

242424

242424 17

17

241717

42 71 17

M20

8 Hardware Security in India:The Journey so Far 79

Fig. 8.7 Nonstandard tiling vs. standard tiling [15]

Table 8.2 Different variant of SBN instruction

Instruction Memory write-back Multiplier reset Key-shift Right-shift

SB Nwmulksrs � x x x

SB Nnwmulksrs x x x x

SB Nnwmulksrs x x � x

SB Nwmulksrs � x x �
SB Nnwmulksrs x � x x

tiling for NIST curves specified for ECC scalar multiplication
in G F(p) and the corresponding DSP block requirement is
shown in Fig. 8.7.

8.3.3 Lightweight Architecture for ECC Scalar
Multiplication in GF(p)

In this work [16], we have proposed a single instruction
approach for implementation of ECC scalar multiplier suit-
able for lightweight applications. More specifically, we have
built an entire ECC scalar multiplier processor by using only
one URISC (Ultimate Reduced Instruction Set Computer)
instruction SBN (subtract and branch if negative). It is well
known that using such URISC instruction, one can execute
any logical or mathematical operation, leading to a Turing
complete computer processor. However, as ECC involves
many computationally intensive field operations, a stand-
alone SBN-processor for ECC scalarmultiplier executionwill
be drastically slow.

To tackle this problem, we have integrated the SBN pro-
cessor with dedicated hard-IPs (Block RAM, DSP Blocks)
of the modern FPGAs to demonstrate an implementation of
immensely lightweight, yet practical ECC architecture [16].
We have proposed four different flags in the processor
architectures which when set, activates different optimization
strategies integrated inside the processor architecture. The
optimized strategies proposed by us are: the option of
switching off memory write back, dedicated right shifter, and
dedicated fieldmultiplier built exclusivelywithDSPblocks. It
must be noted that field multiplication and right shift can also
be executed by repeated execution of SBN instruction, but
that will be extremely slow and inefficient. Hence, we have
developed efficient architectures for these operations using

FPGA-based hard-IPs. The details of the proposed SBN
instruction along with four different flags are shown in
Table8.2. The architecture of the proposed SBN-processor
for ECC scalar multiplication is shown in Fig. 8.8.

For comparing with other existing implementation, we
have implemented NIST P-256 ECC scalar multiplier using
SBN processor on Virtex-5 and Spartan-6 platform. In both
cases, the slice consumption of the design is less than 100.
To the best of our knowledge, this is the first implementation
of ECC which requires less than 100 slices on any FPGA
device family. The stand-alone SBN processor is itself very
lightweight, and the dedicated multiplier core is designed by
judicious use ofDSPs. Additionally, the blockRAMs are used
extensively to implement both data and instruction memory
of SBN-ECC processor. It must be noted that a designer can
choose a budget of slices and block RAMs and can design
the corresponding SBN-ECC processor as per his choice.
Moreover, the timing performance of the SBN-ECC proces-
sor is comparable with the existing implementations. This
may seem to be counterintuitive as the proposed SBN pro-
cessor needs to execute a large number of instructions to
complete one single scalar multiplication. However, it must
be noted that the proposed SBN processor is coupled with a
dedicated field multiplier built using high-performance DSP
blocks. This improves the timing performance of the proposed
architecture significantly.

8.4 PUFs:Design and Usage in IoT Security

The idea behind PUFs is to utilize device-specific random
intrinsic features for identification. Depending on the tech-
nology used for implementation, PUFs can be categorized
into four categories: Optical PUF, Silicon PUF, Coating PUF,

80 D.Mukhopadhyay

D

T
A

A

M
E
M
O
R
Y

Program Counter

 Sub−
tractor

dout port A

we_a

clk reset

resetclk

en_b

+1

5
1

clk reset

Instruc
tion

Memory

addr_a

mul_add

web

addr_b en_a

addr_0

instruction

shift by 1
addr_1

ks

key register

Control Unit
clk

Address

we_a=write enable for port A
en_a=read enable for port A
en_b= read enable for port B
we_b=write enable for port B

ks

5

5

5

5

256

260

dinA

web

 Multiplier
{mul,rs}

260

260

dout port BdinB

2

260

11

11

reset

Fig. 8.8 ECC SBN processor architecture [16]

and Acoustic PUF, out of which Silicon PUFs have gained
much attention. A silicon PUF is a one-way function embed-
ded in an IC which utilizes the uncontrollable and intrinsic
physical characteristics of the IC occurring due to the vari-
ations in the manufacturing process. The output of a PUF
instance, or response is uniquely determined by the input, also
knownas challenge anddevice-specific variations.An applied
challenge and its measured response is generally called a
Challenge–Response Pair or CRP and the relation enforced
between challenges and responses by one particular PUF is
referred to as its CRP behavior. Every PUF instance exhibits a
unique and unpredictable challenge–response behavior that is
hard to characterize physically ormathematically, but is other-
wise easily and reliably evaluated, which makes PUF a good
candidate for various security applications such as random
number generation, key generation, hardware authentication,
etc.

Ever since the advent of PUFs, multiple attempts have
been made to compromise the security of the hosting device
or application by learning the embedded PUF behavior.
Machine Learning attacks, being a noninvasive method, have
been a very popular choice. In such attack scenarios, a rela-
tively small subset of challenges along with their respective
responses is collected by the adversary, attempting to come up
with a model describing the challenge–response behavior of
the PUF, and are commonly known as classical ML Attacks.
An effective countermeasure for this attack is to increase the
modeling complexity of the learning algorithm, which in turn
would require more training data to create a fairly accurate
model. It was later pointed out by Becker in [17] that beside
the challenge– response behavior, reliability of a PUF also
holds essential information. Reliability of a PUF is a measure

to check similarity in response to a particular challenge when
applied multiple times to a particular PUF under different
environmental conditions. On investigating for Arbiter PUF
(APUF), which is an intrinsic delay-based PUF, it is observed
that the delay difference �D for a specific challenge, which
decides the response of APUF is directly proportional to
the unreliability of the corresponding response bit if the
environmental conditions are kept stable. This is due to the
fact that the various sources of noise add an approximately
Gaussian delay Dnoise = norm(μ, σ) to the delay difference
�D. If the delay difference �DPU F for a given challenge
C is very large, it is unlikely that the noise term Dnoise

changes the sign of �D. Hence the response bit remains
the same. However, if the delay difference �DPU F is close
to zero, then it is much likely to change the response bit.
Change in the environmental conditions such as temperature
or supply voltage has a similar or rather a stronger effect than
thermal noise over the reliability of response. Based on this
observation, Becker proposed a reliability-based machine
learning attack in [17] using CMA-ES (Covariance Matrix
Adaptation-Evolution Strategies) algorithm, which selects
a set of models whose reliability vector fits closely to the
actual reliability vector of the PUF to be modeled. In each
round, certain modifications are made to the selected models
and using the fitness criteria, the next generation of PUF
models are selected.

