
Chapter 9
Numerical Simulation of Stochastic
Point Kinetics Equation in the Dynamical
System of Nuclear Reactor

9.1 Introduction

In nuclear reactor dynamics, the point kinetics equations are the coupled differential
equations for the neutron density and for the delayed neutron precursor concen-
trations. The point kinetics equations are the most vital model in nuclear engi-
neering, and these equations model the time-dependent behavior of a nuclear
reactor [1–4]. The time-dependent parameters in this system are the reactivity
function and neutron source term. The dynamical process described by the point
kinetics equations is stochastic in nature, and the neutron density and delayed
neutron precursor concentrations vary randomly with time. At high power levels,
random behavior is negligible. But at low power levels, such as at the beginning,
random fluctuation in the neutron density and neutron precursor concentrations can
be significant.

The point kinetics equations model a system of interacting populations,
specifically the populations of neutrons and delayed neutron precursors. In this
chapter, the physical dynamical system identified as a population process and the
point kinetics equations have been analyzed to transform into a stochastic differ-
ential equation system that accurately models the random behavior of the process.

In the present chapter, the Euler–Maruyama method and Taylor 1.5 strong order
approximation method have been applied efficiently and conveniently for the
solution of stochastic point kinetics equation. The resulting systems of stochastic
differential equations are solved over each time-step size in the partition. In the
present investigation, the main attractive advantage, of these computational
numerical methods, is their elegant applicability for solving stochastic point kinetics
equations in a simple and efficient way.
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9.2 Outline of the Present Study

In the present chapter, the numerical approximation methods, applied to efficiently
calculate the solution for stochastic point kinetics equations [1, 3] in nuclear reactor
dynamics, are investigated. A system of Itô stochastic differential equations has
been analyzed to model the neutron density and the delayed neutron precursors in a
point nuclear reactor. The resulting system of Itô stochastic differential equations is
solved over each time-step size. The methods are verified by considering different
initial conditions, experimental data, and over-constant reactivities. The computa-
tional results indicate that the methods are simple and worthy for solving stochastic
point kinetics equations. In this work, a numerical investigation is made in order to
observe the random oscillations in neutron and precursor population dynamics in
subcritical and critical reactors.

9.3 Strong and Weak Convergence

In this section, a brief discussion on strong convergence and week convergence has
been presented.

9.3.1 Strong Convergence

A discrete-time approximation method is said to converge strongly to the solution X
(t) at time t if

lim
Dt�[ 0

E XðtÞ � bXðtÞ��� ��� ¼ 0 ð9:1Þ

where bXðtÞ is the approximate solution computed with constant step size Dt and
E denotes expected value.

A SDE method converges strongly with order a if the expected value of the error
is of ath order in the step size, i.e., if for any time t

E XðtÞ � bXðtÞ��� ��� ¼ OððDtÞaÞ ð9:2Þ

for sufficiently small step size Dt [5].
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9.3.2 Weak Convergence

A discrete-time approximation bXðtÞ with constant step size Dt is said to converge
weakly to the solution X(t) at time t if

lim
Dt�[ 0

E f ðXðtÞÞð Þ � E f ðbXðtÞÞ� ���� ��� ¼ 0 ð9:3Þ

for all smooth functions f in some class.
A SDE method converges weakly with order a if the error in the moments is of

ath order in the step size

E f ðXðtÞÞð Þ � E f ðbXðtÞÞ� ���� ��� ¼ OððDtÞaÞ ð9:4Þ

for sufficiently small step size Dt [5].
In other words, for a given time discretization t0\t1\. . .\tn ¼ T ,

• A method is said to have strong order of convergence a if there is a constant
K > 0 such that

sup
tk

E Xtk � bXtk

��� ���\K Dtkð Þa

• A method is said to have weak order of convergence a if there is a constant
K > 0 such that

sup
tk

E½Xtk � � E½bXtk �
��� ���\K Dtkð Þa;

where Dtk ¼ tk � tk�1; Xtk and bXtk represents the exact solution and approximate
solution at time tk:

The Euler–Maruyama method has strong convergence of order a = 1/2, which is
poorer of the convergence for the Euler method in the deterministic case, which is
order a = 1. However, the Euler–Maruyama method has week convergence of order
a = 1.

