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Abstract
Cardiac development in the human embryo is 
characterized by the interactions of several 
transcription and growth factors leading the 
heart from a primordial linear tube into a syn-
chronous contractile four-chamber organ. 
Studies on cardiogenesis showed that cell pro-
liferation, differentiation, fate specification 
and morphogenesis are spatiotemporally coor-
dinated by cell-cell interactions and intracel-
lular signalling cross-talks. In recent years, 
research has focused on a class of inter- and 
intra-cellular modulators called non-coding 
RNAs (ncRNAs), transcribed from the non-
coding portion of the DNA and involved in the 
proper formation of the heart. In this chapter, 
we will summarize the current state of the art 
on the roles of three major forms of ncRNAs 

[microRNAs (miRNAs), long ncRNAs 
(lncRNAs) and circular RNAs (circRNAs)] in 
orchestrating the four sequential phases of 
cardiac organogenesis.
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Abbreviations

circRNAs	 circular RNAs
CS	 Carnegie Stage
dpc	 days post coitum
ESCs	 embryonal stem cells
FHF	 first heart field
lncRNAs	 long non-coding RNAs
miRNAs	 microRNAs
ncRNAs	 non-coding RNAs
RNA-seq	 RNA sequencing
SHF	 secondary heart field

1	 �Background

Successful development of the embryonic heart 
sees the cardiac progenitor cells proliferate and 
differentiate into beating cardiomyocytes (CMs). 
Cardiac organogenesis requires exquisite modu-
lation of gene expression, and transcriptional 
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dysregulation in this process underpins congeni-
tal heart diseases. Most of the literature to be dis-
cussed in this chapter will mainly focus on 
murine studies,  as  heart development has been 
mainly investigated using transgenic mouse mod-
els. From a clinical standpoint, a comparison 
between mouse and human cardiac development 
by means of episcopic fluorescence image cap-
ture revealed the relevance of this model, as the 
cellular events leading to the formation of the 
heart are comparable in both mammals.

The early stage embryo is a disc formed by the 
three sheets of ectoderm, mesoderm and endo-
derm known as the three germ layers. The tissues 
forming the heart mainly come from the meso-
derm germ layer. However, some of the cells 
migrate from the ectoderm and form the cardiac 
neural crest cells. The latter will participate in the 
septation of the cardiac outflow tract into aorta 
and pulmonary artery, remodel the pharyngeal 
arch arteries, develop the valves, and take part in 
the formation of the cardiac conduction system.

The phases of cardiac development in human 
and mouse have different timings, as summarized 

in Fig.  11.1. Following gastrulation, the heart 
muscle cells start developing from a pool of 
mesodermal cardiac precursor cells found in the 
anterior lateral plate of the embryonic mesoderm. 
These progenitors will then migrate to the cranial 
and cranio-lateral regions of the developing 
embryo. The subsequent phases of cardiac devel-
opment can be divided into the following key 
steps, which warrant the correct formation and 
maturation of the three-dimensional structures of 
the heart: cardiac crescent (CS8), linear heart 
tube (CS9), cardiac looping (CS10), chamber 
formation (CS11-19), and maturation 
(CS20-birth).

In order to regulate the fate of the several pro-
genitor cells to eventually form the heart, non-
coding RNAs (ncRNAs) have been recognized to 
play a fundamental role in cardiac development 
and pathologies [1, 2], thanks to recent techno-
logical advances in sequencing and computa-
tional algorithms. Additionally, the discovery of 
ncRNAs has also expanded the functional com-
plexity of transcriptome, adding new molecular 
dimension to temporal regulation, cellular and 

Fig. 11.1  The interactions among miRNAs, lncRNAs and circRNAs during cardiac development: Cardiac crescent 
(CS8), linear heart tube (CS9), cardiac looping (CS10), chamber formation (CS11–19), and maturation (CS20-birth)
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tissue specificities and functional diversity in 
heart organogenesis [3, 4]. At genetic level, 
ncRNAs modulate gene expression patterns by 
interrogating transcription, chromatin modifica-
tion and post-transcriptional alterations [2]. First 
referred to as the ‘junk DNA’, a large part of the 
non-coding portion of the human genome (up to 
90%) has now been proven to be actively tran-
scribed into several types of ncRNAs which hold 
several biological functions throughout prenatal 
development and post-natal life [5, 6]. Based on 
the molecular length and function, three main 
categories of ncRNAs have been identified: long 
ncRNAs (lncRNAs; longer than 200 nucleo-
tides), microRNAs (miRNAs; maximum 22 
nucleotides long), and circular RNAs (circRNAs; 
formed by 1-5 exons).