Considering these factors, we at SEAL, IIT Kharagpur,
have designed a MUX-based Arbiter PUF composition
(MPUF) [18], denoted by (n, k)-MPUF, as shown in Fig. 8.9
with the objective of improving modeling robustness and
reliability. As shown in Fig. 8.9, there are n data input
APUFs and k selection input APUFs and the response of

8 Hardware Security in India:The Journey so Far 81

Fig. 8.9 Block diagram of a
MUX PUF circuit [18]

Fig. 8.10 Block diagram of a
Robust MUX PUF (rMPUF)
circuit [18]

(n, k)-MPUF depends on k selection input APUF and one
input data APUF, which is selected by the output of selection
APUFs. This implies that the final response is independent of
remaining (n − 1) APUFs, which results in better reliability.
Along with this, a robust MPUF variant, shown in Fig. 8.10,
is also proposed which aims to reduce the contribution of
selector inputs APUFs on the MPUF CRP space, thereby
reducing the correlation between reliability of MPUF and
selection APUF outputs, thus making it robust against
reliability-based modeling attack. Reduction of contribution
in CRP space implies that an adversary would need more
CRPs to build a high accuracy model which is required in
the training phase of such attacks (Fig. 8.11).

For an (n, k)-rMPUF, the total number of distinct CRPs
required for modeling all selection input APUFs is

N S
k = N S

k +
k−1∑

j=1

(N S
k

2
× 2 j

)
= 2(k−1)N S

k (8.2)

where N S
k denotes number of CRPs required for reliability-

based modeling of a selection input APUF instance in (n, k)-
rMPUF. Thus modeling complexity increases exponentially
with respect to number of selection input APUFs k which
makes rMPUF robust against Becker’s attack.

Moreover, MPUF and its variants have near ideal unifor-
mity and uniqueness values for various values of n, k, and
α, as shown in Table8.3. This work is an attempt to explore
the capabilities of MPUF and its variants across various PUF
performance metrics and to provide a better alternative to
XOR-PUF, which is considered a good choice in PUF-based

82 D.Mukhopadhyay

Table 8.3 Performance metrics (%) of simulated (n, k)-MPUF/cMPUF/rMPUF

PUF n k α� Uniformity
(Avg., Std.)

Uniqueness
(Avg., Std.)

Reliability (Avg., Std.) x†

(n, k)-MPUF
Variant

(k+1)-XOR
APUF

x-XOR APUF

MPUF 64 3 1/2 (50.82, 3.32) (50.04, 1.43) (86.24, 0.63) (77.47, 1.22) (53.60, 0.50) 11

1/20 (50.33, 2.72) (50.02, 0.61) (98.91, 0.05) (98.28, 0.10) (94.62, 0.23)

1/80 (50.33, 2.71) (50.02, 0.61) (99.74, 0.01) (99.59, 0.03) (98.82, 0.05)

4 1/2 (49.57, 2.03) (50.01, 0.61) (83.57, 0.59) (71.99, 1.07) (50.16, 0.09) 20

1/20 (49.80, 1.67) (50.01, 0.32) (98.67, 0.06) (97.82, 0.11) (89.40, 0.35)

1/80 (49.79, 1.66) (50.01, 0.32) (99.69, 0.01) (99.49, 0.02) (97.79, 0.06)

128 3 1/2 (49.68, 2.08) (50.02, 0.64) (86.40, 0.48) (77.83, 0.91) (53.74, 0.40) 11

1/20 (49.79, 1.82) (50.01, 0.39) (98.92, 0.04) (98.31, 0.08) (94.69, 0.15)

1/80 (49.79, 1.81) (50.01, 0.39) (99.74, 0.01) (99.60, 0.02) (98.84, 0.04)

4 1/2 (49.87, 2.24) (50.00, 0.39) (83.61, 0.36) (72.13, 0.74) (50.15, 0.08) 20

1/20 (49.95, 1.73) (50.00, 0.21) (98.68, 0.04) (97.85, 0.08) (89.47, 0.25)

1/80 (49.95, 1.72) (50.00, 0.20) (99.70, 0.01) (99.50, 0.02) (97.80, 0.05)

cMPUF 64 4 1/2 (49.80, 2.27) (49.99, 0.23) (83.76, 0.63) (71.80, 0.89) (52.64, 0.43) 12

1/20 (49.86, 1.77) (50.00, 0.16) (98.69, 0.06) (97.82, 0.08) (94.09, 0.25)

1/80 (49.86, 1.76) (50.00, 0.16) (99.69, 0.01) (99.48, 0.02) (98.71, 0.05)

5 1/2 (50.25, 2.09) (50.00, 0.18) (78.82, 0.70) (64.85, 1.15) (50.13, 0.08) 21

1/20 (50.23, 1.64) (50.00, 0.13) (98.10, 0.08) (96.71, 0.17) (87.09, 0.29)

1/80 (50.23, 1.62) (50.00, 0.13) (99.55, 0.02) (99.22, 0.04) (97.12, 0.08)

128 4 1/2 (49.65, 1.83) (50.00, 0.14) (83.78, 0.43) (71.83, 0.98) (52.66, 0.23) 12

1/20 (49.75, 1.46) (50.00, 0.10) (98.69, 0.04) (97.82, 0.11) (94.12, 0.17)

1/80 (49.74, 1.45) (50.00, 0.10) (99.70, 0.01) (99.49, 0.03) (98.72, 0.04)

5 1/2 (49.89, 1.34) (50.00, 0.11) (78.84, 0.40) (64.85, 0.64) (50.12, 0.08) 21

1/20 (49.90, 1.03) (50.00, 0.10) (98.11, 0.05) (96.73, 0.10) (87.05, 0.20)

1/80 (49.91, 1.02) (50.00, 0.10) (99.55, 0.01) (99.23, 0.03) (97.11, 0.05)

rMPUF 64 3 1/2 (50.01, 4.40) (49.88, 1.02) (85.10, 0.41) (78.67, 0.78) (60.25, 0.45) 15

1/20 (50.04, 3.80) (49.95, 0.69) (98.67, 0.07) (98.02, 0.11) (92.93, 0.17)

1/80 (50.02, 3.81) (49.95, 0.69) (99.68, 0.02) (99.50, 0.04) (98.14, 0.08)

128 3 1/2 (49.60, 2.24) (49.98, 0.62) (85.02, 0.32) (78.74, 0.57) (60.28, 0.35)

1/20 (49.58, 1.98) (49.99, 0.41) (98.66, 0.05) (98.01, 0.10) (92.95, 0.14)

1/80 (49.59, 1.97) (49.99, 0.41) (99.68, 0.02) (99.50, 0.03) (98.13, 0.05)
†x represents the number of APUFs used in the MPUF or rMPUF
�σnoise = ασ , where 0 ≤ α ≤ 1

authentication protocol. Since rMPUF overcomes the limita-
tions of XOR-PUF, this proves to be a much better alternative
to put to practice.

