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Abstract
The discovery of noncoding RNAs (ncRNAs) 
including short microRNAs, long ncRNAs 
and circular RNAs has broaden our knowl-
edge about mammalian genomes and tran-
scriptomes. A growing number of evidence on 
aberrantly regulated ncRNAs in cardiovascu-
lar diseases has indicated that ncRNAs are 
critical contributors to cardiovascular patho-
physiology. Moreover, multiple recent studies 
have reported that ncRNAs can be detected in 
the bloodstream that differs between health 
subjects and diseased patients and some of 
them are remarkably stable. Although our 
knowledge about the origin and function of 
the circulating ncRNAs is still limited, these 
molecules have been regarded as promising 
noninvasive biomarker for risk stratification, 
diagnosis and prognosis of various cardiovas-
cular diseases. In this chapter, we have 
described biological characteristics of circu-
lating ncRNAs and discussed current trends 
and future prospects for the usage of circulating 

ncRNAs as biomarkers for common cardio-
vascular diseases.
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1	 �Background

Only less than 3% of the human genome encodes 
messenger RNAs (mRNAs) that are encoded and 
participate in protein biosynthesis [1]. On the 
other hand, there are much more non-coding 
RNAs (ncRNAs) in the genome, most of which 
have undetermined functions. NcRNAs can be 
divided into basic ncRNAs and regulatory 
ncRNAs. Regulatory ncRNA can be further 
divided into microRNA (miRNA), long non-
coding RNA (lncRNA), circular RNA (circRNA), 
piwi-interacting RNA (piRNA) and small inter-
fering RNA (siRNA) [2]. Not surprisingly, regu-
latory ncRNAs have been found to be critical 
players in pathogenesis of human diseases, 
including cardiovascular diseases (CVDs). 
Numerous studies have demonstrated that miR-
NAs play a key role in driving gene expression 
changes in multiple cardiovascular pathological 
processes including cardiac hypertrophy, fibrosis, 
ischemia injury and heart failure [3, 4]. Whereas 
the role of lncRNAs and circRNAs are less 
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understood compared to miRNAs, to date only a 
few candidates have been investigated in detail in 
cardiovascular system. Circulating ncRNAs have 
been have recently emerged as promising non-
invasive biomarkers because their tissue- and 
time-specific expression pattern in CVDs and 
their ability to circulate in the bloodstream in a 
relative stable extracellular form [5]. Here, we 
present a brief introduction on miRNAs, lncRNAs 
and circRNAs, summarize the recent discovery 
of these ncRNAs in related to biomarker poten-
tial for common type of CVDs and, finally, dis-
cuss the current limitations and future prospects 
in developing ncRNAs as CVD biomarkers.

1.1	 �MicroRNAs

MiRNAs are abundant family of small ncRNAs 
in human genomes, containing more than 2000 
different loci for miRNA generation [6], it is esti-
mated that over 30% of the cellular transcriptome 
is orchestrated by miRNAs [7]. MiRNA is a short 
18-22  nt ncRNA produced by transcription of 
specific genomic locus and specialized RNA 
endonuclease treatment [8, 9]. MiRNA transcrip-
tion is conducted by RNA Pol II and is controlled 
by RNA Pol II-associated transcription factors 
and epigenetic regulators [10–13]. The primary 
miRNA (pri-miRNA) then go through several 
steps to become mature miRNA, with the help of 
nuclear RNase III Drosha [14–16]. Mature miR-
NAs can negatively regulate expression of target 
genes by binding to the 3’-UTR region of mRNAs 
and recruiting specific silencing proteins that 
form RNA-induced silencing complexes (RISC) 
[7]. In healthy condition, miRNAs act as modula-
tors to steady protein levels that maintain physi-
ological homeostasis. The regulatory activity of 
miRNAs depends on the abundance of their tar-
gets, so the same miRNA may have different 
regulatory function in different cell types [17]. 
While during pathological process, ectopic or 
aberrant expression of a particular miRNA in its 
original tissue can result in deregulation of its tar-
get transcripts and imbalanced physical func-

