
Chapter 4
Numerical Solutions of Riesz Fractional
Partial Differential Equations

4.1 Introduction

Nowadays, different applications of fractional differential equations in many areas,
such as engineering, physics, chemistry, astrophysics, and many other sciences, are
observed. Fractional kinetics systems are widely applied to describe anomalous
diffusion or advection-dispersion processes [1]. Fractional differential equations are
comprehensively used in examining physical phenomena in numerous disciplines
of engineering and science. For this, we need reliable and efficient techniques for
the solutions of fractional differential equations [2, 3]. The fractional-order models
are more adequate than the previously used integer-order models because
fractional-order derivatives and integrals enable the description of the memory and
hereditary properties of different substances [4]. This is the most significant
advantage of the fractional-order models in comparison with integer-order models,
in which such effects are neglected. In the area of physics, fractional space
derivatives are used to model anomalous diffusion or dispersion, where a particle
spreads at a rate inconsistent with the classical Brownian motion model [5]. In
particular, the Riesz fractional derivative includes a left Riemann–Liouville
derivative and a right Riemann–Liouville derivative that allows the modeling of
flow regime impacts from either side of the domain [6]. The fractional
advection-dispersion equation (FADE) is used in groundwater hydrology to model
the transport of passive tracers carried by fluid flow in a porous medium [7–9].

The Riesz fractional advection-dispersion equation (RFADE) with a symmetric
fractional derivative, namely the Riesz fractional derivative, was derived from the
kinetics of chaotic dynamics by Saichev and Zaslavsky [10] and summarized by
Zaslavsky [6]. Ciesielski and Leszczynski [11] presented a numerical solution for
the RFADE (without the advection term) based on the finite difference method.
Shen et al. [12] presented explicit and implicit difference approximations for the
space RFADE with initial and boundary conditions on a finite domain and derived
the stability and convergence of their proposed numerical methods.
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Fokker–Planck equation (FPE) was introduced by Adriaan Fokker and Max
Planck, commonly used to describe the Brownian motion of particles [13]. The FPE
describes the change of probability of a random function in space and time, so it is
naturally used to describe solute transport. The FPE is involved with the conser-
vation of probability that a particle will occupy a specific location. At any particular
time, the sum of the probabilities at all locations must equal unity. So if the
probability changes in one location from one moment to the next, the probability
must also change in the vicinity to conserve probability. An ensemble of a large
number of particles can fulfill the probabilities, and the FPE becomes an equation of
the conservation of mass. Also, the nonlinear Fokker–Planck equation has impor-
tant applications in various other fields. The fractional Fokker–Planck equations
have been useful for the description of transport dynamics in complex systems that
are governed by anomalous diffusion and nonexponential relaxation patterns [5].
Fractional derivatives play a key role in modeling particle transport in anomalous
diffusion. For the description of anomalous transport in the presence of an external
field, Metzler and Klafter [5] introduced a time fractional extension of the FPE,
namely the time fractional Fokker–Planck equation (TFFPE).

There are some researchers who have investigated the FFPE. So and Liu [14]
studied the subdiffusive fractional Fokker–Planck equation of bistable systems.
Saha Ray and Gupta [15] established the numerical solutions of time and space
fractional Fokker–Planck equations with the aid of two-dimensional Haar wavelets.
Chen et al. [16] proposed three different implicit approximations for the TFFPE and
proved these approximations are unconditionally stable and convergent. Zhuang
et al. [17] presented an implicit numerical method for the TSFFPE and discussed its
stability and convergence.

Numerous mathematical methods such as the Adomian decomposition method
(ADM) [18], variational iteration method (VIM) [18], operational Tau method
(OTM) [19], and homotopy perturbation method (HPM) [20] have been used in
order to solve fractional Fokker–Planck equations. In Refs. [18–20], the fractional
derivative is considered in Caputo sense. The aim of the present work is to
implement shifted Grünwald approximation and fractional centered difference
approximation to discretize the Riesz fractional diffusion equation and time and
space Riesz fractional Fokker–Planck equation, respectively. The stability and
convergence of the proposed finite difference schemes have been also analyzed
rigorously.

The classical sine-Gordon equation (SGE) [21] is one of the basic equations of
modern nonlinear wave theory, and it arises in many different areas of physics, such
as nonlinear optics, Josephson junction theory, field theory, and the theory of lattices
[22]. In these applications, the sine-Gordon equation provides the simplest nonlinear
description of physical phenomena in different configurations. The theory, methods
of solutions, and applications of the celebrated fractional sine-Gordon equation are
discussed in great detail in two recent books [23, 24]. Special attention is also given
to soliton, antisoliton solutions, and a remarkable new mode that propagates in a
two-level atomic system. In order to further emphasis on the analysis of one-soliton
and two-soliton solitary wave solutions, it may be referred to Ref. [25].
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The more adequate modeling can be prevailed corresponding to the general-
ization of the classical sine-Gordon equation. In particular, taking into account of
nonlocal effects, such as long-range interactions of particles, complex law of
medium dispersion, or curvilinear geometry of the initial boundary problem, clas-
sical sine-Gordon equation results in the nonlocal generalization of SGE.

In this chapter, the nonlocal generalization of the sine-Gordon equation has been
proposed in [26] as follows:

utt � RDa
xuþ sin u ¼ 0; ð4:1Þ

where the nonlocal operator RDa
x is the Riesz space fractional derivative, 1� a� 2.

These similar types of evolution Eq. (4.2) arise in various interesting problems
of nonlocal Josephson electrodynamics. These problems were introduced in [27–
32]; among these, one of the basic model equation is

utt � H½ux� þ sin u ¼ 0; ð4:2Þ

where H is the Hilbert transform, given by

H½/� � 1
p
v � p �

Z1
�1

/ðnÞ
n� x

dn; ð4:3Þ

and the integral is understood in the Cauchy principal value sense. The evolution
Eq. (4.2) was an object of study in a series of papers [27, 28, 31, 33, 34] available
in the open literature. Other nonlocal sine-Gordon equations were considered in
[35, 36].

In this case, the derived approximate solutions are based on modified homotopy
analysis method with Fourier transform. In this present chapter, we employ a new
technique such as applying the Fourier transform followed by homotopy analysis
method. This new technique enables derivation of the approximate solutions for the
nonlocal fractional sine-Gordon Eq. (4.1). To the best possible information of the
author, the present approximation technique has been proposed first time in this
work for solving the nonlocal fractional sine-Gordon equation.

4.2 Outline of the Present Study

In this chapter, numerical solutions of fractional Fokker–Planck equations with
Riesz space fractional derivatives have been developed. Here, the fractional
Fokker–Planck equations have been considered in a finite domain. In order to deal
with the Riesz fractional derivative operator, shifted Grünwald approximation and
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fractional centered difference approaches have been used. The explicit finite dif-
ference method and Crank–Nicolson implicit method have been applied to obtain
the numerical solutions of the fractional diffusion equation and fractional Fokker–
Planck equations, respectively. Numerical results are presented to demonstrate the
accuracy and effectiveness of the proposed numerical solution techniques.

Also, a novel approach comprising modified homotopy analysis method with
Fourier transform has been implemented for the approximate solution of the frac-
tional sine-Gordon equation

utt � RDa
xuþ sin u ¼ 0;

where RDa
x is the Riesz space fractional derivative, 1� a� 2.

For a ¼ 2, it becomes a classical sine-Gordon equation

utt � uxx þ sin u ¼ 0;

and corresponding to a ¼ 1, it becomes nonlocal sine-Gordon equation

utt � Huþ sin u ¼ 0;

which arises in Josephson junction theory, where H is the Hilbert transform. The
fractional sine-Gordon equation is considered as an interpolation between the
classical sine-Gordon equation (corresponding to a ¼ 2) and nonlocal sine-Gordon
equation (corresponding to a ¼ 1). Here the approximate solution of the fractional
sine-Gordon equation is derived by using the modified homotopy analysis method
with Fourier transform. Then, the obtained results have been analyzed by numerical
simulations, which demonstrate the simplicity and effectiveness of the present
method.