8.4.1 Design of PUF-Based Protocols

One of the major security challenges in IoT framework is
the authentication and key management of potentially bil-
lions of heterogeneous devices deployed in the network. We
try to address this problem and provide a lightweight and
secure solution amalgamating the concepts of PUF, Identity-
Based Encryption (IBE), and key hash function. Conventional
PUF-based protocols are accompanied with the challenge of
storing and securing the secret CRP database at the verifier

end. In order to offload storage requirement from verifier and
to eliminate risk of getting CRP database compromised, we
propose a new mechanism wherein we store just a single key
in the Non-Volatile Memory of verifier for authentication of
all prover nodes under it using a key-ed hash function, thus
reducing the space required drastically. This way it would
be easier to protect a single key instead of securing a whole
CRP database. Additionally instead of using CRP database
directly we generate a new security association information
between prover and verifier that hides the correlation between
the challenge and response of the PUF and can be stored as
public information.

We have used this protocol on a video surveillance camera
and tested its effect in protecting the device against “man-in-
the-middle” and “replay” attacks. Figure8.12a, b presents a

8 Hardware Security in India:The Journey so Far 83

Verifier Verifier

key exchange

Prover . . .Prover

Verifier

. . . Prover ProverProver Prover. . .

.

3. Authentication and

PUF based security for prover− to − prover and prover− to − verifier communication

(Secure Offline Database)

CRPDBs KEYDBs

Security Credential Generator

NVM enabled Verifier

PUF enabled Prover

2. Security Association Generation Process

(Secure and Trusted Environment)

1.Provisioning Process

(Insecure Communication Network)
Security Association Provider

MAPDBs

Fig. 8.11 Hierarchical IoT architecture and the proposed secure communication mechanism [19]

practical attack on a video surveillance camera which is suc-
cessful in the absence of a PUF-based authentication mech-
anism while Fig. 8.12c, d shows the prevention of the same
attack in the presence of our proposed authentication mech-
anism. The attack was conducted on a Logitech HD UVC
camera, which is connected to Intel Edison Board via USB
interface to form an IoT node. An mpg-streamer software
is run on Edison Board to capture video and send it to the
receiver via WiFi, which is then displayed in a web browser
using the IP Address of Edison Board. Using hacking tools,
the attacker can break the video streaming from the IoT node
end and stream pre-captured video from attackers end, hence
compromising security. In the presence of our protocol, when
an attacker tries to de-authenticate a valid IoT source node
and authenticate a malicious node, the receiver will ask for re-
authentication, whichwould require the correct PUF instance,
hence leading to a failure. The power consumption of the cir-
cuit is reported tobe as lowas0.044W,whichmakes it suitable
for the IoT framework.

8.5 Micro-architectural Attacks and
Countermeasures

Micro-architectural features leave a footprint in the processor
which is often captured by side channels. In recent micro-
processors, various architectural components are incorpo-
rated in the system to improve the system performance and

these are emerging as new sources of side-channel leakage.
Recent micro-architectural attacks named Spectre and Melt-
down have taken the world by storm by uncovering two pro-
cessor vulnerabilities. These vulnerabilities were there in the
processor design for decades and uses architectural constructs
such as the branch predictors and speculative execution opti-
mization to realize a practical breach of security.We illustrate
that the cache memory execution footprints when analyzed
with the knowledge of the underlying cache memory struc-
ture and characteristics lead to leaking the secret key bytes
of block ciphers. On the other hand, when asymmetric-key
cryptographic algorithms are implemented and the branch-
predictor hardware is monitored, the ciphers are subjected
to side-channel attack because of their key-dependent input
sequences.We also demonstrate a software-driven fault attack
using row-hammer to induce bit flips in the cryptographic
secret located in DRAM, by repeated charging and discharg-
ing of the memory elements located in the same DRAM bank
as the cryptographic secret. The most prominent attack algo-
rithms conceived in SEALusing themicro-architectural prim-
itives are listed below in more details.

8.5.1 Cache Timing Attack on Clefia

We start with the work presented in [20], which discusses the
performance of cache timing attacks on Clefia. Clefia has a
generalized Feistel structure and unlike other Feistel struc-

84 D.Mukhopadhyay

Fi
g
.8
.1
2

A
tta

ck
on

vi
de
o
su
rv
ei
lla

nc
e
sy
st
em

an
d
pr
ot
ec
tio

n
ag
ai
ns
ti
t:
a
an
d

b
sh
ow

th
e
su
cc
es
sf
ul
at
ta
ck

in
th
e
ab
se
nc
e
of

PU
F-
ba
se
d
au
th
en
tic

at
io
n
m
ec
ha
ni
sm

,w
hi
le

c
an
d

d
sh
ow

th
e
pr
ev
en
tio

n
of

th
e
at
ta
ck

in
th
e
pr
es
en
ce

of
th
e
pr
op

os
ed

PU
F-
ba
se
d
au
th
en
tic

at
io
n
sy
st
em

[1
9]

8 Hardware Security in India:The Journey so Far 85

tures, it has been implemented using small tables. This was
the first attack of its kind to propose a full-scale cache timing
attack on ciphers with small tables. The attack uses the fact
that parallelization and pipelining of memory accesses can
only be performed within a single round of a cipher, and not
across rounds.

Among the several design challenges which are supported
by today’smicroprocessors in order to reduce themiss penalty
themost important are speculative loading, out-of-order load-
ing, prefetching, parallelization, and overlapping. Specula-
tive loading enables data to be loaded into the cache mem-
ory before preceding branching instructions are evaluated
and resolved. Prefetching is performed when the hardware
prefetcher detects a sequence of memory accesses in a spe-
cific order. In out-of-order loading, the processor accesses
memory elements in a sequence which is not strictly spec-
ified by the program. For a block cipher, speculative load-
ing and hardware prefetching has no effect on the execution
time because the key-dependent load operations are random in
nature. Additionally cache misses are usually handled out of
order. In block ciphers like Clefia, outputs from one round are
used in the next, while operations within a round are accessed
independent of each other. This implies that memory accesses
within a round of Clefia can be performed out of order, but
adjacent rounds waits for the previous round to complete and
thus follows a sequence.

The attack, demonstrated as follows, modifies Bernstein’s
cache timing attack [22] with the observation that in the
first round the cache timing profile for the i th byte of the
key ki can be affected only by those plaintexts which access
the same table because accesses to different tables does not
contribute to timing deviations in respective timing profiles.
Cache accesses in tables other than the table used by the key
byte ki causes unrequired deviations and thus increases the
error in the profile for ki . This was illustrated in our work
to generate more accurate timing profiles. The timing mea-
surement was also improved in compared to the measure-
ment techniques there in the literature. Using the rdtsc
instruction for timing measurement is known to have errors
in measurement due to the out-of-order execution in the
pipeline. In our timingmeasurement, thecpuid instruction is
invoked before the rdtsc to flush the pipeline thus reducing
errors [21].

