Chapter 6 )
New Exact Traveling Wave Solutions e
of the Coupled Schrodinger—Boussinesq
Equations and Tzitzéica-Type Evolution
Equations

6.1 Introduction

In the recent years, the investigation of finding new exact solutions of nonlinear
partial differential equations (NLPDEs) plays an important role in the study of
nonlinear physical phenomena such as fluid mechanics, plasma physics, statistical
physics, quantum physics, solid state physics, optics, and so on [1, 2]. NLPDEs are
widely used to describe complex physical phenomena arising in the various fields
of science and engineering. Several methods for finding the exact solutions to
nonlinear equations in mathematical physics have been presented, such as the
inverse scattering method [3], Bécklund transformation [4, 5], the truncated
Painlevé expansion method [6, 7], Hirota’s bilinear method [8], tanh- function
method [9, 10], exp-function method [11], (G'/G)-expansion method [12, 13],
Jacobi elliptic function method [14—17], the first integral method [18-21], Riccati
equation rational expansion method [22], Kudryashov method [23, 24], modified
decomposition method [25, 26], and other methods [27-30].

It is commonly known that many problems in applied science and engineering
are described by nonlinear partial differential equations (NLPDEs). One of the most
significant advances of theoretical physics and nonlinear science has been the
development of methods to determine the exact solutions for NLPDEs. When a
NLPDE is analyzed, the main objective is the construction of the exact solutions for
the equation.

Many powerful methods have been presented, such as the inverse scattering
transform method [3] and the Hirota bilinear transform method [8] are known as
impressive methods to find solutions of exactly solvable NLPDEs. The truncated
Painlevé expansion method [6], Backlund transformation method [4], the homo-
geneous balance method [31], the tanh-function method [32-36], the modified
extended tanh-function method [10, 37], the exp-function method [38], the (G'/G)-
expansion method [12, 39], the auxiliary equation method [40], the extended
auxiliary equation method [41, 42], the Jacobi elliptic function method [14, 43], the
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simplest equation method [44], the extended simplest equation method [45], and the
Weierstrass elliptic function method [46] are useful in many applications to find the
exact solutions of NLPDE:s.

There are many physical phenomena around us that are best described by
nonlinear evolution equations. The Tzitzeica-type nonlinear evolution equations,
including Tzitzeica, Dodd—Bullough—Mikhailov (DBM), and Tzitzéica—Dodd—
Bullough (TDB) equations are a class of such equations which have gained sig-
nificant attention during the last few decades. The objective of this work is to find
the Jacobi elliptic function solutions, including the hyperbolic and trigonometric
solutions for the DBM and TDB equations using a new extended auxiliary equation
method. These two equations appear in problems varying from fluid flow to
quantum field theory. The great deals of efforts have been devoted to solve these
equations using a variety of methods that some of them are reviewed here. Abazari
[47] used the (G'/G)-expansion method to find more general exact solutions of the
Tzitzéica-type nonlinear evolution equations. Manafian and Lakestani [48] utilized
the improved tan(®(&)/2)-expansion method and gained new and more general
exact traveling wave solutions of the Tzitzéica-type nonlinear equations. In [49],
Hosseini et al. employed first the Painlevé transformation and Lie symmetry
method to convert the DBM and TDB equations into nonlinear ordinary differential
equations and then, a modified version of improved tan(®(&)/2)-expansion method
has been adopted to generate new exact solutions of the reduced equations. Wazwaz
[36] exerted the tanh method to generate solitons and periodic solutions of the
Tzitzéica-type nonlinear evolution equations, viz. DBM and TDB equations.
Hosseini et al. [50] used the modified Kudryashov method and acquired new exact
traveling wave solutions of the Tzitzéica-type equations.

6.2 Outline of the Present Study

In this present chapter, an improved algebraic method based on the generalized
Jacobi elliptic function method with symbolic computation is used to construct
more new exact solutions for coupled Schrodinger—Boussinesq equations. As a
result, several families of new generalized Jacobi double periodic elliptic function
wave solutions are obtained by using this method, some of them are degenerated to
solitary wave solutions in the limiting cases. The present generalized method is
efficient, powerful, straightforward, and concise, and it can be used in order to
establish more entirely new exact solutions for other kinds of nonlinear partial
differential equations arising in mathematical physics.

Also in this chapter, new types of Jacobi elliptic function solutions of Dodd—
Bullough—-Mikhailov (DBM) and Tzitzeica—Dodd-Bullough (TDB) equations have
been obtained using a new extended auxiliary equation method. A new family of
explicit traveling wave solutions is derived. The solitary wave solutions and peri-
odic solutions for these equations are formally derived from the Jacobi elliptic
function solutions. The proposed method has been efficiently applied to solve the
DBM and TDB equations.
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6.2.1 Coupled Schriodinger—Boussinesq Equations

The objective in this work is to use a generalized Jacobi elliptic function expansion
method to construct the new exact solutions of the coupled Schrédinger—
Boussinesq equations (CSBEs)

i, +upy+ou—uv =0, xRt >0, (6.1)
3 — Ve +3(V7)  + e = <|u|2)  x€ER >0, (6.2)

where the complex-valued function u(x,¢) represents the short-wave amplitude,
v(x,t) represents the long-wave amplitude, and o and f are real parameters.
Equations (6.1) and (6.2) were considered as a model of the interactions between
short and intermediate long waves, and were originated in describing the dynamics
of Langmuir soliton formation, the interaction in plasma [51, 52], the diatomic
lattice system [53], etc.

6.2.2 Tzitzéica-Type Nonlinear Evolution Equations

A new extended auxiliary equation method is used to produce new exact traveling
wave solutions of Dodd-Bullough—Mikhailov and Tzitzeica—Dodd—Bullough
equations

The Dodd-Bullough—-Mikhailov Equation

Let us consider the Dodd—Bullough—Mikhailov equation as follows
Uy +e"+e 2 =0. (6.3)
In a traveling wave variable & = kx + wt, Eq. (6.3) reads in the form
kof:: +el +e7% =0, (6.4)
where u(x, 1) = f ().

