Chapter 7 )
New Techniques on Fractional Reduced e
Differential Transform Method

7.1 Introduction

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. There is a long-standing interest in
extending the classical calculus to noninteger orders because fractional differential
equations are suitable models for many physical problems. Fractional calculus has
been used to model physical and engineering processes which are found to be best
described by fractional differential equations. In recent years, considerable interest
in fractional differential equations has been stimulated due to their numerous
applications in the areas of physics and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Lévy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1-8]. The solution of differential equations
of fractional order is much involved. Though many exact solutions for linear
fractional differential equation had been found, in general, there is a scarcity of
analytical method, available in the open literature, which yields an exact solution
for nonlinear fractional differential equations.

In the past decades, both mathematicians and physicists have devoted consid-
erable effort to the study of explicit and numerical solutions to nonlinear differential
equations of integer order. Many methods have been presented [9-19]. Our main
interest lies in determining an efficient and accurate method that provides an
effective procedure for explicit and numerical solutions of a wide and general class
of differential systems representing real physical problems. In this paper, we solve
fractional KdV equations by the modified fractional reduced differential transform
method (MFRDTM) which is presented with some modification of the reduced
differential transformation method [20-22]. In this new approach, the nonlinear
term is replaced by its Adomian polynomials. Thus, the nonlinear initial-value
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problem can be easily solved with less computational effort. The main advantage of
the method emphasizes the fact that it provides an explicit analytical approximate
solution and also numerical solution elegantly. The merits of the new method are as
follows: (1) no discretization required and (2) linearization or small perturbation
also not required. Thus, it reduces the amount of numerical computation consid-
erably. Application of this attractive new method may be taken into account for
further research.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Levy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1-7, 12, 23-26]. Fractional calculus has
been used to model physical and engineering processes that are found to be best
described by fractional differential equations. For that reason, we need a reliable
and efficient technique for the solution of fractional differential equations. An
immense effort has been expended over the last many years to find robust and
efficient numerical and analytical methods for solving such fractional differential
equations. In the present analysis, a new approximate numerical technique, coupled
fractional reduced differential transform method (CFRDTM), has been proposed
which is applicable for coupled fractional differential equations. The proposed
method is a very powerful solver for linear and nonlinear coupled fractional dif-
ferential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

In the field of engineering, physics, and other fields of applied sciences, many
phenomena can be obtained very successfully by models using mathematical tools
in the form of fractional calculus [1, 4, 12, 23-27]. In the past decades, the frac-
tional differential equations have been widely used in various fields of applied
science and engineering. Many important phenomena in electromagnetics, acous-
tics, viscoelasticity, electrochemistry, control theory, neutron point kinetics model,
anomalous diffusion, vibration and control, continuous time random walk, Lévy
statistics, Brownian motion, signal and image processing, relaxation, creep, chaos,
fluid dynamics, and material science are well described by differential equations of
fractional order. Fractional calculus has been used to model physical and engi-
neering processes that are found to be best described by fractional differential
equations. For that reason, we need a reliable and efficient technique for the solution
of fractional differential equations. An immense effort has been expended over the
last many years to find robust and efficient numerical and analytical methods for
solving such fractional differential equations. In the present analysis, a new
approximate numerical technique, coupled fractional reduced differential transform
method (CFRDTM), has been applied which is applicable for coupled fractional
differential equations. The new method is a very powerful solver for linear and
nonlinear coupled fractional differential equations. It is relatively a new approach to
provide the solution very efficiently and accurately.
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In the field of engineering, physics, chemistry, and other sciences, many phe-
nomena can be modeled very successfully by using mathematical tools in the form
of fractional calculus, e.g., anomalous transport in disordered systems, some per-
colations in porous media, and the diffusion of biological populations [1, 25-28].
Fractional calculus has been used to model physical and engineering systems that
are found to be more accurately described by fractional differential equations. Thus,
we need a reliable and competent technique for the solution of fractional differential
equations. In this paper, the predator—prey system [29] has been discussed in the
form of the fractional coupled reaction-diffusion equation. In the present analysis, a
new approximate numerical technique, coupled fractional reduced differential
transform method (CFRDTM), has been presented which is appropriate for coupled
fractional differential equations. The proposed method is an impressive solver for
linear and nonlinear coupled fractional differential equations. It is comparatively a
new approach to provide the solution very effectively and competently.

The significant advantage of the proposed method is the fact that it provides its
user with an analytical approximation, in many instances an exact solution, in a
rapidly convergent sequence with elegantly computed terms. This technique does
not involve any linearization, discretization, or small perturbations, and therefore it
reduces significantly the numerical computation. This method provides extraordi-
nary accuracy for the approximate solutions when compared to the exact solutions,
particularly in large-scale domain. It is not affected by computation round-off errors,
and hence one does not face the need for large computer memory and time. The
results reveal that the CFRDTM is very effective, convenient, and quite accurate to
the system of nonlinear equations.

Several analytical as well as numerical methods have been implemented by
various authors to solve fractional differential equations. Wei et al. [30] applied the
homotopy method to determine the unknown parameters of solute transport with
spatial fractional derivative advection-dispersion equation. Saha Ray and Gupta
proposed numerical schemes based on the Haar wavelet method for finding
numerical solutions of Burger—Huxley, Huxley, modified Burgers, and mKdV
equations [31, 32]. An approximate analytical solution of the time fractional
Cauchy reaction diffusion equation by using the fractional-order reduced differential
transform method (FRDTM) has been proposed by Shukla et al. [33].

Nonlinear partial differential equations are useful in describing various phe-
nomena. The solutions of the nonlinear evolution equations play an important role
in the field of nonlinear wave phenomena. The exact solutions facilitate the veri-
fication of numerical methods when they exist. These equations arise in various
areas of physics, mathematics, and engineering such as fluid dynamics, nonlinear
optics, plasma physics, nuclear physics, mathematical biology, Brusselator model
of the chemical reaction—diffusion, and many other areas.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
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numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

Nonlinear partial differential equations are useful in describing various phe-
nomena. These equations arise in various areas of physics, mathematics, and
engineering such as fluid dynamics, nonlinear optics, plasma physics, nuclear
physics, mathematical biology, Brusselator model of the chemical reaction—diffu-
sion, and many other areas. In fluid dynamics, the nonlinear evolution equations
show up in the context of shallow water waves. Some of the commonly studied
equations are the Korteweg—de Vries (KdV) equation, modified KdV equation,
Boussinesq equation, and Whitham—Broer—Kaup equation. In this paper, Whitham—
Broer—Kaup equations have been solved by a new novel method revealed by Saha
Ray [34, 35] and it is inherited from generalized Taylor’s series.

The investigation of the traveling wave solutions to nonlinear partial differential
equations (NLPDEs) plays an important role in the study of nonlinear physical
phenomena.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

7.2 Qutline of the Present Study

In this chapter, the modified fractional reduced differential transform method
(MFRDTM) has been proposed and it is implemented for solving fractional
Korteweg—de Vries (KdV) equations. The fractional derivatives are described in the
Caputo sense. The reduced differential transform method is modified to be easily
employed to solve wide kinds of nonlinear fractional differential equations. In this
new approach, the nonlinear term is replaced by its Adomian polynomials. Thus,
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the nonlinear initial-value problem can be easily solved with less computational
effort. In order to show the power and effectiveness of the present modified method
and to illustrate the pertinent features of the solutions, several fractional KdV
equations with different types of nonlinearities are considered. The results reveal
that the proposed method is very effective and simple for obtaining approximate
solutions of fractional KdV equations.

A very new technique, coupled fractional reduced differential transform, has
been implemented in this chapter to obtain the numerical approximate solution of
coupled time fractional KdV equations. The fractional derivatives are described in
the Caputo sense. By using the present method, we can solve many linear and
nonlinear coupled fractional differential equations. The obtained results are com-
pared with the exact solutions. Numerical solutions are presented graphically to
show the reliability and efficiency of the method.

Newly proposed coupled fractional reduced differential transform has been
implemented to obtain the soliton solutions of coupled time fractional modified
KdV equations. This new method has been revealed by the author. The fractional
derivatives are described in the Caputo sense. By using the present method, we can
solve many linear and nonlinear coupled fractional differential equations. The
results reveal that the proposed method is very effective and simple for obtaining
approximate solutions of fractional coupled modified KdV equations. Numerical
solutions are presented graphically to show the reliability and efficiency of the
method. Solutions obtained by this new method have been also compared with
Adomian decomposition method (ADM).

A relatively very new technique, viz. coupled fractional reduced differential
transform, has been executed to attain the approximate numerical solution of the
predator—prey dynamical system. The fractional derivatives are defined in the
Caputo sense. Utilizing the present method, we can solve many linear and nonlinear
coupled fractional differential equations. The results thus obtained are compared
with those of other available methods. Numerical solutions are also presented
graphically to show the simplicity and authenticity of the method for solving the
fractional predator—prey dynamical system.

Also in this chapter, fractional coupled Schrédinger—Korteweg—de Vries (or
Sch-KdV) equation with appropriate initial values has been solved by using a new
novel method. The fractional derivatives are described in the Caputo sense. By
using the present method, we can solve many linear and nonlinear coupled frac-
tional differential equations. Basically, the present method originated from gener-
alized Taylor’s formula [36]. The results reveal that the proposed method is very
effective and simple for obtaining approximate solutions of fractional coupled
Schrédinger—KdV equation. Numerical solutions are presented graphically to show
the reliability and efficiency of the method. The method does not need linearization,
weak nonlinearity assumptions, or perturbation theory. The convergence of the
method as applied to Sch—KdV is illustrated numerically as well as derived ana-
Iytically. Moreover, the derived results are compared with those obtained by the
Adomian decomposition method (ADM).
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The analytical approximate traveling wave solutions of Whitham—Broer—Kaup
(WBK) equations, which contain blow-up solutions and periodic solutions, have
been obtained by using the coupled fractional reduced differential transform method
[34, 35, 37-39]. By using this method, the solutions were calculated in the form of
a generalized Taylor’s series with easily computable components. The convergence
of the method as applied to the Whitham—Broer—Kaup equations is illustrated
numerically as well as analytically. By using the present method, we can solve
many linear and nonlinear coupled fractional differential equations. The results
justify that the proposed method is also very efficient, effective, and simple for
obtaining approximate solutions of fractional coupled modified Boussinesq and
fractional approximate long wave equations. Numerical solutions are presented
graphically to show the reliability and efficiency of the method. Moreover, the
results are compared with those obtained by the Adomian decomposition method
(ADM) and variational iteration method (VIM) revealing that the present method is
superior to others.

7.2.1 Fractional KdV Equation

The aim of this work is to directly apply the MFRDTM to determine the approx-
imate solution of the nonlinear fractional KdV equation with time fractional
derivative of the form

Diu+ ("), + W), =0, m>0, 1<n<3, >0, 0<a<]1 (7.1)

which is a generalization of the Korteweg—de Vries equation, denoted by K (m, n) for
the different values of m and n, respectively. These K(m,n) equations have the
property that for certain values of m and n, their solitary wave solutions have
compact support which is known as compactons [40]. Here, the fractional derivative
is considered in the Caputo sense [5, 6]. In the case of « = 1, fractional Eq. (1.1)
reduces to the classical nonlinear KdV equation [14, 16].

7.2.2 Time Fractional Coupled KdV Equations

For solving time fractional coupled KdV equations, two model equations have been
considered in the present chapter.

I. Consider the following time fractional coupled KdV equations [41]

3
Ou 6u@ —|—3v8v

D= 24" ov
o ox3 Ox Ox’

(7.2)
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v ov
Dy = —aa g (7.3)

where t > 0, O0<o, < 1.
II. Consider the following time fractional coupled KdV equations [42]

Dfu+ 6ui, — 6vvy + e = 0, (7.4)
va+3uvx—|—vxxx =0, (7.5)

where t > 0, 0<o, f < 1.

7.2.3 Time Fractional Coupled Modified KdV Equations

In this case, for solving time fractional coupled modified KdV equations, again two
model equations have been considered in the present chapter.

I. Consider the following time fractional coupled modified KdV equations [43]

3 2
18u_32@+38v 38(141/) Ou

D=3 = o taae 3 o (7.6)
v Ov Ou Ov Ov Ov
By, — 2 _a,2 T 277 il
D}y o 3y o 3 e 3u Ee +36x, (7.7)

where 1 > 0, 0<a, f < 1.
II. Consider the following time fractional coupled modified KdV equations [44]

1u ou  30% O(uv) Ou
=_ 3P — + = —— 43 3 —
20 T 200 ox | ox

(7.8)

v v Ou Ov ov ov
By, — 2 7 2,7 T 277 327
Div 0x3 3v Ox 3 Ox Ox +3u Ox 3 Ox (7.9)

where t > 0, 0<o, f < 1.

7.2.4 Time Fractional Predator-Prey Dynamical System

In the present chapter, a system of two species competitive models with prey
population A and predator population B has been also studied. For prey population
A — 2A, at the rate a (a > 0) expresses the natural birthrate. Similarly, for predator
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population B — 2B, at the rate ¢ (¢ > 0) represents the natural death rate. The
interactive term between predator and prey population is A+ B — 2B, at rate
b (b > 0) where b denotes the competitive rate. According to the knowledge of
fractional calculus and biological population, the time fractional dynamics of a
predator—prey system can be described as

Pu OPu  Pu

e + 8_y2 +au—buv, u(x,y,0) = @(x,y), (7.10)
v Py v
W:@+W+bw*w, v(x,,0) = $(x,y), (7.11)

where t > 0,x,y € R,a,b,c > 0, u(x,y, t) denotes the prey population density, and
v(x,y,t) represents the predator population density. Here, ¢(x,y) and ¢(x,y) rep-
resent the initial conditions of the population system. The fractional derivatives are
considered in Caputo sense. Caputo fractional derivative is used because of its
advantage that it permits the initial and boundary conditions included in the for-
mulation of the problem. Here, u(x,y,?) and v(x,y,t) are analytic functions. The
physical interpretations of Egs. (7.10) and (7.11) indicate that the prey—predator
population system is analogous to the behavior of fractional-order model of
anomalous biological diffusion.

7.2.5 Fractional Coupled Schriodinger—-KdV Equation

Nonlinear phenomena play a crucial role in applied mathematics and physics.
Calculating exact and numerical solutions, in particular, traveling wave solutions,
of nonlinear equations in mathematical physics plays an important role in soliton
theory [9, 45]. The investigation of the traveling wave solutions to nonlinear partial
differential equations (NLPDESs) plays an important role in the study of nonlinear
physical phenomena. Multiple traveling wave solutions of nonlinear evolution
equations such as the coupled Schrédinger-KdV equation [46, 47] have been
obtained by Fan [48]. The coupled Schrodinger—-KdV equation is known to describe
various processes in dusty plasma, such as Langmuir, dust-acoustic wave, and
electromagnetic waves [48]. The model equation for the coupled fractional
Schrédinger—-KdV equation can be presented in the following form [48]

iDMu; = Uy, + uv
DPv, = —6w, — v + (Jul), (7.12)

where o, f (0<oa, $<1) are the orders of the Caputo fractional time derivatives,
respectively, i = v/—1 and ¢ > 0.
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Recently, Fan [48] applied the unified algebraic method and Kaya et al. [49]
applied Adomian’s decomposition method for computing solutions to a (classical)
integer-order Sch—KdV equation.