4.3 Numerical Approximation Techniques for Riesz Space
Fractional Derivative

There are different approximation techniques for Riesz space fractional derivative
[37–40]. In the present chapter, the emphasis has been focused on the shifted
Grünwald formula to discretize the Riesz space fractional differential equation
which, unlike the standard Grünwald formula, does not suffer from instability
problems [41] and also on the fractional centered difference approximation tech-
nique, respectively.

Let us assume that the functionWðx; tÞ is n� 1 times continuously differentiable
in the interval ½0; L� and that W ðnÞðx; tÞ is integrable in ½0; L�. Then for every
að0� n� 1\a� n; n 2 NÞ, the Riemann–Liouville fractional derivative exists and
coincides with the Grünwald–Letnikov derivative. This relationship enables the use
of the Grünwald–Letnikov derivative for obtaining the numerical solution [8, 42].

122 4 Numerical Solutions of Riesz Fractional Partial Differential …



The fractional Grünwald–Letnikov derivative with order 1� a is given by

0D
1�a
t Wðx; tkÞ ¼ lim

s!0
sa�1

Xk
r¼0

ð�1Þr 1� a

r

� �
Wðx; tk � rsÞ

¼ sa�1
Xk
r¼0

x1�a
r Wðx; tk � rsÞþOðspÞ;

ð4:4Þ

where s ¼ T=N, tr ¼ rs, x1�a
0 ¼ 1, x1�a

r ¼ ð�1Þr ð1�aÞð�aÞ...ð2�a�rÞ
r! , for

r ¼ 1; 2. . .;N.

4.3.1 Shifted Grünwald Approximation Technique
for the Riesz Space Fractional Derivative

The shifted Grünwald formula which was proposed by Meerschaert and Tadjeran
[41] has been applied for discretizing the Riesz fractional derivative. In this
problem, we discretize the Riesz space fractional derivative using the following
shifted Grünwald approximation:

@aWðxl; tÞ
@ xj ja � � h�a

2 cos ap
2

� � Xlþ 1

j¼0

~gjWl�jþ 1 þ
Xm�lþ 1

j¼0

~gjWlþ j�1

" #
; ð4:5Þ

where the coefficients are defined by

~g0 ¼ 1; ~gj ¼ ð�1Þ j aða� 1Þ. . .ða� jþ 1Þ
j!

; j ¼ 1; 2; . . .;m:

4.3.2 Fractional Centered Difference Approximation
Technique for the Riesz Space Fractional Derivative

Recently, Çelik and Duman [43] derived the interesting result that if f �ðxÞ be
defined as follows

f �ðxÞ ¼ f ðxÞ; x 2 ½a; b�
0; x 62 ½a; b�

�

such that f �ðxÞ 2 C5ðRÞ and all derivatives up to order five belong to L1ðRÞ, then
for the Riesz fractional derivative of order að1\a� 2Þ
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@af ðxÞ
@ xj ja ¼ �h�a

Xx�a
h

j¼�b�x
h

gjf ðx� jhÞþOðh2Þ; ð4:6Þ

where h ¼ b�a
m , and m is the number of partitions of the interval ½a; b� and

gj ¼ ð�1Þ jCðaþ 1Þ
Cða=2� jþ 1ÞCða=2þ jþ 1Þ :

Property 4.1 The coefficients gj of the fractional centered difference approxima-
tion have the following properties for j ¼ 0;	1;	2; . . .; and a[�1:

(i) g0 
 0,
(ii) g�j ¼ gj � 0 for all jj j 
 1,

(iii) gjþ 1 ¼ j�a=2
a=2þ jþ 1 gj,

(iv) gj ¼ Oðj�a�1Þ.

Proof For the proof of the above properties, it may be referred to Ref. [43].

Lemma 4.1 Let f 2 C5ðRÞ and all derivatives up to order five belong to L1ðRÞ and
the fractional central derivative of f be

daf ðxÞ ¼
X1
j¼�1

gjf ðx� jhÞ;

where

gj ¼ ð�1Þ jCðaþ 1Þ
Cða=2� jþ 1ÞCða=2þ jþ 1Þ ;

then

@af ðxÞ
@ xj ja ¼ �h�a

X1
j¼�1

gjf ðx� jhÞþOðh2Þ;

when h ! 0 and @af ðxÞ
@ xj ja is the Riesz fractional derivative for 1\a� 2.

Proof For the proof also, it may be referred to Ref. [43].
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4.3.3 Inhomogeneous Fractional Diffusion Equation
with Riesz Space Fractional Derivative

Let us consider the following inhomogeneous Riesz fractional diffusion equation
with source term in a finite domain associated with initial and Dirichlet boundary
conditions [42, 43]

@Wðx; tÞ
@t

¼ K
@aWðx; tÞ
@ xj ja þ f ðx; tÞ; a\x\b; t 2 ½0; T�; ð4:7Þ

Wðx; 0Þ ¼ /ðxÞ; a� x� b;

Wða; tÞ ¼ Wðb; tÞ ¼ 0; 0� t� T ;

where K[ 0 is diffusion coefficient and /ðxÞ is a real-valued sufficiently smooth
function. We consider a super-diffusion model, i.e., 1\a� 2. This type of
super-diffusion problems largely arises in the modeling of fluid flow, finance, and
other applications.

Explicit Finite Difference Method for Riesz Fractional Diffusion Equation

In this present analysis, numerical solution of Eq. (4.7) has been provided based on
the explicit finite difference method (EFDM). Let us assume that the spatial domain
is ½0; L�, and it is partitioned into m subintervals. Thus, the mesh is of m equal
subintervals of width h ¼ L=m and xl ¼ lh, for l ¼ 0; 1; 2; . . .;m. Let Wk

l denote the
numerical approximation of Wðxl; tkÞ at ðxl; tkÞ.

Now we obtain the following explicit finite difference numerical discretization
scheme for the Eq. (4.7).

Wkþ 1
l ¼ Wk

l þ s � Kh�a

2 cos ap
2

� � Xlþ 1

j¼0

~gjW
k
l�jþ 1 þ

Xm�lþ 1

j¼0

~gjW
k
lþ j�1

 !
þ f kl

" #
; ð4:8Þ

for l ¼ 1; 2; . . .;m� 1, and k ¼ 0; 1; . . .;N � 1.
The aforementioned Eq. (4.8) determines the numerical approximate value of

the solution Wkþ 1
l at ðxl; tkþ 1Þ.

In matrix form, Eq. (4.8) can be written as

Ukþ 1 ¼ AUk þ sFkþ 1=2; ð4:9Þ

where Uk ¼ ðWk
1 ;W

k
2 ; . . .;W

k
m�1ÞT ,
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Fk ¼ f k1 ; f
k
2 ; . . .; f

k
m�1

� �T , and Ai is a symmetric ðm� 1Þ � ðm� 1Þ matrix of the
following form

A ¼

1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ � Ksh�a

2 cosap2
~g3 . . . � Ksh�a

2 cosap2
~gm�1

� Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ . . . � Ksh�a

2 cosap2
~gm�2

. . . . . . . . . . . .

� Ksh�a

2 cosap2
~gm�1 � Ksh�a

2 cosap2
~gm�2 � Ksh�a

2 cosap2
~gm�3 . . . 1� Ksh�a

cosap2
~g1

0
BBBB@

1
CCCCA:

ð4:10Þ

4.3.4 Time and Space Fractional Fokker–Planck Equation
with Riesz Fractional Operator

In this section, we consider the following time and space fractional Fokker–Planck
equation which describes the anomalous transport in the presence of an external
field [42]

@Wðx; tÞ
@t

¼ 0D
1�a
t

@

@x
V 0ðxÞ
mga

þKl
a

@l

@ xj jl
� �

Wðx; tÞþ f ðx; tÞ
	 


; a\x\b; t 2 ½0; T�;

ð4:11Þ

subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ /ðxÞ; a� x� b;

Wða; tÞ ¼ Wðb; tÞ ¼ 0; 0� t� T ;

where Kl
a denotes the anomalous diffusion coefficient; m is the mass of the diffusing

test particle; ga is the generalized friction constant of dimension ½ga� ¼ sa�2; V
0ðxÞ
mga

is

known as the drift coefficient, and the force is related to the external potential

through FðxÞ ¼ � dVðxÞ
dx . 0D1�a

t ð:Þ denotes the Riemann–Liouville time fractional

derivative of order 1� að0\a\1Þ defined by [44–47]

0D
1�a
t wðx; tÞ ¼ 1

CðaÞ
@

@t

Z t

0

wðx; fÞ
ðt � fÞ1�adf: ð4:12Þ

For a ! 1 and l ! 2, the standard Fokker–Planck equation [5] is recovered,
and for a ! 1 and VðxÞ � const:, i.e., in the force-free limit, the inhomogeneous
fractional diffusion Eq. (4.7) emerges.