9.4 Evolution of Stochastic Neutron Point Kinetics Model

It is the most vital part of nuclear reactor dynamics, to derive the point kinetics
equations in order to separate the birth and death process of neutron population. It
will help us to form a stochastic model. The deterministic time-dependent equations
satisfied by the neutron density and the delayed neutron precursors are as follows [1]
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@N
@t

¼ Dmr2N � ðRa � RfÞmNþ ½ð1� bÞk1Ra � Rf �mNþ
X
i

kiCi þ S0; ð9:5Þ

@Ci

@t
¼ bik1RamN � kiCi; i ¼ 1; 2; . . .;m; ð9:6Þ

where N(r,t) is the neutron density at a point r at time t. The coefficients
D; m; Ra and Rf are, respectively, diffusion constants, the neutron speed, the
macroscopic neutron absorption, and fission cross sections. The capture cross
section is Ra � Rf . If b ¼Pm

i¼1 bi is the delayed neutron fraction, the prompt
neutron contribution to the source is ½ð1� bÞk1Ra � Rf �mN and the prompt neutron
fraction is ð1� bÞ. The number of neutrons produced per neutrons absorbed is k1
(also called infinite-medium reproduction factor). The rate of transformations from
neutron precursors to the neutron population is

Pm
i¼1 kiCi where the delayed con-

stant is ki and Ciðr; tÞ is the density of the ith type of precursor for i ¼ 1; 2; . . .;m.
Sources of neutrons extraneous to the fission process are represented by S0ðr; tÞ.

In the present analysis, captures (or leakages) of neutrons are considered as
deaths. The fission process is considered a pure birth process where mð1� bÞ � 1
neutrons are born in each fission along with precursor fraction mb.

Let us assume that N ¼ f ðrÞnðtÞ and Ci ¼ giðrÞciðtÞ are separable in time and
space where nðtÞ and ciðtÞ are the total number of neutrons and precursors of the ith
type at time t, respectively.

Using these, Hetrick [1] and Hayes et al. [4] derived the deterministic point
kinetics equation as

dn
dt

¼ � �qþ 1� a
l

� �
nþ 1� a� b

l

� �
nþ

Xm
i¼1

kici þ q; ð9:7aÞ

dci
dt

¼ bi
l
n� kici; i ¼ 1; 2; . . .;m; ð9:7bÞ

where qðtÞ ¼ S0ðr;tÞ
f ðrÞ , q is reactivity, neutron generation time l ¼ 1

k1mRa
, a is defined as

a ¼ Rf

Rak1
� 1

m, and v is the average number of neutrons per fission. Here, n(t) is the
population size of neutrons and ciðtÞ is the population size of the ith neutron
precursor. The neutron reactions can be separated into three terms as follows:

dn
dt

¼ � �qþ 1� a
l

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

deaths

nþ 1� a� b
l

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

births

nþ
Xm
i¼1

kici|fflfflffl{zfflfflffl}
transformations

þ q;

dci
dt

¼ bi
l
n� kici; i ¼ 1; 2; . . .;m:
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The neutron birth rate due to fission is b ¼ 1�a�b
lð�1þð1�bÞmÞ, where the denominator

has the term ð�1þð1� bÞmÞ which represents the number of neutrons (newborn)
produced in each fission process. The neutron death rate due to captures or leakage
is d ¼ �qþ 1�a

l . The transformation rate kici represents the rate that the ith precursor
is transformed into neutrons and q represents the rate that source neutrons are
produced.

To derive the stochastic dynamical system, we consider for simplicity only one
precursor, i.e., b ¼ b1, where b is the total delayed neutron fraction for one
precursor.