7.2.6 Fractional Whitham—Broer-Kaup, Modified
Boussinesq, and Approximate Long Wave Equations
in Shallow Water

In the present paper, coupled WBK equations introduced by Whitham, Broer, and
Kaup [50-52] have been considered. The equations describe the propagation of
shallow water waves with different dispersion relations. The fractional-order WBK
equations are as follows

D¥u+ uuy + vy +buy, =0, (7.13a)
DBy + (uv), + @ty — by, = 0, (7.13b)

where o, f (0<a, §<1) are the orders of the Caputo fractional time derivatives,
respectively, and ¢t > 0. In WBK equations (7.13a) and (7.13b), the field of hori-
zontal velocity is represented by u = u(x,7), v = v(x,) which is the height that
deviates from the equilibrium position of liquid, and the constants a, b are repre-
sented in different diffusion powers [53].

If a=1 and b =0, the following fractional coupled modified Boussinesq
equations (7.14a) and (7.14b)

ou Ov

Owv) u
By, — _ -
Dby o~ (7.14b)

where t > 0, 0<a, f <1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

If a =0 and b = 1/2, the following fractional coupled approximate long wave
equations (ALW) equations (7.15a) and (7.15b)

y ou v 10%u
Owv)  18%

42 (7.15b)
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where 1 > 0, 0<o, f <1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

7.3 Fractional Reduced Differential Transform Methods

In this section, proposed modified fractional reduced differential transform method
(MFRDTM) and a newly developed technique, coupled fractional reduced differ-
ential transform method (CFRDTM), have been presented.

7.3.1 Modified Fractional Reduced Differential Transform
Method

Consider a function of two variables u(x,f) which can be represented as a product
of two single-variable functions, i.e., u(x,t) = f(x)g(¢). Based on the properties of
differential transform, the function u(x, ) can be represented as

u(x,t) = i U (x)1* (7.16)
k=0

where 7-dimensional spectrum function Uy (x) is the transformed function of u(x, 7).
The basic definitions and operations of MFRDTM are as follows:

Definition 1 If the function u(x, ) is analytic and differentiated continuously with
respect to time ¢ and space x in the domain of interest, then let

1

V) = oy (1) uten)] (7.17)

where (Df)k =D!-D?-D?...D? the k times differentiable Caputo fractional
derivative.

The differential inverse transform of Uy(x) is defined as follows:

o0

u(x, 1) = Z Uy (x)1**. (7.18)

Then combining Egs. (7.17) and (7.18), we can write

w(x, 1) = i <r(akl+1) [(Df‘)ku(x, z)} ,o) £, (7.19)

k=0
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Some basic properties of the reduced differential transform method are sum-
marized in Table 7.1.

To illustrate the basic concepts for the application of MFRDTM, consider the
following general nonlinear partial differential equation:

Lu(x, 1) + Ru(x,t) + Nu(x, 1) = g(x,1), (7.20)
with initial condition
u(x, O) :f(x)7

where L = D is an easily invertible linear operator, R is the remaining part of the
linear operator, Nu(x, ) is a nonlinear term, and g(x, ) is an inhomogeneous term.

We can look for the solution u(x,¢) of Eq. (7.20) in the form of the fractional
power series:

u(x,t) = Z Uy (x)1*, (7.21)

where #-dimensional spectrum function Uy (x) is the transformed function of u(x, ).
Now, let us write the nonlinear term

Nty = S AUs(), U (), ., Un()™ (1.22)

n=0

where A, is the appropriate Adomian’s polynomials [13, 17]. In this specific
nonlinearity, we use the general form of the formula for A, Adomian polynomials
as

_ 1 dl'l
T pld)

N (i A"U,-(x)ﬂ . (7.23)
i=0 =0

Table 7.1 Fundamental operations of MFRDTM

Properties | Function Transformed function
1 fOx, 1) = au(x,t) £ bv(x, 1) F(x) = aUi(x) £ bVi(x)
2 [ 1) = ulx, )v(x, 1) k
Fi(x) =3 Ui(x) Vi (x)
1=0
3 flot) = 250 Fy(x) = 5
4 f(x,t) = D™u(x,t), where « € R™ and Fi(x) = %Uum(x)

meN
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Now, applying Riemann—Liouville integral J* on both sides of Eq. (7.20), we
have

u(x, 1) = ®+J%(x,t) — J*Ru(x,1) — J*Nu(x,1), (7.24)
where from the initial condition ® = u(x,0) = f(x).

Substituting Eqgs. (7.21) and (7.22), for u(x,t) and N(u,t), respectively, in
Eq. (7.24) yields

i U ()% = f(x) +J* (i Gi (x)t“"> —J* <R (i Ux (x)t“k> )
—J (i Ar (x)t"‘k) ,

where g(x,1) = (3, Gk(x)r**), and Gy(x) is the transformed function of g(x, ).
After carrying out Riemann-Liouville integral J*, we obtain

o0

v o 6D (o + 1)
; U™ = f(x) + (kz_; Gelx) m)
%0 PEEDT (ke + 1)
- <R (Z Ur(x) WM))
S PEEDT (ak + 1)
- (ZW) m)

Finally, equating coefficients of like powers of #, we derive the following
recursive formula

Uo(x) = f(x),
and
I'(ok+1) I'(ok+ 1) )
U = Gi(x) = 2 R )
() = G FenT o) ( K ke D+ 1) (7.25)
[(ak+1) '
—A —— k>0.
S S TS
Using the known Up(x), all components U (x), U, (x), ..., Uy(x), ..., etc., are
determinable by using Eq. (7.25).
Substituting these Uy(x), U;(x), Uz(x), -, Uy(x),- - ,, etc., in Eq. (7.21), the

approximate solution can be obtained as
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ity (x,8) = Y Up(x)£™, (7.26)

m=0

where p is the order of approximate solution.
Therefore, the corresponding exact solution is given by

u(x, 1) = lim @, (x, 1) (7.27)

p—oo

7.3.2 Coupled Fractional Reduced Differential Transform
Method

In order to introduce coupled fractional reduced differential transform, two cases are
considered.

For functions with two independent variables

In this case, U(h,k — h) is considered as the coupled fractional reduced differential
transform of u(x, ¢). If the function u(x, ¢) is analytic and differentiated continuously
with respect to time ¢, then we define the fractional coupled reduced differential
transform of u(x, ) as

_ 1 (ha+ (k=h)p)
Uk =) = F e 1A D) {D, u(e,)]| (7.28)

whereas the inverse transform of U(h, k — h) is

ook
u(x,t) = > > U(h k= k)¢, (7.29)

k=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 7.1 Suppose that U(h,k —h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,t) and v(x, 1), respectively.

i, If u(x,t) = f(x,1) + g(x, 1), then U(h,k — h) = F(h,k — h) + G(h, k — h).
ii. If u(x, ) = af (x,t), where a € R, then U(h,k — h) = aF(h,k — h).
h k=h

iii. If f(x, 1) = u(x, 0)v(x, 1), then F(hk—h) =Y. > Uh—1L,s)V(l,k—h —s).
i=05=0
iv. If f(x, 1) = D'u(x,1), then
Flhk—p) = L Dot k= WB+1) gy

T(ho+ (k—h)p+1)
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v. If f(x,7) = DPv(x, 1), then

C(ho+ (k—h+1)p+1)
T(ho+ (k— h)B+1)

F(hk—h) = V(hk—h+1).

For functions with three independent variables

In this case, U(h,k — k) is considered as the coupled fractional reduced differential
transform of u(x,y, 7). If the function u(x,y,¢) is analytic and differentiated con-
tinuously with respect to time #, then we define the fractional coupled reduced
differential transform of u(x,y, ) as

1 ha+ (k—h) )
U(h,k — h) = [D< ol 7.30
( U o oyl ux )|, (7.30)
whereas the inverse transform of U(h,k — h) is
k
u(x,y,0) =Y Y Ulhk — Ry 0P, (7.31)

k=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 7.2 Suppose that U(h,k — h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,y,t) and v(x,y,t), respectively.

LI u(x,y,t) =f(x,y,t) £g(x,y,¢), then U(hk—h)=Fhk—h)£G
(h,k — h).
il. If u(x,y,t) = af (x,y,t), where a € R, then U(h,k — h) = aF (h,k — h).
i, If f(x,y,1) = u(x,y,0)v(x,y,1), then F(hk—h) =SS tU(h—1,s)
V(Lk—h—s).
iv. If f(x,y,1) = D'u(x,y,t), then

T((h+ 1o+ (k— h)p+1)
I'(ho+ (k—h)p+1)

F(hk—h) = U(h+ 1,k — h).

v. If fx,y,1) = D,ﬁv(x,y, t), then

(ho+ (k—h+1)B+1)
C(ho+ (k— h)p+1)

r
F(hk—h) = V(hk—h+1).
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7.4 Application of MFRDTM for the Solution
of Fractional KdV Equations

We consider the generalized fractional KdV equation of the form

Du+ ("), + "), =0, m>0,1<n<3 >0, 0<a<l (7.32)

XXX

with initial condition
u(x,0) = f(x). (7.33)

Applying MFRDTM to Eq. (7.32) and using basic properties of Table 7.1, we
can obtain

C(a(k+1)+1)

aAk (x) 83Ak (x)
I'(ak+1) +

Ox Ox3

Ups1(x) + =0,k>0 (7.34)

where Uy (x) is the transformed function of u(x, ¢), and the nonlinear terms %™ and
u" have been considered as Adomian polynomials > ;o Ax(Up(x), Ui (x), ...,
Ui(x)) and Y20 Ax(Uo(x), Ui (x), . . ., Ux(x)), respectively.

From the initial condition (7.33), we have

Uo(x) = f(x). (7.35)

Substituting (7.35) into (7.34), we obtain the values of U(x) successively.
Then, the approximate solution can be obtained as

ity (x,1) = Y Up(x)1™, (7.36)

where p is the order of approximate solution.

7.4.1 Numerical Solutions of Variant Types of Time
Fractional KdV Equations

In order to assess the advantages and the accuracy of the modified fractional
reduced differential transform method (MFRDTM) for solving nonlinear fractional
KdV equation, this method has been applied to solve the following four examples.
In the first two examples, we consider quasi-linear time fractional KdV equations,
while in the last two examples, we consider a nonlinear time fractional dispersive
K(2,2) equation. All the results are calculated by using the symbolic calculus
software Mathematica.
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Example 7.1
(a) (One-soliton solution)

Consider the following time fractional KdV equation

Dfu+ 6uiy + ty = 0,1 > 0,0<a < 1 (7.37)
with initial condition
u(x,0) = L sech? (f) (7.38)
2 2)° '

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

— k X 3 X
Uii1(x) = (rr(a—k—‘rl)l)) (6; Ui, (x) alg}g ) + g g);( )),k>0

(a(k+1)+
(7.39)
where Uy(x) is the transformed function of u(x, ).
From the initial condition (7.38), we have
Up(x) = lsech2 (f) (7.40)
R 2) '

Substituting (7.40) into (7.39), we obtain the values of U(x) for k = 1,2,3,...
successively.

Then, using Mathematica, the third-order approximate solution can be obtained
as

{) N 2*(—2 + cosh(x))sech* (%)  4¢*cosech®(x) sinh* (%)
2 4T (1 +22) r(l+a)

N £%((39 — 32 cosh(x) + cosh(2x)) (1 +e)” + 12(—2 + cosh(x))I'(1 + 2))sech® (2) tanh (3)
167 (1 +o)*I'(1 4 32) ’

1
u(x, 1) = 3 sech? (

(7.41)

If o = 1, the solution in Eq. (7.41), which becomes the single soliton solution, is
given by

1 X —t
) == h2<—). 7.42
u(x, 1) 5 sec 5 (7.42)

For special case o = 1, i.e., for classical integer order, the obtained results for the
exact solution (7.42) and the approximate solution in Eq. (7.41) obtained by
MFRDTM are shown in Figs. 7.1 and 7.2. It is very much graceful that the
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approximate solution obtained by the present method and the exact solution are
very much identical.

Figures 7.3, 7.4, 7.5, and 7.6 demonstrate the approximate solutions for
o =0.25, a =0.35, 2 = 0.5, and o = 0.75, respectively.

(b) (Two-soliton solution)
Consider the following time fractional KdV equation
Dfu+ 6uny + e = 0,1 > 0,0<0< 1 (7.43)
with initial condition
u(x,0) = 6sech’x. (7.44)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

— oL X 3 X
Vi) = (F(acgc(flﬁ)l)) (3 BA(;)E 42 $3( ))’k 20 (4

where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials Y~ Ax(Uo(x), U; (x), . . ., U(x)).
From the initial condition (7.44), we have

Uo(x) = 6sech’x. (7.46)

Substituting Eq. (7.46) into Eq. (7.45), we obtain the values of Uy(x) for k =
1,2,3,... successively.

Fig. 7.1 Exact solution
u(x,t) for Eq. (7.37)
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Fig. 7.2 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)

Fig. 7.3 Approximate
solution u(x, ¢) obtained by
MFRDTM for Eq. (7.37)
when o = 0.25

Then, using Mathematica, the second-order approximate solution can be
obtained as

12¢2*(—1064 + 183 cosh(2x) + 240 cosh(4x) + cosh(6x))sech®x
I'(1+2a)

12¢*sech’ (x)(25 sinh(x) + sinh(3x))

I'(l+a)

u(x, 1) = 6sech’x +

+0(£*%).

(7.47)
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Fig. 7.4 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.35

Fig. 7.5 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.5

Fig. 7.6 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.75
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If « = 1, the solution in Eq. (7.47), which becomes the two-soliton solution, is
given by

_ 24(4cosh(x — 41)° + sinh(2x — 321)°)

(cosh(3x — 361) + 3 cosh(x — 287))* (7.48)

u(x, 1)

Figures 7.7, 7.8, and 7.9 exhibit the two-soliton approximate solutions of the
KdV equation (7.43) for « = 0.5, « = 0.75, and o = 1, respectively.

Example 7.2 Consider the following time fractional KdV equation
DYu—3(u?), + by = 0, > 0,0<a< 1 (7.49)
with initial condition
u(x,0) = 6x. (7.50)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Uk+1(x)=< T (ak+ 1) )(38Ak(x)_83Uk(x))7k>0 .51

I(a(k+1)+1) Ox ox?

where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials » .~ Ax(Uo(x), Uy (x), . . ., U(x)).

wx.L)
10

Fig. 7.7 Two-soliton approximate solution u(x,f) of the KdV equation obtained by using
Eq. (7.47) for o = 0.5, t = 0.0006, and -6 <x<6
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Fig. 7.8 Two-soliton approximate solution u(x,7) of the KdV equation obtained by using
Eq. (7.47) for o = 0.75, t = 0.008, and —6 <x<6

\
I \
1 \
- 1
- \
7\ \
;N
/ J
/ 4 \\
F— 1 T " " hr L PR |
-6 -4 -2 1] 2 4

Fig. 7.9 Two-soliton approximate solution u(x,7) of the KdV equation obtained by using
Eq. (7.47) foro=1,7=0.03, and —6<x<6
From the initial condition Eq. (7.50), we have
Up(x) = 6x.

