
Chapter 3
Numerical Solution of Fractional
Differential Equations by Using New
Wavelet Operational Matrix of General
Order

3.1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders (including complex orders). It is also known as gen-
eralized integral and differential calculus of arbitrary order [1, 2]. In the last few
decades, fractional calculus has been extensively investigated due to their broad
applications in mathematics, physics, and engineering such as viscoelasticity, dif-
fusion of a biological population, signal processing, electromagnetism, fluid
mechanics, electrochemistry, and so on. Fractional differential equations are
extensively used in modeling of physical phenomena in various fields of science
and engineering. Fractional calculus was described by Gorenflo and Mainardi [3] as
the field of mathematical analysis which deals with investigation and applications
of integrals and derivatives of arbitrary order.

Fractional calculus is in use for the past 300 years ago. And many great mathe-
maticians [2] (pure and applied) such as N. H. Abel, M. Caputo, L. Euler, J. Fourier,
A. K. Grünwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren,
P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz,
and H. Weyl made major contributions to the theory of fractional calculus.

The history of fractional calculus was started at the end of the seventeenth
century, and the birth of fractional calculus was due to a letter exchange. At that
time, scientific journals did not exist and scientists exchanged their information
through letters. The first conference on fractional calculus and its applications was
organized in June 1974 by B. Ross and held at the University of New Haven.

In recent years, fractional calculus has become the focus of interest for many
researchers in different disciplines of applied science and engineering because of
the fact that realistic modeling of a physical phenomenon can be successfully
achieved by using fractional calculus.
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The fractional derivative has been occurring in many physical problems such as
frequency-dependent damping behavior of materials, motion of a large thin plate in
a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the
PIkDl controller for the control of dynamical systems, etc. Phenomena in elec-
tromagnetics, acoustics, viscoelasticity, and electrochemistry and material science
are also described by differential equations of fractional order. The solution of the
differential equation containing fractional derivative is much involved.

Fractional calculus has been used to model physical and engineering processes
that are found to be best described by fractional differential equations. For that
reason, we need a reliable and efficient technique for the solution of fractional
differential equations.

Recently, orthogonal wavelet bases are becoming more popular for numerical
solutions of partial differential equations due to their excellent properties such as the
ability to detect singularities, orthogonality, flexibility to represent a function at a
different level of resolution and compact support. In recent years, there has been a
growing interest in developing wavelet-based numerical algorithms for the solution
of fractional-order partial differential equations. Among them, the Haar wavelet
method is the simplest and is easy to use. Haar wavelets have been successfully
applied for the solutions of ordinary and partial differential equations, integral
equations, and integro-differential equations.

3.2 Outline of the Present Study

In this chapter, a numerical method based on the Haar wavelet operational method
is applied to solve the Bagley–Torvik equation. In the present analysis, a new
numerical technique based on Haar wavelet operational matrices of the general
order of integration has been employed for the solution of fractional-order Bagley–
Torvik equation. In this regard, a general procedure of obtaining this Haar wavelet
operational matrix of integration Qa of the general order a is derived. To the best
information of the author, such correct general order operational matrix is not
reported earlier in the open literature. In the present chapter, the Haar wavelet
operational method has been applied for the numerical solution of the Bagley–
Torvik equation and then compared with the analytical solution obtained by
Podlubny [4].

Also, in this chapter, the fractional Fisher-type equation has been solved by
using two reliable techniques, viz. Haar wavelet method and optimal homotopy
asymptotic method (OHAM). Haar wavelet method is an efficient numerical
method for the solution of fractional-order partial differential equation like Fisher
type. The obtained results of the fractional Fisher-type equation are then compared
with the optimal homotopy asymptotic method as well as with the exact solutions.
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3.2.1 Fractional Dynamic Model of Bagley–Torvik
Equation

Torvik and Bagley [5] derived a fractional differential equation of degree a ¼ 3
2 for

the description of the motion of an immersed plate in a Newtonian fluid [6]. The
motion of a rigid plate of mass m and area A connected by a massless spring of
stiffness k, immersed in a Newtonian fluid, was originally proposed by Bagley and
Torvik.

A rigid plate of mass m immersed into an infinite Newtonian fluid as shown in
Fig. 3.1. The plate is held at a fixed point by means of a spring of stiffness k. It is
assumed that the motions of spring do not influence the motion of the fluid and that
the area A of the plate is very large, such that the stress–velocity relationship is valid
on both sides of the plate.

Let l be the viscosity and q be the fluid density. The displacement of the plate
y is described by

Fig. 3.1 Rigid plate of mass
m immersed into a Newtonian
fluid [6]
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Ay00ðtÞþBD3=2yðtÞþCyðtÞ ¼ gðtÞ; yð0Þ ¼ y0ð0Þ ¼ 0 ð3:1Þ

where A ¼ m;B ¼ 2A
ffiffiffiffiffiffi
lq

p
, and C ¼ k.

In the present analysis, the Haar wavelet method has been applied for the
numerical solution of the Bagley–Torvik equation of fractional order. Then, the
obtained numerical results have been also compared with the exact solutions.

3.2.2 Generalized Time Fractional Fisher-Type Equation

The generalized time fractional Fisher’s biological population diffusion equation is
given by

@au
@ta

¼ @2u
@x2

þFðuÞ; u x; 0ð Þ ¼ uðxÞ ð3:2Þ

where u x; tð Þ denotes the population density and t[ 0; x 2 <;FðuÞ is a continuous
nonlinear function satisfying the following conditions Fð0Þ ¼ Fð1Þ ¼ 0;
F0ð0Þ[ 0[F0ð1Þ. The derivative in Eq. (3.2) is the Caputo derivative of order a.

The aim of the present work is to implement Haar wavelet method and optimal
homotopy asymptotic method (OHAM) in order to demonstrate the capability of
these methods in handling nonlinear equations of arbitrary order so that one can
apply it to various types of nonlinearity.

3.3 Haar Wavelets and the Operational Matrices

In this section, a brief survey is introduced for the Haar wavelet operational matrix
method which is used to solve the fractional-order Bagley–Torvik equation and
fractional Fisher-type equation. In this context, a short review of Haar wavelets and
operational matrices has been discussed here.

3.3.1 Haar Wavelets

Haar functions have been used from 1910 when they were introduced by the
Hungarian mathematician Alfred Haar. Haar wavelets are the simplest wavelets
among various types of wavelets. They are step functions (piecewise constant
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functions) on the real line that can take only three values, i.e., 0, 1, and −1. We use
the Haar wavelet method due to the following features, simpler and fast, flexible,
convenient, small computational costs, and computationally attractive.