Figure8.14 shows two accesses to the same s-box table
with indices (in0 ⊕ k0) and (in1 ⊕ k1), where in0 and in1

are the inputs and k0 and k1 are the key. Cache hits occur
when (in1 ⊕ k1) fall in the same cache line as (in0 ⊕ k0),
in all other cases cache misses occur. A typical illustration
on the timing profiles of the known and unknown keys are
provided in Fig. 8.13. The profiled cache timing attack has 3

-4
-2
 0
 2
 4
 6
 8

 10

 0 1
6

 3
2

 4
8

 6
4

 8
0

 9
6

 1
12

 1
28

 1
44

 1
60

 1
76

 1
92

 2
08

 2
24

 2
40

 2
56

D
ev

ia
tio

n
fro

m
 A

ve
ra

ge

input byte
(a) Timing Profile for the Unknown key bytes

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1
6

 3
2

 4
8

 6
4

 8
0

 9
6

 1
12

 1
28

 1
44

 1
60

 1
76

 1
92

 2
08

 2
24

 2
40

 2
56

D
ev

ia
tio

n
fro

m
 A

ve
ra

ge

input byte
(b) Timing Profile for the Known key bytes

Fig. 8.13 Timing profiles for all possible values of [21]

Fig. 8.14 Simple S-box Lookup
structure

S S

in0 in1

k1k0

(a) (b)

phases: learning, attack, and analysis phase. During the learn-
ing phase, the adversary uses a known key (or an exact replica
of the attack platform) to build a timing profile for each key
byte. The profile has on the x-axis, all possible values cor-
responding to the plaintext byte p15, and on the y-axis the
average encryption time corresponding to when p15 is fixed
at a certain value and the remaining input bytes varied ran-
domly. Note that Fig. 8.13b shows the deviation from average
encryption time, instead of the actual encryption time. The
timing profile is built with 224 encryptions and called the
template in this phase of the attack. During the attack phase,
the adversary builds a similar timing profile, only this time for
the unknown key byte. Such a profile is shown in Fig. 8.13a.
It can be noted that this profile is very similar to the template
in Fig. 8.13b, except for a shift, which occurs due to the equal

86 D.Mukhopadhyay

Fig. 8.15 Variation of branch
misses from performance
counters with increase in branch
miss from 2-bit predictor
algorithm [23]

 4290

 4300

 4310

 4320

 4330

 4340

 4350

 4360

 470 480 490 500 510 520 530 540 550 560

O
bs

er
ve

d
br

an
ch

 m
is

se
s

fro
m

 P
er

f

Predicted branch misses from 2-bit dynamic predictor

images under different sub-keys (EIS) property of the cipher.
It is the EIS property that results in the leakage of information
about the secret key. During the analysis phase, this shift is
determined using correlation techniques in order to retrieve
the unknown key byte. In a similar manner, timing profiles
constructed for other bytes can be used to determine other
parts of the key. Our findings show that 121 bits of the 128-
bit key can be revealed in 226.64 Clefia encryptions on an Intel
Core 2 Duo machine.

8.5.2 BranchMisprediction Attack

Asymmetric-key cryptographic algorithms when imple-
mented on systems with branch predictors, are subjected
to side-channel attacks exploiting the deterministic branch-
predictor behavior due to their key-dependent input
sequences. In our work [23], we show that branch predictors
can also leak information through the hardware performance
monitors. We construct an iterative attack which target the
key bits of 1024-bit RSA, where in the offline phase, the
system’s underlying branch predictor is approximated by a
theoretical predictor in the literature. Figure8.15 illustrates
that the 2-bit bimodal predictors bear a direct correlation to
the underlying hardware predictor in Intel systems. Subsim-
ulations are performed to classify the message space into
distinct partitions based on the event branch misprediction
and the target key bit value. In online phase, we ascertain
the secret key bit using branch mispredictions obtained
from the hardware performance monitors which reflect the
information of branch miss due to the underlying predictor
hardware. We provide an analysis to justify that the proba-
bility of success to guess the i th bit correctly is equivalent to
the extent of resemblance of theoretical predictor behavior to
the underlying system predictor hardware.

Figure8.16 shows the correct and incorrect separations
for all 4 sets (separated by simulations over two-level adap-
tive predictor) for the randomly chosen 548th bit location of
the target key-stream. Define M1 as the set which does not
cause a miss during multiplication of (i +1)th squaring when
secret bit di = 1. Likewise M2 corresponds to set for a miss.
Figure8.16a plots average branch misses observed from per-
formance counters for each elements in set M1 and M2 (each
set having L = 1000 elements) and the experiment is repeated
over I = 1000 iterations in order to check the consistency of
the output. It is evident from the figure that in most of the
iterations the average branch miss for set M2 is more than the
branchmisses for set M1 (as expected).We define M3 and M4

to be similar sets as M1 and M2 which corresponds to di = 0.
Fig. 8.16b plots average branch misses observed from perfor-
mance counters for each elements in set M3 and M4. But we
observe an incorrect separation as in most of this case, cipher-
texts in set M4 is having lesser branch misses than in set M3

which is incorrect since theoretically it should be the reverse.
Thus from these two figures, the correct exponent can be eas-
ily identified showing correct difference in branch misses.

We also fine-tune this original attack strategy in [24] such
that this alternative strategy can retrieve the secret bits much
more efficiently and requires much lesser number of inputs.
The experimental validations of both the attack strategies are
illustrated on public-key cryptographic algorithms as RSA
and ECC on several Intel platforms show significant success
revealing the secret exponent and scalar value.We also extend
our attack to the RSA-OAEP randomized padding procedure
where we target the decryption phase of the implementation
and the branch miss side-channel information of the entire
decoding procedure can be successfully exploited to reveal
the secret exponent. What make these results more relevant
is the fact that protections which fuzz the timing channels are
not sufficient to thwart these attacks, and present performance
counters as a distinct side channel which attracts attention to

8 Hardware Security in India:The Journey so Far 87

Fig. 8.16 Branch misses from
HPCs on square and multiply
correctly identifies secret bit
di = 1, ciphertext set partitioned
by simulated misses of two-level
adaptive predictor [23]

 4630

 4632

 4634

 4636

 4638

 4640

 4642

 4644

 4646

 4648

 0 100 200 300 400 500 600 700Av
g.

 B
ra

nc
h

m
is

se
s

fro
m

 P
er

fo
rm

an
ce

C
ou

nt
er

s

Iterations

M1 -no simulated miss
M2 -misprediction

(a) Correct Assumption di = 1

 4630

 4632

 4634

 4636

 4638

 4640

 4642

 4644

 4646

 4648

 0 100 200 300 400 500 600 700

Av
g.

 B
ra

nc
h

m
is

se
s

fro
m

 P
er

fo
rm

an
ce

C
ou

nt
er

s

Iterations

M3 -no simulated miss
M4 -misprediction

(b) Incorrect Assumption di = 0

further systematic research to develop systems that are inher-
ently secure.

8.5.3 Software-Driven Fault Attack Using
Row-Hammer

Row-hammer is a term coined for a disturbance in DRAM
resulting in bit flips due to repeated charging and discharging
of DRAM rows in a particular bank. This process is hard-
ware dependent and highly probabilistic but repeatable phe-
nomenon, thus localizing and inducing fault in a specific loca-
tion of memory is a hard problem till date. Figure8.17 shows
the DRAM architecture and row-hammer is flipping of bits in
the DRAM cells neighboring row of heavily accessed DRAM
rows.