The widest subgroup of ncRNAs consists of 
lncRNAs [7], mostly transcribed by RNA poly-
merase II, which causes them to undergo capping 
at 5′ end and polyadenylation at 3′ end. lncRNAs 
have a limited to absent protein-coding potential 
due to the lack of open reading frames. LncRNAs 
appeared to be critical regulators of gene expres-
sion in both transcription and post-transcription 
gene regulation events, with the majority of them 
exhibiting developmental stage-specific regula-
tion paralleling mRNA expression patterns [8]. 
They can act either in cis, in order to regulate the 
nearby genes, or in trans, which let them modu-
late the expression of the target genes by means 
of several mechanisms. These mechanisms 
include: DNA looping, recruiting chromatin 
modifiers and transcription factors, miRNA 
sponges, and influencing mRNA splicing, trans-
lation or degradation. Through genome-wide 
RNA sequencing, more than 100 annotated and 
newly described IncRNAs have been defined in 
the cardiac differentiation and maturation signa-
tures [9]. Nevertheless, the exact transcriptomic 
profiling and roles of lncRNAs during heart 
development (i.e. CMs differentiation, heart wall 
development, cardiac chamber and outflow tract 
formation, and cardiac cell electricphysiology 
and conduction) have not yet been detailed.

The mechanism of gene expression regulation 
by miRNAs, on the other hand, is at the post-
transcriptional level, with silencing of genes that 
occurs via targeting the protein-coding and non-
coding genes. Following synthesis of pri-
miRNAs by RNA polymerase II and III in the 
nucleus, the microprocessor complex Drosha-
Dgcr8 cleaves the pri-miRNAs into pre-miRNAs. 
These are then transported into the cytosol, where 
the Dicer-TRBP complex cleaves pre-miRNAs to 
form the mature 22 nucleotide-long miRNA mol-
ecules. Here, miRNAs will go through the RNA-
induced silencing complex, formed by the 
Argonaute proteins, which guides the miRNAs 
towards the target mRNA for its degradation [10, 
11]. The fundamental role played by miRNAs in 
cardiac development was proved by Dicer knock-
down in murine ESCs which, among other 
effects, led to cardiac development defects [12].

circRNAs are single-stranded circular RNAs 
predominantly found in the cytoplasm. Thanks to 
the absence of 5′ and 3′ ends, they have a more 
stable structure making them more resistant to 
the exonuclease-mediated degradation to which 
the other ncRNAs undergo. Based on the deriva-
tion sources, circRNAs can be categorized into: 
(1) circRNA derived from exons (ecircRNA; the 
most abundant form of circRNAs), (2) circRNA 
derived from lariat introns (ciRNA), and (3) cir-
cRNA derived from exons wih retained introns 
(ElciRNA) [13–15]. circRNA length ranges 
between 100–1000 bases  and, although their 
abundance is relatively low, some are expressed 
at higher levels compared to their linear tran-
scripts. Although circRNAs are ubiquitously 
expressed, they accumulate in fully differentiated 
somatic cells while being quite diluted in prolif-
erating cells including tumour cells. 
Mechanistically, it has been shown that circRNAs 
can act as miRNA sponges to counteract the inhi-
bition induced by the latter. Indeed, the pheno-
type induced by gain and loss of function 
esperiments in zebrafish indicated that a specific 
circRNA could have functions beyond sequester-
ing specific miRNAs [16]. As a single-stranded 
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RNA, circRNAs can bind  the trans 3’ UTRs of 
target mRNAs to concur in gene expression regu-
lation. In addition, circRNAs can be involved in 
the regulation of RNA-binding proteins [17]. 
Compared to lncRNAs and miRNAs, however, 
the functions of thousands of described circRNAs 
remain limited. Interestingly, based on deep RNA 
sequencing analysis, the top-expressed circRNAs 
in the human heart were associated with cardiac- 
or skeletal muscle genes including TTN, RYR2 
and DMD [18].

