
Chapter 5
New Exact Solutions
of Fractional-Order Partial Differential
Equations

5.1 Introduction

Fractional differential equations (FDEs) have been used nowadays frequently in
various applications for modeling anomalous diffusion, heat transfer, seismic wave
analysis, signal processing, sound wave propagation, and many other fractional
dynamical systems [1–6]. The FDEs are used in modeling many problems in
physics and engineering. The fractional derivatives introduced in physical models
can describe sound attenuation in complex media. When introduced into the con-
stitutive equations, they build a wave equation in which attenuation obeys a fre-
quency power law characteristic of many media [7].

The last few decades have witnessed rapid development in novel diagnostic and
therapeutic applications of ultrasound in biology and medicine. Nonlinear ultra-
sound modeling has become gradually important for accurate evaluation and sim-
ulation of ultrasound in a number of purposes. Ultrasound beams in the therapeutic
modalities are finite amplitude in nature. Accurate nonlinear ultrasound models and
their competent applications are required for accurate modeling and simulation of
those models of ultrasound applications. Additionally, accurate and efficient exact
solutions of nonlinear ultrasound models will significantly help us in order to
understand the complicated physical phenomena of ultrasound and the associated
bioeffects. The main motivation of this work is to develop the exact solutions of
fractional-order nonlinear acoustic wave equations.

The study of numerous approximations to the Burgers–Hopf equations in (5.1)
has a prominent history concerning the symbiotic interaction of mathematical
model and scientific computing to gain insight into the topic.

The propagation of focused and intense ultrasound beams is accompanied by
nonlinearity, diffraction, and absorption. For modeling of nonlinear propagation of
ultrasound beams in soft tissue, among others, the combined effects of nonlinearity,
absorption, and diffraction must be taken into consideration. The description of
large amplitude ultrasonic beams requires an accurate representation of
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nonlinearity, absorption, and diffraction. One of the extensively used nonlinear
models for the propagation of diffractive ultrasound in dissipative media is the
Khokhlov–Zabolotskaya–Kuznetsov (KZK) nonlinear acoustic wave equation [8,
9]. The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation is a nonlinear beam
equation that has been used to model nonlinear wave propagation in therapeutic
ultrasound.

Recently, a considerable number of research works have been rendered by the
notable researchers to develop the solutions of fractional partial differential equa-
tions, fractional ordinary differential equations, and integral equations of physical
interest. The fractional differential equations can be described best in discontinuous
media, and the fractional order is equivalent to its fractional dimensions. Fractal
media which are complex appear in different fields of engineering and physics. In
this context, the local fractional calculus theory is very important for modeling
problems for fractal mathematics and engineering on Cantorian space in fractal
media. Several analytical and numerical methods have been proposed to attain exact
and approximate solutions of fractional differential equations [10–22].

With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space. The first integral method [23–27] can be
devised to establish the exact solutions for some time fractional differential equa-
tions. The present work focuses on the first time the applicability and efficacy of the
first integral method on fractional nonlinear acoustic wave equations. To the best
information of the author, the exact analytical solutions for the above nonlinear
fractional-order acoustic wave equations have been obtained first time ever in this
chapter.

In recent years, fractional calculus has played a very important role in various
applications for modeling anomalous diffusion, heat transfer, seismic wave analysis,
signal processing, control theory, image processing, and many other fractional
dynamical systems [1–6]. Fractional differential equations (FDEs) are the gener-
alization of classical differential equations of integer order. The FDEs are inherently
multidisciplinary with its application across diverse disciplines of applied science
and engineering. Recently, FDEs have attracted great interest due to their appli-
cations in various real physical problems. The descriptions of properties of several
physical phenomena are found to be best described by fractional differential
equations. For this purpose, a reliable and efficient technique is essential for the
solution of nonlinear fractional differential equations. In this connection, it is
worthwhile to mention the recent notable works on the solutions of fractional
differential equations, integral equations, and fractional partial differential equations
of physical interest. Several analytical and numerical methods have been employed
to develop approximate and exact solutions of fractional differential equations
[10, 12–14, 16, 17, 19–22, 28, 29].

The sound propagation in a fluid is determined by nonlinearity, diffraction,
absorption, and dispersion. For modeling of nonlinear sound propagation in fluid,
the combined effects of nonlinearity, absorption, dispersion, and diffraction should
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be taken into account. The description of sound propagation in fluid requires an
accurate representation of nonlinearity, dispersion, absorption, and diffraction.

The KdV-Khokhlov–Zabolotskaya–Kuznetsov (KdV-KZK) equation describes
all the basic physical mechanisms of sound propagation in fluids [30]. The
KdV-KZK equation for fluids has profound applications in aerodynamics, acous-
tics, and also its extension to solids has applications in biomedical engineering and
in nonlinear acoustical nondestructive testing.

Nonlinear FDEs can be transformed into integer-order nonlinear ordinary dif-
ferential equations via fractional complex transform with the help of modified
Riemann–Liouville fractional derivative and corresponding useful formulae. The
present methods [31–36] under study can be devised to develop the exact analytical
solutions for time fractional KdV-KZK equation. The main motivation of this work
is to develop the exact solutions of the fractional-order KdV-KZK equation. To the
best information of the author, the exact analytical solutions for the fractional
KdV-KZK equation have been reported first time ever in this chapter.

In recent decades, FDEs have attracted increasing attention as they are widely
used to describe various complex phenomena in many fields [1, 37–41], such as the
fluid dynamics, acoustic dissipation, geophysics, relaxation, creep, viscoelasticity,
rheology, chaos, control theory, economics, signal and image processing, systems
identification, biology, and other areas. Most of the classical mechanic techniques
have been used in studies of conservative systems, but most of the processes
observed in the physical real world are nonconservative. If the Lagrangian of a
conservative system is constructed using fractional derivatives, the resulting
equations of motion can be nonconservative. In view of the fact that most physical
phenomena may be considered as nonconservative, they can be described using
fractional-order differential equations. Therefore, in many cases, the real physical
processes could be modeled in a reliable manner using fractional-order differential
equations rather than integer-order equations [39].

In particular, the fractional derivative is useful in describing the memory and
hereditary properties of materials and processes. The fractional differential equa-
tions can be described best in discontinuous media, and the fractional order is
equivalent to its fractional dimensions. Fractal media which are complex appear in
different fields of engineering and physics. In this context, the local fractional
calculus theory is very important for modeling problems for fractal mathematics
and engineering on Cantorian space in fractal media. Among the investigations for
fractional differential equations, finding numerical and exact solutions to fractional
differential equations is a prior matter of concern. Many efficient methods have
been proposed so far to obtain numerical solutions and exact solutions of fractional
differential equations. Most nonlinear physical phenomena that appear in many
areas of scientific fields, such as plasma physics, solid state physics, fluid dynamics,
optical fibers, mathematical biology, and chemical kinetics, can be best modeled by
nonlinear fractional partial differential equations.
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With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space.

In this chapter, we present the traveling wave solutions of the fractional (2 + 1)-
dimensional Davey–Stewartson equation and doubly periodic solutions of new
integrable Davey–Stewartson-type equation. We employ the mixed dn-sn method
[42] approach via fractional complex transform in order to obtain exact solutions to
the fractional (2 + 1)-dimensional Davey–Stewartson equation and the new inte-
grable Davey–Stewartson-type equation.

5.2 Outline of the Present Study

In this chapter, new exact solutions of fractional nonlinear acoustic wave equations
have been devised. The traveling periodic wave solutions of fractional Burgers–
Hopf equation and Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation have
obtained by the first integral method. Nonlinear ultrasound modeling is found to
have an increasing number of applications in both medical and industrial areas
where due to high-pressure amplitudes the effects of nonlinear propagation are no
longer negligible. Taking nonlinear effects into account, the ultrasound beam
analysis makes more accurate in these applications. The Burgers–Hopf equation is
one of the extensively studied models in mathematical physics. In addition, the
KZK parabolic nonlinear wave equation is one of the most widely employed
nonlinear models for the propagation of 3D diffraction sound beams in dissipative
media. In the present chapter, these nonlinear equations have solved by the first
integral method. As a result, new exact analytical solutions have been obtained first
time ever for these fractional-order acoustic wave equations. The obtained results
are presented graphically to demonstrate the efficiency of this proposed method.