(7.52)
Substituting (7.52) into (7.51), we obtain the values of Ui(x) fork =1,2,3,...
successively.

Then, using Mathematica, the fourth-order approximate solution can be obtained
as
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derx  15ssane 2799368 (b + by )T (1 +22)
T(l+2) T(+29) " T(1+32)

| 20155392A%(4T (1 + 2" T (1 1 22) + D(1 +22)° + 2T (1 + 2)[(1 4 32))
[(1 4 o)*T(1 4 20) (1 + 4a) '

u(x, 1) = 6x+

(7.53)

For the special case oo = 1, the solution in Eq. (7.53), which becomes the exact
solitary wave solution, is given by

u(x, 1) = 6x+2166x + 777612 x + 2799361 x + 10077696 x + - - -
_ 6x (7.54)
1 =36t

Example 7.3 Consider the following time fractional dispersive K(2,2) equation
Dru+ (), + (u?),, = 0,6>0,0<a<1, (7.55)

with initial condition
u(x,0) = x. (7.56)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

~I(ak +1) ) (8Ak(x) N 63Uk(x)>7k20’ (7.57)

U, =

1 () (r(cx(k+ D+1))\ ox o3
where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials Y Ag(Up(x), U;(x), ..., Ur(x)).

k=0
From the initial condition (7.56), we have

Up(x) = x. (7.58)

Substituting (7.58) into (7.57), we obtain the values of Ui(x) fork =1,2,3,...
successively.
Then, using Mathematica, the fifth-order approximate solution can be obtained as

) —x— 2 82 _St3o‘x<—r(1ia)zJrﬁ)r‘(quZoc)
; F(1+a)  T(1+22) T(1+32)

32t4°‘x(4r(1 +0) T (1 +200) + T(1 4 20)> 4+ 20(1 + ) T(1 + 30())
T(1+0) T(1 +20)T(1 + 40)

+
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50 (1 +20)*(40(1 + o)* + T(1 +22))
3 641 x(2+ (1 + o) [ (1 + 3) )F(l +40)

(1 +20)°T(1 4 52)

Sy [ 20(1+22) (40 (1+ )’ T(1 +20) + T(1 +20) + 20(1 4+ ) T(1 4 3a))
64t O‘x( TP ) I'(1+4a)

(1 +20)°T(1 4 52)

_|_
(7.59)

For the special case oo = 1, the solution in Eq. (7.59), which becomes the exact
solitary wave solution, is given by
X

u(x, 1) = x — 2tx +42x — 88x + 16¢*x — 320x 4 -+ = e (7.60)

Example 7.4 Consider the following time fractional dispersive K(2,2) equation

Diu+ (), +(u*),, =0,1>0 0<a<l1 (7.61)
with initial condition
4
u(x,0) = ?Ccos2 (2) (7.62)

Taking modified fractional reduced differential transform, we can obtain the
same recursive formula as in Eq. (7.57).
From the initial condition (5.1.20), here in this case, we have

Uo(x) = S cos? (f) (7.63)

Substituting Eq. (7.63) into Eq. (7.57), we obtain the values of U(x) for k =
1,2,3,... successively.
Then, using Mathematica, the third-order approximate solution can be obtained as

(7.64)

4
u(x,t) = =ccos

) (x) Artsin(3)  Arcos(y)  *rP*sin(3)
3

4) T 30(1+a) 60(1+20) 12I(1+30)

For the special case oo = 1, the solution in Eq. (7.64), which becomes the exact
solitary wave solution, is given by

4 1 1
u(x, 1) = gccos2 G) + gczt sin (g) - Ec3t2 cos (g)

Loas. (X l 54 (x)
75 ¢t s1n(2)+576ctcos )t

(7.65)
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Using Taylor series into Eq. (7.65), we can find the closed-form solitary wave
solution with compact support, i.e., compacton solution

4c 2 (x—=ct
_ ?COS (T)’ |x — Ct| < 27'(:7
u(x, 1) { 0, otherwise.

7.4.2 Convergence Analysis and Error Estimate

Theorem 7.3 Suppose that, D**u(x,t) € C([0,L] x [0,T]) for k=0,1,2,...,
N +1, where 0<a <1, then

w(x, 1) =2 Up(x)e™.

m=0
Moreover, there exists a value &, where 0 < & <t so that the error term Ey(x,t)
has the form

DWW+ 1)“14()6, f)l<N+ 1a
T(N+ Dot 1)

|[En(x,1)| = Sup
1€[0,7]

Proof For 0<a<1,

J™D™ u(x, 1) — Jm+Dap(m+ l)“u(x, 1)
= J" (D" u(x,t) — J*"D* (D™ u(x,1)))
= J"*(D"™u(x,0)) using Eq. (2.3.2)
D™ u(x,0)
I'(mo+1)
= U,,(x)™, using Eq. (7.17);

Now, the Nth order approximation for u(x,7) is

N N

Um(x)lma _ Z (JmaD;mu(x, [) _ J(m+1)ocD(m+l)ocu(x’ l))
m=0 m=0

_ u(x, [) _ J(NJrl)ocl)(NJrl)au(x7 Z)
t
1 /D(N“)"‘u(x7 r)d

TN+ 05 ) (g0
0

=u(x,1) —



7.4 Application of MFRDTM for the Solution of Fractional KdV Equations 255

t

DW Doy (x, f)/ dr
(t—1)

:M(X,t)_ F((N—l—l)oc) 1I-(N+ Do’
0

applying integral mean value theorem (7.66)

D(N+ l)ocu(x7 f)t(N+ 1o

=4 ) T T N Dot )

Therefore,

DW+ l)au(x’ 6)I(N+ 1)o
T(N+ Dot 1)

u(x,t) = ZN: Un(x)™ + (7.67)

m=0

Consequently, the error term

|En(x,1)] =

DW+1)a t(N-H)%
- ‘ u(x,¢) ’ (7.68)

u0) = > Un™| = s Dot )

m=0

This implies

DWW+ l)au(x’ é)t(NJr 1a
T((N+ Da+1)

|[En(x,1)| = Sup
1€[0,7]

(7.69)

As N — oo, |[Ey| — 0.
Hence, u(x, t) can be approximated as

o0 N
u(x 1) =Y Up(0)f™ 2" Up(x)e™.
m=0 m=0

with the error term given in Eq. (7.69).
7.5 Application of CFRDTM for the Solutions of Time
Fractional Coupled KdV Equations

In the present section, CFRDTM has been applied to determine the approximate
solutions for the coupled time fractional KdV equations.
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7.5.1 Numerical Solutions of Time Fractional Coupled KdV
Equations

In order to examine the efficiency and applicability of the proposed coupled frac-
tional reduced differential transform method (CFRDTM) for solving time fractional
coupled KdV equations, this method has been employed to solve the following two
examples.

Example 7.5 Consider the following time fractional coupled KdV equations [41]

Pu ou ov

Py ov
B, —
where t > 0, 0<a, f <1,
subject to the initial conditions
4 2
u(x,0) = &(C}C)Z, (7.70¢)
(1 + exp(cx))
4, 2
v(x, 0) = < exp(e) (7.70d)

(1+ exp(ex)””

The exact solutions of Egs. (7.70a) and (7.70b), for the special case where
o= f =1, are given by

vl f) = 4c? exp(c(x — 1))
u(x, 1) = v(x,1) (1 oxplet — D)) (7.71)

In order to assess the advantages and the accuracy of the CFRDTM, we consider
the (2 + 1)-dimensional time fractional coupled Burgers equations. Firstly, we
derive the recursive formula from Egs. (7.70a) and (7.70b). Now, U(h,k — h) and
V(h,k — h) are considered as the coupled fractional reduced differential transform
of u(x,t) and v(x,t), respectively, where u(x,?) and v(x,t) are the solutions of
coupled fractional differential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0)
are the given initial conditions. Without loss of generality, the following assump-
tions have taken

U(0,j)=0, j=1,2,3,...and V(,0) =0, i=1,2,3,....
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Applying CFRDTM to Eq. (7.70a), we obtain the following recursive formula

C((h+1)a+(k—h)p+1) o

Tt (= B+ 1) Ulh+ 1,k =) = == S U(hk ~ h)
h  k—=h b
- 6(12(; > Ulh—1,5)5 Ul k—h— s)>
h  k—=h
+3<lza‘ 3 V(h—1,5)5-V(Lk—h— s)>.
(7.72)
From the initial condition of Eq. (7.70c), we have
U(0,0) = u(x,0). (7.73)

In the same manner, we can obtain the following recursive formula from
Eq. (7.70b)

L(ho+(k—h+1)p+1) B A B
C(hoa+ (k—h)B+1) Vihk—h+1)= Ox3 Vihk=h)
h k—h
3(2 U(l,khs)V(hl,s)).
=0 5=0
(7.74)
From the initial condition of Eq. (7.70d), we have
V(0,0) = v(x,0) (7.75)

According to CFRDTM, using recursive Eq. (7.72) with initial condition
Eq. (7.73) and also using recursive scheme Eq. (7.74) with initial condition
Eq. (7.75) simultaneously, we obtain

_ 4¢” exp(ex) (=1 + exp(cx))
(1+ exp(ex))’T(1 + o)

U(1,0)

V(0,1) = 4¢3 exp(ex)(—1 + exp(cx))
7 (1+ exp(ex))’T(1+p)

B 96¢% exp(2¢x)(1 — 3exp(cx) + exp(2cx))
(1+ exp(cx))°T(1 + o+ )

l](l7 1) - ’
4c exp(ex)(1 — 14 exp(cx) + 18 exp(2cx) — 14 exp(3ex) + exp(4ex))

V(0,2) = (1+ exp(ex))°T(1+28)

)
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4c® exp(cx) (1 422 exp(cx) — 78 exp(2cx) + 22 exp(3cx) + exp(4ex))

v2.0 = (1+ exp(ex))°T(1+22)

48¢8 exp(2cx)(—1 + exp(cx))?
(1+ exp(cx))’T(1 4o+ f)

V(1,1) =

)

_96¢! €2 (—8 + 81e — 175e7 + 175¢3 — 81e% + 8¢5

U2,1) = (14e)°T(1 + 20+ p)

48C11 ZCx( 1+ ecx)(l 422er — 78620}5 4 2263cx 4 e4cx)

V1= (1+e%)°T(1 420+ f)

and so on.
The approximate solutions, obtained in the series form, are given by

© k
Uhk h (ha+ (k—h)p)
S all

=0 h

>~

U ]’l k— h (ho.+ (k—h) )

M»

0+

—1
4c%e +4
(1+e)”
4cBer(1+

0
k 1
e (=1 4e™)*
14e)’T(1 4 )
226" — 782 4 223  gher) 2
(1+e%)°T(1 4 24)

=
L"H

)

96162 (—8 + 81e — 17562 + 1756* — 81e* + g™ +F

(1+e)’T(1+ 20+ f)

k
ZV h k— h t(h9(+(k h)pB)
0 h=0

Mg

~
I

k
+ ZV h k— h (ho+ (k—h)pB)

1 h=0
4c%ex 4c%e™ (=14 e)th
S (1+e)’  (1+e)’T(1+p)
4c%e(1 — 14e® + 1862 — 14e3 4 e*e)2F
(1+ exp(cx))°T(1+2p)

Mg

~
Il

+

N 486’11 2CX( 1+ch)(1 +22e% — 78620x+2263cx+e4cx)12m+/3

(1+e)°T(1 42+ p)

(7.76)

(7.77)
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When o = 1 and f§ = 1, the solution in Eq. (7.76) becomes

4c%e n 4c%e(—1 +e™)t
(1+ e”‘)2 (1+ e“‘)3

u(x, t) =

7.78
ZCSecx(l — 4o +62m)t2 ( )
(14 eyt
When o = 1 and f§ = 1, the solution in Eq. (7.77) becomes
4 2 .cx 4 5 acx -1 ex\ g
v 1) = ce i e ( +Se)
(14+ew) (14e%)
28 (1 — 4e™ + &)t
(14ex)?

The solutions in Eqgs. (7.78) and (7.79) are exactly the same as the Taylor series
expansion of the exact solution

4cre 4c%e (—1 + ™)t

u(x,t) = v(x, 1) =

(1+e)? (1+er)’ (7.80)
268ecx(1 — et +626x)t2 :
(1+ex)*

In order to verify the efficiency and accuracy of the proposed method for the
time fractional coupled KdV equations, the graphs have been drawn in Figs. 7.10,
7.11, and 7.12. The numerical solutions for Eqs. (7.76) and (7.77) for the special
case where « =1 and f =1 are shown in Fig. 7.10. It can be observed from
Fig. 7.10 that the solutions obtained by the proposed method coincide with the
exact solution. Figure 7.11 shows the numerical solutions of Eqgs. (7.76) and (7.77)
when o = 1/3 and § = 1/5. Again, Fig. 7.12 cites the numerical solutions when
o =0.005 and # = 0.002. From Figs. 7.11 and 7.12, it can be observed that the
solutions for u(x, r) and v(x, t) bifurcate into waves as the time fractional derivatives
o and f decrease.