Since ncRNAs regulators have only been 
recently related to cardiac development and dis-
ease, a detailed understanding on the expression 
dynamic of these ncRNAs during each stages of 
the embryonic heart development is quintessen-
tial. Thus, in this chapter we will summarize the 
roles that ncRNAs play in the development of the 
heart.

2	 �From Cardiac Crescent 
to Looping Heart Tube: 
The Role of ncRNAs

In the early stages of development, the cardiac 
precursor cell population is found in the two 
symmetrical sides of the lateral plate mesoderm 
of the flat tri-laminar disc. At CS8 (human 
15–20 days, mouse E7.5), the lateral plate gets 
divided by the intraembryonic coelom in two 
layers, i.e. the somatic and the splanchnic meso-
derm. Once the two sides start merging, the 
splanchnic mesoderm merges cranially and 
forms a horseshoe-shaped field named the car-
diac crescent. The cells that form the cardiac 
crescent are termed the first heart field (FHF) 
and will contribute to the left ventricle and atrio-
ventricular canal [19]. At the medial sides of the 
cardiac crescent processes, a separate popula-
tion of cells forms the second heart field (SHF) 
which will contribute to the outflow tract myo-
cardium, right ventricle and both atria. Cells 
derived from the FHF will first fuse at the mid-
line to form the linear heart tube at CS9, after 

which SHF cells will add to the heart tube and 
increase it in size. Subsequently, the heart tube 
loops at CS10 [20].

Several genes are expressed in the committed 
mesodermal cells towards cardiac lineage. The 
earliest genes involved in commitment of embry-
onic stem cells (ESCs) towards cardiac meso-
derm are the transcription factor Brachyury and 
eomesodermin (Eomes). Both Brachyury and 
Eomes are critical for the primitive streak pat-
terning and the mesendoderm specification in the 
early embryo. In particular, Eomes is the key 
transcription factor required for the formation of 
either endoderm or cardiovascular mesoderm 
according to a high or low level of Activin, 
respectively. Following commitment to meso-
derm, Eomes will then induce the expression of 
Mesp1 [21], which will eventually start the car-
diovascular differentiation [22].

Several ncRNAs collaborate with Eomes in 
the early commitment of ESCs towards cardiac 
mesoderm. For instance, the exon 2 of lncRNA 
linc1405 was shown to co-localize with Eomes in 
the primitive streak and played a major role in the 
activation of Mesp1-mediated cardiac mesoderm 
specification of ESCs [23]. The lncRNA Fendrr 
(ENSMUSG00000097336) was shown to be 
expressed in EOMES-positive cells at E6.5-7, 
with its loss resulted in embryonic lethality in 
mice [24]. Finally, it has been reported that other 
lncRNAs and circRNAs are either transcription-
ally regulated (LINC00467) or co-expressed 
(RP3428L16.2, RP11829H16.3; circPSD3, circ-
SLC39A8, circALMS1) with EOMES in human 
cardiac progenitors [25].

Mesp1-expressing cells contribute to FHF and 
SHF derivatives, which will eventually give rise 
to the three main compartments of the heart, i.e. 
cardiac muscle (made by CMs), vessels (endo-
thelial cells) and epicardium [26, 27]. 
Downstream of Mesp1, the FHF expresses the 
transcription factors Nkx2.5, Hand1 and Tbx5 
[28, 29], while SHF expresses Nkx2.5, Gata4/6, 
Hand2, Tbx1/2, Mef2c and Isl1 [30–36].

Upon fusion at the midline of the cell popula-
tions derived from the FHF, the heart tube forms 
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(CS9, mouse E8, human day 21), and CMs arrest 
the proliferation process. SHF precursor cells 
simultaneously migrate from the pericardium to 
the heart tube at the venous and arterial poles 
[36]. As they are mediated by WNT/β-catenin 
signaling [37], they proliferate at high rates and 
thus contribute to the heart tube’s growth. During 
their addition to the heart tube, the SHF-derived 
CMs temporarily stop proliferating. Noncanonical 
WNT and Notch signaling also regulate 
differentiation during second heart field deploy-
ment [38, 39].