The point kinetics equations for one precursor are as follows

dn
dt

¼ �qþ 1� a
l

� �
nþ 1� a� b

l

� �
nþ k1c1 þ q;

dc1
dt

¼ b1
l
n� k1c1:

Now, we consider in the small duration of time interval Dt where probability of
more than one occurred event is small. There are four different possibilities for an
event at this small time Dt. Let Dn;Dc1½ �T be the change of n and c1 in time Dt
where the changes are assumed approximately normally distributed. The four
possibilities for Dn;Dc1½ �T are

E1 ¼
Dn

Dc1

" #
1

� �1

0

" #
;

E2 ¼ Dn
Dc1

� �
2
� �1þð1� bÞm

b1m

� �
;

E3 ¼
Dn

Dc1

" #
3

� 1

�1

" #
;

E4 ¼
Dn

Dc1

" #
4

� 1

0

" #
;

where the first event E1 denotes a death, the second event E2 represents birth of
ð�1þð1� bÞmÞ neutrons and b1m delayed neutron precursors produced in the
fission process, the third event E3 represents a transformation of a delayed neutron
precursor to a neutron, and the last one E4 event represents a neutron source. The
respective probabilities of these events are

PðE1Þ ¼ nDtd;
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PðE2Þ ¼ nDtb ¼ 1
ml
nDt ; since b ¼ 1� a� b

lð�1þð1� bÞmÞ and a ¼ Rf

Rak1
� 1

m

PðE3Þ ¼ c1Dtk1;

PðE4Þ ¼ qDt:

In this present analysis, it is assumed that the extraneous source randomly
produces neutrons following Poisson process with intensity q.

According to our earlier assumption, the changes in neutron population and
precursor concentration are approximately normally distributed with mean

E
Dn

Dc1

" # !
and variance Var

Dn

Dc1

" # !
.

Here, the mean change in the small interval of time Dt

E
Dn
Dc1

� �� 	
¼
X4
k¼1

Pk
Dn
Dc1

� �
k
¼

q�b
l nþ k1c1 þ q

b1
l n� k1c1

" #
Dt;

and the variance of change in small time Dt

Var
Dn

Dc1

" # !
¼ E

Dn

Dc1

" #
Dn Dc1½ �

 !
� E

Dn
Dc1

� �� 	� 	2

¼
X4
k¼1

Pk
Dn

Dc1

" #
k

Dn Dc1½ �k¼ bBDt;
where

bB ¼ cnþ k1c1 þ q b1
l �1þð1� bÞmð Þn� k1c1

b1
l �1þð1� bÞmð Þn� k1c1

b21m
l nþ k1c1

" #
;

where

c ¼ �1� qþ 2bþð1� bÞ2m
l

:
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Now, by central limit theorem, the random variate

Dn
Dc1

� �
� E

Dn

Dc1

" # !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Dn
Dc1

� �� 	s

follows standard normal distribution. The above result implies

Dn
Dc1

� �
¼ E

Dn

Dc1

" # !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Dn
Dc1

� �� 	s
g1
g2

" #
; where g1; g2 �Nð0; 1Þ ð9:8Þ

Thus, we have

nðtþDtÞ
c1ðtþDtÞ

" #
¼ nðtÞ

c1ðtÞ

" #
þ

q� b
l

nþ k1c1

b1
l
nþ k1c1

2664
3775Dtþ q

0

" #
Dtþ bB1=2

ffiffiffiffiffi
Dt

p g1
g2

" #
;

ð9:9Þ

where bB1=2 is the square root of the matrix bB. Dividing both sides of Eq. (9.9) by Dt
and then taking limit Dt ! 0, we achieve the following Itô stochastic differential
equation system

d
dt

n

c1

" #
¼ bA n

c1

" #
þ q

0

" #
þ bB1=2 dW

!
dt

; ð9:10Þ

where

bA ¼
q�b
l k1
b1
l �k1

" #
;

bB ¼ cnþ k1c1 þ q b1
l �1þð1� bÞmð Þn� k1c1

b1
l �1þð1� bÞmð Þn� k1c1

b21
l nþ k1c1

" #
;

and

W
!ðtÞ ¼ W1ðtÞ

W2ðtÞ

" #
;
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where W1ðtÞ and W2ðtÞ are Wiener processes. Equation (9.10) represents the
stochastic point kinetics equations for one precursor. Now generalizing the above
argument to m precursors, we can obtain the following Itô stochastic differential
equation system for m precursors

d
dt

n

c1
c2

..

.

cm

266666664

377777775 ¼ bA
n

c1
c2

..

.

cm

266666664

377777775þ

q

0

0

..

.