This work brings into practise a methodology to combine
timing analysis to perform row-hammering in a controlled
manner to create bit flips in cryptographic keys which are
stored in memory [25]. The attack would require only user-
level privilege for Linux kernel versions before 4.0 and is

unaware of the memory location of the key. An intelligent
combination of timing Prime + Probe attack and row-buffer
collision is shown to induce bit flip faults in a 1024-bit RSA
key on modern processors using realistic number of hammer-
ing attempts. This demonstrates the feasibility of fault anal-
ysis of ciphers using purely software means on commercial
x86 architectures, which to the best of our knowledge has not
been reported earlier.

We combine knowledge of reverse engineering of LLC
slice andDRAMaddressingwith timing side channel to deter-
mine the bank in which secret resides. The overall idea of the
attack involves three steps. The attacker successfully identi-
fies an eviction set by following the series of steps as illus-
trated in Fig. 8.18. The eviction set comprises a set of data
elements which map to the same cache set and slice as that
of the secret exponent and we identify such set by timing
analysis using Prime + Probe methodology. This set essen-
tially behaves as an alternative to clflush statement of x86
instruction set.

The attacker nowobserves timingmeasurements toDRAM
access by following the series of steps inFig. 8.19 to determine

88 D.Mukhopadhyay

(a) A typical DRAM card

(b) DRAM Architecture

Fig. 8.17 Typical DRAM hierarchy

the DRAM bank in which the secret resides in. The variation
in timing is observed due to the row-buffer conflict forced by
the adversary.

This leads to repeated opening and closing of rows in
DRAM banks inducing bit flips by repeated row activation
in the particular bank where the secret is residing. We pre-
cisely trigger row-hammer to address in the same bank as the
secret. This increases probability of bit flip in the secret expo-
nent and the novelty of our work is that we provide series of
steps to improve the controllability of fault induction.

A statistic over observations of bit flips in respective banks
is reported in Fig. 8.20. The bar graph shows the number of
bit flip instances we were able to observe for respective banks
of a single Dual In-line Memory Module (DIMM).

8.5.4 Detection of These Attacks

There are various state-of-the-art countermeasures in the liter-
ature to prevent different types of micro-architectural attacks.
Some of these countermeasures are implemented by signifi-
cantly changing the hardware [26], obscuring timing informa-
tion [27], etc., thereby incurring the cost of extra overhead for
their implementations. The severe overhead cost cuts down
the performance of the system and increases the energy con-
sumption of the device manifold. A well-established fact is
that modern computers will exhibit information leakages, and
we need to develop our own defence amid the presence of
these leakage avenues, and that too with a low implementa-
tion overhead.

Micro-architectural side-channel attacks primarily focus
on the execution of the target encryption algorithm and its
impact on the behavior of shared hardware resources like
CPU-cache, branch-predictor hardware, Dynamic Random
Access Memory (DRAM), etc. These attacks on the encryp-
tion algorithms manifest the effect of these shared hardware
resources in the presence of a concurrently running spy pro-
cess, which in turn continually monitors the timing or the
hardware performance counter statistics of the target secret
execution. As a result of these continuous monitoring, the
spy processes leave a footprint on the hardware resources.
Our objective is to devise a detection module which stud-
ies the behavior of these attack algorithms using the low-
level hardware events through HPCs. In the presence of these
attacks, abnormalities in the number of performance counter
events are abrupt in comparison to the normal system exe-
cution. In Fig. 8.21, we can observe the distributions of dif-
ferent hardware resources in the presence of various micro-
architectural attacks and it is clear from the figure that the
micro-architectural attacks work as an anomaly in compari-
son to the normal behavior of a target system.

Our first approach [28] is to generate a significant volume
of low-level data by profiling the hardware performance coun-
ters at a granularmeasurement.We can observe fromFig. 8.21
that attack behaviors are different from the normal process
behavior for specific hardware events based on their types.
Thus we analyze the cause of abnormality, if any, for the run-
ning processes and categorize them into appropriate classes
using a pretrained classifier. The result of this phase would
help us to comprehend the type of the possible attack process,
i.e., whether a cache-based attack or a branch-based attack
and so on. We develop a basic template for the target sys-
tem that we intend to protect against the micro-architectural
side-channel attacks, and the process of obtaining informa-
tion from the system and training a classifier is shown in
Fig. 8.22a. However, certifying that a process is actually an
attack process and not any high computation process needs
further analysis with the performance counter values. The
existence of false positives, having an approximately equal

8 Hardware Security in India:The Journey so Far 89

3. Computes the set,slice addressing
from its physical addresses.

5. Sends a selected input to
the Decryption Engine

6. Decryption runs with input
from the requesting process

7. Receives decrypted message
from Decryption Engine

8. Spy accesses the seleced elements again
and measures their access times.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

b. Primes LLC, by accessing selected elements.

Time

4. For the target set t,
a. Select m elements in distinct cachelines
which maps to set t for k slices.

Fig. 8.18 Steps to determine cache sets shared by secret exponent [25]

effect on the performance counter values as that of the tar-
geted attack processes, may confuse the classification phase.
Herewe introduce the second step of our detectionmechanism
which removes these false positives by correlating respective
hardware events (i.e., cache events for cache-based attacks,
branch events for branch-based attacks, etc.) with the secret
key of encryption. A true side-channel attack has the highest
correlation with the secret key as it needs to repeatedly access
the encryption algorithm for retrieving the secret key using
statistical evaluations. In order to measure the correlation of
the execution trace of an unknown process with the secret
key, we collect the HPC values from the target system exe-
cuting the target encryption algorithm for different plaintexts
and a fixed secret key. The data collection process is shown in
Fig. 8.22b. We store the collected trace for later considering
it to measure correlation with an unknown process during the
online phase.

In the online phase, we continuously monitor the target
system executing the target encryption algorithm and exam-
ine whether the system is in a safe state or under the threat
of any side-channel attack. The online phase utilizes the clas-
sifier and the stored traces prepared during the offline phase.
The procedure of the online mode of operation is shown in
Fig. 8.23. Based on the category of anomaly obtained from
the classifier, the hardware trace of the encryption algorithm
is chosen from the stored traces related to the appropriate per-
formance counter events. The correlation value of this trace

with the trace obtained by monitoring the anomalous process
is then calculated using the Dynamic Time Warping (DTW)
method. A low correlation value signifies that the system is
in a safe state and the anomalous process is just a high com-
putation program which has no relation to the secret key of
encryption, whereas, a high correlation value determines the
existence of a possible side-channel attack in the background.

Figure8.24a shows different nonlinear decision bound-
aries learned by a Random Forest Classifier from the data
obtained bymonitoring the hardware events during the offline
phase. We can observe that various anomaly models can be
well separated from each other based on the acquired data.
Figure8.24b shows the detection of Cache Timing Attack on
Clefia [29] using the DTW correlation. We can observe from
the figure that the attack process has low DTW value with
the stored trace in comparison to a benign Firefox applica-
tion, thereby removing the false positives obtained from the
classifier.