Example 7.6 Consider the following time fractional coupled KdV equations [42]
D¥u+ 6un, — 6vv, + . =0, (7.81a)
Dy 4 3uv, v = 0, (7.81b)

where ¢t > 0, 0<a, f <1, subject to the initial conditions
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Fig. 7.10 Surfaces show (a)
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x,7), and ¢ the
exact solution of u(x,7) =
v(x,7) when oo =1 and f =1

u(x,0) = Jsech? (@) , (7.82)

) 5 (Vox
v(x,0) = 7§sech (T) (7.83)

First, we derive the recursive formula from Egs. (7.81a) and (7.81b). Now,
U(h,k —h) and V(h,k — h) are considered as the coupled fractional reduced dif-
ferential transform of u(x,7) and v(x,7), respectively, where u(x,¢) and v(x,) are
the solutions of coupled fractional differential equations. Here, U(0,0) = u(x, 0),
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Fig. 7.11 Surfaces show

a the numerical approximate
solution of u(x,r) and b the
numerical approximate
solution of v(x,7) when o =
1/3and f=1/5

Fig. 7.12 Surfaces show

a the numerical approximate
solution of u(x,#) and b the
numerical approximate
solution of v(x,f) when o« =
0.005 and f# = 0.002

(a)

AL
ZANS,
I AN
e\
-.Q‘.. LAY -A“ég’”’ oy,
-» O
L)
&L

(b)

(b)
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V(0,0) = v(x,0) are the given initial conditions. Without loss of generality, the
following assumptions have taken

U,j)=0, j=1,2,3,... and V(i,0)=0, i=1,2,3,...
Applying CFRDTM to Eq. (7.81a), we obtain the following recursive formula

T((h+ Do+ (k—h)B+1) - &
T(ha+ (k—h)+1) U(h—i—l,k—h),_%

—G(iiU —ls U(lk— h—s)>

U(h,k — h)

1=0 s=0
h k—h 9

+6 Vih—1s)=—V({,k—h—s
22 ( ewd )

(7.84)
From the initial condition of Eq. (7.82), we have
U(0,0) = u(x,0) (7.85)

In the same manner, we can obtain the following recursive formula from
Eq. (7.81b)

C(ho+ (k—h+1)B+1) 3 o
Tt 1) k=) =—55Vihk=h
h  k—h B
—3(12(;&0 U(l,k—h—s) axV(h—l,s)>
(7.86)
From the initial condition of Eq. (7.83), we have
V(0,0) = v(x,0) (7.87)

According to CFRDTM, using recursive Eq. (7.84) with initial condition
Eq. (7.85) and also using recursive scheme Eq. (7.86) with initial condition
Eq. (7.87) simultaneously, we obtain successively

73/?sech? (@‘) tanh (@)
I'(l+a) ’

4y/2)7cosech’ (x\/_> sinh* (\/2_ )
T(1+8) ’

U(1,0) =

V(0,1) =
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354 (—3 +2cosh (xx/Z) ) sech® (@)

viL1)=- 2T(1+o+p) ’
s (9 — l4cosh (xﬂ) + cosh (ZJC\/Z))sech6 (@")
vi0.2) = 8v2I'(1+28) :
24 =39 +22cosh(xv1) + cosh(2xv/Z) )sech® Vix
o LD et ()
96+/2*cosech® (xv/7 ) sinh® (Y2
v(1,1) = F(1+(a+[)3) (2)
and so on.

The approximate solutions, obtained in the series form, are given by

k
ZU hk — h) (ho+ (k—h)p)
h=0

Mz

u(x, 1) =

T
(=}

k
ZU h k— h (ho.+ (k—h)p)
1 h=1

= 0) +
%77 *sech? %) tanh( )
= Jsech? + (7.88)
rl+o

274 (—39 +22cosh (x\/z) + cosh (2x\/z) ) secht (@)

Nk

“‘? T

+ 8T (1 +2)
3074 (=3 + 2 cosh (xV7) )sech® ()
- 2T (1 +a+p) t

ook
v(x, 1) = ZZ V(h,k — h)fhot (=p)

bl
Il
=
Il
o

) L (Vix 4218 )3 cosech’ (xﬂ) sinh* (@)
= ——sech + TP
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N (9 — 14 cosh (xﬂ) + cosh <2xﬂ)> sech® (*/_“")

+
8v2I'(1+2p) (7.89)
96v/21*+F )*cosech® (x\/_) sinh® (\/_ )
C(1+a+p)
When o = 1 and f§ = 1, the solution in Eq. (7.88) becomes
u(x,t) = Jsech? (\/ZX> + 2°/%sech? (\/Zx) tanh (ﬂx>t
2 2 2
a af Vox\
+7 (—2 + cosh (xﬂ))sech (T)t (7.90)
M2 _(xVa - ([(3xVi s(Vix\ 5
+7<—1151Hh<7 +Slnh B sech T r+ -
When o = 1 and f = 1, the solution in Eq. (7.89) becomes
A Ax /
v(x,t) = 7 sech? (X/_T> +4v23cosech’ ()C\/Z) sinh* <@>t
af 4(Vix\ 2
N A ( 24 cosh(xﬁ))sech ( 3 )t (7.91)
4v2
M2 (— 11 sinh (@") + sinh (%)) sech’ (%) 3
24V2

The solutions in Eqgs. (7.90) and (7.91) are exactly the same as the Taylor series
expansions of the exact solutions

u(x,t) = Jsech? (M)
= Jsech® <\/2)ix> + 232sech? <\/2_ ) tanh <\/21X>t
(7.92)

+ %4 (—2 + cosh (x\/Z) ) sech* (@) P

M2 _(xVa - (3xVi s(Vix\ 4
+W —11sinh T +Slnh ) sech T r+ -
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v(x,1) = %sech2 (W)

= % sech? (@) +4v/2°*cosech? (x\ﬁ) sinh? <@) t

a4 (—2 + cosh (xx/j) ) sech? (@) 1
42
2 ( 11 smh(‘f ) + §1nh( ‘[) ) sech’ ("\2&) £
24V2

Again, in order to verify the efficiency and accuracy of the proposed method for
the time fractional coupled KdV equations, the graphs have been drawn in
Figs. 7.13, 7.14, and 7.15. The numerical solutions for Egs. (7.90) and (7.91) for
the special case where o = 1 and f§ = 1 are shown in Fig. 7.13. It can be observed
from Fig. 7.10 that the solutions obtained by the proposed method are exactly
identical with the exact solutions. Figure 7.14 shows the numerical solutions of
Egs. (7.88) and (7.89) when o = 0.4 and = 0.25. Again, Fig. 7.15 cites the
numerical solutions when o = 0.005 and f = 0.002. From Figs. 7.14 and 7.15, it
can be observed that the solutions for u(x, 7) and v(x, t) bifurcate into two waves as
the time fractional derivatives o and f§ decrease.

(7.93)

+

7.5.2  Soliton Solutions for Time Fractional Coupled
Modified KdV Equations

In the present section, CFRDTM has been successfully implemented to determine
the approximate solutions for the following coupled time fractional modified KdV
equations.

Example 7.7 Consider the following time fractional coupled modified KdV equa-
tions [43]

18%u 2 Ou . 30% O(uv) Ou

Diu= 35 7 o T 20x e 3 o Con (7.942)
Py Ov Ou dv ov ov

By, — 2 7 - 2 -

Div= 25— 3va = 3o L3 3 (7.94b)

where t > 0, 0<a, f <1, subject to the initial conditions
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(a)

(b) i e

(d)

Fig. 7.13 Surfaces show a the numerical approximate solution of u(x, ), b the exact solution of
u(x,t), ¢ the numerical approximate solution of v(x,7), and d the exact solution of v(x,f) when
a=1and f=1
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Fig. 7.14 Surfaces show

a the numerical approximate
solution of u(x,r) and b the
numerical approximate
solution of v(x,7) when o =
0.4 and f =0.25

(b)

Fig. 7.15 Surfaces show

a the numerical approximate
solution of u(x,#) and b the
numerical approximate
solution of v(x,f) when o =
0.005 and f# = 0.002

(b) AT

e g 3 ‘
LA, ‘~ N
0015 ol Q“;&:&»

&
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u(x,0) :% + tanh(x), (7.94c¢)

v(x,0) = 1+ tanh(x). (7.94d)

The exact solutions of Egs. (7.94a) and (7.94b), for the special case where
o = f =1, are given by

1
u(x,t) = 3 + tanh(x + ct), (7.95a)

v(x,1) = 1+ tanh(x+ ct). (7.95b)

In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled modified KdV equations. Firstly, we derive the recursive
formula from Egs. (7.94a), (7.94b). Now, U(h,k — h) and V(h,k — h) are con-
sidered as the coupled fractional reduced differential transform of u(x, 7) and v(x, 1),
respectively, where u(x,t) and v(x,t) are the solutions of coupled fractional dif-
ferential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial
conditions.

Without loss of generality, the following assumptions have been taken

U(0,j)=0, j=1,2,3,...and V(,0) =0, i=1,2,3,....

Applying CFRDTM to Eq. (7.94a), we obtain the following recursive formula

C((h+1a+(k—h)p+1) o1& B
Tl (k- mp1) AT lk=h=35500k=h)
30? %)
+ 353 V(hk—h) =35 Uhk—h)
o [ k=t
+3—= (Z Uh—1,s)V(,k—h— v))
N\ ==
h h=r k—h k—h—s
3(2 U(r,k—h—s—p)
r=0 =0 s=0 p=0
3]
XU(l,s)aU(h —r— l,p))
(7.96)
From the initial condition of Eq. (7.94c), we have
U(0,0) = u(x,0) (7.97)

In the same manner, we can obtain the following recursive formula from
Eq. (7.94b)
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T'(ho+(k—h+1)+1) B _3_3 2 )
Tt prD) k= ht D) =—55Vink=h)+35 Vihk—h)
h  k—h 9 ) )
—U(lLbk—h—s)=—V(h—1s)
<;;ax Ox
h  k—h 9
(ZZV” h—=s)o V(h—l,S)>
=0 s=0 Ox
h  h—r k—h k—h—s
(ZZ SN Ulrk—h—s—p)
r=0 (=0 s=0 p=0
13}
<0t 2 un - l,p))
(7.98)
From the initial condition of Eq. (7.94d), we have
V(0,0) = v(x,0) (7.99)

According to CFRDTM, using recursive Eq. (7.96) with initial condition
Eq. (7.97) and also using recursive scheme Eq. (7.98) with initial condition
Eq. (7.99) simultaneously, we obtain

~ sech’(x)
U(1,0) = — m,
sech? (x)
V(0,1) = — T+ 5
B 3sech?(x) tanh(x)
YO = p)
_sech’(x)(9 cosh(x) — 3 cosh(3x) + 32 sinh(x) — 4 sinh(3x))
v(0,2) = 8T(1+25) ’
_ 7sech?(x) tanh(x)
U(2,0) = — TRT(1420)
V1) = 3sech®(x)(—12 cosh(x) + 4 cosh(3x) — 43 sinh(x) + 5 sinh(3x))
(L1 = 32I(1 + o+ ) ’
and so on.

The approximate solutions, obtained in the series form, are given by
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k
Z U h k— h (ho+ (k—h) )
=0

0)+§:Zk:Uhk h) et (k=h)p)

0
NE

T
(=}
=

k=1 n=1 (7.100)
1 t*sech’(x)  7¢**sech?(x) tanh(x)
5 T anht) — I Ty 8T (1 +2)
31** Psech?(x) tanh(x)
Aar(14+o+p)

k
ZV h k — h (ho+ (k—h)B)
h=0

0
NgE

T
(=1

k

0)+iZth Rt (=)

k=1 h=0
t#sech? (x)
AT (14 )
n *Psech’ (x)(9 cosh(x) — 3 cosh(3x) + 32 sinh(x) — 4 sinh(3x))
8T (1 +2B)
3¢+ Psech’ (x)(—12 cosh(x) + 4 cosh(3x) — 43 sinh(x) + 5 sinh(3x))
+ +
32T (1+a+p)

= 1+ tanh(x) —

(7.101)
When o = 1 and f = 1, the solution in Eq. (7.100) becomes
1 tsech’ *sech’ (x) tanh
u(x, ) = : + tanh(x) — sec4 (x) t7sec (icg anh(x)
. (7.102)
_ Psech®(x)(=2 + cosh(2x)) N
192
When o = 1 and f = 1, the solution in Eq. (7.101) becomes
tsech’ *sech’ (x) tanh
v(x,1) = 1 + tanh(x) — sec4 (x) _ isec (fé) anh(x)
. (7.103)
Psech®(x)(—2 + cosh(2x)) N
192

The solutions in Egs. (7.102) and (7.103) are exactly the same as the Taylor
series expansions of the exact solutions
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1 t
u(x, t) = 3 + tanh(x - Z)

1 rsech?(x)  £*sech?(x) tanh(x)
- h(x) — _ 7.104
5+ tan (x) 2 G ( )
sech?(x)(—2 + cosh(2x)) n
192

t
v(x,t) = 1+ tanh (x - Z)

tsech’ 2sech?(x) tanh

1+ tanh(x) — sech”(x)  #“sech”(x) tanh(x) (7.105)
4 16

fsech*(x)(—2 + cosh(2x)) n

192

In order to explore the efficiency and accuracy of the proposed method for the
time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.16a—d. The numerical solutions for Egs. (7.102) and (7.103) for the special
case where oo = 1 and f§ = 1 are shown in Fig. 7.16a, b. It can be observed from
Fig. 7.16a—d that the solutions obtained by the proposed method coincide with the
exact solution. In this case, we see that the soliton solutions are kink types for both
u(x,t) and v(x,1).

Example 7.8 Consider the following time fractional coupled modified KdV equa-
tions [44]

L, 10%u ,0u 39 _O(uv) Ou
Dl =3~ ot 2ae T3y o (7.106a)

v v Oudv v v

va:—$—3va—3aa+3u2a—3a, (7.106b)

where ¢ > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = tanh(x), (7.106c¢)
v(x,0) = 1 — 2 tanh?(x). (7.106d)

The exact solutions of Egs. (7.106a) and (7.106b) obtained by Adomian
decomposition method, for the special case where o = f§ = 1, are given by

u(x,t) = tanh(x — 1), (7.107a)
v(x,1) = 1 — 2tanh*(x — ). (7.107b)

In order to assess the advantages and the accuracy of the CFRDTM for solving time
fractional coupled modified KdV equations, firstly we derive the recursive formula
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Fig. 7.16 Surfaces show (a) P
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1
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from Egs. (7.106a), (7.106b). Now, U(h, k — h) and V(h, k — h) are considered as the
coupled fractional reduced differential transform of u(x,#) and v(x, 1), respectively,
where u(x,¢) and v(x, ) are the solutions of coupled fractional differential equations.
Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial conditions.

Without loss of generality, the following assumptions have been taken

U(0,j) =0, j=1,23,...

and V(i,0) =0,

i=1,2.3,...

Applying CFRDTM to Eq. (7.106a), we obtain the following recursive formula

T((h+1)a+ (k—h)B+1)

T(ho+ (k — h)p+ 1)

Ulh+

+1,k—h) =

From the initial condition of Eq. (7.106c), we have

U(0,0) = u(x,0)

16
353 U(h,k —h)
307 3]
+ 550 Vnk—h)+3--Ulhk—h)
o [ kh
13- (Z Uh—1,8)V(l,k—h— v))
N\ ==
h  h—r k—h k—h—s
3(2 Ulryk—h—s—p)
r=0 =0 s=0 p=0
xU(l )QU(h— L,p)
7S 8){ r 7p
(7.108)
(7.109)

In the same manner, we can obtain the following recursive formula from

Eq. (7.106b)

C(ho+ (k — h+1)+1)
T(ho+ (k— h)p+ 1)

V(hk—h+1) =

i 9
hk—h)—=3=V(h,k—h
o Vk =) =35V (i k— )

»

—/

Ul k—h—s)%\/(h—l,s))

w
i
Sé’l@

»
=

V(lk— hs)gV(hl,s)>
X

> v

p=0

U(h—r—lp))

T
LS

k=h k s

U(r,k—h—s—p)

T
gt

s=0

‘!
Il
o
Il
o

N
(58
(

,s)

S’IQ3

(7.110)
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From the initial condition of Eq. (7.106d), we have

V(0,0) = v(x,0) (7.111)

According to CFRDTM, using recursive Eq. (7.108) with initial condition

Eq. (7.109) and also using recursive scheme Eq. (7.110) with initial condition
Eq. (7.111) simultaneously, we obtain

U(1,0) = — I{iclhijr(z
V(0,1) = ‘W
U(,1) = — 245;%:(2 tf};l;(x)
V(0,2) = WL - izcisg(ﬁz)ﬂ + cosh(4v))
U(2,0) = - ZBF cos}}((21x)ls;§;14(x) tanh(x)
V(1,1) = 485;0(*1“<+xitin;;<x> |

and so on.
The approximate solutions, obtained in the series form, are given by

k
Z U h k — h (ho.+ (k—h) )

"
NgE

k=0 h=0
ok
=U(0,0 +ZZUhk p)ph s (=h)
=1 =1 (7.112)
t°‘sech2 (x)  £2*(—23 + cosh(2x))sech*(x) tanh(x)
= tanh(x) — -
T(1+0) T(1+22)

241** Psech*(x) tanh(x)
I(1+o+p)
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V(h,k — )i+ k=1h)

M»

0=

k=0

>
I
o

V(h, k — )i+ (k=p)

M»

00+

k=1

>
i

0
4tPsech?(x) tanh(x) (7.113)
C(1+p)
n *Psech®(x)(21 — 26 cosh(2x) + cosh(4x))
I'(1+2p)
48¢*+ Fsech*(x) tanh? (x)
I'l4+a+p)

=1 — 2tanh?(x) +

When « = 1 and f§ = 1, the solution in Eq. (7.112) becomes

u(x, 1) = tanh(x) — rsech?(x) — r*sech?(x) tanh(x)
sech*(x)(—2 + cosh(2x)) (7.114)
- 3 +...