tions. MiRNAs have been found present in 
variety of extracellular human body fluids includ-
ing plasma, serum, saliva and urine [18–21]. 
Blood circulating miRNAs are most studied and 
found that the majority of circulating miRNAs in 
human blood are related with a protein named 
Argonaute 2 (Ago2) [22]. Ago2 is the effector 
component of the miRNA-induced silencing 
complex (RISC), it can directly bind miRNAs 
and drive mRNA suppression [23, 24]. Therefore 
it has been speculated that the majority of circu-
lating miRNAs may be products released from 
dead cells that remain in extracellular space 
because of the high stability of Ago2-miRNA 
complex [5], which makes them potential indica-
tors for various pathological conditions.

1.2	 �Long Non-coding RNAs

Long non-coding RNAs, also known as long 
ncRNAs or lncRNAs, are non-coding RNA tran-
scripts that are longer than 200  nt, similar to 
protein-coding genes but lacking evident ORFs 
[25–27]. LncRNAs represent the majority of the 
ncRNAs, to date more than 58,000 lncRNAs has 
been classified [28]. However, only a few of them 
has been characterized with structure, function 
and impact in physical or pathological process. 
LncRNAs are produced with RNA polymerase II, 
which can be antisense, interleaved or overlap-
ping with protein-coding genes, those sequences 
of lncRNA that do not overlap protein-coding 
genes term long intervening/intergenic noncod-
ing RNAs (lincRNAs) [29]. LncRNAs are sug-
gested very relevant players in the regulation of 
cellular functions because evidence shows they 
can interact with genomic DNA and RNA as a 
flexible molecular scaffold to recruit chromatin-
modifying enzymes and transcription factors and 
to guide their transportation to the correct func-
tional localization [30]. In addition, lncRNAs can 
act as guide molecules for DNA methyltransfer-
ase and histone modifier such as polycomb 
repressive complex PRC2 and histone H3 lysine 
9 (H3K9) methyltransferases, which lead to 
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repressive heterochromatin and the resultant 
transcriptional repression [31–33]. LncRNAs 
have also been reported to control the activity of 
other ncRNAs, particularly miRNAs, as decoys 
or sponges that can absorb miRNAs from their 
mRNA targets (and thus act as competing endog-
enous RNAs or ceRNAs) [34]. Loss of function 
experiments have provided evidence for the func-
tional importance of lncRNAs in regulation of 
gene expression patterns that control cellular plu-
ripotency, differentiation and survival [35]. 
Because of the enormous potential of lncRNAs to 
regulate gene expression, there is a growing 
interest in the potential roles of these RNAs in 
disease pathogenesis. In fact, numerous studies 
have shown a correlation between lncRNA dys-
regulation, with changes in gene expression and 
pathogenesis. Moreover, some studies have also 
suggested potential role of lncRNA in gene regu-
lation outside the cell and between different cells. 
Recent researches have demonstrated that it is 
possible to detect the presence of lncRNAs in 
human body fluids, indicating the possible con-
nection between circulating lncRNA concentra-
tion and disease initiation and development, 
makes lncRNAs potential novel diagnostic and 
prognostic tools [36]. However, on the other 
hand, most lncRNAs rapidly evolve at sequence 
and expression levels, it has been suggested that 
tissue-specific and possible three-dimensional 
structures of lncRNA are only conserved among 
closely related species.