8.6 Hardware Security to Accelerate Cloud
Cryptosystems

Recent progress of cloud-based computation and storage
infrastructure have fueled the demand for stronger security
for users’ data on the cloud. Traditional encryption schemes
allow encrypting data to prevent unauthorized access from

90 D.Mukhopadhyay

3. Computes the set,slice addressing
from its physical addresses.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

Time

4. Computes the Channel, Rank, Bank
indices from physical addresses

8. Sends a selected input to
the Decryption Engine

7. Primes LLC, by accessing elements in C.

from Decryption Engine
10. Receives decrypted message

9. Decryption runs with input
from the requesting process

10. Flush the accessed element from cache

9. Access randomly selected data which maps to

5. Fill Set C with elements mapping to
same LLC set and slice as the secret
6. For each bank b in DRAM,

target bank b and time the access.

using clf lush.

Fig. 8.19 Steps to determine the DRAM bank in which secret maps [25]

 0

 50

 100

 150

 200

 250

-2 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 b

it
fli

ps

Bank Index

Fig. 8.20 Number of bit flips observed in all banks of a single DIMM
[25]

adversaries. However, these schemes fail to provide any
extended functionalities to perform particular operations or
to evaluate functions over the encrypted data. Searching
over encrypted data, performing arithmetic computations over
encrypted data, and pattern matching are some of the promi-
nent operations which a cloud infrastructure should provide,
but implementing these for an encrypted database, generally
in encrypted domain, is a challenging problem in crypto-
graphic research. Currently encrypted domain computation
has turned up to be an attractive topic for researchers, devel-
opment of new generation of functional encryption schemes
andhomomorphic encryption schemes allow to implement the
aforementioned functionalities or operations over encrypted
data. Among these, Searchable Symmetric Encryption (SSE)
schemes are of special interest, giving the users the ability

to search for keyword(s) over encrypted data with restricted
access. Traditional SSE schemes employ complex public key
based constructs to facilitate the search functionality, andmost
of those are limited to single keyword search only. This creates
a bottleneck for practical implementations preventing deploy-
ment at a large scale; primarily for the slower public key based
constructions which curtail the throughput of the implemen-
tations.

We developed a highly efficient and scalable SSE
scheme [30] based on the symmetric key primitives only,
with support for multiple conjunctive keyword search. This
scheme, referred to as the Hidden Cross Tags (HXT) protocol
offers multi-fold improvement over the existing SSE schemes
and outperforms other practical implementations which has
been validated by software implementation. This scheme
incorporates a novel symmetric key based Hidden Vector
Encryption (HVE) scheme in the construction. Originally, the
Hidden Vector Encryption schemes employ complex Bilinear
Map based constructions, which are slow and inefficient,
rendering the overall scheme unsuitable for practical use.
This Symmetric key Hidden Vector Encryption (SHVE)
provides an efficient and more secure symmetric key based
approach to reduce the complexity of traditional HVE, thus
allowing us to develop a completely symmetric key based
SSE. To best of our knowledge, this is the first SSE scheme
with complete symmetric key-based construction.

The HXT protocol constitutes of two top-level algorithms,
the SE .E DBSetup() and the SE .E DBSearch(), with
multiple server–client interactions taking place at different

8 Hardware Security in India:The Journey so Far 91

Fig. 8.21 Distinct distributions of a Cache-references for regular observations and cache-based anomaly, b Branch instructions for regular
observations and branch-based anomaly, and c Memory-loads for regular observations and DRAM-based anomaly

phases. The SE .E DBSetup() algorithm is responsible for
constructing the encrypted database, setting up the system
parameters and generating the necessary keys for the protocol.
This setup algorithm takes the security parameter λ and the
document database DB as input and generates the encrypted
database E DB and a master key mk. E DB contains two
separate encrypted databases E DB1 and E DB2, and the
master key mk is a collection of several other keys used in
the construction. The SE .E DBSearch() algorithm takes
the master key mk, query string q = w1, w2, w3, . . . , wn and
E DB as input and returns the list (encrypted) of document
identifiers for the query q.

Additionally, HXT scheme has two other modules, the
T Set and the SH V E . The algorithms associated with T Set
are described below.

• T Set.Setup(T): This algorithm is responsible for the gen-
eration of the actual encrypted database T Set from key-
word database T , and generation of the corresponding key
KT .

• T Set.GetT ag(KT , w): This algorithm generates a tag
stag for a keyword w using the corresponding key KT .

• T Set.Retrieve(T Set, stag): This algorithm retrieves the
document identifier list t corresponding to the keyword w
associated with stag.

The other major sub-module SHVE has been dis-
cussed later in detail. The algorithms belonging to the
sub-modules T Set and SH V E are used in different phases
of SE .E DBSetup() and SE .E DBSearch(). An illustration
depicting the server–client interaction at different phases of
SSE and the respective algorithms is given in Fig. 8.25. For
the complete description of the algorithms SE .E DBSetup()

and SE .E DBSearch(), the readers may refer to the original
paper.

The drastic performance improvement ofHXT is primarily
due to the SHVE construction. The complete description of
SHVE construction is provided below.

Denote a finite set of attributes as � and define �∗ =
� ∪ {∗} where ∗ is a wildcard symbol. Define a family of
predicates as PSH V E : � −→ {0, 1}, where for a particu-
lar v = {v1, v2, v3, . . . , vm}, we have a predicate P SH V E

v ∈
PSH V E satisfying

92 D.Mukhopadhyay

(a) (b)

Fig.8.22 Offline Phase: a Collection of data for regular behavior of the target system as well as for different types of micro-architecture intensive
(like cache-based, branch-based, RAM-based, etc.) programs executed in the background of the target system. b Data collection and building a
template for a fixed secret key considering target encryption algorithm (like Clefia, AES, RSA, etc.) for the target system

Fig.8.23 Online Phase: Collection of data from the target system executing the target encryption algorithm and determining whether the system
is in Safe State or Under Attack using the Classification Module and Trace Database obtained from the offline phase

8 Hardware Security in India:The Journey so Far 93

(a)

(b)

Fig. 8.24 a Decision boundaries random forest classifier b DTW distances for both cache timing attack on clefia (attack process) and firefox
application (anomaly process)

P SH V E
v (x) =

{
1 ∀1 ≤ i ≤ m (vi = xi or vi = ∗),

0 otherwise

and x = {x1, x2, x3, . . . , xm} ∈ �m .
Two cryptographic primitives, Pseudorandom

Function (PRF) and a IND-CPA secure symmetric
key encryption scheme Sym.Enc are used in this
construction. The PRF is defined as the mapping
F0 : {0, 1}λ × {0, 1}λ+log λ → {0, 1}λ+log λ and the
symmetric key encryption has both the key space and the
plaintext space as {0, 1}λ+log λ. The SHVE has the following
algorithmic procedures:

• SH V E .Setup(1λ): Security parameter λ is the input for
this algorithm and the algorithm samples the master secret
key msk ←− {0, 1}λ. This also defines the payload mes-
sage space as M = {T rue} and outputs (msk, M)

• SH V E .K eyGen(msk, v ∈ �m∗): This function takesmsk
and a predicate vector v = {v1, v2, v3, . . . , vm} as input.
Denote S = {l j ∈ [m]|vl j
= ∗} and the locations are l1 <

l2 < l3 · · · < l|S|. Randomly sample k1, k2, k3, . . . , k|S|
from {0, 1}λ+log λ and perform the following steps.

