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Abstract
Non-coding RNA (ncRNA) is a class of RNAs 
that are not act as translational protein tem-
plates. They are involved in the regulation of 
gene transcription, RNA maturation and pro-
tein translation, participating in a variety of 
physiological and physiological processes. 
NcRNAs have important functions, and are 
recently one of the hotspots in biomedical 
research. Cardiac hypertrophy is classified 
into physiological cardiac hypertrophy and 
pathological cardiac hypertrophy. Different  
from pathological cardiac hypertrophy, physi-
ological cardiac hypertrophy usually devel-
oped during exercise, pregnancy, normal 
postnatal growth, accompanied with preserva-
tion or improvement of systolic function, 
while no cardiac fibrosis. In this chapter, we 
will briefly introduce the definition, character-
istics, and functions of ncRNAs, including 
miRNAs, lncRNAs, and circRNAs, as well as 
a summary of the existing bioinformatics 
online databases which commonly used in the 

study of ncRNAs. Specially, this chapter will 
be focused on the characteristics and the 
underlying mechanisms about physiological 
cardiac hypertrophy. Furthermore, the regula-
tory mechanism of ncRNAs in physiological 
hypertrophy and the latest research progress 
will be summarized. Taken together, exploring 
physiologic cardiac hypertrophy-specific 
ncRNAs might be a unique research perspec-
tive that provides new point of view for inter-
ventions in heart failure and other 
cardiovascular diseases.

Keywords
Physiological cardiac hypertrophy · NcRNAs 
· MiRNAs · LncRNAs · CircRNAs

1  Introduction

Non-coding RNAs (ncRNAs) are a class of RNAs 
that are not act as a template for translation pro-
teins. They are involved in the regulation of 
mRNA translation, RNA splicing, DNA replica-
tion repair, gene transcription, development, and 
cell differentiation [1, 2]. Besides, it is closely 
related to the occurrence, development, progres-
sion, treatment, and diagnosis of various diseases 
[3–5]. NcRNAs can be divided into two broad 
categories depending on their biological functions: 
house keeping non-coding RNAs and regulatory 
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non-coding RNAs. Among them, house keeping 
non-coding RNAs include ribosomal RNAs 
(rRNAs), transfer RNAs (tRNAs), small nuclear 
RNAs (snRNAs), and small nucleolar RNAs 
(snoRNAs). Non-coding RNAs with regulatory 
effects can be divided into two subclasses (short 
non-coding RNAs and long non-coding RNAs) 
according to the length of the transcription prod-
uct. Short non-coding RNAs include piRNAs, 
microRNAs (miRNAs, miRs), siRNAs, and 
among them, miRNAs are the most widely stud-
ied. Long non-coding RNA (lncRNA) refers to a 
class of non-coding RNAs that lack an >100 
amino acids open reading frame and larger than 
200 nucleotides, and their structure and function 
are diverse and complex [3]. In addition, linear 
products (miRNAs, lncRNAs) and circular RNA 
(circRNAs) can be classified according to the lin-
earity or circularity of the transcription product. 
A large number of non-coding RNAs are detected 
in tissues and body fluids. In the cardiovascular 
system, ncRNAs are also key regulators involved 
in regulation of cardiac-related gene expression, 
and significantly affecting cardiac homeostasis 
maintenance and heart function [6–10].

Cardiac hypertrophy is classified as physio-
logical cardiac hypertrophy and pathological car-
diac hypertrophy [11]. Pathological cardiac 
hypertrophy is an injury response that occurs 
when the heart is overloaded, mainly due to 
increased myocardial cell volume, interstitial and 
perivascular fibrosis, loss of cardiomyocytes, 
increased collagen, and myofibroblasts activa-
tion. Eventually lead to myocardial structure 
disorder, reduced contractility, myocardial con-
traction and diastolic dysfunction. Pathological 
cardiac hypertrophy is considered to be an inde-
pendent risk factor for increased morbidity and 
mortality of cardiovascular disease [12]. Different 
from pathological cardiac hypertrophy, physio-
logical cardiac hypertrophy does not cause path-
ological changes such as loss of cardiomyocytes, 
decline of cardiac function, and aggravation of 
cardiac fibrosis [13, 14]. On the contrary, physi-
ological cardiac hypertrophy is a protective 
response, which refers to the heart under the 
action of various physiological factors, such as 
regular exercise training and pregnancy [15]. 