Also in this chapter, new exact solutions of time fractional KdV-Khokhlov–
Zabolotskaya–Kuznetsov (KdV-KZK) equation have been established by classical
Kudryashov method and modified Kudryashov method, respectively. In this pur-
pose, modified Riemann–Liouville derivative has been applied to convert nonlinear
time fractional KdV-KZK equation into the nonlinear ordinary differential equation.
In the present chapter, the classical Kudryashov method and modified Kudryashov
method both have been applied successively to compute the analytical solutions of
time fractional KdV-KZK equation. As a result, new exact solutions have been
obtained first time ever involving symmetric Fibonacci function, hyperbolic func-
tion, and exponential function. The methods under consideration are reliable, effi-
cient and can be used as an alternative to establish new exact solutions of different
types of fractional differential equations arising in mathematical physics. The
obtained results are exhibited graphically in order to demonstrate the efficiency and
applicability of these proposed methods for solving nonlinear time fractional
KdV-KZK equation.
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Moreover, the Jacobi elliptic function method, viz. mixed dn-sn method, has
been presented in this chapter for finding the traveling wave solutions of the
Davey–Stewartson equations. As a result, some solitary wave solutions and doubly
periodic solutions are obtained in terms of Jacobi elliptic functions. Furthermore,
solitary wave solutions are obtained as simple limits of doubly periodic functions.
These solutions can be useful to explain some physical phenomena, viz. evolution
of a three-dimensional wave packet on the water of finite depth. The proposed
Jacobi elliptic function method is efficient, powerful and can be used in order to
establish more newly exact solutions for other kinds of nonlinear fractional partial
differential equations arising in mathematical physics.

5.2.1 Time Fractional Nonlinear Acoustic Wave Equations

Let us consider the time fractional Burgers–Hopf equation [43]

@zp ¼ cD2a
s pþ bDa

sp
2 ð5:1Þ

and the (3 + 1)-dimensional time fractional Khokhlov–Zabolotskaya–Kuznetsov
(KZK) equation [44–46]

@zD
a
sp ¼ c0

2
D?pþ cD3a

s pþ bD2a
s p2 ð5:2Þ

where 0\a� 1, c ¼ D
2c30
, and b ¼ ~b

2q0c
3
0
. Here, p is the acoustic pressure, z is the

direction of propagation, s ¼ t � z
c0

is the retarded time variable, c0 is the small
signal speed of sound, D is the diffusivity parameter, and q0 is the ambient fluid
density.

The first term on the right-hand side of Eq. (5.2) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and
nonlinearity is described in the third term. The coefficient of nonlinearity ~b is
defined by ~b ¼ 1þB=2A, where B=A is the nonlinearity parameter of the medium.
The transverse Laplacian can be written in Cartesian coordinates as

D?p ¼ @2p
@x2

þ @2p
@y2

ð5:3Þ

The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation is an augmented type
of Burgers’ equation. In addition to absorption and nonlinearity, it is also involved
with diffraction. This last term allows the KZK equation to describe
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three-dimensional directional nonlinear sound beams; the form generated through
the ultrasonic transducer. The nonlinear parabolic KZK wave equation describes the
effects of diffraction, absorption, and nonlinearity.

5.2.2 Time Fractional KdV-Khokhlov–Zabolotskaya–
Kuznetsov Equation

Let us consider the (3 + 1)-dimensional time fractional KdV-KZK equation

@zD
a
sp ¼ c0

2
D?pþA1D

3a
s pþA2D

2a
s p2 � cD4a

s p ð5:4Þ

where 0\a� 1, A1 ¼ b
2c30q0

, and A2 ¼ e
2q0c

3
0
. Here, p is the acoustic pressure, z is the

direction of sound propagation, s ¼ t � z
c0
is the retarded time variable, c0 is the

small signal speed of sound, e is the parameter of nonlinearity, b is the diffusivity
parameter, q0 is the ambient fluid density, and c is the adiabatic index defined by
c ¼ cp=cv, where cp and cv are the specific heats at constant pressure and constant
volume.

The first term on the right-hand side of Eq. (5.4) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and
nonlinearity is described in the third term. In comparison to KdV–Burgers equation,
the KdV-KZK equation has only one extra term. The diffusivity parameter b is
defined by b ¼ fþ 4g=3, where f and g are the bulk and shear viscosity. The
transverse Laplacian can be written in Cartesian coordinates as

D?p ¼ @2p
@x2

þ @2p
@y2

ð5:5Þ

The KdV-KZK equation is an augmented form of the KdV–Burgers equation. In
addition to absorption, dispersion, and nonlinearity, it also accounts for diffraction.
The nonlinear parabolic KdV-KZK equation describes the combined effects of
diffraction, absorption, dispersion, and nonlinearity.

5.2.3 Time Fractional (2 + 1)-Dimensional
Davey–Stewartson Equations

Davey–Stewartson (DS) equations have been used for various applications in fluid
dynamics. It was proposed initially for the evolution of weakly nonlinear pockets of
water waves in the finite depth by Davey and Stewartson [47].
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Time Fractional (2 + 1)-Dimensional Davey–Stewartson Equation (Type I)

Let us consider the fractional (2 + 1)-dimensional Davey–Stewartson equation [48]

iDa
t qþ aðD2b

x qþD2c
y qÞþ b qj j2nq� kqr ¼ 0; ð5:6Þ

D2b
x rþD2c

y rþ dD2b
x qj j2n
� �

¼ 0; ð5:7Þ

where 0\a; b; c� 1, q � qðx; y; tÞ, and r � rðx; y; tÞ. Also, a, b, k, and d are all
constant coefficients. The exponent n is the power law parameter. It is necessary to
have n[ 0. In Eqs. (5.6) and (5.7), qðx; y; tÞ is a complex-valued function which
stands for wave amplitude, while rðx; y; tÞ is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49–51].

Time Fractional (2 + 1)-Dimensional New Integrable Davey–Stewartson-Type
Equation (Type II)

Let us consider the fractional (2 + 1)-dimensional new integrable Davey–Stewartson-
type equation

iDa
sWþ L1WþWUþWv ¼ 0;

L2v ¼ L3 Wj j2; ð5:8Þ

Db
nU ¼ Dc

gvþ lDc
g Wj j2
� �

; l ¼ �1; 0\a; b; c� 1

where the linear differential operators are given by

L1 � b2�a2
4

� �
D2b

n � aDb
nD

c
g � D2c

g ;

L2 � b2 þ a2
4

� �
D2b

n þ aDb
nD

c
g þD2c

g ;

L3 � � 1
4 b2 þ a2 þ 8b2ða�1Þ

ða�2Þ2�b2

� �
D2b

n � aþ 2b2

ða�2Þ2�b2

� �
Db

nD
c
g � D2c

g ;

where W � Wðn; g; sÞ is complex, while U � Uðn; g; sÞ, v � vðn; g; sÞ are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko–Dubrovsky (KD) equation [53].

5.3 Algorithm of the First Integral Method
with Fractional Complex Transform

In this section, we deal with the explicit solutions of Eqs. (5.1) and (5.2) by using the
first integral method [54]. The main steps of this method are described as follows:
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Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and t, is given by

Pðu; ux; uxx; uy; uyy; uz; ut;Da
t u;D

2a
t u;D3a

t u; @zD
a
t u; . . .Þ ¼ 0; 0\a� 1 ð5:9Þ

where u ¼ uðx; y; z; tÞ is an unknown function, P is a polynomial in u and its
various partial derivatives in which the highest order derivatives and nonlinear
terms are involved.

Step 2: By using the fractional complex transform [55–58]:

uðx; y; z; tÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ kta

C ðaþ 1Þ ð5:10Þ

where l, m, k, and k are constants.
By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

Da
z u ¼ rzunD

a
zn;

where rt, rx, ry, and rz are the fractal indexes [57, 58], without loss of generality
we can take rt ¼ rx ¼ ry ¼ rz ¼ j, where j is a constant.

Thus, the FPDE (5.9) is transformed to the following ordinary differential
equation (ODE) for uðx; y; z; tÞ ¼ UðnÞ:

PðU; kU0; k2U00; k3U000; lU0; l2U00;mU0;m2U00; . . .; kkU00; . . .Þ ¼ 0; ð5:11Þ

where prime denotes the derivative with respect to n.

Step 3: We suppose that Eq. (5.11) has a solution in the form

UðnÞ ¼ XðnÞ ð5:12Þ

and introduce a new independent variable YðnÞ ¼ UnðnÞ, which leads to a system of
ODEs of the form

dXðnÞ
dn

¼ YðnÞ; ð5:13Þ

dYðnÞ
dn

¼ FðXðnÞ; YðnÞÞ:

162 5 New Exact Solutions of Fractional …



In general, it is very difficult to solve a two-dimensional autonomous planar
system of ODEs, such as Eq. (5.13).

Step 4: By using the qualitative theory of differential equations [59], if we can find
the integrals to Eq. (5.13) under the same conditions, then the general solutions to
Eq. (5.13) can be derived directly. With the aid of the division theorem for two
variables in the complex domain C which is based on Hilbert’s Nullstellensatz
theorem [60], one first integral to Eq. (5.13) can be obtained. This first integral can
reduce Eq. (5.11) to a first-order integrable ordinary differential equation. Then by
solving this equation directly, the exact solution to Eq. (5.9) is obtained.

Now, let us recall the division theorem.