Using the Painlevé transformation v =e/ or f = Inv, the Dodd-Bullough—
Mikhailov Eq. (6.4) can be written as follows

kaowve: — ko(ve)* +v +1=0. (6.5)
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The Tzitzeica—Dodd-Bullough Equation

Now, we consider the Tzitzeica—Dodd—Bullough (TDB) equation as follows
Uy =e e, (6.6)

The traveling wave transformation ¢ = kx + ot reduces Eq. (6.6) to the following
ODE

kofee — e/ —e ¥ = 0, (6.7)

where u(x,t) = f(&).
Using the Painlevé transformation v = e~ or f = —Inv, the Tzitzeica-Dodd—
Bullough (6.7) can be written as follows

kawve: — ko(ve)® +v: +v* = 0. (6.8)

6.3 Algorithms for the Improved Generalized Jacobi
Elliptic Function Method and the Extended Auxiliary
Equation Method

In this section, algorithms for improved generalized Jacobi elliptic function method
and extended auxiliary equation method have been presented.

6.3.1 Algorithm for the Improved Generalized Jacobi
Elliptic Function Method

In this present analysis, the determination of exact solutions for coupled
Schrodinger—Boussinesq equations have been described using the proposed
method. The main steps of this present method are described as follows:

Step 1: Suppose that the coupled nonlinear NLPDEs in the class of coupled
Schrédinger—Boussinesq equations, say in two independent variables x, and ¢ are
given by

F(M, Vy Uy, Vy, iuh Viy Uxxy Vaxy Uxty Vaty - - ) = 07 (693)

Gty v, Uy, Vs Upy Vi Uy Viers Unty Vit - - -) = 0, (6.9b)
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where u = u(x, ) and v = v(x, t) are unknown functions, F and G are polynomials
in u, v and its various partial derivatives in which the highest order derivatives and
nonlinear terms are involved.

Step 2: We introduce the following traveling wave transformations:
u(x,r) = U(Qe™ ), v r) = v(9), (6.10)

& =x—2kt+1, (6.11)

where k, and ¢ are real constants to be determined later; and {, and #, are arbitrary
constants.

Using the above traveling wave transformations, the NLPDEs (6.9a and 6.9b)
can be transformed to couple nonlinear ordinary differential equations (ODEs)
involving U(¢) and V(&). Then, the resultant coupled ODEs are obtained

P(U, V, kU, kV, CU, CV, Ué, V@,kU@,kV@,CU@,CV@, Ug"é, Vég, .. ) = O, (612)
OU,V, kU, kV,cU,cV,Uz, Ve, kUg, kVe, Uz, cVe, Uge, Ve, ...) =0, (6.13)

where the suffix denotes the derivative with respect to &.

Step 3: Let us assume that the exact solutions of Egs. (6.12) and (6.13) are to be
defined in the polynomial ¢(&) of the following forms:

&) =ap+ Z ay ' (&) +biigp~ (5)+Cli¢i71(f)¢/(f)+d1i¢7i(5)¢l(f)],

(6.14)

_azo+Z i (€) + by 7 (&) + ey () (E) + b T ()¢ (9)],

(6.15)

where ¢(&) satisfies the following Jacobi elliptic equation:
(¢:(8) = pd*(&) +40° (&) + 1. (6.16)

where p, q, r, aw, ai, bi, ciy, dy (i=1,2,...,M), ax, ay, by, ¢z, dy
(j=1,2,...,N) are constants to be determined later.

Step 4: We determine the positive integers M, N in Egs. (6.14) and (6.15) by
balancing the highest order derivatives and the nonlinear terms in Eqs. (6.12) and
(6.13), respectively.
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Step 5: Substituting Egs. (6.14) and (6.15) along with Eq.(6.16) into Egs. (6.12)
and (6.13) and collecting all the coefficients of ¢/(¢) (I=0,1,2,...) and
¢"(E)P (&) (m=0,1,2,...), then equating these coefficients to zero, yield a set of
algebraic equations, which can be solved by using the Mathematica or Maple to find
the values of ayp, aii, bli» Cli, dli (l = 1,2, .. .,M), azp, ayj, bgj, C2js dgj
G=1,2,...,N), k, c.

Step 6: It may be referred to that Eq. (6.16) has families of Jacobi elliptic function
solutions as follows [54].

It may be mentioned that there are other Jacobi elliptic function solutions of
Eq. (6.16) which are excluded here for simplicity.

Step 7: Substituting the values of aio, ai;, bi;, c1i, dii (i =1,2,...,M), ax, azj, by,
¢, dyj (j=1,2,...,N), p, q, r as well as the solutions of Eq. (6.16) provided in
Step 6, into Egs. (6.14) and (6.15), we can obtain several classes of exact solutions
for CSBEs involving the Jacobi elliptic functions sn, cn, ns, nc, cs, and sc functions.

In Table 6.1, sné=sn(¢,m?), cné=cn(ém?), dné=dn(E,m?), nsé=
ns(&,m?), esé = es(&E,m?), ds¢& = ds(&,m?), sc& = sc(&,m?), sd& = sd(E, m*) are
the Jacobi elliptic functions with modulus m, 0 <m < 1.

The Jacobi elliptic functions sné, cné, and dné are double periodic and have the
following properties:

sn*é+cen*é =1,
dn®& +mPsn?é = 1.

In addition to these, these functions satisfy the followings:

(sné) = cnédné, (cné) = —snédné, (dné) = —mPsnéené,  (nsé) = —csédsé,
(cs&) = —nsédsé, (ds¢) = —nséesé,  (sc&) = ncédcé, (ncé) = scédcé,
(dcé) = (1 — m*)ncéscé,  (sd&) = ndécdé, (cd&) = (m* — 1)sdéndé,

(ndé) = m*cdEsdé.