During the progression of physiological hyper-
trophy, the area of cadiomyocytes, the volume of 
the heart, and the weight of the heart are increas-
ing. In the meantime, the contractility function of 
heart also improved, however, there was no pro-
cess of fibrosis. Previous studies have shown that 
physiological cardiac hypertrophy factors are 
resistant to persistent pathological stimuli, can 
inhibit ventricular remodeling and ameliorate 
heart failure [16–18]. Therefore, exploring the 
key regulatory factors of physiological cardiac 
hypertrophy is of great significance for the pre-
vention and treatment of heart failure [15, 19].

2  Non-coding RNAs

2.1  MicroRNAs

MicroRNAs (miRNAs, miRs) are a class of 
ncRNAs of about 22 nucleotides in length that 
bind to messenger RNA via complementary or 
partial complementary base pairing. Degradation 
of mRNA, inhibition of mRNA translation is 
involved in the regulation of gene expression. 
MiRNAs need to undergo post-transcriptional 
modification [20]. The primary miRNAs (pri- 
miRNAs) transcribed by RNA polymerase II are 
processed to produce precursor miRNAs (pre- 
miRNAs), which are finally cleaved into mature 
miRNAs by RNase III enzyme DICER in the 
cytoplasm [21, 22]. MiRNAs can form RNA- 
induced silencing complexes (RISCs) with some 
proteins such as Argonaute protein family AGO2. 
Generally, the function of miRNAs is mainly 
determined by the function of their target genes. 
Different miRNAs can have different functions in 
the same tissue, and the same miRNA can also 
perform different functions in different tissues 
[4, 23, 24].

In cardiovascular system, miRNAs are 
involved in the cardiovascular development and 
the occurrence and development of cardiovascu-
lar diseases [7, 25, 26]. MiRNAs have been 
reported being involved in the regulation of 
almost all cardiovascular-related cells, such as 
endothelial cells, cardiomyocytes, smooth muscle 
cells, fibroblasts, etc., which play important regu-
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latory roles in various cardiovascular diseases 
[27–29]. For example, miR-1, miR-133, miR-
145, and miR-34 have been reported to nega-
tively regulate the pathological hypertrophy of 
cardiomyocytes [30–36]. In contrast, miR-208a, 
miR-155, miR-199a have a pro-effect on the 
development pathological hypertrophy [37–41]. 
Besides, miRNAs can target specific transcrip-
tion factors to indirectly regulate the expression 
of channel genes, thereby modulating cardiomy-
ocytes excitability. MiR-122 can regulate the 
metabolism of NO by regulating its target gene 
L-arginine transporter 1 (SLC7A1), which leads 
to endothelial cells dysfunction [42]. MiR-122, 
as well as miR-33 may participate in the modula-
tion of lipid homeostasis in vivo, and thus 
involved in the regulation of atherosclerosis [43, 
44]. In addition, circulating miRNAs have been 
intensively studied as biomarkers in the cardio-
vascular system [6, 45]. Collectively, as potential 
biomarkers and therapeutic targets, miRNAs 
have prospective applications for cardiovascular 
diseases diagnosis and prognosis.

2.2  Long Non-coding RNAs

Long non-coding RNAs (LncRNAs) refer to a 
class of non-coding RNAs that are transcribed 
over 200 nucleotides in length. Similar to miR-
NAs, lncRNAs usually do not encoding proteins. 
LncRNAs are mostly transcribed by RNA poly-
merase II, can be spliced, and have 5′-terminal 
capped structure and 3′-terminal poly-A tail. 
Some lncRNAs also have splicing processes sim-
ilar to mRNA biogenesis. The expression of 
lncRNAs are different among different tissues. 
Moreover, the same tissue or organ at different 
developmental stages, the expression of lncRNAs 
can also be different. Therefore, lncRNAs exhibit 
obvious tissue specificity and space-time speci-
ficity. Recent years, various functions of lncRNA 
have been discovered, which play an important 
role in gene transcription, protein translation, 
protein localization, stem cell pluripotency and 
modulation the progression of human diseases. It 
is valuable for diagnosis, treatment and prognosis 
evaluation of diseases [46]. Interestingly, recent 

studies have found that some lncRNAs can 
encode small peptides and exhibit their mode of 
action through translated products [47, 48].