For the expression of Mesp1, the downregula-
tion of miR-142-3p during ESC differentiation is 
required. Conversely, Mesp1 activates the miR-
322/-503 cluster during the heart looping [40]. In 
mice, the lncRNA Braveheart (Bvht, AK143260) 
is required to induce Mesp1, and the depletion of 
Bvht in mouse ESCs impairs the formation of 
CMs. Intriguingly, to date the transcript of Bvht 
has not yet been identified in human. Conversely, 
the lncRNA Carmen was seen to be conserved 
from mouse to human, and its expression is 
induced between the mesodermal and cardiac 
progenitor stage. Similar to Bvht, depletion of 
Carmen was associated with a significant reduc-
tion in the expression of differentiation makers 
and cardiac transcription factors, including 
NKX2.5, TBX5, GATA4, MYH6, MYH7, and 
TNNI [41]. Moreover, the expression of the mas-
ter cardiac transcription factor  – Nkx2.5 was 
modulated by novlnc6 which influenced the 
expression of BMP10 (a key signaling ligand for 
cardiogenesis during embryonic stem cell cardiac 
differentiation) [42].

Mesp2 has redundant functions compensating 
for Mesp1 upon knock-out of the latter [43, 44]. 
However, Mesp1 plays a major role in the motil-
ity of progenitors required for the correct cell 
migration and cardiac development [45]. A group 
of ncRNAs were reported to be co-expressed 
with MESP2 in the early cardiac mesoderm (cir-
cPSD3; RP11445F12.1, RP11445F12.2, 
RP3428L16.2, LINC00467) [25].

The T-box family genes start being expressed 
in the FHF and SHF. In the FHF, Tbx5 expression 

is modulated by miR-218 family, with the over-
expression of Tbx5 affecting heart development 
in both humans and mice, resulting in heart 
chamber abnormalities and heart-looping defects 
[46]. Intriguingly, the ectopic expression of 
Gata4 and Tbx5, combined with chromatin 
remodeling component Baf60c/Smarcd3, was 
shown to induce beating myocardium in meso-
derm [47]. Conversely, in the SHF TBX1 inter-
feres with BMP signaling cascade components 
and has a negative regulatory effect on Mef2c 
transcript and SRF protein levels [48–50]. The 
subsequent differentiation of the myocardium at 
the arterial pole of the heart tube is reinforced by 
BMP which drives the miRNA 17-92-mediated 
repression of Isl1 and Tbx1 [25]. Repression of 
Tbx1 during heart maturation is of utmost impor-
tance, as its overexpression leads to Gata4 and 
Mef2c downregulation with subsequent blockage 
of the cardiac differentiation pathway [51]. This 
finding is corroborated by the required upregula-
tion of MEF2C during induction of cardiac dif-
ferentiation of the human embryonic stem cells 
which was found to be modulated via overex-
pression of miRNA-499 and miRNA-1 [52].

SHF and neural crest cells involved in cardiac 
development are characterized by the expression 
of Isl1 [53, 54] although it has been shown to be 
transiently expressed in FHF cells as well, albeit 
with no related function [33, 55]. A group of 
ncRNAs were shown to be co-expressed 
(MEIS1-AS2; circ-PTPN13, circ-ENC1, circ-
PPP2R3A, circ-FUT8) or transcriptionally regu-
lated (LINC01021, AC009518.4) with ISL1 in 
human cardiac progenitors [25, 55]. ISL1 is tar-
geted by miR-17-92 to promote differentiation of 
the myocardium at the arterial pole in the final 
stages of maturation [51]. Finally, the expression 
of HAND2 – critical for ventricular CMs expan-
sion – is initially discovered in the cardiac cres-
cent at E7.75 and will continue throughout the 
linear heart tube at E8.5. It has been recently 
shown that the lncRNA Uph (also named 
Hand2as or lncHand2), playing critical roles in 
the regulation of the precise expression of 
HAND2, together with miR-1-2 family in loop-
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ing heart, to eventually lead to chamber forma-
tion [56, 57].