1.3	 �Circular RNAs (CircRNAs)

CircRNAs are a new class of endogenous non-
coding RNAs and a field with much research 
activity, although the existence of circulating 
transcripts have been discovered for more than 
20 years [37]. They are characterized by a cova-
lently closed loop structure formed by back-
splicing event that inversely connect exon 
boundaries [38]. These circular molecules have 
long been regarded as the artifacts of aberrant 
splicing or prerogative of several types of virus 

[39–41]. However, recent studies by using spe-
cific computational algorithm to identify circular 
molecules have demonstrated that in many cells 
the production of circRNA is not as rare as previ-
ously believed [42–44]. A growing number of 
evidence indicates that circRNAs are abundant, 
conserved, and stably accumulated in cells, and 
the expression pattern of circRNAs is highly 
dependent on cell type and species [45, 46]. 
Besides, circular RNAs are highly resistant to 
exonuclease RNase R, which makes them much 
more stable than to linear RNAs [47, 48], that 
explain their relative high evaluation conserva-
tion. The regulatory functions of circRNA remain 
to be further explored. Scientists have suggested 
several putative mechanisms of gene regulation 
by circular RNAs. (1) miRNA sponge: competi-
tive endogenous RNA hypothesis is currently the 
most intensively studied and well accepted mech-
anism on regulatory activity of circRNAs on gene 
expression. CircRNA molecules contain lots of 
miRNA response elements (MREs) that allow 
them to competitively bind to miRNAs, causing 
suppression of the functional miRNA molecules 
and subsequent elevation of target miRNAs [47, 
49]. (2) Interaction with RNA binding proteins 
(RBPs): strong direct interaction between cir-
cRNAs and their target RBPs enable gene regula-
tion by competing with linear splicing [41]. (3) 
Regulation of parental gene transcription: some 
intronic circRNAs enhance the transcription of 
their hosting gene, probably by modulating RNA 
polymerase II in cis [50]. (4) Protein translation: 
some recent studies have demonstrated the poten-
tial of circRNA for direct protein translation, 
such as circ-ZNF609, circMbl3 and circ-SHPRH 
[51–53]. Furthermore, computational analysis of 
human transcriptomes sequencing has revealed 
the universal existence of circRNAs with coding 
potential [54, 55]. Due to their emerging role as 
regulators of gene expression, circRNAs are con-
sidered as important players in disease develop-
ment. In addition, the stability of these circular 
molecule allow them to be easily identified and 
quantified in body fluid, which makes them high 
promising diagnostic biomarkers [46].

22  Circulating Non-coding RNAs and Cardiovascular Diseases



360

2	 �Circulating Non-coding RNA 
as Biomarkers 
for Cardiovascular Diseases

2.1	 �Myocardial Infarction

Myocardial infarction (MI) is the leading cause 
of death worldwide and is characterized by 
ischemia-induced localized heart tissue damage 
that induces cardiac remodeling and may prog-
ress to chronic heart failure. Appropriate thera-
pies are required to reduce the mortality and thus 
a rapid diagnosis with high sensitivity and speci-
ficity is critical. MI is characterized by cell death 
and hypoxic stress, resulting in the release of 
various cardiac-specific proteins into the circula-
tion. Classic MI biomarkers include serum con-
centrations of cardiac troponin (cardiac troponin 
T and I) and creatine kinase MB (CK-MB) [56]. 
Other than traditional protein markers, myocar-
dium also releases ncRNAs into the bloodstream 
once injured. Numerous studies have described 
that single or a group of miRNAs in circulation 
can act as potential biomarker for cardiac injury 
including MI [57, 58]. MiR-1, which is abun-
dantly expressed in cardiac and skeletal muscle 
and crucial in muscle differentiation and cardiac 
development, is firstly suggested as a circulating 
miRNA biomarker for acute MI [59–61]. Another 
high muscle-expressed miRNA miR-133, which 
is a crucial regulator of muscle development and 
pathophysiological alterations, has also been 
suggested to be a diagnostic biomarker for acute 
MI without prognostic potential on future left 
ventricular remodeling after MI [61, 62]. Cardiac-
specific miRNAs miR-499 and miR-208a/b 
expressed by cardiac myosin genes have been 
suggested as biomarkers for myocardial damage 
and infarct severity [63]. In addition, results from 
patient and animal models showed a positive cor-
relation between muscle and myocardial circulat-
ing miRNAs and acute MI with T-segment 
elevation (STEMI). The circulating levels of 
miRNAs including miR-1, miR-499-5p, miR-
133a and miR-133b and followed the same pat-
tern as rising of cardiac troponin T level and left 
ventricular ejection fraction (LVEF) in STEMI 
patients. Therefore, these miRNAs were regarded 