When o = 1 and f§ = 1, the solution in Eq. (7.113) becomes

v(x,7) = 1 — 2tanh?(x) 4 4rsech®(x) tanh(x) + 2*sech*(x)(—2 + cosh(2x))
2¢3sech’ (x)(—11 sinh(x) + sinh(3x)) N
3

(7.115)

The solutions in Eqgs. (7.114) and (7.115) are exactly the same as the Taylor
series expansions of the exact solutions

u(x,t) = tanh(x — )
= tanh(x) — sech?(x) — r*sech?(x) tanh(x)

o (7.116)
*sech®(x)(—2 + cosh(2x))
3 +
v(x,1) = 1 — 2tanh*(x — 1)
= 1 — 2 tanh?(x) + 4ssech?(x) tanh(x)
+ 2¢%sech® (x)(—2 + cosh(2x) (7.117)
23sech’ (x)(—11 sinh(x) + sinh(3x))
3 +

Again, in order to verify the efficiency and reliability of the proposed method for
the time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.17a—d. The numerical solutions for Eqs. (7.114) and (7.115) for the special
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case where oo = 1 and ff = 1 are shown in Fig. 7.17a—d. It can be observed from
Fig. 7.17a—d that the soliton solutions obtained by the proposed method are exactly
identical with the exact solutions. In this case, we see that the soliton solutions are
kink type for u(x,¢) and bell type for v(x,?).

Verification of Classical Integer-Order Solutions by ADM

In case of =1 and =1, to solve Egs. (7.106a) and (7.106b) by means of
Adomian decomposition method (ADM), we rewrite Egs. (7.106a) and (7.106b) in
an operator form

10%u 30% Ou
L= 55 ~ A0+ 353 +38(e) 4350, (7.118)
Ay Ov
Ly =25 =3C(v) = 3G(u,v) +3H(u,v) =3, (7.119)

where L, = at is the easﬂy invertible linear differential operator with its inverse
operator L7'(.) = [j(.)dt. Here, the functions A(u)=u?2, B(u,v) = d([,)’;v)
Clv) = vgv, G(u7 v) = g}’j g;’, and H(u,v) = u>2" are related to the nonlinear terms
and they can be expressed in terms of the Adomlan polynomials as follows:

A(u) = 3220 An, Bu,v) = 3250 By, C(v) = 32,50 Cu G(u,v) = 32,2 Gy, and
H(u,v) = > ", H,. In particular, for nonlinear operators A(u) and B(u,v), the
Adomian polynomials are defined by

1 a x,
Ap=—— (A S 2 , n>0
ntdi’ l <kz; ”k>1 )=0 "
- 1=
B—14 |p iz" S >0
n — 'din ukaz/“vk ) n-=
n =0 =0 1=0

The first few components of A(u), B(u,v), C(v), G(u,v), and H(u,v) are,
respectively, given by

2
Ao = uguoy,
A =ul 2
1| = Uglx + 2uply Uy,

2 2
An = ugy(2uouy + uy) + ughoy + 2upu Uy,
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Fig. 7.17 Surfaces show

a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(c)

(d)
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By = upvox + volox,
By = ugvix + vinoy + u1vor + volry,
By = ugvo, + vaugy + U1 Vix + Vil + Ua Vo, + Vollox,
.
Co = vovox,
C1 = voVix + ViVox,
Cy = viVix + Vovar + Vavoy,
.
Go = uoxvor,
G = upVix + Voltix,
Gy = upevix + voxltoy + toxVax,
.
2
Hy = ugvox,
2
H{ = ugvix + 2uouvox,
2 2
Hy = v (2uous + uy) + ugvax + 2uouy viy,
.

and so on, and the rest of the polynomials can be constructed in a similar manner.
Now, operating with L' on the both sides of Egs. (7.118) and (7.119), yields

15 39° 9
w(x, £) = u(x,0) + L7 (58_;; ~3A(u) + 58—;2} 4 3B(u,v) +38—Z), (7.120)

3

v(x,1) = v(x,0) + L " (—% —3C(v) —3G(u,v) +3H(u,v) — 3%) (7.121)

The ADM assumes that the two unknown functions u(x,¢) and v(x,#) can be
expressed by infinite series in the following forms
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u(x,t) = Zun(x, 1), (7.122)
n=0

v(x,t) = ivn(x, 1). (7.123)
n=0

Substituting Eqgs. (7.122) and (7.123) into Eqs. (7.120) and (7.121) yields

uo(x, 1) = u(x,0),

1 (10Pu,(x,1) 30%v,(x,1) Ouy(x, 1)
un+1(x,t):L[1(57—3%”—!—57—1—33”—1—3 ax )7 nZO
(7.124)
V()(X, t) = V()C, O)v
3
vw1u¢):Lﬁ(—g%%§2—3q,—ya+3Hn—3@%%i5, n>0.
(7.125)

Using known ug(x, ) and vy(x,7), all the remaining components u,(x,#) and
Va(x,1), n > 0 can be completely determined such that each term is determined by
using the previous term. From Egs. (7.124) and (7.125) with Egs. (7.106¢) and
(7.106d), we determine the individual components of the decomposition series as

uy = tanh(x),
vo = 1 — 2tanh?(x),
u; = —tsech’(x),
v1 = 4t sech?(x) tanh(x),

uy = —1* sech? (x) tanh(x),

vy = 26*(—2 + cosh(2x))sech*(x),

1
uz = _§f3(—2‘|‘ cosh(2x))sech* (x),

2
=3 £ sech’ (x)(—11 sinh(x) + sinh(3x)),
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and so on, and the other components of the decomposition series (7.122) and
(7.123) can be determined in a similar way.

Substituting these ug, uy,us,... and vg, vy, va, ... in Egs. (7.122) and (7.123),
respectively, gives the ADM solutions for u(x, ) and v(x,7) in a series form

u(x, 1) = tanh(x) — rsech?(x) — r*sech?(x) tanh(x)

1 (7.126)
- 313(—2 + cosh(2x))sech* (x) + - - -,
v(x,7) = 1 — 2tanh?(x) 4 4rsech®(x) tanh(x)
+ 272 (=2 4+ cosh(2x))sech*(x) (7.127)
2
+ §t3sech5(x)(—ll sinh(x) + sinh(3x)) + - -.
Using Taylor series, we obtain the closed-form solutions

u(x,) = tanh(x — 1), (7.128)
v(x,7) = 1 — 2 tanh®(x — 1). (7.129)

With initial conditions (7.106¢) and (7.106d), the solitary wave solutions of
Egs. (7.118) and (7.119) are of kink type for u(x,¢) and bell type for v(x, ) which
agree to some extent with the results constructed by Fan [44]. According to the
learned author Fan [44], the solitary wave solutions of Eqs. (7.118) and (7.119) are
kink type for u(x,f) = tanh(x+ %) and bell type for v(x,#) =3 — 2 tanh®(x + £),
where k = 1 and A = —1. There is definitely a mistake to be reckoned with and
should be taken into account for further study. Since using the same parameters
k=1 and 4 = —1, the solitary wave solutions of Egs. (7.118) and (7.119) have
been obtained as in Eqgs. (7.128) and (7.129).

In the present analysis, the two methods coupled fractional reduced differential
transform and Adomian decomposition method confirm the justification and cor-
rectness of the solutions obtained in Eqs. (7.128) and (7.129).

7.5.3 Approximate Solution for Fractional Predator-Prey
Equation

In order to assess the advantages and the accuracy of the CFRDTM, we consider
three cases with different initial conditions of the predator—prey system [54]. Firstly,
we derive the recursive formula obtained from predator—prey system of
Egs. (7.10)—~(7.11). Now, U(h,k — h) and V(h,k — h) are considered as the cou-
pled fractional reduced differential transform of u(x, y, ) and v(x, y, t), respectively,
where u(x,y,t) and v(x,y,t) are the solutions of coupled fractional differential
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equations. Here, U(0,0) = u(x,y,0), V(0,0) = v(x,y,0) are the given initial
conditions. Without loss of generality, the following assumptions have taken

U(,j)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....
Applying CFRDTM to Eq. (7.10), we obtain the following recursive formula

I((h+1)o+(k—h)p+1) 0? 0?

REESCEE Ulh+1,k = h) =55 Ulhk = h) + a—yzU(h,k—h)
+aU(h,k —h) —b<i§U(h—l,s)V(l,k—h—s)>,
=0 s=0
(7.130)

From the initial condition of Eq. (7.10), we have
U(0,0) = u(x,y,0). (7.131)

In the same manner, we can obtain the following recursive formula from
Eq. (7.11)

F(;l?hzik(;fz)lﬁ)ﬁ)l) V(b k—h+1) = %V(k,k R+ aa;V(hJc —n)
+b<zh:kzh Ul,k—h—s)V(h— l,s))
=0 s=0
—cV(hk—h).
(7.132)
From the initial condition of Eq. (7.11), we have
V(0,0) = v(x,,0). (7.133)

Applications and Results

Now, let us consider the three cases of the predator—prey system.
Case 1: Here, we consider the fractional predator—prey equation with constant
initial condition

u(x,y, 0) = Up, V(%)’a 0) =V (7134)

According to CFRDTM, using recursive scheme Eq. (7.130) with initial con-
dition Eq. (7.131) and also using recursive scheme Eq. (7.132) with initial condi-
tion Eq. (7.133) simultaneously, we obtain
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U[Oa 0} = u(x,y, 0) = Uo, V[Ov 0] = v(x,y, O) =0,

_up(a — bw) (bugvo — cvp)

U[1,0] m, V[0, 1] :W’
_ up(a — bvo)2
VRO TR
_ vole — bu)®
V02 ="Fiap)
_ buo(—cvo + buovo)
Ul = -,
_ bugvo(a — bvo)
__ ble=bu)’uov
U= =i 2p)
Vi1 = bug(c — bug)vo(—(a — 2bvo)T (1 + )T (14 B) + (—a+ bvo) (1 + o+ )
o C(1+a+28)T(1+a)T(14f) ’
U, 1] = bugvo(a — bv)((c — 2bug)T (1 + )T (1 4 B) + (¢ — bug)T'(1+ o+ f))

C(1+ 20+ B)T(1+a)T(1+ p) ’

o bbt()\/()(a — bV0)2

Vi21]= C(1+2a+p) "’
_up(a — by )

UBO = Fir
_ vole— bug)’

vio.3) = r(1+3p) °

and so on.
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The approximate solutions, obtained in the series form, are given by

ook
u(x,y, 1) = U(0,0) +ZZUhk R+ (=i)f)

=1 h=1

224

- up(a — bvo)t*  up(a — bvy)r* (7.135)
r'(l1+oa) (14 2a)
up(a — bv0)3t3°‘ B bug(—cvo + bugve)t*+F
(14 3a) IF(1+o+p)

ook
v(x,y, 1) = V(0,0)+ Y > V(hk — h)"* B

k=1 h=0
— o+ (bro() — CVQ)lﬁ broo((l — va)ll+/} (7 136)
r'(1+p) Ir(l4+a+p)
bugvo(a — bv0)212“+5
T(1+ 20+ f)

Figure 7.18 cites the numerical solutions for Eqs. (7.10)—(7.11) obtained by the
proposed CFRDTM method for the constant initial conditions u#y = 100, vy = 10,
a =0.05, b =0.03, and ¢ = 0.01. Figure 7.19 shows the time evolution of popu-
lation of u(x,y,t) and v(x,y,?) obtained from Egs. (5.2) to (5.3) for different values
of o and f. In the present numerical analysis, Table 7.2 shows the comparison of
the numerical solutions with the proposed method with homotopy perturbation
method and variational iteration method, when a = 0.05, b = 0.03, and ¢ = 0.01.
From Table 7.2, it is evidently clear that CFRDTM used in this paper has high
accuracy. The numerical results obtained in this proposed method coincide pre-
cisely with values obtained in the homotopy perturbation method.