Myocardin (Myocd) is a master regulator of 
the smooth muscle cell phenotype. It is 
expressed in cardiac crescent and it coactivates 
several factors including Gata4, Tbx5, serum 
response factor (Srf)  – which regulates 
BMP10 in cardiac maturation – and MEF2 [58, 
59]. MYOCD is activated by lncRNAs 
MYOSLID [60] and SENCR, although the lat-
ter has an indirect influence on it. In mice, 
mm67 and mm85 have been shown to activate 
Myocd. In subsequent stages, Myocd is shown 
to be modulated by miR-1 [61], and miR-214 
has been shown to indirectly regulate its expres-
sion [62, 63]. Myocardin is required for CMs 
survival and heart function maintenance after 
birth [64]. Finally, for the correct formation of 
heart and vessels the lncRNA ALIEN was iden-
tified in mesendodermal tissues between car-
diac crescent and heart tube [3].

In the looping heart, miR-1-2 family targets 
NOTCH ligands, HDAC4, Hand2, MEF2 and 
SRF to eventually allow the progenitor cells to 
proliferate and differentiate. The miR-1/133a 
cluster is positively regulated by Myocd, which 
aids in the specification of immature embryonic 
CMs into fetal ones [61, 65]. miR-1 is polycis-
tronically clustered on the same chromosome 
with miR-133, however they have different – and 
sometimes opposing – effects during cardiac dif-
ferentiation. The deletion of miR-133a genes led 
to ventricular septal defects and abnormal cardio-
myocytic proliferation which eventually leading 
to neonatal death [66]. However, its overexpres-
sion in mouse and human ESCs caused the 
repression of cardiac markers [67, 68].

Another miRNA involved in the looping of the 
heart is miR-499, encoded by Myh7b. In vitro, its 
overexpression was shown to speed up the beat-
ing embryoid bodies formation while its inhibi-
tion blocked cardiac differentiation [65].

During cardiac differentiation, several cir-
cRNAs were seen to be overexpressed. Circ-
SLC8A1-1 is expressed from the gene NCX1 
(Na+/Ca++ exchanger, also known as SLC8A1) 

during CMs differentiation in hESC and mouse 
[69]. In a study comparing human, mice and rat 
hearts, circSLC8A1-1 was shown to be the most 
abundant circRNA in the hearts [70]. Intriguingly, 
upregulation of circ-SLC8A1 was observed in the 
DCM [71]. Other reported circRNAs during car-
diac differentiation include circ-TTN-90, circ-
TTN-275, circ-TPM1-1, circ-HIPK3-2, 
circ-EXOC6B-14, circ-MB-2, circ-ALPK2-2, 
circ-MYBPC3-3, circ-NEBL-19 and circ-
RYR2-113 in hESC differentiating towards CMs 
[18]. On the contrary, the circr-Foxo3 was found 
to interact with multiple stress- and senescence-
related factors (e.g. ID-1, E2F1 and FAK), which 
was highly associated with heart samples from 
both aged patients and mice [72].

3	 �Chamber Formation 
and the Final Phases of Heart 
Maturation

It is perceivable that heart being a mechanical 
pump requires three-dimensionality (in term of 
chambers, valves, septation and blood vessels) to 
fullfil its biological functions, and cardiac func-
tion dictates its form to a large extent. Hence, the 
formation and maturation of the heart structure 
are highly associated with the contractile force 
and hemodynamic demands towards the systemic 
circulation, in addition to influences by other fac-
tors such as oxygen gradient and nutrient enviro-
ment. In the final stages of heart formation, the 
major contribution in cardiac growth comes from 
the intracardiac myocardial cells. In particular, 
the ventricular and atrial myocardium arises from 
the outer curvature of the heart, whereas the car-
diac cushion develops from the endocardium 
beneath the atrioventricular canals and outflow 
tract myocardium [73].