The Riesz space fractional derivative of order mð1\m\2Þ is defined by [48, 49]
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@mWðxl; tÞ
@ xj jm ¼ � 1

2 cos pm
2

� � ðaDm
x þ xD

m
bÞWðx; tÞ; ð4:13Þ

where aDm
x and xDm

b are the left and right Riemann–Liouville space fractional
derivative operators of order m, which are, respectively, given by

aD
m
xWðx; tÞ ¼ 1

Cð2� mÞ
@2

@x2

Zx
a

Wðn; tÞ
ðx� nÞm�1dn;

xD
m
bWðx; tÞ ¼ 1

Cð2� mÞ
@2

@x2

Zb
x

Wðn; tÞ
ðn� xÞm�1dn:

Implicit Finite Difference Method for Time and Riesz Space Fractional
Fokker–Planck Equation

In order to solve Eq. (4.11) with the drift coefficient �v, fractional centered dif-
ference approximation along with Grünwald–Letnikov derivative approximation
has been used to discretize it.

From Taylor’s theorem, we have

Wkþ 1
l �Wk

l

s
¼ @W

@t

� �kþ 1=2

l
þOðs2Þ; ð4:14Þ

where the central difference with step size s=2 has been used.
Thus, using Eq. (4.14) and Lemma 4.1, we obtain the following implicit finite

difference discretization scheme

Wkþ 1
l �Wk

l

s
¼ 1

2
�vsa�1

Xk
j¼0

x1�a
j

Wk�j
lþ 1 �Wk�j

l

h

 !"

� Kl
a sa�1 h�l

Xk
j¼0

x1�a
j

Xl
i¼l�m

giW
k�j
l�i þ sa�1

Xk
j¼0

x1�a
j f k�j

l

� vsa�1
Xkþ 1

j¼0

x1�a
j

Wkþ 1�j
lþ 1 �Wkþ 1�j

l

h

 !
� Kl

a sa�1 h�l
Xkþ 1

j¼0

x1�a
j

Xl
i¼l�m

giW
kþ 1�j
l�i

þ sa�1
Xkþ 1

j¼0

x1�a
j f kþ 1�j

l

#
þ TEkþ 1=2

l ;

ð4:15Þ

for l ¼ 1; 2; . . .;m� 1, and k ¼ 0; 1; . . .;N � 1, where the local truncation error

TEkþ 1=2
l � Oðs2 þ h2Þ.
Now, omitting the local truncation error in Eq. (4.15), we obtain
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Wkþ 1
l þ vsa

2
x1�a

0

Wkþ 1
lþ 1 �Wkþ 1

l

h

� �
þKl

a
sa

2
h�lx1�a

0

Xl
i¼l�m

giW
kþ 1
l�i ¼ Wk

l

� vsa

2

Xk
r¼0

x1�a
r

Wk�r
lþ 1 �Wk�r

l

h

� �
� Kl

a
sa

2
h�l

Xk
r¼0

x1�a
r

Xl
i¼l�m

giW
k�r
l�i

þ sa

2

Xk
r¼0

x1�a
r f k�r

l þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

l

 !
� v

sa

2

Xkþ 1

r¼1

x1�a
r

Wkþ 1�r
lþ 1 �Wkþ 1�r

l

h

� �

� Kl
a
sa

2
h�l

Xkþ 1

r¼1

x1�a
r

Xl
i¼l�m

giW
kþ 1�r
l�i :

ð4:16Þ

Further, Eq. (4.16) can be written into the following matrix form

ðIþA0ÞUkþ 1 ¼ ðI � A0 � A1ÞUk � ðA1 þA2ÞUk�1 � ðA2 þA3ÞUk�2 � � � �
� ðAk þAkþ 1ÞU0 þ saFkþ 1=2;

ð4:17Þ

where Uk ¼ ðWk
1 ;W

k
2 ; . . .;W

k
m�1ÞT ,

Fkþ 1=2 ¼ 1
2

Xk
r¼0

x1�a
r f k�r

1 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

1

 !
;
1
2

Xk
r¼0

x1�a
r f k�r

2 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

2

 !
;

"

. . .;
sa

2

Xk
r¼0

x1�a
r f k�r

m�1 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

m�1

 !#T
;

and Ai is an ðm� 1Þ � ðm� 1Þ matrix of the following form

Ai ¼ x1�a
i

� vsa
2h þ Kl

a s
a

2 h�lg0 vsa
2h þ Kl

a s
a

2 h�lg�1 . . . Kl
a s

a

2 h�lg2�m
Kl
a s

a

2 h�lg1 � vsa
2h þ Kl

a s
a

2 h�lg0 . . . Kl
a s

a

2 h�lg3�m

. . . . . . . . . . . .
Kl
a s

a

2 h�lgm�2
Kl
a s

a

2 h�lgm�3 . . . � vsa
2h þ Kl

a s
a

2 h�lg0

0
BBB@

1
CCCA:

ð4:18Þ

Now, we define the function space as follows: KðXÞ ¼
Wðx; tÞ @5Wðx;tÞ

@x5 ; @
4Wðx;tÞ
@x2@t2 2 CðXÞ

���n o
, where X � ½a; b� � ½0; T �. In this work, we

assume that the Problems (4.7) and (4.11) have a smooth exact solution
Wðx; tÞ 2 KðXÞ, and f ðx; tÞ and /ðxÞ are sufficiently smooth functions.
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4.3.5 Numerical Results for Riesz Fractional Diffusion
Equation and Riesz Fractional Fokker–Planck
Equation

In the present section, the numerical examples for Riesz fractional diffusion
Eq. (4.7) and time and Riesz space fractional Fokker–Planck Eq. (4.11) with the
drift coefficient �v have been presented to demonstrate the effectiveness of the
above-discussed numerical schemes for solving Riesz fractional diffusion equation
and time-space fractional Fokker–Planck equation with Riesz derivative operator.

Example 4.1 Let us consider the following Riesz fractional diffusion equation [42,
43] on the finite domain ½0; 1�.

@Wðx; tÞ
@t

¼ K
@aWðx; tÞ
@ xj ja þ f ðx; tÞ; 0\x\1; t 2 ½0; T�; ð4:19Þ

subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ x2ð1� xÞ2; 0� x� 1;

Wð0; tÞ ¼ Wð1; tÞ ¼ 0; 0� t� T

and the nonhomogenous part is

f ðx; tÞ ¼ ð1þ tÞ�1þ að�1þ xÞ2x2aþ 1
Cð5� aÞ x

�a 1þ t
1� x

� �a

ð�1þ xÞ2xað12x2
	

� 6xaþð�1þ aÞaÞ
þ ð1þ tÞax2 12ð�1þ xÞ2 þð�7þ 6xÞaþ a2

h ii
sec

pa
2

� 
:

The exact solution is

Wðx; tÞ ¼ ð1þ tÞax2ð1� xÞ2: ð4:20Þ

In this example, we take K ¼ 1, s ¼ 0:001, and h ¼ 0:05. Figures 4.1, 4.2, and
4.3 show the comparison of the exact and numerical solutions when a ¼ 1:5 at
t ¼ 1; 3; 5, respectively. It can be easily observed that the numerical solutions are in
good agreement with the exact solution.