In the cardiovascular system, lncRNAs have 
been reported to be involved in the occurrence 
and development of various diseases [10, 49–51]. 
For example, lncRNA Chaer was found to be 
enriched in the heart, and directly interacting 
with the catalytic subunit of PRC2, disrupting the 
PRC2-targeted genome site, thereby inhibiting 
histone H3K27 methylation in the promoter 
region of cardiac hypertrophy-related genes. 
Inhibition of Chaer in the heart can alleviate the 
pathogenesis of cardiac hypertrophy and improve 
cardiac function [52]. Besides, lncRNA Chrf, 
lncRNA mhrt have been reported to be involved 
in the regulation of pathological cardiac hyper-
trophy [53, 54]. Additionally, lncRNA Mexis, 
and lncRNA p21 regulate atherosclerosis [55, 
56]. Furthermore, meg3, which is highly 
expressed in cardiac fibroblasts, is down-egulated 
in cardiac remodeling. And knockdown of meg3 
would inhibit p53 binding to the promoter region 
of MMP-2, consequently blocking TGF-β1-
induced MMP-2 expression and preventing car-
diac fibrosis [57]. Moreover, lncRNA MIAT was 
found to promote cardiac fibrosis by up-regulat-
ing TGF-β1 by sponge miR-24 [58]. It is worth 
noting that, similar to miRNAs, the expression 
level of lncRNAs in serum have also been found 
to be closely associated with cardiovascular dis-
eases. Therefore, lncRNAs can also be used as 
biomarkers for disease diagnosis. For instance, 
the expression level of lncRNA Lipcar was sig-
nificantly different in patients with and without 
ventricular remodeling after myocardial infarc-
tion, suggesting that Lipcar might be a valuable 
biomarker of the progression of cardiac remodel-
ing [59].

2.3  Circular RNAs

Circular RNAs (circRNAs) were first discovered 
in plant viruses in 1976, but did not receive much 
attention for decades. Due to the limitations of 
detection techniques and algorithms, it has long 
been believed that circular RNA is a small amount 
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of splicing by-products present in mammals and 
does not have biological functions. Until recent 
years, with the breakthrough in high-throughput 
sequencing technology and bioinformatics analy-
sis algorithms, a large number of circular RNAs 
were discovered in mammals [60–62]. In 2013, 
Hansen et  al. discovered circRNA CDR1as has 
an important role. Since then, more and more cir-
cRNA studies have shown that circRNA is 
involved in the regulation of many important bio-
logical processes [63, 64]. Several mode of 
actions of circRNAs have been identified by mul-
tiple functional and mechanism studies [65–68]. 
Among them, the most well investigated action 
was that circRNA can be used as an endogenous 
miRNA sponge [63, 64, 69]. Besides, circRNA 
can interact with functional proteins and regulate 
gene transcription [70, 71]. What’s more, some 
circRNAs have coding potential, which can be 
translated into small peptides or proteins [72–
74]. The expression of circRNA in different spe-
cies, tissues and cells is different, and it is closely 
related to the occurrence of various diseases such 
as tumors, nervous system diseases and meta-
bolic diseases [75–77]. It is worth noting that 
because of its cell/tissue specificity and evolu-
tionary conservation, circRNAs are of great 
potential as clinical therapeutic targets.

In cardiovascular, similar to miRNAs and 
lncRNAs, circRNAs are also involved in the reg-
ulation of many cardiovascular diseases [77, 78]. 
In the myocardial ischemia model, circRNA 
CDR1as (also known as ciRS-7) can be used as 
an endogenous sponge of miR-7a, aggravating 
myocardial apoptosis and myocardial infarct size 
[79]. CircRNA mm9_circ_016597 (MFACR) can 
also be used as miR-652-3p sponge to mediate 
mitochondrial division and cardiomyocytes 
apoptosis induced by myocardial ischemia- 
reperfusion injury [80]. CircRNA circ-Ttc3 plays 
a protective role in myocardial infarction, and 
reduces ATP depletion and apoptosis in cardio-
myocytes [81]. The main mechanism is that circ- 
Ttc3 regulates the expression of downstream 
target genes Arl2, and protects cardiomyocytes 
from apoptosis via sponging miR-15b. CircRNA 
mm9_circ_012559 (also known as HRCR) is 
down-regulated in heart failure mice [82]. HRCR 