Many transcriptional regulation in organogen-
esis involve members of the ancient family of 
T-box transcription factors, including the specifi-
cation of cardiac chambers and the conduction 
system [74]. Herein, the T-box activators and 
repressors work together for the cardiac balloon-
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ing by inducing cardiac cushions (TBX2 and 
TBX3) limited to the atrioventricular canal 
(TBX20 and TBX5). Several circRNAs have 
been seen to co-express with TBX5, including 
circ-HIPK3, circ-PLOD2_1, circ-RHOBTB3, 
circ-PSMB1, circ-SLC8A1_1 and circ-
MYH6/7_1. Similarly, the expression of TBX2 
was seen to co-express with several lncRNAs and 
circRNAs, including TTN-AS1, RP11-617F23.1, 
circ-PHKB_1, circ-HIPK3, circ-SLC8A1_1, circ-
MYH6/7_1 and circ-PALM2 [25]. Cells that are 
originating from TBX2-expressing prognitors 
will contribute to right and left ventricular walls 
[19], and the repressive interaction of Tbx20 
upstream of Tbx2 underlie the primary lineage 
specification to chamber and non-chamber myo-
cardium, thereby determining heart integrity and 
contractile function [75]. Moreover, the chamber 
formation is also mediated by the expression of 
several key regulators, including Gata4, Nkx2.5, 
Tbx5, dHand, eHand, Pitx2, MEF2C, and  Irx4 
[76]. Intriguingly, analysis of paired human atrial 
and ventricular samples revealed that 17–28% of 
the total lncRNA transcripts were differentially 
regulated in the four chambers, vastly attributed 
to their distinctive roles in cardiac functions [77]. 
The lncRNA uc.457 has also been associated 
with ventricular septal defect in human, and was 
recently revealed to regulate proliferation and 
differentiation of CMs by inhibiting the protein 
expression of histone cell cycle regulation defec-
tive homolog a, cardiac muscle troponin T, natri-
uretic peptide A and mef2C, respectively [78].

Chamber-specific expression of miRNA sig-
natures in human heart has also been reported 
recently [79]. By performing miRNA deep 
sequencing, Kakimoto Y et al. revealed that the 
miRNA-1 was the most abundant in both atrial 
(21%) and ventricular (26%) chambers, and the 
miRNA-208 family showed prominent chamber 
specificity in the atrial (miRNA-208b-3p and 
miRNA-208a-3p) and ventricle (miRNA-208-3p 
and miRNA-208b-5p). In zebrafish, it has been 
shown that the miRNA-143-adducin3 is essential 
for chamber morphogenesis through direct inhi-
bition of adducin3 which encodes an F-actin cap-

ping protein. Disruption of this miRNA led to 
ventricular collapse and decreased contractility 
[80]. The miRNA-138 is another molecule that is 
required to establish appropriate gene expression 
restricted to the atrio-ventricular valve region, 
and its dysregulation caused abnormal ventricu-
lar formation [81]. For cardiac valvulogenesis, 
Kopla HJ et al. reported that the miRNA-21 was 
necessary for proper development of the atrio-
ventricular valve by repressing the tumor sup-
pressor programmed cell death 4 (PDCD4b) 
expression, since miRNA-21 expression is known 
to be restricted to valvular endothelium and 
implicated in the response to several forms of 
cardiac stress [82].

During perinatal transition of heart, matura-
tion of the cardiac tissue is required to warrant 
functional adaptation of the changes in nutrient 
environment and hemodynamic load after birth. 
The maturation and final septation of the heart 
requires, together with Gata4, Nkx2-5 and Tbx5, 
the expression of RxRa, FOG-2, Pitx2, Sox4, 
NF-Atc, TEF-1, Tbx1, Hey2, CITED, and ZIC3 
[76]. At the cellular level, majority of CMs 
undergo dramatic changes in the morphology, 
proliferation, gene expression and metabolism. 
Therefore, any abberant transcriptional pertuba-
tion occur at this stage often lead to congenital 
heart defects. In fact, during CM maturation 
many lncRNAs are strictly regulated by matura-
tion stage-specific transcription factors. For 
instances, it has been reported that approximately 
70% of the lncRNAs that were highly expressed 
at CM maturation stage could bind to NFAT – an 
important CM maturation regulator when cou-
pled with calcineurin [25]. Abnormal NFAT sig-
naling causes pathological cardiac hypertrophy 
and heart failure. Of all lncRNAs, 90% of them 
are enriched for the MEIS1 motif which has been 
implicated in heart development [83].