Theorem 5.1 (Division theorem)
Let Qðx; yÞ and Rðx; yÞ are polynomials in C½½x; y��, and Qðx; yÞ is irreducible in

C½½x; y��. If Rðx; yÞ vanishes at all zero points of Qðx; yÞ, then there exists a poly-
nomial Hðx; yÞ in C½½x; y�� such that

Rðx; yÞ ¼ Qðx; yÞHðx; yÞ: ð5:14Þ

5.4 Algorithm of the Kudryashov Methods Applied
with Fractional Complex Transform

In this section, an algorithm has been presented for the analytical solutions of
Eq. (5.4) by using both the classical Kudryashov method and modified Kudryashov
method [31, 34, 35]. The main steps of this method are described as follows:

Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and t, is given by

Pðu; ux; uxx; uy; uyy; uz; ut;Da
t u;D

2a
t u;D3a

t u; @zD
a
t u; . . .Þ ¼ 0; 0\a� 1 ð5:15Þ

where Da
t u, D

2a
t u and D3a

t u are modified Riemann–Liouville derivatives of u, where
u ¼ uðx; y; z; tÞ is an unknown function, P is a polynomial in u, and its various
partial derivatives in which the highest order derivatives and nonlinear terms are
involved.

Step 2: By using the fractional complex transform [55, 56]:

uðx; y; z; tÞ ¼ UðnÞ n ¼ lxþmyþ kzþ kta

Cðaþ 1Þ ð5:16Þ

where l, m, k, and k are constants.
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By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

Da
z u ¼ rzunD

a
zn;

where rt, rx, ry, and rz are the fractal indexes [57, 58], without loss of generality
we can take rt ¼ rx ¼ ry ¼ rz ¼ j, where j is a constant.

Thus, the FPDE (5.15) is reduced to the following nonlinear ordinary differential
equation (ODE) for uðx; y; z; tÞ ¼ UðnÞ:

PðU; kU0; k2U00; k3U000; lU0; l2U00;mU0;m2U00; . . .; kkU00; . . .Þ ¼ 0: ð5:17Þ

Step 3: We assume that the exact solution of Eq. (5.17) can be expressed in the
following form

UðnÞ ¼
XN
i¼0

aiQ
iðnÞ; ð5:18Þ

where ai ði ¼ 0; 1; 2; . . .;NÞ are constants to be determined later, such that aN 6¼ 0,
while QðnÞ has the following form

I. Classical Kudryashov method

QðnÞ ¼ 1
1þ expðnÞ : ð5:19Þ

This function QðnÞ satisfies the first-order differential equation

QnðnÞ ¼ QðnÞðQðnÞ � 1Þ: ð5:20Þ

II. Modified Kudryashov method

QðnÞ ¼ 1
1� an

: ð5:21Þ

This function satisfies the first-order differential equation

QnðnÞ ¼ QðnÞðQðnÞ � 1Þ ln a: ð5:22Þ
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Step 4: To determine the dominant term with the highest order of singularity, we
substitute

U ¼ n�p; ð5:23Þ

to all terms of Eq. (5.17). Then, the degrees of all terms of Eq. (5.17) are compared,
and consequently two or more terms with the lowest degree are chosen. The
maximum value of p is the pole of Eq. (5.17), and it is equal to N. This method can
be employed when N is integer. If N is noninteger, the equation under study needs
to be transformed, and then, the above procedure to be repeated.

Step 5: The necessary number of derivatives of the function UðnÞ with respect to n
can be calculated using the computer algebra systems of any mathematical
software.
Step 6: Substituting the derivatives of function UðnÞ along with Eq. (5.18) in
Eq. (5.17) in case of classical Kudryashov method or substituting the derivatives of
function UðnÞ along with Eq. (5.18) in Eq. (5.17) in case of modified Kudryashov
method, Eq. (5.17) becomes the following form

U½QðnÞ� ¼ 0; ð5:24Þ

where U½QðnÞ� is a polynomial in QðnÞ. Then, after collecting all terms with the
same powers of QðnÞ and equating every coefficient of this polynomial to zero yield
a set of algebraic equations for ai(i = 0,1,2,…, N) and k.

Step 7: Solving the algebraic equations system thus obtained in step 6 and sub-
sequently substituting these values of the constants ai(i = 0, 1, 2,…, N) and k, we
can obtain the explicit exact solutions of Eq. (5.4) instantly. The obtained solutions
may involve in the symmetric hyperbolic Fibonacci functions [61, 62]. The sym-
metric Fibonacci sine, cosine, tangent, and cotangent functions are, respectively,
defined as follows:

sFsðxÞ ¼ ax � a�xffiffiffi
5

p ; cFsðxÞ ¼ ax þ a�xffiffiffi
5

p

tan FsðxÞ ¼ ax � a�x

ax þ a�x
; cot FsðxÞ ¼ ax þ a�x

ax � a�x
:

5.5 Algorithm of the Mixed Dn-Sn Method
with Fractional Complex Transform

In this present analysis, we deal with the determination of explicit solutions of
fractional (2 + 1)-dimensional Davey–Stewartson equation by using the mixed
dn-sn method. The main steps of this method are described as follows:

5.4 Algorithm of the Kudryashov … 165



Step 1: Suppose that coupled nonlinear FPDEs, say in three independent variables
x, y, and t, is given by

Fðu; v;ux; vx;uy; vy;ut; vt; iDa
t u;D

a
t v;D

2b
x u;D2b

x v;D2c
y u;D

2c
y v; . . .Þ ¼ 0; 0\a;b; c�1

ð5:25aÞ

Gðu; v;ux; vx;uy; vy;ut; vt;Da
t u;D

a
t v;D

2b
x u;D2b

x v;D2c
y u;D

2c
y v; . . .Þ ¼ 0; 0\a;b; c�1

ð5:25bÞ

where u ¼ uðx; y; tÞ and v ¼ vðx; y; tÞ are unknown functions, F and G are poly-
nomials in u, v, and its various partial derivatives in which the highest order
derivatives and nonlinear terms are involved.

Step 2: We use the fractional complex transform [55–58]:

uðx; y; tÞ ¼ eihuðnÞ; vðx; y; tÞ ¼ vðnÞ;

h ¼ h1xb

Cð1þ bÞ þ
h2yc

Cð1þ cÞ þ
h3ta

Cð1þ aÞ and n ¼ n1xb

Cð1þ bÞ þ
n2yc

Cð1þ cÞ þ
n3ta

Cð1þ aÞ ;

ð5:26Þ

where h1, h2, h3, n1, n2, and n3 are real constants to be determined later.
By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

where rt, rx, and ry are the fractal indexes [57, 58], without loss of generality we
can take rt ¼ rx ¼ ry ¼ j, where j is a constant.

Using fractional complex transform Eq. (5.26), the FPDE (5.25) can be con-
verted to couple nonlinear ordinary differential equations (ODEs) involving UðnÞ ¼
uðx; y; tÞ and WðnÞ ¼ vðx; y; tÞ. Then eliminating WðnÞ between the resultant cou-
pled ODEs, the following ODE for UðnÞ is obtained

FðU; h3U0; h23U
00; h33U

000; n3U0; n23U
00; n33U; . . .Þ ¼ 0; ð5:27Þ

where prime denotes the derivative with respect to n.

Step 3: Let us assume that the exact solution of Eq. (5.27) is to be defined in the
polynomial /ðnÞ of the following form:
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UðnÞ ¼
XN
i¼0

ci/
iðnÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2ðnÞ

q XN�1

i¼0

di/
iðnÞ; ð5:28Þ

where /ðnÞ satisfies the following elliptic equation:

/n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � /2Þð/2 � k2ð1� mÞÞ

q
: ð5:29Þ

The solutions of Eq. (5.29) are given by

/ðnÞ ¼ kdnðknjmÞ;

/ðnÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðknjmÞ; ð5:30Þ

where dnðknjmÞ and ndðknjmÞ ¼ 1
dnðknjmÞ are the Jacobi elliptic functions with

modulus m ð0\m\1Þ.
If /ðnÞ ¼ kdnðknjmÞ, then Eq. (5.28) becomes

UðnÞ ¼
XN
i¼0

cik
idniðknjmÞþ k

ffiffiffiffi
m

p
snðknjmÞ

XN�1

i¼0

dik
idniðknjmÞ;

while if /ðnÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðknjmÞ, then Eq. (5.28) becomes

UðnÞ ¼
XN
i¼0

cik
ið1� mÞi=2ndiðknjmÞþ k

ffiffiffiffi
m

p
cdðknjmÞ

XN�1

i¼0

dik
ið1� mÞi=2ndiðknjmÞ;

where cdðknjmÞ ¼ cnððknjmÞ=dnðknjmÞ and cn is the Jacobi cnoidal function. If
di ¼ 0, i ¼ 0; 1; 2; . . .;N � 1, then Eq. (5.28) constitutes the dn (or nd) expansions.