act as miR-223 sponge to inhibit miR-223 activ-
ity, which in turn aggravates the development of 
pathological cardiac hypertrophy and heart fail-
ure. In addition to cardiomyocytes, circRNAs 
also found to involved in the regulation of non- 
cardiomyocytes. Circ_000203, and circ_010567 
have been reported to act as miRNA sponges that 
regulate cardiac fibroblasts or endothelial cells 
[83, 84]. However, act as miRNA sponge is only 
one of the mechanisms by which circRNAs take 
part in biological roles. CircRNAs function as 
protein sponges have also been investigated in 
cardiovascular system. In doxorubicin-induced 
cardiomyopathy, the circRNA Amotl1 can pro-
mote the phosphorylation of AKT and its nuclear 
transfer by binding AKT1 and PDK1, thereby 
alleviating cardiomyocytes apoptosis and myo-
cardial injury [85]. In cardiac senescence, cir-
cRNA circ-Foxo3 binds and inhibits the migration 
of anti-aging and anti-stress proteins (ID-1, 
E2F1, FAK, HIF1α) from cytoplasm into nucleus 
and mitochondria, and thus mediating cardiac 
senescence [86]. In atherosclerosis, the circRNA 
circANRIL can bind to PES1 protein and pro-
mote p53 activation, play a role in aggravating 
apoptosis and suppression proliferation of vascu-
lar smooth muscle cells and macrophages, which 
ultimately play an important role in protecting 
atherosclerosis [70]. What is noteworthy is that 
except act as the key regulators of cardiac devel-
opment and heart disease, circRNAs are also 
associated with cardiac regeneration. Super- 
enhancer (SEs)-related circRNA circNfix have 
been reported that knockdown of circNfix pro-
motes cardiac regeneration by inhibiting Ybx1 
ubiquitin-dependent degradation, increasing 
miR-214 activity [87].

3  Current Bioinformatics Tools 
in ncRNA Studies

A large number of ncRNAs have been identified, 
and the function of most ncRNAs has not been 
well documented. In ncRNA studies, 
 RNA-sequencing and microarray are the most 
commonly used detection methods. A large num-
ber of statistically significant differential ncRNAs 
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have been identified. Typically, sequencing data 
is validated by quantitative real-time PCR 
designed with specific primers. In the meantime, 
the application of bioinformatics is crucial for 
study of the function of ncRNA, especially in the 
prediction of function, exploration of interaction 
networks, and the relationship between ncRNAs 
and the occurrence and development of specific 
diseases. Therefore, a large number of 
Bioinformatic platforms have been developed 
and widely used. A summary about online data-
bases is given in the Table 8.1.

4  NcRNAs Are Key Regulators 
of Physiological Cardiac 
Hypertrophy

4.1  Characteristics 
of Physiological Cardiac 
Hypertrophy

Endurance exercise have been reported to bene-
fit whole body metabolism, however, the under-
lying mechanisms still largely remained 
unknown [15, 88–91]. Physiological cardiac 
hypertrophy usually occurs during exercise, 
pregnancy, and normal postnatal growth. 
Physiological hypertrophy includes exercise-
induced physiological cardiac hypertrophy and 
pregnancy hypertrophy. Physiological cardiac 
hypertrophy is characterized by preservation or 
improvement of cardiac systolic function, with-
out cardiac fibrosis. Especially, physiological 
hypertrophy is a reversible benign adaptive 
change that does not lead to pathological ven-
tricular remodeling and heart failure [92]. When 
physiological cardiac hypertrophy occurs, the 
marker genes, such as ANP, BNP, β-MHC, of 
pathological remodeling do not increase. In 
addition, different from pathological cardiac 
hypertrophy, genes encoding Ca2+-handling pro-
teins did not change when physiological cardiac 
hypertrophy occurred.

The IGF1-PI3K-AKT signaling pathway is 
regarded as a key signaling pathway in regulating 
the development of physiological cardiac hyper-
trophy [93, 94]. Studies have shown that serum 