Further explanations in details about the Jacobi elliptic functions can be found in
[55].

Tabl(.e 6.1 Jaf}Obl elliptic S. p q r ns
function solutions of 1o.
Eq. (6.16
4. (6.16) 1. m? —(1+m?) 1 sné
2. 1 -(1+m?) |m? nsé = (sné)”!
3. —m? 2m? — 1 1—m? |cené
4. 1—m? |2m®—1 —m? ncé = (cné)™"
5. 3 % i nsé & csé
1—m? m>+1 1—m? E d
6. - 2+ - neé + scé
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6.3.2 Algorithm for the New Extended Auxiliary Equation
Method

Let us consider the following nonlinear PDE
(D(uvu.hut;u)ﬁ)mutta"-) = 07 (617)

where u = u(x,t) is an unknown function, @ is a polynomial in u and its partial
derivatives in which the highest order derivatives and the nonlinear terms are
involved. The main steps of the new extended auxiliary equation method [56] can
be summarized as follows:

Step 1: The following traveling wave transformation

u(x, 1) = U(&), & = kx + wt, (6.18)

where k£ and w are constants, has been considered to reduce Eq. (6.17) to the
following nonlinear ordinary differential equation (ODE):

H(U, U, U",...)=0, (6.19)

where H is a polynomial in U(¢) and its total derivatives U’(&), U” (&), and so on.

Step 2: Let us assume that Eq. (6.19) has the formal solution
2N A
U => aF(f), (6.20)
i=0

where F(¢) satisfies the first-order ODE:

(F'(&))°= co + caF2(E) + cuF* (&) + c6FO (&), (6.21)

where ¢j(j =0,2,4,6) and «;(i=0,...,2N) are arbitrary constants to be
determined.

Step 3: By balancing the highest order nonlinear terms and the highest order
derivatives of U(¢) in Eq. (6.19), the balance number N of Eq. (6.20) can be
determined.

Step 4: Substituting Eq. (6.20) alongwith (6.21) into Eq. (6.19), collecting all the

coefficients of Fj(F’)l G=0,1,2,...)and (I = 0, 1), and set them to zero, leads to
a system of algebraic equations for ¢;j(j = 0,2,4,6), a;(i =0, ...,2N), k, and w.



206 6 New Exact Traveling Wave Solutions of the Coupled ...

Step 5: The system of algebraic equations obtained in Step 4 is solved to find
¢i(j=0,2,4,6), a;(i=0,...,2N), k, and o.

Step 6: It is well familiar that Eq. (6.21) has the following solutions [56, 57]:

o 12
P =1 [——(1 . @(é))} , (6.22)

2 Ce

where the function ¢;(¢) (i=1,2,...,12) can be expressed through the Jacobi
elliptic function sn(&,m), cn(&,m), dn(&,m), and so on, where 0<m<1 is the
modulus of the Jacobi elliptic functions. When m approaches to 1 or 0, the Jacobi
elliptic functions degenerate to hyperbolic functions and trigonometric functions,
respectively. Further explanations in details about the Jacobi elliptic functions can
be found in Ref. [55].

The function ¢;(¢) in Eq. (6.22) has 12 forms as follows [41]:

Type I:
e (m*-1) c2(5m>—1) .
Ifco =57, 0= oo > €6 > 0, then ¢;(¢) in Eq. (6.22) takes the form
6
$1(8) = sn(Kk), $a(E) = ——, Kk = 2 (6.23)
1 = sn{K¢), 2 _mS}’l(Ké)’ K_Zm\/Eg .
Type II:
If o = Ci(;z_c;"z), cy = Ci(ls;”z), c6 > 0, then ¢,(¢) in Eq. (6.22) takes the form
z ;
95(8) = mon(xd), $a(8) = ——, 1= L (6.24)
= msn = =—— .
3 s P4\5 sn(rcf)’ 2 \/c_é
Type III:
If cg = % = 63(146’:7;':21), c6 <0, then ¢;(&) in Eq. (6.22) takes the form
6

V1 —m?sn(ké) _ C4y/—Co
dn(ké) T 2mcg

d5(S) = en(d), (&) = : (6.25)

Type IV:

cm? c2(5m*—4)
_ 4 !
If co = 32cz(m2-1) 0= 16¢6(m*—1)°

c6 <0, then ¢;(¢) in Eq. (6.22) takes the form

V1 —m?dn(k car/co(m? —
() = ) (o) = e =S (e6)
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Type V:
A3 2 (4m2—5 .
Ifco = 32L.§(1“_m2>, = 1§£:(m2j1))’ c6 > 0, then ¢;(¢) in Eq. (6.22) takes the form
Bo(E) = — tyo(e) = YL mdnee) | _aveell=m) 6oy
S T en(kE) T T U —m2)sn(kE) T 2c6(1 —m?) '
Type VI
2.3 2 2
If o = %, = C4<'1"6(,6+4>, c6 <0, then ¢,;(¢) in Eq. (6.22) takes the form
B V1—m? C4r/—C6
P11 (&) = dn(k<), d1a(&) = dn(kd) K= e (6.28)

Step 7: Substituting Eq. (6.22) together with Egs. (6.23-6.28) into Eq. (6.20),
some new types of Jacobian elliptic function solutions of Eq. (6.17) can be obtained
elegantly.

6.4 New Explicit Exact Solutions of Coupled
Schrodinger-Boussinesq Equations

In this present analysis, an investigation has been made in searching the new
generalized Jacobi elliptic function solutions for Egs. (6.1) and (6.2) by using the
proposed method discussed in Sect. 6.3.1. According to the technique discussed in
the Algorithm of Sect. 6.3.1, we adopt the ansatz solutions of Egs. (6.1) and (6.2)
in the following forms

u(x, 1) = U(x, 1) = U(&)elketertto), (6.29)

and
v(x, 1) = V(x,1) = V(§), (6.30)

respectively. Here, & = x — 2kt + 5, where k and ¢ are real constants to be eval-
uated later; and {, and 7, are arbitrary constants.