Step 4: According to the proposed method, we substitute UðnÞ ¼ n�p in all terms of
Eq. (5.27) for determining the highest order singularity. Then, the degree of all
terms of Eq. (5.27) has been taken into the study, and consequently, the two or
more terms of lower degree are chosen. The maximum value of p is known as the
pole and it is denoted as “N.” If “N” is an integer, then the method only can be
implemented, and otherwise if “N” is a noninteger, the above Eq. (5.27) may be
transferred and the above procedure is to be repeated.
Step 5: Substituting Eq. (5.28) into Eq. (5.27) yields the following algebraic
equation

Pð/Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2

q
Qð/Þ ¼ 0; ð5:31Þ
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where Pð/Þ and Qð/Þ are the polynomials in /ðnÞ. Setting the coefficients of the
various powers of / in Pð/Þ and Qð/Þ to zero will yield a system of algebraic
equations in the unknowns ci, di, k, and m. Solving this system, we can determine
the value of these unknowns. Therefore, we can obtain several classes of exact
solutions involving the Jacobi elliptic functions sn, dn, nd, and cd functions.

The Jacobi elliptic functions snðknjmÞ, cnðknjmÞ, and dnðknjmÞ are double
periodic and have the following properties:

sn2ðknjmÞþ cn2ðknjmÞ ¼ 1;

dn2ðknjmÞþmsn2ðknjmÞ ¼ 1:

Especially when m ! 1, the Jacobi elliptic functions degenerate to the hyper-
bolic functions, i.e.,

snðknj1Þ ! tanhðknÞ;
cnðknj1Þ ! sec hðknÞ;
dnðknj1Þ ! sec hðknÞ;

and when m ! 0, the Jacobi elliptic functions degenerate to the trigonometric
functions, i.e.,

snðknj0Þ ! sinðknÞ;
cnðknj0Þ ! cosðknÞ;
dnðknj0Þ ! 1:

Further explanations in detail about the Jacobi elliptic functions can be found
in [63].

5.6 Implementation of the First Integral Method for Time
Fractional Nonlinear Acoustic Wave Equations

In this section, the new exact analytical solutions of time fractional nonlinear
acoustic wave equations have been obtained first time ever using the first integral
method.

5.6.1 The Burgers–Hopf Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.1):
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pðz; sÞ ¼ UðnÞ; n ¼ kzþ ksa

C ðaþ 1Þ ð5:32Þ

where k and k are constants.
By applying the fractional complex transform (5.32), Eq. (5.1) can be trans-

formed to the following nonlinear ODE:

kU0ðnÞ ¼ ck2U00ðnÞþ 2kbUðnÞU0ðnÞ: ð5:33Þ

Using Eqs. (5.12), (5.13), and (5.33) can be written as the following
two-dimensional autonomous system

dXðnÞ
dn

¼ YðnÞ; ð5:34Þ

dYðnÞ
dn

¼ k

k2c
YðnÞ � 2b

kc
XðnÞYðnÞ:

According to the first integral method, we assume that XðnÞ and YðnÞ are the
nontrivial solutions of Eq. (5.34) and

QðX; YÞ ¼
Xm
i¼0

aiðXÞYi

is an irreducible polynomial in the complex domain C½X; Y � such that

Q½XðnÞ; YðnÞ� ¼
Xm
i¼0

aiðXðnÞÞYðnÞi ¼ 0; ð5:35Þ

where aiðXðnÞÞ, i ¼ 0; 1; 2; . . .;m are polynomials in X and amðXÞ 6¼ 0.
Equation (5.35) is called the first integral to Eq. (5.34). Applying the division
theorem, there exists a polynomial gðXÞþ hðXÞY in the complex domain C½X; Y �
such that

dQ
dn

¼ @Q
@X

dX
dn

þ @Q
@Y

dY
dn

¼ ðgðXÞþ hðXÞYÞ
Xm
i¼0

aiðXÞYi: ð5:36Þ

Let us suppose that m ¼ 1 in Eq. (5.35), and then by equating the coefficients of
Yi, i ¼ 0; 1 on both sides of Eq. (5.36), we have

Y0 : a0ðXÞgðXÞ ¼ 0 ð5:37Þ
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Y1 : _a0ðXÞþ a1ðXÞ k

k2c
� 2bX

kc

� �
¼ a0ðXÞhðXÞþ a1ðXÞgðXÞ ð5:38Þ

Y2 : _a1ðXÞ ¼ a1ðXÞhðXÞ ð5:39Þ

Since, aiðXÞ, i ¼ 0; 1 are polynomials in X, from Eq. (5.39) we infer that a1ðXÞ
is a constant and hðXÞ ¼ 0. For simplicity, we take a1ðXÞ ¼ 1. Then balancing the
degrees of gðXÞ and a0ðXÞ in Eq. (5.38), we conclude that degðgðXÞÞ ¼ 1 only.
Now suppose that

gðXÞ ¼ b1X þ b0; a0ðXÞ ¼ A2

2
X2 þA1X þA0; ðb1 6¼ 0;A2 6¼ 0Þ ð5:40Þ

where b1, b0, A2, A1, and A0 are all constants to be determined. Using Eq. (5.38),
we find that

b0 ¼ A1 þ k

k2c
;

b1 ¼ A2 � 2b
kc

:

Next, substituting a0ðXÞ and gðXÞ in Eq. (5.37) and consequently equating the
coefficients of Xi, i ¼ 0; 1; 2; 3 to zero, we obtain the following system of nonlinear
algebraic equations:

X0 : A0 A1 þ k

k2c

� �
¼ 0 ð5:41Þ

X1 : A0 A2 � 2b
kc

� �
þA1 A1 þ k

k2c

� �
¼ 0; ð5:42Þ

X2 : A1 A2 � 2b
kc

� �
þ A2

2
A1 þ k

k2c

� �
¼ 0; ð5:43Þ

X3 :
A2

2
A2 � 2b

kc

� �
¼ 0: ð5:44Þ

Solving the above system of Eqs. (5.41)–(5.44) simultaneously, we get the
following nontrivial solution

A0 ¼ 0; A1 ¼ � k

k2c
; A2 ¼ 2b

kc
; ð5:45Þ
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Using Eqs. (5.45) into Eq. (5.35), we obtain

YðnÞ ¼ � b
kc

X2 þ k

k2c
X: ð5:46Þ

Combining Eq. (5.46) with the system given by Eq. (5.34), the exact solution to
Eq. (5.33) can be obtained as

pðz; sÞ ¼ XðnÞ ¼ k

bkþ cosh kn
k2c

� kC1

� �
� sinh kn

k2c
� kC1

� � ; ð5:47Þ

where C1 is an arbitrary constant.

5.6.2 The Khokhlov–Zabolotskaya–Kuznetsov Equation

First, we introduce the following fractional complex transform in Eq. (5.2):

pðx; y; z; sÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ ksa

Cðaþ 1Þ ð5:48Þ

where l, m, k, and k are constants.
By applying the fractional complex transform (5.48), Eq. (5.2) can be transferred

to the following nonlinear ODE:

kkU00ðnÞ ¼ c0
2
ðl2 þm2ÞU00ðnÞþ ck3U000ðnÞþ 2k2bðUðnÞU00ðnÞþU0ðnÞ2Þ: ð5:49Þ

Then integrating Eq. (5.49) once, we obtain

~n0 þ kkU0ðnÞ ¼ c0
2
ðl2 þm2ÞU0ðnÞþ ck3U00ðnÞþ k2bðU2ðnÞÞ0; ð5:50Þ

where ~n0 ¼ k3cn0 is an integration constant.
Using Eqs. (5.12), (5.13), and (5.50) can be written as the following

two-dimensional autonomous system

dXðnÞ
dn

¼ YðnÞ; ð5:51Þ

dYðnÞ
dn

¼ n0 þ
k

k2c
YðnÞ � c0

2
ðl2 þm2Þ

k3c
YðnÞ � 2b

kc
XðnÞYðnÞ:
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According to the first integral method, we suppose that XðnÞ and YðnÞ are the
nontrivial solutions of Eq. (5.51) and

QðX; YÞ ¼
Xm
i¼0

aiðXÞYi

is an irreducible polynomial in the complex domain C½X; Y � such that

Q½XðnÞ; YðnÞ� ¼
Xm
i¼0

aiðXðnÞÞYðnÞi ¼ 0; ð5:52Þ

where aiðXðnÞÞ, i ¼ 0; 1; 2; . . .;m are polynomials in X and amðXÞ 6¼ 0.
Equation (5.52) is called the first integral to Eq. (5.51). Applying the division
theorem, there exists a polynomial gðXÞþ hðXÞY in the complex domain C½X; Y �
such that

dQ
dn

¼ @Q
@X

dX
dn

þ @Q
@Y

dY
dn

¼ ðgðXÞþ hðXÞYÞ
Xm
i¼0

aiðXÞYi: ð5:53Þ

Let us suppose that m ¼ 1 in Eq. (5.52), and then by equating the coefficients of
Yi, i ¼ 0; 1 on both sides of Eq. (5.53), we have

Y0 : a1ðXÞn0 ¼ a0ðXÞgðXÞ; ð5:54Þ

Y1 : _a0ðXÞ ¼ a0ðXÞhðXÞ � a1ðXÞ � c0
2
ðl2 þm2Þ

k3c
þ k

k2c
� 2b

kc
X

� �
þ a1ðXÞgðXÞ;