IGF1 levels are elevated in athletes with physio-
logical cardiac hypertrophy, and also insulin-like 
growth factor-binding protein 2 (IGFBP2) plays 
an important role in the development of preg-
nancy hypertrophy [95, 96]. Insulin binds to and 
activates the insulin receptor, which recruits and 
phosphorylates the insulin receptor substrate 1 
(IRS1) and insulin receptor substrate 2 (IRS2). 
These proteins activate the PI3K-AKT1 signaling 
pathway to promote cardiac physiological 
growth. Mouse-specific knockout of IRS1 or 
IRS2 can prevent exercise-induced physiological 
cardiac hypertrophy [97]. In addition, IGF1 acti-
vates the downstream signaling pathway by bind-
ing to and activating the IGF1 receptor IGF1R 
[98]. IGF1R is also essential for exercise-induced 
physiological cardiac hypertrophy. The catalytic 
subunit of PI3K, p110α, is a key molecule of 
physiological cardiac hypertrophy. When p110α 
knockout, IGF1R will not lead to the develop-
ment of physiological hypertrophy. While acti-
vate p110α, the heart can demonstrate 
physiological growth spontaneously, and resist 
heart failure [99, 100]. Serine/threonine-protein 
kinases 1 (AKT1) is one of 3 closely related 
AKTs (AKT1, AKT2 and AKT3). The phosphor-
ylation level of AKT1 is dynamically changed in 
exercised rats, AKT1 down-regulated in the first 
week, and then specifically increased phosphory-
lation level of AKT1 Ser-473  in the third week 
[101]. The expression of AKT decreased during 
pregnancy and then returned to normal levels 
after post portum delivery [102]. These all sug-
gest that AKT plays an important role in physio-
logical cardiac hypertrophy [103]. Besides, 
transcription factors C/EBPβ and CITED4 have 
been reported to be involved in the regulation of 
physiological cardiac hypertrophy. When physi-
ological cardiac hypertrophy occurs, C/EBPβ is 
down-regulated, while CITED4 is up-regulated, 
which promotes cardiomyocytes proliferation 
and hypertrophy [18]. And moreover, thyroid 
hormone is also involved in the regulation of 
physiological cardiac hypertrophy [104, 105]. 
Thyroid hormone is closely associated with the 
development of physiological cardiac hypertro-
phy in cardiomyocytes via activating the PI3K/
AKT/mTOR signaling pathway [106, 107].
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Table 8.1 Summary of online databases associated with ncRNAs

NcRNAs Database name Description Website References
miRNAs miRBase MiRBase database is a comprehensive database 

that provides published miRNA sequence data, 
annotations, predicted target genes

http://www.
mirbase.org

[116–
118]

RNAhybrid RNAhybrid is a miRNA target gene prediction 
software developed based on the secondary 
structure of miRNA and target genes

https://bibiserv.
cebitec.uni-
bielefeld.de/
rnahybrid/

[119]

starBase The database analyzed the interaction among 
miRNAs lncRNAs, circRNAs, protein and 
mRNAs, and analyzed the ceRNA mechanism. 
The database mainly contains information of 
three species: human, mouse and nematode

http://starbase.
sysu.edu.cn/

[120, 
121]

ChIPBase By integrating clip-seq and chip-seq data, the 
transcription and post- transcriptional regulation 
of microRNA were provided, and the regulatory 
network of transcription factor, microRNA and 
target genes was provided

http://rna.sysu.edu.
cn/chipbase/

[122, 
123]

Targetscan Targetscan database was developed for target 
prediction of miRNAs

http://www.
targetscan.org/

[124]

lncRNAs LNCipedia LNCipedia includes a total of 146,742 human 
annotated lncRNA transcripts, all of which 
contain annotated information such as 
sequence, genomic location, and sources

https://lncipedia.
org/

[125–
127]

Linc2GO The database is intended to provide 
comprehensive functional annotations of human 
lncRNAs. MicroRNA-mRNA and microRNA-
lncRNA interaction data were integrated to 
generate functional annotations of lncRNA 
based on the “ceRNA hypothesis”

https://omictools.
com/linc2go-tool

[128]

Noncode NONCODE is intended to provide ncRNA 
annotation, which includes coding capability 
assessment, location information, expression 
information and potential functionality, and 
co-expression

http://www.
noncode.org

[129–
134]

circRNAs circBase This database collects thousands of circRNAs 
expressed in animals. This database allows 
users to search, browse, and download 
corresponding circRNAs

http://www.
circbase.org/

[135]

CIRCpedia v2 The database allows users to search, browse, 
and download circRNAs with expression 
characteristics of various cell types/tissues, 
including disease samples

http://www.picb.
ac.cn/rnomics/
circpedia/

[136]

CircInteractome The database allows users to prediction and 
map binding sites for RBPs and miRNAs on 
reported circRNAs

https://
circinteractome.
nia.nih.gov

[137, 
138]

circBank The circBank database applied a novel 
nomenclature of human circRNAs and provides 
information about circRNAs sequences, 
miRNA-circRNA interactions, circRNA coding 
potential and conservation between human and 
mouse

http://www.
circbank.cn/

[139]
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4.2  NcRNAs and Physiological 
Cardiac Hypertrophy