Now, plugging Egs. (6.29) and (6.30) into Eqgs. (6.1) and (6.2) and then, inte-
grating the second Eq. (6.2) of the coupled Schrédinger—Boussinesq equations
twice with respect to £, we have

Ug: — (K +c—a)U—UV =0, (6.31)

Vee — 12K°V —3V2 — BV + U* = 0, 6.32
44
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Balancing the highest derivative term Ugs with the nonlinear term UV in Eq. (6.31)
and the highest derivative term V¢ with the nonlinear term U? in Eq. (6.32) leads to
M = N = 2. Thus, the exact solutions of Egs. (6.1) and (6.2) have the following
forms:

2
U(¢) = ao+ Z [anid' (&) + b1~ (&) + e (&) (&) +duidp ' (8)¢'(&)],

(6.33)

2
V(&) =ax+ Z [axd? (&) + by 7 (&) + ey (E) (&) + oy (E) ¢ (8)].
(6.34)

Now, substituting Egs. (6.33) and (6.34) alongwith Eq. (6.16) into Egs. (6.31) and
(6.32), and then collecting all the coefficients of ¢'(¢) (I=0,1,2,...) and
¢" (&) (&) (m =0,1,2,...), then equating these coefficients to zero, yield a set of
over-determined algebraic equations for ayg, ay;, bii, ci;, di; (( = 1,2), ax, aj, baj,
C2j, dyj (j = 1,2), k, c. Using the Mathematica and the Wu'’s elimination methods,
the algebraic equations have been solved and thus, the following results have been
obtained.

Result 1:

4y
V4

ay = 0,a31 = 0,axn =2p,by; = 0,by =2r,c31 =0,c00 = 0,d; = 0,d, = 0;

Vag: + 8pr — —4q® — 8pr+12
(o _ VAC +8pr ﬂqandc_ q- — 8pr+ ocq+/3q.

2v3/4q 12¢

ay =0,a;; =0,a;2=0,b;; =0,b1 =0,c1 =0,c12=0,d; = —

ydip =05

Result 2:

4\/p-r
NZi
axy = 0,az1 = 0,a2 = 2p,by; = 0,byy = 2r,c31 = 0,¢0 = 0,d>1 = 0,dp =0;

\V/4q* +8pr — Bg _ —4q* — 8pr+12uq+ fq

k=Y—"—""Tandc
2V34 12¢

ajo = 0,a;1 =0,a;, =0,b;1 =0,b12 =0,c11 =0,c12p =0,dy; = ,dip = 0;
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Result 3:

4,/pr

Va

ax = 0,a1 = 0,a20 =2p, by = 0,b2 = 2r,c31 =0,c00 =0,dr; = 0,d, = 0;

\V4q* + 8pr — fq —4q* — 8pr+ 1209+ fq
k=—+————"andc= .
2v3,/q 12q

ajo = 0,a;1 =0,a12=0,b11 =0,b12 =0,c11 =0,¢c12 =0,dy; = ,dip = 0;

Result 4:

4. /pr
a0 =0,a11 =0,a12 =0,b11 =0,b12 =0,c11 =0,¢12 =0,dy1 = — \/_7d12 =0;

ax = 0,a31 = 0,a2 =2p,by; = 0,b2y = 2r,c21 = 0,¢20 = 0,da; = 0,d2; = 0;
\V4q*+8pr — g —4q? — 8pr+120q + fq
k=YX"=2 2 "Tandc= .
2V3./q 129

Substituting the results obtained above into Egs. (6.33) and (6.34) alongwith the
Jacobi elliptic function solutions provided in Table 6.1, we can obtain following
families of exact solutions to Egs. (6.1) and (6.2).

Set 1:

4./pr
a =0,a;; =0,a12 =0,by; =0,bp =0,c11 =0,c12 =0,dy; = — \/_70712 =05

ax = 0,a31 = 0,axn = 2p,by; = 0,b2 = 2r,c31 = 0,¢20 = 0,da; = 0,d2; = 0;

V44> +8pr — Pg

—4q4* -8 12
k=— andc = | Prt ocq—&—,Bq‘
2V3./q 12g

Case I If p= —m?, g=2m*> — 1, r = 1 —m? and ¢(&) = cné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

s (x.1) = D)k ervio) - VM — ) snddnd i,
2m2—1  eng
vi1(x, 1) = V(&) = —2m2cn2f—|—2(1 — mz)nczf7

) 1/2<m? <1,
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where

VA4 +24m* + B — 2m2(12 + B)

E=x—2kt+ny,k=— , and
o 23+ 6m2
A4 24m* + 120+ B — 2m2(12+ 120+ )
= 12+ 24m? '

Case IL If p =1 —m?, q=2m*> — 1, r = —m? and ¢(¢) = ncé, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

_4y/m*(m? — 1) scédc il
2m2—1  ncg
via(x,1) = V(&) = 2(1 = m*)nc*é — 2m*en’e,

M12(X, t) _ U(é)ei(kx+cl+(o) _ kx+ct+(o)’ 1/2<m2<1’

where

VAT 24m* + f = 2m2 (12 + f)

=x—2kt+1ny,k=— , and
¢ o 2v/—3 + 6m2

A4 24mt 120+ B — 2m2(12 + 120+ )
€= 212+ 24m? '

Case Il If p=14, g = 1’%’”2, r=>%and ¢(&) = nsé £ csé, then we get the fol-

lowing double periodic solutions

; 2 csédsé £ nsédsé . .
= i(kx+ct+ ) i(kx+ct+8o) .02 1/2
u13(x,t) U(é)e \/m nsi:l:csé € yJmm< / s
1 1 _
viz(x, 1) = V(&) = 5(nsé + csé)* + E(nsf +esé) 2
where
3+ 8m* 4 2m?(—4 —
f:X—Zkl+’707k:—\/ 8 1 2 (A1) ﬁ, and
23 — 6m?
3+8m* — 1200 — B+2m?(—4 + 120+ f)
c= .