d0 = ⊕ j∈[|S|](F0(msk, vl j ||l j) ⊕ k j)

d1 = Sym.Enc(⊕ j∈[|S|]k j , 0
λ+log λ)

Finally, the algorithm outputs s = (d0, d1, S).
• SH V E .Enc(msk, μ = ‘True’, x ∈ �m): This algorithm

takes msk, an input message μ and an index vector x =
(x0, x1, x2, . . . , xm) as input and sets the following.

cl = F0(msk, xl ||l) for each l ∈ [m]

next it outputs the ciphertext c = ({cl}l∈[m])

Server Client

t
xtoken

Uj

tokenc

Generate StagRecover t
Compute xtokenCompute xtag and Uj
Generate tokencGet response stag

TSet.GetTagTSet.Retrieve
HVE.KeyGenHVE.Query

Sym.Enc
Sym.Dec

Fig. 8.25 Server–client interaction in HXT

• SH V E .Query(s, c): Previously computed s and c are
passed as input to this algorithm. The algorithm computes

k′ = (⊕ j∈[|S|]cl) ⊕ d0

and then

μ′ = Sym.Dec(k′, d1)

If μ′ = 0λ+log λ, it outputs “True” (the message passed to
the input) else it outputs failure symbol ⊥.

The performance of SHVE was evaluated in a software-
based prototype implementation. From Table8.4 it is evi-
dent that SHVE outperforms other bilinear map based HVE
schemes.

The prototype implementation of HXT was evaluated on
a cluster of high-performance workstations. Evaluated with
three standard databases from Wikimedia Downloads of size
2.93GB, 8.92GB, and 60.2GB,HXToutperforms other com-

94 D.Mukhopadhyay

Table 8.4 Performance comparison of SHVE with a bilinear map based HVE (IP) [31]

Scheme KeyGen(s) Enc(s) Query(s)

IP 51.154 50.901 119.219

SHVE 0.172 0.162 0.004

Software Controller

FPGA FPGA FPGA
FPGA FPGA FPGA

Mem Ctrl

Temp
Storage

Interconnect

Mem Ctrl

EDB1

EDB2
Secure

Key
Storage

Data Buffer

Parallel AES Blocks Parallel SHA512 Blocks

XOR Circuits Append Circuits

Counters

Internal Control

Fig. 8.26 A general architecture for parallel implementation of SSE [31]

petitive schemes by a great margin establishing superiority in
this regard.

Software-based implementations provide excellent flexi-
bility in the development of the implementations for SSE,
modern-day advanced multicore processors and GPUs can
speed-up an architecture for SSE to a great extent. However,
a dedicated hardware-based architecture can utilize base-level
customization specifically targeted for the SSE scheme. Opti-
mized at basic block level, these hardware-accelerated imple-
mentations have the ability to perform exceptionally well
compared to the software-based implementations. We pro-
posed a dedicated parallelized hardware-based solution to
accelerate the SSE scheme [31]. The HXT protocol incor-
porates several components which operate independently in
a loop. Therefore, multiple scopes for parallelization are
present in the architecture. With a meticulously designed par-
allelized architecture, the throughput of the system can be
increased to a great extent. In our solution, we designed the

architecture based on a hardware–software co-design envi-
ronment, where the computation-intensive parallelized oper-
ations are accelerated by hardware, and the less computation-
intensive operations are moved to the software part. The over-
all system is controlled by a software-based controller appli-
cation running on a workstation.

Reconfigurable hardware is an attractive avenue for
designers providing accelerated computation for hardware-
based implementations. Flexibility, reprogrammability, and
abundance of logic resources in modern reconfigurable
hardware or FPGAs allow to design, test, and verify a
customized design very quickly and provide the users with
the ability to update and reevaluate the design within a short
period. Evidently, our design is targeted for FPGA-based
hardware acceleration. The computational blocks or the
cryptographic primitives like AES block cipher, SHA512
hash function are the core part of each of the parallelized
instances, as depicted in Fig. 8.26. Interfaced with a high-

8 Hardware Security in India:The Journey so Far 95

speed data interconnect and individual node’s local controller
interface, these modules operate concurrently to speed-up the
computation at the base level. Several lightweight designs
of the standard cryptographic primitives are available in the
literature, capable of delivering high throughput. Multiple
instantiations of these blocks do not overload the FPGA, but
increases the processing rate to a great extent. Comparing
the state-of-the-art software and hardware implementations
of the modules, we observe that porting AES to a dedicated
hardware gains 31 times speed-up. Similarly, we observe
22 times and 13 times speed-up for SHA512 hash and
elliptic curve Curve25519 point multiplication operation on
reconfigurable hardware-based design.

Based on this comparison, preliminary analysis indicates
that 15 times latency reduction is possible for the preprocess-
ing phase and 20 times latency reduction is possible for the
query–response phase in the HXT scheme compared to the
parallelized software implementation. Therefore, it is evident
that developing a dedicated parallelized hardware accelera-
tor for SSE is crucial for its practical deployment in real-
life applications. A general implementation framework for
SSE with sound cryptographic techniques, faster implemen-
tations with hardware acceleration are essential for SSE and
cloud security. This SSE implementationprovides a soundand
secure design that can be adopted by concerned organizations,
and other establishments to build a secure infrastructure for
clients, consumers, and citizens of states.

8.7 Conclusions

The article is a summary of the research activities in the
topic of Hardware Security performed in our country. We
have focused on activities done in the SEAL Lab, Depart-
ment of Computer Science and Engineering, IIT Kharag-
pur. The paper deals with several topics in hardware secu-
rity, starting from hardware design of public-key algorithms,
to Side-Channel Analysis in the form of power and micro-
architectural attacks. PUFswere discussed as promising prim-
itives for IoT security. Finally, we discussed about lightweight
search techniques on encrypted databases, and the potential
to develop hardware accelerators for such operations.

Acknowledgements The author would like to thank, in particular, his
former and present Masters and Ph.D students at the SEAL Lab, IIT
Kharagpur for the various collaborations and findings. In particular, he
would like to thank Arnab Bag, Durba Chatterjee, Debapriya Basu Roy,
Manaar Alam, Sarani Bhattacharya, Sayandeep Saha, Sikhar Patranabis,
Urbi Chatterjee for several discussions during the writing of this article.