to be related to the extent of myocardial damage 
and necrosis after infarction [60]. It is worth 
mention that circulating non-muscle miRNA lev-
els in patients with STEMI, such as liver miR-
122-5p or pancreas-specific miR-375, showed an 
opposite pattern of muscle and cardiac-specific 
miRNAs, which was down-regulated in STEMI 
group of patients. These results were not consis-
tent with the results observed in animal models of 
cardiogenic shock, in which plasma levels of 
liver-specific miR-122 showed a massive increase 
after external cardiac intervention and could indi-
cate the time of infarction [64]. Additionally, a 
recent study has shown that plasma miR-122 lev-
els measured less than 8 h after infarction demon-
strated the same pattern of increase as that in 
animal models and miR-122-5p/133b ratio can 
act as a prognostic biomarker for successful strat-
ification of STEMI patients [65]. Level of miR-
133b in MI was measured in infarct-related artery 
(IRA) occlusion, without ST-segment elevation. 
Patients with closed IRA were found with higher 
levels of miR-133a, miR-133b then patients with 
patented IRA, but there was no difference in tro-
ponin T levels. These resulted suggested that 
elevated circulating miRNAs reveal the degree of 
IRA in MI and may indicate patients requiring 
urgent coronary revascularization [66].

Circulating miRNAs have also been used to 
predict individual risk for future fatal acute MI in 
healthy individuals [67]. The HUNT study exam-
ined 112 healthy subjects and identified 10 
plasma miRNAs that were differentially 
expressed between lethal cases and controls. The 
best miRNA expression model for prediction of 
future fatal MI consists of miR-106a, miR-424, 
let-7 g, miR-144 and miR-660 levels, which pro-
vided a correct risk assessment of 77.6% (74.1% 
and 81.8% for men and woman respectively). 
Other circulating miRNAs such as miR-34a, 
miR-192 and miR-194 have also been shown to 
be good predictors of risk assessment for heart 
failure after MI [68]. These miRNAs are 
expressed in a p53-dependent manner, linking 
them to other miRNAs that have been described 
as driving factors for CVDs [69]. Collectively, 
multiple studies have confirmed the ideas that 
circulating miRNA may serve as sensitive and 
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specific biomarkers for MI, the combination of 
miRNA with cardiac troponin might be accurate 
diagnostic and prognostic tool for patients.

Recently, some circulating lncRNAs and cir-
cRNAs have also been explored as potential bio-
markers of acute MI. CDR1 antisense (CDR1AS) 
and cyclic zinc finger antisense 1 (ZFAS1) 
showed significant differential expression 
between acute MI patients and healthy subjects; 
and similar changes in circulating CDR1AS and 
ZFAS1 were also consistently observed in the 
mouse models. Thereby researchers suggested 
changes in circulating CDR1AS and ZFAS1 
could independently predict acute MI [70]. 
Another lncRNA urothelial carcinoma associated 
1 (UCA1) was studied as well, which was found 
to be expressed in bladder and lung cancer and 
suggested as a predictive biomarker. UCA1 is 
specifically expressed in the heart of healthy 
adult individuals; while plasma UCA1 levels are 
reduced in the early state of patients with acute 
MI and increased on day 3 post-MI. The level of 
UCA1 circulating was also found negatively cor-
related with the expression of miR-177 [71].