—12+24m?

Case IV: If p = I’Tf"z, qg= ”2—’”2, r= 1’4—’”2 and ¢ (&) = ncé + scé, then we get the

following Jacobi elliptic function solutions
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V2(m? — 1)

uig(x,1) = U(&)elkrertt) — £ X2 geg elvtath) - g<m<1,

vm? 41

1 —m? cné T o1—m? cné -
vig(x, 1) = V(¢) = ) (1 :I:sné) + 2 (1 =+ snf) ’

where

V3+3mt —m2 (=24 ) — B

E=x—2kt+1ny,k=— ;and
o 2V3V1 1 m?
=3 =3m*+ 120+ f+m?(—2+ 120+ f)

CcC =

12(1 4 m?)

Case V: If p=m?, g = —(1+m?), r =1 and ¢(&) = sn&, then we get the fol-
lowing Jacobi elliptic function solutions

4m cnédné ailke a4 0p)
—m?>—1 sn

vis(x,1) = V(&) = 2mPsn® & 4 2ns?¢,

ms(x,1) = U(Ee!t i) = -

where

B VA4 +24m* + B —2m* (12 + B)

=x—2kt+ny, k= , and
‘ o 2v/—3 + 6m?

B _4+24m4+ 120+ — 2m2(12+ 120+ )

N —12+24m? '

Case VI: If p =1, g = — (1 +m?), r = m? and ¢(&) = sné, then we get the fol-
lowing Jacobi elliptic function solutions

dm  csédsé eilk+er+ )
Vom2 =1 nsé ’

vig(x,1) = V(&) = 2ns*¢ + 2m?sn*¢,

ue(x,1) = U(E)etrath) =

where

VA+24m* + B —2m2(12+ p)
2/ =3 + 6m?
4+24m* + 120+ B — 2m* (12 + 120+ B)
a —12 +24m?

and

E=x—2ki+ny, k=

CcC =
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Set 2:

4,/pr

Va

ax = 0,a1 = 0,a20 =2p, by = 0,b2 = 2r,c31 =0,c00 =0,dr; = 0,d, = 0;

\V4q* + 8pr — fq —4q* — 8pr+ 1209 + fq
k=+—————andc= .
2v3,/q 129

ajo = 0,a;1 =0,a12=0,b11 =0,b12 =0,c11 =0,¢c12 =0,dy; = ,dip = 0;

Case I: If p= —m?, g=2m?> — 1, r = 1 —m? and ¢(&) = cné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

4 2(m? -1 . .
_avm (m >Snédnée‘(kx+d+”), 1/2<m?<1,
2m2—1  cong

—2mPen®é +2(1 — m*)nc?é,

1421()6, t) — U(é)ei(loc+ct+fo> =

var(x, 1) = V(&)

where

VA+24m* + B —2m2(12+ B)

&=x—2kt+ny k= , and
o 2V =3+ 6m?
A4 24mt + 120+ B — 2m? (12 + 120+ i)
‘= —12+24m? '

Case IL If p=1—m?, q=2m> — 1, r = —m? and ¢(¢) = ncé, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

4+/m*(m? — 1) scédcé
2m*—1  ncg
v (x,1) = V(&) = 2(1 — m*)nc*é — 2mPen®é,

Uz (x,1) = U(&)elEHertl) — ellrta+) 1 /2 <m? <1,

where

V4 +24m* + B —2m2 (12 + B)
2V =3+ 6m? ’
4424m* + 120+ B — 2m* (12 + 120+ f)
B —12+24m?

E=x—2kt+ny, k= and
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Case I If p=14, g = 1*—5’”2, r=1%and (&) = nsé £ csé, then we get the fol-
lowing double periodic solutions

2 csédsé + nsédsi kx+c,+g0

) = U(&)elketertio) — _ m*<1/2
ups(x,1) = U(S)e a7 meiost /2,
1 1 _
vas(x, 1) = V(&) = E(nsé:l:csf) (nsf + csé) 2
where
31 8m +2md(—4+ f) —
Em gy k= VIS RCAEH
2¢/3 — 6m?

_ 3+48m" — 1200 — f+2m*(—4+ 120+ f)

B —12+24m? '
Case IV: If p = —, q= “”” r= “4—’”2 and ¢ (&) = ncé + scé, then we get the

following Jacobi elliptic functlon solutions

. \/§(m2 -1) : p
— U(&)eilkrtertio) — dege®teatlo) g cpm<t,
(9, T %€

— o 1 —m? eng P oi—m? eng N
vaa(x,1) = V(&) = ) <1isné> + 2 <1j:sné> ’

where

Uzq ()C, t)

V3+3mt —m2(=2+ ) — B
2V3V1+m?
=3 =3m* + 1204 f+m*(—2+ 120+ p)
12(1 +m?) '

E=x—2kt+ 1y, k =

, and

CcC =

Case V: If p=m?, g=—(1+m?), r=1 and ¢(&) = sné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

U(g)ei(kx+c't+évo) — 4m Cl/lfdl’lé kx+ct+go)
i —m2—1 sn¢
vas(x, 1) = V(&) = 2mPsn*E 4 2ns* ¢,

Uss (X7 Z) =
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where
Va4+4m* + B+ m?(16 + )
E=x—2kt+ny, k= , and
o 2V3V—1 — 2
_A+4Am* 4+ 120+ f+m? (16 + 120+ f)
‘= 12(1 + m?) '

Case VI If p =1, g = —(1 +m?), r = m? and ¢(&) = nsé, then we get the fol-
lowing double periodic solutions

: 4m csédsé . ;
£ = U(&eilkter+b) — _ i(kx +ct + o)
MQ@(.X,) (g)e m nsé € )
vas(x, 1) = V(&) = 2ns*E 4 2mPsn*¢,
where
4 +4m* 2(16
E—xmdtg g k= YA P64 F)
203V 1 —m?
C_4+4m4+12a+ﬂ+m2(16+12a+ﬂ)
N 12(1 +m?) ’

Similarly, as the established solutions for Set 1 and Set 2, we can construct
corresponding exact solutions to Eqgs. (6.1) and (6.2) for Set 3 and Set 4, which are
omitted here.