References

1. Kocher P, Jaffe J, Jon B Differential power analysis. Advances in
cryptology CRYPTO99. Springer, pp 388–397 (1999)

2. Boneh D, Millo R, Lipton R (1997) On the importance of checking
cryptographic protocols for faults. Advances in cryptology EURO-
CRYPT97. Springer, pp 37–51

3. Biham E, Shamir A (1997) Differential fault analysis of secret
key cryptosystems. In: B.S.K. Jr. (ed) Advances in cryptology–
CRYPTO 1997. Lecture Notes in Computer Science, vol 1294.
Springer, pp 513–525

4. Hankerson D, Menezes AJ, Vanstone S (2006) Guide to elliptic
curve cryptography. Springer Science & Business Media

5. Christopher, ST (2010) Tarnovsky hacks infineon’s ’unhackable’
chip, we prepare for false-advertising litigation. www.Engadget.
com

6. Sparks ER (2007) A security assessment of trusted platform mod-
ules. Technical report, Department of Computer Science Dartmouth
College. http://www.cs.dartmouth.edu/~pkilab/sparks/

7. Pappu RS, Ravikanth PS, Recht B, Taylor J, Gershenfeld N (2002)
Physical one-way functions. Science 297:2026–2030

8. Tunstall M, Mukhopadhyay D, Ali S (2011) Differential fault anal-
ysis of the advanced encryption standard using a single fault. In:
Information security theory and practice.security and privacy of
mobile devices in wireless communication, Springer pp 224–233

9. Tupsamudre H, Bisht S, Mukhopadhyay D (2014) Destroying
fault invariant with randomization. In: Cryptographic hardware and
embedded systems–CHES 2014, Springer, pp 93–111

10. Saha S, Mukhopadhyay D, Dasgupta P (2018) ExpFault: an auto-
mated framework for exploitable fault characterization in block
ciphers. IACR Trans Cryptogr Hardw Embed Syst 2018(2):242–
276

11. Saha S, Jap D, Patranabis S, Mukhopadhyay D, Bhasin S, Das-
gupta P (2018) Automatic characterization of exploitable faults: A
machine learning approach. IEEE Trans Inf Forensics Secur 1 (to
appear). https://doi.org/10.1109/TIFS.2018.2868245

12. Güneysu T, Paar C (2008) Ultra high performance ecc over nist
primes on commercial fpgas. In: International workshop on crypto-
graphic hardware and embedded systems, Springer, pp 62–78

13. Rebeiro C, Roy SS, Mukhopadhyay D (2012) Pushing the limits of
high-speed gf (2 m) elliptic curve scalar multiplication on fpgas. In:
International workshop on cryptographic hardware and embedded
systems, Springer, pp 494–511

14. Roy SS, Rebeiro C,Mukhopadhyay D (2013) Theoretical modeling
of elliptic curve scalar multiplier on lut-based fpgas for area and
speed. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(5):901–
909

15. Roy DB, Mukhopadhyay D, Izumi M, Takahashi J (2014) Tile
before multiplication: an efficient strategy to optimize DSP multi-
plier for accelerating prime field ecc for nist curves. In: Proceedings
of the 51st annual design automation conference, ACM, pp 1–6

16. Roy DB, Das P, Mukhopadhyay D (2015) Ecc on your finger-
tips: a single instruction approach for lightweight ecc design in gf
(p). In: International conference on selected areas in cryptography,
Springer, pp 161–177

17. Becker GT (2015) The gap between promise and reality: on the
insecurity of xor arbiter pufs. In: International workshop on cryp-
tographic hardware and embedded systems, Springer pp 535–555

18. Sahoo DP, Mukhopadhyay D, Chakraborty RS, Nguyen PH (2018)
A multiplexer-based arbiter puf composition with enhanced relia-
bility and security. IEEE Trans Comput 67(3):403–417

19. Chatterjee U, Govindan V, Sadhukhan R, Mukhopadhyay D,
Chakraborty RS, Mahata D, PrabhuMM (2018) Building puf based
authentication and key exchange protocol for iot without explicit
crps in verifier database. IEEE Trans Dependable Secur Comput 1
10.1109/TDSC.2018.2832201

20. Rebeiro C, Mukhopadhyay D (2008) High speed compact elliptic
curve cryptoprocessor for fpga platforms. In: International confer-
ence on cryptology in India, Springer, pp 376–388

www.Engadget.com
www.Engadget.com
http://www.cs.dartmouth.edu/~pkilab/sparks/
https://doi.org/10.1109/TIFS.2018.2868245

96 D.Mukhopadhyay

21. Rebeiro C, Mukhopadhyay D, Bhattacharya S (2014) Timing chan-
nels in cryptography: a micro-architectural perspective. Springer

22. Bernstein DJ (2005) Cache-timing attacks on aes. Technical report
23. Bhattacharya S, Mukhopadhyay D (2015) Who watches the watch-

men?: utilizing performance monitors for compromising keys of
RSA on intel platforms. In: CHES. Lecture Notes in Computer Sci-
ence, vol 9293. Springer, pp 248–266

24. Bhattacharya S, Mukhopadhyay D (2018) Utilizing performance
counters for compromising public key ciphers. ACM Trans Priv
Secur 21(1) 5:1–5:31

25. Bhattacharya S, Mukhopadhyay D (2016) Curious case of rowham-
mer: flipping secret exponent bits using timing analysis. In:
CHES. Lecture Notes in Computer Science, vol 9813. Springer,
pp 602–624

26. Liu F, Lee RB (2014) Random fill cache architecture. In: Proceed-
ings of the 47th annual IEEE/ACM international symposium on
microarchitecture, IEEE Computer Society, pp 203–215

27. Martin R, Demme J, Sethumadhavan S (2012) Timewarp: rethink-
ing timekeeping and performance monitoring mechanisms to mit-
igate side-channel attacks. ACM SIGARCH Comput Arch News
40(3):118–129

28. Alam M, Bhattacharya S, Mukhopadhyay D, Bhattacharya
S (2017) Performance counters to rescue: a machine learn-
ing based safeguard against micro-architectural side-channel-
attacks

29. Rebeiro C, Mukhopadhyay D, Takahashi J, Fukunaga T (2009)
Cache timing attacks on clefia. In: International conference on cryp-
tology in India, Springer, pp 104–118

30. Lai S, Patranabis S, Sakzad A, Liu J, Mukhopadhyay D, Ste-
infeld R, Sun S, Liu D (2018) Result pattern hiding search-
able encryption for conjunctive queries. In: Proceedings of the
2018 ACM conference on computer and communications security
(To Appear)

31. Bag A, Patranabis S, Tribhuvan L, Mukhopadhyay D (2018)
POSTER: hardware acceleration for searchable encryption. In: Pro-
ceedings of the 2018 ACM conference on computer and communi-
cations security (To Appear)

	8 Hardware Security in India: The Journey so Far
	8.1 Introduction
	8.2 Fault Analysis of Cryptosystems
	8.2.1 Attacks and Countermeasures
	8.2.2 Automated Detection of Fault Attacks

	8.3 Hardware Design of Public-Key Cryptosystems
	8.3.1 Fast and Efficient Implementation of GF(2n) ECC Scalar Multiplication on FPGA
	8.3.2 Efficient Resource Utilization for ECC Scalar Multiplication in GF(p)
	8.3.3 Lightweight Architecture for ECC Scalar Multiplication in GF(p)

	8.4 PUFs: Design and Usage in IoT Security
	8.4.1 Design of PUF-Based Protocols

	8.5 Micro-architectural Attacks and Countermeasures
	8.5.1 Cache Timing Attack on Clefia
	8.5.2 Branch Misprediction Attack
	8.5.3 Software-Driven Fault Attack Using Row-Hammer
	8.5.4 Detection of These Attacks

	8.6 Hardware Security to Accelerate Cloud Cryptosystems
	8.7 Conclusions
	References