Case 2: In this case, the initial conditions of Egs. (7.10)—(7.11) are given by
u(x,y,0) = e v(x,y,0) = e**. (7.137)
By using Egs. (7.130) to (7.133), we can successively obtain
U[0,0] = u(x,y,0) = ">, V[0,0] = v(x,y,0) = e,

DeXt+y +aex+y _ b62x+2y
I(1+a) ’

U[1,0] =

2ex+y _ Cex+)’+b62x+2y

I'(1+p) ’

v[0,1] =
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b+ (2 — ¢+ be*tY)

Ull,1] =

Cl+atp)
b 2(x+y) 9 _ betty
V[l,l]:—e ( a—+be )’
T(1+a+p)
ex+y(4 +a2 — 10be* Y +b2e2<x+}’) +a(4 _ 2b6x+y))
U[2,0] = |
I'(1+2x)
v[0,2] = & (4 + P 4 10be" P 4 b2 ) — 2c(2+ be* )
T '(1+2p) )
Uitg] — DA 100e T P - 26(2 4 bet )

L(1+o+p) ’

V[1,2] = (b*“ ) (—(a(—8 + ¢ — be" ) +2(—8 + ¢ + 9be*
— bee" T + b T(1+ o) T(1 4 p)
+(2+a—be")(2 - c+be"tY)
xT(14+a+p)/(T(1+a)[(1+ BT (1 +a+2p)),

eI (8+a® — 84be™ Y + 285720 ) — P33 4 g2 (6 — 3be™ ) 4 3a(4 — 10be" Y + peA )
I'(1+43a) ’

U[3,0] =

e V(8 — ¢ 4 84bet TV 4 280220+ + P33 HY) + 3¢2(2 4 het V) — 3c(4 + 10bet Y 4 22 HY)))

vio,3 = r(1+3p)

and so on.
The explicit approximate solution is

(zeery +aex+y _ b62x+2y)ta

u(ey.f) = e+

I'l+a)
L e+ @~ 10be T B2 a4 - 2be )
(1 +2a) ’
(7.138)
and
2eXtTY _ ceXtY 4 p 2x+2y tﬁ
e = ey O e )

(7.139)

bez(x+y)(_2 _ a+bex+y)ta+[)’
— + -,
C(14a+p)
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Fig. 7.18 Time evolution of the population for u(x,y, ) and v(x,y,t) obtained from Egs. (7.135)
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and (7.136), when o =1, f =1
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Fig. 7.19 Time evolution of the population for u(x, y, ) and v(x, y,t) obtained from Egs. (7.135)

and (7.136) for different values of o and f

Table 7.2 Comparison of the numerical solutions of the proposed method with homotopy

Tone

perturbation method and variational iteration method

Numerical value
(u, v) by HPM

Numerical value
(u, v) by VIM

Numerical value
(u, v) by CFRDTM

(99.4831, 10.6146)
(99.1865, 10.9633)

(99. 4834, 10.6323)
(99.3065, 10. 8375)

(99.4831, 10.6146)
(99.1865, 10.9633)

(93.0910, 17.8514)
(90.5735, 20.5567)

(93. 3908, 17.7382)
(92.4584, 18.8198)

(93.0910, 17.8514)
(90.5735, 20.5567)

T a=p
0.02 1

0.9
0.2 1

0.9
0.3 1

0.9

(87.9348, 23.4430)
(83.7993, 27.7785)

(88. 9466, 22. 7237)
(87. 8005, 24.0532)

(87.9348, 23.4430)
(83.7993, 27.7785)
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Figures 7.20 and 7.21 cite the numerical approximate solutions for the predator—
prey system with the appropriate parameter. The obtained results of predator—prey
population system indicate that this model exhibits the same behavior observed in
the anomalous biological diffusion fractional model.

Figures 7.22 and 7.23 show the numerical solutions for prey population density
for different values of parameters a, b, i.e., the natural birthrate of prey population
and competitive rate between predator and prey populations. The results depicted in
graphs agree with the realistic data.

Case 3: In this case, we consider the initial condition of fractional predator—prey
Egs. (7.10)—(7.11)

U[0,0] = u(x,y,O) = \/x—y, V[07 0] = v(xvya 0) = ex+y’ (7'140)

N N S _ perty
2 A “"a\/ﬁ € \/E

Xy

r'(1+oa) ’

U[1,0] =
2eXty Ce.r+y+bex+y\/x—y
C(1+p) ’

be* ¥ /3y (2 — ¢ + by /xy)
I(1+oa+p) ’

V[0,1] =

Ull,1] =

—be* TV (y? +x%(1 — 4ay? + 4be* +2y?))
4()*T (1 + o+ p)

VL, 1] =

1
U[27O} = m\/x—y(—ISy4 — l6bex+yx3y4 +X2(2y2 — 8(a — bex+y)y4)
+x* (=15 + 16a°y* + 16p22 Yy

— 8be" Y (—1 42y +4y%) — 8ay* (1 +4be" %)),

e (A(=2+ ) (09)*7 + 407 (1) — b(y? — dxy? +x3(1 — dy +8(=2+c)y?)))
A(xy)*PT(1+2p)

v[0,2] =

)

and so on.
The solution becomes

K 2
(-~ eV by
I'l+a)

“(X7Yat):\/JC_Y+ +7 (7141)
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10 00

Fig. 7.20 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=054,a=0.7,b=0.03,¢=0.3, and t = 0.53

Fig. 7.21 Surface shows the numerical approximate solution of v(x,y,#) when o = 0.88,
p=054,a=07,b=0.03c=09,and 7= 0.6
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Fig. 7.22 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=054,a=05,b=0.03 c=03, and r = 0.53

Fig. 7.23 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=0.54,a=0.7,b=0.04 c=0.3, and r = 0.53
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and

(26" — ce™ TV 4 be" TV ay) 1P
C(1+p)

(—be* Y (y? + 22(1 — day? + 4be* HVy?) ) P

4(0)’ T (1 +a+ )

V(x7y7 t) =t +

(7.142)
+

+...,

7.5.4 Solutions for Time Fractional Coupled
Schriodinger-KdV Equation

In the present analysis, fractional coupled Schrodinger—KdV equations with
appropriate initial conditions have been solved by using the novel method, viz.
CFRDTM.

Example 7.9 Consider the following time fractional coupled Schrédinger—-KdV
equation

iDYu; = Uy + uv, (7.143a)
va, = —6VVy — Vyer + (\u\z)x, (7.143b)

where t > 0, 0<a, f <1, subject to the initial conditions

u(x,0) = 6v/2ePk>sech? (kx), (7.143c)
16k
v(x,0) = ’% — 6K tanh? (kx). (7.143d)

The exact solutions of Egs. (7.143a) and (7.143b), for the special case where
o = f =1, are given by [55]

u(x, 1) = 6v/2e™k*sech? (k¢), (7.144a)
1 2
v(x,1) = % — 6k* tanh? (k¢), (7.144b)

where

t 10kt
0= (% +pt— 3 +pX),f = x+2pt,

and p, k are arbitrary constants.
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In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled Schrédinger—KdV equation, firstly we derive the recursive
formula from Egs. (7.143a), (7.143b). Now, U(h,k — h) and V(h,k — h) are con-
sidered as the coupled fractional reduced differential transform of u(x, ¢) and v(x, #),
respectively, where u(x, ) and v(x,7) are the solutions of coupled fractional dif-
ferential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial
conditions. Without loss of generality, the following assumptions have taken

U(0,/)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....

Applying CFRDTM to Eq. (7.143a), we obtain the following recursive formula

C((h+ 1)+ (k—h)p+1) s
Uh+1,k—h U(h,k—h
Tt (k—mp+1) DU+ LEk=h) =—ig5U( )
hk=h
—iY > UMh—=1s)V(k—h—s).
=0 s=0
(7.145)
From the initial condition of Eq. (7.143c), we have
U(0,0) = u(x,0). (7.146)

In the same manner, we can obtain the following recursive formula from
Eq. (7.143b)

C(ha+ (k—h+1)B+1) h
Tt (k—mpr1) k= htD =5 <ZO
o3

x~
=

i

Ul,k—h—s)U (h—l,s)>

=~

V(i khs)axv(hl,s)>

=0 s=0
(;‘) 33 V(h,k — h)
(7.147)
From the initial condition of Eq. (7.143d), we have
V(0,0) = v(x,0). (7.148)

According to CFRDTM, using recursive equation (7.149) with initial condition
Eq. (7.146) and also using recursive scheme Eq. (7.147) with initial condition
Eq. (7.148) simultaneously, we obtain
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2/2k?sech? (kx)(—i cos(px) + sin(px))(p — 3p* + 10k> — 12ipk tanh(kx))
I'(l+a) ’

U[1,0] =

24pk3sech? (kx) tanh (kx)
C(1+p) ’

72+/2pk’sech® (kx) (—i cos(px) + sin(px)) sinh(2kx)
I(1+a+p) ’

V[0, 1] =

Ull,1] =

12pk* (=3(p + 48k?) — 2(p — 48k?) cosh(2kx) + p cosh(4kx))sech® (kx)

vio,2] = T(1+2p) ’

576pk®(—3 + 2 cosh(2kx))sech® (kx)
T(1+a+p) ’

V[1,1] =

and so on.
The approximate solutions, obtained in the series form, are given by

M(JC, t) — ZZ U(h,k, _ h)t(hoHr(kLh)ﬁ)

= U(0,0) + ZZUhk’ p)t WE)

=6V2 kzsechz(kx)e’px
727/ 2pk t*+ Psech® (kx) (—i cos(px) + sin(px)) sinh(2kx)
+
I'(l4+o+p)

(7.149)

oo K
_ ZZ V(K — )t @=0p

k'=0 h=0

V(0,0 +ZZth’ Yt W=mp) o
=1 h=0 (7.150)

24pk3tPsech? (kx) tanh (kx)
I'(1+p)
N 576pk®t*+F(—3 + 2 cosh(2kx))sech® (kx) N
I'(1+a+p)

16>
_r+ 6" tanh? (kx) +

When o =1 and § = 1, the solutions in Egs. (7.149) and (7.150) are exactly
same as the Taylor series expansions of the exact solutions
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u(x, 1) = 6v/2e™k*sech? (k¢), (7.151)
2
v(x,1) = ’# — 6k tanh? (k¢). (7.152)

In the present numerical experiment, Egs. (7.149) and (7.150) have been used to
draw the graphs as shown in Figs. 7.24, 7.25, 7.26, and 7.27, respectively. The
numerical solutions of the coupled Sch—KdV equation (7.143) have been shown in
Figs. 7.24,7.25, 7.26, and 7.27 with the help of third-order approximations for the
series solutions of u(x,¢) and v(x, ), respectively. In the present numerical com-
putation, we have assumed p = 0.05 and k£ = 0.05. Figure 7.28 confirms that exact
solution and approximate solutions coincide reasonably well with each other and
consequently there is a good agreement of results between these two solutions when
oo =1 and f = 1. Figures 7.24, 7.25, 7.26, 7.27, and 7.28 show one-soliton solu-
tions for coupled Sch-KdV equation (7.143). Table 7.3 explores the comparison
between CFRDTM and Adomian decomposition method (ADM) results for
Re(u(x, 1)) and v(x, ) when o = 1 and § = 1. It manifests that CFRDTM solutions
are in good agreement with ADM solutions cited in [49].

Figures 7.29, 7.30, and 7.31 exhibit the numerical solutions of the coupled Sch—
KdV equations (7.143) when o = 0.25 and f# = 0.75.

Example 7.10 Consider the time fractional coupled Schrédinger—-KdV equations
(7.143a)—(7.143b) with the following initial conditions

u(x,0) = tanh(x)e™, (7.153a)

11
v(x,0) = o 2 tanh?(x). (7.153b)

The exact solutions of Egs. (7.143a) and (7.143b), for the special case where
o= f =1, are given by

u(x, 1) = tanh(x + 2¢)e/* 1), (7.154a)
11 ,
v(x,1) = B~ 2 tanh(x + 2¢) (7.154b)

Proceeding in a similar manner, using Eqgs. (7.149) and (7.147), we can obtain

(cos(x) + isin(x))(24sech?(x) + 25i tanh(x))

UlL,0 = 12T°(1 +0) ’

8sech?(x) tanh(x)

ek (F T
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fomst

(c)

Fig. 7.24 a Approximate solution for Re(u(x,7)) when =1 and =1, b corresponding
solution for Re(u(x, 7)) when 7 = 1, and ¢ the exact solution for Re(u(x,7)) when o = 1 and § = 1

(a) (b) N
0003 // \\
/
. .
B g 23)] -_\w\\ N . ¢
\\\ -m/s L
%
J
(c)
Bl e2]]

Fig. 7.25 a Approximate solution for Im(u(x,7)) when « =1 and =1, b corresponding
solution for Im(u(x, 7)) when 7 = 1, and ¢ the exact solution for Im(u(x,#)) when o = 1 and f = 1
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(a)

Mbslugpre (2]

(c)

Abssanc (2]

Fig. 7.26 a Approximate solution for Abs(u(x,z)) when o =1 and ff =1, b corresponding
solution for Abs(u(x,z)) when ¢ =1, and ¢ the exact solution for Abs(u(x,7)) when o =1 and

p=1

Fig. 7.27 a Approximate solution for v(x,#) when & = 1 and § = 1, b corresponding solution for
v(x,7) when # = 1, and ¢ the exact solution for v(x,#) when « =1 and ff =1
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(a)
kapprox
Keyact
_____1)_,.’
(b) (" 3 L
p S— ApproT
F I/
0.005 J = Yepact
1 " 1 i x
20 40
C
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0
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L L ”
-40 =20 0 20 40

Fig. 7.28 a Exact and approximate solutions for Re(u(x,#)), b the exact and approximate
solutions for Im(u(x,?)), and ¢ the exact and approximate solutions for v(x, ) when ¢ = 1
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Fig. 7.29 a Approximate solution for Re(u(x,7)) when o =0.25 and = 0.75, and b corre-

sponding solution for Re(u(x,7)) when t = 1
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Fig. 7.30 a Approximate solution for Im(u(x,7)) when oo =0.25 and = 0.75, and b corre-

sponding solution for Im(u(x, 7)) when r =1
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Fig. 7.31 a Approximate solution for v(x, ) when o = 0.25 and # = 0.75, and b corresponding

solution for v(x,#) when r = 1
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Fig. 7.32 a Approximate solution for Abs(u(x,r)) when « =1 and f=1, b corresponding
solution for Abs(u(x,#)) when ¢ = 0.2, and ¢ the exact solution for Abs(u(x,¢)) when o = 1 and
p=1
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Fig. 7.33 a Approximate solution for Re(u(x, 7)) when o = 1 and § = 1, b corresponding solution
for Re(u(x, 1)) when ¢ = 0.4, and ¢ the exact solution for Re(u(x,7)) when « =1 and f = 1

B 8isech®(x)(cos(x) + i sin(x)) tanh?(x)
ult 1= I(14+o0+p)

)

20(—2 + cosh(2x))sech?*(x)
I(1+2p) ’

v[0,2] =

isech*(x)e™(9408 + 192 cosh(2x) + 5858 sinh(2x) + 625i sinh(4x))
11521 (1 + 2)

U2,0] =

)

|42+ cosh(20)seah'y
VL1 = - T(1+o+f) ’

and so on.

The approximate solutions can be obtained by Eq. (7.29).

Figure 7.35 confirms that exact solution and approximate solutions coincide
reasonably well with each other and consequently there is a good agreement of
results between these two solutions when « =1 and f = 1.