6.4.1 Numerical Simulations for the Solutions of Coupled
Schriodinger—Boussinesq Equations

In the present analysis, the first solutions of Case IV of Set 1 have been used for
drawing the solution graphs Figs. 6.1 and 6.2 for coupled Schrédinger—Boussinesq
equations.

Again, the solutions of Case V of Set 2 have been used for drawing the solution
graphs Figs. 6.3 and 6.4 for coupled Schrodinger—Boussinesq equations.

In the present numerical simulations, the double periodic wave solutions for the
first solutions of u14(x,7) and vi4(x,7) have been demonstrated in 3D graphs of
Figs. 6.1 and 6.2 with elliptic modulus m = 0.5. Also, the double periodic wave
solutions for u,s(x,f) and v,s(x,f) have been demonstrated in 3D graphs of
Figs. 6.3 and 6.4 with elliptic modulus m = 0.5.
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(a) (b) Ams;.g_oon}
&0 :
sf
Absfaped)) g
wf
Jb ) :JL UL
=10 =5 o -] 10
Fig. 6.1 a Double periodic wave solutions for the first solution of uy4(x,7) when o = 1, f = —1,

{o=0, & =0, and m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.005

@ flda (b) g
’ l ) A 1 ’ | e / 150}
Avsprled) o0 fr 1‘“ o o
4 1 0,
k" 4 b e
NG| 7
= i ) = *
Fig. 6.2 a Double periodic wave solutions for the first solution of vi4(x,7) when o = 1, f = —1,

{o=0, &, =0, and m = 0.5, and b the corresponding 2D solution graph when 7 = 0.01

(b) A 009)
)
'Y
20
AN
T -5 ) e 6
Fig. 6.3 a Double periodic wave solutions for ups(x,7) when oo = 1, f = —1, {, = 0, £, = 0, and

m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.005
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(b) . , .-\m:.:cx_t ol

I |
i
150(k

Fig. 6.4 a Double periodic wave solutions for vos(x,#) when o = 1, f = —1, {, =0, £, = 0, and
m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.01

6.5 Implementation of New Extended Auxiliary
Equation Method to the Tzitzéica-Type Nonlinear
Evolution Equations

In the present section, the Jacobi elliptic function solutions, including the hyper-
bolic and trigonometric solutions for the DBM and TDB equations have been
obtained using a new extended auxiliary equation method.

6.5.1 New Exact Solutions of Dodd-Bullough—Mikhailov
(DBM) Equation

In this part, we apply the new extended auxiliary equation method to determine the
new exact solutions for Dodd-Bullough—Mikhailov Eq. (6.3).
Suppose the traveling wave solution of Eq. (6.5) can be expressed as

2N
Ue) =v(&) =Y arF'(9), (6.35)
i=0

where F(&) satisfies Eq. (6.21).
Balancing the highest order derivative term vv:: and the nonlinear term v* by
using homogenous principle the following result could be obtained

N+N+2=3N,
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yielding
N=2.
Therefore, the ansatz for the solution of Eq. (6.5) can be written as
U(¢) = ap+ a1 F(&) + ayF? (&) + a3 F? (&) + ayF*(¢), (6.36)

where F(&) satisfies

c 1/2
F(&) == [--“(m@(g))} Li=1,2,...,12. (6.37)

Co

By substituting (6.36) and (6.21) into Eq. (6.5), the coefficients of each power of
Fi,i=0,1,2... are collected, which are then set to zero. Thus, it leads to a system
of algebraic equations.

The derived system of algebraic equations has been solved by using mathe-
matical software, yielding the following results:

1/331/6 _ ~1/322/3
@ = 2'/°3 . 2'/°3 = _221/631/12\/a—4’
25/6 926 35/12 11 311/12 2
_ Vaz (96 x co+ 11 x co) P (4 « 22/331/3a4co+22/335/6a4c0)7
156 13
- 3\/531/4 _ 4\/533/4
N 24k '

(&)

1
Ce = %ai/z (4ﬁ31/4co + \/533/460) , @

where I = a/*\ /5.
Without loss of generality, let us assume a4 > 0 and ¢y > 0, and hence ¢ > 0.
Thus, ¢(¢) satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Egs. (6.23), (6.36), and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been deduced as follows

11,5
1 2 21334] L(4+\/§)
Un(8) = 3575 (3" = 37) = 2(2/312) {1 e an V43

R

2
11 5
2 21351, /L (4 +/3)
+ (2‘/631/12) 1+ sn 1 g

m

(6.38)
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Up(é) = 221“ (31/6 _ 32/3> _ 2(21/631/12)2 1+ _ 1

1
(S

+ (21/631/12>2 1+

(6.39)

where & = kx + Wt and [ = a4/4\/—

If m — 1, then sn (¢) — tanh (&), and we have the hyperbolic function solutions
of Eq. (6.5)

1 2 A I
Uis(&) = 22/3 (30 =37 - 2(21/631/12) <1 e (2};32541 §(4+ ﬂ)é))

2
15 1
I (21/631/12) (1 :I:tanh( 213%1] E(4+\/§)5>> ,

(6.40)

(€)= 35 (31 =3 = 2(2131) <1icOth<2—%3zi 113<4+\/§)~f)>
>
+(21/631/l2) <1j:coth< 2033 %(4+\/§)é>> :