ð5:55Þ

Y2 : _a1ðXÞ ¼ a1ðXÞhðXÞ; ð5:56Þ

Since aiðXÞ, i ¼ 0; 1 are polynomials in X, from Eq. (5.56) we infer that a1ðXÞ is
a constant and hðXÞ ¼ 0. For simplicity, we take a1ðXÞ ¼ 1. Then balancing the
degrees of a0ðXÞ and gðXÞ, Eq. (5.55) implies that degðgðXÞÞ� degða0ðXÞÞ, and
thus from Eq. (5.55), we infer that degðgðXÞÞ ¼ 0 or 1. If degðgðXÞÞ ¼ 0, suppose
that gðXÞ ¼ A, then from Eq. (5.55), we find

_a0ðXÞ ¼ Aþ c0
2
ðl2 þm2Þ

k3c
� k

k2c
þ 2b

kc
X: ð5:57Þ
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Solving Eq. (5.57), we have

a0ðXÞ ¼ AX þ c0
2
ðl2 þm2Þ

k3c
X � k

k2c
Xþ b

kc
X2 þB; ð5:58Þ

where B is an arbitrary constant.
Next, replacing a0ðXÞ, a1ðXÞ, and gðXÞ in Eq. (5.54) and consequently equating

the coefficients of Xi, i ¼ 0; 1; 2 to zero, we obtain the following system of non-
linear algebraic equations:

X0 : AB ¼ n0 ð5:59Þ

X1 : A2 þ c0
2
ðl2 þm2Þ

k3c
A� k

k2c
A ¼ 0 ð5:60Þ

X2 :
b
kc

A ¼ 0 ð5:61Þ

Solving the above system of Eqs. (5.59)–(5.61) simultaneously, we get

A ¼ 0: ð5:62Þ

Using Eqs. (5.62) into Eq. (5.52), we obtain

YðnÞ ¼ � c0
2
ðl2 þm2Þ

k3c
X þ k

k2c
X � b

kc
X2 � B: ð5:63Þ

Combining Eq. (5.63) with the system given by Eq. (5.51), the exact solution to
Eq. (5.50) can be obtained as

pðx; y; z; sÞ ¼ XðnÞ ¼ �1

4k2b
c0ðl2 þm2Þ � 2kkþ ffiffiffi

g
p

tan
ffiffiffi
g

p
4k3c

n� 2k3cC1
� �� �� �

;

ð5:64Þ

where g ¼ �c20ðl2 þm2Þ2 þ 4c0kkðl2 þm2Þ � 4k2ðk2 � 4Bbck3Þ and C1 is an
arbitrary constant.

The established solutions (5.63) and (5.64) have been checked by putting them
into the original Eqs. (5.1) and (5.2). Thus, the new exact solutions (5.63) and
(5.64) of fractional Burgers–Hopf and KZK equations, respectively, have been first
time obtained in this present work.
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5.6.3 Numerical Results and Discussions for Nonlinear
Fractional Acoustic Wave Equations

In this present numerical experiment, two exact solutions of Eqs. (5.1) and (5.2)
have been used to draw the graphs as shown in Figs. 5.1, 5.2, 5.3, and 5.4 for
different fractional-order values of a.
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Fig. 5.1 a The periodic traveling wave solution for pðz; sÞ appears in Eq. (5.47) of Case I,
b corresponding solution for pðz; sÞ, when s ¼ 0
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Fig. 5.2 a The periodic traveling wave solution for pðz; sÞ appears in Eq. (5.47) of Case II,
b corresponding solution for pðz; sÞ, when s ¼ 3
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Numerical Simulations for Fractional Burgers–Hopf Equation

Case I: For a ¼ 0:5 (Fractional order)

Case II: For a ¼ 0:95 (Fractional order)

Numerical Simulations for Fractional KZK Equation

Case III: For a ¼ 0:5 (Fractional order)

Case IV: For a ¼ 0:95 (Fractional order)

In the present numerical simulation, the traveling wave 3-D solutions surfaces and
corresponding 2-D solution graphs have been drawn for the obtained exact solu-
tions of Eqs. (5.1) and (5.2) in case of fractional-order time derivative. It can be
observed that in all the above cases, the obtained exact solutions represent the
kink-type traveling wave solutions with regard to various fractional-order solutions.
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Fig. 5.3 a The periodic traveling wave solution for pðx; y; z; sÞ obtained in Eq. (5.64) of Case III,
b corresponding solution for pðx; y; z; sÞ, when s ¼ 0
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Fig. 5.4 a The periodic traveling wave solution for pðx; y; z; sÞ obtained in Eq. (5.64) of Case IV,
b corresponding solution for pðx; y; z; sÞ, when s ¼ 4

5.6 Implementation of the First Integral Method … 175



5.7 Exact Solutions of Time Fractional KdV-KZK
Equation

In the present section, the new exact analytical solutions of time fractional
KdV-KZK equation have been obtained first time ever using the Kudryashov
method and modified Kudryashov method, respectively.

5.7.1 Kudryashov Method for Time Fractional
KdV-KZK Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.4):

pðx; y; z; sÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ ksa

Cðaþ 1Þ ; ð5:65Þ

where k and k are constants.
By applying the fractional complex transform (5.65), Eq. (5.4) can be trans-

formed to the following nonlinear ODE:

kkUnn ¼ c0
2
ðl2 þm2ÞUnn þA1k

3Unnn þ 2A2k
2½UUnn þðUnÞ2� � ck4Unnnn: ð5:66Þ

Integrating Eq. (5.66) with respect to n once, we have

C1 þ kkU0ðnÞ ¼ c0
2
ðl2 þm2ÞU0ðnÞþA1k

3U00ðnÞþ 2A2k
2UðnÞU0ðnÞ � ck4U000ðnÞ;

ð5:67Þ

where C1 is the integration constant.
The dominant terms with highest order of singularity are ck4U000ðnÞ and

2A2k
2UðnÞU0ðnÞ. Thus, the pole order of Eq. (5.67) is N ¼ 2.

Therefore, we sought for a solution in the form

UðnÞ ¼ a0 þ a1QðnÞþ a2QðnÞ2 ð5:68Þ

where a0, a1, and a2 are constants to be determined later.
Substituting the derivatives of function UðnÞ with respect to n and taking into

account ansatz (5.68) in Eq. (5.67), we obtain a system of algebraic equations in the
following form
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Q1 : � 1
2
a1c0ðl2 þm2Þ ln aþ a1kk ln a� 2a0a1A2k

2 ln a

þ a1A1k
3ðln aÞ2 þ a1ck

4ðln aÞ3 ¼ 0

Q2 :
1
2
a1c0ðl2 þm2Þ ln a� a2c0ðl2 þm2Þ ln a� a1kk ln aþ 2a2kk ln a

þ 2a0a1A2k
2 ln a� 2a21A2k

2 ln a� 4a0a2A2k
2 ln a� 3a1A1k

3ðln aÞ2

þ 4a2A1k
3ðln aÞ2 � 7a1ck

4ðln aÞ3 þ 8a2ck
4ðln aÞ3 ¼ 0

Q3 : a2c0ðl2 þm2Þ ln a� 2a2kk ln aþ 2a21A2k
2 ln aþ 4a0a2A2k

2 ln a

� 6a1a2A2k
2 ln aþ 2a1A1k

3ðln aÞ2 � 10A1a2k
3ðln aÞ2

þ 12a1ck
4ðln aÞ3 � 38a2ck

4ðln aÞ3 ¼ 0

Q4 : 6a1a2A2k
2 ln a� 4a22A2k

2 ln aþ 6a2A1k
3ðln aÞ2

� 6a1ck
4ðln aÞ3 þ 54a2ck

4ðln aÞ3 ¼ 0

Q5 : 4a22A2k
2 ln a� 24a2ck

4ðln aÞ3 ¼ 0

Solving this system, we obtain the following family of solutions

Case I:

a0 ¼ � 12A4
1 þ 250A1kc2 þ 625c0ðl2 þm2Þc3

100A2
1A2c

;

a1 ¼ 0;

a2 ¼ 6A2
1

25A2c
;

k ¼ �A1

5c
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

pðx; y; z; sÞ ¼ UðnÞ
¼ � 125c2ð2kA1 þ 5c0ðl2 þm2ÞcÞþ 6A4

1 sec h2 n
2

� �ð1þ sinhðnÞÞ
100A2

1A2c
;

ð5:69Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ � A1

5c.
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Case II:

a0 ¼ 12A4
1 þ 250A1kc2�625c0ðl2 þm2Þc3

100A2
1A2c

;

a1 ¼ � 12A2
1

25A2c
;

a2 ¼ 6A2
1

25A2c
;

k ¼ A1
5c :

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

pðx; y; z; sÞ ¼ UðnÞ ¼ 125c2ð2kA1 � 5c0ðl2 þm2ÞcÞ � 6A4
1sech

2 n
2

� �ð1� sinhðnÞÞ
100A2

1A2c
;

ð5:70Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ A1

5c.