The Haar functions are a family of switched rectangular waveforms where
amplitudes can differ from one function to another. The orthogonal set of Haar
functions are defined in the interval ½0; 1Þ by

h0ðtÞ ¼ 1

hiðtÞ ¼
1; k�1

2 j � t\ k�1
2

2 j

�1; k�1
2

2 j � t\ k
2 j

0; otherwise

8>><
>>:

ð3:3Þ

where i ¼ 1; 2; . . .;m� 1, m ¼ 2J , and J is a positive integer. j and k represent the
integer decomposition of the index i, i.e., i ¼ kþ 2 j � 1, 0� j\i, and
1� k\2 j þ 1.

Theoretically, this set of functions is complete. The first curve of Fig. 3.2 is that
h0ðtÞ ¼ 1 during the whole interval ½0; 1Þ. It is called the scaling function. The
second curve h1ðtÞ is the fundamental square wave or the mother wavelet which
also spans the whole interval ½0; 1Þ. All the other subsequent curves are generated
from h1ðtÞ with two operations: translation and dilation. h2ðtÞ is obtained from h1ðtÞ
with dilation, i.e., h1ðtÞ is compressed from the whole interval ½0; 1Þ to the half
interval ½0; 1=2� to generate h2ðtÞ is the same as h2ðtÞ but shifted(translated) to the
right by 1/2. Similarly, h2ðtÞ is compressed form a half interval to a quarter interval
to generate h4ðtÞ. The function h4ðtÞ s translated to the right by 1=4; 2=4; 3=4 to
generate h5ðtÞ, h6ðtÞ, h7ðtÞ, respectively.

In the construction, h0ðtÞ is called the scaling function and h1ðtÞ is the mother
wavelet.

Usually, the Haar wavelets are defined for the interval t 2 ½0; 1�. In general case
t 2 ½A;B�, we divide the interval ½A;B� into m equal subintervals; each of width
Dt ¼ ðB� AÞ=m. In this case, the orthogonal set of Haar functions are defined in
the interval ½A; B� by Saha Ray [7]

h0ðtÞ ¼
1; t 2 ½A;B�
0; elsewhere

�
;

hiðtÞ ¼
1; n1ðiÞ� t\n2ðiÞ
�1; n2ðiÞ� t\n3ðiÞ
0; otherwise

8><
>:

ð3:4Þ
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Fig. 3.2 Haar wavelet functions with m ¼ 8
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Fig. 3.2 (continued)
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where

n1ðiÞ ¼ Aþ k � 1
2 j

� �
ðB� AÞ ¼ Aþ k � 1

2 j

� �
mDt;

n2ðiÞ ¼ Aþ k � 1
2

2 j

� �
ðB� AÞ ¼ Aþ k � 1

2

2 j

� �
mDt;

n3ðiÞ ¼ Aþ k
2 j

� �
ðB� AÞ ¼ Aþ k

2 j

� �
mDt;

for i ¼ 1; 2; . . .;m, m ¼ 2J , and J is a positive integer which is called the maximum
level of resolution. Here, j and k represent the integer decomposition of the index i,
i.e., i ¼ kþ 2 j � 1, 0� j\i, and 1� k\2 j þ 1:

In the following analysis, integrals of the wavelets are defined as

piðxÞ ¼
Zx
0

hiðxÞdx; qiðxÞ ¼
Zx
0

piðxÞdx; riðxÞ ¼
Zx
0

qiðxÞdx:

This can be done with the aid of (3.4)

piðxÞ ¼
x� n1 for x 2 n1; n2½ Þ
n3 � x for x 2 n2; n3½ Þ

0 elsewhere

8<
: ð3:5Þ

qi xð Þ ¼
0 for x 2 0; n1½ Þ

1
2 x� n1ð Þ2 for x 2 n1; n2½ Þ

1
4m2 � 1

2 n3 � xð Þ2 for x 2 n2; n3½ Þ
1

4m2 for x 2 n3; 1½ �

8>><
>>: ð3:6Þ

ri xð Þ ¼

1
6 x� n1ð Þ3 for x 2 n1; n2½ Þ

1
4m2 x� n2ð Þþ 1

6 n3 � xð Þ3 for x 2 n2; n3½ Þ
1

4m2 x� n2ð Þ for x 2 n3; 1½ Þ
0 elsewhere

8>><
>>: ð3:7Þ

The collocation points are defined as

xl ¼ l� 0:5
2M

; l ¼ 1; 2; . . .; 2M: ð3:8Þ

It is expedient to introduce the 2M � 2M matrices H, P, Q, and R with the
elements Hði; lÞ ¼ hiðxlÞ, Pði; lÞ ¼ piðxlÞ, Qði; lÞ ¼ qiðxlÞ and Rði; lÞ ¼ riðxlÞ,
respectively.
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3.3.2 Operational Matrix of the General Order Integration

In 2012, the generalized Haar wavelet operational matrix of integration has been
devised first time ever by Saha Ray [7].

The integration of the HmðtÞ ¼ ½h0ðtÞ; h1ðtÞ; . . .; hm�1ðtÞ�T can be approximated
by Chen and Hsiao [8]

Z t

0

HmðsÞds ffi QHmðtÞ; ð3:9Þ

where Q is called the Haar wavelet operational matrix of integration which is a
square matrix of dimension m� m.

Now, we shall derive the Haar wavelet operational matrix of the general order of
integration. In this purpose, we first introduce the fractional integral of order a (>0)
which is defined as Podlubny [4]

Jaf ðtÞ ¼ 1
CðaÞ

Z t

0

ðt � sÞa�1f ðsÞds; t[ 0; a 2 Rþ ð3:10Þ

where Rþ is the set of positive real numbers.
The Haar wavelet operational matrix Qa of integration of the general order a is

given by

QaHmðtÞ ¼ JaHmðtÞ
¼ ½Jah0ðtÞ; Jah1ðtÞ; . . .; Jahm�1ðtÞ�T

¼ ½Qh0ðtÞ;Qh1ðtÞ; . . .;Qhm�1ðtÞ�T;

where

Qh0ðtÞ ¼
ta

Cðaþ 1Þ ; t 2 ½A;B�
0; elsewhere

(
;

QhiðtÞ ¼

0; A� t\n1ðiÞ
f1; n1ðiÞ� t\n2ðiÞ
f2; n2ðiÞ� t\n3ðiÞ
f3; n3ðiÞ� t\B

8>>><
>>>:

ð3:11Þ
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where

f1 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ ;

f2 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ � 2

t � n2ðiÞð Þa
Cðaþ 1Þ ;

f3 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ � 2

t � n2ðiÞð Þa
Cðaþ 1Þ þ t � n3ðiÞð Þa

Cðaþ 1Þ ;

for i ¼ 1; 2; . . .;m, m ¼ 2J , and J is a positive integer. Here, j and k represent
the integer decomposition of the index i, i.e., i ¼ kþ 2 j � 1, 0� j\i, and
1� k\2 j þ 1.