0

266666664

377777775þ bB1=2 dW
!
dt

: ð9:11Þ

In Eq. (9.11), bA and bB are as follows

bA ¼

q�b
l k1 k2 � � � km
b1
l �k1 0 � � � 0

b2
l 0 �k2 . .

. ..
.

..

. ..
. . .

. . .
.

0
bm
l 0 � � � 0 �km

266666664

377777775; ð9:12Þ

bB ¼

f a1 a2 � � � am
a1 r1 b2;3 � � � b2;mþ 1

a2 b3;2 r2 . .
. ..

.

..

. ..
. . .

. . .
.

bm;mþ 1

am bmþ 1;2 � � � bmþ 1;m rm

26666664

37777775; ð9:13Þ

where

f ¼ cnþ
Xm
j¼1

kjcj þ q;

c ¼ �1� qþ 2bþð1� bÞ2m
l

;

aj ¼
bj
l
ð�1þð1� bÞmÞn� kjcj;

bi;j ¼
bi�1bj�1m

l
n;
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and

ri ¼ b2i m
l

nþ kici:

Equation (9.11) represents the generalization of the standard point kinetics model
since for bB ¼ 0, it reduces to the standard deterministic point kinetics model [3].

9.5 Application of Euler–Maruyama Method and Strong
Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

The stochastic point kinetics equations for m delayed groups are as follows

d x!
dt

¼ A x!þBðtÞ x!þ F
!ðtÞþ bB1=2 dW

!
dt

; ð9:14Þ

where B̂ is given in Eq. (9.13),

x!¼

n

c1
c2

..

.

cm

266666664

377777775; ð9:15Þ

A ¼

�b
l k1 k2 � � � km
b1
l �k1 0 � � � 0

b2
l 0 �k2 . .

. ..
.

..

. ..
. . .

. . .
.

0
bm
l 0 � � � 0 �km

266666664

377777775; ð9:16Þ

BðtÞ ¼

qðtÞ
l 0 0 � � � 0
0 0 0 � � � 0

0 0 0 . .
. ..

.

..

. ..
. . .

. . .
.

0
0 0 � � � 0 0

2666664

3777775; ð9:17Þ
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and

F
!ðtÞ ¼

qðtÞ
0

0

..

.

0

266666664

377777775: ð9:18Þ

It can be noticed that bA ¼ AþBðtÞ.

9.5.1 Euler–Maruyama Method for the Solution
of Stochastic Point Kinetics Model

This method is also known as order 0.5 strong Itô–Taylor approximation. By
applying Euler–Maruyama method in Eq. (1.142) of Chap. 1 into Eq. (9.14), we
obtain

x!iþ 1 ¼ x!i þðAþBiÞ x!ihþ F
!ðtiÞhþB1=2

ffiffiffi
h

p
g!i; ð9:19Þ

where dW
!

i ¼ W
!

i �W
!

i�1 ¼
ffiffiffi
h

p
g!i and h ¼ tiþ 1 � ti. Here, g!i is a vector

whose components are random numbers chosen from N(0,1).

9.5.2 Strong Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

We apply strong order 1.5 Taylor approximation method in Eq. (1.143) of Chap. 1
into Eq. (9.14) yielding

x!iþ 1 ¼ x!iþ ðAþBiÞ x!i þ F
!

i

� �
hþ bB1=2

ffiffiffi
h

p
g!i þðAþBiÞbB1=2DZi þ 1

2
ðAþBiÞ x!i þ F

!
i

� �
ðAþBiÞh2;

ð9:20Þ

where DZi ¼ 1
2 hðDWi þDVi=

ffiffiffi
3

p Þ and DVi ¼
ffiffiffi
h

p
Nð0; 1Þ.
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9.5.3 Numerical Results and Discussion

In the present analysis, we consider the first example of nuclear reactor problem
with the following parameters k1 ¼ 0:1; b1 ¼ 0:05 ¼ b; m ¼ 2:5; m ¼ 2:5,
neutron source q ¼ 200; l ¼ 2=3 and qðtÞ ¼ �1=3 for t� 0. The initial
condition is x!ð0Þ ¼ 400 300½ �T. We observe through 5000 trails, the good
agreement between two methods with other available methods for 40 time intervals
at time t = 2 s. The means and standard deviation of nð2Þ and c1ð2Þ are presented in
Table 9.1.