5.7.2 Modified Kudryashov Method for Time Fractional
KdV-KZK Equation

Following the same preceding argument, Eq. (5.67) is to be acquired. Then sub-
stituting the derivatives of function UðnÞ with respect to n into Eq. (5.67) and the
ansatz given by Eq. (5.68) into the resulting Eq. (5.67), we obtain a system of
algebraic equations in the following form

Q1 : � 1
2 a1c0ðl2þm2Þ ln aþ a1kk ln a� 2a0a1A2k

2 ln aþ a1A1k
3ðln aÞ2 þ a1ck

4ðln aÞ3 ¼ 0;

Q2 : 12 a1c0ðl2þm2Þ ln a� a2c0ðl2 þm2Þ ln a� a1kk ln aþ 2a2kk ln aþ 2a0a1A2k
2 ln a� 2a21A2k

2 ln a

�4a0a2A2k
2 ln a� 3a1A1k

3ðln aÞ2þ 4a2A1k
3ðln aÞ2 � 7a1ck

4ðln aÞ3þ 8a2ck
4ðln aÞ3 ¼ 0;

Q3 : a2c0ðl2 þm2Þ ln a� 2a2kk ln aþ 2a21A2k
2 ln aþ 4a0a2A2k

2 ln a� 6a1a2A2k
2 ln aþ 2a1A1k

3ðln aÞ2

�10A1a2k
3ðln aÞ2þ 12a1ck

4ðln aÞ3 � 38a2ck
4ðln aÞ3 ¼ 0;

Q4 : 6a1a2A2k
2 ln a� 4a22A2k

2 ln aþ 6a2A1k
3ðln aÞ2 � 6a1ck

4ðln aÞ3 þ 54a2ck
4ðln aÞ3 ¼ 0;

Q5 : 4a22A2k
2 ln a� 24a2ck

4ðln aÞ3 ¼ 0:

Solving this system we obtain the following family of solutions

178 5 New Exact Solutions of Fractional …



Case I:

a0 ¼ � 12A4
1 þ 250A1kc2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2

100A2
1A2c

;

a1 ¼ 0;

a2 ¼ 6A2
1

25A2c
;

k ¼ � A1

5c ln a
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)

p1ðx; y; z; sÞ ¼ � 1
100A2

1A2c
12 1� 1� tanFs n

2

� �� �2
2

 !"

A4
1 þ 250A1kc

2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2
i
;

ð5:71Þ

p2ðx; y; z; sÞ ¼ � 1
100A2

1A2c
12 1� 1� cotFs n

2

� �� �2
2

 !"

A4
1 þ 250A1kc

2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2
i
;

ð5:72Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ � A1

5c ln a.

Case II:

a0 ¼ 12A4
1 þ 250A1kc2 ln a� 625c0ðl2 þm2Þc3ðln aÞ2

100A2
1A2c

;

a1 ¼ � 12A2
1

25A2c
;

a2 ¼ 6A2
1

25A2c
;

k ¼ A1

5c ln a
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)
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p1ðx; y; z; sÞ ¼ 12ð�1� 2anþ a2nÞA4
1 þ 250ð1þ anÞ2A1kc2 ln a� 625ð1þ anÞ2c0ðl2 þm2Þc3ðln aÞ2

100ð1þ anÞ2A2
1A2c

;

ð5:73Þ

p2ðx; y; z; sÞ ¼ 12ð�1þ 2an þ a2nÞA4
1 þ 250ð�1þ anÞ2A1kc2 ln a� 625ð�1þ anÞ2c0ðl2 þm2Þc3ðln aÞ2

100ð�1þ anÞ2A2
1A2c

;

ð5:74Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ A1

5c ln a.

5.7.3 Numerical Results and Discussions

In this section, the numerical simulations of time fractional KdV-KZK equation
have been presented graphically. Here, the exact solutions (5.69) and (5.70)
obtained by classical Kudryashov method and also the exact solutions (5.71)–(5.74)
obtained by modified Kudryashov method have been used to draw the 3-D solution
graphs.

Numerical Simulations for the Solutions Obtained by Classical Kudryashov
Method

In the present analysis, Eqs. (5.69) and (5.70) have been used for drawing the
solution graphs for time fractional KdV-KZK equation in case of both fractional
and classical orders (Figs. 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10).

Fig. 5.5 Solitary wave solutions for Eq. (5.69) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a when a ¼ 0:5 and b when a ¼ 1
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Fig. 5.6 Solitary wave solutions for Eq. (5.70) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a when a ¼ 0:5 and b when a ¼ 1

Fig. 5.7 Solitary wave solutions for Eq. (5.71) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 0:25 and b when a ¼ 1

Fig. 5.8 Solitary wave solutions for Eq. (5.72) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 1 and b when a ¼ 0:5
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Numerical Simulations for the Solutions Obtained by the Modified
Kudryashov Method

In the present analysis, Eqs. (5.71)–(5.74) have been used for drawing the solution
graphs for time fractional KdV-KZK equation in case of both fractional and clas-
sical orders.

In the present numerical simulations, the solitary wave solutions for Eqs. (5.69)–
(5.74) have been demonstrated in 3-D graphs. From the above figures, it may be
observed that the solution surfaces obtained by classical Kudryashov for Eq. (5.69)
are anti-kink solitary waves. On the other hand, the solution surfaces obtained by
classical Kudryashov for Eq. (5.70) show the kink solitary waves. Similarly, the
solution surfaces obtained by modified Kudryashov for Eqs. (5.71) and (5.73) show
the anti-kink and kink solitary waves, respectively. However, in case of the solution
surfaces obtained by modified Kudryashov for Eqs. (5.72) and (5.74), single soliton
solitary waves of different shapes have been observed.

Fig. 5.9 Solitary wave solutions for Eq. (5.73) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 0:25 and b when a ¼ 1

Fig. 5.10 Solitary wave solutions for Eq. (5.74) at A1 ¼ A2 ¼ c ¼ k ¼ l ¼ m ¼ c0 ¼ 1, a ¼ 10,
a when a ¼ 1 and b when a ¼ 0:75
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5.7.4 Physical Significance for the Solution of KdV-KZK
Equation

The KdV-KZK equation covers all the four basic physical mechanisms of nonlinear
acoustics, viz. diffraction, nonlinearity, dissipation, and dispersion. The solution of
the KdV-KZK equation describes a shock wave as a transition between two con-
stant velocity values. This transition can undergo oscillations due to the dispersion.

The obtained results are related to the physical phenomenon in Cantorian
time-space. These results enrich the properties of the genuinely nonlinear phe-
nomenon. To the best of the author information, the obtained solutions of this work
have not been reported earlier in the open literature. The reported results have a
potential application in observing the structure of KdV-KZK equation from
micro-physical to macro-physical behavior of substance in the real world.

5.8 Implementation of the Jacobi Elliptic Function
Method

In this section, the new exact analytical solutions of fractional (2 + 1)-dimensional
Davey–Stewartson equation and new integrable Davey–Stewartson-type equation
have been obtained using the mixed dn-sn method.

5.8.1 Exact Solutions of Fractional (2 + 1)-Dimensional
Davey–Stewartson Equation

Let us consider the fractional (2 + 1)-dimensional Davey–Stewartson equation [48]

iDa
t qþ aðD2b

x qþD2c
y qÞþ b qj j2nq� kqr ¼ 0; ð5:75Þ

D2b
x rþD2c

y rþ dD2b
x qj j2n
� �

¼ 0; ð5:76Þ

where 0\a; b; c� 1, q � qðx; y; tÞ, and r � rðx; y; tÞ. Also, a, b, k, and d are all
constant coefficients. The exponent n is the power law parameter. It is necessary to
have n[ 0. In Eqs. (5.75) and (5.76), qðx; y; tÞ is a complex-valued function which
stands for wave amplitude, while rðx; y; tÞ is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49–51].

We first transform the fractional (2 + 1)-dimensional Davey–Stewartson
Eqs. (5.75) and (5.76) to a system of nonlinear ordinary differential equations in
order to derive its exact solutions.
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By applying the following fractional complex transform

qðx; y; tÞ ¼ eihuðnÞ; rðx; y; tÞ ¼ vðnÞ;

h ¼ h1xb

Cð1þ bÞ þ
h2yc

Cð1þ cÞ þ
h3ta

Cð1þ aÞ and n ¼ n1xb

Cð1þ bÞ þ
n2yc

Cð1þ cÞ þ
n3ta

Cð1þ aÞ ;

Equations (5.75) and (5.76) can be reduced to the following couple nonlinear
ODEs:

�ðh3 þ ah21 þ ah22Þuþðan21 þ an22Þunn þ bu2nþ 1 � kuv ¼ 0; ð5:77Þ

n21vnn þ n22vnn þ dn21 u2n
� �

nn¼ 0; ð5:78Þ

where n3 has been set to �2an1h1 � 2an2h2. Equation (5.78) is then integrated term
by term twice with respect to n where integration constants are considered zero.
Thus, we obtain

v ¼ � dn21u
2n

n21 þ n22
: ð5:79Þ

Substituting Eq. (5.79) into Eq. (5.77) yields

�ðh3 þ ah21 þ ah22Þuþðan21 þ an22Þunn þ bu2nþ 1 þ k
dn21u

2nþ 1

n21 þ n22
¼ 0: ð5:80Þ

Using the transformation

uðnÞ ¼ U
1
nðnÞ;

Equation (5.80) further reduces to

� ðh3 þ ah21 þ ah22Þn2U2 þðan21 þ an22Þð1� nÞU2
n

þðan21 þ an22ÞnUnn þ bn2U4 þ k
dn21n

2U4

n21 þ n22
¼ 0

ð5:81Þ

By balancing the terms UUnn and U4 in Eq. (5.81), the value of N can be
determined, which is N ¼ 1 in this problem.