For instance, if m ¼ 4, we have

Q1=2H4 ¼
0:398942 0:690988 0:892062 1:0555
0:398942 0:690988 0:0941775 �0:326475
0:398942 �0:106896 �0:0909723 �0:0376338

0 0 0:398942 �0:106896

0
BB@

1
CCA

QH4 ¼

1
8

3
8

5
8

7
8

1
8

3
8

3
8

1
8

1
8

1
8 0 0

0 0 1
8

1
8

0
BB@

1
CCA

Q2H4 ¼

1
128

9
128

25
128

49
128

1
128

9
128

23
128

31
128

1
128

7
128

1
16

1
16

0 0 1
128

7
128

0
BB@

1
CCA

Although, the learned researchers Chen and Hsiao [8], Kilicman and Zhour [9],
Li and Zhao [10] and Bouafoura and Braiek [11] proposed the generalized oper-
ational matrix of integration which is an approximate matrix in nature. It is not the
exact generalized operational matrix. Moreover, it has a drawback for obtaining the
correct integer-order operational matrices from the generalized operational matrix.

In the present analysis, the derived Haar wavelet operational matrix of inte-
gration Qa ¼ ðQaHÞH�1 of the general order a is the correct operational matrix.
The above examples justify its correctness.

3.3.3 Function Approximation by Haar Wavelets

Any function f ðtÞ 2 L2ð½0; 1ÞÞ can be expanded into Haar wavelets by
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yðtÞ ¼ c0h0ðtÞþ c1h1ðtÞþ c2h2ðtÞþ � � � ð3:12Þ

where cj ¼
R 1
0 yðtÞhjðtÞdt.

If yðtÞ is approximated as a piecewise constant in each subinterval, the sum in
Eq. (3.12) may be terminated after m terms and consequently, we can write a
discrete version in the matrix form as

Y �
Xm�1

i¼0

cihiðtlÞ
 !

1�m

¼ CTHm; ð3:13Þ

where Y is the discrete form of the continuous function yðtÞ, and CT ¼
½c0; c1; . . .; cm�1� is called the coefficient vector of Y which can be calculated from
CT ¼ Y:H�1

m . Y and CT are both row vectors, and Hm is the Haar wavelet matrix of
order m ¼ 2J , J is a positive integer and is defined by Hm ¼ ½h0; h1; . . .; hm�1�T

i.e.,

Hm ¼
h0
h1
. . .
hm�1

2
664

3
775 ¼

h0;0 h0;1 . . . h0;m�1

h1;0 h1;1 . . . h1;m�1

. . .:
hm�1;0 hm�1;1 . . . hm�1;m�1

2
664

3
775 ð3:14Þ

where h0; h1; . . .; hm�1 are the discrete form of the Haar wavelet bases; the discrete
values are taken from the continuous curves h0ðtÞ; h1ðtÞ; . . .; hm�1ðtÞ, respectively.

The expansion of a given function f ðtÞ into the Haar wavelet series is

f ðtÞ ¼
Xm�1

i¼0

cihiðtÞ; t 2 ½A;B� ð3:15Þ

where ci are the wavelet coefficients.
In the present paper, we apply wavelet collocation method to determine the

coefficients ci. These collocation points are given by

tl ¼ Aþðl� 0:5ÞDt; l ¼ 1; 2; . . .;m: ð3:16Þ

The discrete version of (3.15) is

f ðtlÞ ¼
Xm�1

i¼0

cihiðtlÞ: ð3:17Þ
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Equation (3.17) can be written in the matrix form as

f̂ ¼ CTHm: ð3:18Þ

where f̂ and CT are m-dimensional row vectors, and Hm is the Haar wavelet matrix
of order m.

3.3.4 Convergence of Haar Wavelet Approximation

In this subsection, the convergence analysis for the Haar wavelet method has been
employed.

Theorem 3.1 Let, f ðxÞ 2 L2ðRÞ be a continuous function defined in [0, 1). Then,
the error at Jth level may be defined as

EJðxÞ ¼ f ðxÞ � fJðxÞj j ¼ f ðxÞ �
X2M
i¼1

aihiðxÞ
�����

����� ¼
X1
i¼2M

aihiðxÞ
�����

�����: ð3:19Þ

Then, the error norm at Jth level satisfies the following inequalities

EJk k� K2

12
2�2J ; ð3:20Þ

where f 0ðxÞj j �K, for all x 2 ð0; 1Þ and K[ 0 and M is a positive number
related to the Jth level resolution of the wavelet given by M ¼ 2J .

Proof The error at the Jth level of resolution is defined as

EJj j ¼ f ðxÞ � fJðxÞj j

¼
X1
i¼2M

aihiðxÞ
�����

�����;
where

fJðxÞ ¼
X2M�1

i¼0

aihiðxÞ; M ¼ 2J :
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EJk k2 ¼
Z1
�1

X1
i¼2M

aihiðxÞ;
X1
l¼2M

alhlðxÞ
 !

dx

¼
X1
i¼2M

X1
l¼2M

aial

Z1
�1

hiðxÞhlðxÞdx

�
X1
i¼2M

aij j2:

Now, ai ¼
R 1
0 2

j=2f ðxÞhð2 jx� kÞdx,
where hiðxÞ ¼ 2j=2hð2 jx� kÞ, k ¼ 0; 1; 2; . . .; 2 j � 1, j ¼ 0; 1; . . .; J
and

h 2 jx� k
� � ¼ 1; k2�j � x\ kþ 1

2

� �
2�j

�1; kþ 1
2

� �
2�j � x\ðkþ 1Þ2�j

0; elsewhere

8<
: :

Therefore, applying integral mean value theorem, we obtain

ai ¼ 2j=2
Zðkþ 1

2Þ2�j

k2�j

f ðxÞdx�
Zðkþ 1Þ2�j

ðkþ 1
2Þ2�j

f ðxÞdx

2
64

3
75

¼ 2j=2 kþ 1
2

� �
2�j � k2�j

� �
f ðn1Þ

	

� kþ 1ð Þ2�j � kþ 1
2

� �
2�j

� �
f ðn2Þ



;

where n1 2 k2�j; kþ 1
2

� �
2�j

� �
and

n2 2 kþ 1
2

� �
2�j; kþ 1ð Þ2�j

� �

Consequently, applying Lagrange’s mean value theorem, we have

ai ¼ 2�
j
2�1ðn1 � n2Þðf 0ðnÞÞ; where n 2 ðn1; n2Þ:

This implies that

a2i ¼ 2�j�2ðn2 � n1Þ2f 0ðnÞ2
� 2�j�22�2jK2; since f 0ðxÞj j �K

¼ 2�3j�2K2:
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Therefore,

EJk k2 �
X1
i¼2M

a2i �
X1
i¼2M

2�3j�2K2

¼ K2
X1

j¼Jþ 1

X2jþ 1�1

i¼2 j

2�3j�2

¼ K2
X1

j¼Jþ 1

2�3j�2 2jþ 1 � 1� 2 j þ 1
� �

¼ K2
X1

j¼Jþ 1

ð2�2j�1 � 2�2j�2Þ

¼ K2
X1

j¼Jþ 1

2�2jð2�1 � 2�2Þ

¼ K2

4

X1
j¼Jþ 1

2�2j

¼ K2

4
2�2ðJþ 1Þ

1� 1
4

� �
¼ K2

12
2�2J :

ð3:21Þ

From the above Eq. (3.21), it is obvious that the error bound is inversely pro-
portional to the level of resolution J of Haar wavelet. Hence, the accuracy in the
wavelet method improves as we increase the level of resolution J.

3.4 Basic Idea of Optimal Homotopy Asymptotic Method

To illustrate the basic ideas of optimal homotopy asymptotic method, we consider
the following nonlinear differential equation

A u x; tð Þð Þþ g x; tð Þ ¼ 0; x 2 X ð3:22Þ

with the boundary conditions

B u;
@u
@t

� �
¼ 0; x 2 C ð3:23Þ

where A is a differential operator, B is a boundary operator, u x; tð Þ is an unknown
function, C is the boundary of the domain X, and g x; tð Þ is a known analytic
function.
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The operator A can be decomposed as

A ¼ LþN; ð3:24Þ

where L is a linear operator, and N is a nonlinear operator.
We construct a homotopy u x; t; pð Þ : X� 0; 1½ � ! < which satisfies

H u x; t; pð Þ; pð Þ ¼ 1� pð Þ L u x; t; pð Þð Þþ g x; tð Þ½ �
� HðpÞ A u x; t; pð Þð Þþ g x; tð Þ½ � ¼ 0;

ð3:25Þ

where p 2 0; 1½ � is an embedding parameter, and HðpÞ is a nonzero auxiliary
function for p 6¼ 0 and Hð0Þ ¼ 0. When p ¼ 0 and p ¼ 1, we have u x; t; 0ð Þ ¼
u0 x; tð Þ and u x; t; 1ð Þ ¼ u x; tð Þ, respectively.

Thus as p varies from 0 to 1, the solution u x; t; pð Þ approaches from u0 x; tð Þ to
u x; tð Þ.

Here u0 x; tð Þ is obtained from Eqs. (3.25) and (3.23) with p ¼ 0 yields

L u x; t; 0ð Þð Þþ g x; tð Þ ¼ 0; B u0;
@u0
@t

� �
¼ 0: ð3:26Þ

The auxiliary function HðpÞ is chosen in the form

HðpÞ ¼ pC1 þ p2C2 þ p3C3 þ � � � ; ð3:27Þ

where C1;C2;C3; . . . are constants to be determined. To get an approximate solu-
tion, ~u x; t; p;C1;C2;C3; . . .ð Þ is expanded in a series about p as

~u x; t; p;C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
X1
i¼1

ui x; t;C1;C2;C3; . . .ð Þpi: ð3:28Þ

Substituting Eq. (3.28) in Eq. (3.25) and equating the coefficients of like powers
of p, we will have the following equations

L u1 x; tð Þþ g x; tð Þð Þ ¼ C1N0 u0 x; tð Þð Þ; B u1;
@u1
@t

� �
¼ 0: ð3:29Þ

L u2 x; tð Þð Þ � L u1 x; tð Þð Þ ¼ C2N0 u0 x; tð Þð Þ

þC1 L u1 x; tð Þð ÞþN1 u0 x; tð Þ; u1 x; tð Þð Þð Þ;B u2;
@u2
@t

� �
¼ 0:

ð3:30Þ

and hence, the general governing equations for uj x; tð Þ is given by
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L uj x; tð Þ� � ¼ L uj�1 x; tð Þ� �þCjN0 u0 x; tð Þð Þ

þ
Xj�1

i¼1

Ci L uj�1 x; tð Þ� �þNj�1 u0 x; tð Þ; . . .; uj�1 x; tð Þ� �� �
;

j ¼ 2; 3; . . .

ð3:31Þ

where Nj u0 x; tð Þ; . . .; uj x; tð Þ� �
is the coefficient of p j in the expansion of

N u x; t; pð Þð Þ about the embedding parameter p and

N u x; t; p;C1;C2;C3; . . .ð Þð Þ ¼ N0 u0 x; tð Þð Þþ
X1
j¼1

Nj u0; u1; . . .; uj
� �

p j: ð3:32Þ

It is observed that the convergence of the series (3.28) depends upon the aux-
iliary constants C1;C2;C3; . . ..

The approximate solution of Eq. (3.22) can be written in the following form

~u x; t;C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
Xn�1

j¼1

uj x; t;C1;C2;C3; . . .ð Þ: ð3:33Þ

Substituting Eq. (3.33) in Eq. (3.22), we get the following expression for the
residual

Rn x; t;C1;C2;C3; . . .ð Þ ¼ L ~u x; t;C1;C2;C3; . . .ð Þð Þ
þN ~u x; t;C1;C2;C3; . . .ð Þð Þþ g x; tð Þ: ð3:34Þ

If Rn x; t;C1;C2;C3; . . .ð Þ ¼ 0, then ~u x; t;C1;C2;C3; . . .ð Þ is the exact solution.
Generally, such case does not arise for nonlinear problems. The nth-order
approximate solution given by Eq. (3.33) depends on the auxiliary constants
C1;C2;C3; . . ., and these constants can be optimally determined by various meth-
ods. Here, we apply the collocation method.

According to the collocation method, the optimal values of the constants
C1;C2;C3; . . . can be obtained by solving the following system of equations:

Rn xi; tj;C1;C2;C3; . . .;Ck2
� � ¼ 0; for i ¼ 1; 2; . . .; k and j ¼ 1; 2; . . .; k ð3:35Þ

After obtaining the optimal values of the convergence control constants
C1;C2;C3; . . . by the above-mentioned method, the approximate solution of
Eq. (3.22) is well determined.
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3.5 Application of Haar Wavelet Method
for the Numerical Solution of Bagley–Torvik Equation

In the present analysis, we are using the operational matrix of Haar wavelet for
finding the numerical solution of Bagley–Torvik Equation, which arises, for
instance, in modeling the motion of a rigid plate immersed in a Newtonian fluid.