(6.41)

Set 1I:
From Egs. (6.24), (6.36), and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been obtained as follows

1 2 I
Uni(§) = 555 (316 = 3) - 2(21/63112) <limsn(2%3%z §(4+x/§)5>>

2
2 1
+ (21/631/12> (1 + msn <2%3%l B(4+ \/§)5>> ’

(6.42)
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1 5 |
U22(£> = m(31/6 — 32/3) _ 2(21/631/12) 1+
sn(2H3i /5 (4+v3)2)
2
+(21/631/12)2 |4 1

s (2%3%1, [La+ \/5)6)
(6.43)

If m — 0, then sn(¢) — sin(¢), and we have the following trigonometric
function solutions of Eq. (6.5)

2
U (&) = == (310 — 32/3) — (21/631/12)

22/3

1 2 1 1
Una(&) = 75 (31/6_32/3)_2(21/631/12> <1:|:CSC<2123;4 E(4+\/§)5>>

2
2 1 1
+(21/631/12) <1icsc<2lz3zi LG V3)¢é ))

(6.44)

If m — 1, then we have the same hyperbolic function solutions (6.40) and
(6.41).

Set III:

From Egs. (6.27), (6.36) and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been derived as follows

1 2 1
Usi(6) = 5575 (310 = 3% —2(2/31/12) | 12

1155

en (28381, [y (4 V3)E)

+ (21/631/12)2 1+ !

(6.45)
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| an (24351, /15y (44 V3)2)

2
U32(£) :_(31/6_32/3) ) 21/631/12 1+ ~—
25 ( ) V1 —m?sn <21_3i_4l1 / 13(114”2) (4+ \/5)5)

+<21/631/12)2 1+

(6.46)

If m — 0, then dn(&) — 1, sn(&) — sin(&), cn(€) — cos(€), and hence, the
following trigonometric solutions of Eq. (6.5) have been obtained

Ux(é) = #(3‘/6 -3 - 2(2‘/63‘/‘2)2 <1 + sec (ﬁﬁzmé»
2
1/621/12)° u %F
+ (217531712) (1 see | 28380 [ (4 VE)E ) )
(6.47)

_ 1 1/6 _ 22/3\ _ 1/621/12 ? i %F
U34(§)—22/3(3 3%/3) 2(2 3 ) 1 £ csc| 2123%] 13(44’\/5)5
2 1 ’
+(2‘/631/12) (1:|:csc<2%32%l E(4+\/§)5>> :

It may be noted that the solution (6.44) is in agreement with the solution (6.48).

(6.48)

6.5.2 New Exact Solutions of Tzitzeica—Dodd—-Bullough
(TDB) Equation

Suppose the traveling wave solution of Eq. (6.8) can be expressed as

2N
V(&) =v(&) =) aFi(¢), (6.49)
i=0

where F(&) satisfies Eq. (6.21).
Balancing the highest order derivative term vvz: and the nonlinear term v* by
using homogenous principle the following result could be obtained



6.5 Implementation of New Extended Auxiliary Equation Method ... 221

N+N+2=4N,

yielding
N =1

Therefore, the ansatz for the solution of Eq. (6.8) can be written as

W(&) = ap+ a1 F(&) + arF* (&), (6.50)
where F(&) satisfies
c 1/2
F(&) :%{—é(liqﬁi(@)} Ci=1,2,...12. (6.51)

Substituting (6.50) and (6.21) into Eq. (6.8) and collecting the coefficients of
each power of F, i=0,1,2... and set them to zero, we obtain a system of
algebraic equations.

Solving this system of algebraic equations by using mathematical software, we
obtain the following result:

(44 5ap)axco (1+2ag)d3co aco —a} — a}

- 2a0(1+a0) 4= a%(l-ﬁ-do) °6

= y ) =
2a3(1+ ay) 2kasco

Without loss of generality, let us assume ay > 0, a; > 0 and ¢y > 0, and hence
ce > 0. Thus, ¢(&) satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Egs. (6.23), (6.50), and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been derived.

(1+ 2ap) 1(1 4 2ap)?
g =qy——— |1+ —_— 6.52
(&) =ao 5 sn a1 +ao)é ) (6.52)
(1 +2a0) 1

“P]z(é) = day — 1+ 5 (653)

2 I(1+42a0)> &

MSPA N\ 2p2a2 (T + a0)®

where & = kx + ;ii;f’t and | = ayco.

If m — 1, then sn(¢) — tanh(¢), and we have the hyperbolic function solutions
of Eq. (6.8)
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(1+42ap) I(1 4+ 2ap)*
y —ay— 0 fanh | [ 2 6.54
13(¢) = ao 2 an 2a3(1+ ay) ’ ( )
(14 2ap) I(1 +2ag)*
y —aqp— "V feoth | [ T 6.55
14(€) = a0 2 €0 2a2(1 + ao) (6.55)

Set II:
From Egs. (6.24), (6.50) and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been obtained.

B (1+2a) I(1+2ap)’
Tzl(é) =dag — f 1+ msn m ; (656)
Wn() =ap - (14 240) 1+ ; . (6.57)

2
1 +2u0
sn 2a0 (I+ao) é

If m — 0, then sn(&) — sin(¢), and we have the following solutions of Eq. (6.8)

1

Ws(&) = —5 (6.58)

2
(14+2a0) [ 10 +2a)

V(&) =ap — ) m

(6.59)

If m — 1, then we can obtain the same hyperbolic function solutions (6.54) and
(6.55).

Set III:
From Egs. (6.27), (6.50), and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been derived.