Example 4.2 Let us consider the following time fractional Fokker–Planck equation
with Riesz space fractional derivative operator [42]

@Wðx; tÞ
@t

¼ 0D
1�a
t �v

@

@x
þKl

a
@l

@ xj jl
� �

Wðx; tÞþ f ðx; tÞ
	 


; 0\x\1; t 2 ½0; T �;

ð4:21Þ
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Fig. 4.1 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 1 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001

Fig. 4.2 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 3 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001
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subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ Kl
a x

2ð1� xÞ2; 0� x� 1;

Wð0; tÞ ¼ Wð1; tÞ ¼ 0; 0� t� T ;

The exact solution is

Wðx; tÞ ¼ ðKl
a þ vt1þ aÞx2ð1� xÞ2: ð4:22Þ

In this example, we take Kl
a ¼ 25, s ¼ 0:001, h ¼ 0:05, a ¼ 0:8, and l ¼ 1:9.

Figure 4.4 shows the comparison between the exact and numerical solutions at
t ¼ 1. In Fig. 4.5, comparison of numerical solution of Wðx; tÞ with the exact
solution at t ¼ 3 has been presented for Example 4.2 with a ¼ 0:8, l ¼ 1:9,
h ¼ 0:02, and s ¼ 0:075. Figure 4.6 explores the comparison of results for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:1. It can be clearly
observed from the presented figures that the implicit finite difference solutions
highly agree with the exact solutions.

Fig. 4.3 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 5 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001

4.3 Numerical Approximation Techniques for Riesz Space Fractional Derivative 131



Fig. 4.4 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 1 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:05, and s ¼ 0:01

Fig. 4.5 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 3 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:075
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4.3.6 Stability and Convergence of the Proposed Finite
Difference Schemes

Theorem 4.1 The numerical discretization scheme for the problem in Eq. (4.19) is
stable, if

r ¼ s
ha

� 2 cos ap2
�� ��

K ~g1�ð~g0 þ ~g2Þ
sgn cosap2ð Þ þ ~g0

� � ; for 1\a� 2:

Proof The matrix A in Eq. (4.10) can be written as

A ¼ T þR; ð4:23Þ

where T is a tridiagonal ðm� 1Þ � ðm� 1Þ matrix of the following form

T ¼
1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 0 . . . 0

� Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1� Ksh�a

cosap2
~g1

0
BBB@

1
CCCA;

ð4:24Þ

Fig. 4.6 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 5 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:1
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and R is a symmetric ðm� 1Þ � ðm� 1Þ matrix of the following form

R ¼
0 0 � Ksh�a

2 cosap2
~g3 . . . � Ksh�a

2 cosap2
~gm�1

0 0 0 . . . � Ksh�a

2 cosap2
~gm�2

. . . . . . . . . . . . . . .
� Ksh�a

2 cosap2
~gm�1 � Ksh�a

2 cosap2
~gm�2 � Ksh�a

2 cosap2
~gm�3 . . . 0

0
BBB@

1
CCCA:

Now, let ki be the eigenvalue of the matrix R. Then, according to the
Gerschgorin circle theorem [50], we have

ki � 0j j � Ksh�a

2 cos ap2
�� ��X

m�1

k¼3

~gkj j\ Ksh�a

2 cos ap2
�� ��X

1

k¼3

~gk\
Ksh�a

2 cos ap2
�� �� ; ð4:25Þ

where
P1
k¼3

~gk ¼ �1þ a� aða�1Þ
2! \1.

This implies that

Rk k2¼ qðRÞ� Ksh�a

2 cos ap2
�� �� ; ð4:26Þ

since R is a real and symmetric matrix.
Now, the eigenvalues of the tridiagonal matrix T are given by [51]

km ¼ 1� Ksh�a

cos ap2
~g1 � Ksh�a

cos ap2
ð~g0 þ ~g2Þ cos mpm ; m ¼ 1; 2; . . .;m� 1: ð4:27Þ

Now, let assume that W
k
l be the computed value of Wk

l of the explicit finite
difference numerical scheme in Eq. (4.8), let ekl ¼ �Wk

l �Wk
l and

Yk ¼ ½ek1; ek2; . . .; ekm�1�T .
Then, the vector Yk satisfies the following equation

Ykþ 1 ¼ AYk: ð4:28Þ

Thus, the explicit finite difference numerical scheme in Eq. (4.8) is stable if

Ak k2¼ qðAÞ� Tk k2 þ Rk k2 � 1

This implies that

1� Ksh�a

cos ap2
~g1 � Ksh�a

cos ap2
ð~g0 þ ~g2Þ cos ðm� 1Þp

m

����
����þ rK

2 cos ap2

����
����� 1; ð4:29Þ
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After simplifications, from Eq. (4.29), we obtain

r� 2 cos ap2
�� ��

K ~g1�ð~g0 þ ~g2Þ
sgn cosap2ð Þ þ ~g0

� � ; ð4:30Þ

as h ! 0, m ! 1.
This completes the proof. ■

Theorem 4.2 The numerical discretization scheme for the problem in Eq. (4.21) is
unconditionally stable.

Proof The matrix Ai in Eq. (4.18) can be written as

Ai ¼ x1�a
i Pþ vsa

2h
J

� �
; i ¼ 0; 1; 2; . . .; kþ 1; ð4:31Þ

where

P ¼

Kl
a s

a

2 h�lg0
Kl
a s

a

2 h�lg�1 . . . Kl
a s

a

2 h�lg2�m

Kl
a s

a

2 h�lg1
Kl
a s

a

2 h�lg0 . . . Kl
a s

a

2 h�lg3�m

. . . . . . . . . . . .
Kl
a s

a

2 h�lgm�2
Kl
a s

a

2 h�lgm�3 . . . Kl
a s

a

2 h�lg0

0
BBBB@

1
CCCCA;

J ¼

�1 1 0 . . . 0

0 �1 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . �1

0
BBB@

1
CCCA:

Since g�j ¼ gj, P is a ðm� 1Þ � ðm� 1Þ symmetric matrix and J is a ðm� 1Þ�
ðm� 1Þ Jordan block matrix with eigenvalue �1.

Now, let kj be the eigenvalue of the matrix P. Then, according to the
Gerschgorin circle theorem [50], we have

kj � Kl
a s

a

2
h�lg0

����
����� Kl

a s
a

2
h�l

Xm�1

k ¼ 1
k 6¼ i

gi�kj j\Kl
a s

a

2
h�lg0; ð4:32Þ

where
P1

k ¼ �1
k 6¼ 0

gkj j ¼ g0.
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This implies that

0\kj\Kl
a s

ah�lg0: ð4:33Þ

Thus, the eigenvalue of Ai satisfies the following range

�x1�a
i

vsa

h
\kðAiÞ\x1�a

i Kl
a s

ah�lg0

Therefore, we obtain

qðAiÞ\x1�a
i Kl

a s
ah�lg0 þx1�a

i
vsa

2h
: ð4:34Þ

Now, let assume that �Wk
l be the computed value of Wk

l of the second-order
accurate implicit numerical scheme in Eq. (4.16), let ekl ¼ �Wk

l �Wk
l and

Yk ¼ ½ek1; ek2; . . .; ekm�1�T .
Then, the vector Yk satisfies the following equation

Ykþ 1 ¼ ðIþA0Þ�1ðI � A0 � A1ÞYk � ðIþA0Þ�1ðA1 þA2ÞYk�1

� ðIþA0Þ�1ðA2 þA3ÞYk�2 � � � � � ðIþA0Þ�1ðAk þAkþ 1ÞY0:
ð4:35Þ

Therefore, we obtain

Ykþ 1
�� ��

2 � ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2 Yk
�� ��

2 þ ðIþA0Þ�1ðA1 þA2Þ
�� ��

2 Yk�1
�� ��

2

þ ðIþA0Þ�1ðA2 þA3Þ
�� ��

2 Yk�2
�� ��

2 þ � � � þ ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2 Y0
�� ��

2:

ð4:36Þ

Now, without loss of generality, there exists ai 2 Rþ , i ¼ 0; 1; . . .; k such that

ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðI � A0 � A1Þ�T ½ðIþA0Þ�1ðI � A0 � A1Þ�Þ�1=2 � ak;

ðIþA0Þ�1ðA1 þA2Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðA1 þA2Þ�T ½ðIþA0Þ�1ðA1 þA2Þ�Þ�1=2 � ak�1;

. . .;

ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðAk þAkþ 1Þ�T ½ðIþA0Þ�1ðAk þAkþ 1Þ�Þ�1=2� a0:

ð4:37Þ

Consequently, we obtain

Ykþ 1
�� ��

2 � ak Yk
�� ��

2 þ ak�1 Yk�1
�� ��

2 þ ak�2 Yk�2
�� ��

2 þ � � � þ a0 Y0
�� ��

2: ð4:38Þ
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Hence, we conclude that

Ykþ 1
�� ��

2 � a0ða1 þ 1Þða2 þ 1Þ. . .ðak þ 1Þ Y0
�� ��

2: ð4:39Þ

Thus, the second-order accurate implicit numerical scheme in Eq. (4.16) for the
problem (4.21) is unconditionally stable. ■

Theorem 4.3 Assuming that the problem in Eq. (4.21) has a smooth exact solution
Wn

l ¼ Wðxl; tnÞ 2 KðXÞ and �Wn
l be the numerically computed solution of the

second-order implicit numerical scheme in Eq. (4.15). Then, the numerical solution
�Wn
l unconditionally converges to Wn

l as h and s tend to zero.

Proof Let the error at the grid point ðxl; tkÞ defined by ekl ¼ �Wk
l �Wk

l and
Ek ¼ ðek1; ek2; . . .; ekm�1ÞT . Then, from Eqs. (4.15) and (4.16) for problem 4.2, we
have

ekþ 1
l � ekl

s
¼ � v

2
sa�1

Xk
r¼0

x1�a
r

ek�r
lþ 1 � ek�r

l

h

� �
� v
2
sa�1

Xkþ 1

r¼1

x1�a
r

ekþ 1�r
lþ 1 � ekþ 1�r

l

h

� �

� Kl
a s

a�1

2
h�l

Xk
r¼0

x1�a
r

Xl
i¼l�m

giek�r
l�i

� Kl
a s

a�1

2
h�l

Xkþ 1

r¼0

x1�a
r

Xl
i¼l�m

giekþ 1�r
l�i þOðs2 þ h2Þ:

ð4:40Þ

Now, Eq. (4.40) can be written in the following matrix form

ðIþA0ÞEkþ 1 ¼ ðI � A0 � A1ÞEk � ðA1 þA2ÞEk�1

� ðA2 þA3ÞEk�2 � � � � � ðAk þAkþ 1ÞE0 þC1sðs2 þ h2ÞI: ð4:41Þ

Thus, we have

Ekþ 1 ¼ ðIþA0Þ�1ðI � A0 � A1ÞEk � ðIþA0Þ�1ðA1 þA2ÞEk�1

� ðIþA0Þ�1ðA2 þA3ÞEk�2 � � � � � ðIþA0Þ�1ðAk þAkþ 1ÞE0

þC1sðs2 þ h2ÞðIþA0Þ�1:

ð4:42Þ

Hence, we obtain

Ekþ 1
�� ��

2 � ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2 Ek
�� ��

2 þ ðIþA0Þ�1ðA1 þA2Þ
�� ��

2 Ek�1
�� ��

2

þ ðIþA0Þ�1ðA2þA3Þ
�� ��

2 Ek�2
�� ��

2 þ � � � þ ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2 E0
�� ��

2

þC1sðs2 þ h2Þ ðIþA0Þ�1�� ��
2 � a0ða1 þ 1Þða2 þ 1Þ. . .ðak þ 1Þ E0

�� ��
2

þC1sðs2 þ h2Þ ðIþA0Þ�1�� ��
2\a0ða1 þ 1Þða2þ 1Þ. . .ðak þ 1Þ E0

�� ��
2

þ C1sðs2 þ h2Þ
1� vsa

h x0
� � �CTðs2þ h2Þ:

Consequently, Ekþ 1
�� ��

2! 0 as s ! 0, h ! 0. This completes the proof. ■
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4.4 Soliton Solutions of a Nonlinear and Nonlocal
Sine-Gordon Equation Involving Riesz Space
Fractional Derivative

In the present section, a new semi-numerical technique MHAM-FT method has
been proposed to obtain the approximate solution of nonlocal fractional
sine-Gordon equation (SGE). The fractional SGE with nonlocal Riesz derivative
operator has been first time solved by MHAM-FT method.

4.4.1 Basic Idea of Modified Homotopy Analysis Method
with Fourier Transform

Let us focus a brief overview of modified homotopy analysis method with Fourier
transform (MHAM-FT). Consider the following fractional differential equation

N u x; tð Þ½ � ¼ 0; ð4:43Þ

where N is a nonlinear differential operator containing Riesz fractional derivative
defined in Eq. (1.18) of Chap. 1, x and t denote independent variables, and u x; tð Þ is
an unknown function.

Then, applying Fourier transform Eq. (4.43) has been reduced to the following
Fourier transformed differential equation

N ûðk; tÞ½ � ¼ 0; ð4:44Þ

where ûðk; tÞ is the Fourier transform of u x; tð Þ.
According to HAM, the zeroth-order deformation equation of Eq. (4.44) reads as

1� pð ÞL / k; t; pð Þ � û0 k; tð Þ½ � ¼ p�hN / k; t; pð Þ½ �; ð4:45Þ

where L is an auxiliary linear operator, / k; t; pð Þ is an unknown function, û0 k; tð Þ is
an initial guess of û k; tð Þ, �h 6¼ 0 is an auxiliary parameter, and p 2 ½0; 1� is the
embedding parameter. In this proposed MHAM-FT, the nonlinear term appeared in
expression for nonlinear operator form has been expanded using Adomian’s type of
polynomials as

P1
n¼0 Anpn [52].

Obviously, when p ¼ 0 and p ¼ 1, we have

/ k; t; 0ð Þ ¼ û0 k; tð Þ;/ k; t; 1ð Þ ¼ û k; tð Þ; ð4:46Þ

respectively. Thus, as p increases from 0 to 1, the solution / k; t; pð Þ varies from the
initial guess û0 k; tð Þ to the solution û k; tð Þ. Expanding / x; t; pð Þ in Taylor series
with respect to the embedding parameter p, we have
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/ k; t; pð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

pmûm k; tð Þ; ð4:47Þ

where ûm k; tð Þ ¼ 1
m!

@m

@pm / k; t; pð Þ
���
p¼0

.

The convergence of the series (4.47) depends upon the auxiliary parameter �h. If
it is convergent at p ¼ 1, we have

û k; tð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

ûm k; tð Þ;

which must be one of the solutions of the original nonlinear equation.
Differentiating the zeroth-order deformation Eq. (4.45) m times with respect to

p and then setting p ¼ 0 and finally dividing them by m!, we obtain the following
mth-order deformation equation

L ûm k; tð Þ � vmûm�1 k; tð Þ½ � ¼ �h<m û0; û1; . . .; ûm�1ð Þ; ð4:48Þ

where

<m û0; û1; . . .; ûm�1ð Þ ¼ 1
m� 1ð Þ!

@m�1N / k; t; pð Þ½ �
@pm�1

����
p¼0

and

vm ¼ 1; m[ 1
0; m� 1

�
: ð4:49Þ

It should be noted that ûmðk; tÞ for m
 1 is governed by the linear Eq. (4.48)
which can be solved by symbolic computational software. Then, by applying
inverse Fourier transformation, we can get each component umðx; tÞ of the
approximate series solution

uðx; tÞ ¼
X1
m¼0

umðx; tÞ:

In the present analysis, for reducing Riesz space fractional differential equation
to ordinary differential equation, we applied here Fourier transform. In this modified
homotopy analysis method, with Fourier transform (MHAM-FT), we applied the
inverse Fourier transform for getting the solution of Riesz space fractional differ-
ential equation. This MHAM-FT technique has been first time proposed by the
author.
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4.4.2 Implementation of the MHAM-FT Method
for Approximate Solution of Nonlocal Fractional SGE

In this section, we first consider two examples for the application of MHAM-FT for
the solution of nonlocal fractional SGE Eq. (4.1).