Let us consider the Bagley–Torvik equation [4]

Ay00ðtÞþBD3=2yðtÞþCyðtÞ ¼ f ðtÞ; t[ 0 ð3:36Þ

where

f ðtÞ ¼ 8; 0� t� 1
0; t[ 1

�

subject to initial conditions

yð0Þ ¼ y0ð0Þ ¼ 0:

The Haar wavelet solution is sought in the form

yðtÞ ¼
Xm�1

i¼0

cihiðtÞ; ð3:37Þ

which can be written in the matrix form as

yðtlÞ ¼ CTHmðtlÞ; ð3:38Þ

where tl is the collocation points in Eq. (2.7), CT is the m-dimensional row vector,
and HmðtlÞ is the Haar wavelet square matrix of order m.

Integrating Eq. (3.36), we get

A
Z t

0

Z t

0

D2yðtÞdt dtþB
Z t

0

Z t

0

D3=2yðtÞdt dtþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt:

This implies

A yðtÞ � yð0Þ � t y0ð0Þ½ � þBJ1=2yðtÞþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt:
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Substituting the initial conditions, we obtain

AyðtÞþBJ1=2yðtÞþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt: ð3:39Þ

Now, expressing Eq. (3.38) into the discrete matrix form, we obtain

ACTHmðtlÞþBCTQ1=2HmðtlÞþCCTQ2HmðtlÞ ¼ EH�1
m ðtlÞQ2HmðtlÞ: ð3:40Þ

Since,
R t
0

R t
0 f ðt)dt dt ffi cTQ2HmðtÞ, where cT ¼ EH�1

m ðtÞ and E is the discrete
form of the function f ðtlÞ ¼ 8 uðtlÞ � u tl � 1ð Þð Þ, where uðtÞ is the Heaviside step
function, for Eq. (3.36).

From Eq. (3.40), we have

CT AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ
 �

¼ EH�1
m ðtlÞQ2HmðtlÞ: ð3:41Þ

Solving Eq. (3.41) for the coefficient row vector CT , we get

CT ¼ EH�1
m ðtlÞQ2HmðtlÞ AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ

 ��1
: ð3:42Þ

Using Eq. (3.38), the Haar wavelet numerical solution is obtained as

yðtlÞ ¼ EH�1
m ðtlÞQ2HmðtlÞ AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ

 ��1
HmðtlÞ:

ð3:43Þ

Now, the analytical solution of Eq. (3.36) is [4]

yðtÞ ¼
Z t

0

G3ðt � sÞf ðsÞds; ð3:44Þ

where G3 tð Þ ¼ 1
A

P1
r¼0

�1ð Þr
r!

C
A

� �r
t2rþ 1E rð Þ

1
2;
3
2rþ 2

�B
A t1=2
� �

, Ek;lðzÞ is called the Mittag–

Leffler function in two parameters k; l (>0) [4] and

EðrÞ
k;lðyÞ 	

dr

dyr
Ek;lðyÞ ¼

X1
j¼0

jþ rð Þ!y j
j!C kjþ krþ lð Þ; r ¼ 0; 1; 2; . . .ð Þ

Then, Eq. (3.44) is reduced to
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yðtÞ ¼ 8 yUðtÞ � yUðt � 1Þ½ �; if f ðtÞ ¼ 8 uðtÞ � u t � 1ð Þð Þ ð3:45Þ

where

yUðtÞ ¼ uðtÞ 1
A

X1
r¼0

�1ð Þr
r!

C
A

� �r

t2 rþ 1ð ÞEðrÞ
1
2;
3
2rþ 3

�B
A

t1=2
� �" #

:

The solution (3.45) is the analytical solution of Eq. (3.36).

3.5.1 Numerical Results and Discussions

In the present numerical computation, we have assumed A ¼ 1, B ¼ 0:5, and
C ¼ 0:5, as is taken in [4]. It is interesting to note that the graph obtained by Haar
wavelet operation method almost coincides with that of [4] cited in Fig. 3.3.

Equations (3.43) and (3.45) have been used to draw the graphs as shown in
Fig. 3.3. In Fig. 3.3, yapp(t) and yext(t) specify Haar wavelet numerical solution
and analytical exact solution of Bagley–Torvik equation, respectively.

To have a comparison of the present analysis through Haar wavelet operational
method with that of another available method [4], Table 3.1 creates to cite the
absolute errors at the collocation points given by Eq. (3.16).

The R.M.S. error between the numerical solution and the exact solution is
0.204029. The above numerical experiments presented in this section were com-
puted using Mathematica 7 [12].

Fig. 3.3 Numerical solution yapp(t) and analytical exact solution yext(t) of Bagley–Torvik
equation (black line for yapp(t) and dash line for yext(t))
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Table 3.1 Absolute error between numerical solution and analytical exact solution

Sl. No. Time (t) Analytical exact solution Numerical solution Absolute error

1 0.15625 0.0871108 0.0794522 0.00765854

2 0.46875 0.721004 0.70136 0.0196437

3 0.78125 1.87889 1.85171 0.0271845

4 1.09375 3.43807 3.35895 0.0791208

5 1.40625 4.85696 4.67105 0.185911

6 1.71875 5.98737 5.71216 0.27521

7 2.03125 6.83165 6.48436 0.347298

8 2.34375 7.39045 6.98837 0.402077

9 2.65625 7.66909 7.22953 0.439556

10 2.96875 7.67925 7.21918 0.460064

11 3.28125 7.43909 6.97477 0.464314

12 3.59375 6.97278 6.51938 0.453404

13 3.90625 6.30966 5.88088 0.428782

14 4.21875 5.48313 5.09093 0.392194

15 4.53125 4.52949 4.18387 0.345618

16 4.84375 3.48673 3.19553 0.291196

17 5.15625 2.39322 2.16206 0.231159

18 5.46875 1.28657 1.11881 0.167756

19 5.78125 0.202504 0.0993191 0.103185

20 6.09375 −0.826127 −0.865657 0.03953

21 6.40625 −1.77019 −1.7489 0.0212933

22 6.71875 −2.60496 −2.52737 0.0775864

23 7.03125 −3.3106 −3.1827 0.127905

24 7.34375 −3.87253 −3.70144 0.171084

25 7.65625 −4.28152 −4.07526 0.206259

26 7.96875 −4.53369 −4.30082 0.232869

27 8.28125 −4.63032 −4.37967 0.250654

28 8.59375 −4.57747 −4.31783 0.259644

29 8.90625 −4.38554 −4.1254 0.260137

30 9.21875 −4.06866 −3.81598 0.252674

31 9.53125 −3.64404 −3.40603 0.238006

32 9.84375 −3.13126 −2.9142 0.217055

33 10.1563 −2.55149 −2.36062 0.190874

34 10.4688 −1.92678 −1.76617 0.160611

35 10.7813 −1.27925 −1.15179 0.12746

36 11.0938 −0.630455 −0.537829 0.0926261

37 11.4063 −0.00071872 0.056568 0.0572867

38 11.7188 0.591432 0.613989 0.0225565

39 12.0313 1.12973 1.11919 0.0105422

40 12.3438 1.60056 1.55946 0.0411051
(continued)
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3.5.2 Error Estimate

The following table demonstrates the comparison between the numerical solution
obtained by Haar wavelet and the analytical solution. The corresponding absolute
errors are presented in Table 3.2.