Furthermore, a recent study reported a high-
resolution landscape on neonatal cardiac 
lncRNAs interactions with neighboring tran-
scriptomic molecules during cardiac maturation 
and postnatal stress in murine [8]. Specifically, 
the study revealed the Ppp1r1b-lncRNA as a reg-
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ulator of its partner gene Tcap which encodes the 
muscle protein titin and the expression ratio of 
Ppp1r1b-lncRNA/Tcap could be used as a molec-
ular signature for ventricular septum defect in 
human infantile hearts. Impuls conduction 
through the heart is the fundamental phenome-
non of a synchronized muscle fiber contraction, 
proper transcriptional regulation of muscle fiber 
assembly and maturation is of quintessential. In 
this context, the cardiac conduction regulatory 
RNA (lncRNA-CCRR) was found to control car-
diac conduction by promoting binding of con-
nexin43 to the interacting protein CIP85. 
Silencing or knockdown lncRNA-CCRR causes 
malformation of intercalated discs and gap junc-
tions that slow longitudinal cardiac conduction 
[84]. Other examples of lncRNAs that regulates 
CMs proliferation, differentiation and maturation 
includes uc. 40, uc.167, uc.245 and TUC40 
[85–88].

In term of miRNA modulation, miRNA-27b 
has been reported to play critical roles in skeletal 
muscle development [89], and it is robustly 
expressed within the myocardium in the adult 
heart [90]. Via microarray analysis, Chinchilla A 
et al. found that relatively few miRNAs display 
discrete peak of decreasing or increasing expres-
sion profiles during ventricular maturation. In 
particular, the miRNA-27b (an early stage 
marker of ventricular chamber formation) dis-
plays an overt myocardial expression during car-
diogenesis, and it regulates the cardiac 
myogenesis transcription factor – Mef2c without 
disturbing the expression of other cardiac genes 
[91]. This specific role of miRNA-27b on Mef2c 
suggests potential therapeutic for cardiac hyper-
trophy. Interestingly, the miRNA-27a exhibited a 
strongly upregulatory role on the β-MHC gene 
by targeting the thyroid hormone receptor β1 
(TRβ1) in ventricular CMs [92]. The miRNA-
143 plays an essential role in mechanotransduc-
tion pathway, in particular on circulatory 
adaptation and regulation between the outflow 
tracts and ventricles by suppressing retinoic acid 
signaling [93]. Besides miRNA itself, the 

miRNA-processing enzyme Dicer also plays a 
critical role in promoting cardiac outflow tract 
aligment and chamber septation by upregulating 
the morphogen Pitx2c and Sema3c. Due to 
impairment of miRNA processing at later-stage, 
cardiac-specific Dicer deficiency mice exhibited 
misexpression of cardiac contractile proteins and 
rapidly developed dilated cardiomyopathy, heart 
failure and postnatal lethality [94]. Moreover, 
the miRNA-208a is reported as a novel modula-
tor of cardiac hypertrophy and electrical conduc-
tion. Overexpression of miRNA-208a (which is 
encoded within an intron of α-cardiac muscle 
myosin heavy chain gene (Myh6)) in mice 
induced muscle hypertrophy and arrhythmias, 
whereas sufficient level of miRNA-208a expres-
sion was required for proper cardiac conduction 
and the expression of cardiac genes such as 
GATA4 and connexin 40 [95].