2.2	 �Coronary Artery Disease

Coronary Artery Disease (CAD) is caused by the 
formation of atherosclerotic plaques, resulting in 
structural remodeling of the arterial wall, activa-
tion of endothelial cells and inflammatory cells 
may eventually lead to myocardial ischemia [72]. 
Activation of endothelial cells is critical for ath-
erosclerosis; it is a potential source to seek new 
biomarkers for early diagnosis and identification 
of instable plaque, which eventually allow risk 
stratification of patients. It has been suggested 
that miRNAs associated with cellular compo-
nents formed by atherogenesis are deregulated in 
CAD [73]. However, the cyclic signature data of 
CAD miRNAs are not consistent. Endothelial 
cells (miR-17, miR-92a and miR-126), inflam-
mation (miR-155) and smooth muscle cell-
associated (miR-145) miRNA were found to 
decrease in the circulation of CAD patients, 
while plasma myocardium and muscle miRNA 
(miR- 133a, miR-208a and miR-499) were 

increased. It was believed that miRNA may be 
cleared from the bloodstream by ingestion of ath-
erosclerotic lesions or vasculature, and that 
enhanced release and elevation of miRNA may 
reflect myocardial damage [74]. In contrast, the 
miRNA signature of miR-126 and miR-17/92a 
cluster was up-regulated together with miR-451, 
miR-106b/25 cluster and miR-21/590-5p family 
in vulnerable CAD and was suggested as a novel 
biomarker [75]. Consistent with previous results, 
miR-1, miR-133a/b, miR-122, miR-126 and 
miR-199a have been reported elevated in the cir-
culation of stable and unstable angina patients 
and miR-92a and miR-486 were associated with 
high-density lipoprotein components identified 
as potential circulating biomarkers for coronary 
plaque [76–78]. In addition, the severity of CAD 
for patients with hyperlipidemia was found asso-
ciated with increased plasma levels of lipid 
metabolism-related miR-122 and miR-370 [79]. 
MiRNA signatures for risk assessment in patients 
with symptomatic obstructive CAD and chest 
pain were explored. MiR-134, miR-2861 and 
miR-3135b were associated with coronary artery 
calcification and were altered in patients with 
obstructive CAD [80]. A prognostic analysis 
evaluated circulating vascular and endothelial 
miRNAs in patients with CAD and found expres-
sion level of miR-126 and miR-199a contained in 
microvesicles but not freely circulating miRNA 
could predict the occurrence of cardiovascular 
events in patients with stable CAD [81]. 
Collectively, blood miRNAs have the potential to 
improve CAD diagnosis and prognosis, whereas, 
replication and validation of these findings in 
large independent cohorts are still required.

Recently, lncRNAs have get attention as CAD 
biomarkers. Microarray-based screening of 
plasma in CAD patients identified a transcript 
called CoroMarker as a marker for stability, sen-
sitivity, and specificity of the CAD [82, 83]. This 
lncRNA is present in extracellular vesicles and 
circulating monocytes in peripheral blood. The 
same group reported another lncRNA LncPPARδ, 
which was elevated in circulating peripheral 
blood mononuclear cells, as another CAD bio-
marker in combination with other risk factors 
[84]. The combined use of circRNAs and 
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miRNAs as biomarker for carotid plaque rupture 
was also investigated and found the ratio of serum 
circR-284/has-miR-221 was significantly 
increased in acutely symptomatic patients with 
carotid disease. This combination demonstrated 
favorable characteristics to be a prognostic bio-
marker of plaque rapture and stroke [85].