Table 3.1 (continued)

Sl. No. Time (t) Analytical exact solution Numerical solution Absolute error

41 12.6563 1.99321 1.92484 0.0683651

42 12.9688 2.30003 2.20832 0.0917076

43 13.2813 2.51652 2.40585 0.110679

44 13.5938 2.64127 2.51628 0.124988

45 13.9063 2.6758 2.54129 0.134509

46 14.2188 2.62437 2.4851 0.139268

47 14.5313 2.49368 2.35425 0.139437

48 14.8438 2.29251 2.15719 0.135316

49 15.1563 2.03131 1.90399 0.127317

50 15.4688 1.7218 1.60585 0.115943

51 15.7813 1.37652 1.27475 0.101767

52 16.0938 1.00838 0.922968 0.0854092

53 16.4063 0.630246 0.56273 0.0675157

54 16.7188 0.254542 0.205806 0.0487359

55 17.0313 −0.107127 −0.13683 0.0297033

56 17.3438 −0.444276 −0.455293 0.0110165

57 17.6563 −0.747806 −0.74103 0.00677619

58 17.9688 −1.01021 −0.987015 0.0231906

59 18.2813 −1.22569 −1.18788 0.0378169

60 18.5938 −1.3903 −1.33997 0.0503275

61 18.9063 −1.50186 −1.44138 0.0604813

62 19.2188 −1.56003 −1.49191 0.0681253

63 19.5313 −1.56614 −1.49294 0.0731934

64 19.8438 −1.52304 −1.44734 0.0757026
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3.6 Solution of Fractional Fisher-Type Equation

In this section, the time fractional Fisher-type equation has been solved by reliable
methods, namely the Haar wavelet method and OHAM, respectively.

3.6.1 Application of Haar Wavelet to Fractional
Fisher-Type Equation

Consider the nonlinear diffusion equation of the Fisher type [13, 14]

@au
@ta

¼ @2u
@x2

þ u 1� uð Þ u� að Þ; ð3:46Þ

where 0\a� 1, 0� x� 1, and 0\a\1
with the initial condition

u x; 0ð Þ ¼ 1

1þExp � 1ffiffi
2

p
 �

x
h i : ð3:47Þ

When a ¼ 1, the exact solution of Eq. (3.46) is given by Wazwaz and Gorguis
[15], Liu [16]

u x; tð Þ ¼ 1

1þExp � xþ ctffiffi
2

p
 �h i ; ð3:48Þ

Table 3.2 Comparison of error between the numerical solution and analytical exact solution for
t ¼ 0; 1; 2; . . .; 10

Time t Approximate solution of yðtÞ Analytical solution of yðtÞ Absolute error

0 8:88178� 10�16 0 8:88178� 10�16

1 3.53856 2.95258 0.585974

2 7.53718 6.76011 0.77707

3 8.2854 7.66614 0.61926

4 6.26126 6.07725 0.184014

5 2.53055 2.94394 0.41339

6 −1.49195 −0.525171 0.966783

7 −4.50898 −3.2463 1.26268

8 −5.72074 −4.55029 1.17045

9 −5.00085 −4.30286 0.697989

10 −2.84029 −2.84838 0.0080944
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where c ¼ ffiffiffi
2

p
1
2 � a
� �

.
Let us divide both space and time interval [0, 1] into m equal subintervals; each

of width D ¼ 1
m.

Haar wavelet solution of u x; tð Þ is sought by assuming that @2u x;tð Þ
@x2 can be

expanded in terms of Haar wavelets as

@2u x; tð Þ
@x2

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞ: ð3:49Þ

Integrating Eq. (3.49) twice w.r.t. x from 0 to x, we get

u x; tð Þ ¼
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ qðtÞþ xpðtÞ: ð3:50Þ

Putting x ¼ 0; in Eq. (3.50), we get

qðtÞ ¼ u 0; tð Þ: ð3:51Þ

Putting x ¼ 1, in Eq. (3.50) we get

pðtÞ ¼ u 1; tð Þ � u 0; tð Þ �
Xm
i¼1

Xm
j¼1

cij Q
2hiðxÞ

� �
x¼1hjðtÞ: ð3:52Þ

Again qðtÞþ xpðtÞ can be approximated using Haar wavelet function as

qðtÞþ xpðtÞ ¼
Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ: ð3:53Þ

This implies

u 0; tð Þþ x u 1; tð Þ � u 0; tð Þ �
Xm
i¼1

Xm
j¼1

cij Q
2hiðxÞ

� �
x¼1hjðtÞ

" #

¼
Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ:
ð3:54Þ

Substituting Eq. (3.53) in Eq. (3.50), we get

u x; tð Þ ¼
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ: ð3:55Þ
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The nonlinear term presented in Eq. (3.46) can be approximated using Haar
wavelet function as

u 1� uð Þ u� að Þ ¼
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ: ð3:56Þ

Therefore,

Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ
 !

1�
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ
 !

Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ � a

 !
¼
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ

ð3:57Þ

Substituting Eqs. (3.49) and (3.56) in Eq. (3.46), we will have

@au
@ta

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞþ
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ : ð3:58Þ

Now applying Ja to both sides of Eq. (3.58) yields

u x; tð Þ � u x; 0ð Þ ¼ Jat
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞ
 !

þ Jat
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ
 !

: ð3:59Þ

Substituting Eq. (8.44) and Eq. (3.55) in Eq. (3.59), we get

Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ

� 1

1þ e
� 1ffiffi

2
p
 �

x

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞQa
t hjðtÞ

þ
Xm
i¼1

Xm
j¼1

dijhiðxÞQa
t hjðtÞ:

ð3:60Þ

Now substituting the collocation points xl ¼ l�0:5
m and tk ¼ k�0:5

m for l; k ¼
1; 2; . . .;m in Eqs. (3.54), (3.57), and (3.60), we have 3m2 equations in 3m2

110 3 Numerical Solution of Fractional Differential Equations …



unknowns in cij, rij, and dij. By solving this system of equations using mathematical
software, the Haar wavelet coefficients cij, rij, and dij can be obtained.