W31(&) =ap — )
2 (1 + 2a0)?
cn 2(17m2)a(2)(1+a0)é
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1(1+ 2a9)*
(1 +2610) 1t dn( 2<1m2)a§(1+ao)é>

2 2
V1-— m2sn( 72(1_1(,,11;;2200) ﬁ)

ag(1+ag

¥3(&) =ap — (6.61)

If m — 0, then dn(¢) — 1,sn(&) — sin(¢€), cn(&) — cos(€), and hence, the
following trigonometric solutions of Eq. (6.8) have been obtained

(1+2a) 1(1 4 2a)?
Wi(é) =ay————2 [ 1+ = 62
33(5) a 2 secC 2a(2)(1 +a0) , (6 6 )
(1 + 2a) I(1+2a)*
Wau(é)=ag————2 |1+ = .
34(6) do ) CSC 203(1 T ao) (6 63)

It may be noted that the solution (6.59) is in agreement with the solution (6.63).

6.5.3 Physical Interpretations of the Solutions

In the present analysis, three-dimensional and the corresponding two-dimensional
graphs of the obtained solutions to the nonlinear evolution equations, viz. Dodd—
Bullough—-Mikhailov (DBM) and Tzitzeica—Dodd-Bullough (TDB) equations have
been presented. To this aim, some special values of the parameters are selected.
Here, the physical significance of the obtained solutions of the above equations has
been discussed.

In Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12, the 3D solution graphs of
Ui (&), Uis(&), Uai (&), Usa(&), P11(€), ¥13(E), W21 (&), W34(&), respectively, have
been presented with appropriate selection of parameters. The three-dimensional

(b)

‘Mﬂi‘\‘ lll HWH th‘

(i
J| I Ji

Fig. 6.5 a 3D double periodic solution surface for v(x, #) appears in Eq. (6.38) as U;; () in Set 1,
when k =1,1=1, w =0.5, m = 0.3, b the corresponding 2D graph for v(x, #), when 7 = 1
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(b)

Wiz, 1)

Fig. 6.6 a 3D soliton solution surface of v(x, f) appears in Eq. (6.40) as U;3(¢) in Set 1, when
k=1,1=1, w=0.5 m=0.3, b the corresponding 2D graph for v(x, #), when t = 1

I i

Fig. 6.7 a 3D double periodic solution surface of v(x, #) appears in Eq. (6.42) as U; (&) in Set 2,
when k=1,1=1, ® = 0.5, m = 0.3, b the corresponding 2D graph for v(x, #), when 7 = 1

(b) -
Q-

Fig. 6.8 a 3D periodic solution surface of v(x, f) appears in Eq. (6.48) as U4 (&) in Set 3, when
k=1,1=0.5, w=0.5, m=0.3, b the corresponding 2D graph for v(x, #), when t = 1
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Fig. 6.9 a 3D double periodic solution surface of v(x, f) appears in Eq. (6.52) as ¥;;() in Set I,
whenk=1,1=1, ®w=0.5 m=0.3, aqy = 0.5, b the corresponding 2D graph for v(x, ), when
t=1

Fig. 6.10 a 3D soliton solution surface of v(x, ) appears in Eq. (6.54) as ¥13(&) in Set 1, when
k=1,1=1 v =0.5,ay=0.5 m=0.3, b the corresponding 2D graph for v(x, 7), when 7 = 1

Fig. 6.11 a 3D double periodic solution surface of v(x, 7) appears in Eq. (6.56) as ¥ (&) in
SetII, when k =1,/=1, w = 0.5, ay = 0.5, m = 0.3, b the corresponding 2D graph for v(x, 7),
when £ =1
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Fig. 6.12 a 3D periodic solution surface of v(x, f) appears in Eq. (6.63) as W34 (&) in Set ITI, when
k=1,1=0.1, » =0.5, ap = 0.5, m = 0.3, b the corresponding 2D graph for v(x, f), when ¢ = 1

graphs of Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 have been depicted when
—10<x <10, —10 <t < 10. To the best knowledge of information, these solutions
have not been reported earlier in the open literature.

In Figs. 6.5 and 6.7, the double periodic solutions for U;; and U,; of DBM
equation, have been displayed. Also, the double periodic solutions for ¥, and ¥5;
of TDB equation have been demonstrated in Figs. 6.9 and 6.11, respectively.
Figures 6.6 and 6.10 show the solutions for U3 and W3 representing the soliton
wave solutions of DBM and TDB equations, respectively. Furthermore, the peri-
odic traveling wave solutions for Uss and W34 of DBM and TDB equations have
been illustrated in Figs. 6.8 and 6.12, respectively.

6.6 Conclusion

In this chapter, an improved generalized Jacobi elliptic function method is suc-
cessfully employed for acquiring new exact solutions of the coupled Schrédinger—
Boussinesq equations. By using this present method, some new exact solutions of
the coupled Schrodinger—Boussinesq equations are found. More importantly, the
present method is more efficient and powerful to determine the new exact solutions
to CSBEs. This proposed method can also be utilized for numerous other nonlinear
evolution equations or coupled ones. To the best information of the author, these
double periodic wave solutions of the CSBEs are new exact solutions which are not
reported earlier. Being concise and powerful, this current method can also be
extended to solve many other NLPDEs arising in mathematical physics.
Moreover, in the present chapter, a new extended auxiliary equation method is
used to construct many new types of Jacobi elliptic function solutions of Dodd—
Bullough—-Mikhailov and Tzitzeica-Dodd—Bullough equations. Thus, as an
achievement, a family of new exact traveling wave solutions of Dodd—-Bullough—
Mikhailov and Tzitzeica—-Dodd-Bullough equations has been formally generated.
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It clearly manifests that the employed approach is useful and efficient to find the
various kinds of traveling wave solutions. Also, the physical interpretations of the
obtained results for Tzitzéica-type nonlinear evolution equations have been sur-
veyed as well. Therefore, the performance of the proposed method is effective and it
can be applied to study many other nonlinear evolution equations which frequently
arise in nonlinear optics, quantum theory, and other mathematical physics and
engineering problems.
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