In the second example, we assume the initial condition as

x!ð0Þ ¼ 100

1

b1
k1l
b2
k2l

..

.

bm
kml

266666666666664

377777777777775
:

The following parameters are used in this example [1, 3] b ¼ 0:007; m ¼
2:5; l ¼ 0:00002; q ¼ 0; ki ¼ 0:0127; 0:0317; 0:115; 0:311; 1:4; 3:87½ � and
bi ¼ 0:000266; 0:001491; 0:001316; 0:002849; 0:000896; 0:000182½ � with m ¼
6 delayed groups. The computational results at t ¼ 0:1 and t ¼ 0:001 are given in
Tables 9.2 and 9.3, respectively, for Monte Carlo, stochastic PCA [4], Euler–
Maruyama, and Taylor 1.5 strong order. It can be seen that there exist approxi-
mately close agreements between the three approaches in consideration of different
step reactivities q ¼ 0:003 and q ¼ 0:007. The mean neutron density and two
individual neutron samples are cited in Fig. 9.1. The mean precursor density and
two precursor sample paths are cited in Fig. 9.2. For these calculations, we used
5000 trials in both Euler–Maruyama and Taylor 1.5 strong order method.

Table 9.1 Comparison of numerical computational methods for one precursor

Monte
Carlo

Stochastic
PCA [4]

Euler–Maruyama
approximation

Strong order 1.5 Taylor
approximation

Eðnð2ÞÞ 400.03 395.32 412.23 412.10

rðnð2ÞÞ 27.311 29.411 34.391 34.519

Eðc1ð2ÞÞ 300.00 300.67 315.96 315.93

rðc1ð2ÞÞ 7.8073 8.3564 8.2656 8.3158
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Table 9.2 Comparison for subcritical step reactivity q ¼ 0:003

Monte
Carlo

Stochastic PCA
[4]

Euler–
Maruyama

Taylor 1.5 strong
order

Eðnð0:1ÞÞ 183.04 186.31 208.599 199.408

rðnð0:1ÞÞ 168.79 164.16 255.954 168.547

Eðc1ð0:1ÞÞ 4:478	 105 4:491	 105 4:498	 105 4:497	 105

rðc1ð0:1ÞÞ 1495.7 1917.2 1233.38 1218.82

Table 9.3 Comparison for critical step reactivity q ¼ 0:007

Monte
Carlo

Stochastic PCA
[4]

Euler–
Maruyama

Taylor 1.5 strong
order

Eðnð0:001ÞÞ 135.67 134.55 139.568 139.569

rðnð0:001ÞÞ 93.376 91.242 92.042 92.047

Eðc1ð0:001ÞÞ 4:464	 105 4:464	 105 4:463	 105 4:463	 105

rðc1ð0:001ÞÞ 16.226 19.444 6.071 18.337

Fig. 9.1 a Neutron density obtained by Euler–Maruyama method using a subcritical step
reactivity q ¼ 0:003 and b neutron density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity q ¼ 0:003
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9.6 Conclusion

In this present research work, the stochastic point kinetics equations have been
solved by using Euler–Maruyama and strong order 1.5 Taylor numerical methods
having easier and efficient calculation in comparison with stochastic PCA method.
The methods, in this investigation, are clearly effective numerical methods for
solving the stochastic point kinetics equations. The methods are simple, efficient to
calculate, and accurate with fewer round-off error. The derivation of stochastic
point kinetics equations may be complicated but numerical solutions obtained more
conveniently. The behavior of the stochastic neutron and precursor distributions
within a reactor can be explicitly described by the stochastic point kinetics equa-
tions. The obvious reason seems to be that the intrinsic stochastic dynamic phe-
nomena in the reactor system can be properly treated with the stochastic point

Fig. 9.2 a Precursor density obtained by Euler–Maruyama method using a subcritical step
reactivity q ¼ 0:003 and b precursor density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity q ¼ 0:003
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kinetics equations. In this chapter, a numerical investigation was performed in order
to observe the random fluctuations in neutron and precursor population dynamics in
subcritical and critical reactors.
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