The miRNAs also play important roles in car-
diac extracellular matrix remodeling. For 
instances, the miRNA-133 and miRNA-30 were 
reported to directly downregulate connective tis-
sue growth factor (CTGF), which is a key mole-
cule in maintaining proper extracellular matrix 
remodeling in myocardium [96]. Overexpression 
of these miRNAs resulted in low CTGF level 
accompanied by decreased production of colla-
gen, whereas knocking down their expression 
causing cardiac fibrosis. Furthermore, in CMs 
derived from rats at 4  weeks, the miRNA-29a 
was found to be differentially upregulated which 
inversely regulated CMs proliferation by target-
ing to Cyclin D2 (CCND2) [97]. This finding 
suggest an inhibition role of miRNAs in CMs 
proliferation during postnatal development. The 
circRNAs play a critical role in cardiac cell speci-
fication from cardiac progenitor cells to CMs. It 
is reported that nearly 500 and 200 circRNAs 
were positively (e.g. circ-SLC8A1-1, circ-
TTN-275, and circ-ALPK2-1) and negatively 
(e.g. circ-DNMT3B-4, circ-OSBPL10 and circ-
FGD4-7) correlated to the differentiation of 
human embryonic stem cells to CMs [13, 18]. Of 
interest, the circ-TTN was differentially expressed 
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in neonatal and adult rat hearts [70] and revealed 
to be co-expressed with MYL4  – mutation of 
which leads to abberant sarcomere formation, 
atrial enlargement and fibrillation [98]. By cir-
cRNA profiling, circ-TTN expression was 
dynamically regulated in mice with dilated car-
diomyopathy, and largely downregulated in mice 
lacking the RNA-binding motif protein 20 
(RBM20), suggesting a novel mechanistic 
insights for diated cardiomyopathy [99]. 
Expression of other circRNAs, such as circ-
SLC8A1, circ-CHD7, circ-ATXN10 and circ-
DNAJC6 was also found to be prominent in 
patients with dilated cardiomyopathy [100].

4	 �Future Perspectives

ncRNAs have gained interest in the past decades 
due to their role in modulating cell fate at a post-
transcriptional level. The modulation occurring 
in the prenatal life at the embryo level helps us 
shedding a light on the tuning required for the 
proper formation of the heart and the other 
organs. More importantly, it gives us the possibil-
ity to better understand how congenital heart dis-
eases occur.

Potentially, ncRNAs could be used both for 
diagnostic and therapeutic purposes. In this view, 
the fact that circRNA concentration profiles 
change during cardiac development and disease 
independently from their host gene expression, 
they represent novel and more stable biological 
markers. Although they are still at their infancy, 
artificial circRNAs similarly to miRNA mimics 
and antagomirs could represent promising tools 
in regenerative medicine since they are highly 
stable and can regulate a wide range of cellular 
functions. Recent studies have highlighted the 
extensive network of interactions among microR-
NAs, lncRNAs and circRNAs, forming crucial 
regulatory axis participating in the modulation of 
cardiac differentiation [101].

In order to obtain mature CMs from induced 
pluripotent stem cells (iPSCs), Miyamoto has 
recently shown that the use of Gata4-Mef2c-
Tbx5, or GMT, led to the correct formation of 
cardiac cells [102, 103]. Emerging literature is 
showing the cardiac differentiation potential of 
PSCs but also the limitations to generate fully 
mature CMs to model cardiac diseases or for 
drug screening porpuses. Specific ncRNAs con-
trol and promote the differentiation of PSCs and 
mesodermal progenitors into CMs and the use of 
microvesicles to transfer those peculiar ncRNAs 
is a fascinating possibility to better coordinate 
cardiogenic maturation of healthy and pathologi-
cal progenitor cells. This will be critical to better 
understand the role of ncRNAs in the regulation 
of cardiovascular system development and even-
tually in the progression of cardiovascular 
disease.

World-leading laboratories are investing in 
gene editing, mainly in CRISPR/Cas9 technol-
ogy, to edit efficiently any genomic locus with 
high DNA sequence specificity and possibly 
without undesired byproducts. However, 
CRISPR/Cas9 technology is still a very young 
gene-editing technology that can result in off-
target effects with unexpected consequence and 
the long-term impact of genetic alteration on 
future generations is yet unknown. In addition, 
small indels generated by CRISPR/Cas9 system 
can alter or prevent functional modifications of 
ncRNAs or affect overlapping/adjacent genes 
in  loci characterized by bidirectional promoters 
or sense/antisense genes (where lncRNAs are 
generated) [104]. Although a prudent path should 
be considered for CRISPR/Cas9-based in vivo 
applications, these novel gene editing approaches 
will allow us to perform more precise perturba-
tion studies to uncover the basic principles of car-
diac development and better collocate 
transcription factors, ncRNA networks and 
molecular pathways that contribute to CM matu-
ration (Table 11.1).
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