3.6.2 Application of OHAM to Fractional Fisher-Type
Equation

Using the optimal homotopy asymptotic method, the homotopy for Eq. (3.46) can
be written as

1� pð Þ @
au x; t; pð Þ

@ta
¼ HðpÞ @au x; t; pð Þ

@ta
� @2u x; t; pð Þ

@x2

	
�u x; t; pð Þ 1� u x; t; pð Þ½ � u x; t; pð Þ � a½ ��

ð3:61Þ

Here,

u x; t; pð Þ ¼ u0 x; tð Þþ
X1
i¼1

ui x; tð Þpi; ð3:62Þ

HðpÞ ¼ pC1 þ p2C2 þ p3C3 þ � � � ; ð3:63Þ

N u x; t; pð Þð Þ ¼ N0 u0 x; tð Þð Þþ
X1
k¼1

Nk u0; u1; . . .; ukð Þpk: ð3:64Þ

Substituting Eqs. (3.62)–(3.64) in Eq. (3.61) and equating the coefficients of like
powers of p, we have the following system of partial differential equations.

Coefficients of p0:

@au0 x; tð Þ
@ta

¼ 0: ð3:65Þ

Coefficients of p1:

@au1 x; tð Þ
@ta

� @au0 x; tð Þ
@ta

¼ C1
@au0 x; tð Þ

@ta
� @2u0 x; tð Þ

@x2

	

þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3
i ð3:66Þ
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Coefficients of p2:

@au2 x; tð Þ
@ta

� @au1 x; tð Þ
@ta

¼ C1
@au1 x; tð Þ

@ta
� @2u1 x; tð Þ

@x2
þ au1 x; tð Þ

	

�2u0 x; tð Þu1 x; tð Þ 1þ að Þþ 3 u0 x; tð Þð Þ2u1 x; tð Þ
i

þC2
@au0 x; tð Þ

@ta
� @2u0 x; tð Þ

@x2

	

þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3
i

ð3:67Þ

and so on.
For solving fractional Fisher-type equation using OHAM, we consider the initial

condition Eq. (3.47) and solving Eqs. (3.65)–(3.67), we obtain

u0 x; tð Þ ¼ 1

1þExp � 1ffiffi
2

p
 �

x
h i ; ð3:68Þ

u1 x; tð Þ ¼
C1 2a� 1ð ÞExp xffiffi

2
p
h i

ta

2 1þExp xffiffi
2

p
h i �2

C 1þ að Þ
; ð3:69Þ

u2 x; tð Þ ¼ u1 x; tð Þþ C1 u1 x; tð Þ �
C1 2a� 1ð ÞExp xffiffi

2
p
h i

1� 4Exp xffiffi
2

p
h i

þExp
ffiffiffi
2

p
x

� � �
t2a

4 1þExp xffiffi
2

p
h i �4

C 1þ 2að Þ

2
64

þ
aC1 2a� 1ð ÞExp xffiffi

2
p
h i

t2a

2 1þExp xffiffi
2

p
h i �2

C 1þ 2að Þ
� 1þ að ÞC1 2a� 1ð ÞExp ffiffiffi

2
p

x
� �

t2a

1þExp xffiffi
2

p
h i �3

C 1þ 2að Þ

þ
3C1 2a� 1ð ÞExp 3xffiffi

2
p
h i

t2a

2 1þExp xffiffi
2

p
h i �4

C 1þ 2að Þ

3
75

þC2 � @2u0 x; tð Þ
@x2

þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3
	 


ta

C 1þ að Þ
ð3:70Þ

Using Eqs. (3.68)–(3.70) and consequently substituting in Eq. (3.33), the
second-order approximate solution is obtained as follows
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u x; tð Þ ¼ 1

1þExp � 1ffiffi
2

p
 �

x
h i þ C1 2a� 1ð ÞExp xffiffi

2
p
h i

ta

2 1þExp xffiffi
2

p
h i �2

C 1þ að Þ
þ u1 x; tð Þ

þ C1 u1 x; tð Þ �
C1 2a� 1ð ÞExp xffiffi

2
p
h i
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The optimal values of the convergence control constants C1 and C2 can be
obtained using the collocation method from Eq. (3.35).

3.6.3 Numerical Results and Discussion

Table 3.3 shows the comparison of the approximate solutions of fractional
Fisher-type Eq. (3.46) obtained by using the Haar wavelet method and OHAM at
different values of x and t. Tables 3.4, 3.5, and 3.6 exhibit the comparison of
approximate solutions obtained by Haar wavelet method and OHAM for fractional
Fisher-type Eq. (3.46). The obtained results in Tables 3.3, 3.4, 3.5, and 3.6
demonstrate that these methods are well suited for solving fractional Fisher-type
equation. Table 3.7 exhibits the L2 and L1 error norm for fractional Fisher-type
equation at different values of t and a ¼ 1. It can be easily observed from Table 3.7
that the solutions obtained by OHAM are more accurate than that of the Haar
wavelet method.

In the case of fractional Fisher-type Eq. (3.46), Figs. 3.4, 3.5, 3.6, and 3.7 show
the graphical comparison between the numerical solutions obtained by Haar
wavelet method and exact solutions for different values of x and t for a ¼ 1.
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Table 3.3 Absolute errors in the solution of fractional Fisher-type Eq. (3.46) using the Haar
wavelet method and second-order OHAM at various points of x and t for a ¼ 1

x uExact � uHaarj j uExact � uOHAMj j
t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8 t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

0.1 6.3532E−3 2.37818E−3 1.10276E−2 0.01313 1.15082E−6 2.2604E−5 9.065E−5 2.3096E−4

0.2 0.0157158 1.13279E−3 0.0156863 0.0202773 2.08404E−6 9.2861E−6 5.967E−5 1.7382E−4

0.3 0.0254058 8.69964E−4 0.0188795 0.0256173 5.29828E−6 4.1167E−6 2.814E−5 1.151E−4

0.4 0.0346376 3.18353E−3 0.0206902 0.0290465 8.45965E−6 1.7464E−5 3.605E−6 5.5364E−5

0.5 0.0392372 6.88463E−4 0.0293499 0.0394803 1.1537E−5 3.0617E−5 3.521E−5 4.6066E−6

0.6 0.0452261 1.29706E−3 0.0284296 0.0387295 1.45011E−5 4.3441E−5 6.635E−5 6.4167E−5

0.7 0.0486123 0.00292683 0.0260098 0.0356642 1.73248E−5 5.5811E−5 9.668E−5 1.2266E−4

0.8 0.0489923 0.00432643 0.0218834 0.0300975 1.99841E−5 6.761E−5 1.259E−4 1.7945E−4

0.9 0.0461399 0.00580079 0.0157611 0.0218232 2.2458E−5 7.8733E−5 1.537E−4 2.3396E−4

1.0 0.0407954 0.00797543 7.28187E−3 0.010615 2.47294E−5 8.9092E−5 1.799E−4 2.8567E−4

Table 3.4 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and second-order OHAM at various points of x and t for a ¼ 0:75