Example 4.3 In this example, we shall find the approximate solution of the non-
local fractional SGE Eq. (4.1) with given initial conditions [52–54]

u x; 0ð Þ ¼ 0; ut x; 0ð Þ ¼ 4 sec hx ð4:50Þ

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Eqs. (4.1)
and (4.50), we get

ûttðk; tÞþ kj jaûðk; tÞþFðsin uÞ ¼ 0; ð4:51Þ

with initial conditions

û k; 0ð Þ ¼ 0; ûtðk; 0Þ ¼ 2
ffiffiffiffiffiffi
2p

p
sec h

kp
2

� �
; ð4:52Þ

where F denotes the Fourier transform and k is called the transform parameter for
Fourier transform.

Expanding / k; t; pð Þ in Taylor series with respect to p, we have

/ k; t; pð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

pmûm k; tð Þ; ð4:53Þ

where

ûm k; tð Þ ¼ 1
m!

@m/ k; t; pð Þ
@pm

����
p¼0

:

To obtain the approximate solution of the fractional SGE in Eq. (4.51), we
choose the linear operator

L / k; t; pð Þ½ � ¼ /tt k; t; pð Þ: ð4:54Þ

From Eq. (4.44), we define a nonlinear operator as

N / k; t; pð Þ½ � ¼ /tt k; t; pð Þþ kj ja/ k; t; pð ÞþF sin / k; t; pð Þð Þð Þ; ð4:55Þ

where the nonlinear term sin / k; t; pð Þð Þ is expanded in terms of Adomian-like
polynomials.
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The nonlinear term sin / k; t; pð Þð Þ has been taken as

sin / k; t; pð Þð Þ ¼
X1
n¼0

pnAn;

where An ¼ 1
n!

@n

@pn sin û0 k; tð Þþ Pþ1

m¼1
pmûm k; tð Þ

� �� �
p¼0

, n
 0.

Using Eq. (4.45), we construct the so-called zeroth-order deformation equation

1� pð ÞL / k; t; pð Þ � û0 k; tð Þ½ � ¼ p�hN / k; t; pð Þ½ �: ð4:56Þ

Obviously, when p ¼ 0 and p ¼ 1, Eq. (4.56) yields

/ k; t; 0ð Þ ¼ û0 k; tð Þ;/ k; t; 1ð Þ ¼ û k; tð Þ:

Therefore, as the embedding parameter p increases from 0 to 1, / k; t; pð Þ varies
from the initial guess to the exact solution û k; tð Þ.

If the auxiliary linear operator, the initial guess, and the auxiliary parameter �h are
so properly chosen, the above series in Eq. (4.53) converges at p = 1, and we
obtain

ûðk; tÞ ¼ /ðk; t; 1Þ ¼ û0ðk; tÞþ
Xþ1

m¼1

ûmðk; tÞ: ð4:57Þ

According to Eq. (4.48), we have the mth-order deformation equation

L ûm k; tð Þ � vmûm�1 k; tð Þ½ � ¼ �h<m û0; û1; . . .; ûm�1ð Þ;m
 1; ð4:58Þ

where

<m û0; û1; . . .; ûm�1ð Þ ¼ 1
m� 1ð Þ!

@m�1

@pm�1 N / k; t; pð Þ½ �
����
p¼0

¼ @2ûm�1 k; t; pð Þ
@t2

þ kj jaûm�1 k; t; pð ÞþF Am�1ð Þ:
ð4:59Þ

Now, the solution of the mth-order deformation Eq. (4.58) for m
 1 becomes

ûmðk; tÞ ¼ vmûm�1ðk; tÞþ �hL�1 <m û0; û1; . . .; ûm�1ð Þ½ �: ð4:60Þ

From Eq. (4.60), we have the following equations
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û0ðk; tÞ ¼ ûðk; 0Þþ tûtðk; 0Þ;

û1ðk; tÞ ¼ �hL�1 @2û0 k; t; pð Þ
@t2

þ kj jaû0 k; t; pð ÞþF A0ð Þ
� �

;

û2ðk; tÞ ¼ û1ðk; tÞþ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A2ð Þ
� �

;

ð4:61Þ

and so on.
But here for the sake of efficient computation for the nonlinear term, the above

scheme in Eq. (4.61) has been modified in the following way

û0ðk; tÞ ¼ ûðk; 0Þ;

û1ðk; tÞ ¼ tûtðk; 0Þþ �hL�1 @2û0 k; t; pð Þ
@t2

þ kj jaû0 k; t; pð ÞþF A0ð Þ
� �

;

û2ðk; tÞ ¼ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A2ð Þ
� �

;

û4ðk; tÞ ¼ û3ðk; tÞþ �hL�1 @2û3 k; t; pð Þ
@t2

þ kj jaû3 k; t; pð ÞþF A3ð Þ
� �

;

ð4:62Þ

and so on.
By putting the initial conditions in Eq. (4.52) into Eq. (4.62) and solving them,

we now successively obtain

û0ðk; tÞ ¼ 0; ð4:63Þ

û1ðk; tÞ ¼ 2
ffiffiffiffiffiffi
2p

p
t sec h

kp
2

� �
; ð4:64Þ

û2ðk; tÞ ¼ �h
1
3

ffiffiffiffiffiffi
2p

p
t3 sec h

kp
2

� �
þ 1

3

ffiffiffiffiffiffi
2p

p
t3 kj jasec h

kp
2

� �� �
; ð4:65Þ

and so on.
Then, by applying the inverse Fourier transform of Eqs. (4.63)–(4.65), we

determine
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u0ðx; tÞ ¼ 0;

u1ðx; tÞ ¼ 4t sec hx;

u2ðx; tÞ ¼ 1
3
t3�h 2 sec hxþ 2�ap�1�aCð1þ aÞ�

f 1þ a;
p� 2ix
4p

� �
þ f 1þ a;

pþ 2ix
4p

� ��

�f 1þ a;
3
4
� ix
2p

� �
� f 1þ a;

3
4
þ ix

2p

� ���
;

and so on, where fðs; aÞ ¼P1
k¼0

1
ðkþ aÞs is called Hurwitz zeta function which is a

generalization of the Riemann zeta function fðsÞ and also known as the generalized
zeta function.

In this manner, the other components of the homotopy series can be easily
obtained by which uðx; tÞ can be evaluated in a series form as

uðx; tÞ ¼ u0ðx; tÞþ u1ðx; tÞþ u2ðx; tÞþ � � �

¼ 4t sec hxþ 1
3
t3�h 2 sec hxþ 2�ap�1�aCð1þ aÞ�

f 1þ a;
p� 2ix
4p

� ��

þ f 1þ a;
pþ 2ix
4p

� �
� f 1þ a;

3
4
� ix
2p

� �

�f 1þ a;
3
4
þ ix

2p

� ���
þ � � � :

ð4:66Þ

Example 4.4 In this case, we shall find the approximate solution of the nonlocal
fractional SGE Eq. (4.1) with given initial conditions [55–57]

uðx; 0Þ ¼ pþ e cosðlxÞ; utðx; 0Þ ¼ 0: ð4:67Þ

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Eqs. (4.1)
and (4.67), we get

ûttðk; tÞþ kj jaûðk; tÞþFðsin uÞ ¼ 0; ð4:68Þ

with initial conditions

û k; 0ð Þ ¼
ffiffiffi
2

p
p3=2dðkÞþ

ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞ; ûtðk; 0Þ ¼ 0; ð4:69Þ

where F denotes the Fourier transform, k is called the transform parameter for
Fourier transform, and dð:Þ denotes the Dirac delta function.