2.3	 �Cardiomyopathy

Cardiomyopathies are a group of heart diseases 
characterized by morphological and functional 
abnormalities in the myocardium. When they 
originate from myocardial dysfunction or 
changes in the body, they can be classified as pri-
mary or intrinsic cardiomyopathy; and when 
their pathogenic factors are external factors for 
the heart, they can be classified as secondary or 
extrinsic cardiomyopathy [72]. Intrinsic cardio-
myopathy can be obtained with a genetic basis or 
in response to stress on the myocardium. Inherited 
cardiomyopathies are the most common form of 
the disease, hence genetic testing is the most 
common diagnosis. Also, patients with cardio-
myopathy often receive a series of biochemical 
tests to detect biomarkers that can assist diagnose 
[86]. Several therapies for cancer and other dis-
eases can cause serious side effects that affect 
cardiovascular health. Cardiotoxicity and dam-
age impede heart function and cause high blood 
pressure, apoptosis, arrhythmia, fibrosis, and 
finally heart failure. Therefore, minimizing or 
preventing these side effects by early monitoring 
of drug-induced cardiotoxicity and damage 
would be very significant for treatment strategies 
[87]. A few studies have evaluated ncRNA 
plasma levels in drug-induced cardiomyopathies. 
An in  vivo study evaluating isoproterenol-
induced cardiactoxic model in rats reported an 
increase in serum miR-208 level in a time-
dependent manner and was associated with tradi-
tional myocardial injury cardiac troponin I [88]. 
Other animal studies support the response of 
miR-208 to isoproterenol, metaproterenol, allyl-
amine and mitoxantrone [89–91]. On the other 
hand, miR-208 did not respond to a single admin-
istration of doxorubicin, and doxorubicin treat-

ment induced other muscle and heart-specific 
miRNAs. In the chemotherapy treatment of 
doxorubicin, circulating miR-208a was not 
detected in the bloodstream of breast cancer 
patients [92]. These differences may be due to 
species-specificity, time- or dose-dependent 
effects, or indicate that different drugs may cause 
different circulating miRNA patterns. Therefore, 
other miRNAs should be considered to be bio-
markers of drug-induced cardiotoxicity. Zhao 
et  al. determined whether detectable levels of 
specific miRNAs are released into the circulation 
for bevacizumab-induced cardiotoxicity. They 
identified two cancer-associated miRNAs (miR-
579 and miR-1254) that were specifically ele-
vated in the circulation of bevacizumab-induced 
cardiotoxic patients and distinguish this patient 
group from AMI patients. MiR-1254 also showed 
strong correlation to the clinical diagnosis of 
bevacizumab-induced cardiotoxicity [93].

3	 �Prospects and Challenges

We have accumulated a great deal about the asso-
ciation of circulating miRNAs with various types 
of human heart diseases and injuries. Other circu-
lating ncRNAs species as lncRNAs and cir-
cRNAs are also promising biomarkers of CVDs, 
however their physiological or pathological roles 
in the context of CVDs remain largely unknown. 
The study of circulating lncRNAs asa cardiac 
biomarkers is not as advanced as miRNA, par-
tially because of the general assumption that 
lncRNAs are unstable in body fluids and the find-
ings that lncRNAs are not conserved among spe-
cies as miRNAs. However, recent data indicate 
that most lncRNAs are stable in neuroblastoma 
cell lines, although this study does not address 
the problem of extracellular stability [94]. 
Additionally, due to the emerging role of cir-
cRNA as regulators of gene expression, circRNA 
is likely to be an important player in the initiation 
and progress of diseases including CVDs. 
Research on the circular and stable RNA mole-
cules has just begun and is a completely new field 
of research that will help to better understand the 
pathogenesis of CVDs. Regulatory networks 
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occur in complex organisms and the surprising 
stability of these molecules suggests that cir-
cRNAs have great potential to be developed as 
CVD biomarkers.

Nevertheless, currently the use of ncRNA is 
still limited by (1) insufficient knowledge about 
the origin and function of ncRNAs especially for 
lncRNA and circRNAs; (2) diversity of RNA 
extraction and ncRNA detection methods without 
a standard protocol; (3) lack of consistency and 
standardization in different studies on same type 
of CVDs; (4) a relatively small patient cohort to 
date [95]. Still, some circulating ncRNAs appear 
to have stronger diagnostic and prognostic value 
than conventional biomarkers, not only because 
of their tissue and disease-specific expression 
patterns, but also because of the high physico-
chemical properties and their high stability in cir-
culation system [96–98]. Whether circulating 
ncRNAs represent attractive diagnostic and prog-
nostic biomarkers required future studies of large 
cohorts with standardized protocol for processing 
body fluid and RNA procreation and consistent 
analysis method.
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