Therefore, the solution of Eq. (5.81) can be written in the following ansatz as

UðnÞ ¼ c0 þ c1/ðnÞþ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2ðnÞ

q
; ð5:82Þ
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where c0, c1, and d0 are constants to be determined later and /ðnÞ satisfies
Eq. (5.29).

Now substituting Eq. (5.82) along with Eq. (5.29) into Eq. (5.81) and then
equating each coefficient of /iðnÞ, i = 0,1,2,… to zero, we can get a set of algebraic
equations for c0, c1, d0, h3, and m as follows:

� ðan21 þ an22Þð�k4ð�1þmÞðn21 þ n22Þc21 þ k4ð�1þmÞnðn21 þ n22Þðc21 þ d20Þ
þ n2ðh21 þ h22Þðc20 þ k2d20ÞÞ
þ n2ð�h3ðn21 þ n22Þðc20 þ k2d20Þþ ðkdn21 þ bðn21 þ n22ÞÞ
ðc40 þ 6k2c20d

2
0 þ k4d40ÞÞ ¼ 0

� nc0c1ðaðn21 þ n22Þð2nðh21 þ h22Þþ k2ð�2þmÞðn21 þ n22ÞÞ
� 2nð�h3ðn21 þ n22Þþ 2ðkdn21 þ bðn21 þ n22ÞÞðc20 þ 3k2d20ÞÞÞ ¼ 0

� ðan21 þ an22Þð2k2nðn21 þ n22Þd20 þ n2ðh21 þ h22Þðc21 þ d20Þ
þ k2ðn21 þ n22Þðð�2þmÞÞc21 � ð�1þmÞd20ÞÞ
� n2ðh3ðn21 þ n22Þðc21 � d20Þ � 2ðkdn21 þ bðn21 þ n22ÞÞð3c20ðc21 � d20Þ
� k2d20ð�3c21 þ d20ÞÞÞ ¼ 0

� 2nc0c1ðaðn21 þ n22Þ2 � 2nðkdn21 þ bðn21 þ n22ÞÞðc21 � 3d20ÞÞ ¼ 0

� að1þ nÞðn21 þ n22Þ2ðc21 � d20Þþ n2ðkdn21 þ bðn21 þ n22ÞÞðc41 � 6c21d
2
0 þ d40Þ ¼ 0

nc0d0ð�aðn21 þ n22Þð2nðh21 þ h22Þþ k2ð�1þmÞðn21 þ n22ÞÞ
þ 2nð�h3ðn21 þ n22Þþ 2ðkdn21 þ bðn21 þ n22ÞÞðc20 þ k2d20ÞÞÞ ¼ 0

c1d0ðaðn21 þ n22Þð�2n2ðh21 þ h22Þ � 2k2ð�1þmÞðn21 þ n22Þ
þ k2nðn21 þ n22ÞÞþ 2n2ð�h3ðn21 þ n22Þ
þ 2ðkdn21 þ bðn21 þ n22ÞÞð3c20 þ k2d20ÞÞÞ ¼ 0

� 2nc0d0ðaðn21 þ n22Þ2 � 2nðkdn21 þ bðn21 þ n22ÞÞð3c21 � d20ÞÞ ¼ 0

� 2c1d0ðað1þ nÞðn21 þ n22Þ2 � 2n2ðkdn21 þ bðn21 þ n22ÞÞðc21 � d20ÞÞ ¼ 0

ð5:83Þ

Solving the above algebraic Eqs. (5.83), we have the set of coefficients for the
nontrivial solutions of Eq. (5.81) as given below:

Case 1:

c0 ¼ 0; c1 ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q ; d0 ¼ 0;m ¼ 1; h3

¼ � aðn2h21 þ n2h22 � k2n21 � k2n22Þ
n2

; ð5:84Þ
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where n3 ¼ �2an1h1 � 2an2h2 and k is the free parameter.
Substituting Eqs. (5.84) into Eq. (5.28) and using special solutions (5.30) of

Eq. (5.29), we obtain

UðnÞ ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q

which yields the following solitary wave solutions of Eqs. (5.75) and (5.76):

uðx; y; tÞ ¼ UðnÞ1n ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
0
B@

1
CA

1
n

; ð5:85aÞ

vðx; y; tÞ ¼ � að1þ nÞdn21ðn21 þ n22Þk sec h2ðknÞ
ðbn2n21 þ n2dkn21 þ bn2n22Þ

: ð5:85bÞ

Case 2:

c0 ¼ 0; c1 ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q ; d0 ¼ 0;m ¼ 1; h3

¼ � aðn2h21 þ n2h22 � k2n21 � k2n22Þ
n2

; ð5:86Þ

where n3 ¼ �2an1h1 � 2an2h2 and k is the free parameter.
Substituting Eqs. (5.86) into Eq. (5.28) and using special solutions (5.30) of

Eq. (5.29), we obtain

UðnÞ ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q

which yields the following solitary wave solutions of Eqs. (5.75) and (5.76):

uðx; y; tÞ ¼ UðnÞ1n ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
0
B@

1
CA

1
n

; ð5:87aÞ

vðx; y; tÞ ¼ � að1þ nÞdn21ðn21 þ n22Þk sec h2ðknÞ
ðbn2n21 þ n2dkn21 þ bn2n22Þ

: ð5:87bÞ
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5.8.2 Exact Solutions of the Fractional (2 + 1)-Dimensional
New Integrable Davey–Stewartson-Type Equation

Let us consider the fractional (2 + 1)-dimensional new integrable Davey–Stewartson-
type equation

iDa
sWþ L1WþWUþWv ¼ 0;

L2v ¼ L3 Wj j2; ð5:88Þ

Db
nU ¼ Dc

gvþ lDc
g Wj j2
� �

; l ¼ �1; 0\a; b; c� 1

where the linear differential operators are given by

L1 � b2 � a2

4

� �
D2b

n � aDb
nD

c
g � D2c

g ;

L2 � b2 þ a2

4

� �
D2b

n þ aDb
nD

c
g þD2c

g ;

L3 � � 1
4

b2 þ a2 þ 8b2ða� 1Þ
ða� 2Þ2 � b2

 !
D2b

n � aþ 2b2

ða� 2Þ2 � b2

 !
Db

nD
c
g � D2c

g ;

where W � Wðn; g; sÞ is complex while U � Uðn; g; sÞ, v � vðn; g; sÞ are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko–Dubrovsky (KD) equation [53].

In the present analysis, the Jacobi elliptic function method has been used to
investigate for new types of doubly periodic exact solutions in terms of Jacobi
elliptic functions.

According to the algorithm discussed in Sect. 5.5, let us consider the following
fractional complex transform

Wðn; g; sÞ ¼ WðXÞeih; Uðn; g; sÞ ¼ UðXÞ; vðn; g; sÞ ¼ vðXÞ;

X ¼ k
nb

Cð1þ bÞ þ l
gc

Cð1þ cÞ þ k
sa

Cð1þ aÞ

 !
; h

¼ h1n
b

Cð1þ bÞ þ
h2gc

Cð1þ cÞ þ
h3sa

Cð1þ aÞ ; ð5:89Þ

where k, l, k, h1, h2, and h3 are constants.

5.8 Implementation of the Jacobi Elliptic Function Method 187



By applying the fractional complex transform (5.89), Eq. (5.88) can be reduced
to the following couple nonlinear ODEs:

k2M1
d2WðXÞ
dX2 þM0WðXÞþWðXÞUðXÞþWðXÞvðXÞ ¼ 0; ð5:90Þ

k2M2
d2vðXÞ
dX2 ¼ k2M3

d2W2ðXÞ
dX2 ; ð5:91Þ

k
dUðXÞ
dX

¼ kl
dvðXÞ
dX

þ lkl
dW2ðXÞ

dX
; ð5:92Þ

where k has been set to aðlh1 þ h2Þþ 2lh2 � h1ðb2�a2Þ
2 .