Analogous to arguments as discussed in Example 4.3, we may obtain the fol-
lowing equations
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û0ðk; tÞ ¼
ffiffiffi
2

p
p3=2dðkÞ;

û1ðk; tÞ ¼
ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞþ �hL�1 @2û0 k; t; pð Þ

@t2
þ kj jaû0 k; t; pð ÞþF A0ð Þ

� �
;

û2ðk; tÞ ¼ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A1ð Þ
� �

;

û4ðk; tÞ ¼ û3ðk; tÞþ �hL�1 @2û3 k; t; pð Þ
@t2

þ kj jaû3 k; t; pð ÞþF A3ð Þ
� �

;

ð4:70Þ

and so on.
Solving Eq. (4.70), we now successively obtain

û0ðk; tÞ ¼
ffiffiffi
2

p
p3=2dðkÞ; ð4:71Þ

û1ðk; tÞ ¼
ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞ; ð4:72Þ

û2ðk; tÞ ¼ �h � 1
2

ffiffiffi
p
2

r
t2edðk � lÞþ 1

2

ffiffiffi
p
2

r
t2e kj jadðk � lÞ � 1

2

ffiffiffi
p
2

r
t2edðkþ lÞ

�

þ 1
2

ffiffiffi
p
2

r
t2e kj jadðkþ lÞ

�
;

ð4:73Þ

and so on.
Then, by applying the inverse Fourier transform of Eqs. (4.71)–(4.73), we have

u0ðx; tÞ ¼ p;

u1ðx; tÞ ¼ e cosðlxÞ;
u2ðx; tÞ ¼ 1

2
t2e�h �1þ lað Þ cosðlxÞ;

u3ðx; tÞ ¼ 1
24

t2e�h �1þ lað Þ 12� �12þ t2
� �

�hþ t2�hla
� �

cosðlxÞ;

and so on.
In this manner, the other components of the homotopy series can be easily

obtained by which uðx; tÞ can be evaluated in a series form as
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uðx; tÞ ¼ u0ðx; tÞþ u1ðx; tÞþ u2ðx; tÞþ � � �
¼ 1

24
24pþ e 24þ 12t2�hð2þ �hÞ �1þ lað Þþ t4�h2 �1þ lað Þ2

� 
cosðlxÞ

� 
þ � � � :
ð4:74Þ

The After-Treatment Technique

Padé approximation may be used to enable us in order to increase the radius of
convergence of the series. This method can be used for analytic continuation of a
series for extending the radius of convergence. A Padé approximant is the ratio of
two polynomials constructed from the coefficients of the Maclaurin series expan-
sion of a function. Given a function f ðtÞ expanded in a Maclaurin series
f ðtÞ ¼P1

n¼0 cnt
n, we can use the coefficients of the series to represent the function

by a ratio of two polynomials denoted by L=M½ � and called the Padé approximant,
i.e.,

L
M

	 

¼ PLðtÞ

QMðtÞ ; ð4:75Þ

where PLðtÞ is a polynomial of degree at most L and QMðtÞ is a polynomial of
degree at most M. The polynomials PLðtÞ and QMðtÞ have no common factors. Such
rational fractions are known to have remarkable properties of analytic continuation.
Even though the series has a finite region of convergence, we can obtain the limit of
the function as t ! 1 if L ¼ M.

In case of Example 4.4, uðx; tÞ can be evaluated in a series form as

uðx; tÞ ¼ 1
24

24pþ e 24þ 12t2�hð2þ �hÞ �1þ lað Þþ t4�h2 �1þ lað Þ2
� 

cosðlxÞ
� 

:

ð4:76Þ

Putting x ¼ 0:05; �h ¼ �1; e ¼ 0:01; l ¼ 1ffiffi
2

p and a ¼ 2 and applying Padé

approximant [5/5] to Eq. (4.76), we obtain

uð0:05; tÞ ¼ 3:15158� 0:066294 t2 þ 0:00072717 t4

1� 0:021828 t2 þ 0:00021501 t4

� �
: ð4:77Þ

The �h-Curve and Numerical Simulations for MHAM-FT Method and
Discussions

As pointed out by Liao [58] in general, by means of the so-called �h-curve, it is
straightforward to choose a proper value of �h which ensures that the solution series
is convergent.
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To investigate the influence of �h on the solution series, we plot the so-called �h-
curve of partial derivatives of u x; tð Þ at 0; 0ð Þ obtained from the sixth-order
MHAM-FT solutions as shown in Fig. 4.7. In this way, it is found that our series
converges when �h ¼ �1.

In this present numerical experiment, Eq. (4.66) obtained by MHAM-FT has
been used to draw the graphs as shown in Fig. 4.8 for a ¼ 1:75. The numerical
solutions of Riesz fractional SGE in Eq. (4.1) have been shown in Fig. 4.8 with the
help of third-order approximation for the homotopy series solution of uðx; tÞ, when
�h ¼ �1.

In this present analysis, Eq. (4.74) obtained by MHAM-FT has been used to
draw the graphs as shown in Fig. 4.9 for fractional-order value a ¼ 1:75. The
numerical solutions of fractional SGE Eq. (4.1) have been shown in Fig. 4.9 with
the help of sixth-order approximation for the homotopy series solution of uðx; tÞ,
when �h ¼ �1.

In order to examine the numerical results obtained by the proposed method, both
Examples 4.3 and 4.4 have been solved by a numerical method involving
Chebyshev polynomial. The comparison of the approximate solutions for fractional
SGE Eq. (4.1) given in Examples 4.3 and 4.4 has been exhibited in Tables 4.1 and
4.4 which are constructed using the results obtained by MHAM and Chebyshev
polynomial at different values of x and t taking a ¼ 1:75 and 1:5, respectively.
Similarly, Tables 4.2 and 4.5 show the comparison of absolute errors for classical
SGE given in Examples 4.3 and 4.4, respectively. To show the accuracy of the
proposed MHAM over Chebyshev polynomials, L2 and L1 error norms for classical
order SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and
4.6, respectively. Agreement between present numerical results obtained by
MHAM with Chebyshev polynomials and exact solutions appear very satisfactory
through illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The following Fig. 4.10

Fig. 4.7 �h-curve for partial derivatives of uðx; tÞ at ð0; 0Þ for the sixth-order MHAM-FT solution
when a ¼ 2
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demonstrates a graphical comparison of the numerical solutions for uð0:05; tÞ
obtained by MHAM-FT and Padé approximation with regard to the exact solution
for Example 4.3.

Fig. 4.8 a MHAM-FT method solution for uðx; tÞ and b corresponding solution for uðx; tÞ when
t ¼ 0:4

Fig. 4.9 Numerical results for uðx; tÞ obtained by MHAM-FT for a e ¼ 0:001, b e ¼ 0:05,
c e ¼ 0:1, and d e ¼ 1:0
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Table 4.1 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example
4.3 at various points of x and t taking a ¼ 1:75 and 1:5 with �h ¼ �1

x a ¼ 1:75 a ¼ 1:5

t ¼ 0:01 t ¼ 0:02 t ¼ 0:01 t ¼ 0:02

uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM

0.01 0.033828 0.039996 0.0600056 0.079986 0.034480 0.039996 0.059515 0.079986

0.02 0.018271 0.039991 0.0571674 0.079974 0.033566 0.039991 0.062218 0.079974

0.03 0.010936 0.039981 0.0562336 0.079954 0.033364 0.039981 0.064389 0.079954

0.04 0.009624 0.039966 0.0566734 0.079926 0.033664 0.039966 0.066099 0.079926

0.05 0.012513 0.039948 0.0580476 0.079890 0.034294 0.039948 0.067413 0.079890

0.06 0.018109 0.039926 0.0599977 0.079846 0.035114 0.039926 0.068388 0.079846

0.07 0.025213 0.039901 0.0622362 0.079794 0.036014 0.039901 0.069075 0.079794

0.08 0.032879 0.039871 0.0645376 0.079734 0.036907 0.039871 0.069521 0.079735

0.09 0.040384 0.039837 0.0667305 0.079667 0.037728 0.039837 0.069766 0.079667

0.1 0.047194 0.039799 0.0686896 0.079592 0.038433 0.039799 0.069845 0.079592

Table 4.2 Comparison of absolute errors obtained by modified homotopy analysis method and
Chebyshev polynomial of second kind for SGE equation given in Example 4.3 at various points of
x and t taking a ¼ 2 and �h ¼ �1