Figures 7.32, 7.33, 7.34, 7.35, 7.37, 7.38, 7.39, and 7.40 exhibit the numerical
solutions of the coupled Sch—KdV equations (7.143a)—(7.143b) with initial con-
ditions (7.153a)—(7.153b) when =1, f =1 and « = 0.5, f = 0.5, respectively
(Fig. 7.36).
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Fig. 7.34 a Approximate solution for Im(u(x,7)) when o =1 and =1, b corresponding
solution for Im(u(x,#)) when 7 = 0.4, and ¢ the exact solution for Im(u(x,#)) when o =1 and

=1

Example 7.11 Consider the time fractional coupled Schrédinger—-KdV equations
(7.143a)—(7.143b) with the following initial conditions

u(x,0) = cos(x) +isin(x), (7.155a)
v(x,0) = % (7.155b)

The exact solutions of Egs. (7.143a) and (7.143b) with initial conditions (7.155),
for the special case when oo = f§ = 1, are given by

t . t
u(x, t) = cos(x—l— Z) +ts1n(x+ Z)’ (7.156a)
3
v(x, 1) = 1 (7.156b)

The Jacobi periodic solutions [56] to coupled Sch—KdV equations (7.143a) and
(7.143b) are given by
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(b)

u

=20 =10 ) 10 20

Fig. 7.35 a Approximate solution for v(x,#) when o = 1 and # = 1, b corresponding solution for
v(x,7) when t = 0.3, and ¢ the exact solution for Re(u(x,7)) when o =1 and f =1

[ 2 1
u(x, 1) = 2_m260dn<\/2_—mz£>’ (7.157a)

7 2 1
v(x, 1) Ry dn* (\/2__’"25) (7.157b)

where 0 = (x+ ﬁ) and ¢ = x+2t.
For m = 0, Eq. (7.157a-b) reduces to Eq. (7.156a-b).
Proceeding in a similar manner, using Eqs. (7.149) and (7.147), we can obtain

i(cos(x) +isin(x))

ulL, 0= ar(1+a)

v[0,1] =0,
Ul1,1] =0,

V[0,2] =0,
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Fig. 7.36 a Exact and approximate solutions for Re(u(x,#)) when 7= 0.4, b the exact and
approximate solutions for Im(u(x, #)) when 7 = 0.4, and ¢ the exact and approximate solutions for
v(x,t) when t = 0.3
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Fig. 7.37 a Approximate solution for Re(u(x, #)) when « = 0.5 and # = 0.5, and b corresponding

solution for Re(u(x,7)) when r = 0.4
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Fig. 7.38 a Approximate solution for Im(u(x, 7)) when o = 0.5 and # = 0.5, and b corresponding

solution for Im(u(x,#)) when r = 0.4

-2

Fig. 7.39 a Approximate solution for Abs(u(x,#)) when « = 0.5 and = 0.5, and b correspond-

ing solution for Abs(u(x,f)) when r = 0.3



304 7 New Techniques on Fractional Reduced Differential ...

T ()

i

L
| |
RELEEL |
5
IR
L7

o o2
a,
LT 4
RSanad k
L
s
&7
o
7 Ay,
Ty,

5
e

2 L dir,

PR AL
L -y
28 r,

27 2
“ LS LA

Fig. 7.40 a Approximate solution for v(x,7) when o« =0.5 and = 0.5, and b corresponding
solution for v(x,t) when ¢ = 0.3
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Fig. 7.41 a Approximate solution for Re(u(x,7)) when « =1 and =1, b corresponding
solution for Re(u(x,7)) when ¢ = 0.4, and ¢ the exact solution for Re(u(x,7)) when o = 1 and

p=1

eix

ul2, 0] = - 16I°(1 +20)°

V[1,1] =0,
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Fig. 7.42 a Approximate solution for Im(u(x,7)) when « =1 and =1, b corresponding
solution for Im(u(x, 7)) when ¢ = 0.4, and ¢ the exact solution for Im(u(x,#)) when o = 1 and

p=1

—icos(x) + sin(x)
64I'(1+30) '

U[3,0] =

and so on.

The approximate solutions can be obtained by Eq. (7.29).

Figures 7.41 and 7.42 show the exact and approximate solutions for Re(u(x, 7))
and Im(u(x,#)) when o = 1 and § = 1, respectively. Since the obtained approxi-
mate solution v(x,7) is exact, it is not drawn.

Figure 7.43 confirms that exact solution and approximate solutions coincide
reasonably well with each other and consequently there is a good agreement of
results between these two solutions when « = 1 and f = 1.

Figures 7.44 and 7.45 exhibit the numerical solutions of the coupled Sch-KdV
equations (7.143a)-(7.143b) with initial conditions (7.155) when o« = 0.5 and
p=0.25.
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Fig. 7.43 a Exact and approximate solutions for Re(u(x,7)) when 7 = 0.4 and b the exact and
approximate solutions for Im(u(x,)) when t = 0.4
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Fig. 7.44 a Approximate solution for Re(u(x, #)) when « = 0.5 and f = 0.5, and b corresponding
solution for Re(u(x,t)) when r = 0.4
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(b)

Fig. 7.45 a Approximate solution for Im(u(x,#)) when o = 0.5 and # = 0.5, and b corresponding
solution for Im(u(x,#)) when r = 0.4

7.5.5 Traveling Wave Solutions for the Variant of Time
Fractional Coupled WBK Equations

In this section, the new proposed CFRDTM [34, 35] is very successfully employed
for obtaining approximate traveling wave solutions of fractional coupled Whitham—
Broer—Kaup (WBK) equations, fractional coupled modified Boussinesq equations,
and fractional approximate long wave equations. By using this proposed method,
the solutions were calculated in the form of a generalized Taylor’s series with easily
computable components. The obtained results justify that the proposed method is
also very efficient, effective, and simple for obtaining approximate solutions of
fractional coupled evolution equations.

Example 7.12 Consider the following time fractional coupled WBK equations
[57-59]

Diu = —u%—%— %, (7.158a)
phy — W) L, (7.158b)
Ox Ox3 ox?
where ¢ > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = 2 — 2Bk coth(k¢&), (7.158c¢)
v(x,0) = —2B(B + b)k*csch?(k¢), (7.158d)

where B = va+b?, £ =x+c, and ¢, k, A are arbitrary constants.
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The exact solutions [57, 60] of Egs. (7.158a) and (7.158b), for the special case
where o = f = 1, are given by

u(x,t) = 2 — 2Bk coth(k(¢ — Ar)), (7.159a)
v(x,7) = —2B(B+ b)k*csch? (k(& — J1)), (7.159b)

In order to assess the advantages and the accuracy of the proposed method,
CFRDTM has been applied for solving time fractional coupled WBK equations.
First, we derive the recursive formula from Eqgs. (7.158a) and (7.158b), respec-
tively. Now, U(h,k — h) and V(h,k — h) are considered as the coupled fractional
reduced differential transform of u(x, #) and v(x, t), respectively, where u(x,?) and
v(x,t) are the solutions of coupled fractional differential equations. Here,
U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial conditions.

Without loss of generality, the following assumptions have been taken

U(,j)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....
Applying CFRDTM to Eq. (7.158a), we obtain the following recursive formula

C((h+ 1o+ (k—h)p+1) B h k—h 5
Tt (k= R+ 1) U(h—H,k—h)——(ZZU(h—l,s)aU(Lk—h—s))

=0 s=0

0 ?
— o Vk =) = bo s Uk~ ).
(7.160)
From the initial condition of Eq. (7.158c), we have
U(0,0) = u(x,0). (7.161)

In the same manner, we can obtain the following recursive formula from
Eq. (7.158b)

T(ho+ (k—h+1)B+1) N AR

T(ha+ (k—h)f+1) V(h7k_h+1)__a<;;U(l,k—h—S)V(h—l7s)
o 9

—agsUlhk—h)+bo 5 V(hk—h).

Ox?
(7.162)

From the initial condition of Eq. (7.158d), we have

V(0,0) = v(x,0). (7.163)
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According to CFRDTM, using recursive Eq. (7.160) with initial condition
Eq. (7.161) and also using recursive scheme Eq. (7.162) with initial condition
Eq. (7.163) simultaneously, we obtain

_ 2Bk*Jesch? (k&)
U(1,0) = = =R
a 3) 2
V(0,1) = _ A +b(b+B))/EI :(;gl(ké)csch (k&)
_ 4(a+b(b+B))k* /(2 + COSh(2kf))csch4(k§)

)= - 8k°A(—2b* (b + B) + a(—2b + 3B) + aB cosh(2k¢)) coth (k&) csch® (k&)

vl T(1+o+f) ’

)

and so on.
The approximate solutions, obtained in the series form, are given by

T
Mx

k
ZU h k — h (hot+ (k—h)B)
=0

ook
0)+ > U,k — h)+

k=1 h=1 (7.164)
B 2BKk?* Jcsch? (k&)t*
= ) — 2Bkcoth (k&) — N (e
4(a+b(b+ B))k*A(2 + cosh(2k&))esch® (k&) P N
I'(1+a+p)

~
Il

0 h

k
v(x,) =3 Y V(hk— k)00

h=0

NgE

T
(=)

v(0,0) +ZZth Bt (=mf) (7.165)
=1 h=0 ’

= —2B(b+ B)kzcschz(ki)
4(a+b(b+ B))k* 4 coth(k&)csch? (k&)
I'(1+p)

When o = 1 and § = 1, the solution in Eq. (7.164) becomes




310 7 New Techniques on Fractional Reduced Differential ...

u(x,t) = A — 2Bk coth(k&) — 2Bk* Jcsch? (k&)

7.166
— 2Bk* 2% coth(k&)csch? (kE) + - - - ( )

When « = 1 and f§ = 1, the solution in Eq. (7.165) becomes

v(x,1) = —2B(B 4+ b)k*csch? (k(& — Jt))
= —2(B(b+ B)k*csch®(k&)) — 4(B(b + B)k> 1. coth(k&)csch? (k&))t
— 2(B(b+ B)k*2*(2 + cosh(2k¢))csch* (k&E))? — - --.
(7.167)

The solutions in Egs. (7.166) and (7.167) are exactly the same as the Taylor
series expansions of the exact solutions

u(x,t) = A — 2Bk coth(k(¢ — 1))
= ). — 2Bk coth(k&) — 2Bk? Jcsch? (k)¢ (7.168)
— 2Bk* % coth(k¢)csch? (k&) + - - -

v(x,1) = —2B(B+ b)k*csch? (k(& — Jt))
= —2(B(b+ B)k*csch®(k&)) — 4(B(b + B)k* 1. coth(k&)csch? (k&))t
—2(B(b+ B)k*2*(2 + cosh(2k¢))csch* (k&))? — - --
(7.169)

Example 7.13 Consider the following time fractional coupled modified Boussinesq
(MB) equations [57, 58, 60]

ou Ov

D'u=—u——— .1

u U B (7.170a)
owv) Fu

DPy = — = 1

Py R (7.170b)
where r > 0, 0<a, f§ <1, subject to the initial conditions

u(x,0) = A — 2k coth(k¢&), (7.170c)
v(x,0) = —2k*csch? (k&). (7.170d)

As already mentioned earlier, if a = 1 and b = 0, the above fractional coupled
modified Boussinesq equations (7.170a) and (7.170b) can be obtained as a special
case of WBK equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Egs. (7.170a) and (7.170b), for the special case
where o = f§ = 1, are given by
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u(x,t) = A — 2k coth(k(& — 1)), (7.171a)
v(x, 1) = —2k*csch? (k(& — r)). (7.171b)

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.170a), we obtain the following recursive formula

L((h+ 1o+ (k—h)B+1) h_ k—h B P )
[(ho+ (k—h)f+1) U(h+1,k—h) ;FOU Ls) 5 Uk —h—s)
0
— 5 Vb k—h).
(7.172)
From the initial condition of Eq. (7.170c), we have
U(0,0) = u(x,0). (7.173)

In the same manner, we can obtain the following recursive formula from
Eq. (7.170b)

C(ha+ (k—h+1)p+1) h k=h
T(ha+ (k—h)B+1) V(hk—h+1) ax<ZZUlk h—s)V (—l,s)>

=0 =0
(f? 33 U(h,k —h).
(7.174)
From the initial condition of Eq. (7.170d), we have
V(0,0) = v(x,0). (7.175)

According to CFRDTM, using recursive formulae (7.172) and (7.174) along
with initial conditions in Egs. (7.173) and (7.175) simultaneously, we obtain the
approximate solutions in the series forms as

k

ZZUhk h (ho+ (k—h)p)

k=0 h=

O)+§:zk:Uhk R+ (=)

=1 h=1 (7.176)

2 2 Ped
— . — 2kcoth(kg) — 2RAes RS )fc(sldjr (ak)i)

4k A(2 4 cosh(2kE))esch® (k&) F
F(1+a+p)
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k
ZV h k— h (hot+ (k—h)p)

0
Mz

k=0 h=0
00 k
k=1 h=0
4k3 ). coth(k h? (k&) P
_ oReschl(ke) — HAcoth(kSjesch (k)

L(1+p)

When oo = 1 and f§ = 1, the solutions in Egs. (7.176) and (7.177) are exactly the
same as the Taylor series expansions of the exact solutions

u(x,t) = 4 — 2kcoth(k(¢ — 2r)), (7.178)
v(x,1) = —2k*csch? (k(¢& — ). (7.179)

Example 7.14 Consider the following time fractional coupled approximate long
wave (ALW) equations [57, 58, 60]

o ou v 10%u
ouwv) 1%
va = —W + 5@7 (7180b)

where > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = A — kcoth(k¢&), (7.180c)
v(x,0) = —k*csch?(k¢) (7.180d)

As already mentioned earlier, if a = 0 and b = 1/2, the above fractional coupled
ALW equations (7.180a) and (7.180b) can be obtained as a special case of WBK
equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Egs. (7.180a) and (7.180b), for the special case
where o = f§ = 1, are given by

u(x,t) = A — kcoth(k(& — Ar)), (7.181a)
v(x,7) = —k*csch®(k(& — Jt)). (7.181b)

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.180a), we obtain the following recursive formula
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T((h+ Do+ (k—h)p+1) h kh a
T+ k—mpr1) L LE=h (;AOU Uk~ hs))
9 1 &
— gV k—h) =555 U(hk = h).
(7.182)

From the initial condition of Eq. (7.180c), we have
U(0,0) = u(x,0). (7.183)

In the same manner, we can obtain the following recursive formula from
Eq. (7.180b)

I'(ho+ (k—h+1)p+1) 9 h_ k—h
Mot (k= mp+1 kD ="5 (ZZU(lﬁk—h—s)V(h—zst

1=0 s=0
+ %aa_; V(h,k —h)
(7.184)
From the initial condition of Eq. (7.180d), we have
V(0,0) = v(x,0). (7.185)

According to CFRDTM, using recursive formulae (7.182) and (7.184) along
with initial condition Eqgs. (7.183) and (7.185) simultaneously, we obtain the
approximate solutions in the series forms as

k
ZU h k — h l(h%+ (k—h)p)
h=0

U(0,0) +ZZUhk Bt (=mf)

=1 h= (7.186)
kzmcschz(ké)

I'(l1+a)

2k*J(2 + cosh(2k&))csch* (k&) +F
B I'(l+a+p)

Mg

~
Il
<}

= A — kcoth(k&) —
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k
ZVh k— h (ho+ (k—h)p)

Mg

k=0 h=0
ook
=V(0,0)+ > > V(b k — hytt A (7.187)
k=1 h=0
2k3 ). coth (k&)csch? (k&)
— 12 2 _ _
= —k“csch” (k&) T+ p)

When oo = 1 and f§ = 1, the solutions in Egs. (7.186) and (7.187) are exactly the
same as the Taylor series expansions of the exact solutions

u(x,t) = A — kcoth(k(& — Jt)), (7.188)
v(x, 1) = —k*csch? (k(& — z)). (7.189)

Tables 7.4, 7.5, and 7.6 cite the comparison between CFRDTM, Adomian
decomposition method (ADM) and variational iteration method (VIM) results for
u(x,t) and v(x,r) of WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) when o = 1 and f§ = 1. It reveals that very good approximations
have been obtained.