To well investigate the underlying mechanism of 
physiological cardiac hypertrophy, it is usually 
use exercise training (running or swimming) to 
induce physiological cardiac hypertrophy. 
Currently, in the exercise-induced physiological 
cardiac hypertrophy model, miR-126, miR-144, 
miR-145, miR-21, miR-29a, miR-29c, miR-27a 
and miR-27b were found to be up-regulated, 
while miR-1, miR-124, miR-133a, miR-133b 
and miR-143 were found to be down-regulated 
[108–111]. However, none of these studies per-
formed further mechanism researches to investi-
gate why and whether these miRNAs are specific 
regulated during physiological hypertrophy. 
Moreover, none of those miRNAs have been 
checked their effects on cardiomyoytes growth 
and proliferation, which are considered to be the 
specific function in exercise-induced physiologi-
cal hypertrophy [18]. The function of miR-222 
and miR-17-3p on physiological cardiac hyper-
trophy is a relatively in-depth study of miRNAs 
[17, 112]. MiR-222 was significantly up- 
regulated in physiological cardiac hypertrophy 
both induced by swimming and running. 
Increased miR-222 can promote cardiomyocytes 
hypertrophy and proliferation through regulating 
its target genes p27, Hmbox1, HIPK1 and HIPK2. 
And it is necessary to increase the level of miR- 
222  in exercise-induced physiological cardiac 
hypertrophy. It is worth noting that cardiac- 
specific overexpression of miR-222 has a protec-
tive effect on ventricular remodeling induced by 
cardiac ischemia-reperfusion injury in mice, 
which can significantly improve cardiac function 
and ameliorate myocardial fibrosis [17]. In addi-
tion, miR-17-3p was also found to be signifi-
cantly elevated in physiologically induced 
cardiac hypertrophy either induced by swimming 
or running. MiR-17-3p can also promote cardio-
myocytes proliferation by directly acting on its 
target gene TIMP3, as well as indirectly inhibit 
PTEN and activate AKT signaling pathway to 
promote cardiomyocytes hypertrophy. Similar to 
miR-222, up-regulation of miR-17-3p can allevi-
ate ventricular remodeling and heart failure 

caused by myocardial ischemia-reperfusion 
injury [112]. Besides, cardiac-specific overex-
pression of miR-223 exhibited significant physi-
ological cardiac hypertrophy, and up-regulation 
of miR-223 in rat cardiomyocytes induced physi-
ological growth through activation of AKT sig-
naling pathway [113]. Moreover, miR-199-sponge 
transgenic mice can lead to physiological cardiac 
hypertrophy [114]. However, the roles of 
lncRNAs and circRNAs in physiological cardiac 
hypertrophy have not been reported. Therefore, 
further investigations to elucidate the underlying 
mechanisms of lncRNAs and circRNAs in physi-
ological cardiac hypertrophy is of great 
significance.

5  Conclusion and Future 
Perspectives

With the deepening of research, more and more 
ncRNAs have been identified to be associated 
with cardiovascular physiology and pathology. 
The regulation of ncRNA expression levels is 
expected to become a new strategy for the treat-
ment of heart diseases clinically in future. 
Although current experiments targeting ncRNAs 
for treatment of cardiac diseases that have been 
successfully used in animal models, the clinical 
treatment of pathological cardiac hypertrophy 
and heart failure progresses very slowly. Detailed 
studies about miR-222 and miR-17-3p specifi-
cally associated with physiological cardiac 
hypertrophy indicate that key factors of physio-
logical cardiac hypertrophy might be resistant to 
sustained pathological hypertrophy stimuli, and 
changes in physiological hypertrophy-specific 
miRNAs can improve ventricular remodeling and 
further ameliorate heart failure. This suggests 
that exploring physiologic cardiac 
 hypertrophy-specific ncRNAs might be a unique 
research perspective that provides new strategies 
for interventions in heart failure and other cardio-
vascular diseases. However, the research on key 
lncRNAs and circRNAs related to physiological 
cardiac hypertrophy has not been reported, and 
these still need to be further explored and studied 
in the future. Interestingly, it is worth mentioning 
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that miR-222 and miR-17-3p are also sharing the 
same target gene TIMP3  in pulmonary arterial 
smooth muscle cells [115]. Although the specific 
relationship between miR-222 and miR-17-3p in 
cardiomyocytes is not clear, it is certain that there 
is definitely intrinsic connection between them. 
Therefore, future studies on the regulatory net-
works of ncRNAs among physiological specific 
miRNAs, lncRNAs and circRNAs will not only 
illuminate the molecular mechanisms but also 
provide us new therapeutic targets for cardiac 
diseases from the perspective of protecting the 
heart.
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