Here,

M0 ¼ �h3 � ðb2 � a2Þ
4

h21 þ ah1h2 þ h22;

M1 ¼ �al� l2 þ ðb2 � a2Þ
4

;

M2 ¼ alþ l2 þ ðb2 þ a2Þ
4

;

M3 ¼ �l2 � aþ 2b2

ða� 2Þ2 � b2

 !
l� 1

4
b2 þ a2 þ 8b2ða� 1Þ

ða� 2Þ2 � b2

 !
:

Now, Eqs. (5.92) and (5.91) are integrated once and twice term by term with
respect to X where integration constants are considered zero. Thus, we obtain

vðXÞ ¼ M3

M2
W2ðXÞ;

UðXÞ ¼ l
M3

M2
þ ll

� �
W2ðXÞ: ð5:93Þ

Eliminating vðXÞ, UðXÞ from Eqs. (5.90) and (5.93), we arrive at

k2M1
d2WðXÞ
dX2 þM0WðXÞþ lM3

M2
þ llþ M3

M2

� �
W3ðXÞ ¼ 0 ð5:94Þ

By balancing the nonlinear term W3ðXÞ and highest order derivative term d2
WðXÞ
dX2

in Eq. (5.94), the value of N can be determined, which is N ¼ 1 in this problem.
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Therefore, the solution of Eq. (5.94) can be written in the following ansatz as

WðXÞ ¼ c0 þ c1/ðXÞþ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � /2ðXÞ

q
; ð5:95Þ

where c0, c1, and d0 are constants to be determined later, and /ðXÞ satisfies the
elliptic equation:

d/ðXÞ
dX

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � /2ðXÞÞð/2ðXÞ � p2ð1� mÞÞ

q
; ð5:96Þ

whose solutions are given by

/ðXÞ ¼ pdnðpXjmÞ;

/ðXÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðpXjmÞ; ð5:97Þ

Now substituting Eq. (5.95) along with Eq. (5.96) into Eq. (5.94) and then
equating each coefficient of /iðXÞ, i = 0,1,2,… to zero, we can get a set of algebraic
equations for c0, c1, d0, p, and m as follows:

c0ðM0M2 þðM3 þ lM3 þ lM2lÞðc20 þ 3p2d20ÞÞ ¼ 0;
c1ðM0M2 � k2ð�2þmÞM1M2p2 þ 3ðM3 þ lM3 þ lM2lÞðc20 þ p2d20ÞÞ ¼ 0;

3ðM3 þ lM3 þ lM2lÞc0ðc21 � d20ÞÞ ¼ 0;
c1ð�2k2M1M2 þðM3 þ lM3 þ lM2lÞðc21 � 3d20ÞÞ ¼ 0;

d0ðM0M2 þ k2M1M2p2 � k2mM1M2p2 þ 3M3c20 þ 3lM3c20 þ 3lM2lc20
þM3p2d20 þ lM3p2d20 þ lM2lp2d20Þ ¼ 0;

6ðM3 þ lM3 þ lM2lÞc0c1d0 ¼ 0;
d0ð�2k2M1M2 þðM3 þ lM3 þ lM2lÞð3c21 � d20ÞÞ ¼ 0:

ð5:98Þ

Solving the above algebraic Eq. (5.98), we have the set of coefficients for the
nontrivial traveling wave solutions of Eq. (5.94) as given below:

Case 1:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ;

d0 ¼ 0;m ¼ M0 þ 2M1k2p2

M1k2p2
:

W11ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p dnðpXjmÞ;

U11ðXÞ ¼ l
M3

M2
þ ll

� �
W2

11ðXÞ;
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v11ðXÞ ¼
M3

M2
W2

11ðXÞ;

W12ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ndðpXjmÞ;

U12ðXÞ ¼ l
M3

M2
þ ll

� �
W2

12ðXÞ;

v12ðXÞ ¼
M3

M2
W2

12ðXÞ:

Case 2:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ;

d0 ¼ 0;m ¼ M0 þ 2M1k2p2

M1k2p2
:

W21ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p dnðpXjmÞ;

U21ðXÞ ¼ l
M3

M2
þ ll

� �
W2

21ðXÞ;

v21ðXÞ ¼
M3

M2
W2

21ðXÞ;

W22ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ndðpXjmÞ;

U22ðXÞ ¼ l
M3

M2
þ ll

� �
W2

22ðXÞ

v22ðXÞ ¼
M3

M2
W2

22ðXÞ:

Case 3:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:
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W31ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞ

� p
ffiffiffiffi
m

p
snðpXjmÞ k

ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;

U31ðXÞ ¼ l
M3

M2
þ ll

� �
W2

31ðXÞ;

v31ðXÞ ¼
M3

M2
W2

31ðXÞ;

W32ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞ

� p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� mÞnd2ðpXjmÞ

p k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U32ðXÞ ¼ l
M3

M2
þ ll

� �
W2

32ðXÞ;

v32ðXÞ ¼
M3

M2
W2

32ðXÞ:

Case 4:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W41ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þðlþ 2ÞM3

p dnðpXjmÞ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U41ðXÞ ¼ l
M3

M2
þ ll

� �
W2

41ðXÞ;

v41ðXÞ ¼
M3

M2
W2

41ðXÞ;

W42ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þðlþ 2ÞM3

p ndðpXjmÞ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;
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U42ðXÞ ¼ l
M3

M2
þ ll

� �
W2

42ðXÞ;

v42ðXÞ ¼
M3

M2
W2

42ðXÞ:

Case 5:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W51ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;

U51ðXÞ ¼ l
M3

M2
þ ll

� �
W2

51ðXÞ;

v51ðXÞ ¼
M3

M2
W2

51ðXÞ;

W52ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ndðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U52ðXÞ ¼ l
M3

M2
þ ll

� �
W2

52ðXÞ;

v52ðXÞ ¼
M3

M2
W2

52ðXÞ:

Case 6:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W61ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;
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U61ðXÞ ¼ l
M3

M2
þ ll

� �
W2

61ðXÞ;

v61ðXÞ ¼
M3

M2
W2

61ðXÞ;

W62ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ndðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U62ðXÞ ¼ l
M3

M2
þ ll

� �
W2

62ðXÞ;

v62ðXÞ ¼
M3

M2
W2

62ðXÞ:

5.9 Conclusion

In this chapter, several traveling wave exact solutions of nonlinear fractional
acoustic wave equations, namely the time fractional Burgers–Hopf and KZK
equations have been successfully obtained by the first integral method with the help
of fractional complex transform. The fractional complex transform can easily
convert a fractional differential equation into its equivalent ordinary differential
equation form. So, fractional complex transform has been efficiently used for
solving fractional differential equations. Here, the fractional complex transform has
been considered which is derived from the local fractional calculus defined on
fractals.

The first integral method has been successfully employed to solve nonlinear
fractional acoustic wave equations. The obtained solutions may be worthwhile for
an explanation of some physical phenomena accurately. The present analysis
indicates that the first integral method is effective and efficient for solving nonlinear
fractional acoustic wave equations. The performance of this method is reliable, and
it provides the exact traveling wave solutions. In this present analysis, the focused
method clearly avoids linearization, discretization, and unrealistic assumptions, and
therefore, it provides exact solutions efficiently and accurately.

Also, in this chapter, the new exact solutions of time fractional KdV-KZK
equation have been obtained by classical Kudryashov and modified Kudryashov
method, respectively, with the help of fractional complex transform. The fractional
complex transform is employed in order to convert a fractional differential equation
into its equivalent ordinary differential equation form. So, the fractional complex
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transform facilitates solving fractional differential equations. Two methods are
successfully applied to solve nonlinear time fractional KdV-KZK equation. The
new obtained exact solutions may be useful for the explanation of some physical
phenomena accurately. The present analysis indicates that the focused methods are
effective and efficient for analytically solving the time fractional KdV-KZK equa-
tion. It also demonstrates that performances of these methods are substantially
influential and absolutely reliable for finding new exact solutions in terms of
symmetric hyperbolic Fibonacci function solutions. In this present analysis, the
discussed methods clearly avoid linearization, discretization, and unrealistic
assumptions, and therefore, these methods provide exact solutions efficiently and
accurately. To the best information of the author, new exact analytical solutions of
the time fractional KdV-KZK equation are obtained for the first time in this respect.

The Jacobi elliptic function method has been also used to determine the exact
solutions of time fractional (2 + 1)-dimensional Davey–Stewartson equation and
new integrable Davey–Stewartson-type equation. In both problems, with the help of
fractional complex transform, the Davey–Stewartson system was first transformed
into a system of nonlinear ordinary differential equations, which were then solved to
obtain the exact solutions. Here also, the fractional complex transform has been
considered which is derived from the local fractional calculus defined on fractals.
The proposed method is more general than the dn-function method [64] and may be
applied to other nonlinear evolution equations. Several classes of traveling wave
solutions of the fractional Davey–Stewartson equation have been derived from the
solitary wave solutions in Jacobi elliptic functions. Using this proposed method,
some new solitary wave solutions and double-periodic solutions have been
obtained. This method can also be used for many other nonlinear evolution equa-
tions or coupled ones. To the best information of the author, these solitary wave
solutions of the fractional Davey–Stewartson equation are new exact solutions
which are not reported earlier. Being concise and powerful, this current method can
also be extended to solve many other fractional partial differential equations arising
in mathematical physics.
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