The comparison results between the proposed method CFRDTM with the other
methods ADM and VIM presented in Tables 7.4, 7.5, and 7.6 demonstrate that the
proposed method is more accurate and better than ADM and VIM. Therefore, the
pertinent feature of the proposed method is that it provides more accurate solution
than the existing methods ADM and VIM. Hence, the proposed methodology leads
to high accuracy. Moreover, the present approximations show excellent accuracy
and sufficiently justify the superiority over other methods.

Figures 7.46, 7.47, and 7.48 explore the numerical approximate solutions
obtained by the present method and exact solutions of u(x,¢) and v(x, ) for WBK
equation (7.158), MB equation (7.170), and ALW equation (7.180) when « = 1 and
p=1.

Figures 7.49, 7.50, and 7.51 exhibit the numerical approximate solutions of
u(x,) and v(x,t) for WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) with regard to different values of « and f.

The comparison of approximate solutions u(x, 7) and v(x, t) with regard to exact
solutions for WBK equation (7.158), MB equation (7.170), and ALW equation
(7.180) has been shown in Figs. 7.52, 7.53, and 7.54 at time instance ¢ = 5 for
o=1and f=1.

7.5.6 Convergence and Error Analysis of CFRDTM

In the present section, the error analysis of CFRDTM has been carried out through
the following theorem.
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Fig. 7.46 Surfaces show

a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)

(d)
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Fig. 7.47 Surfaces show (a)
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)

Approvimate Sobaion viz§03

-0.10
-5

(d)
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Fig. 7.48 Surfaces show

a the numerical approximate
solution of u(x,7), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)
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(a)

(b)

Fig. 7.49 Surfaces show a the numerical approximate solution of u(x,¢) and b the numerical
approximate solution of v(x,7) for WBK equations (7.158a) and (7.158b) when o = 1/8 and

B=1/4

Theorem 7.4 Let DYu = F(u,v,uty, Vy, tyy, Vir, Uxxs Vixxs - - =) and D,ﬁv =
H(uy vy thyy Viey Unxy Viers Unxy Viorrs - - -) be the general coupled fractional differential

equations, and let the Caputo derivatives D**u(x,t) and Dy (x, 1) be continuous
functions on [0,L] x [0,T], i.e.,

Du(x,1) € C([0,L] x [0, T]) and D*¥v(x,1) € C([0, L] x [0, T]),

fork=0,1,2,...,n+ 1, where 0<a, f <1, then the approximate solutions #(x, )
and ¥(x,7) of the preceding general coupled fractional differential equations are
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(b)

Approximate Sobation v(xid 5

=10
-5

Fig. 7.50 Surfaces show a the numerical approximate solution of u(x,¢) and b the numerical
approximate solution of v(x,#) for MB equations (7.170a) and (7.170b) when o = 1/4 and
p=0.88

k
(e, 1) 2> > Uh k= )™+ 0,
and

k
W, 1) 2> V(h k= )t R

where U(h,k —h) and V(h,k — h) are coupled fractional reduced differential
transforms of u(x,¢) and v(x, r), respectively.

Moreover, there exist values &;, &, where 0 < &, &, <t so that the error E,, (x, 1)
for the approximate solution i(x, #) has the form
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(a)

0.0

Approximate Sobation .2
-0.4

(b)

Approximate Sobation vwiz 805

-0.10
-5

323

Fig. 7.51 Surfaces show a the numerical approximate solution of u(x,#) and b the numerical
approximate solution of v(x,#) for ALW equations (7.180a) and (7.180b) when « = 1/2 and

B=1/2
DU Dby (x,04)
|Eq(x,0)[| =  Sup W()ﬁl) (DB
o<x<rltilz +
0<r<T
if &, & —0+.

Proof From Lemma 1 of Chap. 1, we have

m—1
DO =10 = 3 e O04), m-1<a<m
=0
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L1
-4 =2 2 'l * — =
eee Ly
=02k
-‘HM
-0.6'
-08L
(b) v
PRI 1 " " x _— approx

*ee Tapac

=05k

Fig. 7.52 Comparison of approximate solutions a u(x,7) and b v(x,f) with regard to exact
solutions of WBK equation (7.158) at time instance # = 5

The error term
E,(x,1) = u(x,t) — u(x, 1),

where

S
_ ZZ D" Py (x, 0) it k)
I

= i T(ha+ Bk — h) + 1) ’
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(a)

e

(b)

Fig. 7.53 Comparison of approximate solutions a u(x,7) and b v(x,r) with regard to exact
solutions of MB equation (7.170) at time instance ¢ = 5

and

n

zk: DMy (x, 0) at Blk—h)
s .

e e I'(ho+ Bk —h) +1)

Now, for O<a<1,
thx +/i(k—h)Dha+ﬂ(k—h)u(x7 l) _ J(h +1)a+ ﬁ(k—h)D(h-'r Do+ ﬁ(k—h)u(x, l)
— Jha+Blk=h) (Dhchrﬂ(kfh)u(x, 1) — J*D* (Dhowrﬁ(k—h)u(x’ t)))

_ Jhac+ [3(/<41)th>¢Jrﬂ(kfh)u(x7 0),

since 0 <o <1, using Eq. (1.14)



326 7 New Techniques on Fractional Reduced Differential ...

(a)
. : A . i o
-4 =2 2 4 wppeos
®e 0 Layact
-0 M
0.2}
03}
-04l
(b) -
n L 1 L 1 L — Epprox

e e Voot

_4.._:..:..:.,. —
_o,msw

Fig. 7.54 Comparison of approximate solutions a u(x,z) and b v(x,r) with regard to exact
solutions of ALW equation (7.180) at time instance ¢ = 5

n k—h
_ D =1y (x, 0) (et Bk—h) (7.190)
T(ho+ Bk —h)+1)

The nth order approximation for u(x, ) is

k hot+ B(k—1)
~ D u(x,0) ho+ B(k—h)
t t
u(x,t) = g% I'(ha+ Pk —h)+1)

n k
_ Z <Jhx + B(k=h) pyhr+ /i(k—h)u(x’ 1) — J(h+ 1)+ Blk=h) py(h+ 1)+ [i(k—h)u(x7 t)) ’
k=0 h=0
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using Eq. (7.190)
— Z Jk/?Dkﬁu(x7 t) _ J(h+ 1)u+ﬁ(n7h)D(h+ l)ochlf(nfh)u(x7 t)
h=0

n—1 n
1)+ ;J (kDB DE+ DBy (. 7) — }Z%J(h+l)oc+ﬁ(n—h)D(h+l)m+/3(n—h)u<x’ 1)

(7.191)
Therefore, from Eq. (7.191), the error term becomes
E,,(X, t) = u(x, t) - ﬁ(x: t)
n n—1

J(h+1)1+/f(nfh)D(h+ l)1+/3(n7h)u(x’ t) _ Zj(k+1)/iD(k+ l>ﬁu(x, t)
=0

=
i
=}

=

n—1

(H— l)oH—ﬁ(n—i)D(H— 1>“+ﬁ("_i)u(x, l) J(H— )ﬁD i+1)p ()C, l)
i=0

I
T
(=}

=

(t+1 o+ f(n—i)— D<i+1)a+ﬁ("7i>u()€, T)d’L'

= I+ )Oﬂ+/3n—l)/

- im/ (0= )0 DI D0 Dy, e
=0 0

Whence applying integral mean value theorem yielding

n_ pli+a+pn—i) u(x, &) i+ )+ n—i)

— T+ Do+ B(n—i) + 1)

~ n—1 D(i+1)ﬁu(x’ &) (+1)p
—~T([i+1)p+1) ’

E,(x,t) =

where 0 < ¢&;, & <t
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This implies

E,(x,1) = u(x,t) — (x, 1)

n—1

DU+ Dot pn—i) ( él)
;F( i+ o+ Bn—i)+1)

+D"H u(x, &) At Dz _ Z l+1ﬁux52)t(l+l)ﬂ
T((n+ Dat1) I

i+1)p+1)
|: Dt+la¢+ﬁn i (.X él)

i+ Dot Bln—i) _ Di+Y ﬁu( &) (i+1)
C((i+1)o+pn—i)+1) r(i+0+1)
I e RV D<n+ (x 51) n+l)oc

r (n+1)<x+1)

(Hr 1o+ p(n—i)

=
._.

i=

(7.192)
Using generalized Taylor’s series formula, Eq. (7.192) becomes

B, ) = 1) — Do U5, s

R TR
_|_D—(C2) (n+1)p D (x él) n+1
L((n+1)p+1)

F((n+1)oc+1) ’

where 0<{;, {, < max {¢;, &} and &, & — 0+.
This implies

IEnll = lluCx, 1) — a(x, 1)
Sup

0<x<L
0<t<T

= Sup
0<x<L
0<t<T

Dn+l ﬁu( Cz) (n+1)[37 D(n+l)z
F((n+1)ﬁ+1)

u(x, &) fnt D

(n+1)o 3
+ D ) u(x7ql) t(n+l)o<
T((n+ Dat1)

Tt Dot 1) =

(+ DBy (x.0 .
Wﬂ”“)ﬁ since &;,& — 0+

(7.193)
As n — oo, from Eq. (7.193)

1Ex][ — 0.

Hence, u(x, ) can be approximated as

k=0 h=0

o0 k n k
=3 "N Uk —n) e EE NN (k= Ry =iy 1),

k=0 h=0

with the error term given in Eq. (7.193).
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Following a similar argument, we may also find the error ||E,,H =
[lv(x, ) — (x,1)|| for the approximate solution v(x, ¢). |

7.6 Conclusion

In this chapter, the MFRDTM has been proposed and it is directly applied to obtain
explicit and numerical solitary wave solutions of the fractional KdV like K (m, n)
equations with initial conditions. In this regard, the reduced differential transform
method is modified to be easily employed to solve wide kinds of nonlinear frac-
tional differential equations. In this new approach, the nonlinear term is replaced by
its Adomian polynomials. As a result, we obtain the approximate solutions of
fractional KdV equation with high accuracy. The obtained results demonstrate the
reliability of the proposed algorithm and its wider applicability to fractional non-
linear evolution equations. It also exhibits that the proposed method is a very
efficient and powerful technique in finding the solutions of the nonlinear fractional
differential equations. The main advantage of the method is the fact that it provides
an analytical approximate solution, in many cases an exact solution, in a rapidly
convergent series with elegantly computed terms. It requires less amount of com-
putational overhead in comparison with other numerical methods and consequently
introduces a significant improvement in solving fractional nonlinear equations over
existing methods available in the open literature.

A new approximate numerical technique, coupled fractional reduced differential
transform, has been proposed in this chapter for solving nonlinear fractional partial
differential equations. The proposed method is only well suited for coupled frac-
tional linear and nonlinear differential equations. In comparison with other ana-
Iytical methods, the present method is an efficient and simple tool to determine the
approximate solution of nonlinear coupled fractional partial differential equations.
The obtained results demonstrate the reliability of the proposed algorithm and its
applicability to nonlinear coupled fractional evolution equations. It also exhibits
that the proposed method is a very efficient and powerful technique in finding the
solutions of the nonlinear coupled time fractional differential equations. The main
advantage of the proposed method is that it requires less amount of computational
overhead in comparison with other numerical and analytical approximate methods
and consequently introduces a significant improvement in solving coupled frac-
tional nonlinear equations over existing methods available in the open literature.
The application of the proposed method for the solutions of time fractional coupled
KdV equations satisfactorily justifies its simplicity and efficiency.

In this chapter, new CFRDTM has been successfully implemented to obtain the
soliton solutions of coupled time fractional modified KdV equations. This new
method has been revealed by the author. The application of the proposed method
for the solutions of time fractional coupled modified KdV equations satisfactorily
justifies its simplicity and efficiency. Moreover, in case of integer-order coupled
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modified KdV equations, the obtained results have been verified by the Adomian
decomposition method. This investigation leads to the conclusion that soliton
solutions for integer-order coupled modified KdV equations have been wrongly
reported by the reverend author Fan [44].

Also in this chapter, the new approximate numerical technique CFRDTM [34,
35] has been proposed for solving nonlinear fractional partial differential equations
arising in predator—prey biological population dynamical system. The results thus
obtained validate the reliability of the proposed algorithm. It additionally displays
that the proposed process is an extraordinarily efficient and strong technique. The
main advantage of the proposed method is that it necessitates less amount of
computational effort. In a later study, it has been planned to use the proposed
process for the solution of the fractional epidemic model, coupled fractional neutron
diffusion equations with delayed neutrons, and other physical models with the
intention to show the efficiency and wide applicability of the newly proposed
method.

In view of the author [61], there is no difference between differential transform
method (DTM) and Taylor series method (TSM) both of which (normally) are
provided with an analytical continuation via a stepwise procedure, since it is
essential to transform the formal series into an approximate solution of the problem
(via analytical continuation). The author also wrote in [61] that one may then rightly
remember the approach as being “an extended Taylor series method.” Thus, the
DTM could, eventually, be named as the generalized Taylor series method
(GTSM). In the belief of the learned author, “DTM could deserve its name (as a
technique) when it extends the Taylor series method to new kinds of expansion
(different from a Taylor series expansion).” He, additionally, acknowledges that the
DTM has allowed an easy generalization of the Taylor series method to various
derivation procedures. “For example, fractional differential equations have been
considered using the DTM extended to the fractional derivative procedure via a
modified version of the Taylor series.” Despite the fact that there is a controversy in
the name of DTM, the author of [61] admits that major contribution of the DTM is
in the easy generalization of the Taylor series method to problems involving
fractional derivatives.

Furthermore, it may be stated that the Taylor series method is used invariably in
many mathematical analyses and derivations for the problems of applied science
and engineering. Taylor series method of order one is commonly known as the
Euler method. However, the Euler method has its independent existence. Like that,
DTM is also self-contained for at least in the application of fractional-order calculus
and has its own right for its existence.

Also, in this chapter, fractional coupled Schrodinger—Korteweg—de Vries
equations with appropriate initial values have been solved by using the novel
method, viz. CFRDTM. The applications of the proposed method for the solutions
of time fractional coupled Sch—KdV equations reasonably well justify its simplicity,
plausibility, and efficiency.

In this chapter, solutions of nonlinear coupled fractional partial differential
equations have been proposed by CFRDTM which is only well suited for coupled
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fractional linear and nonlinear differential equations. The present method is an
efficient and simple tool in comparison with other analytical methods. The obtained
results quite justify that the proposed method is very well suited and is an efficient
and powerful technique in finding the solutions of the nonlinear coupled time
fractional differential equations. One of the main advantages of the proposed
method is that it requires less amount of computational overhead and consequently
introduces a significant achievement in solving coupled fractional nonlinear
equations over existing methods available in the open literature. Furthermore, the
applications of the proposed method for the solutions of variant types of time
fractional coupled WBK equations satisfactorily justify its simplicity and efficiency.
The proposed method determines the analytical approximate solutions as well as
numerical solutions. This proposed method can be efficiently applied to coupled
fractional differential equations more accurately and easily than its comparable
methods ADM and VIM. So, this proposed method can be a better substitute than
its competitive methods ADM and VIM.
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