x t uExact � uChebyshev
�� �� uExact � uMHAMj j

0.02 0.02 1.45347E−5 2.55671E−9

0.04 0.02 1.46767E−5 2.54906E−9

0.06 0.02 1.48475E−5 2.53636E−9

0.08 0.02 1.50368E−5 2.51869E−9

0.1 0.02 1.52361E−5 2.49619E−9

0.02 0.04 5.26987E−5 8.17448E−8

0.04 0.04 5.32093E−5 8.15001E−8

0.06 0.04 5.38216E−5 8.10941E−8

0.08 0.04 5.45030E−5 8.05296E−8

0.1 0.04 5.52250E−5 7.98104E−8

0.02 0.06 1.07843E−5 6.19865E−7

0.04 0.06 1.08860E−4 6.18011E−7

0.06 0.06 1.10091E−4 6.14935E−7

0.08 0.06 1.11471E−4 6.10656E−7

0.1 0.06 1.12943E−4 6.05206E−7

0.02 0.08 1.75050E−4 2.60691E−6

0.04 0.08 1.76623E−4 2.59912E−6

0.06 0.08 1.78561E−4 2.58619E−6

0.08 0.08 1.80758E−4 2.56821E−6

0.1 0.08 1.83120E−4 2.54531E−6

0.02 0.1 2.50768E−4 7.93538E−6

0.04 0.1 2.52867E−4 7.91169E−6
(continued)
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Table 4.3 L2 andL1 error norm for SGE Eq. (4.1) given in Example 4.3 at various points of
x and t taking a ¼ 2

t MHAM Chebyshev polynomial

L2 L1 L2 L1
0.02 5.6606E−9 2.55671E−9 3.32469E−5 1.52361E−5

0.04 1.80985E−7 8.17448E−8 1.20522E−4 5.52250E−5

0.06 1.37240E−6 6.19865E−7 2.46541E−4 1.12943E−4

0.08 5.77184E−6 2.60691E−6 3.99911E−4 1.83120E−4

0.10 1.75695E−5 7.93538E−6 5.72312E−4 2.61864E−4

Table 4.4 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example
4.4 at various points of x and t taking a ¼ 1:75 and 1:5 with �h ¼ �1

x a ¼ 1:75 a ¼ 1:5

t ¼ 0:01 t ¼ 0:02 t ¼ 0:01 t ¼ 0:02

uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM

0.10 3.13459 3.151570 3.08713 3.1515800 3.15003 3.151567 3.14319 3.15156847

0.15 3.15900 3.151536 3.18638 3.1515373 3.16211 3.151540 3.19226 3.15153726

0.20 3.16542 3.15149 3.20162 3.1514930 3.16066 3.151492 3.18787 3.15149362

0.25 3.15980 3.15144 3.18315 3.1514377 3.15390 3.151438 3.16158 3.15143760

0.30 3.15161 3.15137 3.15421 3.1513693 3.14879 3.15136 3.14129 3.15136928

0.35 3.14675 3.15129 3.13604 3.1512888 3.14823 3.15128 3.13897 3.15128874

0.40 3.14623 3.15120 3.13282 3.1511961 3.15131 3.15119 3.15122 3.15119609

0.45 3.14781 3.15109 3.13733 3.1510915 3.15506 3.15108 3.16632 3.15109143

0.50 3.14867 3.15097 3.14015 3.1509749 3.15662 3.150970 3.17283 3.15097489

Table 4.5 Absolute errors obtained by modified homotopy analysis method and Chebyshev
polynomial of second kind for classical SGE equation given in Example 4.4 at various points of
x and t taking �h ¼ �1

x t uChebyshev � uMHAM

�� ��
0.2 0.2 5.09463E−5

0.4 0.2 8.84127E−5

0.6 0.2 1.48843E−4

0.8 0.2 2.20924E−4
(continued)

Table 4.2 (continued)

x t uExact � uChebyshev
�� �� uExact � uMHAMj j

0.06 0.1 2.55516E−4 7.87237E−6

0.08 0.1 2.58561E−4 7.81770E−6

0.1 0.1 2.61864E−4 7.74804E−6
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Table 4.6 L2 andL1 error norm obtained by MHAM and Chebyshev polynomial with regard to
HAM for SGE Eq. (4.1) given in Example 4.4 at various points of x and t taking e ¼ 1 and a ¼ 2

t MHAM Chebyshev polynomial

L2 L1 L2 L1
0.02 3.61832E−6 1.62617E−6 3.16274E−6 1.98279E−6

0.04 1.44585E−5 6.49802E−6 2.02068E−5 9.70659E−6

0.06 3.24763E−5 1.45956E−5 4.76627E−5 2.21017E−5

0.08 5.75978E−5 2.58855E−5 8.09011E−5 3.87676E−5

0.10 8.97196E−5 5.92957E−5 1.30016E−4 5.85008E−5

Table 4.5 (continued)

x t uChebyshev � uMHAM

�� ��
1.0 0.2 2.85454E−4

0.2 0.4 2.00397E−5

0.4 0.4 1.11716E−4

0.6 0.4 3.30001E−4

0.8 0.4 5.79195E−4

1.0 0.4 8.02329E−4

0.2 0.6 4.93420E−4

0.4 0.6 2.19299E−4

0.6 0.6 2.24080E−4

0.8 0.6 7.26968E−4

1.0 0.6 1.19255E−4

0.2 0.8 1.56021E−3

0.4 0.8 1.09038E−3

0.6 0.8 3.68090E−4

0.8 0.8 4.64603E−4

1.0 0.8 1.30778E−3

0.2 1.0 3.30232E−3

0.4 1.0 2.56352E−3

0.6 1.0 1.50743E−3

0.8 1.0 2.41294E−4

1.0 1.0 1.22502E−3
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4.5 Conclusion

In the present chapter, shifted Grünwald approximation has been used in order to
discretize the Riesz fractional diffusion equation. This equation has been solved by
explicit finite difference method. The numerical solution of time and space Riesz
fractional Fokker–Planck equation has been obtained from the discretization by
fractional centered difference approximation of the Riesz space fractional deriva-
tive. The implicit finite difference method has been applied in order to solve the
Riesz fractional Fokker–Planck equation. The above numerical schemes are quite
accurate and efficient, and the numerical results demonstrated here exhibit the pretty
good agreement with the exact solutions.

Moreover, in this chapter, a new semi-numerical technique MHAM-FT method
has been proposed to obtain the approximate solution of nonlocal fractional SGE.
The fractional SGE with nonlocal Riesz derivative operator has been first time
solved by MHAM-FT method in order to justify the applicability of the proposed
method. The approximate solutions obtained by MHAM-FT provide us with a
convenient way to control the convergence of approximate series solution and
solves the problem without any need for the discretization of the variables. To
control the convergence of the solution, we can choose the proper values of �h; here
we choose �h ¼ �1. In order to examine the numerical results obtained by the
proposed method, both Examples 4.3 and 4.4 have been solved by a numerical
method involving Chebyshev polynomial. To show the accuracy of the proposed
MHAM over Chebyshev polynomials, L2 and L1 error norms for classical order
SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and 4.6,
respectively. Agreement between present numerical results obtained by MHAM
with Chebyshev polynomials and exact solutions appears very satisfactory through

Fig. 4.10 Graphical comparison of the numerical solutions uð0:05; tÞ obtained by MHAM-FT and
Padé approximation with regard to the exact solution for Example 4.3
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illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The proposed MHAM-FT method
is very simple and efficient for solving the nonlinear fractional sine-Gordon
equation with nonlocal Riesz derivative operator. Thus, the proposed MHAM-FT
method can be elegantly applied for solving other Riesz fractional differential
equations.
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