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.529262 0.541972 0.550815 0.558464 0.57178 0.572871 0.58789 0.586061

0.2 0.54032 0.559441 0.567777 0.57575 0.592323 0.589947 0.610112 0.6029

0.3 0.551007 0.576764 0.583637 0.592852 0.611195 0.606805 0.630359 0.619494

0.4 0.561805 0.5939 0.598653 0.60973 0.628487 0.62341 0.648635 0.635808

0.5 0.577346 0.61081 0.619426 0.62635 0.652014 0.639728 0.673325 0.651811

0.6 0.589669 0.627458 0.63334 0.642676 0.666293 0.655727 0.687588 0.667476

0.7 0.603304 0.643809 0.646865 0.658676 0.679049 0.67138 0.699751 0.682775

0.8 0.618509 0.659832 0.659997 0.674324 0.690193 0.68666 0.709697 0.697687

0.9 0.635416 0.675498 0.672635 0.689592 0.699573 0.701546 0.717268 0.712192

1.0 0.653985 0.69078 0.684559 0.704459 0.706961 0.716016 0.722251 0.726273

Table 3.5 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and three terms for second-order OHAM at various points of x and t for a ¼ 0:5

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.531396 0.55521 0.550389 0.570645 0.570167 0.582442 0.586081 0.592358

0.2 0.544463 0.572501 0.567129 0.587683 0.589396 0.599243 0.606722 0.608926

0.3 0.557098 0.589616 0.582811 0.604511 0.607055 0.615806 0.625465 0.625237

0.4 0.569581 0.606516 0.597627 0.621093 0.62327 0.6321 0.642398 0.64126

0.5 0.586931 0.623164 0.617982 0.637394 0.645433 0.648094 0.665485 0.656966

0.6 0.599906 0.639526 0.631544 0.653383 0.659045 0.663758 0.678972 0.672331

0.7 0.613502 0.655571 0.644668 0.669033 0.671439 0.679069 0.690761 0.68733

0.8 0.627951 0.671268 0.657436 0.684317 0.682619 0.694001 0.700823 0.701944

0.9 0.643461 0.686593 0.669891 0.699213 0.69255 0.708537 0.709084 0.716155

1.0 0.660213 0.701522 0.682031 0.713701 0.701145 0.722658 0.715421 0.729948
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Table 3.7 L2 and L1 error norm for Fisher-type equation at different values of t

Time (s) Haar wavelet method Optimal homotopy asymptotic
method (OHAM)

L2 L1 L2 L1
0.2 0.0377811 0.0489923 1.50470E−5 2.47294E−5

0.4 0.00380168 0.00797543 5.05627E−5 8.9092E−5

0.6 0.020685 0.0293499 9.97048E−5 1.799E−4

0.8 0.0281228 0.0394803 1.69576E−4 2.8567E−4

Table 3.6 Approximate solutions of fractional Fisher-type Eq. (8.1) using the Haar wavelet
method and three terms for second-order OHAM at various points of x and t for a ¼ 0:25

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.532613 0.572089 0.549759 0.582288 0.56869 0.589109 0.584364 0.594376

0.2 0.546845 0.589079 0.566132 0.599061 0.586797 0.605718 0.603614 0.610849

0.3 0.560632 0.605856 0.581558 0.615598 0.603479 0.622078 0.62109 0.627063

0.4 0.574145 0.622383 0.596189 0.631866 0.618879 0.638157 0.63693 0.642985

0.5 0.592632 0.638629 0.6162 0.647836 0.639969 0.653925 0.658653 0.65859

0.6 0.60613 0.654561 0.62967 0.663478 0.653168 0.669358 0.671551 0.673851

0.7 0.6199 0.670153 0.642758 0.678767 0.665416 0.68443 0.683099 0.688748

0.8 0.634137 0.685379 0.655588 0.693681 0.67679 0.699122 0.693344 0.703261

0.9 0.649049 0.700217 0.668278 0.7082 0.687344 0.713415 0.702305 0.717372

1.0 0.664857 0.714648 0.680936 0.722306 0.697114 0.727293 0.709973 0.731069

Fig. 3.4 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:2 and a ¼ 1
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Fig. 3.5 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:4 and a ¼ 1

Fig. 3.6 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:6 and a ¼ 1

Fig. 3.7 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:8 and a ¼ 1
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3.7 Conclusion

In the present chapter, a numerical method based on the Haar wavelet operational
method is applied to solve the Bagley–Torvik equation. An attempt has been made
to apply the Haar wavelet operational method for the numerical solution of the
Bagley–Torvik equation.

We exhibit a numerical method for the fractional-order Bagley–Torvik equation
based on Haar wavelet operational matrices of the general order of integration. In
this regard, a general procedure of obtaining the Haar wavelet operational matrix Qa

of integration of the general order a is derived first time in this work. This oper-
ational matrix is the correct general order operational matrix confirmed after
examined by the author.

The numerical solution is compared with the exact solution and the R.M.S. error
is 0.204029. The error may be reduced if we take more number of collocation
points. The advantage of this method is that it transforms the problem into algebraic
matrix equation so that the computation is simple, and it is a computer-oriented
method. It shows the simplicity and effectiveness of this method. It is based on the
operational matrices of Haar wavelet functions. Moreover, wavelet operational
method is much simpler than the conventional numerical method for fractional
differential equations, and the result obtained is quite satisfactory. The admissible
comparison of the results obtained by the present method justifies the applicability,
accuracy, and efficiency of the proposed method.

Also, in this chapter, the fractional Fisher-type equation has been solved by
using the Haar wavelet method. The obtained results are then compared with exact
solutions as well as the optimal homotopy asymptotic method. These results have
been presented in the tables and also graphically demonstrated in order to justify the
accuracy and efficiency of the proposed schemes. The Haar wavelet technique
provides quite satisfactory results for the fractional Fisher-type Eq. (3.46). The
main advantages of this Haar wavelet method are it transfers the whole scheme into
a system of algebraic equations for which the computation is easy and simple.
OHAM allows fine-tuning of the convergence region and the rate of convergence
by suitably identifying convergence control parameters C1;C2;C3; . . .. The results
obtained by OHAM are more accurate as its convergence region can be easily
adjusted and controlled. The main advantages of these schemes are their simplicity,
applicability, and less computational errors. Although the obtained results indicate
that the optimal homotopy asymptotic method provides more accurate value than
Haar wavelet method, and however, the accuracy of the wavelet method may be
improved with the increase in level of resolution.
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